Science.gov

Sample records for address flammable gas

  1. Methodology for flammable gas evaluations

    SciTech Connect

    Hopkins, J.D., Westinghouse Hanford

    1996-06-12

    There are 177 radioactive waste storage tanks at the Hanford Site. The waste generates flammable gases. The waste releases gas continuously, but in some tanks the waste has shown a tendency to trap these flammable gases. When enough gas is trapped in a tank`s waste matrix, it may be released in a way that renders part or all of the tank atmosphere flammable for a period of time. Tanks must be evaluated against previously defined criteria to determine whether they can present a flammable gas hazard. This document presents the methodology for evaluating tanks in two areas of concern in the tank headspace:steady-state flammable-gas concentration resulting from continuous release, and concentration resulting from an episodic gas release.

  2. Flammable gas project topical report

    SciTech Connect

    Johnson, G.D.

    1997-01-29

    The flammable gas safety issue was recognized in 1990 with the declaration of an unreviewed safety question (USQ) by the U. S. Department of Energy as a result of the behavior of the Hanford Site high-level waste tank 241-SY-101. This tank exhibited episodic releases of flammable gas that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years there has been a considerable amount of knowledge gained about the chemical and physical processes that govern the behavior of tank 241-SY-1 01 and other tanks associated with the flammable gas safety issue. This report was prepared to provide an overview of that knowledge and to provide a description of the key information still needed to resolve the issue. Items covered by this report include summaries of the understanding of gas generation, retention and release mechanisms, the composition and flammability behavior of the gas mixture, the amounts of stored gas, and estimated gas release fractions for spontaneous releases. `Me report also discusses methods being developed for evaluating the 177 tanks at the Hanford Site and the problems associated with these methods. Means for measuring the gases emitted from the waste are described along with laboratory experiments designed to gain more information regarding rates of generation, species of gases emitted and modes of gas storage and release. Finally, the process for closing the USQ is outlined as are the information requirements to understand and resolve the flammable gas issue.

  3. Flammable Gas Technical Basis Document

    SciTech Connect

    CARRO, C.A.

    2003-07-30

    This document qualitatively evaluates the frequency and consequences of DST and SST representative flammable gas accidents and associated represented hazardous conditions without controls. Based on the evaluation, it was determined that safety-significant SSCs and/or TSRs were required to prevent or mitigate flammable gas accidents. Controls were selected and the accidents re-evaluated taking credit for the controls. Revision 1 incorporates comments received from ORP.

  4. Flammable gas program topical report

    SciTech Connect

    Johnson, G.D.

    1996-10-30

    The major emphasis of this report is to describe what has been learned about the generation, retention, and release of flammable gas mixtures in high-level waste tanks. A brief overview of efforts to characterize the gas composition will be provided. The report also discusses what needs to be learned about the phenomena, how the Unreviewed Safety Question will be closed, and the approach for removing tanks from the Watch List.

  5. Fixed target flammable gas upgrades

    SciTech Connect

    Schmitt, R.; Squires, B.; Gasteyer, T.; Richardson, R.

    1996-12-01

    In the past, fixed target flammable gas systems were not supported in an organized fashion. The Research Division, Mechanical Support Department began to support these gas systems for the 1995 run. This technical memo describes the new approach being used to supply chamber gasses to fixed target experiments at Fermilab. It describes the engineering design features, system safety, system documentation and performance results. Gas mixtures provide the medium for electron detection in proportional and drift chambers. Usually a mixture of a noble gas and a polyatomic quenching gas is used. Sometimes a small amount of electronegative gas is added as well. The mixture required is a function of the specific chamber design, including working voltage, gain requirements, high rate capability, aging and others. For the 1995 fixed target run all the experiments requested once through gas systems. We obtained a summary of problems from the 1990 fixed target run and made a summary of the operations logbook entries from the 1991 run. These summaries primarily include problems involving flammable gas alarms, but also include incidents where Operations was involved or informed. Usually contamination issues were dealt with by the experimenters. The summaries are attached. We discussed past operational issues with the experimenters involved. There were numerous incidents of drift chamber failure where contaminated gas was suspect. However analyses of the gas at the time usually did not show any particular problems. This could have been because the analysis did not look for the troublesome component, the contaminant was concentrated in the gas over the liquid and vented before the sample was taken, or that contaminants were drawn into the chambers directly through leaks or sub-atmospheric pressures. After some study we were unable to determine specific causes of past contamination problems, although in argon-ethane systems the problems were due to the ethane only.

  6. 49 CFR 172.532 - FLAMMABLE GAS placard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false FLAMMABLE GAS placard. 172.532 Section 172.532... SECURITY PLANS Placarding § 172.532 FLAMMABLE GAS placard. (a) Except for size and color, the FLAMMABLE GAS... on the FLAMMABLE GAS placard must be red. The symbol, text, class number and inner border must...

  7. 49 CFR 172.532 - FLAMMABLE GAS placard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false FLAMMABLE GAS placard. 172.532 Section 172.532... SECURITY PLANS Placarding § 172.532 FLAMMABLE GAS placard. (a) Except for size and color, the FLAMMABLE GAS... on the FLAMMABLE GAS placard must be red. The symbol, text, class number and inner border must...

  8. 49 CFR 172.532 - FLAMMABLE GAS placard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false FLAMMABLE GAS placard. 172.532 Section 172.532... SECURITY PLANS Placarding § 172.532 FLAMMABLE GAS placard. (a) Except for size and color, the FLAMMABLE GAS... on the FLAMMABLE GAS placard must be red. The symbol, text, class number and inner border must...

  9. 49 CFR 172.417 - FLAMMABLE GAS label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE GAS label. 172.417 Section 172.417... SECURITY PLANS Labeling § 172.417 FLAMMABLE GAS label. (a) Except for size and color, the FLAMMABLE GAS... on the FLAMMABLE GAS label must be red....

  10. 49 CFR 172.417 - FLAMMABLE GAS label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false FLAMMABLE GAS label. 172.417 Section 172.417... SECURITY PLANS Labeling § 172.417 FLAMMABLE GAS label. (a) Except for size and color, the FLAMMABLE GAS... on the FLAMMABLE GAS label must be red....

  11. 49 CFR 172.417 - FLAMMABLE GAS label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false FLAMMABLE GAS label. 172.417 Section 172.417... SECURITY PLANS Labeling § 172.417 FLAMMABLE GAS label. (a) Except for size and color, the FLAMMABLE GAS... on the FLAMMABLE GAS label must be red....

  12. 49 CFR 172.417 - FLAMMABLE GAS label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false FLAMMABLE GAS label. 172.417 Section 172.417... SECURITY PLANS Labeling § 172.417 FLAMMABLE GAS label. (a) Except for size and color, the FLAMMABLE GAS... on the FLAMMABLE GAS label must be red....

  13. 49 CFR 172.532 - FLAMMABLE GAS placard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE GAS placard. 172.532 Section 172.532... SECURITY PLANS Placarding § 172.532 FLAMMABLE GAS placard. (a) Except for size and color, the FLAMMABLE GAS... on the FLAMMABLE GAS placard must be red. The symbol, text, class number and inner border must...

  14. Flammable Gas Diffusion from Waste Transfer Associated Structures

    SciTech Connect

    MEACHAM, J.E.

    2003-06-24

    This report assesses potential accumulation of flammable gases in interim isolated concrete waste transfer structures. A hypothetical scenario was analyzed in which flammable gas was generated by spilled waste on the transfer structure floor. Results showed that the flammable gas would safely diffuse out of the concrete structures and equilibrium concentrations were well below the lower flammability limit.

  15. Flammable Gas Diffusion from Waste Transfer Associated Structures

    SciTech Connect

    MEACHAM, J.E.; ESTEY, S.D.

    2002-11-20

    This report assesses potential accumulation of flammable gases in interim isolated concrete waste transfer structures. A hypothetical scenario was analyzed in which flammable gas was generated by spilled waste on the transfer structure floor. Results showed that the flammable gas would safely diffuse out of the concrete structures and equilibrium concentrations were orders of magnitude below the lower flammability limit.

  16. OTP for belhaven flammable gas monitor at 241-T-104

    SciTech Connect

    Zuroff, W.F.

    1996-03-08

    This Operational Test Procedure tests the operability of the Safety Class 3 flammable gas monitoring system with equipment shutdown capability. This test includes the flammable gas monitor, heat trace system, pneumatic system, and the interface with existing equipment.

  17. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means any flammable gas having a Reid...

  18. 77 FR 62224 - Hanford Tank Farms Flammable Gas Safety Strategy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... SAFETY BOARD Hanford Tank Farms Flammable Gas Safety Strategy AGENCY: Defense Nuclear Facilities Safety... Farms flammable gas safety strategy. ] DATES: Comments, data, views, or arguments concerning the... 2012-2 TO THE SECRETARY OF ENERGY Hanford Tank Farms Flammable Gas Safety Strategy Pursuant to 42...

  19. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means any flammable gas having a Reid vapor pressure exceeding 40 p.s.i. which has been liquefied....

  20. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means any flammable gas having a Reid vapor pressure exceeding 40 p.s.i. which has been liquefied....

  1. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means any flammable gas having a Reid vapor pressure exceeding 40 p.s.i. which has been liquefied....

  2. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means any flammable gas having a Reid...

  3. The Chemistry of Flammable Gas Generation

    SciTech Connect

    ZACH, J.J.

    2000-10-30

    The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data.

  4. Flammable gas interlock spoolpiece flow response test plan and procedure

    SciTech Connect

    Schneider, T.C., Fluor Daniel Hanford

    1997-02-13

    The purpose of this test plan and procedure is to test the Whittaker electrochemical cell and the Sierra Monitor Corp. flammable gas monitors in a simulated field flow configuration. The sensors are used on the Rotary Mode Core Sampling (RMCS) Flammable Gas Interlock (FGI), to detect flammable gases, including hydrogen and teminate the core sampling activity at a predetermined concentration level.

  5. ACCUMULATION OF FLAMMABLE GAS IN SEALED WASTE TRANSFER ASSOCIATED STRUCTURES

    SciTech Connect

    MEACHAM, J.E.

    2003-06-24

    This report assesses potential accumulation of flammable gases in sealed waste transfer structures. A hypothetical scenario was analyzed in which flammable gas was generated by spilled waste on the transfer structure floor. Results showed that the flammable gas concentration builds slowly and it would take decades to reach the lower flammability limit (LFL) in these hypothetical scenarios. Qualitative and quantitative analyses are used to provide a conservative assessment of the flammable gas hazard. This assessment includes steel transfer structures, transfer structures with external coatings (e.g., coatings applied during interim isolation), and internal coatings (e.g., polyurea that is being applied to active transfer structures as part of Project W-314).

  6. Flammable Gas Detection for the D-Zero Gas System

    SciTech Connect

    Spires, L.D.; Foglesong, J.; /Fermilab

    1991-02-11

    The use of flammable gas and high voltage in detector systems is common in many experiments at Fermilab. To mitigate the hazards associated with these systems, Fermilab Engineering Standard SD-45B (Ref. 1) was adopted. Since this note is meant to be a guide and not a mandatory standard, each experiment is reviewed for compliance with SD-45B by the flammable gas safety subcommittee. Currently, there are only two types of flammable gas in use, ethane (Appendix A) and methane (Appendix B). The worst flammable-gas case is C2H6 (ethane), which has an estimated flow rate that is 73% of the CH4 (methane) flow but a heat of combustion (in kcal/g-mole) that is 173% of that of methane. In the worst case, if ethane were to spew through its restricting orifice into its gas line at 0 psig and then through a catastrophic leak into Room 215 (TRD) or Room 511 (CDC/FDCNTX), the time that would be required to build up a greater than Class 1 inventory (0.4kg H2 equivalent) would be 5.2 hours (Ref. 2). Therefore a worst-case flammable gas leak would have to go undetected for over 5 hours in order to transform a either mixing room to an environment with a Risk Class greater than Class 1. The mixing systems, gas lines, and detectors themselves will be thoroughly leak checked prior to active service. All vessels that are part of the mixing systems will be protected from overpressure by safety valves vented outside the building. Both the input and output of all detector volumes are protected from overpressure in the same way. The volume immediately outside the central tracking detectors is continuously purged by nitrogen from boiloff from the main nitrogen dewar at the site. However, if flammable gas were to build up in the mixing rooms or particular detector areas, no matter how unlikely, flammable gas detectors that are part of the interlock chain of each gas mixing system will shut down the appropriate system. This includes shutting off the output of flammable gas manifolds within the

  7. Thermal Flammable Gas Production from Bulk Vitrification Feed

    SciTech Connect

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.

    2008-05-21

    The baseline bulk-vitrification (BV) process (also known as in-container vitrification ICV™) includes a mixer/dryer to convert liquid low-activity waste (LAW) into a dried, blended feed for vitrification. Feed preparation includes blending LAW with glass-forming minerals (GFMs) and cellulose and drying the mixture to a suitable dryness, consistency, and particle size for transport to the ICVTM container. The cellulose is to be added to the BV feed at a rate sufficient to destroy 75% of the nitrogen present as nitrate or nitrite. Concern exists that flammable gases may be produced during drying operations at levels that could pose a risk. The drying process is conducted under vacuum in the temperature range of 60 to 80°C. These flammable gases could be produced either through thermal decomposition of cellulose or waste organics or as a by-product of the reaction of cellulose and/or waste organics with nitrate or the postulated small amount of nitrite present in the waste. To help address the concern about flammable gas production during drying, the Pacific Northwest National Laboratory (PNNL) performed studies to identify the gases produced at dryer temperatures and at possible process upset conditions. Studies used a thermogravimetric analyzer (TGA) up to 525°C and isothermal testing up to 120°C to determine flammable gas production resulting from the cellulose and organic constituents in bulk vitrification feed. This report provides the results of those studies to determine the effects of cellulose and waste organics on flammable gas evolution

  8. 49 CFR 172.415 - NON-FLAMMABLE GAS label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false NON-FLAMMABLE GAS label. 172.415 Section 172.415... SECURITY PLANS Labeling § 172.415 NON-FLAMMABLE GAS label. (a) Except for size and color, the NON-FLAMMABLE GAS label must be as follows: EC02MR91.020 (b) In addition to complying with § 172.407, the...

  9. 49 CFR 172.528 - NON-FLAMMABLE GAS placard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false NON-FLAMMABLE GAS placard. 172.528 Section 172.528... SECURITY PLANS Placarding § 172.528 NON-FLAMMABLE GAS placard. (a) Except for size and color, the NON-FLAMMABLE GAS placard must be as follows: EC02MR91.045 (b) In addition to complying with § 172.519,...

  10. 49 CFR 172.528 - NON-FLAMMABLE GAS placard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false NON-FLAMMABLE GAS placard. 172.528 Section 172.528... SECURITY PLANS Placarding § 172.528 NON-FLAMMABLE GAS placard. (a) Except for size and color, the NON-FLAMMABLE GAS placard must be as follows: EC02MR91.045 (b) In addition to complying with § 172.519,...

  11. 49 CFR 172.528 - NON-FLAMMABLE GAS placard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false NON-FLAMMABLE GAS placard. 172.528 Section 172.528... SECURITY PLANS Placarding § 172.528 NON-FLAMMABLE GAS placard. (a) Except for size and color, the NON-FLAMMABLE GAS placard must be as follows: EC02MR91.045 (b) In addition to complying with § 172.519,...

  12. 49 CFR 172.415 - NON-FLAMMABLE GAS label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false NON-FLAMMABLE GAS label. 172.415 Section 172.415... SECURITY PLANS Labeling § 172.415 NON-FLAMMABLE GAS label. (a) Except for size and color, the NON-FLAMMABLE GAS label must be as follows: EC02MR91.020 (b) In addition to complying with § 172.407, the...

  13. 49 CFR 172.415 - NON-FLAMMABLE GAS label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false NON-FLAMMABLE GAS label. 172.415 Section 172.415... SECURITY PLANS Labeling § 172.415 NON-FLAMMABLE GAS label. (a) Except for size and color, the NON-FLAMMABLE GAS label must be as follows: EC02MR91.020 (b) In addition to complying with § 172.407, the...

  14. 49 CFR 172.415 - NON-FLAMMABLE GAS label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false NON-FLAMMABLE GAS label. 172.415 Section 172.415... SECURITY PLANS Labeling § 172.415 NON-FLAMMABLE GAS label. (a) Except for size and color, the NON-FLAMMABLE GAS label must be as follows: EC02MR91.020 (b) In addition to complying with § 172.407, the...

  15. 49 CFR 172.528 - NON-FLAMMABLE GAS placard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false NON-FLAMMABLE GAS placard. 172.528 Section 172.528... SECURITY PLANS Placarding § 172.528 NON-FLAMMABLE GAS placard. (a) Except for size and color, the NON-FLAMMABLE GAS placard must be as follows: EC02MR91.045 (b) In addition to complying with § 172.519,...

  16. 46 CFR 148.420 - Flammable gas analyzers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Flammable gas analyzers. 148.420 Section 148.420... MATERIALS THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.420 Flammable gas analyzers..., each vessel transporting the material, other than an unmanned barge, must have on board a gas...

  17. 46 CFR 148.420 - Flammable gas analyzers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Flammable gas analyzers. 148.420 Section 148.420... MATERIALS THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.420 Flammable gas analyzers..., each vessel transporting the material, other than an unmanned barge, must have on board a gas...

  18. 46 CFR 148.420 - Flammable gas analyzers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Flammable gas analyzers. 148.420 Section 148.420... MATERIALS THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.420 Flammable gas analyzers..., each vessel transporting the material, other than an unmanned barge, must have on board a gas...

  19. Melter Off-Gas Flammability Analysis

    SciTech Connect

    Smith, FG III

    2003-12-12

    The objective of this work was to develop predictive models to assess offgas flammability for a low activity radioactive waste melter. The models had to be comprehensive enough to explicitly describe the effects of key melter operating variables such as total organic carbon in the feed, melter air purge and vapor space temperature. Once validated against pilot melter data, these models were used to simulate a series of safety scenarios involving over-batching of sugar, used as a reducing agent, and off-gas surges. The overall scope of the work was broken down into two parts, each focusing on a physically distinct region in the melter.

  20. Retained Gas Sampling Results for the Flammable Gas Program

    SciTech Connect

    J.M. Bates; L.A. Mahoney; M.E. Dahl; Z.I. Antoniak

    1999-11-18

    The key phenomena of the Flammable Gas Safety Issue are generation of the gas mixture, the modes of gas retention, and the mechanisms causing release of the gas. An understanding of the mechanisms of these processes is required for final resolution of the safety issue. Central to understanding is gathering information from such sources as historical records, tank sampling data, tank process data (temperatures, ventilation rates, etc.), and laboratory evaluations conducted on tank waste samples.

  1. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Flammable gas detection system. 154.1350 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a...

  2. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Flammable gas detection system. 154.1350 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a...

  3. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Flammable gas detection system. 154.1350 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a...

  4. A risk-based approach to flammable gas detector spacing.

    PubMed

    Defriend, Stephen; Dejmek, Mark; Porter, Leisa; Deshotels, Bob; Natvig, Bernt

    2008-11-15

    Flammable gas detectors allow an operating company to address leaks before they become serious, by automatically alarming and by initiating isolation and safe venting. Without effective gas detection, there is very limited defense against a flammable gas leak developing into a fire or explosion that could cause loss of life or escalate to cascading failures of nearby vessels, piping, and equipment. While it is commonly recognized that some gas detectors are needed in a process plant containing flammable gas or volatile liquids, there is usually a question of how many are needed. The areas that need protection can be determined by dispersion modeling from potential leak sites. Within the areas that must be protected, the spacing of detectors (or alternatively, number of detectors) should be based on risk. Detector design can be characterized by spacing criteria, which is convenient for design - or alternatively by number of detectors, which is convenient for cost reporting. The factors that influence the risk are site-specific, including process conditions, chemical composition, number of potential leak sites, piping design standards, arrangement of plant equipment and structures, design of isolation and depressurization systems, and frequency of detector testing. Site-specific factors such as those just mentioned affect the size of flammable gas cloud that must be detected (within a specified probability) by the gas detection system. A probability of detection must be specified that gives a design with a tolerable risk of fires and explosions. To determine the optimum spacing of detectors, it is important to consider the probability that a detector will fail at some time and be inoperative until replaced or repaired. A cost-effective approach is based on the combined risk from a representative selection of leakage scenarios, rather than a worst-case evaluation. This means that probability and severity of leak consequences must be evaluated together. In marine and

  5. STEADY-STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect

    HU TA

    2007-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The methodology of flammability analysis for Hanford tank waste is developed. The hydrogen generation rate model was applied to calculate the gas generation rate for 177 tanks. Flammability concentrations and the time to reach 25% and 100% of the lower flammability limit, and the minimum ventilation rate to keep from 100 of the LFL are calculated for 177 tanks at various scenarios.

  6. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    SciTech Connect

    MEACHAM, J.E.

    2003-11-10

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  7. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE [SEC 1 & 2

    SciTech Connect

    HU, T.A.

    2003-09-30

    Report in the Tank Waste Information Network System, and the waste temperature data in the Surveillance Analysis Computer System (SACS) (dated July 2003). However, the release rate of methane, ammonia, and nitrous oxide is based on the input data (dated October 1999) as stated in Revision 0 of this report. Scenarios for adding waste to existing waste levels (dated July 2003) have been studied to determine the gas generation rates and the effect of smaller dome space on the flammability limits to address the issues of routine water additions and other possible waste transfer operations. In the flammability evaluation with zero ventilation, the sensitivity to waste temperature and to water addition was calculated for double-shell tanks 241-AY-102, 241-AN-102,241-AZ-101,241-AN-107,241-AY-101 and 241-AZ-101. These six have the least margin to flammable conditions among 28 double-shell tanks.

  8. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect

    MEACHAM JE

    2009-10-26

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for all 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 11 days for DSTs (i.e., tank 241-AZ-10l) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 10 days for DSTs (i.e., tank 241-AZ-101) and 34 days for SSTs (i.e., tank 241-B-203).

  9. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect

    MEACHAM JE

    2008-11-17

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for al1 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 13 days for DSTs (i.e., tank 241-AZ-102) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 12 days for DSTs (i.e., tank 241-AZ-102) and 34 days for SSTs (i.e., tank 241-B-203).

  10. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... gas-safe; (5) Each hold space, interbarrier space, and other enclosed spaces, except fuel oil or.... (l) Each flammable gas detection system must have a filter that removes particulate matter in each gas sampling line. (m) Each filter under paragraph (l) of this section must be located where it can...

  11. Flammable gas tank waste level reconciliation for 241-SX-105

    SciTech Connect

    Brevick, C.H.; Gaddie, L.A.

    1997-06-23

    Fluor Daniel Northwest was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-SX-105 (SX-105, typical). The trapped gas evaluation document states that Tank SX-105 exceeds the 25% of the lower flammable limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The Welty Report is also a part of the trapped gas evaluation document criteria. The Welty Report contains various tank information, including: physical information, status, levels, and dry wells. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank SX-105 transfers and reported a net cumulative change of 20.75 in. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank SX-105 initially received waste from REDOX starting the second quarter of 1955. After June 1975, the tank primarily received processed waste (slurry) from the 242-S Evaporator/Crystallizer and transferred supernate waste to Tanks S-102 and SX-102. The Welty Report shows a cumulative change of 20.75 in. from June 1973 through December 1980.

  12. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable...

  13. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable...

  14. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable...

  15. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable...

  16. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable...

  17. Flammable gas cloud build up in a ventilated enclosure.

    PubMed

    Ivings, M J; Gant, S E; Saunders, C J; Pocock, D J

    2010-12-15

    Ventilation is frequently used as a means for preventing the build up of flammable or toxic gases in enclosed spaces. The effectiveness of the ventilation often has to be considered as part of a safety case or risk assessment. In this paper methods for assessing ventilation effectiveness for hazardous area classification are examined. The analysis uses data produced from Computational Fluid Dynamics (CFD) simulations of low-pressure jet releases of flammable gas in a ventilated enclosure. The CFD model is validated against experimental measurements of gas releases in a ventilation-controlled test chamber. Good agreement is found between the model predictions and the experimental data. Analysis of the CFD results shows that the flammable gas cloud volume resulting from a leak is largely dependent on the mass release rate of flammable gas and the ventilation rate of the enclosure. The effectiveness of the ventilation for preventing the build up of flammable gas can therefore be assessed by considering the average gas concentration at the enclosure outlet(s). It is found that the ventilation rate of the enclosure provides a more useful measure of ventilation effectiveness than considering the enclosure air change rate.

  18. Flammable gas cloud build up in a ventilated enclosure.

    PubMed

    Ivings, M J; Gant, S E; Saunders, C J; Pocock, D J

    2010-12-15

    Ventilation is frequently used as a means for preventing the build up of flammable or toxic gases in enclosed spaces. The effectiveness of the ventilation often has to be considered as part of a safety case or risk assessment. In this paper methods for assessing ventilation effectiveness for hazardous area classification are examined. The analysis uses data produced from Computational Fluid Dynamics (CFD) simulations of low-pressure jet releases of flammable gas in a ventilated enclosure. The CFD model is validated against experimental measurements of gas releases in a ventilation-controlled test chamber. Good agreement is found between the model predictions and the experimental data. Analysis of the CFD results shows that the flammable gas cloud volume resulting from a leak is largely dependent on the mass release rate of flammable gas and the ventilation rate of the enclosure. The effectiveness of the ventilation for preventing the build up of flammable gas can therefore be assessed by considering the average gas concentration at the enclosure outlet(s). It is found that the ventilation rate of the enclosure provides a more useful measure of ventilation effectiveness than considering the enclosure air change rate. PMID:20855156

  19. Flammable gas tank waste level reconciliation for 241-S-111

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.

    1997-06-23

    Fluor Daniel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-S-111. The trapped gas evaluation document states that Tank S-111 exceeds the 25% of the lower flammable-limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank S-111 transfers. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of the unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank S-111 initially received waste from REDOX in 1952, and after April 1974, primarily received processed waste slurry from the 242-S Evaporator/Crystallizer and transferred supernatant waste to Tank S-102. From the FDNW review and comparisons of the Welty Report versus other daily records for Tank S-111, FDNW determined that the majority of the time, the Welty Report is consistent with daily records. Surface level decreases that occurred following saltwell pumping were identified as unaccounted for decreases in the Welty Report, however they were probably a continued settlement caused by saltwell pumping of the interstitial liquids. Because the flammable/trapped gas

  20. 49 CFR 176.230 - Stowage of Division 2.1 (flammable gas) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Stowage of Division 2.1 (flammable gas) materials. 176.230 Section 176.230 Transportation Other Regulations Relating to Transportation PIPELINE AND... Division 2.1 (flammable gas) materials. Division 2.1 (flammable gas) materials transported in...

  1. Project W-030 flammable gas verification monitoring test

    SciTech Connect

    BARKER, S.A.

    1999-02-24

    This document describes the verification monitoring campaign used to document the ability of the new ventilation system to mitigate flammable gas accumulation under steady state tank conditions. This document reports the results of the monitoring campaign. The ventilation system configuration, process data, and data analysis are presented.

  2. Flammable gas interlock spoolpiece flow response test report

    SciTech Connect

    Schneider, T.C., Fluor Daniel Hanford

    1997-03-24

    The purpose of this test report is to document the testing performed under the guidance of HNF-SD-WM-TC-073, {ital Flammable Gas Interlock Spoolpiece Flow Response Test Plan and Procedure}. This testing was performed for Lockheed Martin Hanford Characterization Projects Operations (CPO) in support of Rotary Mode Core Sampling jointly by SGN Eurisys Services Corporation and Numatec Hanford Company. The testing was conducted in the 305 building Engineering Testing Laboratory (ETL). NHC provides the engineering and technical support for the 305 ETL. The key personnel identified for the performance of this task are as follows: Test responsible engineering manager, C. E. Hanson; Flammable Gas Interlock Design Authority, G. P. Janicek; 305 ETL responsible manager, N. J. Schliebe; Cognizant RMCS exhauster engineer, E. J. Waldo/J. D. Robinson; Cognizant 305 ETL engineer, K. S. Witwer; Test director, T. C. Schneider. Other support personnel were supplied, as necessary, from 305/306 ETL. The testing, on the flammable Gas Interlock (FGI) system spoolpiece required to support Rotary Mode Core Sampling (RMCS) of single shell flammable gas watch list tanks, took place between 2-13-97 and 2-25-97.

  3. OFFSITE RADIOLOGICAL CONSEQUENCE ANALYSIS FOR THE BOUNDING FLAMMABLE GAS ACCIDENT

    SciTech Connect

    KRIPPS, L.J.

    2005-02-18

    This document quantifies the offsite radiological consequences of the bounding flammable gas accident for comparison with the 25 rem Evaluation Guideline established in DOE-STD-3009, Appendix A. The bounding flammable gas accident is a detonation in a SST. The calculation applies reasonably conservative input parameters in accordance with guidance in DOE-STD-3009, Appendix A. The purpose of this analysis is to calculate the offsite radiological consequence of the bounding flammable gas accident. DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', requires the formal quantification of a limited subset of accidents representing a complete set of bounding conditions. The results of these analyses are then evaluated to determine if they challenge the DOE-STD-3009-94, Appendix A, ''Evaluation Guideline,'' of 25 rem total effective dose equivalent in order to identify and evaluate safety-class structures, systems, and components. The bounding flammable gas accident is a detonation in a single-shell tank (SST). A detonation versus a deflagration was selected for analysis because the faster flame speed of a detonation can potentially result in a larger release of respirable material. A detonation in an SST versus a double-shell tank (DST) was selected as the bounding accident because the estimated respirable release masses are the same and because the doses per unit quantity of waste inhaled are greater for SSTs than for DSTs. Appendix A contains a DST analysis for comparison purposes.

  4. Hazard assessments of double-shell flammable gas tanks

    SciTech Connect

    Fox, G.L.; Stepnewski, D.D.

    1994-09-28

    This report is the fourth in a series of hazard assessments performed on the double-shell flammable gas watch list tanks. This report focuses on hazards associated with the double-shell watch list tanks (101-AW, 103-AN, 104-AN, and 105-AN). While a similar assessment has already been performed for tank 103-SY, it is also included here to incorporate a more representative slurry gas mixture and provide a consistent basis for comparing results for all the flammable gas tanks. This report is intended to provide an in-depth assessment by considering the details of the gas release event and slurry gas mixing as the gas is released from the waste. The consequences of postulated gas ignition are evaluated using a plume burn model and updated ignition frequency predictions. Tank pressurization which results from a gas burn, along with the structural response, is also considered. The report is intended to support the safety basis for work activities in flammable gas tanks by showing margins to safety limits that are available in the design and procedures.

  5. Evaluation of Flammable Gas Monitoring and Ventilation System Alternatives for Double Contained Receiver Tanks

    SciTech Connect

    GUSTAVSON, R.D.

    1999-10-19

    This study identifies possible flammable gas monitoring and ventilation system alternatives to ensure adequate removal of flammable gases from the Double-Contained Receiver Tank (DCRT) primary tanks during temporary storage of small amounts of waste. The study evaluates and compares these alternatives to support closure of the Flammable Gas Unreviewed Safety Question (USQ TF-96-04330).

  6. SIMPLE TRANSIENT CALCULATIONS OF CELL FLAMMABLE GAS CONCENTRATIONS

    SciTech Connect

    , J; David Allison , D; John Mccord, J

    2009-05-06

    The Saltstone Facility at Savannah River Site (SRS) mixes low-level radiological liquid waste with grout for permanent disposal as cement in vault cells. The grout mixture is poured into each cell in approximately 17 batches (8 to 10 hours duration). The grout mixture contains ten flammable gases of concern that are released from the mixture into the cell. Prior to operations, simple parametric transient calculations were performed to develop batch parameters (including schedule of batch pours) to support operational efficiency while ensuring that a flammable gas mixture does not develop in the cell vapor space. The analysis demonstrated that a nonflammable vapor space environment can be achieved, with workable operational constraints, without crediting the ventilation flow as a safety system control. Isopar L was identified as the primary flammable gas of concern. The transient calculations balanced inflows of the flammable gases into the vapor space with credited outflows of diurnal breathing through vent holes and displacement from new grout pours and gases generated. Other important features of the analyses included identifying conditions that inhibited a well-mixed vapor space, the expected frequency and duration of such conditions, and the estimated level of stratification that could develop.

  7. Evaluation of 241 AN tank farm flammable gas behavior

    SciTech Connect

    Reynolds, D.A.

    1994-01-01

    The 241 AN Tank Farm tanks 241-AN-103, -104, and 105 are Flammable Gas Watch List tanks. Characteristics exhibited by these tanks (i.e., surface level drops, pressure increases, and temperature profiles) are similar to those exhibited by tank 241-SY-101, which is also a Watch List tank. Although the characteristics exhibited by tank 241-SY-101 are also present in tanks 241-AN-103, -104, and 105, they are exhibited to a lesser degree in the AN Tank Farm tanks. The 241 AN Tank Farm tanks have only small surface level drops, and the pressure changes that occur are not sufficient to release an amount of gas that would cause the dome space to exceed the lower flammability limit (LFL) for hydrogen. Therefore, additional restrictions are probably unnecessary for working within the 241 AN Tank Farm, either within the dome space of the tanks or in the waste.

  8. Characterization strategy for the flammable gas safety issue

    SciTech Connect

    Stewart, C.W.; Brewster, M.E.; Roberts, J.S.

    1997-06-01

    The characterization strategy for resolving the flammable gas safety issue for Hanford waste tanks is based on a structured logic diagram (SLD) that displays the outcomes necessary to reach the desired goal of making flammable gas risk acceptable. The diagram provides a structured path that can identify all information inputs, data as well as models, needed to achieve the goal. Tracing the path from need to outcome provides an immediate and clear justification and defense of a specific need. The diagram itself is a {open_quote}picture of a risk calculation{close_quote} and forms the basis for a quantitative model of risk. The SLID, with the risk calculation, identifies options for characterization, mitigation, and controls that have the maximum effect in reducing risk. It provides quantitative input to risk-based decision making so that options are chosen for maximum impact at least cost.

  9. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c)...

  10. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c)...

  11. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect

    HU, T.A.

    2004-10-27

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  12. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect

    HU TA

    2009-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  13. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect

    HU, T.A.

    2005-10-27

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  14. Equipment design guidance document for flammable gas waste storage tank new equipment

    SciTech Connect

    Smet, D.B.

    1996-04-11

    This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas.

  15. An Improved Analytical Approach to Determine the Explosive Effects of Flammable Gas-Air Mixtures

    SciTech Connect

    Yang, J M

    2005-11-10

    The U.S. Department of Energy (DOE) Complex includes many sites and laboratories that store quantities of low-level, solid nuclear waste in drums and other types of shipping containers. The drums may be stored for long periods of time prior to being transported and final dispositioning. Based on the radioactivity (e.g., Pu{sup 239} equivalent), chemical nature (e.g. volatile organic compounds) and other characteristics of the stored waste, flammable gases may evolve. Documented safety analyses (DSAs) for storage of these drums must address storage and safety management issues to protect workers, the general public, and the environment. This paper discusses an improved analytical method for determining the explosion effects flammable gas-air mixtures as well as the subsequent accident phenomenology.

  16. Offsite radiological consequence analysis for the bounding flammable gas accident

    SciTech Connect

    CARRO, C.A.

    2003-03-19

    The purpose of this analysis is to calculate the offsite radiological consequence of the bounding flammable gas accident. DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', requires the formal quantification of a limited subset of accidents representing a complete set of bounding conditions. The results of these analyses are then evaluated to determine if they challenge the DOE-STD-3009-94, Appendix A, ''Evaluation Guideline,'' of 25 rem total effective dose equivalent in order to identify and evaluate safety class structures, systems, and components. The bounding flammable gas accident is a detonation in a single-shell tank (SST). A detonation versus a deflagration was selected for analysis because the faster flame speed of a detonation can potentially result in a larger release of respirable material. As will be shown, the consequences of a detonation in either an SST or a double-shell tank (DST) are approximately equal. A detonation in an SST was selected as the bounding condition because the estimated respirable release masses are the same and because the doses per unit quantity of waste inhaled are generally greater for SSTs than for DSTs. Appendix A contains a DST analysis for comparison purposes.

  17. Waste tank 241-SY-101 dome airspace and ventilation system response to a flammable gas plume burn

    SciTech Connect

    Heard, F.J.

    1995-11-01

    A series of flammable gas plume burn and transient pressure analyses have been completed for a nuclear waste tank (241-SY-101) and associated tank farm ventilation system at the U.S. Department of Energy`s Hanford facility. The subject analyses were performed to address issues concerning the effects of transient pressures resulting from igniting a small volume of concentrated flammable gas just released from the surface of the waste as a plume and before the flammable gas concentration could be reduced by mixing with the dome airspace by local convection and turbulent diffusion. Such a condition may exist as part of an in progress episode gas release (EGR) or gas plume event. The analysis goal was to determine the volume of flammable gas that if burned within the dome airspace would result in a differential pressure, after propagating through the ventilation system, greater than the current High Efficiency Particulate Filter (HEPA) limit of 2.49 KPa (10 inches of water or 0. 36 psi). Such a pressure wave could rupture the tank ventilation system inlet and outlet HEPA filters leading to a potential release of contaminants to the environment

  18. Flammable Gas Release Estimates for Modified Sluicing Retrieval of Waste from Selected Hanford Single-Shell Tanks

    SciTech Connect

    Huckaby, James L.; Wells, Beric E.

    2004-03-05

    The high-level radioactive wastes in many single-shell tanks (SSTs) at the Hanford Site are to be retrieved by a modified sluicing method that uses water jets to dissolve the water-soluble waste and mobilize the water-insoluble waste. Retrieval operations will liberate any waste gases trapped in the wetted solid waste matrix, and these gases will be released into the tank headspaces. Because the trapped gases include the flammable species hydrogen, methane, and ammonia, a concern exists that a flammable mixture could be formed in the tank headspaces. This report combines conservative retained gas inventory estimates and tank data with anticipated waste retrieval rates to estimate the potential headspace flammability of selected SSTs during modified sluicing waste retrieval operations. Considered here are nine of the 12 tanks from the 241-S tank farm (241-S-107, 241-S-111, and 241-S 112 are not considered) and Tank 241-U-107. This report is intended to support the specification of process controls that ensure flammable conditions do not develop in the tank headspaces. Consequently, the physical scenarios considered, the models developed to estimate retained gas releases and the tank headspace compositions under these scenarios, and the model input data are intended to conservatively assess the potential to reach headspace flammability. The analyses are intended to address worst-case conditions and establish reasonable upper bounds on the achievable flammability of the tank headspaces. Flammable retained gas inventories, for example, are based on the 95th percentile developed by Barker and Hedengren (2003), giving 95% confidence that actual inventories are smaller than those used in the calculations. Gas releases and headspace flammability were evaluated for three general scenarios: a very aggressive dissolution and erosion of saltcake waste by water jets impinging on the waste surface, the drainage of interstitial liquids from saltcake during a shutdown of the

  19. Steady State Flammable Gas Release Rate Calculation and Lower Flammability Level Evaluation for Hanford Tank Waste

    SciTech Connect

    HU, T.A.

    2001-02-23

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. Hydrogen generation rate was calculated for 177 tanks using rate equation model. Ammonia liquid/vapor equilibrium model is incorporated into the methodology for ammonia analysis.

  20. Steady State Flammable Gas Release Rate Calculation and Lower Flammability Level Evaluation for Hanford Tank Waste

    SciTech Connect

    HU, T.A.

    2000-04-27

    This work is to assess the steady-state flammability level at normal and off-normal ventilation conditions in the tank dome space for 177 double-shell and single-shell tanks at Hanford. Hydrogen generation rate was calculated for 177 tanks using rate equation model developed recently.

  1. Results of gas monitoring of double-shell flammable gas watch list tanks

    SciTech Connect

    Wilkins, N.E.

    1995-01-19

    Tanks 103-SY; 101-AW; 103-, 104-, and 105-AN are on the Flammable Gas Watch List. Recently, standard hydrogen monitoring system (SHMS) cabinets have been installed in the vent header of each of these tanks. Grab samples have been taken once per week, and a gas chromatograph was installed on tank 104-AN as a field test. The data that have been collected since gas monitoring began on these tanks are summarized in this document.

  2. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy...

  3. Final design review report for the RMCS Flammable Gas Detection Interlock

    SciTech Connect

    Corbett, J.E., Westinghouse Hanford

    1996-08-20

    This report document the completion of the formal design review for the RMCS (Rotary Mode Core Sampling) flammable gas detector interlock. This hydrogen/flammable gas interlock, a proposed addition to the RMCS system portable exhauster, in intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to approve new drawings at the 100% design completion state. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward fabrication and delivery.

  4. Approximation of flammability region for natural gas-air-diluent mixture.

    PubMed

    Liao, S Y; Jiang, D M; Huang, Z H; Cheng, Q; Gao, J; Hu, Y

    2005-10-17

    The growing implementation of exhaust gas recirculation (EGR) in reducing NO(x) emissions of engine is of paramount motivation to perform a fundamental research on the flammability characteristics of fuel-air-diluent mixtures. In this work, the influences of EGR on the flammability region of natural gas-air-diluent flames were experimentally studied in a constant volume bomb. An assumption of critical burning velocity at flammability limit is proposed to approximately determine the flammability region of these mixtures. Based on this assumption, an estimation of the flammability map for natural gas-air-diluent mixtures was obtained by using the empirical formula of burning velocity data. The flammability regions of natural gas-air mixtures with EGR are plotted versus the EGR rate. From the comparison of estimated results and experimental measurements, it is suggested that the accuracy of prediction is largely dependent upon the formula of burning velocity used. Meanwhile, the influence of pressure on the critical burning velocity at flammability limit is also investigated. On the basis of the pressure dependence criterion, the estimation was performed for the circumstance of high temperature and pressure, and the prediction results still agree well with those of experiments.

  5. TRU waste transportation -- The flammable gas generation problem

    SciTech Connect

    Connolly, M.J.; Kosiewicz, S.T.

    1997-11-01

    The Nuclear Regulatory Commission (NRC) has imposed a flammable gas (i.e., hydrogen) concentration limit of 5% by volume on transuranic (TRU) waste containers to be shipped using the TRUPACT-II transporter. This concentration is the lower explosive limit (LEL) in air. This was done to minimize the potential for loss of containment during a hypothetical 60 day period. The amount of transuranic radionuclide that is permissible for shipment in TRU waste containers has been tabulated in the TRUPACT-II Safety Analysis Report for Packaging (SARP, 1) to conservatively prevent accumulation of hydrogen above this 5% limit. Based on the SARP limitations, approximately 35% of the TRU waste stored at the Idaho National Engineering and Environmental Lab (INEEL), Los Alamos National Lab (LANL), and Rocky Flats Environmental Technology Site (RFETS) cannot be shipped in the TRUPACT-II. An even larger percentage of the TRU waste drums at the Savannah River Site (SRS) cannot be shipped because of the much higher wattage loadings of TRU waste drums in that site`s inventory. This paper presents an overview of an integrated, experimental program that has been initiated to increase the shippable portion of the Department of Energy (DOE) TRU waste inventory. In addition, the authors will estimate the anticipated expansion of the shippable portion of the inventory and associated cost savings. Such projection should provide the TRU waste generating sites a basis for developing their TRU waste workoff strategies within their Ten Year Plan budget horizons.

  6. Flammability tests on D0 Run II muon PDT Gas and P-10 Gas

    SciTech Connect

    Herman F. Haggerty; James L. Priest and Tom Marshall

    2001-07-12

    The authors have done a series of measurements with mixtures of Argon, CF4 and CH4 to demonstrate that the mixture chosen for RunII (84% Argon, 8% CH4, 8% CF4) is not flammable. The tests were conducted in the Meson Detector Building in a test cell similar in construction to a cell of a Muon PDT. In order to establish the viability of the test set-up, they first repeated the demonstration that P-10 gas (90% Argon, 10% CH4) is in fact flammable, contrary to the classification by the US DOT. US DOT regulation 173.115 defines flammable gas as: (1) is ignitable (at 14.7 psi) when in a mixture of 13% or less with air; or (2) has a flammability range (at 14.7 psi) with air of at least 12% regardless of the lower explosive limit (LEL). P-10 has a LEL of about 40% and a flammability range of about 10%, so P-10 is not flammable according to the US DOT definition. The point here is that the DOT classifications are to serve the DOT's function to ensure transportation safety, and are not necessarily appropriate for other situations. The first configuration of their test cell, however, apparently failed to ignite P-10. With the guidance of Bill Nuttall of CERN, they modified their test cell to make it more like the standard flammability testing setups, with a large viewing window and a spark gap in the middle of the cell. In this second configuration P-10 was easily and reliably ignitable. After becoming more familiar with the visible indicators of combustion of P-10 (water vapor cloud formation, pressure changes and gas venting) they retested with the initial configuration, and found that the mixture actually had been burning, and that they had just missed all the indications. The data from CERN showed that P-10 burns rather slowly, with about a one second rise time for the pressure to reach the maximum of four atmospheres overpressure. In the tests they saw no signs of any flame, but only a water vapor cloud. Some preliminary tests with the same cell using Argon-Ethane and

  7. [Calculation of flammability limits of gas phases with ethylene oxide in sterilisers].

    PubMed

    Askar, Enis; Schröder, Volkmar; Acikalin, Aydan; Steinbach, Jörg

    2008-12-01

    A calculation method for flammability limits of gas phases with ethylene oxide in sterilisers was developed. Using the Software GasEq and the newly developed Makro "SterEx" for MS-Excel, flammability limits of mixtures with ethylene oxide, air and inert gases at temperatures between 20 degrees C and 100 degrees C and pressures between 0.4 bar and 1.0 bar can be calculated. This method can be used to easily determine safe operating conditions. The used semi-empirical model is based upon the assumption of constant flame temperature profiles at the flammability limits subject to the EO-concentration for different mixtures. To collect model parameters and to validate the model, several experiments with mixtures of ethylene oxide, nitrogen, carbon dioxide, water vapour and air were carried out to determine flammability limits. To simulate the structural conditions of sterilisers, the experiments were conducted in accordance to DIN EN 1839-B in a closed autoclave with temperatures and pressures relevant for sterilisation processes. The calculation of flammability limits of process gas mixtures with "SterEx" provides good agreement with flammability limits that were determined in experiments. PMID:19037868

  8. Evaluation of high-level nuclear waste tanks having a potential flammable gas hazard

    SciTech Connect

    Johnson, G.D.; Barton, W.B.; Hill, R.C.; et al, Fluor Daniel Hanford

    1997-02-14

    In 1990 the U.S. Department of Energy declared an unreviewed safety question as a result of the behavior of tank 241-SY-101. This tank exhibited episodic releases of flammable gases that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years a considerable amount of knowledge has been gained about the chemical and physical processes that govern the behavior of tank 241-SY-101 and the other tanks associated with a potential flammable gas hazard. This paper presents an overview of the current understanding of gas generation, retention, and release and covers the results of direct sampling of the tanks to determine the gas composition and the amount of stored gas.

  9. Summary of flammable gas hazard and potential consequences in tank waste remediation system facility at the Hanford site

    SciTech Connect

    Van Vleet, R.J., Westinghouse Hanford

    1996-12-11

    This document provides a summary of the flammable gas program since 1992. It provides the best understanding of generation, retention, release of flammable gases. It gives a composition for each of the flammable gas tanks, calculates postulated concentrations in the event of a release, calculates the pressure obtained during a burn, and provides radiological and toxicological consequences. Controls from the analysis are found in WHC-SD-WM-SAR-067.

  10. Engineering task plan for flammable gas atmosphere mobile color video camera systems

    SciTech Connect

    Kohlman, E.H.

    1995-01-25

    This Engineering Task Plan (ETP) describes the design, fabrication, assembly, and testing of the mobile video camera systems. The color video camera systems will be used to observe and record the activities within the vapor space of a tank on a limited exposure basis. The units will be fully mobile and designed for operation in the single-shell flammable gas producing tanks. The objective of this tank is to provide two mobile camera systems for use in flammable gas producing single-shell tanks (SSTs) for the Flammable Gas Tank Safety Program. The camera systems will provide observation, video recording, and monitoring of the activities that occur in the vapor space of applied tanks. The camera systems will be designed to be totally mobile, capable of deployment up to 6.1 meters into a 4 inch (minimum) riser.

  11. Final design review report for RMCST modifications for flammable gas tanks

    SciTech Connect

    Corbett, J.E., Westinghouse Hanford

    1996-05-31

    This report documents the completion of the formal design review for the Rotary Mode Core Sample Truck (RMCST) modification for flammable gas tanks. The RMCST modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to approve Engineering controls. The objective of this review was to approve Engineering Change orders and new drawings, at the 100% design completion state. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward fabrication and delivery.

  12. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    SciTech Connect

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.

  13. Flammable gas safety program. Analytical methods development: FY 1994 progress report

    SciTech Connect

    Campbell, J.A.; Clauss, S.; Grant, K.; Hoopes, V.; Lerner, B.; Lucke, R.; Mong, G.; Rau, J.; Wahl, K.; Steele, R.

    1994-09-01

    This report describes the status of developing analytical methods to account for the organic components in Hanford waste tanks, with particular focus on tanks assigned to the Flammable Gas Watch List. The methods that have been developed are illustrated by their application to samples obtained from Tank 241-SY-101 (Tank 101-SY).

  14. Mitigation/remediation concepts for Hanford Site flammable gas generating waste tanks

    SciTech Connect

    Babad, H.; Deichman, J.L. ); Johnson, B.M.; Lemon, D.K.; Strachan, D.M. )

    1992-04-01

    This report presents a preliminary assessment of concepts for the mitigation and/or remediation of the hydrogen gas generation, storage, and periodic release in Tank 241-SY-101 (101-SY) and 22 other tanks. The 22 other tanks exhibit much less hydrogen generation (volume and concentration of released flammable gases) than Tank 101-SY and have not had the focus nor attention that has been given to Tank 101-SY. These tanks have been listed as potential hydrogen gas-generating tanks from analysis of tank performance and data from flowsheets and Track Radioactive Constituents Reports (TRAC). These lesser hydrogen-generating tanks will also need to be revisited and revalidated. Of the 23 hydrogen class tanks, 5 are double-shell tanks (DST) and 18 are single-shell tanks (SST). Options for mitigation or remediation are different for the two types of tanks because of age, configuration, and waste form. While this document principally focuses on Tank 101-SY, the information presented has been useful to address other tanks containing hydrogen-generating waste.

  15. A study of non-flammable gas mixture for resistive plate counter

    SciTech Connect

    Takamatsu, H.; Hoshi, Y.; Abe, K.

    1996-06-01

    The RPC (resistive plate counter) has good time and position resolution. These factors make it an attractive candidate for trigger system at collider experiment. The standard gas mixtures (Ar+iso-C{sub 4}H{sub 10}+Freon) used in RPC are very flammable when leaked into air. In view of safety issue, the authors have studied non-flammable gas of Ar+CO{sub 2}+iso-C{sub 4}H{sub 10}+Freon as a function of ratio Ar:CO{sub 2} allowed in non-flammable gas mixtures for the RPC with ABS electrodes. The basic performance of the various mixtures have been measured; singles (untriggered) count rate, detection efficiency and charge spectra versus operating voltage. They have found a set of non-flammable mixtures of the kind of AR+CO{sub 2}+Freon contained less than {approximately}8.4% of iso-C{sub 4}H{sub 10} for K{sub L}/muon counter of KEK B-factory at KEK.

  16. NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING

    SciTech Connect

    Watkins, R; Leduc, D; Askew, N

    2009-06-25

    Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

  17. An approximate-reasoning-based method for screening flammable gas tanks

    SciTech Connect

    Eisenhawer, S.W.; Bott, T.F.; Smith, R.E.

    1998-03-01

    High-level waste (HLW) produces flammable gases as a result of radiolysis and thermal decomposition of organics. Under certain conditions, these gases can accumulate within the waste for extended periods and then be released quickly into the dome space of the storage tank. As part of the effort to reduce the safety concerns associated with flammable gas in HLW tanks at Hanford, a flammable gas watch list (FGWL) has been established. Inclusion on the FGWL is based on criteria intended to measure the risk associated with the presence of flammable gas. It is important that all high-risk tanks be identified with high confidence so that they may be controlled. Conversely, to minimize operational complexity, the number of tanks on the watchlist should be reduced as near to the true number of flammable risk tanks as the current state of knowledge will support. This report presents an alternative to existing approaches for FGWL screening based on the theory of approximate reasoning (AR) (Zadeh 1976). The AR-based model emulates the inference process used by an expert when asked to make an evaluation. The FGWL model described here was exercised by performing two evaluations. (1) A complete tank evaluation where the entire algorithm is used. This was done for two tanks, U-106 and AW-104. U-106 is a single shell tank with large sludge and saltcake layers. AW-104 is a double shell tank with over one million gallons of supernate. Both of these tanks had failed the screening performed by Hodgson et al. (2) Partial evaluations using a submodule for the predictor likelihood for all of the tanks on the FGWL that had been flagged previously by Whitney (1995).

  18. Steady State Flammable Gas Release Rate Calculation & Lower Flammability Level Evaluation for Hanford Tank Waste [SEC 1 & 2

    SciTech Connect

    HU, T.A.

    2002-06-20

    Assess the steady state level at normal & off-normal ventilation conditions. Hydrogen generation rate calculated for 177 tanks using rate equation model. Flammability calc. based on hydrogen, ammonia, & methane proformed for tanks at various scenarios.

  19. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... gas-safe; (5) Each hold space, interbarrier space, and other enclosed spaces, except fuel oil or ballast tanks, in the cargo area, unless the vessel has independent tanks type C; and (6) Each space... detection system must not pass through any gas-safe space, except the gas-safe space in which the...

  20. Control Decisions for Flammable Gas Hazards in Double Contained Receiver Tanks (DCRTs)

    SciTech Connect

    KRIPPS, L.J.

    2000-06-28

    This report describes the control decisions for flammable gas hazards in double-contained receiver tanks (DCRTs) made at control decision meetings on November 16, 17, and 18, 1999, on April 19,2000, and on May 10,2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996) for DCRTs. Following the contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the U.S. Department of Energy (DOE), Office of River Protection (ORP) for review and approval.

  1. Flammable gas double shell tank expert elicitation presentations (Part A and Part B)

    SciTech Connect

    Bratzel, D.R.

    1998-04-17

    This document is a compilation of presentation packages and white papers for the Flammable Gas Double Shell Tank Expert Elicitation Workshop {number_sign}2. For each presentation given by the different authors, a separate section was developed. The purpose for issuing these workshop presentation packages and white papers as a supporting document is to provide traceability and a Quality Assurance record for future reference to these packages.

  2. On The Impact of Borescope Camera Air Purge on DWPF Melter Off-Gas Flammability

    SciTech Connect

    CHOI, ALEXANDER

    2004-07-22

    DWPF Engineering personnel requested that a new minimum backup film cooler air flow rate, which will meet the off-gas safety basis limits for both normal and seismic sludge-only operations, be calculated when the air purge to the borescope cameras is isolated from the melter. Specifically, it was requested that the latest calculations which were used to set the off-gas flammability safety bases for the sludge batch 2 and 3 feeds be revised, while maintaining all other process variables affecting off-gas flammability such as total organic carbon (TOC), feed rate, melter air purges, and vapor space temperature at their current respective maximum or minimum limits. Before attempting to calculate the new minimum backup film cooler air flow, some of the key elements of the combustion model were reviewed, and it was determined that the current minimum backup film cooler air flow of 233 lb/hr is adequate to satisfy the off-gas flammability safety bases for both normal and seismic operations i n the absence of any borescope camera air purge. It is, therefore, concluded that there is no need to revise the reference E-7 calculations. This conclusion is in essence based on the fact that the current minimum backup film cooler air flow was set to satisfy the minimum combustion air requirement under the worst-case operating scenario involving a design basis earthquake during which all the air purges not only to the borescope cameras but to the seal pot are presumed to be lost due to pipe ruptures. The minimum combustion air purge is currently set at 150 per cent of the stoichiometric air flow required to combust 3 times the normal flow of flammable gases. The DWPF control strategy has been that 100 per cent of the required minimum combustion air is to be provided by the controlled air purge through the backup film cooler alone.

  3. Results of vapor space monitoring of flammable gas Watch List tanks

    SciTech Connect

    Wilkins, N.E.

    1997-09-18

    This report documents the measurement of headspace gas concentrations and monitoring results from the Hanford tanks that have continuous flammable gas monitoring. The systems used to monitor the tanks are Standard Hydrogen Monitoring Systems. Further characterization of the tank off-gases was done with Gas Characterization Systems and vapor grab samples. The background concentrations of all tanks are below the action level of 6250 ppm. Other information which can be derived from the measurements (such as generation rate, release rate, and ventilation rate) is also discussed.

  4. Flammable Gas Safety Program: actual waste organic analysis FY 1996 progress report; Flammable Gas Safety Program: actual waste organic analysis FY 1996 progress report

    SciTech Connect

    Clauss, S.A.; Grant, K.E.; Hoopes, V.; Mong, G.M.; Rau, J.; Steele, R.; Wahl, K.H.

    1996-09-01

    This report describes the status of optimizing analytical methods to account for the organic components in Hanford waste tanks, with emphasis on tanks assigned to the Flammable Gas Watch List. The methods developed are illustrated by their application to samples from Tanks 241-SY-103 and 241-S-102. Capability to account for organic carbon in Tank SY-101 was improved significantly by improving techniques for isolating organic constituents relatively free from radioactive contamination and by improving derivatization methodology. The methodology was extended to samples from Tank SY-103 and results documented in this report. Results from analyzing heated and irradiated SY-103 samples (Gas Generation Task) and evaluating methods for analyzing tank waste directly for chelators and chelator fragments are also discussed.

  5. Potential Flammable Gas Explosion in the TRU Vent and Purge Machine

    SciTech Connect

    Vincent, A

    2006-04-05

    The objective of the analysis was to determine the failure of the Vent and Purge (V&P) Machine due to potential explosion in the Transuranic (TRU) drum during its venting and/or subsequent explosion in the V&P machine from the flammable gases (e.g., hydrogen and Volatile Organic Compounds [VOCs]) vented into the V&P machine from the TRU drum. The analysis considers: (a) increase in the pressure in the V&P cabinet from the original deflagration in the TRU drum including lid ejection, (b) pressure wave impact from TRU drum failure, and (c) secondary burns or deflagrations resulting from excess, unburned gases in the cabinet area. A variety of cases were considered that maximized the pressure produced in the V&P cabinet. Also, cases were analyzed that maximized the shock wave pressure in the cabinet from TRU drum failure. The calculations were performed for various initial drum pressures (e.g., 1.5 and 6 psig) for 55 gallon TRU drum. The calculated peak cabinet pressures ranged from 16 psig to 50 psig for various flammable gas compositions. The blast on top of cabinet and in outlet duct ranged from 50 psig to 63 psig and 12 psig to 16 psig, respectively, for various flammable gas compositions. The failure pressures of the cabinet and the ducts calculated by structural analysis were higher than the pressure calculated from potential flammable gas deflagrations, thus, assuring that V&P cabinet would not fail during this event. National Fire Protection Association (NFPA) 68 calculations showed that for a failure pressure of 20 psig, the available vent area in the V&P cabinet is 1.7 to 2.6 times the required vent area depending on whether hydrogen or VOCs burn in the V&P cabinet. This analysis methodology could be used to design the process equipment needed for venting TRU waste containers at other sites across the Department of Energy (DOE) Complex.

  6. Formation of flammable clouds due to rupture of a natural gas pipeline

    SciTech Connect

    Badr, O.; Elsheikh, H.

    1997-07-01

    Despite all precaution procedures, accidental release of natural gas from its massive pipeline networks may occur. This paper considers the environmental impact of such releases from flammability view point for two specific scenarios. The high initial pressure of the pipeline resulted in a choked flow. Equilibrium between the pressure of the released gas and the ambient one occurs through a series of interacting expansion and shock waves. Transient mass flow rate, temperature, speed, and cross sectional area of the released jet have been calculated using principles of compressible fluid flow. Time-average values of such parameters have been utilized in the EPA-based Screen software to predict the resulting steady state concentration profiles. Flammable clouds with dimensions up to 3,000 x 26 m in the downwind and upward directions, respectively have been predicted for the first scenario. On the other hand, the results of the second scenario have indicated the formation of flammable clouds extending to 14 m and 160 m in the downwind and upward directions, respectively. Moreover, a parametric study of wind speed and atmospheric stability has shown strong effects on the size of the formed dangerous clouds. Such results have been discussed in relation to the involved mixing processes.

  7. 46 CFR 148.420 - Flammable gas analyzers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF BULK SOLID..., each vessel transporting the material, other than an unmanned barge, must have on board a gas analyzer... instructions of its manufacturer. The atmosphere in the cargo hold must be tested before any person is...

  8. Methodology for Predicting Flammable Gas Mixtures in Double Contained Receiver Tanks [SEC 1 THRU SEC 3

    SciTech Connect

    HEDENGREN, D.C.

    2000-01-31

    This methodology document provides an estimate of the maximum concentrations of flammable gases (ammonia, hydrogen, and methane) which could exist in the vapor space of a double-contained receiver tank (DCRT) from the simultaneous saltwell pumping of one or more single-shell tanks (SSTs). This document expands Calculation Note 118 (Hedengren et a1 1997) and removes some of the conservatism from it, especially in vapor phase ammonia predictions. The methodologies of Calculation Note 118 (Hedengren et a1 1997) are essentially identical for predicting flammable gas mixtures in DCRTs from saltwell pumping for low DCRT ventilation rates, 1e, < 1 cfm. The hydrogen generation model has also been updated in the methodology of this document.

  9. Data Observations on Double Shell Tank (DST) Flammable Gas Watch List Tank Behavior

    SciTech Connect

    HEDENGREN, D.C.

    2000-09-28

    This report provides the data from the retained gas sampler, void fraction instrument, ball rheometer, standard hydrogen monitoring system, and other tank data pertinent to gas retention and release behavior in the waste stored in double-shelled Flammable Gas Watch List tanks at Hanford. These include tanks 241-AN-103,241-AN-104, 241-AN-105, 241-AW-101, 241-SY-101, and 241-SY-103. The tanks and the waste they contain are described in terms of fill history and chemistry. The results of mixer pump operation and recent waste transfers and back-dilution in SY-101 are also described. In-situ measurement and monitoring systems are described and the data are summarized under the categories of thermal behavior, waste configuration and properties, gas generation and composition, gas retention and historical gas release behavior.

  10. Interstage Flammability Analysis Approach

    NASA Technical Reports Server (NTRS)

    Little, Jeffrey K.; Eppard, William M.

    2011-01-01

    The Interstage of the Ares I launch platform houses several key components which are on standby during First Stage operation: the Reaction Control System (ReCS), the Upper Stage (US) Thrust Vector Control (TVC) and the J-2X with the Main Propulsion System (MPS) propellant feed system. Therefore potentially dangerous leaks of propellants could develop. The Interstage leaks analysis addresses the concerns of localized mixing of hydrogen and oxygen gases to produce deflagration zones in the Interstage of the Ares I launch vehicle during First Stage operation. This report details the approach taken to accomplish the analysis. Specified leakage profiles and actual flammability results are not presented due to proprietary and security restrictions. The interior volume formed by the Interstage walls, bounding interfaces with the Upper and First Stages, and surrounding the J2-X engine was modeled using Loci-CHEM to assess the potential for flammable gas mixtures to develop during First Stage operations. The transient analysis included a derived flammability indicator based on mixture ratios to maintain achievable simulation times. Validation of results was based on a comparison to Interstage pressure profiles outlined in prior NASA studies. The approach proved useful in the bounding of flammability risk in supporting program hazard reviews.

  11. Assessment of alternative mitigation concepts for Hanford flammable gas tanks

    SciTech Connect

    Stewart, C.W.; Schienbein, L.A.; Hudson, J.D.; Eschbach, E.J.; Lessor, D.L.

    1994-09-01

    This report provides a review and assessment of four selected mitigation concepts: pump jet mixing, sonic vibration, dilution, and heating. Though the relative levels of development of these concepts are quite different, some definite conclusions are made on their comparative feasibility. Key findings of this report are as follows. A mixer pump has proven to be a safe and effective active mitigation method in Tank 241-SY-101, and the authors are confident that mixer pumps will effectively mitigate other tanks with comparable waste configurations and properties. Low-frequency sonic vibration is also predicted to be effective for mitigation. Existing data cannot prove that dilution can mitigate gas release event (GRE) behavior. However, dilution is the only concept of the four that potentially offers passive mitigation. Like dilution, heating the waste cannot be proven with available information to mitigate GRE behavior. The designs, analyses, and data from which these conclusions are derived are presented along with recommendations.

  12. Flammability of selected heat resistant alloys in oxygen gas mixtures

    SciTech Connect

    Zawierucha, R.; McIlroy, K.; Million, J.F.

    1995-12-31

    Within recent years, the use of oxygen has increased in applications where elevated temperatures and corrosion may be significant factors. In such situations, traditional alloys used in oxygen systems will not be adequate. Where alternative alloys must be utilized, based upon environmental requirements, it is essential that they may be characterized with respect to their ignition and combustion resistance in oxygen. Promoted ignition and promoted ignition-combustion are terms which have been used to describe a situation where a substance with low oxygen supports the combustion of a compatibility ignites and more ignition resistant material. In this paper, data will be presented on the promoted ignition-combustion behavior of selected heat resistant engineering alloys that may be considered for gaseous oxygen applications in severe environments. In this investigation, alloys have been evaluated via both flowing and static (fixed volume) approaches using a rod configuration. Oxygen-nitrogen gas mixtures with compositions ranging from approximately 40 to 99.7% oxygen at pressures of 3.55 to 34.6 MPa were used in the comparative studies.

  13. Resolve! Version 2.5: Flammable Gas Accident Analysis Tool Acceptance Test Plan and Test Results

    SciTech Connect

    LAVENDER, J.C.

    2000-10-17

    RESOLVE! Version 2 .5 is designed to quantify the risk and uncertainty of combustion accidents in double-shell tanks (DSTs) and single-shell tanks (SSTs). The purpose of the acceptance testing is to ensure that all of the options and features of the computer code run; to verify that the calculated results are consistent with each other; and to evaluate the effects of the changes to the parameter values on the frequency and consequence trends associated with flammable gas deflagrations or detonations.

  14. Assessment of the impact of TOA partitioning on DWPF off-gas flammability

    SciTech Connect

    Daniel, W. E.

    2013-06-01

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of increasing the amount of TOA in the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process. The results of this study showed that the concentrations of nonvolatile carbon of the current solvent limit (150 ppm) in the Slurry Mix Evaporator (SME) product would be about 7% higher and the nonvolatile hydrogen would be 2% higher than the actual current solvent (126 ppm) with an addition of up to 3 ppm of TOA when the concentration of Isopar L in the effluent transfer is controlled below 87 ppm and the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle. Therefore, the DWPF melter off-gas flammability assessment is conservative for up to an additional 3 ppm of TOA in the effluent based on these assumptions. This report documents the calculations performed to reach this conclusion.

  15. A safety assessment of rotary mode core sampling in flammable gas single shell tanks: Hanford Site, Richland, Washington

    SciTech Connect

    Raymond, R.E.

    1996-04-15

    This safety assessment (SA) addresses each of the required elements associated with the installation, operation, and removal of a rotary-mode core sampling (RMCS) device in flammable-gas single-shell tanks (SSTs). The RMCS operations are needed in order to retrieve waste samples from SSTs with hard layers of waste for which push-mode sampling is not adequate for sampling. In this SA, potential hazards associated with the proposed action were identified and evaluated systematically. Several potential accident cases that could result in radiological or toxicological gas releases were identified and analyzed and their consequences assessed. Administrative controls, procedures and design changes required to eliminate or reduce the potential of hazards were identified. The accidents were analyzed under nine categories, four of which were burn scenarios. In SSTS, burn accidents result in unacceptable consequences because of a potential dome collapse. The accidents in which an aboveground burn propagates into the dome space were shown to be in the ``beyond extremely unlikely`` frequency category. Given the unknown nature of the gas-release behavior in the SSTS, a number of design changes and administrative controls were implemented to achieve these low frequencies. Likewise, drill string fires and dome space fires were shown to be very low frequency accidents by taking credit for the design changes, controls, and available experimental and analytical data. However, a number of Bureau of Mines (BOM) tests must be completed before some of the burn accidents can be dismissed with high confidence. Under the category of waste fires, the possibility of igniting the entrapped gases and the waste itself were analyzed. Experiments are being conducted at the BOM to demonstrate that the drill bit is not capable of igniting the trapped gas in the waste. Laboratory testing and thermal analysis demonstrated that, under normal operating conditions, the drill bit will not create high

  16. Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability

    SciTech Connect

    Daniel, W. E.

    2013-02-13

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPF to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar{reg_sign} L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar{reg_sign} L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isopar{reg_sign} L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion.

  17. Flammable gas safety program. Analytical methods development: FY 1993 progress report

    SciTech Connect

    Campbell, J.A.; Clauss, S.; Grant, K.; Hoopes, V.; Lerner, B.; Lucke, R.; Mong, G.; Rau, J.; Steele, R.

    1994-01-01

    This report describes the status of developing analytical methods to account for the organic constituents in Hanford waste tanks, with particular emphasis on those tanks that have been assigned to the Flammable Gas Watch List. Six samples of core segments from Tank 101-SY, obtained during the window E core sampling, have been analyzed for organic constituents. Four of the samples were from the upper region, or convective layer, of the tank and two were from the lower, nonconvective layer. The samples were analyzed for chelators, chelator fragments, and several carboxylic acids by derivatization gas chromatography/mass spectrometry (GC/MS). The major components detected were ethylenediaminetetraacetic acid (EDTA), nitroso-iminodiacetic acid (NIDA), nitrilotriacetic acid (NTA), citric acid (CA), succinic acid (SA), and ethylenediaminetriacetic acid (ED3A). The chelator of highest concentration was EDTA in all six samples analyzed. Liquid chromatography (LC) was used to quantitate low molecular weight acids (LMWA) including oxalic, formic, glycolic, and acetic acids, which are present in the waste as acid salts. From 23 to 61% of the total organic carbon (TOC) in the samples analyzed was accounted for by these acids. Oxalate constituted approximately 40% of the TOC in the nonconvective layer samples. Oxalate was found to be approximately 3 to 4 times higher in concentration in the nonconvective layer than in the convective layer. During FY 1993, LC methods for analyzing LWMA, and two chelators N-(2-hydroxyethyl) ethylenediaminetriacetic acid and EDTA, were transferred to personnel in the Analytical Chemistry Laboratory and the 222-S laboratory.

  18. Investigation of Flammable Gas Releases from High Level Waste Tanks during Periodic Mixing

    SciTech Connect

    Swingle, R.F.

    1999-01-07

    The Savannah River Site processes high-level radioactive waste through precipitation by the addition of sodium tetraphenylborate in a large (approximately 1.3 million gallon) High Level Waste Tank. Radiolysis of water produces a significant amount of hydrogen gas in this slurry. During quiescent periods the tetraphenylborate slurry retains large amounts of hydrogen as dissolved gas and small bubbles. When mixing pumps start, large amounts of hydrogen release due to agitation of the slurry. Flammability concerns necessitate an understanding of the hydrogen retention mechanism in the slurry and a model of how the hydrogen releases from the slurry during pump operation. Hydrogen concentration data collected from the slurry tank confirmed this behavior in the full-scale system. These measurements also provide mass transfer results for the hydrogen release during operation. The authors compared these data to an existing literature model for mass transfer in small, agitated reactors and developed factors to scale this existing model to the 1.3 million gallon tanks in use at the Savannah River Site. The information provides guidance for facility operations.

  19. MELTER OFF-GAS FLAMMABILITY ASSESSMENT FOR DWPF ALTERNATE REDUCTANT FLOWSHEET OPTIONS

    SciTech Connect

    Choi, A.

    2011-07-08

    Glycolic acid and sugar are being considered as potential candidates to substitute for much of the formic acid currently being added to the Defense Waste Processing Facility (DWPF) melter feed as a reductant. A series of small-scale melter tests were conducted at the Vitreous State Laboratory (VSL) in January 2011 to collect necessary data for the assessment of the impact of these alternate reductants on the melter off-gas flammability. The DM10 melter with a 0.021 m{sup 2} melt surface area was run with three different feeds which were prepared at SRNL based on; (1) the baseline formic/nitric acid flowsheet, (2) glycolic/formic/nitric acid flowsheet, and (3) sugar/formic/nitric acid flowsheet - these feeds will be called the baseline, glycolic, and sugar flowsheet feeds, respectively, hereafter. The actual addition of sugar to the sugar flowsheet feed was made at VSL before it was fed to the melter. For each feed, the DM10 was run under both bubbled (with argon) and non-bubbled conditions at varying melter vapor space temperatures. The goal was to lower its vapor space temperature from nominal 500 C to less than 300 C at 50 C increments and maintain steady state at each temperature at least for one hour, preferentially for two hours, while collecting off-gas data including CO, CO{sub 2}, and H{sub 2} concentrations. Just a few hours into the first test with the baseline feed, it was discovered that the DM10 vapor space temperature would not readily fall below 350 C simply by ramping up the feed rate as the test plan called for. To overcome this, ambient air was introduced directly into the vapor space through a dilution air damper in addition to the natural air inleakage occurring at the operating melter pressure of -1 inch H{sub 2}O. A detailed description of the DM10 run along with all the data taken is given in the report issued by VSL. The SRNL personnel have analyzed the DM10 data and identified 25 steady state periods lasting from 32 to 92 minutes for all

  20. DEVELOPMENT OF AN ANTIFOAM TRACKING SYSTEM AS AN OPTION TO SUPPORT THE MELTER OFF-GAS FLAMMABILITY CONTROL STRATEGY AT THE DWPF

    SciTech Connect

    Edwards, T.; Lambert, D.

    2014-08-27

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of an additional strategy for confidently satisfying the flammability controls for DWPF’s melter operation. An initial strategy for implementing the operational constraints associated with flammability control in DWPF was based upon an analytically determined carbon concentration from antifoam. Due to the conservative error structure associated with the analytical approach, its implementation has significantly reduced the operating window for processing and has led to recurrent Slurry Mix Evaporator (SME) and Melter Feed Tank (MFT) remediation. To address the adverse operating impact of the current implementation strategy, SRR issued a Technical Task Request (TTR) to SRNL requesting the development and documentation of an alternate strategy for evaluating the carbon contribution from antifoam. The proposed strategy presented in this report was developed under the guidance of a Task Technical and Quality Assurance Plan (TTQAP) and involves calculating the carbon concentration from antifoam based upon the actual mass of antifoam added to the process assuming 100% retention. The mass of antifoam in the Additive Mix Feed Tank (AMFT), in the Sludge Receipt and Adjustment Tank (SRAT), and in the SME is tracked by mass balance as part of this strategy. As these quantities are monitored, the random and bias uncertainties affecting their values are also maintained and accounted for. This report documents: 1) the development of an alternate implementation strategy and associated equations describing the carbon concentration from antifoam in each SME batch derived from the actual amount of antifoam introduced into the AMFT, SRAT, and SME during the processing of the batch. 2) the equations and error structure for incorporating the proposed strategy into melter off-gas flammability assessments

  1. Challenges and methodology for safety analysis of a high-level waste tank with large periodic releases of flammable gas

    SciTech Connect

    Edwards, J.N.; Pasamehmetoglu, K.O.; White, J.R.; Stewart, C.W.

    1994-07-01

    Tank 241-SY-101, located at the Department of Energy Hanford Site, has periodically released up to 10,000 ft{sup 3} of flammable gas. This release has been one of the highest-priority DOE operational safety problems. The gases include hydrogen and ammonia (fuels) and nitrous oxide (oxidizer). There have been many opinions regarding the controlling mechanisms for these releases, but demonstrating an adequate understanding of the problem, selecting a mitigation methodology, and preparing the safety analysis have presented numerous new challenges. The mitigation method selected for the tank was to install a pump that would mix the tank contents and eliminate the sludge layer believed to be responsible for the gas retention and periodic releases. This report will describe the principal analysis methodologies used to prepare the safety assessment for the installation and operation of the pump, and because this activity has been completed, it will describe the results of pump operation.

  2. Evaluation of mitigation strategies in Facility Group 1 double-shell flammable-gas tanks at the Hanford Site

    SciTech Connect

    Unal, C.; Sadasivan, P.; Kubic, W.L.; White, J.R.

    1997-11-01

    Radioactive nuclear waste at the Hanford Site is stored in underground waste storage tanks at the site. The tanks fall into two main categories: single-shell tanks (SSTs) and double-shell tanks (DSTs). There are a total of 149 SSTs and 28 DSTs. The wastes stored in the tanks are chemically complex. They basically involve various sodium salts (mainly nitrite, nitrate, carbonates, aluminates, and hydroxides), organic compounds, heavy metals, and various radionuclides, including cesium, strontium, plutonium, and uranium. The waste is known to generate flammable gas (FG) [hydrogen, ammonia, nitrous oxide, hydrocarbons] by complex chemical reactions. The process of gas generation, retention, and release is transient. Some tanks reach a quasi-steady stage where gas generation is balanced by the release rate. Other tanks show continuous cycles of retention followed by episodic release. There currently are 25 tanks on the Flammable Gas Watch List (FGWL). The objective of this report is to evaluate possible mitigation strategies to eliminate the FG hazard. The evaluation is an engineering study of mitigation concepts for FG generation, retention, and release behavior in Tanks SY-101, AN-103, AN 104, An-105, and Aw-101. Where possible, limited quantification of the effects of mitigation strategies on the FG hazard also is considered. The results obtained from quantification efforts discussed in this report should be considered as best-estimate values. Results and conclusions of this work are intended to help in establishing methodologies in the contractor`s controls selection analysis to develop necessary safety controls for closing the FG unreviewed safety question. The general performance requirements of any mitigation scheme are discussed first.

  3. Flammable gas/slurry growth unreviewed safety question:justification for continued operation for the tank farms at the Hanford site

    SciTech Connect

    Leach, C.E., Westinghouse Hanford

    1996-07-31

    This Justification for Continued Operation (JCO) provides a basis for continued operation in 176 high level waste tanks, double contained receiver tanks (DCRTs), catch tanks, 244-AR Vault, 242-S and 242-T Evaporators and inactive miscellaneous underground storage tanks (IMUSTs) relative to flammable gas hazards. Required controls are specified.

  4. Application of the flammability diagram for evaluation of fire and explosion hazards of flammable vapors

    SciTech Connect

    Mashuga, C.V.; Crowl, D.A.

    1998-12-01

    The safest method to prevent fires and explosions of flammable vapors is to prevent the existence of flammable mixtures in the first place. This method requires detailed knowledge of the flammability region as a function of the fuel, oxygen, and nitrogen concentrations. A triangular flammability diagram is the most useful tool to display the flammability region, and to determine if a flammable mixture is present during plant operations. This paper describes how to draw and use a flammability diagram. A procedure to estimate the flammability region using the available and sometimes limited data is discussed. The paper also shows how to use the flammability diagram with plant operations involving inerting and purging, and from bringing vessels into and out of service. A compilation of flammability diagrams for 30 materials, based on previously published data is provided. An automated apparatus for acquiring data for a flammability diagram is described. The apparatus consists of a 20-L sphere with an automated gas mixing system, a fuse-wire ignition system, and a high speed pressure measurement and data acquisition system. Data derived from the apparatus includes flammability limits, maximum pressure during combustion, and the maximum pressure rate. The effect of fuse-wire ignitor dynamics on the results is studied. A flammability diagram for methane drawn from data obtained from the apparatus, is presented.

  5. Total flammable mass and volume within a vapor cloud produced by a continuous fuel-gas or volatile liquid-fuel release.

    PubMed

    Epstein, Michael; Fauske, Hans K

    2007-08-25

    The top-hat jet/plume model has recently been employed to obtain simple closed-form expressions for the mass of fuel in the flammable region of a vapor "cloud" produced by an axisymmetric (round) continuous-turbulent jet having positive or negative buoyancy [1]. The fuel release may be a gas or a volatile liquid. In this paper, the top-hat analysis is extended to obtain closed-form approximate expressions for the total mass (fuel+entrained air) and volume of the flammable region of a release cloud produced by either a round or a plane (two-dimensional) buoyant jet. These expressions lead to predicted average fuel concentrations in the flammable regions of the release clouds which, when compared with the stoichiometric concentration, serve as indicators of the potential severity of release cloud explosions. For a fixed release mass, the combustion overpressure following ignition of a hydrogen/air cloud is anticipated to be significantly lower than that due to ignition of a hydrocarbon/air cloud. The predicted average hydrogen concentration within the flammable region of the release cloud is below the lower detonability limit. The facility with which the expressions can be used for predictions of combustion overpressures is illustrated for propane releases and deflagrations in a closed compartment. PMID:17363152

  6. Total flammable mass and volume within a vapor cloud produced by a continuous fuel-gas or volatile liquid-fuel release.

    PubMed

    Epstein, Michael; Fauske, Hans K

    2007-08-25

    The top-hat jet/plume model has recently been employed to obtain simple closed-form expressions for the mass of fuel in the flammable region of a vapor "cloud" produced by an axisymmetric (round) continuous-turbulent jet having positive or negative buoyancy [1]. The fuel release may be a gas or a volatile liquid. In this paper, the top-hat analysis is extended to obtain closed-form approximate expressions for the total mass (fuel+entrained air) and volume of the flammable region of a release cloud produced by either a round or a plane (two-dimensional) buoyant jet. These expressions lead to predicted average fuel concentrations in the flammable regions of the release clouds which, when compared with the stoichiometric concentration, serve as indicators of the potential severity of release cloud explosions. For a fixed release mass, the combustion overpressure following ignition of a hydrogen/air cloud is anticipated to be significantly lower than that due to ignition of a hydrocarbon/air cloud. The predicted average hydrogen concentration within the flammable region of the release cloud is below the lower detonability limit. The facility with which the expressions can be used for predictions of combustion overpressures is illustrated for propane releases and deflagrations in a closed compartment.

  7. Flammable Gas Safety Program: Mechanisms of gas generation from simulated SY Tank Farm wastes. Progress report, FY 1994

    SciTech Connect

    Barefield, E.K.; Boadtright, D.; Deshpande, A.; Doctorovich, F.; Liotta, C.L.; Neumann, H.M.; Seymore, S.

    1995-09-01

    This is the final report for work done at Georgia Tech during Fiscal Year 1994. The objectives of this work were to develop a better understanding of the mechanism of formation of flammable gases in the thermal decomposition of metal complexants, such as HEDTA and sodium glycolate, in simulated SY waste mixtures. This project is a continuation of work begun under earlier contracts with Westinghouse Hanford Co. Three major areas are discussed: development of a reliable analysis for dissolved ammonia, the initiation of long term studies of HEDTA decomposition in stainless steel vessels and product analyses through 3800 h, and further consideration of product analyses and kinetic data reported in FY 1993 for decomposition of HEDTA and sodium glycolate in Teflon-lined glass vessels. A brief exploration was also made of the speciation of aluminum(l1l) in the presence of HEDTA as a function of pH using {sup 27}Al NMR.

  8. THE FLAMMABILITY ANALYSIS AND TIME TO REACH LOWER FLAMMABILITY LIMIT CALCULATIONS ON THE WASTE EVAPORATION AT 242-A EVAPORATOR

    SciTech Connect

    HU TA

    2007-10-31

    This document describes the analysis of the waste evaporation process on the flammability behavior. The evaluation calculates the gas generation rate, time to reach 25% and 100% of the lower flammability limit (LFL), and minimum ventilation rates for the 242-A Evaporator facility during the normal evaporation process and when vacuum is lost. This analysis performs flammability calculations on the waste currently within all 28 double-shell tanks (DST) under various evaporation process conditions to provide a wide spectrum of possible flammable gas behavior. The results of this analysis are used to support flammable gas control decisions and support and upgrade to Documented Safety Analysis for the 242-A Evaporator.

  9. Elimination of Flammable Gas Effects in Cerium Oxide Semiconductor-Type Resistive Oxygen Sensors for Monitoring Low Oxygen Concentrations

    PubMed Central

    Itoh, Toshio; Izu, Noriya; Akamatsu, Takafumi; Shin, Woosuck; Miki, Yusuke; Hirose, Yasuo

    2015-01-01

    We have investigated the catalytic layer in zirconium-doped cerium oxide, Ce0.9Zr0.1O2 (CeZr10) resistive oxygen sensors for reducing the effects of flammable gases, namely hydrogen and carbon monoxide. When the concentration of flammable gases is comparable to that of oxygen, the resistance of CeZr10 is affected by the presence of these gases. We have developed layered thick films, which consist of an oxygen sensor layer (CeZr10), an insulation layer (Al2O3), and a catalytic layer consisting of CeZr10 with 3 wt% added platinum, which was prepared via the screen printing method. The Pt-CeZr10 catalytic layer was found to prevent the detrimental effects of the flammable gases on the resistance of the sensor layer. This effect is due to the catalytic layer promoting the oxidation of hydrogen and carbon monoxide through the consumption of ambient O2 and/or the lattice oxygen atoms of the Pt-CeZr10 catalytic layer. PMID:25905705

  10. Flammability: A Review and Analysis

    NASA Technical Reports Server (NTRS)

    Wilson, D. Bruce; Steinberg, Theodore A.; Stoltzfus, Joel M.; Fries, Joseph (Technical Monitor)

    2000-01-01

    With its founding in 1975, Committee G-4 of the American Society for Testing and Materials (ASTM) embarked on the process of defining the flammability of metallic materials in oxygen-enriched atmospheres. In this process, they are joined by the National Aeronautics and Space Administration (NASA), the National Fire Protection Association (NFPA), and the Compressed Gas Association (CGA). Although none of these organizations has explicitly defined flammability, the following definitions and statements provide a composite understanding of the concept: 1. "This Standard Guide (ASTM G94-92) is concerned primarily with the properties of a material associated with its relative susceptibility to ignition and propagation of combustion." 2. "A material is considered flammable at the maximum use pressure if at least one sample burns more than 6 in. (15.2 cm). At least, five samples must be tested." NASA 3. "Flammable: Capable, when ignited of maintaining combustion under the specified environmental conditions." NFPA 53. 4. "Combustion: A complex sequence of chemical reactions between a fuel and an oxidant accompanied by the evolution of heat, and usually, the emission of light." NFPA 53. and 5. "A safe oxygen-piping transmission or distribution system is one that is designed and installed in accordance with all applicable codes and regulations for the service conditions and locations involved and further meets the special requirements for oxygen services." CGA-G4 Flammability thus equates, after ignition, to propagation of combustion, synonymous with steady state burning, under specified environmental conditions. Properties for which quantitative values are given in ASTM G94-92 and which are used to describe metals flammability consistent with the concept of steady state burning are either system independent properties, such as, enthalpies of reaction, burn ratios, flame temperatures, thermal conductivity, and heat release; or system dependent properties, such as, oxygen

  11. Tank 241-C-103 headspace flammability

    SciTech Connect

    Huckaby, J.L.

    1994-01-01

    Information regarding flammable vapors, gases, and aerosols is presented for the purpose of resolving the tank 241-C-103 headspace flammability issue. Analyses of recent vapor and liquid samples, as well as visual inspections of the tank headspace, are discussed in the context of tank dynamics. This document is restricted to issues regarding the flammability of gases, vapors, and an aerosol that may exist in the headspace of tank 241-C-103. While discussing certain information about the organic liquid present in tank 241-C-103, this document addresses neither the potential for, nor consequences of, a pool fire involving this organic liquid; they will be discussed in a separate report.

  12. Addressing biogenic greenhouse gas emissions from hydropower in LCA.

    PubMed

    Hertwich, Edgar G

    2013-09-01

    The ability of hydropower to contribute to climate change mitigation is sometimes questioned, citing emissions of methane and carbon dioxide resulting from the degradation of biogenic carbon in hydropower reservoirs. These emissions are, however, not always addressed in life cycle assessment, leading to a bias in technology comparisons, and often misunderstood. The objective of this paper is to review and analyze the generation of greenhouse gas emissions from reservoirs for the purpose of technology assessment, relating established emission measurements to power generation. A literature review, data collection, and statistical analysis of methane and CO2 emissions are conducted. In a sample of 82 measurements, methane emissions per kWh hydropower generated are log-normally distributed, ranging from micrograms to 10s of kg. A multivariate regression analysis shows that the reservoir area per kWh electricity is the most important explanatory variable. Methane emissions flux per reservoir area are correlated with the natural net primary production of the area, the age of the power plant, and the inclusion of bubbling emissions in the measurement. Even together, these factors fail to explain most of the variation in the methane flux. The global average emissions from hydropower are estimated to be 85 gCO2/kWh and 3 gCH4/kWh, with a multiplicative uncertainty factor of 2. GHG emissions from hydropower can be largely avoided by ceasing to build hydropower plants with high land use per unit of electricity generated. PMID:23909506

  13. Addressing biogenic greenhouse gas emissions from hydropower in LCA.

    PubMed

    Hertwich, Edgar G

    2013-09-01

    The ability of hydropower to contribute to climate change mitigation is sometimes questioned, citing emissions of methane and carbon dioxide resulting from the degradation of biogenic carbon in hydropower reservoirs. These emissions are, however, not always addressed in life cycle assessment, leading to a bias in technology comparisons, and often misunderstood. The objective of this paper is to review and analyze the generation of greenhouse gas emissions from reservoirs for the purpose of technology assessment, relating established emission measurements to power generation. A literature review, data collection, and statistical analysis of methane and CO2 emissions are conducted. In a sample of 82 measurements, methane emissions per kWh hydropower generated are log-normally distributed, ranging from micrograms to 10s of kg. A multivariate regression analysis shows that the reservoir area per kWh electricity is the most important explanatory variable. Methane emissions flux per reservoir area are correlated with the natural net primary production of the area, the age of the power plant, and the inclusion of bubbling emissions in the measurement. Even together, these factors fail to explain most of the variation in the methane flux. The global average emissions from hydropower are estimated to be 85 gCO2/kWh and 3 gCH4/kWh, with a multiplicative uncertainty factor of 2. GHG emissions from hydropower can be largely avoided by ceasing to build hydropower plants with high land use per unit of electricity generated.

  14. Is Your Furniture Flammable?

    ERIC Educational Resources Information Center

    Crump, Eva

    1982-01-01

    A flammability standard for upholstered furniture is intended to prevent furniture from becoming a major contributing factor to a fire or from generating toxic fumes. Advice is offered on how to set a flammability standard and how to apply it. (Author/MLF)

  15. Overview of the Flammability of Gases Generated in Hanford Waste Tanks

    SciTech Connect

    Mahoney, Lenna A.; Huckaby, James L.; Bryan, Samuel A.; Johnson, Gerald D.

    2000-07-19

    This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, flammability and detonability limits of the gas constituents, and availability of ignition sources. The intrinsic flammability (or non-flammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, and volume of the release and the tank ventilation rate, which are not covered in this report.

  16. Flammability Assessment Methodology Program Phase I: Final Report

    SciTech Connect

    C. A. Loehr; S. M. Djordjevic; K. J. Liekhus; M. J. Connolly

    1997-09-01

    The Flammability Assessment Methodology Program (FAMP) was established to investigate the flammability of gas mixtures found in transuranic (TRU) waste containers. The FAMP results provide a basis for increasing the permissible concentrations of flammable volatile organic compounds (VOCs) in TRU waste containers. The FAMP results will be used to modify the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (TRUPACT-II SARP) upon acceptance of the methodology by the Nuclear Regulatory Commission. Implementation of the methodology would substantially increase the number of drums that can be shipped to the Waste Isolation Pilot Plant (WIPP) without repackaging or treatment. Central to the program was experimental testing and modeling to predict the gas mixture lower explosive limit (MLEL) of gases observed in TRU waste containers. The experimental data supported selection of an MLEL model that was used in constructing screening limits for flammable VOC and flammable gas concentrations. The MLEL values predicted by the model for individual drums will be utilized to assess flammability for drums that do not meet the screening criteria. Finally, the predicted MLEL values will be used to derive acceptable gas generation rates, decay heat limits, and aspiration time requirements for drums that do not pass the screening limits. The results of the program demonstrate that an increased number of waste containers can be shipped to WIPP within the flammability safety envelope established in the TRUPACT-II SARP.

  17. The Evaluation of Flammability Properties Regarding Testing Methods

    NASA Astrophysics Data System (ADS)

    Osvaldová, Linda Makovická; Gašpercová, Stanislava

    2015-12-01

    In this paper, we address the historical comparison methods with current methods for the assessment of flammability characteristics for materials an especially for wood, wood components and wooden buildings. Nowadays in European Union brings harmonization in evaluated of standards into each European country and try to make one concept of evaluated the flammability properties. In each European country to the one standard level which will be used by evaluation of materials regarding flammability. In our article we focused mainly on improving the evaluation methods in terms of flammability characteristics of using materials at building industry. In the article we present examples of different assessment methods at their own test methods in terms of fire prevention. On the base of old compared of materials by STN, BS and DIN methods for testing materials on fire and new methods of evaluating the flammability properties regarding EU standards before and after starting the flash over.

  18. Overview of the Flammability of Gases Generated in Hanford Waste Tanks

    SciTech Connect

    LA Mahoney; JL Huckaby; SA Bryan; GD Johnson

    2000-07-21

    This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, the flammability and detonability limits of the gas constituents, and the availability of ignition sources. The intrinsic flammability (or nonflammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, volume of the release, and the tank ventilation rate, which are not covered in this report.

  19. Plant traits determine forest flammability

    NASA Astrophysics Data System (ADS)

    Zylstra, Philip; Bradstock, Ross

    2016-04-01

    Carbon and nutrient cycles in forest ecosystems are influenced by their inherent flammability - a property determined by the traits of the component plant species that form the fuel and influence the micro climate of a fire. In the absence of a model capable of explaining the complexity of such a system however, flammability is frequently represented by simple metrics such as surface fuel load. The implications of modelling fire - flammability feedbacks using surface fuel load were examined and compared to a biophysical, mechanistic model (Forest Flammability Model) that incorporates the influence of structural plant traits (e.g. crown shape and spacing) and leaf traits (e.g. thickness, dimensions and moisture). Fuels burn with values of combustibility modelled from leaf traits, transferring convective heat along vectors defined by flame angle and with plume temperatures that decrease with distance from the flame. Flames are re-calculated in one-second time-steps, with new leaves within the plant, neighbouring plants or higher strata ignited when the modelled time to ignition is reached, and other leaves extinguishing when their modelled flame duration is exceeded. The relative influence of surface fuels, vegetation structure and plant leaf traits were examined by comparing flame heights modelled using three treatments that successively added these components within the FFM. Validation was performed across a diverse range of eucalypt forests burnt under widely varying conditions during a forest fire in the Brindabella Ranges west of Canberra (ACT) in 2003. Flame heights ranged from 10 cm to more than 20 m, with an average of 4 m. When modelled from surface fuels alone, flame heights were on average 1.5m smaller than observed values, and were predicted within the error range 28% of the time. The addition of plant structure produced predicted flame heights that were on average 1.5m larger than observed, but were correct 53% of the time. The over-prediction in this

  20. Control of Materials Flammability Hazards

    NASA Technical Reports Server (NTRS)

    Griffin, Dennis E.

    2003-01-01

    This viewgraph presentation provides information on selecting, using, and configuring spacecraft materials in such a way as to minimize the ability of fire to spread onboard a spacecraft. The presentation gives an overview of the flammability requirements of NASA-STD-6001, listing specific tests and evaluation criteria it requires. The presentation then gives flammability reduction methods for specific spacecraft items and materials.

  1. Flammability limits of fuel/fluorocarbon azeotropes

    SciTech Connect

    Alvares, N.J.; Hammond, P.R.; Foote, K.; Ford, H.W. Jr.

    1981-02-10

    Both Dehn and Thorne have intimated that flash point (FP) measurements could be used to define the gas-phase flammability limits of fire and retardant vapor mixtures above the surface of heated retardant containing flammable liquids. However, it was found that ignitable mixtures exist above the liquid surface, where the concentration of the agent in the fluid is well beyond the limiting concentrating for inerting of alcohol fires. Clearly this anomaly results from diffusion competition of air and liquid vapor mixture at the position of the ignitor, as influenced by the design of the experimental apparatus. The authors are skeptical about the need or worth of attempting to define flammability limits using FP data, especially since unknown variables control the response. More important is to define the concentration of liquid phase retardant that will affect gas phase inerting. Thus, it is necessary to continue practical testing of retardant-containing liquids for their effectiveness in mitigating possible accidents, e.g., the next phase of this work will assess the effectiveness of halocarbons to inert high-pressure alcohol/agent leaks impinging on both electrical and flame ignition sources.

  2. Life-cycle greenhouse gas assessment of Nigerian liquefied natural gas addressing uncertainty.

    PubMed

    Safaei, Amir; Freire, Fausto; Henggeler Antunes, Carlos

    2015-03-17

    Natural gas (NG) has been regarded as a bridge fuel toward renewable sources and is expected to play a greater role in future global energy mix; however, a high degree of uncertainty exists concerning upstream (well-to-tank, WtT) greenhouse gas (GHG) emissions of NG. In this study, a life-cycle (LC) model is built to assess uncertainty in WtT GHG emissions of liquefied NG (LNG) supplied to Europe by Nigeria. The 90% prediction interval of GHG intensity of Nigerian LNG was found to range between 14.9 and 19.3 g CO2 eq/MJ, with a mean value of 16.8 g CO2 eq/MJ. This intensity was estimated considering no venting practice in Nigerian fields. The mean estimation can shift up to 25 g CO2 eq when considering a scenario with a higher rate of venting emissions. A sensitivity analysis of the time horizon to calculate GHG intensity was also performed showing that higher GHG intensity and uncertainty are obtained for shorter time horizons, due to the higher impact factor of methane. The uncertainty calculated for Nigerian LNG, specifically regarding the gap of data for methane emissions, recommends initiatives to measure and report emissions and further LC studies to identify hotspots to reduce the GHG intensity of LNG chains. PMID:25621534

  3. Life-cycle greenhouse gas assessment of Nigerian liquefied natural gas addressing uncertainty.

    PubMed

    Safaei, Amir; Freire, Fausto; Henggeler Antunes, Carlos

    2015-03-17

    Natural gas (NG) has been regarded as a bridge fuel toward renewable sources and is expected to play a greater role in future global energy mix; however, a high degree of uncertainty exists concerning upstream (well-to-tank, WtT) greenhouse gas (GHG) emissions of NG. In this study, a life-cycle (LC) model is built to assess uncertainty in WtT GHG emissions of liquefied NG (LNG) supplied to Europe by Nigeria. The 90% prediction interval of GHG intensity of Nigerian LNG was found to range between 14.9 and 19.3 g CO2 eq/MJ, with a mean value of 16.8 g CO2 eq/MJ. This intensity was estimated considering no venting practice in Nigerian fields. The mean estimation can shift up to 25 g CO2 eq when considering a scenario with a higher rate of venting emissions. A sensitivity analysis of the time horizon to calculate GHG intensity was also performed showing that higher GHG intensity and uncertainty are obtained for shorter time horizons, due to the higher impact factor of methane. The uncertainty calculated for Nigerian LNG, specifically regarding the gap of data for methane emissions, recommends initiatives to measure and report emissions and further LC studies to identify hotspots to reduce the GHG intensity of LNG chains.

  4. 16 CFR 1611.4 - Flammability test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flammability test. 1611.4 Section 1611.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.4 Flammability test. (a) Apparatus and materials....

  5. 76 FR 58846 - Final Interim Staff Guidance: Review of Evaluation To Address Gas Accumulation Issues in Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... is to clarify the NRC staff guidance to address issues of gas accumulation in safety related systems... guidance documents. Disposition: On November 12, 2009 (74 FR 58323), the NRC staff issued proposed DC/COL... COMMISSION Final Interim Staff Guidance: Review of Evaluation To Address Gas Accumulation Issues in...

  6. Unmanned Vehicle Material Flammability Test

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Fernandez-Pello, A. Carlos; T’ien, James S.; Torero, Jose L.; Cowlard, Adam; Rouvreau, Sebastian; Minster, Olivier; Toth, Balazs; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Jomaas, Grande

    2013-01-01

    Microgravity combustion phenomena have been an active area of research for the past 3 decades however, there have been very few experiments directly studying spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample and environment sizes typical of those expected in a spacecraft fire. All previous experiments have been limited to samples of the order of 10 cm in length and width or smaller. Terrestrial fire safety standards for all other habitable volumes on earth, e.g. mines, buildings, airplanes, ships, etc., are based upon testing conducted with full-scale fires. Given the large differences between fire behavior in normal and reduced gravity, this lack of an experimental data base at relevant length scales forces spacecraft designers to base their designs using 1-g understanding. To address this question a large scale spacecraft fire experiment has been proposed by an international team of investigators. This poster presents the objectives, status and concept of this collaborative international project to examine spacecraft material flammability at realistic scales. The concept behind this project is to utilize an unmanned spacecraft such as Orbital Cygnus vehicle after it has completed its delivery of cargo to the ISS and it has begun its return journey to earth. This experiment will consist of a flame spread test involving a meter scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This will be

  7. 65 FR 56991 - Improved Flammability Standards for Thermal/Acoustic Insulation Materials Used in Transport...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-09-20

    ... Standards for Thermal/Acoustic Insulation Materials Used in Transport Category Airplanes AGENCY: Federal... proposes upgraded flammability standards for thermal/acoustic insulation materials typically installed... current standards do not realistically address situations in which thermal/acoustic insulation...

  8. Antimisting kerosene atomization and flammability

    NASA Technical Reports Server (NTRS)

    Fleeter, R.; Petersen, R. A.; Toaz, R. D.; Jakub, A.; Sarohia, V.

    1982-01-01

    Various parameters found to affect the flammability of antimisting kerosene (Jet A + polymer additive) are investigated. Digital image processing was integrated into a technique for measurement of fuel spray characteristics. This technique was developed to avoid many of the error sources inherent to other spray assessment techniques and was applied to the study of engine fuel nozzle atomization performance with Jet A and antimisting fuel. Aircraft accident fuel spill and ignition dynamics were modeled in a steady state simulator allowing flammability to be measured as a function of airspeed, fuel flow rate, fuel jet Reynolds number and polymer concentration. The digital imaging technique was employed to measure spray characteristics in this simulation and these results were related to flammability test results. Scaling relationships were investigated through correlation of experimental results with characteristic dimensions spanning more than two orders of magnitude.

  9. Flammability screening tests of resins

    NASA Technical Reports Server (NTRS)

    Arhart, R. W.; Farrar, D. G.; Hughes, B. M.

    1979-01-01

    Selected flammability characteristics of glass cloth laminates of thermosetting resins are evaluated. A protocol for the evaluation of the flammability hazards presented by glass cloth laminates of thermosetting resins and the usefulness of that protocol with two laminates are presented. The glass laminates of an epoxy resin, M-751 are evaluated for: (1) determination of smoke generation from the laminates; (2) analysis of products of oxidative degradation of the laminates; (3) determination of minimum oxygen necessary to maintain flaming oxidation; (4) evaluation of toxicological hazards.

  10. 14 CFR 25.1185 - Flammable fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluids. 25.1185 Section 25.1185... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1185 Flammable fluids. (a... system containing flammable fluids or gases may be in a designated fire zone unless the fluid...

  11. 14 CFR 121.255 - Flammable fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flammable fluids. 121.255 Section 121.255..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.255 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located...

  12. 14 CFR 121.255 - Flammable fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flammable fluids. 121.255 Section 121.255..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.255 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located...

  13. 14 CFR 125.153 - Flammable fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flammable fluids. 125.153 Section 125.153....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in designated fire zones, except where the fluid contained, the design...

  14. 14 CFR 125.153 - Flammable fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flammable fluids. 125.153 Section 125.153....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in designated fire zones, except where the fluid contained, the design...

  15. 14 CFR 25.1185 - Flammable fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluids. 25.1185 Section 25.1185... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1185 Flammable fluids. (a... system containing flammable fluids or gases may be in a designated fire zone unless the fluid...

  16. 16 CFR 1611.4 - Flammability test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Flammability test. 1611.4 Section 1611.4... FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.4 Flammability test. (a) Apparatus and materials. The... protect the igniter flame and specimen from air currents during tests, yet contain a suitable door...

  17. 14 CFR 29.1185 - Flammable fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluids. 29.1185 Section 29.1185... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 29.1185 Flammable fluids. (a) No tank or reservoir that is part of a system containing flammable fluids or gases may be in...

  18. 14 CFR 27.1185 - Flammable fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluids. 27.1185 Section 27.1185... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 27.1185 Flammable fluids. (a..., other than a fuel tank, that is part of a system containing flammable fluids or gases must be...

  19. 14 CFR 29.1185 - Flammable fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluids. 29.1185 Section 29.1185... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 29.1185 Flammable fluids. (a) No tank or reservoir that is part of a system containing flammable fluids or gases may be in...

  20. 14 CFR 27.1185 - Flammable fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluids. 27.1185 Section 27.1185... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 27.1185 Flammable fluids. (a..., other than a fuel tank, that is part of a system containing flammable fluids or gases must be...

  1. 14 CFR 121.255 - Flammable fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flammable fluids. 121.255 Section 121.255..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.255 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located...

  2. 14 CFR 125.153 - Flammable fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flammable fluids. 125.153 Section 125.153....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in designated fire zones, except where the fluid contained, the design...

  3. 14 CFR 125.153 - Flammable fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flammable fluids. 125.153 Section 125.153....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in designated fire zones, except where the fluid contained, the design...

  4. 14 CFR 25.1185 - Flammable fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluids. 25.1185 Section 25.1185... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1185 Flammable fluids. (a... system containing flammable fluids or gases may be in a designated fire zone unless the fluid...

  5. 14 CFR 25.1185 - Flammable fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluids. 25.1185 Section 25.1185... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1185 Flammable fluids. (a... system containing flammable fluids or gases may be in a designated fire zone unless the fluid...

  6. 14 CFR 125.153 - Flammable fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flammable fluids. 125.153 Section 125.153....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in designated fire zones, except where the fluid contained, the design...

  7. 14 CFR 121.255 - Flammable fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flammable fluids. 121.255 Section 121.255..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.255 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located...

  8. Compression testing of flammable liquids

    NASA Technical Reports Server (NTRS)

    Briles, O. M.; Hollenbaugh, R. P.

    1979-01-01

    Small cylindrical test chamber determines catalytic effect of given container material on fuel that might contribute to accidental deflagration or detonation below expected temperature under adiabatic compression. Device is useful to producers and users of flammable liquids and to safety specialists.

  9. Initial parametric study of the flammability of plume releases in Hanford waste tanks

    SciTech Connect

    Antoniak, Z.I.; Recknagle, K.P.

    1997-08-01

    This study comprised systematic analyses of waste tank headspace flammability following a plume-type of gas release from the waste. First, critical parameters affecting plume flammability were selected, evaluated, and refined. As part of the evaluation the effect of ventilation (breathing) air inflow on the convective flow field inside the tank headspace was assessed, and the magnitude of the so-called {open_quotes}numerical diffusion{close_quotes} on numerical simulation accuracy was investigated. Both issues were concluded to be negligible influences on predicted flammable gas concentrations in the tank headspace. Previous validation of the TEMPEST code against experimental data is also discussed, with calculated results in good agreements with experimental data. Twelve plume release simulations were then run, using release volumes and flow rates that were thought to cover the range of actual release volumes and rates. The results indicate that most plume-type releases remain flammable only during the actual release ends. Only for very large releases representing a significant fraction of the volume necessary to make the entire mixed headspace flammable (many thousands of cubic feet) can flammable concentrations persist for several hours after the release ends. However, as in the smaller plumes, only a fraction of the total release volume is flammable at any one time. The transient evolution of several plume sizes is illustrated in a number of color contour plots that provide insight into plume mixing behavior.

  10. Estimating the Health Effects of Greenhouse Gas Mitigation Strategies: Addressing Parametric, Model, and Valuation Challenges

    PubMed Central

    Hess, Jeremy J.; Ebi, Kristie L.; Markandya, Anil; Balbus, John M.; Wilkinson, Paul; Haines, Andy; Chalabi, Zaid

    2014-01-01

    simultaneously improving health. Citation: Remais JV, Hess JJ, Ebi KL, Markandya A, Balbus JM, Wilkinson P, Haines A, Chalabi Z. 2014. Estimating the health effects of greenhouse gas mitigation strategies: addressing parametric, model, and valuation challenges. Environ Health Perspect 122:447–455; http://dx.doi.org/10.1289/ehp.1306744 PMID:24583270

  11. Flow Effects on the Flammability Diagrams of Solid Fuels

    NASA Technical Reports Server (NTRS)

    Cordova, J. L.; Ceamanos, J.; Fernandez-Pello, A. C.; Long, R. T.; Torero, J. L.; Quintiere, J. G.

    1997-01-01

    A research program is currently underway with the final objective of developing a fundamental understanding of the controlling mechanisms underlying the flammability diagrams of solid combustible materials and their derived fire properties. Given that there is a high possibility of an accidental fire occurring in a space-based facility, understanding the fire properties of materials that will be used in such facilities is of critical importance. With this purpose, the flammability diagrams of the materials, as those produced by the Lateral Ignition and Flame Spread Test (LIFT) apparatus and by a new forced flow device, the Forced Flow Ignition and Flame Spread Test (FIST) apparatus, will be obtained. The specific objective of the program is to apply the new flammability apparatus, which will more accurately reflect the potential ambient conditions of space-based environments, to the characterization of the materials for space applications. This paper presents a parametric study of oxidizer flow effects on the ignition curve of the flammability diagrams of PMMA. The dependence of the ignition delay time on the external radiant flux and either the sample width (LIFT) or the flow velocity (FIST) has been studied. Although preliminary, the results indicate that natural and forced convection flow changes, affect the characteristics of the ignition curves of the flammability diagrams. The major effect on the ignition time appears to be due to convective transfer variations at the fuel surface. At high radiant fluxes or high flow velocities, however, it appears that gas phase processes become increasingly important, affecting the overall ignition delay time. A numerical analysis of the solid fuel heating and pyrolysis has also been developed. The theoretical predictions approximate the experiments well for conditions in which the gas phase induction time is negligible.

  12. Specimen Holder For Flammability Tests

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    1992-01-01

    Fixture holds sheet specimens for flammability tests. Frame and clamps designed to minimize local overstress on specimen. Heat capacity of fixture low, interfering less with interpretation of results of test by drawing less heat away from specimen. Accepts films, fabrics, foams, and other sheets, rigid or flexible. Specimens thin or thick, or of variable thickness. Bent to accommodate curved rigid specimens. Also used for such other tests as particle-impact tests.

  13. Flammability zone prediction using calculated adiabatic flame temperatures

    SciTech Connect

    Mashuga, C.V.; Crowl, D.A.

    1999-11-01

    This paper describes work to predict the flammability zone for any mixture of fuel, oxygen and nitrogen. The method utilizes a commercially available equilibrium program to determine the calculated adiabatic flame temperature (CAFT). The model is compared with extensive experimental data obtained in a 20 L sphere at an initial pressure of 1 atm and 298 K. The data and model compare well over the entire flammability zone for two pure species, methane and ethylene, and not as well for a 50/50 mixture of methane/ethylene. Results show that a good prediction of the flammability zone is obtained using a CAFT criterion of 1200 K. Furthermore, the intermediate species and solid carbon must be included in the equilibrium calculation to fit the fuel rich part of the zone. The intermediate species were selected by the equilibrium program using a built-in species selection criteria. For a gas mixture of methane and ethylene, the authors were unable to identify mixing rules for estimating K{sub G} and P{sub max} from pure component data. This method provides a direct approach to full flammability zone prediction.

  14. Antimisting fuel breakup and flammability

    NASA Technical Reports Server (NTRS)

    Parikh, P.; Fleeter, R.; Sarohia, V.

    1983-01-01

    The breakup behavior and flammability of antimisting turbine fuels subjected to aerodynamic shear are investigated. Fuels tested were Jet A containing 0.3% FM-9 polymer at various levels of degradation ranging from virgin AMK to neat Jet A. The misting behavior of the fuels was quantified by droplet size distribution measurements. A technique based on high resolution laser photography and digital image processing of photographic records for rapid determination of droplet size distribution was developed. The flammability of flowing droplet-air mixtures was quantified by direct measurements of temperature rise in a flame established in the wake of a continuous ignition source. The temperature rise measurements were correlated with droplet size measurements. The flame anchoring phenomenon associated with the breakup of a liquid fuel in the wake of bluff body was shown to be important in the context of a survivable crash scenario. A pass/fail criterion for flammability testing of antimisting fuels, based on this flame-anchoring phenomenon, was proposed. The role of various ignition sources and their intensity in ignition and post-ignition behavior of antimisting fuels was also investigated.

  15. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping... liquid. (a) The term flammable liquid means any liquid which gives off flammable vapors (as determined by.... Flammable liquids are referred to by grades as follows: (1) Grade A. Any flammable liquid having a Reid...

  16. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping... liquid. (a) The term flammable liquid means any liquid which gives off flammable vapors (as determined by.... Flammable liquids are referred to by grades as follows: (1) Grade A. Any flammable liquid having a Reid...

  17. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping... liquid. (a) The term flammable liquid means any liquid which gives off flammable vapors (as determined by.... Flammable liquids are referred to by grades as follows: (1) Grade A. Any flammable liquid having a Reid...

  18. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping... liquid. (a) The term flammable liquid means any liquid which gives off flammable vapors (as determined by.... Flammable liquids are referred to by grades as follows: (1) Grade A. Any flammable liquid having a Reid...

  19. THE EFFECT OF THE PRESENCE OF OZONE ON THE LOWER FLAMMABILITY LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    SciTech Connect

    Sherburne, C.

    2012-01-12

    The Enhanced Chemical Cleaning (ECC) process uses ozone to effect the oxidation of metal oxalates produced during the dissolution of sludge in the Savannah River Site (SRS) waste tanks. The ozone reacts with the metal oxalates to form metal oxide and hydroxide precipitants, and the CO{sub 2}, O{sub 2}, H{sub 2}O and any unreacted O{sub 3} gases are discharged into the vapor space. In addition to the non-radioactive metals in the waste, however, the SRS radioactive waste also contains a variety of radionuclides, hence, hydrogen gas is also present in the vapor space of the ECC system. Because hydrogen is flammable, the impact of this resultant gas stream on the Lower Flammability Limit (LFL) of hydrogen must be understood for all possible operating scenarios of both normal and off-normal situations, with particular emphasis at the elevated temperatures and pressures of the typical ECC operating conditions. Oxygen is a known accelerant in combustion reactions, but while there are data associated with the behavior of hydrogen/oxygen environments, recent, relevant studies addressing the effect of ozone on the flammability limit of hydrogen proved scarce. Further, discussions with industry experts verified the absence of data in this area and indicated that laboratory testing, specific to defined operating parameters, was needed to comprehensively address the issue. Testing was thus designed and commissioned to provide the data necessary to support safety related considerations for the ECC process. A test matrix was developed to envelope the bounding conditions considered credible during ECC processing. Each test consists of combining a gas stream of high purity hydrogen with a gas stream comprised of a specified mixture of ozone and oxygen in a temperature and pressure regulated chamber such that the relative compositions of the two streams are controlled. The gases are then stirred to obtain a homogeneous mixture and ignition attempted by applying 10J of energy to a

  20. 16 CFR 1500.44 - Method for determining extremely flammable and flammable solids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and flammable solids. 1500.44 Section 1500.44 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ENFORCEMENT REGULATIONS § 1500.44 Method for determining extremely flammable and flammable solids. (a... with inner dimensions 6 inches long × 1 inch wide × one-fourth inch deep. (2) Rigid and pliable...

  1. 16 CFR 1500.44 - Method for determining extremely flammable and flammable solids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and flammable solids. 1500.44 Section 1500.44 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ENFORCEMENT REGULATIONS § 1500.44 Method for determining extremely flammable and flammable solids. (a... with inner dimensions 6 inches long × 1 inch wide × one-fourth inch deep. (2) Rigid and pliable...

  2. 16 CFR 1500.44 - Method for determining extremely flammable and flammable solids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and flammable solids. 1500.44 Section 1500.44 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ENFORCEMENT REGULATIONS § 1500.44 Method for determining extremely flammable and flammable solids. (a... with inner dimensions 6 inches long × 1 inch wide × one-fourth inch deep. (2) Rigid and pliable...

  3. 16 CFR 1500.44 - Method for determining extremely flammable and flammable solids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and flammable solids. 1500.44 Section 1500.44 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ENFORCEMENT REGULATIONS § 1500.44 Method for determining extremely flammable and flammable solids. (a... with inner dimensions 6 inches long × 1 inch wide × one-fourth inch deep. (2) Rigid and pliable...

  4. 29 CFR 1915.36 - Flammable liquids.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Flammable liquids. 1915.36 Section 1915.36 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Preservation § 1915.36 Flammable liquids. (a) In all cases when liquid solvents, paint and...

  5. 29 CFR 1915.36 - Flammable liquids.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Flammable liquids. 1915.36 Section 1915.36 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Preservation § 1915.36 Flammable liquids. (a) In all cases when liquid solvents, paint and...

  6. 29 CFR 1915.36 - Flammable liquids.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Flammable liquids. 1915.36 Section 1915.36 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Preservation § 1915.36 Flammable liquids. (a) In all cases when liquid solvents, paint and...

  7. 29 CFR 1915.36 - Flammable liquids.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Flammable liquids. 1915.36 Section 1915.36 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Preservation § 1915.36 Flammable liquids. (a) In all cases when liquid solvents, paint and...

  8. 29 CFR 1915.36 - Flammable liquids.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Flammable liquids. 1915.36 Section 1915.36 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Preservation § 1915.36 Flammable liquids. (a) In all cases when liquid solvents, paint and...

  9. Methods development for measuring and classifying flammability/combustibility of refrigerants. Final report

    SciTech Connect

    Heinonen, E.W.; Tapscott, R.E.; Crawford, F.R.

    1994-12-01

    Because of concerns for the effect that chlorofluorocarbon (CFC) fluids currently in use as refrigerants have on the environment, the refrigeration industry is considering the use of natural refrigerants, many of which are potentially flammable. In some cases, these flammable fluids may result in the least environmental damage when considering ozone depletion, global warming, efficiency, and photochemical reactivity. Many potentially flammable fluids have been proven to be effective when used either by themselves or as a part of a binary or ternary mixture. However, despite favorable initial test results, these fluids may not be acceptable to the general public if questions of safety cannot be adequately addressed. Significant research is being conducted to investigate the flammability of these materials. The purpose of this project is to experimentally determine the impact and variability of eleven different parameters which may affect flammability and/or combustibility of refrigerants and refrigerant blends, as a function of composition and test conditions, and to develop a better understanding of methods and conditions to measure the flammability of refrigerants. The refrigerants used in this study are being considered as new refrigerants and reviewed published data on these materials is scarce. The data contained herein should not be considered complete and should be used only to make relative comparisons of the impacts of the test parameters, not to represent the flammability characteristics of the materials. This report documents Task 3 of the test program. During Task 1, technical literature was thoroughly reviewed and a database of available documents was constructed. During Task 2, the test plan for this task was written. The goals of Task 3 are to investigate the flammability characteristics of selected blends of refrigerants R32, R134a, and R125 using an existing explosion sphere and a newly-constructed ASTM E681 apparatus.

  10. Selected Parametric Effects on Materials Flammability Limits

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Juarez, Alfredo; Peyton, Gary J.; Harper, Susana A.; Olson, Sandra L.

    2011-01-01

    NASA-STD-(I)-6001B Test 1 is currently used to evaluate the flammability of materials intended for use in habitable environments of U.S. spacecraft. The method is a pass/fail upward flame propagation test conducted in the worst case configuration, which is defined as a combination of a material s thickness, test pressure, oxygen concentration, and temperature that make the material most flammable. Although simple parametric effects may be intuitive (such as increasing oxygen concentrations resulting in increased flammability), combinations of multi-parameter effects could be more complex. In addition, there are a variety of material configurations used in spacecraft. Such configurations could include, for example, exposed free edges where fire propagation may be different when compared to configurations commonly employed in standard testing. Studies involving combined oxygen concentration, pressure, and temperature on flammability limits have been conducted and are summarized in this paper. Additional effects on flammability limits of a material s thickness, mode of ignition, burn-length criteria, and exposed edges are presented. The information obtained will allow proper selection of ground flammability test conditions, support further studies comparing flammability in 1-g with microgravity and reduced gravity environments, and contribute to persuasive scientific cases for rigorous space system fire risk assessments.

  11. Unmanned Vehicle Material Flammability Test

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier; Toth, Balazs; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Cowlard, Adam J.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Rouvreau, Sebastien; Jomaas, Grunde

    2012-01-01

    Microgravity fire behaviour remains poorly understood and a significant risk for spaceflight An experiment is under development that will provide the first real opportunity to examine this issue focussing on two objectives: a) Flame Spread. b) Material Flammability. This experiment has been shown to be feasible on both ESA's ATV and Orbital Science's Cygnus vehicles with the Cygnus as the current base-line carrier. An international topical team has been formed to develop concepts for that experiment and support its implementation: a) Pressure Rise prediction. b) Sample Material Selection. This experiment would be a landmark for spacecraft fire safety with the data and subsequent analysis providing much needed verification of spacecraft fire safety protocols for the crews of future exploration vehicles and habitats.

  12. Numerical Investigation of the Hydrogen Jet Flammable Envelope Extent with Account for Unsteady Phenomena

    NASA Astrophysics Data System (ADS)

    Chernyavsky, Boris; Benard, Pierre

    2010-11-01

    An important aspect of safety analysis in hydrogen applications is determination of the extent of flammable gas envelope in case of hydrogen jet release. Experimental investigations had shown significant disagreements between the extent of average flammable envelope predicted by steady-state numerical methods, and the region observed to support ignition, with proposed cause being non-steady jet phenomena resulting in significant variations of instantaneous gas concentration and velocity fields in the jet. In order to investigate the influence of these transient phenomena, a numerical investigation of hydrogen jet at low Mach number had been performed using unsteady Large Eddy Simulation. Instantaneous hydrogen concentration and velocity fields were monitored to determine instantaneous flammable envelope. The evolution of the instantaneous fields, including the development of the turbulence structures carrying hydrogen, their extent and frequency, and their relation with averaged fields had been characterized. Simulation had shown significant variability of the flammable envelope, with jet flapping causing shedding of large scale rich and lean gas pockets from the main jet core, which persist for significant times and substantially alter the extent of flammability envelope.

  13. 49 CFR 172.420 - FLAMMABLE SOLID label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE SOLID label. 172.420 Section 172.420... SECURITY PLANS Labeling § 172.420 FLAMMABLE SOLID label. (a) Except for size and color, the FLAMMABLE SOLID... the FLAMMABLE SOLID label must be white with vertical red stripes equally spaced on each side of a...

  14. 14 CFR 25.1727 - Flammable fluid shutoff means: EWIS.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid shutoff means: EWIS. 25... Systems (EWIS) § 25.1727 Flammable fluid shutoff means: EWIS. EWIS associated with each flammable fluid... zone will not affect operation of the flammable fluid shutoff means, in accordance with...

  15. 49 CFR 172.420 - FLAMMABLE SOLID label.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false FLAMMABLE SOLID label. 172.420 Section 172.420... SECURITY PLANS Labeling § 172.420 FLAMMABLE SOLID label. (a) Except for size and color, the FLAMMABLE SOLID... the FLAMMABLE SOLID label must be white with vertical red stripes equally spaced on each side of a...

  16. 49 CFR 172.420 - FLAMMABLE SOLID label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false FLAMMABLE SOLID label. 172.420 Section 172.420... SECURITY PLANS Labeling § 172.420 FLAMMABLE SOLID label. (a) Except for size and color, the FLAMMABLE SOLID... the FLAMMABLE SOLID label must be white with vertical red stripes equally spaced on each side of a...

  17. 49 CFR 172.420 - FLAMMABLE SOLID label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false FLAMMABLE SOLID label. 172.420 Section 172.420... SECURITY PLANS Labeling § 172.420 FLAMMABLE SOLID label. (a) Except for size and color, the FLAMMABLE SOLID... the FLAMMABLE SOLID label must be white with vertical red stripes equally spaced on each side of a...

  18. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b)...

  19. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b)...

  20. 14 CFR 25.1727 - Flammable fluid shutoff means: EWIS.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid shutoff means: EWIS. 25... Systems (EWIS) § 25.1727 Flammable fluid shutoff means: EWIS. EWIS associated with each flammable fluid... zone will not affect operation of the flammable fluid shutoff means, in accordance with...

  1. 14 CFR 25.1727 - Flammable fluid shutoff means: EWIS.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid shutoff means: EWIS. 25... Systems (EWIS) § 25.1727 Flammable fluid shutoff means: EWIS. EWIS associated with each flammable fluid... zone will not affect operation of the flammable fluid shutoff means, in accordance with...

  2. 14 CFR 25.1727 - Flammable fluid shutoff means: EWIS.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid shutoff means: EWIS. 25... Systems (EWIS) § 25.1727 Flammable fluid shutoff means: EWIS. EWIS associated with each flammable fluid... zone will not affect operation of the flammable fluid shutoff means, in accordance with...

  3. 49 CFR 172.420 - FLAMMABLE SOLID label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false FLAMMABLE SOLID label. 172.420 Section 172.420... SECURITY PLANS Labeling § 172.420 FLAMMABLE SOLID label. (a) Except for size and color, the FLAMMABLE SOLID... the FLAMMABLE SOLID label must be white with vertical red stripes equally spaced on each side of a...

  4. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in accordance with standards of the National Fire Protection Association. Small quantities of flammable...

  5. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in accordance with standards of the National Fire Protection Association. Small quantities of flammable...

  6. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in accordance with standards of the National Fire Protection Association. Small quantities of flammable...

  7. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in accordance with standards of the National Fire Protection Association. Small quantities of flammable...

  8. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in accordance with standards of the National Fire Protection Association. Small quantities of flammable...

  9. FLAMMABILITY AND CONSEQUENCE ANALYSIS FOR MCU WASTE TANKS

    SciTech Connect

    Knight, J; Mukesh Gupta, M

    2007-02-13

    The Savannah River Site of Department of Energy will use the new Modular Caustic Side Solvent Extraction Unit (MCU) to process the waste stream by removing/reducing Cs-137 using Caustic Side Solvent Extraction (CSSX) technology. The CSSX technology utilizes multicomponent organic solvent and annular centrifugal contactors to extract Cs-137 from waste salt solution. Due to the radiolysis of the aqueous nuclear wastes, hydrogen generation is expected in the MCU holding tanks. The hydrogen from radiolysis and the vapor from the organic component of the solvent, Isopar-L, may form a composite flammable gas mixture, resulting in a shorter time to flammability than that of a pure hydrogen environment. It has been found that the time-to-Lower Flammability Limit (LFL) and stoichiometric concentration (SC) vary greatly from tank to tank, and could be decreased significantly by the presence of the Isopar-L. However, neither the deflagration nor the detonation event would challenge the Evaluation Guideline for any of the tanks at any liquid level.

  10. 75 FR 49379 - Correction to Internal Citation of “Extremely Flammable Solid” and “Flammable Solid”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... flammable,'' ``flammable,'' and ``combustible'' hazardous substances contained in 16 CFR 1500.3(c)(6), 51 FR... COMMISSION 16 CFR Part 1500 Correction to Internal Citation of ``Extremely Flammable Solid'' and ``Flammable Solid'' AGENCY: Consumer Product Safety Commission. ACTION: Final rule. ] SUMMARY: The Consumer...

  11. Review on flammability of biofibres and biocomposites.

    PubMed

    Mngomezulu, Mfiso E; John, Maya J; Jacobs, Valencia; Luyt, Adriaan S

    2014-10-13

    The subject on flammability properties of natural fibre-reinforced biopolymer composites has not been broadly researched. This is not only evidenced by the minimal use of biopolymer composites and/or blends in different engineering areas where fire risk and hazard to both human and structures is of critical concern, but also the limited amount of published scientific work on the subject. Therefore, it is necessary to expand knowledge on the flammability properties of biopolymers and add value in widening the range of their application. This paper reviews the literature on the recent developments on flammability studies of bio-fibres, biopolymers and natural fibre-reinforced biocomposites. It also covers the different types of flame retardants (FRs) used and their mechanisms, and discusses the principles and methodology of various flammability testing techniques.

  12. Organizing Questions for Reduced-Gravity Flammability

    NASA Technical Reports Server (NTRS)

    Miller, Fletcher

    2004-01-01

    A team consisting of of the Microgravity Flight Project Scientists for solid flammability experiments has been reviewing and prioritizing a set of organizing questions for fire prevention (material flammability).In particular the team has been charged with determining:What experiments must be conducted to best answer these questions, and can some of the quest ions be answered using existing/planned hardware or experimental concepts?Is the NASA STD 6001, Test 1 configuration conservative or non-conservative in assessing material flammability in reduced gravity?NASA ST D 6001, Test 1 is an upward flammability test, considered the most stringent test in normal gravity. A material that passes this test would most likely not burn in a quiescent microgravity environment.A forced ignition and spread test is described.

  13. Review on flammability of biofibres and biocomposites.

    PubMed

    Mngomezulu, Mfiso E; John, Maya J; Jacobs, Valencia; Luyt, Adriaan S

    2014-10-13

    The subject on flammability properties of natural fibre-reinforced biopolymer composites has not been broadly researched. This is not only evidenced by the minimal use of biopolymer composites and/or blends in different engineering areas where fire risk and hazard to both human and structures is of critical concern, but also the limited amount of published scientific work on the subject. Therefore, it is necessary to expand knowledge on the flammability properties of biopolymers and add value in widening the range of their application. This paper reviews the literature on the recent developments on flammability studies of bio-fibres, biopolymers and natural fibre-reinforced biocomposites. It also covers the different types of flame retardants (FRs) used and their mechanisms, and discusses the principles and methodology of various flammability testing techniques. PMID:25037340

  14. 14 CFR 27.1185 - Flammable fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., other than a fuel tank, that is part of a system containing flammable fluids or gases must be isolated... isolating that tank, unless equivalent means are used to prevent heat transfer from each engine...

  15. 14 CFR 121.255 - Flammable fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in... least one-half inch of clear airspace must be provided between any tank or reservoir and a firewall...

  16. Benzene/nitrous oxide flammability in the precipitate hydrolysis process

    SciTech Connect

    Jacobs, R A

    1989-09-18

    The HAN (hydroxylamine nitrate) process for destruction of nitrite in precipitate hydrolysis produces nitrous oxide (N2O) gas as one of the products. N2O can form flammable mixtures with benzene which is also present due to radiolysis and hydrolysis of tetraphenylborate. Extensive flame modeling and explosion testing was undertaken to define the minimum oxidant for combustion of N2O/benzene using both nitrogen and carbon dioxide as diluents. The attached memorandum interprets and documents the results of the studies.

  17. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.462 Static discharges from inert gas systems. An inert gas system on a tank that carries a flammable or combustible cargo must...

  18. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.462 Static discharges from inert gas systems. An inert gas system on a tank that carries a flammable or combustible cargo must...

  19. Operational Considerations for Oxygen Flammability Risks: Concentrated Oxygen Diffusion and Permeation Behaviors

    NASA Technical Reports Server (NTRS)

    Harper, Susana; Smith, Sarah; Juarez, Alfredo; Hirsch, David

    2010-01-01

    Increased human spaceflight operations utilize oxygen concentrations that are frequently varied with use of concentrations up to 100 percent oxygen. Even after exiting a higher percentage oxygen environment, high oxygen concentrations can still be maintained due to material saturation and oxygen entrapment between barrier materials. This paper examines the material flammability concerns that arise from changing oxygen environments during spaceflight operations. We examine the time required for common spacecraft and spacesuit materials exposed to oxygen to return to reduced ignitability and flammability once removed from the increased concentration. Various common spacecraft materials were considered: spacecraft cabin environment foams, Extra Vehicular Mobility Unit materials and foams, Advanced Crew Escape Suit materials, and other materials of interest such as Cotton, Nomex^ HT90-40, and Tiburon Surgical Drape. This paper presents calculated diffusion coefficients derived from experimentally obtained oxygen transmission rates for the tested materials and the analytically derived times necessary for reduced flammability to be achieved based on NASA flammability criteria. Oxygen material saturation and entrapment scenarios are examined. Experimental verification data on oxygen diffusion in saturation scenarios are also presented and discussed. We examine how to use obtained data to address flammability concerns during operational planning to reduce the likelihood of fires while improving efficiency for procedures.

  20. Pressure Effects on Oxygen Concentration Flammability Thresholds of Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2006-01-01

    Spacecraft materials selection is based on an upward flammability test conducted in a quiescent environment in the highest-expected oxygen-concentration environment. However, NASA s advanced space exploration program is anticipating using various habitable environments. Because limited data is available to support current program requirements, a different test logic is suggested to address these expanded atmospheric environments through the determination of materials self-extinguishment limits. This paper provides additional pressure effects data on oxygen concentration and partial pressure self-extinguishment limits under quiescent conditions. For the range of total pressures tested, the oxygen concentration and oxygen partial pressure flammability thresholds show a near linear function of total pressure. The oxygen concentration/oxygen partial pressure flammability thresholds depend on the total pressure and appear to increase with increasing oxygen concentration (and oxygen partial pressure). For the Constellation Program, the flammability threshold information will allow NASA to identify materials with increased flammability risk because of oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats.

  1. Secondary compounds enhance flammability in a Mediterranean plant.

    PubMed

    Pausas, J G; Alessio, G A; Moreira, B; Segarra-Moragues, J G

    2016-01-01

    Some plant secondary compounds, such as terpenes, are very flammable; however, their role in enhancing plant flammability is poorly understood and often neglected in reviews on plant chemical ecology. This is relevant as there is growing evidence that flammability-enhancing traits are adaptive in fire-prone ecosystems. We analyzed the content of monoterpenes and sesquiterpenes, performed flammability tests and genotyped microsatellite markers, all in the same individuals of Rosmarinus officinalis, to evaluate the link between the content of terpenes, flammability and the genetic similarity among individuals. The results suggest that terpenes enhance flammability in R. officinalis, and that variability in flammability among individuals is likely to have a genetic basis. Overall our results suggest that the capacity to produce and store terpenes can be considered a flammability-enhancing trait and could have an adaptive value in fire-prone ecosystems. PMID:26416250

  2. 16 CFR Figure 2 to Part 1610 - Flammability Apparatus Views

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flammability Apparatus Views 2 Figure 2 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS... Apparatus Views ER25MR08.001...

  3. 16 CFR Figure 2 to Part 1610 - Flammability Apparatus Views

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Flammability Apparatus Views 2 Figure 2 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS... Apparatus Views ER25MR08.001...

  4. Flammability of Heterogeneously Combusting Metals

    NASA Technical Reports Server (NTRS)

    Jones, Peter D.

    1998-01-01

    Most engineering materials, including some metals, most notably aluminum, burn in homogeneous combustion. 'Homogeneous' refers to both the fuel and the oxidizer being in the same phase, which is usually gaseous. The fuel and oxidizer are well mixed in the combustion reaction zone, and heat is released according to some relation like q(sub c) = delta H(sub c)c[((rho/rho(sub 0))]exp a)(exp -E(sub c)/RT), Eq. (1) where the pressure exponent a is usually close to unity. As long as there is enough heat released, combustion is sustained. It is useful to conceive of a threshold pressure beyond which there is sufficient heat to keep the temperature high enough to sustain combustion, and beneath which the heat is so low that temperature drains away and the combustion is extinguished. Some materials burn in heterogeneous combustion, in which the fuel and oxidizer are in different phases. These include iron and nickel based alloys, which burn in the liquid phase with gaseous oxygen. Heterogeneous combustion takes place on the surface of the material (fuel). Products of combustion may appear as a solid slag (oxide) which progressively covers the fuel. Propagation of the combustion melts and exposes fresh fuel. Heterogeneous combustion heat release also follows the general form of Eq.(1), except that the pressure exponent a tends to be much less than 1. Therefore, the increase in heat release with increasing pressure is not as dramatic as it is in homogeneous combustion. Although the concept of a threshold pressure still holds in heterogeneous combustion, the threshold is more difficult to identify experimentally, and pressure itself becomes less important relative to the heat transfer paths extant in any specific application. However, the constants C, a, and E(sub c) may still be identified by suitable data reduction from heterogeneous combustion experiments, and may be applied in a heat transfer model to judge the flammability of a material in any particular actual

  5. Correlating Flammability of Materials with FTIR Analysis Test Results

    NASA Technical Reports Server (NTRS)

    Moore, Robin; Whitfield, Steve

    2003-01-01

    The purpose of this experiment was to correlate flammability data with FTIR test results. Kydex 100 is a blend of chlorinated polyvinyl chloride and polymethylmethacrylate, with some filler materials. Samples supplied were 0.125 in. thick. 10 samples were taken from a sheet of Kydex and analyzed for flammability and by FTIR spectroscopy. This material was utilized as a round robin sample for flammability testing. The flammability test results were found to vary across the same sheet.

  6. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Flammability-general requirement. 1611.3... STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general requirement... with the SPI flammability tester in accordance with the method described in § 1611.4....

  7. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Flammability-general requirement. 1611.3... STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general requirement... with the SPI flammability tester in accordance with the method described in § 1611.4....

  8. 14 CFR 25.1727 - Flammable fluid shutoff means: EWIS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid shutoff means: EWIS. 25... Systems (EWIS) § 25.1727 Flammable fluid shutoff means: EWIS. EWIS associated with each flammable fluid shutoff means and control must be fireproof or must be located and protected so that any fire in a...

  9. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... regulation (sec. 16 CFR part 1302), paragraphs (a), (b), (c) and (d) of this section are revoked as to the... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Extremely flammable contact adhesives... REGULATIONS § 1500.133 Extremely flammable contact adhesives; labeling. (a) Extremely flammable...

  10. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... regulation (sec. 16 CFR part 1302), paragraphs (a), (b), (c) and (d) of this section are revoked as to the... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Extremely flammable contact adhesives... REGULATIONS § 1500.133 Extremely flammable contact adhesives; labeling. (a) Extremely flammable...

  11. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... regulation (sec. 16 CFR part 1302), paragraphs (a), (b), (c) and (d) of this section are revoked as to the... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Extremely flammable contact adhesives... REGULATIONS § 1500.133 Extremely flammable contact adhesives; labeling. (a) Extremely flammable...

  12. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general...

  13. 49 CFR 172.546 - FLAMMABLE SOLID placard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE SOLID placard. 172.546 Section 172.546... SECURITY PLANS Placarding § 172.546 FLAMMABLE SOLID placard. (a) Except for size and color, the FLAMMABLE SOLID placard must be as follows: EC02MR91.051 (b) In addition to complying with § 172.519,...

  14. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Flammability-general requirement. 1611.3... STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general requirement... with the SPI flammability tester in accordance with the method described in § 1611.4....

  15. 49 CFR 176.142 - Hazardous materials of extreme flammability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous materials of extreme flammability. 176... of extreme flammability. (a) Except as allowed by paragraph (b) of this section, certain hazardous materials of extreme flammability may not be transported in a vessel carrying Class 1 (explosive)...

  16. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping... liquid. (a) The term flammable liquid means any liquid which gives off flammable vapors (as determined by flashpoint from an open cup tester, as used for test of burning oils) at or below a temperature of 80...

  17. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR... 46 Shipping 4 2010-10-01 2010-10-01 false Flammable anesthetics. 111.105-37 Section...

  18. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR... 46 Shipping 4 2011-10-01 2011-10-01 false Flammable anesthetics. 111.105-37 Section...

  19. 14 CFR 25.1723 - Flammable fluid fire protection: EWIS.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection: EWIS. 25... Systems (EWIS) § 25.1723 Flammable fluid fire protection: EWIS. EWIS components located in each area where flammable fluid or vapors might escape by leakage of a fluid system must be considered a potential...

  20. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids...

  1. 14 CFR 25.1723 - Flammable fluid fire protection: EWIS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid fire protection: EWIS. 25... Systems (EWIS) § 25.1723 Flammable fluid fire protection: EWIS. EWIS components located in each area where flammable fluid or vapors might escape by leakage of a fluid system must be considered a potential...

  2. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of...

  3. 49 CFR 172.546 - FLAMMABLE SOLID placard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false FLAMMABLE SOLID placard. 172.546 Section 172.546... SECURITY PLANS Placarding § 172.546 FLAMMABLE SOLID placard. (a) Except for size and color, the FLAMMABLE SOLID placard must be as follows: EC02MR91.051 (b) In addition to complying with § 172.519,...

  4. 49 CFR 172.546 - FLAMMABLE SOLID placard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false FLAMMABLE SOLID placard. 172.546 Section 172.546... SECURITY PLANS Placarding § 172.546 FLAMMABLE SOLID placard. (a) Except for size and color, the FLAMMABLE SOLID placard must be as follows: EC02MR91.051 (b) In addition to complying with § 172.519,...

  5. 49 CFR 172.546 - FLAMMABLE SOLID placard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false FLAMMABLE SOLID placard. 172.546 Section 172.546... SECURITY PLANS Placarding § 172.546 FLAMMABLE SOLID placard. (a) Except for size and color, the FLAMMABLE SOLID placard must be as follows: EC02MR91.051 (b) In addition to complying with § 172.519,...

  6. An Approach to the Flammability Testing of Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2012-01-01

    Presentation reviews: (1) Current approach to evaluation of spacecraft materials flammability (2) The need for and the approach to alternative routes (3) Examples of applications of the approach recommended a) Crew Module splash down b) Crew Module depressurization c) Applicability of NASA's flammability test data to other sample configurations d) Applicability of NASA's ground flammability test data to spacecraft environments

  7. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR... 46 Shipping 4 2012-10-01 2012-10-01 false Flammable anesthetics. 111.105-37 Section...

  8. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR... 46 Shipping 4 2013-10-01 2013-10-01 false Flammable anesthetics. 111.105-37 Section...

  9. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR... 46 Shipping 4 2014-10-01 2014-10-01 false Flammable anesthetics. 111.105-37 Section...

  10. 14 CFR 25.1723 - Flammable fluid fire protection: EWIS.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection: EWIS. 25... Systems (EWIS) § 25.1723 Flammable fluid fire protection: EWIS. EWIS components located in each area where flammable fluid or vapors might escape by leakage of a fluid system must be considered a potential...

  11. 14 CFR 25.1723 - Flammable fluid fire protection: EWIS.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection: EWIS. 25... Systems (EWIS) § 25.1723 Flammable fluid fire protection: EWIS. EWIS components located in each area where flammable fluid or vapors might escape by leakage of a fluid system must be considered a potential...

  12. 14 CFR 25.1723 - Flammable fluid fire protection: EWIS.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection: EWIS. 25... Systems (EWIS) § 25.1723 Flammable fluid fire protection: EWIS. EWIS components located in each area where flammable fluid or vapors might escape by leakage of a fluid system must be considered a potential...

  13. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of...

  14. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids...

  15. 16 CFR Figure 2 to Part 1610 - Flammability Apparatus Views

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Flammability Apparatus Views 2 Figure 2 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 2 Figure 2 to Part...

  16. 16 CFR Figure 2 to Part 1610 - Flammability Apparatus Views

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Flammability Apparatus Views 2 Figure 2 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 2 Figure 2 to Part...

  17. 16 CFR Figure 2 to Part 1610 - Flammability Apparatus Views

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Flammability Apparatus Views 2 Figure 2 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 2 Figure 2 to Part...

  18. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general...

  19. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE LIQUID label must be as follows: EC02MR91.023 (b) In addition to complying with § 172.407, the...

  20. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE LIQUID label must be as follows: EC02MR91.023 (b) In addition to complying with § 172.407, the...

  1. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE LIQUID label must be as follows: EC02MR91.023 (b) In addition to complying with § 172.407, the...

  2. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE LIQUID label must be as follows: EC02MR91.023 (b) In addition to complying with § 172.407, the...

  3. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE LIQUID label must be as follows: EC02MR91.023 (b) In addition to complying with § 172.407, the...

  4. Modelling leaf, plant and stand flammability for ecological and operational decision making

    NASA Astrophysics Data System (ADS)

    Zylstra, Philip

    2014-05-01

    Numerous factors have been found to affect the flammability of individual leaves and plant parts; however the way in which these factors relate to whole plant flammability, fire behaviour and the overall risk imposed by fire is not straightforward. Similarly, although the structure of plant communities is known to affect the flammability of the stand, a quantified, broadly applicable link has proven difficult to establish and validate. These knowledge gaps have presented major obstacles to the integration into fire behaviour science of research into factors affecting plant flammability, physiology, species succession and structural change, so that the management of ecosystems for fire risk is largely uninformed by these fields. The Forest Flammability Model (Zylstra, 2011) is a process-driven, complex systems model developed specifically to address this disconnect. Flame dimensions and position are calculated as properties emerging from the capacity for convective heat to propagate flame between horizontally and vertically separated leaves, branches, plants and plant strata, and this capacity is determined dynamically from the ignitability, combustibility and sustainability of those objects, their spatial arrangement and a vector-based model of the plume temperature from each burning fuel. All flammability properties as well as the physics of flame dimensions, angle and temperature distributions and the vertical structure of wind within the plant array use published sub-models which can be replaced as further work is developed. This modular structure provides a platform for the immediate application of new work on any aspect of leaf flammability or fire physics. Initial validation of the model examined its qualitative predictions for trends in forest flammability as a function of time since fire. The positive feedback predicted for the subalpine forest examined constituted a 'risky prediction' by running counter to the expectations of the existing approach, however

  5. Flammability Configuration Analysis for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Hirsch, David

    2004-01-01

    Flight hardware configuration flammability assessment will: a) evaluate the overall hardware configuration; b) evaluate the way in which the hardware will be used; c) identify the major materials to be assessed; d) determine fire propagation paths; and e) evaluate ability of containers to contain fire.

  6. 14 CFR 29.1185 - Flammable fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... (a) No tank or reservoir that is part of a system containing flammable fluids or gases may be in a designated fire zone unless the fluid contained, the design of the system, the materials used in the tank and... zone, unless equivalent means are used to prevent heat transfer from the fire zone to the...

  7. Evaluation of flammability for cable-like polymers

    NASA Technical Reports Server (NTRS)

    Mikado, Tuneo; Akita, Kazuo

    1988-01-01

    A new test method is developed for the flammability of insulated electric cables as well as polymers formed in the cables. The rate of downward flame spread along the polymer surface is measured by a technique in which the flame is stopped at a particular position by winding up the cable at the same speed as the flame spreading rate, with external preheating by an electric furnace having oxidative gas flow. The polymer burns continuously without change of flame condition and the rate is obtained from the winding speed of the cable. A flame spread equation relates the flame spreading rate (V) of the cable-like polymer to O concentration (Yo) and the atmosphere, the preheating temperature, and the pyrolysis temperature for polymer burning. Plotting log V vs. log Yo for experimental results allows evaluation of the flammability of polymers, with discrimination between the effects of O concentration, heating temperature, and specimen shape. Results with various types of PVC electrical cable indicated the validity of the method. Application of the method to the cables in groups showed a flame retardation behavior different from the case of a single cable, in a atmosphere of high O concentration.

  8. Flow Effects on the Flammability Diagrams of Solid Fuels: Microgravity Influence on Ignition Delay

    NASA Technical Reports Server (NTRS)

    Cordova, J. L.; Walther, D. C.; Fernandez-Pello, A. C.; Steinhaus, T.; Torero, J. L.; Quintere, J. G.; Ross, H. D.

    1999-01-01

    The possibility of an accidental fire in space-based facilities is a primary concern of space exploration programs. Spacecraft environments generally present low velocity air currents produced by ventilation and heating systems (of the order of 0.1 m/s), and fluctuating oxygen concentrations around that of air due to CO2 removal systems. Recent experiments of flame spread in microgravity show the spread rate to be faster and the limiting oxygen concentration lower than in normal-gravity. To date, there is not a material flammability-testing protocol that specifically addresses issues related to microgravity conditions. The present project (FIST) aims to establish a testing methodology that is suitable for the specific conditions of reduced gravity. The concepts underlying the operation of the LIFT apparatus, ASTM-E 1321-93, have been used to develop the Forced-flow Ignition and flame-Spread Test (FIST). As in the LIFT, the FIST is used to obtain the flammability diagrams of the material, i.e., graphs of ignition delay time and flame spread rate as a function of the externally applied radiant flux, but under forced flow rather than natural convection conditions, and for different oxygen concentrations. Although the flammability diagrams are similar, the flammability properties obtained with the FIST are found to depend on the flow characteristics. A research program is currently underway with the purpose of implementing the FIST as a protocol to characterize the flammability performance of solid materials to be used in microgravity facilities. To this point, tests have been performed with the FIST apparatus in both normal-gravity and microgravity conditions to determine the effects of oxidizer flow characteristics on the flammability diagrams of polymethylmethacrylate (PMMA) fuel samples. The experiments are conducted at reduced gravity in a KC- 135 aircraft following a parabolic flight trajectory that provides up to 25 seconds of low gravity. The objective of the

  9. The Effect of the Presence of Ozone on the Lower Flammability Limit (LFL) of Hydrogen in Vessels Containing Savannah River Site High Level Waste - 12387

    SciTech Connect

    Sherburne, Carol; Osterberg, Paul

    2012-07-01

    The Enhanced Chemical Cleaning (ECC) process uses ozone to effect the oxidation of metal oxalates produced during the dissolution of sludge in the Savannah River Site (SRS) waste tanks. The ozone reacts with the metal oxalates to form metal oxide and hydroxide precipitants, and the CO{sub 2}, O{sub 2}, H{sub 2}O and any unreacted O{sub 3} gases are discharged into the vapor space. In addition to the non-radioactive metals in the waste, however, the SRS radioactive waste also contains a variety of radionuclides, hence, hydrogen gas is also present in the vapor space of the ECC system. Because hydrogen is flammable, the impact of this resultant gas stream on the Lower Flammability Limit (LFL) of hydrogen must be understood for all possible operating scenarios of both normal and off-normal situations, with particular emphasis at the elevated temperatures and pressures of the typical ECC operating conditions. Oxygen is a known accelerant in combustion reactions, but while there are data associated with the behavior of hydrogen/oxygen environments, recent, relevant studies addressing the effect of ozone on the flammability limit of hydrogen proved scarce. Further, discussions with industry experts verified the absence of data in this area and indicated that laboratory testing, specific to defined operating parameters, was needed to comprehensively address the issue. Testing was thus designed and commissioned to provide the data necessary to support safety related considerations for the ECC process. A test matrix was developed to envelope the bounding conditions considered credible during ECC processing. Each test consists of combining a gas stream of high purity hydrogen with a gas stream comprised of a specified mixture of ozone and oxygen in a temperature and pressure regulated chamber such that the relative compositions of the two streams are controlled. The gases are then stirred to obtain a homogeneous mixture and ignition attempted by applying 10J of energy to a

  10. Flammability Configuration Analysis for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.

    2014-01-01

    Fire is one of the many potentially catastrophic hazards associated with the operation of crewed spacecraft. A major lesson learned by NASA from the Apollo 204 fire in 1966 was that ignition sources in an electrically powered vehicle should and can be minimized, but can never be eliminated completely. For this reason, spacecraft fire control is based on minimizing potential ignition sources and eliminating materials that can propagate fire. Fire extinguishers are always provided on crewed spacecraft, but are not considered as part of the fire control process. "Eliminating materials that can propagate fire" does not mean eliminating all flammable materials - the cost of designing and building spacecraft using only nonflammable materials is extraordinary and unnecessary. It means controlling the quantity and configuration of such materials to eliminate potential fire propagation paths and thus ensure that any fire would be small, localized, and isolated, and would self-extinguish without harm to the crew. Over the years, NASA has developed many solutions for controlling the configuration of flammable materials (and potentially flammable materials in commercial "off-the-shelf" hardware) so that they can be used safely in air and oxygen-enriched environments in crewed spacecraft. This document describes and explains these design solutions so payload customers and other organizations can use them in designing safe and cost-effective flight hardware. Proper application of these guidelines will produce acceptable flammability configurations for hardware located in any compartment of the International Space Station or other program crewed vehicles and habitats. However, use of these guidelines does not exempt hardware organizations of the responsibility for safety of the hardware under their control.

  11. Flammability test for sunglasses: developing a system

    NASA Astrophysics Data System (ADS)

    Magri, Renan; Ventura, Liliane

    2014-02-01

    Recent investigations show the need for certificating sunglasses to ensure the safety and health to population. The Brazilian Standard ABNT NBR 15111 regulates features to sunglasses, however, there is not a sunglasses certification office in Brazil, therefore, our lab has been developing several equipment for sunglasses testing. This work refers to one of them: the flammability test system for sunglasses in compliance with the NBR 15111. The standard provides requirements for the flammability test procedure which requires that the equipment must operate at a temperature of 650 °C +/- 20 °C the end of a steel rod of 300 mm length and 6 mm diameter should be heated and pressed over the surface of the lenses for five seconds; the flammability is checked by visual inspection. The furnace is made of ceramic. We used a power electronic circuit to control the power in the furnace using ON/OFF mode and for measuring the temperature, we used a K-type thermocouple. A stepper motor with pulley lifts the steel rod. The system reaches the working temperature in 15 minutes for a step input of 61 V in open loop system. The electronics control are under development in order to shorten the time necessary to reach the working temperature and maintain the temperature variation in the furnace within the limits imposed by the standard as next steps.

  12. 46 CFR 30.10-22 - Flammable liquid-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flammable liquid-TB/ALL. 30.10-22 Section 30.10-22...-22 Flammable liquid—TB/ALL. The term flammable liquid means any liquid which gives off flammable... below a temperature of 80 °F. Flammable liquids are referred to by grades as follows: (a) Grade A....

  13. 46 CFR 30.10-22 - Flammable liquid-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Flammable liquid-TB/ALL. 30.10-22 Section 30.10-22...-22 Flammable liquid—TB/ALL. The term flammable liquid means any liquid which gives off flammable... below a temperature of 80 °F. Flammable liquids are referred to by grades as follows: (a) Grade A....

  14. 46 CFR 30.10-22 - Flammable liquid-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Flammable liquid-TB/ALL. 30.10-22 Section 30.10-22...-22 Flammable liquid—TB/ALL. The term flammable liquid means any liquid which gives off flammable... below a temperature of 80 °F. Flammable liquids are referred to by grades as follows: (a) Grade A....

  15. Estimation of Flammability Limits of Selected Fluorocarbons with F(sub 2) and CIF(sub3)

    SciTech Connect

    Trowbridge, L.D.

    1999-09-01

    During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F(sub 2) and CIF(sub 3). Replacement of CFC-114 with non-ozone-depleting substitutes such as c-C(sub 4)F(sub 8) and C(sub 4)F(sub 10) is planned. Consequently, in the future, these too must be considered potential ''fuels'' in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should ignite? Experimental data on these systems are limited. To assist in answering these questions, a literature search for relevant data was conducted, and mathematical models were developed to serve as tools for predicting potential detonation pressures and estimating (based on empirical correlations between gas mixture thermodynamics and flammability for known systems) the composition limits of flammability for these systems. The models described and documented in this report are enhanced versions of similar models developed in 1992.

  16. Report on the handling of safety information concerning flammable gases and ferrocyanide at the Hanford waste tanks

    SciTech Connect

    Not Available

    1990-07-01

    This report discusses concerns safety issues, and management at Hanford Tank Farm. Concerns center on the issue of flammable gas generation which could ignite, and on possible exothermic reactions of ferrocyanide compounds which were added to single shell tanks in the 1950's. It is believed that information concerning these issues has been mis-handled and the problems poorly managed. (CBS)

  17. TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS

    SciTech Connect

    DOUGLAS, J.G.

    2006-07-06

    This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desires a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected calibrating

  18. 16 CFR Figure 1 to Part 1610 - Sketch of Flammability Apparatus

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Sketch of Flammability Apparatus 1 Figure 1 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... Flammability Apparatus ER25MR08.000...

  19. 16 CFR Figure 1 to Part 1610 - Sketch of Flammability Apparatus

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Sketch of Flammability Apparatus 1 Figure 1 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... Flammability Apparatus ER25MR08.000...

  20. Laminar lean premixed methane/air combustion near the lean flammability limit using nanosecond repetitive pulsed discharge plasmas

    NASA Astrophysics Data System (ADS)

    Bak, Moon Soo; Do, Hyungrok; Mungal, Mark G.; Cappelli, Mark A.

    2011-10-01

    Gas chromatographic and temperature measurements have been carried out to investigate the extent of premixed methane/air combustion with the application of nanosecond repetitive pulsed discharges around the lean flammability limit for laminar flows. The results show that the discharges lead to the complete combustion when the equivalence ratio is above 0.54, but when the ratio is below the limit, the combustion is quenched at the downstream flow. To investigate the kinetics in detail, 2-D simulations of plasma-induced combustion have been conducted for methane/air mixtures at below and above the lean flammability limit. The simulations reveal that methane is mostly combusted in the discharge region since the discharge repetition timescale is much shorter than the species diffusion and advection timescales, and so the discharge serves more as a heat and radical source rather than a small combustor, to flame hold near the lean flammability limit.

  1. Thermal and flammability characterization of graphite composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1986-01-01

    Thermal, mechanical, and flammability properties of graphite composites fabricated with XU71775/H795, a bismaleimide/vinyl-polystyrylpyridine formulation; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a polystyrylpyridine and two types of graphite reinforcement were evaluated and compared with a composite made with an epoxy resin as a matrix. The measured properties included limiting-oxygen index, smoke evolution, thermal degradation products, total-heat release, heat-release rates, mass loss, flame spread, ignition resistance, thermogravimetric analysis, and selected mechanical properties. It was found that the combination of XU71775/H795 with the graphite tape was the optimum design giving the lowest heat release rate.

  2. Identifying Liquid-Gas System Misconceptions and Addressing Them Using a Laboratory Exercise on Pressure-Temperature Diagrams of a Mixed Gas Involving Liquid-Vapor Equilibrium

    ERIC Educational Resources Information Center

    Yoshikawa, Masahiro; Koga, Nobuyoshi

    2016-01-01

    This study focuses on students' understandings of a liquid-gas system with liquid-vapor equilibrium in a closed system using a pressure-temperature ("P-T") diagram. By administrating three assessment questions concerning the "P-T" diagrams of liquid-gas systems to students at the beginning of undergraduate general chemistry…

  3. 16 CFR 423.9 - Conflict with flammability standards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Conflict with flammability standards. 423.9 Section 423.9 Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES CARE LABELING OF TEXTILE WEARING APPAREL AND CERTAIN PIECE GOODS AS AMENDED § 423.9 Conflict with flammability...

  4. 16 CFR 423.9 - Conflict with flammability standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Conflict with flammability standards. 423.9 Section 423.9 Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES CARE LABELING OF TEXTILE WEARING APPAREL AND CERTAIN PIECE GOODS AS AMENDED § 423.9 Conflict with flammability...

  5. 16 CFR 423.9 - Conflict with flammability standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Conflict with flammability standards. 423.9 Section 423.9 Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES CARE LABELING OF TEXTILE WEARING APPAREL AND CERTAIN PIECE GOODS AS AMENDED § 423.9 Conflict with flammability...

  6. 16 CFR 423.9 - Conflict with flammability standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Conflict with flammability standards. 423.9 Section 423.9 Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES CARE LABELING OF TEXTILE WEARING APPAREL AND CERTAIN PIECE GOODS AS AMENDED § 423.9 Conflict with flammability...

  7. 49 CFR 173.223 - Packagings for certain flammable solids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Packagings for certain flammable solids. 173.223 Section 173.223 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.223 Packagings for certain flammable solids. (a) Packagings for “Musk...

  8. 43 CFR 423.31 - Fires and flammable material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Fires and flammable material. 423.31... of Conduct § 423.31 Fires and flammable material. (a) You must not leave a fire unattended, and it... designed for that purpose. (e) You must comply with all applicable Federal, State, and local fire...

  9. 16 CFR 423.9 - Conflict with flammability standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Conflict with flammability standards. 423.9 Section 423.9 Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES CARE LABELING OF TEXTILE WEARING APPAREL AND CERTAIN PIECE GOODS AS AMENDED § 423.9 Conflict with flammability...

  10. 46 CFR 182.480 - Flammable vapor detection systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Flammable vapor detection systems. 182.480 Section 182.480 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... detection systems. (a) A flammable vapor detection system required by § 182.410(c) must meet UL...

  11. 46 CFR 182.480 - Flammable vapor detection systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Flammable vapor detection systems. 182.480 Section 182.480 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER... detection systems. (a) A flammable vapor detection system required by § 182.410(c) must meet UL...

  12. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any liquid whose flashpoint, as determined by an open cup tester, is 80 °F. or below....

  13. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... authorized for Class 3 (flammable) liquids or combustible liquids under 49 CFR 173.201, 173.202, or 173.203, as referenced for the specific liquid in column 8B of the Hazardous Materials Table of 49 CFR 172.101... 46 Shipping 5 2013-10-01 2013-10-01 false Flammable and combustible liquids. 147.45 Section...

  14. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any liquid whose flashpoint, as determined by an open cup tester, is 80 °F. or below....

  15. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... authorized for Class 3 (flammable) liquids or combustible liquids under 49 CFR 173.201, 173.202, or 173.203, as referenced for the specific liquid in column 8B of the Hazardous Materials Table of 49 CFR 172.101... 46 Shipping 5 2012-10-01 2012-10-01 false Flammable and combustible liquids. 147.45 Section...

  16. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... authorized for Class 3 (flammable) liquids or combustible liquids under 49 CFR 173.201, 173.202, or 173.203, as referenced for the specific liquid in column 8B of the Hazardous Materials Table of 49 CFR 172.101... 46 Shipping 5 2014-10-01 2014-10-01 false Flammable and combustible liquids. 147.45 Section...

  17. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any liquid whose flashpoint, as determined by an open cup tester, is 80 °F. or below....

  18. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any liquid whose flashpoint, as determined by an open cup tester, is 80 °F. or below....

  19. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any liquid whose flashpoint, as determined by an open cup tester, is 80 °F. or below....

  20. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... authorized for Class 3 (flammable) liquids or combustible liquids under 49 CFR 173.201, 173.202, or 173.203, as referenced for the specific liquid in column 8B of the Hazardous Materials Table of 49 CFR 172.101... 46 Shipping 5 2011-10-01 2011-10-01 false Flammable and combustible liquids. 147.45 Section...

  1. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... authorized for Class 3 (flammable) liquids or combustible liquids under 49 CFR 173.201, 173.202, or 173.203, as referenced for the specific liquid in column 8B of the Hazardous Materials Table of 49 CFR 172.101... 46 Shipping 5 2010-10-01 2010-10-01 false Flammable and combustible liquids. 147.45 Section...

  2. Laboratory flammability studies of mixtures of hydrogen, nitrous oxide, and air

    SciTech Connect

    Cashdollar, K L; Hertzberg, M; Zlochower, I A; Lucci, C E; Green, G M; Thomas, R A

    1992-06-26

    At the request of the Department of Energy and the Westinghouse Hanford Company, the Bureau of Mines has investigated the flammability of mixtures of hydrogen, nitrous oxide, and air. This work is relevant to the possible hazards of flammable gas generation from nuclear waste tanks at Hanford, WA. The tests were performed in a 120-L spherical chamber under both quiescent and turbulent conditions using both electric spark and pyrotechnic ignition sources. The data reported here for binary mixtures of hydrogen in air generally confirm the data of previous investigators, but they are more comprehensive than those reported previously. The results clarify to a greater extent the complications associated with buoyancy, turbulence, and selective diffusion. The data reported here for ternary mixtures of hydrogen and nitrous oxide in air indicate that small additions of nitrous oxide (relative to the amount of air) have little effect, but that higher concentrations of nitrous oxide (relative to air) significantly increase the explosion hazard.

  3. Flammability limits of dusts: Minimum inerting concentrations

    SciTech Connect

    Dastidar, A.G.; Amyotte, P.R.; Going, J.; Chatrathi, K.

    1999-05-01

    A new flammability limit parameter has been defined as the Minimum Inerting Concentration (MIC). This is the concentration of inertant required to prevent a dust explosion regardless of fuel concentration. Previous experimental work at Fike in a 1-m{sup 3} spherical chamber has shown this flammability limit to exist for pulverized coal dust and cornstarch. In the current work, inerting experiments with aluminum, anthraquinone and polyethylene dusts as fuels were performed, using monoammonium phosphate and sodium bicarbonate as inertants. The results show that an MIC exists only for anthraquinone inerted with sodium bicarbonate. The other combustible dust and inertant mixtures did not show a definitive MIC, although they did show a strong dependence between inerting level and suspended fuel concentration. As the fuel concentration increased, the amount of inertant required to prevent an explosion decreased. Even though a definitive MIC was not found for most of the dusts an effective MIC can be estimated from the data. The use of MIC data can aid in the design of explosion suppression schemes.

  4. Genetic component of flammability variation in a Mediterranean shrub.

    PubMed

    Moreira, B; Castellanos, M C; Pausas, J G

    2014-03-01

    Recurrent fires impose a strong selection pressure in many ecosystems worldwide. In such ecosystems, plant flammability is of paramount importance because it enhances population persistence, particularly in non-resprouting species. Indeed, there is evidence of phenotypic divergence of flammability under different fire regimes. Our general hypothesis is that flammability-enhancing traits are adaptive; here, we test whether they have a genetic component. To test this hypothesis, we used the postfire obligate seeder Ulex parviflorus from sites historically exposed to different fire recurrence. We associated molecular variation in potentially adaptive loci detected with a genomic scan (using AFLP markers) with individual phenotypic variability in flammability across fire regimes. We found that at least 42% of the phenotypic variation in flammability was explained by the genetic divergence in a subset of AFLP loci. In spite of generalized gene flow, the genetic variability was structured by differences in fire recurrence. Our results provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire. These results highlight the importance of flammability as an adaptive trait in fire-prone ecosystems. PMID:24433213

  5. Genetic component of flammability variation in a Mediterranean shrub.

    PubMed

    Moreira, B; Castellanos, M C; Pausas, J G

    2014-03-01

    Recurrent fires impose a strong selection pressure in many ecosystems worldwide. In such ecosystems, plant flammability is of paramount importance because it enhances population persistence, particularly in non-resprouting species. Indeed, there is evidence of phenotypic divergence of flammability under different fire regimes. Our general hypothesis is that flammability-enhancing traits are adaptive; here, we test whether they have a genetic component. To test this hypothesis, we used the postfire obligate seeder Ulex parviflorus from sites historically exposed to different fire recurrence. We associated molecular variation in potentially adaptive loci detected with a genomic scan (using AFLP markers) with individual phenotypic variability in flammability across fire regimes. We found that at least 42% of the phenotypic variation in flammability was explained by the genetic divergence in a subset of AFLP loci. In spite of generalized gene flow, the genetic variability was structured by differences in fire recurrence. Our results provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire. These results highlight the importance of flammability as an adaptive trait in fire-prone ecosystems.

  6. Flammable Gas Safety Program: analysis of gas sampling probe locations in the SX-farm flammable gas watchlist tanks

    SciTech Connect

    McLaren, J.M.; Claybrook, S.W.

    1995-09-01

    An analysis was performed to determine the optimum ventilation line up for the AN Tank Farm. The analysis used the postulated maximum historical GRE in tanks AN-103, -104, and -105. Tank AN-104 was found to be limiting. The results of the analysis show that an airflow of 250 cfm through tanks 241-AN-103, -104, and -105 with an airflow of 100 cfm through tanks 241-AN-101, -102, -106, and -107 would be the optimum ventilation lineup.

  7. Spacecraft material flammability testing and configurations

    NASA Technical Reports Server (NTRS)

    Ledoux, Paul W.

    1987-01-01

    Material and configuration testing for the Space Shuttle is mainly at 30 percent oxygen concentration at 70 kPa (10.2 psia). This is the worst case atmosphere during a mission and occurs 10 hours prior to extravehicular activity. The pressure is reduced from the nominal 101 kPa (14.7 paia) and the oxygen concentration is increased to 30 percent for medical reasons to prevent the bends during the extravehicular activity. NASA has tested many materials at 23.8, 25.9 and 30 percent oxygen levels for the Shuttle program. Data is given to show how flammability of material is affected by percentage of oxygen for those materials that would be considered for spacecraft applications.

  8. Upward Flammability Testing: A Probabilistic Measurement

    NASA Technical Reports Server (NTRS)

    Davis, Samuel E.; Engel, Carl D.; Richardson, Erin R.

    2003-01-01

    Examination of NASA-STD-6001 Test 1 data suggests burn length outcome for a given environment has a large statistical variation from run to run. Large data sets show that burn length data form cumulative probability distribution curves, which describe a material's characteristic to burn in a specific environment, suggesting that the current practice of testing three samples at specific conditions is inadequate. Sufficient testing can establish material characteristics probability curves to provide the probability that a material will sustain a burn length of at least 15.24 cm (6.0 in.) or will sustain burning until all material is consumed. A simple pasdfail criterion may not be possible or practical. Future application of flammability data for some material classes may require the engineer to assess risk based on the probability of an occurrence and the probable outcome with different materials as characterized with cumulative burn length distributions for specific use conditions.

  9. Pressure Flammability Thresholds of Selected Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Williams, James H.; Harper, Susana A.; Beeson, Harold D.; Ruff, Gary A.; Pedley, Michael D.

    2010-01-01

    A test program was performed to determine the highest pressure in oxygen where materials used in the planned NASA Constellation Program Orion Crew Exploration Vehicle (CEV) Crew Module (CM) would not propagate a flame if an ignition source was present. The test methodology used was similar to that previously used to determine the maximum oxygen concentration (MOC) at which self-extinguishment occurs under constant total pressure conditions. An upward limiting pressure index (ULPI) was determined, where approximately 50 percent of the materials self-extinguish in a given environment. Following this, the maximum total pressure (MTP) was identified; where all samples tested (at least five) self-extinguished following the NASA-STD-6001.A Test 1 burn length criteria. The results obtained on seven materials indicate that the non-metallic materials become flammable in oxygen between 0.4 and 0.9 psia.

  10. Flammability measurements of difluoromethane in air at 100 C

    SciTech Connect

    Grosshandler, W.L.; Donnelly, M.K.; Womeldorf, C.

    1999-07-01

    Difluoromethane (CH{sub 2}F{sub 2}, or R-32) is a candidate to replace currently used ozone-depleting chlorofluorocarbon refrigerants. Because CH{sub 2}F{sub 2} is flammable, it is necessary to assess the hazard posed by a leak in a refrigeration machine. The currently accepted method for determining flammability, ASTM E 681, has difficulty discerning the flammability boundary for weak fuels such as CH{sub 2}F{sub 2}. This paper describes an alternative approach to identify the limits of flammability, using a twin, premixed counter-flow flame. By using the extinction of an already established flame, the point dividing flammable from non-flammable becomes unambiguous. The limiting extinction mixture changes with stretch rate, so it is convenient to report the flammability limit as the value extrapolated to a zero stretch condition. In the burner, contoured nozzles with outlet diameters of 12 mm are aligned counter to each other and spaced 12 mm apart. The lean flammability limit of CH{sub 2}F{sub 2} in dry air at room temperature was previously reported by the authors to be a mole fraction of 0.14, using the twin counter-flow flame method. In the current study, relative humidity was not found to affect the lean limit. Increasing the temperature of the premixed fuel and air to 100 C is shown to extend the flammability limit in the lean direction to 0.13. The rich limit of CH{sub 2}F{sub 2} found using the counter-flow method is around 0.27. The uncertainties of the measurements are presented and the results compared to data in the literature.

  11. Gas characterization system software acceptance test procedure

    SciTech Connect

    Vo, C.V.

    1996-02-27

    This document details the Software Acceptance Testing of gas characterization systems. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

  12. Spacecraft and Navy Materials Flammability: Review of Some Concepts and Test Methods

    NASA Technical Reports Server (NTRS)

    Hirsch, David

    2004-01-01

    The agenda covered by this viewgraph presentation includes: 1) Concepts of Spacecraft Fire Safety; 2) Spacecraft materials flammability test methods; 3) Evaluation of flight hardware flammability; 4) Review of flammability data in conditions of interest to the Navy; 5) Overview of some flammability test methods recommended for the Navy.

  13. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel Tank System Flammability Reduction... 25—Fuel Tank System Flammability Reduction Means M25.1Fuel tank flammability exposure requirements. (a) The Fleet Average Flammability Exposure of each fuel tank, as determined in accordance...

  14. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel Tank System Flammability Reduction... 25—Fuel Tank System Flammability Reduction Means M25.1Fuel tank flammability exposure requirements. (a) The Fleet Average Flammability Exposure of each fuel tank, as determined in accordance...

  15. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel Tank System Flammability Reduction... 25—Fuel Tank System Flammability Reduction Means M25.1Fuel tank flammability exposure requirements. (a) The Fleet Average Flammability Exposure of each fuel tank, as determined in accordance...

  16. 46 CFR 30.10-22 - Flammable liquid-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... below a temperature of 80 °F. Flammable liquids are referred to by grades as follows: (a) Grade A. Any... 46 Shipping 1 2012-10-01 2012-10-01 false Flammable liquid-TB/ALL. 30.10-22 Section 30.10-22...-22 Flammable liquid—TB/ALL. The term flammable liquid means any liquid which gives off...

  17. 46 CFR 30.10-22 - Flammable liquid-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... below a temperature of 80 °F. Flammable liquids are referred to by grades as follows: (a) Grade A. Any... 46 Shipping 1 2011-10-01 2011-10-01 false Flammable liquid-TB/ALL. 30.10-22 Section 30.10-22...-22 Flammable liquid—TB/ALL. The term flammable liquid means any liquid which gives off...

  18. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 25—Fuel Tank System Flammability Reduction Means M25.1Fuel tank flammability exposure requirements. (a) The Fleet Average Flammability Exposure of each fuel tank, as determined in accordance with Appendix N of this part, may not exceed 3 percent of the Flammability Exposure Evaluation Time (FEET),...

  19. One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams.

    PubMed

    Davis, Rick; Li, Yu-Chin; Gervasio, Michelle; Luu, Jason; Kim, Yeon Seok

    2015-03-25

    In this manuscript, natural materials were combined into a single "pot" to produce flexible, highly fire resistant, and bioinspired coatings on flexible polyurethane foam (PUF). In one step, PUF was coated with a fire protective layer constructed of a polysaccharide binder (starch or agar), a boron fire retardant (boric acid or derivative), and a dirt char former (montmorillonite clay). Nearly all coatings produced a 63% reduction in a critical flammability value, the peak heat release rate (PHRR). One formulation produced a 75% reduction in PHRR. This technology was validated in full-scale furniture fire tests, where a 75% reduction in PHRR was measured. At these PHRR values, this technology could reduce the fire threat of furniture from significant fire damage in and beyond the room of fire origin to being contained to the burning furniture. This flammability reduction was caused by three mechanisms-the gas-phase and condensed-phase processes of the boron fire retardant and the condensed-phase process of the clay. We describe the one-pot coating process and the impact of the coating composition on flammability. PMID:25723711

  20. One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams.

    PubMed

    Davis, Rick; Li, Yu-Chin; Gervasio, Michelle; Luu, Jason; Kim, Yeon Seok

    2015-03-25

    In this manuscript, natural materials were combined into a single "pot" to produce flexible, highly fire resistant, and bioinspired coatings on flexible polyurethane foam (PUF). In one step, PUF was coated with a fire protective layer constructed of a polysaccharide binder (starch or agar), a boron fire retardant (boric acid or derivative), and a dirt char former (montmorillonite clay). Nearly all coatings produced a 63% reduction in a critical flammability value, the peak heat release rate (PHRR). One formulation produced a 75% reduction in PHRR. This technology was validated in full-scale furniture fire tests, where a 75% reduction in PHRR was measured. At these PHRR values, this technology could reduce the fire threat of furniture from significant fire damage in and beyond the room of fire origin to being contained to the burning furniture. This flammability reduction was caused by three mechanisms-the gas-phase and condensed-phase processes of the boron fire retardant and the condensed-phase process of the clay. We describe the one-pot coating process and the impact of the coating composition on flammability.

  1. Unknown exposures: gaps in basic characterization addressed with person-portable gas chromatography-mass spectrometry instrumentation.

    PubMed

    Smith, Philip A; Roe, Marc T A; Sadowski, Charles; Lee, Edgar D

    2011-03-01

    A newly developed person-portable gas chromatography-mass spectrometry (GC-MS) system was used to analyze several solvent standards, contact cement, paint thinner, and polychlorinated biphenyl samples. Passive solid phase microextraction sampling and fast chromatography with a resistively heated low thermal mass GC column were used. Results (combined sampling and analysis) were obtained in <2 min for solvent, contact cement, and paint thinner samples, and in <13 min for the polychlorinated biphenyl sample. Mass spectra produced by the small toroidal ion trap detector used were similar to those produced with heavily used transmission quadrupole mass spectrometers for polychlorinated biphenyl compounds, simple alkanes, and cycloalknes, while mass spectra for benzene and the ketone compounds analyzed showed evidence for ion/molecule reactions in the ion trap. For one of the contact cement samples analyzed, no evidence was found to indicate the presence of n-hexane, although the relevant material safety data sheet listed this ingredient. Specific chemical constituents corresponding to a potentially wide range of petroleum distillate compounds were identifiable from GC-MS analyses. The possibility for an improved basic characterization step in the exposure assessment process exists with the availability of fast, person-portable GC-MS, although work is needed to further refine this tool and understand the best ways it may be used. PMID:21318921

  2. Densified biomass can cost-effectively mitigate greenhouse gas emissions and address energy security in thermal applications.

    PubMed

    Wilson, Thomas O; McNeal, Frederick M; Spatari, Sabrina; G Abler, David; Adler, Paul R

    2012-01-17

    Regional supplies of biomass are currently being evaluated as feedstocks in energy applications to meet renewable portfolio (RPS) and low carbon fuel standards. We investigate the life cycle greenhouse gas (GHG) emissions and associated abatement costs resulting from using densified switchgrass for thermal and electrical energy. In contrast to the large and positive abatement costs for using biomass in electricity generation ($149/Mg CO(2)e) due to the low cost of coal and high feedstock and power plant operation costs, abatement costs for replacing fuel oil with biomass in thermal applications are large and negative (-$52 to -$92/Mg CO(2)e), resulting in cost savings. Replacing fuel oil with biomass in thermal applications results in least cost reductions compared to replacing coal in electricity generation, an alternative that has gained attention due to RPS legislation and the centralized production model most often considered in U.S. policy. Our estimates indicate a more than doubling of liquid fuel displacement when switchgrass is substituted for fuel oil as opposed to gasoline, suggesting that, in certain U.S. locations, such as the northeast, densified biomass would help to significantly decarbonize energy supply with regionally sourced feedstock, while also reducing imported oil. On the basis of supply projections from the recently released Billion Ton Report, there will be enough sustainably harvested biomass available in the northeast by 2022 to offset the entirety of heating oil demand in the same region. This will save NE consumers between $2.3 and $3.9 billion annually. Diverting the same resource to electricity generation would cost the region $7.7 billion per year. While there is great need for finding low carbon substitutes for coal power and liquid transportation fuels in the U.S., we argue that in certain regions it makes cost- (and GHG mitigation-) effective sense to phase out liquid heating fuels with locally produced biomass first.

  3. 28. VIEW OF FLAMMABLE TEST ROOM, LOCATED IN THE NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. VIEW OF FLAMMABLE TEST ROOM, LOCATED IN THE NORTHEAST CORNER OF SHIPPING AND STORAGE ROOM, 1923 ADDITION, FIRST FLOOR - Underwriters' Laboratories, 207-231 East Ohio Street, Chicago, Cook County, IL

  4. PLANAR VIEW OF REAR (NORTHWEST) SIDE OF GARAGE, SHOWING FLAMMABLES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLANAR VIEW OF REAR (NORTHWEST) SIDE OF GARAGE, SHOWING FLAMMABLES LOCKER AND ADDITION ON RIGHT, VIEW TOWARDS SOUTHEAST - Moore Haven Lock, Garage, Cross-State Canal, Okeechobee Intracoastal Waterway, Moore Haven, Glades County, FL

  5. Low flammability cap-sensitive flexible explosive composition

    DOEpatents

    Wagner, Martin G.

    1992-01-14

    A cap-sensitive flexible explosive composition of reduced flammability is provided by incorporating a finely divided, cap-sensitive explosive in a flame resistant polymeric binder system which contains a compatible flame retardant material.

  6. Pressure Flammability Thresholds in Oxygen of Selected Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Harper, Susana; Beeson, Harold; Ruff, Gary; Pedley, Mike

    2010-01-01

    The experimental approach consisted of concentrating the testing in the flammability transition zone following the Bruceton Up-and-Down Method. For attribute data, the method has been shown to be very repeatable and most efficient. Other methods for characterization of critical levels (Karberand Probit) were also considered. The data yielded the upward limiting pressure index (ULPI), the pressure level where approx.50% of materials self-extinguish in a given environment.Parametric flammability thresholds other than oxygen concentration can be determined with the methodology proposed for evaluating the MOC when extinguishment occurs. In this case, a pressure threshold in 99.8% oxygen was determined with the methodology and found to be 0.4 to 0.9 psia for typical spacecraft materials. Correlation of flammability thresholds obtained with chemical, hot wire, and other ignition sources will be conducted to provide recommendations for using alternate ignition sources to evaluate flammability of aerospace materials.

  7. A safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-SY-101: Hanford Site,Richland, Washington

    SciTech Connect

    Lentsch, J.W.

    1996-07-01

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101,which is located within the Hanford Site, Richland, Washington.The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  8. Safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-101-SY: Hanford Site, Richland, Washington

    SciTech Connect

    Lentsch, J.W., Westinghouse Hanford

    1996-05-16

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101, which is located within the Hanford Site, Richland, Washington. The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  9. Effect of a zero g environment on flammability limits as determined using a standard flammability tube apparatus

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Reuss, D. L.

    1980-01-01

    Flammability limits in a zero gravity environment were defined. Key aspects of a possible spacelab experiment were investigated analytically, experimentally on the bench, and in drop tower facilities. A conceptual design for a spacelab experiment was developed.

  10. Experimental Verification of Material Flammability in Space

    NASA Technical Reports Server (NTRS)

    Ivanov, A. V.; Balashov, Y. V.; Andreeva, T. V.; Melikhov, A. S.

    1999-01-01

    The flammability in microgravity of three US-furnished materials, Delrin, polymethylmethacrylate (PMMA), and high-density polyethylene, was determined using a Russian-developed combustion tunnel on Mir. Four 4.5-mm-diameter cylindrical samples of each plastic were ignited under concurrent airflow (in the direction of flame spread) with velocities from no flow to 8.5 cm/s. The test results identify a limiting air-flow velocity V(sub lim) for each material, below which combustion ceases. Nominal values are V(sub lim) < 0.3 cm/s for Delrin, 0.5 cm/s for PMMA, and 0.3 to 0.5 cm/s for polyethylene. These values are lower than those obtained in prior ground testing. Nevertheless, they demonstrate that flow shutoff is effective for extinguishment in the microgravity environment of spacecraft. Microgravity test results also show that the plastic materials maintain a stable melt ball within the spreading flame zone. In general, as the concurrent flow velocity V decreases, the flame-spread rate V(sub F) decreases, from an average (for all three materials) of V(sub F)= 0.5-0.75 mm/s at V = 8.5 cm/s to V(sub F)= 0.05-0.01 mm/s at V = 0.3-0.5 cm/s. Also, as V decreases, the flames become less visible but expand, increasing the probability of igniting an adjacent surface.

  11. Addressing Concerns.

    ERIC Educational Resources Information Center

    Cronin, Greg; Helmig, Mary; Kaplan, Bill; Kosch, Sharon

    2002-01-01

    Four camp directors discuss how the September 11 tragedy and current world events will affect their camps. They describe how they are addressing safety concerns, working with parents, cooperating with outside agencies, hiring and screening international staff, and revising emergency plans. Camps must continue to offer community and support to…

  12. Addressing Misconceptions

    ERIC Educational Resources Information Center

    Dial, Katrina; Riddley, Diana; Williams, Kiesha; Sampson, Victor

    2009-01-01

    The law of conservation of mass can be counterintuitive for most students because they often think the mass of a substance is related to its physical state. As a result, students may hold a number of alternative conceptions related to this concept, including, for example, the believe that gas has no mass, that solids have greater mass than fluids,…

  13. Comprehensive Lifecycle Planning and Management System For Addressing Water Issues Associated With Shale Gas Development In New York, Pennsylvania, And West Virginia

    SciTech Connect

    Arthur, J. Daniel

    2012-07-01

    The objective of this project is to develop a modeling system to allow operators and regulators to plan all aspects of water management activities associated with shale gas development in the target project area of New York, Pennsylvania, and West Virginia (target area ), including water supply, transport, storage, use, recycling, and disposal and which can be used for planning, managing, forecasting, permit tracking, and compliance monitoring. The proposed project is a breakthrough approach to represent the entire shale gas water lifecycle in one comprehensive system with the capability to analyze impacts and options for operational efficiency and regulatory tracking and compliance, and to plan for future water use and disposition. It will address all of the major water-related issues of concern associated with shale gas development in the target area, including water withdrawal, transport, storage, use, treatment, recycling, and disposal. It will analyze the costs, water use, and wastes associated with the available options, and incorporate constraints presented by permit requirements, agreements, local and state regulations, equipment and material availability, etc. By using the system to examine the water lifecycle from withdrawals through disposal, users will be able to perform scenario analysis to answer "what if" questions for various situations. The system will include regulatory requirements of the appropriate state and regional agencies and facilitate reporting and permit applications and tracking. These features will allow operators to plan for more cost effective resource production. Regulators will be able to analyze impacts of development over an entire area. Regulators can then make informed decisions about the protections and practices that should be required as development proceeds. This modeling system will have myriad benefits for industry, government, and the public. For industry, it will allow planning all water management operations for a

  14. Addressing healthcare.

    PubMed

    Daly, Rich

    2013-02-11

    Though President Barack Obama has rarely made healthcare references in his State of the Union addresses, health policy experts are hoping he changes that strategy this year. "The question is: Will he say anything? You would hope that he would, given that that was the major issue he started his presidency with," says Dr. James Weinstein, left, of the Dartmouth-Hitchcock health system. PMID:23487896

  15. Fiscal year 1992 program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    SciTech Connect

    Johnson, G.D.

    1992-06-01

    The Waste Tank Flammable Gas Stabilization Program was established in 1990 to provide for resolution of a major safety issue identified for 23 of the high-level waste tanks at the Hanford Site. This safety issue involves flammable gas mixtures, consisting mainly of hydrogen, nitrous oxide, and that are generated and periodically released in concentrations that nitrogen, exceed the lower flamability limit. Initial activities of the program have been directed at tank 241-SY-101 because it exhibits the largest risk. Activities conducted in fiscal year (FY) 1991 included waste sampling, waste sample analysis, development of tank models, conducting laboratory tests with synthetic wastes, upgrading of tank instrumentation and ventilation systems, evaluation of new methods for characterizing waste, and development of remedial actions. In addition to the work being conducted to resolve the flammable gas issue, programs have been established (Gasper and Reep 1992) to develop corrective actions for high priority safety issues associated with potential explosive mixtures of ferrocyanides in tanks, potential organic-nitrate reactions in tanks, and for the continued cooling for heat generation in tank 106{degrees}C. The purpose of this document is to provide a brief description of the FY 1992 priorities, logic, work breakdown structure (WBS), and task descriptions for the Waste Tank Flammable Gas Stabilization Program.

  16. Fiscal year 1992 program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks. Revision 1

    SciTech Connect

    Johnson, G.D.

    1992-06-01

    The Waste Tank Flammable Gas Stabilization Program was established in 1990 to provide for resolution of a major safety issue identified for 23 of the high-level waste tanks at the Hanford Site. This safety issue involves flammable gas mixtures, consisting mainly of hydrogen, nitrous oxide, and that are generated and periodically released in concentrations that nitrogen, exceed the lower flamability limit. Initial activities of the program have been directed at tank 241-SY-101 because it exhibits the largest risk. Activities conducted in fiscal year (FY) 1991 included waste sampling, waste sample analysis, development of tank models, conducting laboratory tests with synthetic wastes, upgrading of tank instrumentation and ventilation systems, evaluation of new methods for characterizing waste, and development of remedial actions. In addition to the work being conducted to resolve the flammable gas issue, programs have been established (Gasper and Reep 1992) to develop corrective actions for high priority safety issues associated with potential explosive mixtures of ferrocyanides in tanks, potential organic-nitrate reactions in tanks, and for the continued cooling for heat generation in tank 106{degrees}C. The purpose of this document is to provide a brief description of the FY 1992 priorities, logic, work breakdown structure (WBS), and task descriptions for the Waste Tank Flammable Gas Stabilization Program.

  17. Flammable gas tank exhauster interlock (LFGTEI) computer software design description

    SciTech Connect

    Smith, S.O.; Irvitt, R.W., Fluor Daniel Hanford

    1997-02-21

    Modicon Compact Programmable Logic Controller (PLC). The device configuration integrates the isolation and current- carrying capacities of mechanical relays with the logic and programming sophistication of the PLC. This revised document provides descriptions of components and tasks involved in the PLC system for controlling and monitoring the FGTEI. All control functions required by the PLC, and how they are implemented, are described in detail.

  18. Impact Of Melter Internal Design On Off-Gas Flammability

    SciTech Connect

    Choi, A. S.; Lee, S. Y.

    2012-05-30

    The purpose of this study was to: (1) identify the more dominant design parameters that can serve as the quantitative measure of how prototypic a given melter is, (2) run the existing DWPF models to simulate the data collected using both DWPF and non-DWPF melter configurations, (3) confirm the validity of the selected design parameters by determining if the agreement between the model predictions and data is reasonably good in light of the design and operating conditions employed in each data set, and (4) run Computational Fluid Dynamics (CFD) simulations to gain new insights into how fluid mixing is affected by the configuration of melter internals and to further apply the new insights to explaining, for example, why the agreement is not good.

  19. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol

    SciTech Connect

    Gardiner, D. P.; Bardon, M. F.; Clark, W.

    2011-07-01

    This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

  20. The Increased Flammability of Metallic Materials in Reduced Gravity Environments

    NASA Astrophysics Data System (ADS)

    Lynn, David; Plagens, Owen; Castillo, Marin; Paulos, Todd; Steinberg, Ted

    2010-09-01

    Flammability data generated in a normal gravity environment is often used in design and risk assessment for reduced gravity applications. It has been clearly demonstrated that this is a conservative approach for non-metallic materials which have been repeatedly shown to be less flammable in a reduced gravity environment. However, recent work has demonstrated this is not true for metallic materials. This work, conducted in a newly completed drop tower observed a significant decrease in lowest burn pressure and increase in regression rate in reduced gravity. Hence the normal gravity qualification of a metallic materials’ lowest burn pressure or regression rate for reduced-gravity or space-based systems is clearly not conservative. This paper presents a summary of this work and the results obtained for several metallic materials showing an increased flammability and regression rate for a range of oxygen pressures, and discusses the implications of this work on the fire-safety of space-based systems.

  1. Some electrostatic considerations in the transportation of flammable liquids

    SciTech Connect

    Pratt, T.H.; Atharton, J.G.

    1996-12-31

    The transportation of flammable liquids in bulk quantities is a common operation in the chemical industry. Therefore a rather comprehensive set of regulations, standards, and recommended practices exists which govern how these operations should be performed in strict accordance with the directions given, occurrence of inadvertent ignitions have been rare, if nonexistent. On the other hand, there have been occasions when seemingly slight and innocuous deviations from the guidelines have been incorporated into an operation, resulting in catastrophic incidents. This paper discusses some of the guidelines concerning electrostatic ignitions of flammable liquids and illustrates specific case histories where such deviations have led to accidents. Two marine incidents, one rail car incident, and two tank truck incidents are presented in detail to amplify why strict adherence to the regulations, standards and recommended practices is vital in operations where flammable liquids are transported. 5 refs., 4 figs., 1 tab.

  2. Credit PSR. The flammable waste materials shed appears as seen ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. The flammable waste materials shed appears as seen when looking south (186°) from South Liquid Loop Road. Note the catch basin for retaining accidentally spilled substances. Wastes are stored in drums and other safety containers until disposal by burning at the Incinerator (4249/E-50) or by other means. Note the nearby sign warning of corrosive, flammable materials, and calling attention to a fire extinguisher; a telephone is provided to call for assistance in the event of an emergency. This structure is isolated to prevent the spread of fire, and it is lightly built so damage from a fire will be inexpensive to repair - Jet Propulsion Laboratory Edwards Facility, Waste Flammable Storage Building, Edwards Air Force Base, Boron, Kern County, CA

  3. Flammability Control In A Nuclear Waste Vitrification System

    SciTech Connect

    Zamecnik, John R.; Choi, Alexander S.; Johnson, Fabienne C.; Miller, Donald H.; Lambert, Daniel P.; Stone, Michael E.; Daniel, William E. Jr.

    2013-07-25

    The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: 1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; 2) adjust feed rheology; and 3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid in pretreatment has been studied to eliminate the production of hydrogen in the pretreatment systems, which requires nuclear grade monitoring equipment. An alternative reductant, glycolic acid, has been studied as a substitute for formic acid. However, in the melter, the potential for greater formation of flammable gases exists with glycolic acid. Melter flammability is difficult to control because flammable mixtures can be formed during surges in offgases that both increase the amount of flammable species and decrease the temperature in the vapor space of the melter. A flammable surge can exceed the 60% of the LFL with no way to mitigate it. Therefore, careful control of the melter feed composition based on scaled melter surge testing is required. The results of engineering scale melter tests with the formic-nitric flowsheet and the use of these data in the melter flammability model are presented.

  4. RPP-WTP LAW Melter Offgas Flammability Assessment

    SciTech Connect

    Choi, AS

    2004-03-08

    The objective of this work was to develop predictive models for the Low Activity Waste (LAW) melter offgas flammability assessment and to conduct case studies in support of the on-going safety analysis efforts for the River Protection Project Waste Treatment Plant (RPPWTP). This required that Savannah River Technology Center (SRTC) personnel develop process models that are comprehensive enough to explicitly describe the effects of key melter operating variables such as total organic carbon (TOC) in the feed, melter air purge, and vapor space temperature on the offgas flammability.

  5. Applicability of Aerospace Materials Ground Flammability Test Data to Spacecraft Environments Theory and Applied Technologies

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2009-01-01

    This slide presentation reviews the use of ground test data in reference to flammability to spacecraft environments. It reviews the current approach to spacecraft fire safety, the challenges to fire safety that the Constellation program poses, the current trends in the evaluation of the Constellation materials flammability, and the correlation of test data from ground flammability tests with the spacecraft environment. Included is a proposal for testing and the design of experiments to test the flammability of materials under similar spacecraft conditions.

  6. Inaugural address

    NASA Astrophysics Data System (ADS)

    Joshi, P. S.

    2014-03-01

    From jets to cosmos to cosmic censorship P S Joshi Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India E-mail: psj@tifr.res.in 1. Introduction At the outset, I should like to acknowledge that part of the title above, which tries to capture the main flavour of this meeting, and has been borrowed from one of the plenary talks at the conference. When we set out to make the programme for the conference, we thought of beginning with observations on the Universe, but then we certainly wanted to go further and address deeper questions, which were at the very foundations of our inquiry, and understanding on the nature and structure of the Universe. I believe, we succeeded to a good extent, and it is all here for you in the form of these Conference Proceedings, which have been aptly titled as 'Vishwa Mimansa', which could be possibly translated as 'Analysis of the Universe'! It is my great pleasure and privilege to welcome you all to the ICGC-2011 meeting at Goa. The International Conference on Gravitation and Cosmology (ICGC) series of meetings are being organized by the Indian Association for General Relativity and Gravitation (IAGRG), and the first such meeting was planned and conducted in Goa in 1987, with subsequent meetings taking place at a duration of about four years at various locations in India. So, it was thought appropriate to return to Goa to celebrate the 25 years of the ICGC meetings. The recollections from that first meeting have been recorded elsewhere here in these Proceedings. The research and teaching on gravitation and cosmology was initiated quite early in India, by V V Narlikar at the Banares Hindu University, and by N R Sen in Kolkata in the 1930s. In course of time, this activity grew and gained momentum, and in early 1969, at the felicitation held for the 60 years of V V Narlikar at a conference in Ahmedabad, P C Vaidya proposed the formation of the IAGRG society, with V V Narlikar being the first President. This

  7. ISO 14624 Series - Space Systems - Safety and Compatibility of Materials Flammability Assessment of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2007-01-01

    A viewgraph presentation on the flammability of spacecraft materials is shown. The topics include: 1) Spacecraft Fire Safety; 2) Materials Flammability Test; 3) Impetus for enhanced materials flammability characterization; 4) Exploration Atmosphere Working Group Recommendations; 5) Approach; and 6) Status of implementation

  8. 14 CFR 26.37 - Pending type certification projects: Fuel tank flammability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... was made on or after June 6, 2001, the requirements of 14 CFR 25.981 in effect on December 26, 2008... tank flammability. 26.37 Section 26.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AIRPLANES Fuel Tank Flammability § 26.37 Pending type certification projects: Fuel tank flammability....

  9. 14 CFR 26.37 - Pending type certification projects: Fuel tank flammability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... was made on or after June 6, 2001, the requirements of 14 CFR 25.981 in effect on December 26, 2008... tank flammability. 26.37 Section 26.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AIRPLANES Fuel Tank Flammability § 26.37 Pending type certification projects: Fuel tank flammability....

  10. 14 CFR 26.37 - Pending type certification projects: Fuel tank flammability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... was made on or after June 6, 2001, the requirements of 14 CFR 25.981 in effect on December 26, 2008... tank flammability. 26.37 Section 26.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AIRPLANES Fuel Tank Flammability § 26.37 Pending type certification projects: Fuel tank flammability....

  11. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the...

  12. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the...

  13. 14 CFR 26.37 - Pending type certification projects: Fuel tank flammability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... was made on or after June 6, 2001, the requirements of 14 CFR 25.981 in effect on December 26, 2008... tank flammability. 26.37 Section 26.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AIRPLANES Fuel Tank Flammability § 26.37 Pending type certification projects: Fuel tank flammability....

  14. 14 CFR 26.37 - Pending type certification projects: Fuel tank flammability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... was made on or after June 6, 2001, the requirements of 14 CFR 25.981 in effect on December 26, 2008... tank flammability. 26.37 Section 26.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AIRPLANES Fuel Tank Flammability § 26.37 Pending type certification projects: Fuel tank flammability....

  15. 46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable...

  16. 46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable...

  17. 46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable...

  18. 46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable...

  19. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the...

  20. 46 CFR 125.110 - Carriage of flammable or combustible liquid cargoes in bulk.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carriage of flammable or combustible liquid cargoes in...) OFFSHORE SUPPLY VESSELS GENERAL § 125.110 Carriage of flammable or combustible liquid cargoes in bulk. (a) Except as provided by this section, no OSV may carry flammable or combustible liquid cargoes in...

  1. 46 CFR 125.110 - Carriage of flammable or combustible liquid cargoes in bulk.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carriage of flammable or combustible liquid cargoes in...) OFFSHORE SUPPLY VESSELS GENERAL § 125.110 Carriage of flammable or combustible liquid cargoes in bulk. (a) Except as provided by this section, no OSV may carry flammable or combustible liquid cargoes in...

  2. 30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100...

  3. 30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100...

  4. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the...

  5. 16 CFR Figure 1 to Part 1610 - Sketch of Flammability Apparatus

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Sketch of Flammability Apparatus 1 Figure 1 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 1 Figure 1 to Part...

  6. 16 CFR Figure 1 to Part 1610 - Sketch of Flammability Apparatus

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Sketch of Flammability Apparatus 1 Figure 1 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 1 Figure 1 to Part 1610—Sketch...

  7. 16 CFR Figure 1 to Part 1610 - Sketch of Flammability Apparatus

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Sketch of Flammability Apparatus 1 Figure 1 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 1 Figure 1 to Part...

  8. 46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable...

  9. 46 CFR 194.05-9 - Flammable liquid chemical stores-Detail requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of Subchapter N... 46 Shipping 7 2010-10-01 2010-10-01 false Flammable liquid chemical stores-Detail requirements... and Marking § 194.05-9 Flammable liquid chemical stores—Detail requirements. (a) Flammable liquids...

  10. 46 CFR 194.05-9 - Flammable liquid chemical stores-Detail requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of Subchapter N... 46 Shipping 7 2014-10-01 2014-10-01 false Flammable liquid chemical stores-Detail requirements... and Marking § 194.05-9 Flammable liquid chemical stores—Detail requirements. (a) Flammable liquids...

  11. 46 CFR 194.05-9 - Flammable liquid chemical stores-Detail requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of Subchapter N... 46 Shipping 7 2013-10-01 2013-10-01 false Flammable liquid chemical stores-Detail requirements... and Marking § 194.05-9 Flammable liquid chemical stores—Detail requirements. (a) Flammable liquids...

  12. 46 CFR 194.05-9 - Flammable liquid chemical stores-Detail requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of Subchapter N... 46 Shipping 7 2011-10-01 2011-10-01 false Flammable liquid chemical stores-Detail requirements... and Marking § 194.05-9 Flammable liquid chemical stores—Detail requirements. (a) Flammable liquids...

  13. 46 CFR 194.05-9 - Flammable liquid chemical stores-Detail requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of Subchapter N... 46 Shipping 7 2012-10-01 2012-10-01 false Flammable liquid chemical stores-Detail requirements... and Marking § 194.05-9 Flammable liquid chemical stores—Detail requirements. (a) Flammable liquids...

  14. Opening Address

    NASA Astrophysics Data System (ADS)

    Yamada, T.

    2014-12-01

    Ladies and Gentlemen, it is my great honor and pleasure to present an opening address of the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3). On the behalf of the organizing committee, I certainly welcome all your visits to KGU Kannai Media Center belonging to Kanto Gakuin University, and stay in Yokohama. In particular, to whom come from abroad more than 17 countries, I would appreciate your participations after long long trips from your homeland to Yokohama. The first international workshop on "State of the Art in Nuclear Cluster Physics", called SOTANCP, was held in Strasbourg, France, in 2008, and the second one was held in Brussels, Belgium, in 2010. Then the third workshop is now held in Yokohama. In this period, we had the traditional 10th cluster conference in Debrecen, Hungary, in 2012. Thus we have the traditional cluster conference and SOTANCP, one after another, every two years. This obviously shows our field of nuclear cluster physics is very active and flourishing. It is for the first time in about 10 years to hold the international workshop on nuclear cluster physics in Japan, because the last cluster conference held in Japan was in Nara in 2003, about 10 years ago. The president in Nara conference was Prof. K. Ikeda, and the chairpersons were Prof. H. Horiuchi and Prof. I. Tanihata. I think, quite a lot of persons in this room had participated at the Nara conference. Since then, about ten years passed. So, this workshop has profound significance for our Japanese colleagues. The subjects of this workshop are to discuss "the state of the art in nuclear cluster physics" and also discuss the prospect of this field. In a couple of years, we saw significant progresses of this field both in theory and in experiment, which have brought better and new understandings on the clustering aspects in stable and unstable nuclei. I think, the concept of clustering has been more important than ever. This is true also in the

  15. Convocation address.

    PubMed

    Ghatowar, P S

    1993-07-01

    The Union Deputy Minister of Health and Family Welfare in India addressed the 35th convocation of the International Institute for Population Sciences in Bombay in 1993. Officials in developing countries have been concerned about population growth for more than 30 years and have instituted policies to reduce population growth. In the 1960s, population growth in developing countries was around 2.5%, but today it is about 2%. Despite this decline, the world will have 1 billion more individuals by the year 2001. 95% of these new people will be born in developing countries. India's population size is so great that India does not have the time to wait for development to reduce population growth. Population needs to be viewed as an integrated part of overall development, since it is linked to poverty, illiteracy, environmental damage, gender issues, and reproductive health. Despite a large population size, India has made some important advancements in health and family planning. For example, India has reduced population growth (to 2.14% annually between 1981-1991), infant mortality, and its birth rate. It has increased the contraceptive use rate and life expectancy. Its southern states have been more successful at achieving demographic goals than have the northern states. India needs to implement efforts to improve living conditions, to change attitudes and perceptions about small families and contraception, and to promote family planning acceptance earlier among young couples. Improvement of living conditions is especially important in India, since almost 33% of the people live in poverty. India needs to invest in nutrition, health, and education. The mass media and nongovernmental organizations need to create population awareness and demand for family planning services. Improvement in women's status accelerates fertility decline, as has happened in Kerala State. The government needs to facilitate generation of jobs. Community participation is needed for India to achieve

  16. Welcome Address

    NASA Astrophysics Data System (ADS)

    Kiku, H.

    2014-12-01

    Ladies and Gentlemen, It is an honor for me to present my welcome address in the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3), as the president of Kanto Gakuin University. Particularly to those from abroad more than 17 countries, I am very grateful for your participation after long long trips from your home to Yokohama. On the behalf of the Kanto Gakuin University, we certainly welcome your visit to our university and stay in Yokohama. First I would like to introduce Kanto Gakuin University briefly. Kanto Gakuin University, which is called KGU, traces its roots back to the Yokohama Baptist Seminary founded in 1884 in Yamate, Yokohama. The seminary's founder was Albert Arnold Bennett, alumnus of Brown University, who came to Japan from the United States to establish a theological seminary for cultivating and training Japanese missionaries. Now KGU is a major member of the Kanto Gakuin School Corporation, which is composed of two kindergartens, two primary schools, two junior high schools, two senior high schools as well as KGU. In this university, we have eight faculties with graduate school including Humanities, Economics, Law, Sciences and Engineering, Architecture and Environmental Design, Human and Environmental Studies, Nursing, and Law School. Over eleven thousands students are currently learning in our university. By the way, my major is the geotechnical engineering, and I belong to the faculty of Sciences and Engineering in my university. Prof. T. Yamada, here, is my colleague in the same faculty. I know that the nuclear physics is one of the most active academic fields in the world. In fact, about half of the participants, namely, more than 50 scientists, come from abroad in this conference. Moreover, I know that the nuclear physics is related to not only the other fundamental physics such as the elementary particle physics and astrophysics but also chemistry, medical sciences, medical cares, and radiation metrology

  17. Wire insulation degradation and flammability in low gravity

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1994-01-01

    This view-graph presentation covers the following topics: an introduction to spacecraft fire safety, concerns in fire prevention in low gravity, shuttle wire insulation flammability experiment, drop tower risk-based fire safety experiment, and experimental results, conclusions, and proposed studies.

  18. 46 CFR 182.480 - Flammable vapor detection systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (incorporated by reference; see 46 CFR 175.600) or be approved by an independent laboratory. (b) Procedures for... the entire time the engine is running. (d) A flammable vapor detection system must provide a visual... water level in the following locations: (1) The lowest part of a machinery space; (2) The lowest part...

  19. 46 CFR 182.480 - Flammable vapor detection systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (incorporated by reference; see 46 CFR 175.600) or be approved by an independent laboratory. (b) Procedures for... the entire time the engine is running. (d) A flammable vapor detection system must provide a visual... water level in the following locations: (1) The lowest part of a machinery space; (2) The lowest part...

  20. 29 CFR 1910.106 - Flammable and combustible liquids.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... treatment, or by persons involuntarily detained. (17) Liquid shall mean, for the purpose of this section... with flammable or combustible liquid and submerged by flood waters to the established flood stage, or... submerged by high ground water or flood waters by anchoring, weighting with concrete or other approved...

  1. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Extremely flammable contact adhesives; labeling. 1500.133 Section 1500.133 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL... statement set forth in paragraph (b) of this section should be printed on the main (front) panel or...

  2. 29 CFR 1910.106 - Flammable and combustible liquids.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....s.i.g. (3) Automotive service station shall mean that portion of property where flammable or..., and accessories, and for minor automotive maintenance work. Major automotive repairs, painting, body... recognized as good engineering design for the material used. (d) Unlined concrete tanks may be used...

  3. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master... stowed in accordance with subparts 98.30 and 98.33 of this chapter and the provisions of 49 CFR parts...

  4. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master... stowed in accordance with subparts 98.30 and 98.33 of this chapter and the provisions of 49 CFR parts...

  5. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master... stowed in accordance with subparts 98.30 and 98.33 of this chapter and the provisions of 49 CFR parts...

  6. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master... stowed in accordance with subparts 98.30 and 98.33 of this chapter and the provisions of 49 CFR parts...

  7. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master... stowed in accordance with subparts 98.30 and 98.33 of this chapter and the provisions of 49 CFR parts...

  8. The Safety of Small Containers for Flammable Fluids.

    ERIC Educational Resources Information Center

    Shanley, Edward S.

    1988-01-01

    Highlights aspects of safety that are unfamiliar to most laypersons and to many chemists as well. Presents findings that may lend themselves to presentation in chemistry classes. Details flammability tests, vapor space hazards, and the special case of gasoline containers. Provides experimental data relating vent area and internal pressure. (CW)

  9. Oxygen Concentration Flammability Threshold Tests for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Williams, James H.

    2007-01-01

    CEV atmosphere will likely change because craft will be used as LEO spacecraft, lunar spacecraft, orbital spacecraft. Possible O2 % increase and overall pressure decrease pressure vessel certs on spacecraft. Want 34% minimum threshold. Higher, better when atmosphere changes. WSTF suggests testing all materials/components to find flammability threshold, pressure and atmosphere.

  10. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids and... sources and paths of fluid leakage, and means of detecting leakage. (2) Flammability characteristics of... escape by leakage of a fluid system must be identified and defined....

  11. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... or vapors might escape by leakage of a fluid system, there must be means to minimize the probability... be considered: (1) Possible sources and paths of fluid leakage, and means of detecting leakage. (2... flammable fluids or vapors might escape by leakage of a fluid system must be identified and defined....

  12. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... or vapors might escape by leakage of a fluid system, there must be means to minimize the probability... be considered: (1) Possible sources and paths of fluid leakage, and means of detecting leakage. (2... flammable fluids or vapors might escape by leakage of a fluid system must be identified and defined....

  13. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... or vapors might escape by leakage of a fluid system, there must be means to minimize the probability... be considered: (1) Possible sources and paths of fluid leakage, and means of detecting leakage. (2... flammable fluids or vapors might escape by leakage of a fluid system must be identified and defined....

  14. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids and... sources and paths of fluid leakage, and means of detecting leakage. (2) Flammability characteristics of... escape by leakage of a fluid system must be identified and defined....

  15. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids and... sources and paths of fluid leakage, and means of detecting leakage. (2) Flammability characteristics of... escape by leakage of a fluid system must be identified and defined....

  16. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the...) Possible sources and paths of fluid leakage, and means of detecting leakage. (2) Flammability... vapors might escape by leakage of a fluid system must be identified and defined. (Secs. 313(a), 601,...

  17. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids and... sources and paths of fluid leakage, and means of detecting leakage. (2) Flammability characteristics of... escape by leakage of a fluid system must be identified and defined. (Secs. 313(a), 601, 603, 604,...

  18. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the...) Possible sources and paths of fluid leakage, and means of detecting leakage. (2) Flammability... vapors might escape by leakage of a fluid system must be identified and defined. (Secs. 313(a), 601,...

  19. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... or vapors might escape by leakage of a fluid system, there must be means to minimize the probability... be considered: (1) Possible sources and paths of fluid leakage, and means of detecting leakage. (2... flammable fluids or vapors might escape by leakage of a fluid system must be identified and defined....

  20. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids and... sources and paths of fluid leakage, and means of detecting leakage. (2) Flammability characteristics of... escape by leakage of a fluid system must be identified and defined. (Secs. 313(a), 601, 603, 604,...

  1. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids and... sources and paths of fluid leakage, and means of detecting leakage. (2) Flammability characteristics of... escape by leakage of a fluid system must be identified and defined....

  2. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids and... sources and paths of fluid leakage, and means of detecting leakage. (2) Flammability characteristics of... escape by leakage of a fluid system must be identified and defined. (Secs. 313(a), 601, 603, 604,...

  3. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids and... sources and paths of fluid leakage, and means of detecting leakage. (2) Flammability characteristics of... escape by leakage of a fluid system must be identified and defined....

  4. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the...) Possible sources and paths of fluid leakage, and means of detecting leakage. (2) Flammability... vapors might escape by leakage of a fluid system must be identified and defined. (Secs. 313(a), 601,...

  5. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... or vapors might escape by leakage of a fluid system, there must be means to minimize the probability... be considered: (1) Possible sources and paths of fluid leakage, and means of detecting leakage. (2... flammable fluids or vapors might escape by leakage of a fluid system must be identified and defined....

  6. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....4460 Section 57.4460 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of...

  7. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....4460 Section 57.4460 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of...

  8. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....4460 Section 57.4460 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of...

  9. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....4460 Section 57.4460 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of...

  10. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....4460 Section 57.4460 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of...

  11. Developing a flammability test system for sunglasses: results

    NASA Astrophysics Data System (ADS)

    Magri, Renan; Ventura, Liliane

    2015-03-01

    Sunglasses popularity has increased tremendously. This fact has further led to the need of certificating sunglasses accordingly to the standard NBR 15111 to protect consumers from damages and secondary hazards caused by sunglasses use. The ongoing need comes at the expense that none certification institution in Brazil performs all tests procedures required by the NBR 15111. This manuscript presents the development of a flammability test system for sunglasses and the assessments results. The equipment for testing flammability developed is made of an electrical furnace with a thermocouple and electronic system that maintains the temperature in 650 ºC. This furnace heats a steel rod used for testing flammability. A steel cable connected to a linear actuator drives the rod. The main control system is based on an ARM Cortex M0 microcontroller and we developed a PC interface in LabView to acquire data and store it. The equipment built also has a control panel with a push button, status LEDs and temperature indicator. We performed flammability tests in 45 sunglasses: 45 lenses and 45 frames using the equipment described. None of the samples ignited or continued to glow when the test has finished, however, all polycarbonate samples were melted in the contact region with the steel rod. All samples complied with the NBR 15111. The proof argues that the polycarbonate is extremely resistant to ignition.

  12. Opening Address

    NASA Astrophysics Data System (ADS)

    Crovini, L.

    1994-01-01

    IMGC this is an extremely valuable opportunity to compare our results with others using combined x-ray and optical interferometry to measure Si lattice spacing and dimensional and mass metrology to determine Si density. The initial impetus for the organization of this workshop was given by several colleagues, and with special emphasis and competence by the late Prof. Peter Seyfried of the PTB. We all mourn the loss of such a distinguished scientist to whom very important achievements in NA determination have to be credited. Prof. Seyfried was well known at the IMGC, some of our scientists having very profitably cooperated with him and his co-workers—a cooperation that is being steadily carried on. I wish to acknowledge the endorsements of the Regione Piemonte, of the CNR, of Turin University, and of the Commission of the European Communities, in terms of grants and other resources without which the workshop could not have been realized. I also wish to very warmly thank my colleagues on the Organizing Committee who have worked so well for this event. Lastly, I am pleased to acknowledge the fruitful cooperation between the IMGC and the Istituto di Fisica Generale "A Avogadro"—not the first case of its kind and, I am convinced, not the last. To conclude, let me draw your attention to an enlargement of an Italian stamp commemorating A Avogadro. The statement reads: "Equal volumes of gas in the same temperature and pressure conditions contain the same number of molecules". He simply stated the existence of such a number, leaving us with the pleasure of measuring it.

  13. The flammability limits of lean fuel-air mixtures: thermochemical and kinetic criteria for explosion hazards.

    PubMed

    Burgess, D; Hertzberg, M

    1975-01-01

    The present state of knowledge is reviewed concisely in terms of the experimental methods used, the effect of apparatus size, accuracy of data, methods of data presentation, and the sensitivity of the limits to initial temperature and pressure. The heat of combustion per mole of gas mixture at the lean limit is a reliable thermochemical criterion for the flammability of organic fuels with comparable reactivities. The limit calorific value for the heavy paraffins is 11.5 +/- 0.1 kcal mole -1. However, kinetic effects strongly influence this value. Highly reactive fuels (hydrogen, acetylene) require lower energy contents, whereas less reactive fuels (ammonia) require higher values. Hydrogen-starved fuels (carbon monoxide, cyanogen) show marked anomalies and are sensitive to impurities that can provide H-atom chain carriers. These kinetic effects are reflected in the experimentally measurable burning velocity of the fuel. This parameter is a key ingredient in the theory of flammable limits, which is briefly sketched. Five competing processes dissipate power from the combustion wave and quench it at some characteristic limit velocity. The prevalent consensus that the limits are controlled by natural convection is clearly demonstrated, and the complex interplay of kinetics and thermochemistry follows logically therefrom.

  14. Effects of Radiative and Diffusive Transport Processes on Premixed Flames near Flammability Limits

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, Angel; Ronney, Paul D.

    1991-01-01

    A study of the mechanisms of flammability limits and the dynamics of flame extinguishment in premixed gas flames is described, a novel feature of which is the use of diluent gases having a wide range of radiative and diffusive transport properties. This feature enables an assessment of the importance of volumetric heat losses and Lewis number effects on these mechanisms. Additionally, effects of flame dynamics and flame front curvature are studied by employing spherically expanding flames obtained in a microgravity environment whereby natural convection is eliminated. New diagnostics include chamber pressure measurements and the first reported species concentration measurements in a microgravity combustion experiment. The limit mechanisms and extinguishment phenomena are found to be strongly influenced by the combined effects of radiant heat loss, Lewis number and flame curvature. Two new and as yet not well understood phenomena are reported: 'double flames' in rich H2-O2-CO2 mixtures and an 'inverse flammability region' in rich C3H8-O2-CO2 mixtures.

  15. Estimation of the lower flammability limit of organic compounds as a function of temperature.

    PubMed

    Rowley, J R; Rowley, R L; Wilding, W V

    2011-02-15

    A new method of estimating the lower flammability limit (LFL) of general organic compounds is presented. The LFL is predicted at 298 K for gases and the lower temperature limit for solids and liquids from structural contributions and the ideal gas heat of formation of the fuel. The average absolute deviation from more than 500 experimental data points is 10.7%. In a previous study, the widely used modified Burgess-Wheeler law was shown to underestimate the effect of temperature on the lower flammability limit when determined in a large-diameter vessel. An improved version of the modified Burgess-Wheeler law is presented that represents the temperature dependence of LFL data determined in large-diameter vessels more accurately. When the LFL is estimated at increased temperatures using a combination of this model and the proposed structural-contribution method, an average absolute deviation of 3.3% is returned when compared with 65 data points for 17 organic compounds determined in an ASHRAE-style apparatus. PMID:21144650

  16. An Earth-Based Equivalent Low Stretch Apparatus to Assess Material Flammability for Microgravity & Extraterrestrial Fire-Safety Applications

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Beeson, H.; Haas, J.

    2001-01-01

    One of the performance goals for NASA's enterprise of Human Exploration and Development of Space (HEDS) is to develop methods, data bases, and validating tests for material flammability characterization, hazard reduction, and fire detection/suppression strategies for spacecraft and extraterrestrial habitats. This work addresses these needs by applying the fundamental knowledge gained from low stretch experiments to the development of a normal gravity low stretch material flammability test method. The concept of the apparatus being developed uses the low stretch geometry to simulate the conditions of the extraterrestrial environment through proper scaling of the sample dimensions to reduce the buoyant stretch in normal gravity. The apparatus uses controlled forced-air flow to augment the low stretch to levels which simulate Lunar or Martian gravity levels. In addition, the effect of imposed radiant heat flux on material flammability can be studied with the cone heater. After breadboard testing, the apparatus will be integrated into NASA's White Sands Test Facility's Atmosphere-Controlled Cone Calorimeter for evaluation as a new materials screening test method.

  17. 16 CFR 1609.1 - Text of the Flammable Fabrics Act of 1953, as amended in 1954.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Text of the Flammable Fabrics Act of 1953... FLAMMABLE FABRICS ACT REGULATIONS TEXT OF THE FLAMMABLE FABRICS ACT OF 1953, AS AMENDED IN 1954, PRIOR TO 1967 AMENDMENT AND REVISION § 1609.1 Text of the Flammable Fabrics Act of 1953, as amended in 1954....

  18. 16 CFR 1609.1 - Text of the Flammable Fabrics Act of 1953, as amended in 1954.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Text of the Flammable Fabrics Act of 1953... FLAMMABLE FABRICS ACT REGULATIONS TEXT OF THE FLAMMABLE FABRICS ACT OF 1953, AS AMENDED IN 1954, PRIOR TO 1967 AMENDMENT AND REVISION § 1609.1 Text of the Flammable Fabrics Act of 1953, as amended in 1954....

  19. 16 CFR 1609.1 - Text of the Flammable Fabrics Act of 1953, as amended in 1954.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Text of the Flammable Fabrics Act of 1953... FLAMMABLE FABRICS ACT REGULATIONS TEXT OF THE FLAMMABLE FABRICS ACT OF 1953, AS AMENDED IN 1954, PRIOR TO 1967 AMENDMENT AND REVISION § 1609.1 Text of the Flammable Fabrics Act of 1953, as amended in 1954....

  20. 16 CFR 1609.1 - Text of the Flammable Fabrics Act of 1953, as amended in 1954.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Text of the Flammable Fabrics Act of 1953... FLAMMABLE FABRICS ACT REGULATIONS TEXT OF THE FLAMMABLE FABRICS ACT OF 1953, AS AMENDED IN 1954, PRIOR TO 1967 AMENDMENT AND REVISION § 1609.1 Text of the Flammable Fabrics Act of 1953, as amended in 1954....

  1. Automated spray cleaning using flammable solvents in a glovebox

    SciTech Connect

    Garcia, P.; Meirans, L.

    1998-05-01

    The phase-out of the ozone-depleting solvents has forced industry to look to solvents such as alcohol, terpenes and other flammable solvents to perform the critical cleaning processes. These solvents are not as efficient as the ozone-depleting solvents in terms of soil loading, cleaning time and drying when used in standard cleaning processes such as manual sprays or ultrasonic baths. They also require special equipment designs to meet part cleaning specifications and operator safety requirements. This paper describes a cleaning system that incorporates the automated spraying of flammable solvents to effectively perform precision cleaning processes. Key to the project`s success was the development of software that controls the robotic system and automatically generates robotic cleaning paths from three dimensional CAD models of the items to be cleaned.

  2. A flammability study of thin plastic film materials

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1990-01-01

    The Materials Science Laboratory at the Kennedy Space Center presently conducts flammability tests on thin plastic film materials by using a small needle rake method. Flammability data from twenty-two thin plastic film materials were obtained and cross-checked by using three different testing methods: (1) the presently used small needle rake; (2) the newly developed large needle rake; and (3) the previously used frame. In order to better discern the melting-burning phenomenon of thin plastic film material, five additional specific experiments were performed. These experiments determined the following: (1) the heat sink effect of each testing method; (2) the effect of the burn angle on the burn length or melting/shrinkage length; (3) the temperature profile above the ignition source; (4) the melting point and the fire point of each material; and (5) the melting/burning profile of each material via infrared (IR) imaging. The results of these experimentations are presented.

  3. Fires in the Cenozoic: a late flowering of flammable ecosystems.

    PubMed

    Bond, William J

    2014-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system. PMID:25601873

  4. Fires in the Cenozoic: a late flowering of flammable ecosystems.

    PubMed

    Bond, William J

    2014-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system.

  5. Fires in the Cenozoic: a late flowering of flammable ecosystems

    PubMed Central

    Bond, William J.

    2015-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system. PMID:25601873

  6. Tank 24-C-103 headspace flammability. Revision 1

    SciTech Connect

    Huckaby, J.L.

    1994-05-01

    Information regarding flammable vapors, gases, and aerosols is presented and interpreted to help resolve the tank 241-C-103 headspace flammability issue. Analyses of recent vapor and liquid samples, as well as visual inspections of the tank headspace, are discussed in the context of tank dynamics. Concern that the headspace of tank 241-C-103 may contain a flammable mixture of organic vapors and an aerosol of combustible organic liquid droplets arises from the presence of a layer of organic liquid in the tank. This organic liquid is believed to have originated in the plutonium-uranium extraction (PUREX) process, having been stored initially in tank 241-C-102 and apparently transferred to tank 241-C-103 in 1975 (Carothers 1988). Analyses of samples of the organic liquid collected in 1991 and 1993 indicate that the primary constituents are tributyl phosphate (TBP) and several semivolatile hydrocarbons (Prentice 1991, Pool and Bean 1994). This is consistent with the premise that the organic waste came from the PUREX process, because the PUREX process used a solution of TBP in a diluent composed of the n-C{sub 11}H{sub 24} to n-C{sub 15}H{sub 32} normal paraffinic hydrocarbons (NPH).

  7. Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?

    NASA Technical Reports Server (NTRS)

    Harper, Susana A.; Juarez, Alfredo; Perez, Horacio, III; Hirsch, David B.; Beeson, Harold D.

    2016-01-01

    NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.

  8. Bark flammability as a fire-response trait for subalpine trees

    PubMed Central

    Frejaville, Thibaut; Curt, Thomas; Carcaillet, Christopher

    2013-01-01

    Relationships between the flammability properties of a given plant and its chances of survival after a fire still remain unknown. We hypothesize that the bark flammability of a tree reduces the potential for tree survival following surface fires, and that if tree resistance to fire is provided by a thick insulating bark, the latter must be few flammable. We test, on subalpine tree species, the relationship between the flammability of bark and its insulating ability, identifies the biological traits that determine bark flammability, and assesses their relative susceptibility to surface fires from their bark properties. The experimental set of burning properties was analyzed by Principal Component Analysis to assess the bark flammability. Bark insulating ability was expressed by the critical time to cambium kill computed from bark thickness. Log-linear regressions indicated that bark flammability varies with the bark thickness and the density of wood under bark and that the most flammable barks have poor insulating ability. Susceptibility to surface fires increases from gymnosperm to angiosperm subalpine trees. The co-dominant subalpine species Larix decidua (Mill.) and Pinus cembra (L.) exhibit large differences in both flammability and insulating ability of the bark that should partly explain their contrasted responses to fires in the past. PMID:24324473

  9. Reduction of hydrogen cyanide concentrations and acute inhalation toxicity from flexible polyurethane foam combustion products by the addition of copper compounds. Part 3. The effect of copper additives on the flammability characteristics of flexible polyurethane foam

    SciTech Connect

    Levin, B.C.; Braun, E.; Shields, J.R.; Lowe, D.

    1990-10-01

    The report addresses the issue of whether the addition of a copper compound to a flexible polyurethane foam would affect the flammability characteristics of the foam. The following properties were examined: (1) ignitability in three systems (the NBS Toxicity Test Method, the Cone Calorimeter, and Lateral Ignition and Flame Spread Test (LIFT)), (2) heat release rate under small-scale (Cone Calorimeter) and medium-scale (furniture calorimeter), (3) smoke obscuration (Cone Calorimeter), and (4) rate of flame spread (LIFT). In all cases, no differences in flammability characteristics between the treated and untreated foam were observed.

  10. 16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 5 Figure 5 to Part...

  11. 16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 5 Figure 5 to Part...

  12. 16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 5 Figure 5 to Part...

  13. 16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 5 Figure 5 to Part...

  14. 16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 5 Figure 5 to Part...

  15. Evaluation of the generation and release of flammable gases in tank 241-SY-101

    SciTech Connect

    Babad, H.; Johnson, G.D.; Lechelt, J.A.; Reynolds, D.A. ); Pederson, L.R.; Strachan, D.M. ); Meisel, D.; Jonah, C. ); Ashby, E.C. )

    1991-11-01

    Tank 241-SY-101 is a double shell, high-level waste tank located in the 200 West Area of the Hanford Site. This tank contains about 1 million gallons of waste that was concentrated at the 242-S Evaporator. Shortly after the waste was put in the tank, the waste began to expand because the generation of gases. In 1990 this tank was declared to have an unreviewed safety question because of the periodic release of hydrogen and nitrous oxide. A safety program was established to conduct a characterization of the waste and vented gases and to determine an effective means to prevent the accumulation of flammable gases in the tank dome space and ventilation system. Results of the expanded characterization conducted in fiscal year 1991 are presented. The use of gas chromatographs, mass spectrometers, and hydrogen-specific monitors provided a greater understanding of the vented gases. Additional instrumentation placed in the tank also helped to provide more detailed information on tank temperatures, gas pressure, and gas flow rates. An extensive laboratory study involving the Westinghouse Hanford Company, Pacific Northwest Laboratory, Argonne National Laboratory, and the Georgia Institute of Technology was initiated for the purpose of determining the mechanisms responsible for the generation of various gases. These studies evaluate both radiolytic and thermochemical processes. Results of the first series of experiments are described.

  16. Low-Flammability PTFE for High-Oxygen Environments

    NASA Technical Reports Server (NTRS)

    Walle, E.; Fallon, B.; Sheppard, A.

    1986-01-01

    Modified forming process removes volatile combustible materials. Flammability of cable-wrapping tape reduced by altering tape-manufacturing process. In new manufacturing process, tape formed by proprietary process of screw extrusion, followed by washing in solvent and drying. Tape then wrapped as before. Spectrogram taken after extrusion, washing, and drying shows lower hydrocarbon content. PTFE formed by new process suited to oxygen-rich environments. Safe in liquid oxygen of Space Shuttle tank and in medical uses; thin-wall shrinkable tubing in hospital test equipment, surgical instruments, and implants.

  17. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    SciTech Connect

    Johnson, G.D.

    1991-08-01

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

  18. Effects of Globally Waste Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    SciTech Connect

    Stewart, Charles W.; Fountain, Matthew S.; Huckaby, James L.; Mahoney, Lenna A.; Meyer, Perry A.; Wells, Beric E.

    2005-08-02

    Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

  19. 46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 CFR parts 172, 173, and 176. ... 46 Shipping 7 2010-10-01 2010-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a)...

  20. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Newly produced airplanes: Fuel...

  1. 77 FR 76004 - Submission for OMB Review; Comment Request-Flammability Standards for Children's Sleepwear

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... October 4, 2012, and October, 17, 2012, (77 FR 60684, 77 FR 63799) the Consumer Product Safety Commission... COMMISSION Submission for OMB Review; Comment Request--Flammability Standards for Children's Sleepwear AGENCY... a collection of information associated with the flammability standards for children's sleepwear...

  2. 49 CFR 173.150 - Exceptions for Class 3 (flammable and combustible liquids).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... liquids). 173.150 Section 173.150 Transportation Other Regulations Relating to Transportation PIPELINE AND... Class 3 (flammable and combustible liquids). (a) General. Exceptions for hazardous materials shipments... flammable liquids (Class 3) and combustible liquids are excepted from labeling requirements, unless...

  3. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... purpose of this appendix, the tank is considered inert when the bulk average oxygen concentration within... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... within the fuel tank not occupied by liquid fuel. N25.3Fuel tank flammability exposure analysis. (a)...

  4. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... purpose of this appendix, the tank is considered inert when the bulk average oxygen concentration within... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... within the fuel tank not occupied by liquid fuel. N25.3Fuel tank flammability exposure analysis. (a)...

  5. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... purpose of this appendix, the tank is considered inert when the bulk average oxygen concentration within... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... within the fuel tank not occupied by liquid fuel. N25.3Fuel tank flammability exposure analysis. (a)...

  6. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... purpose of this appendix, the tank is considered inert when the bulk average oxygen concentration within... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... within the fuel tank not occupied by liquid fuel. N25.3Fuel tank flammability exposure analysis. (a)...

  7. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... purpose of this appendix, the tank is considered inert when the bulk average oxygen concentration within... flammability exposure time for a fuel tank. (k) Oxygen evolution occurs when oxygen dissolved in the fuel is... within the fuel tank not occupied by liquid fuel. N25.3Fuel tank flammability exposure analysis. (a)...

  8. 46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 CFR parts 172, 173, and 176. ... 46 Shipping 7 2013-10-01 2013-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a)...

  9. 46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 CFR parts 172, 173, and 176. ... 46 Shipping 7 2014-10-01 2014-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a)...

  10. 46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 CFR parts 172, 173, and 176. ... 46 Shipping 7 2012-10-01 2012-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a)...

  11. 77 FR 48505 - Submission for OMB Review; Comment Request-Flammability Standards for Carpets and Rugs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... COMMISSION Submission for OMB Review; Comment Request--Flammability Standards for Carpets and Rugs AGENCY: Consumer Product Safety Commission. ACTION: Notice. SUMMARY: In the Federal Register of June 8, 2012 (74 FR... flammability standards for carpets and rugs. No comments were received in response to that notice....

  12. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flammable or combustible liquid storage..., DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable...

  13. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flammable or combustible liquid storage..., DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable...

  14. 30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Surface flammable or combustible liquid storage..., DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage...

  15. 30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface flammable or combustible liquid storage..., DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage...

  16. 46 CFR 111.106-9 - Classification of flammable or combustible cargo storage and handling locations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Classification of flammable or combustible cargo storage and handling locations. 111.106-9 Section 111.106-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations on OSVs § 111.106-9 Classification of flammable...

  17. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet of any person's work...

  18. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet of any person's work...

  19. Safe Handling and Use of Flammable and Combustible Materials. Module SH-30. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safe handling and use of flammable and combustible materials is one of 50 modules concerned with job safety and health. This module introduces the student to the hazards of flammable and combustible materials and the measures necessary to control those hazards. Following the introduction, 14 objectives (each keyed to a page…

  20. 46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 CFR parts 172, 173, and 176. ... 46 Shipping 7 2011-10-01 2011-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a)...

  1. Differences in Leaf Flammability, Leaf Traits and Flammability-Trait Relationships between Native and Exotic Plant Species of Dry Sclerophyll Forest

    PubMed Central

    Murray, Brad R.; Hardstaff, Lyndle K.; Phillips, Megan L.

    2013-01-01

    The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest. PMID:24260169

  2. The dynamics of flash fires involving flammable hydrocarbon liquids.

    PubMed

    DeHaan, J D

    1996-03-01

    Victims of fires are sometimes discovered to have less-than-lethal levels of carbon monoxide (CO) in the blood and no significant antemortem fire damage. Such occurrences are often linked to flash fires involving volatile hydrocarbon fuels. In this study, the dynamics of hydrocarbon fuel fires are examined, and the results of fullscale room tests ignited with small (< 2 L) quantities of flammable liquid are found to confirm the theoretical predictions. These tests showed that flame plumes with temperatures of 500-975 degrees C were produced above flammable liquids. Ignition of their vapors in a carpeted room produced a very short-lived flash of fire throughout the room, followed by intense flames in a layer above the floor approximately 1 m deep, which quickly degenerated to isolated pools of low flames. Combustion of hydrocarbon vapors in a room caused oxygen levels to drop below 8.5% in < 100 s, while causing carbon dioxide (CO2) levels to increase to 12-16% whether the door to the room was open or closed. Production of CO trailed maximum CO2 production by 15-30 s. A victim exposed to such a fire may collapse from extreme heat (aided by the water vapor created by the combustion of hydrocarbons), weakened by oxygen deprivation, before CO inhalation becomes a significant factor.

  3. Methods development for measuring and classifying flammability/combustibility of refrigerants. Interim report, task 2 - test plan

    SciTech Connect

    Heinonen, E.W.; Tapscott, R.E.

    1994-07-01

    Regulations on alternative refrigerants and concerns for the environment are forcing the refrigeration industry to consider the use of potentially flammable fluids to replace CFC fluids currently in use. The objectives of this program are to establish the conditions under which refrigerants and refrigerant blends exhibit flammability and to develop appropriate methods to measure flammability.

  4. 16 CFR 1145.3 - Extremely flammable contact adhesives; risk of burns from explosive vapor ignition and flashback...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Extremely flammable contact adhesives; risk... TO OTHER ACTS UNDER THE CONSUMER PRODUCT SAFETY ACT § 1145.3 Extremely flammable contact adhesives... associated with certain extremely flammable contact adhesives under the Consumer Product Safety Act...

  5. 16 CFR 1145.3 - Extremely flammable contact adhesives; risk of burns from explosive vapor ignition and flashback...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Extremely flammable contact adhesives; risk... TO OTHER ACTS UNDER THE CONSUMER PRODUCT SAFETY ACT § 1145.3 Extremely flammable contact adhesives... associated with certain extremely flammable contact adhesives under the Consumer Product Safety Act...

  6. 16 CFR 1145.3 - Extremely flammable contact adhesives; risk of burns from explosive vapor ignition and flashback...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Extremely flammable contact adhesives; risk... TO OTHER ACTS UNDER THE CONSUMER PRODUCT SAFETY ACT § 1145.3 Extremely flammable contact adhesives... associated with certain extremely flammable contact adhesives under the Consumer Product Safety Act...

  7. 16 CFR 1145.3 - Extremely flammable contact adhesives; risk of burns from explosive vapor ignition and flashback...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Extremely flammable contact adhesives; risk... TO OTHER ACTS UNDER THE CONSUMER PRODUCT SAFETY ACT § 1145.3 Extremely flammable contact adhesives... associated with certain extremely flammable contact adhesives under the Consumer Product Safety Act...

  8. Ammonia Results Review for Retained Gas Sampling

    SciTech Connect

    Mahoney, Lenna A.

    2000-09-20

    This report was prepared as part of a task supporting the deployment of the retained gas sampler (RGS) system in Flammable Gas Watch List Tanks. The emphasis of this report is on presenting supplemental information about the ammonia measurements resulting from retained gas sampling of Tanks 241-AW-101, A-101, AN-105, AN-104, AN-103, U-103, S-106, BY-101, BY-109, SX-106, AX-101, S-102, S-111, U-109, and SY-101. This information provides a better understanding of the accuracy of past RGS ammonia measurements, which will assist in determining flammable and toxicological hazards.

  9. Dynamics of Crust Dissolution and Gas Release in Tank 241-SY-101

    SciTech Connect

    SD Rassat; CW Stewart; BE Wells; WL Kuhn; ZI Antoniak; JM Cuta; KP Recknagle; G Terrones; VV Viswanathan; JH Sukamto; DP Mendoza

    2000-01-26

    Due primarily to an increase in floating crust layer thickness, the waste level in Hanford Tank 241-SY-101 (SY-101) has grown appreciably, and the flammable gas volume stored in the crust has become a potential hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from the nonconnective layer at the bottom of the tank, SY-101 will be diluted to dissolve a large fraction of the solids that allow the waste to retain gas. In this work we develop understanding of the state of the tank waste and some of its physical properties, investigate how added water will be distributed in the tank and affect the waste, and use the information to evaluate mechanisms and rates of waste solids dissolution and gas release. This work was completed to address these questions and in support of planning and development of controls for the SY-101 Surface Level Rise Remediation Project. Particular emphasis is given to dissolution of and gas release from the crust, although the effects of back-dilution on all waste layers are addressed. The magnitude and rates of plausible gas release scenarios are investigated, and it is demonstrated that none of the identified mechanisms of continuous (dissolution-driven) or sudden gas release, even with conservative assumptions, lead to domespace hydrogen concentrations exceeding the lower flammability limit. This report documents the results of studies performed in 1999 to address the issues of the dynamics, of crust dissolution and gas release in SY-101. It contains a brief introduction to the issues at hand; a summary of our knowledge of the SY-101 crust and other waste properties, including gas fractions, strength and volubility; a description of the buoyancy and dissolution models that are applied to predict the crust response to waste transfers and back dilution; and a discussion of the effectiveness of mixing for water added below the crust and the limited potential for significant stratification

  10. C(60) reduces the flammability of polypropylene nanocomposites by in situ forming a gelled-ball network.

    PubMed

    Song, Ping'an; Zhu, Yan; Tong, Lifang; Fang, Zhengping

    2008-06-01

    The thermal and flame retardancy properties of polypropylene/fullerene (PP/C(60)) nanocomposites were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and cone calorimetry with the C(60) loading varied from 0.5 to 2% by weight. Dispersion of C(60) in the PP matrix was characterized by transmission electron microscopy (TEM) and optical microscopy (OM). TGA and DSC results showed that the presence of C(60) could remarkably enhance the thermal property and cone calorimeter measurements suggested that C(60) could to some extent reduce the flammability of PP, with a significant reduction in peak heat release rate and a much longer time to ignition. Furthermore, the larger the loading level of C(60), the better the flame retardancy property of PP/C(60) nanocomposites. The flame retardation mechanism and corresponding model were proposed with the help of rheological measurements, TEM and x-ray diffraction. C(60) reduced the flammability of PP by trapping free radicals in the gas phase and in situ forming a gelled-ball crosslink network to improve the flame retardancy of PP in the condensed phase. Finally, this suggested mechanism was supported by the results of advanced rheological extended systems (ARES), gel content, infrared spectrum, OM, and atomic force microscopy (AFM) measurements. PMID:21825774

  11. C60 reduces the flammability of polypropylene nanocomposites by in situ forming a gelled-ball network

    NASA Astrophysics Data System (ADS)

    Song, Ping'an; Zhu, Yan; Tong, Lifang; Fang, Zhengping

    2008-06-01

    The thermal and flame retardancy properties of polypropylene/fullerene (PP/C60) nanocomposites were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and cone calorimetry with the C60 loading varied from 0.5 to 2% by weight. Dispersion of C60 in the PP matrix was characterized by transmission electron microscopy (TEM) and optical microscopy (OM). TGA and DSC results showed that the presence of C60 could remarkably enhance the thermal property and cone calorimeter measurements suggested that C60 could to some extent reduce the flammability of PP, with a significant reduction in peak heat release rate and a much longer time to ignition. Furthermore, the larger the loading level of C60, the better the flame retardancy property of PP/C60 nanocomposites. The flame retardation mechanism and corresponding model were proposed with the help of rheological measurements, TEM and x-ray diffraction. C60 reduced the flammability of PP by trapping free radicals in the gas phase and in situ forming a gelled-ball crosslink network to improve the flame retardancy of PP in the condensed phase. Finally, this suggested mechanism was supported by the results of advanced rheological extended systems (ARES), gel content, infrared spectrum, OM, and atomic force microscopy (AFM) measurements.

  12. Seasonal and local differences in leaf litter flammability of six Mediterranean tree species.

    PubMed

    Kauf, Zorica; Fangmeier, Andreas; Rosavec, Roman; Španjol, Željko

    2015-03-01

    One of the suggested management options for reducing fire danger is the selection of less flammable plant species. Nevertheless, vegetation flammability is both complex and dynamic, making identification of such species challenging. While large efforts have been made to connect plant traits to fire behavior, seasonal changes and within species variability of traits are often neglected. Currently, even the most sophisticated fire danger systems presume that intrinsic characteristics of leaf litter stay unchanged, and plant species flammability lists are often transferred from one area to another. In order to assess if these practices can be improved, we performed a study examining the relationship between morphological characteristics and flammability parameters of leaf litter, thereby taking into account seasonal and local variability. Litter from six Mediterranean tree species was sampled throughout the fire season from three different locations along a climate gradient. Samples were subjected to flammability testing involving an epiradiator operated at 400 °C surface temperature with 3 g sample weight. Specific leaf area, fuel moisture content, average area, and average mass of a single particle had significant influences on flammability parameters. Effects of sampling time and location were significant as well. Due to the standardized testing conditions, these effects could be attributed to changes in intrinsic characteristics of the material. As the aforementioned effects were inconsistent and species specific, these results may potentially limit the generalization of species flammability rankings. Further research is necessary in order to evaluate the importance of our findings for fire danger modeling. PMID:25537154

  13. Flammability across the gymnosperm phylogeny: the importance of litter particle size.

    PubMed

    Cornwell, William K; Elvira, Alba; van Kempen, Lute; van Logtestijn, Richard S P; Aptroot, André; Cornelissen, J Hans C

    2015-04-01

    Fire is important to climate, element cycles and plant communities, with many fires spreading via surface litter. The influence of species on the spread of surface fire is mediated by their traits which, after senescence and abscission, have 'afterlife' effects on litter flammability. We hypothesized that differences in litter flammability among gymnosperms are determined by litter particle size effects on litterbed packing. We performed a mesocosm fire experiment comparing 39 phylogenetically wide-ranging gymnosperms, followed by litter size and shape manipulations on two chemically contrasting species, to isolate the underlying mechanism. The first-order control on litter flammability was, indeed, litter particle size in both experiments. Most gymnosperms were highly flammable, but a prominent exception was the non-Pinus Pinaceae, in which small leaves abscised singly produced dense, non-flammable litterbeds. There are two important implications: first, ecosystems dominated by gymnosperms that drop small leaves separately will develop dense litter layers, which will be less prone to and inhibit the spread of surface litter fire. Second, some of the needle-leaved species previously considered to be flammable in single-leaf experiments were among the least flammable in litter fuel beds, highlighting the role of the litter traits of species in affecting surface fire regimes. PMID:25675853

  14. Flammability across the gymnosperm phylogeny: the importance of litter particle size.

    PubMed

    Cornwell, William K; Elvira, Alba; van Kempen, Lute; van Logtestijn, Richard S P; Aptroot, André; Cornelissen, J Hans C

    2015-04-01

    Fire is important to climate, element cycles and plant communities, with many fires spreading via surface litter. The influence of species on the spread of surface fire is mediated by their traits which, after senescence and abscission, have 'afterlife' effects on litter flammability. We hypothesized that differences in litter flammability among gymnosperms are determined by litter particle size effects on litterbed packing. We performed a mesocosm fire experiment comparing 39 phylogenetically wide-ranging gymnosperms, followed by litter size and shape manipulations on two chemically contrasting species, to isolate the underlying mechanism. The first-order control on litter flammability was, indeed, litter particle size in both experiments. Most gymnosperms were highly flammable, but a prominent exception was the non-Pinus Pinaceae, in which small leaves abscised singly produced dense, non-flammable litterbeds. There are two important implications: first, ecosystems dominated by gymnosperms that drop small leaves separately will develop dense litter layers, which will be less prone to and inhibit the spread of surface litter fire. Second, some of the needle-leaved species previously considered to be flammable in single-leaf experiments were among the least flammable in litter fuel beds, highlighting the role of the litter traits of species in affecting surface fire regimes.

  15. Lean flammability limit of downward propagating hydrogen-air flames

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    1992-01-01

    Detailed multidimensional numerical simulations that include the effects of wall heat losses have been performed to study the dynamics of downward flame propagation and extinguishment in lean hydrogen-air mixtures. The computational results show that a downward propagating flame in an isothermal channel has a flammability limit of around 9.75 percent. This is in excellent agreement with experimental results. Also in excellent agreement are the detailed observations of the flame behavior at the point of extinguishment. The primary conclusion of this work is that detailed numerical simulations that include wall heat losses and the effect of gravity can adequately simulate the dynamics of the extinguishment process in downward-propagating hydrogen-air flames. These simulations can be examined in detail to gain understanding of the actual extinction process.

  16. Non-flammable polyimide materials for aircraft and spacecraft applications

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Supkis, D. E.

    1979-01-01

    Recent developments in polyimide chemistry show promise for producing materials with very low flammability and a wide range of mechanical properties. Polyimide foams can be synthesized to provide fire safety without detectable formation of smoke or toxic byproducts below 204 C (400 F), thus avoiding an environment which is lethal to human habitation. This work has been and is currently being performed under development programs, the objective of which is to provide cost effective processes for producing thermally stable, polyimide flexible resilient foams, thermal-acoustical insulating materials, rigid low density foam panels, and high strength foam structures. The chemical and physical properties demonstrated by these materials represent a technological advancement in the art of thermally stable polyimide polymers which are expected to insure fire protection of structures and components used in air transportation and space exploration. Data compiled to date on thermal, physical and functional properties of these materials are presented.

  17. Effects of Globally Waste-Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    SciTech Connect

    Stewart, Charles W.; Huckaby, James L.; Meyer, Perry A.

    2002-12-18

    Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

  18. Radiolytic Bubble Gas Hydrogen Compositions

    SciTech Connect

    Hester, J.R.

    2003-02-05

    Radioactive waste solids can trap bubbles containing hydrogen that may pose a flammability risk if they are disturbed and hydrogen is released. Whether a release is a problem or not depends, among other things, on the hydrogen composition of the gas. This report develops a method for estimating the hydrogen composition of trapped bubbles based on waste properties.

  19. Radiolytic Bubble Gas Hydrogen Compositions

    SciTech Connect

    Hester, J.R.

    2001-08-28

    Radioactive waste solids can trap bubbles containing hydrogen that may pose a flammability risk if they are disturbed and hydrogen is released. Whether a release is a problem or not depends, among other things, on the hydrogen composition of the gas. This report develops a method for estimating the hydrogen composition of trapped bubbles based on waste properties.

  20. Flammability and Photo-Stability of Selected Polymer Systems

    NASA Technical Reports Server (NTRS)

    Lo, Jeelin

    1981-01-01

    A systematic approach to the improvement of the flammability of epoxy resins, bisphenol-A polycarbonate poly(butylene terephthalate), and Nylon 6.6 by introducing halogens and loop functionality into the flame retardants is described. The phthalides (the loop functionality containing molecules) include 3,3-bis(4-bromophenyl)-phthalide, 3,3-bis(4-chlorophenyl)phthalide, and phenolphthalein. The phthalide containing epoxy resins are synthesized and characterized in comparison with the bisphenol-A epoxy resins in terms of flammability in the copolymer systems. The resins include diglycidyl ethers of phenolphthalein, bisphenol-A. tetrabromobisphenol-A, and tetraoromophenolphthalein. The vaporization of the phthalide additive in the polymers is observed in Thermal Gravimetric Analysis. The flame retardancy is primarily due to the presence of halogens. In the poly(butylene terephthalate) system, the cleavage of the C(sub aromatic) -B bond of the flame retardant additive enhances the crosslinking react ions between the aromatic rings resulting in an increase of char formation. In the epoxy resin systems, loop functionality contributes to char formation to a larger extent. The interaction between the epoxy resin and poly-(butylene terephthalate) follows the mechanism of insertion of the oxirane ring into the ester bond. This mechanism is studied by FT-IR. The investigation of the thermal properties of the char-forming phenol-formaldehyde resins is conducted to provide information for the systematic design of high temperature flame-resistant phenolics. NMR and FT-IR are used to characterize the oligomeric resins and the cured resins. The curing agents used in the study include formaldehyde, s-trioxane and terephthaloyl chloride. The brominated phenolic resins are found to have higher oxygen indices with lower char yields.

  1. Synthesis and characterization of low flammability polymer/layered silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Xin

    There has been significant interest in the applications of polymer nanocomposites in a variety of areas. Polymer/layered silicate nanocomposites have been of interest because of relatively low raw material cost and improved materials properties such as higher Young's modulus, higher thermal deformation temperature, lower small molecule permeability, lower density (compared to metals and traditional glass fiber reinforced composites) as well as low flammability. The relationships between the flammability and the dispersion of the layered silicate platelets inside the polymer matrix is just being established. The complete set of factors that affect the flammability of polymer/layered nanocomposites are not fully identified. In this thesis polymer/layered silicate nanocomposites with different degrees of platelet dispersion were synthesized. The structure of the nanocomposites was characterized by X-ray diffraction (XRD), small angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). The flammability of these nanocomposites was characterized by TGA, cone calorimetry and gasification. By coupling the structural and flammability data it has been concluded that forming a nanometer scale dispersed structure significantly improves the flammability but the details of the degree of dispersion are not critical. The improvement in the flammability arises from the formation of a residue or char layer at the surface of the nanocomposite. This residue layer acts as a radiation shield and as a physical barrier preventing the polymer degradation products from escaping and acting as fuel. It is observed that the stability of the residue layer formed during combustion has major impact on the flammability. This thesis also describes work to improve the flammability of the polymer/layered silicate nanocomposites by enhancing char/residue formation in order to improve the residue layer stability.

  2. The possibility of a reversal of material flammability ranking from normal gravity to microgravity

    NASA Technical Reports Server (NTRS)

    T'Ien, James S.

    1990-01-01

    The purpose of the discussion is to show, by a theoretical model, that one of the material flammability indices, the flammability limit, can be reversed in proper circumstances. A stagnation-point diffusion flame adjacent to a spherical solid-fuel surface is considered. It is shown that a reversal of the limiting oxygen indices from normal gravity and microgravity is possible. Although the example is based on a particular theoretical model with a particular flame configuration and specifically for an oxygen limit, the flammability-limit reversal phenomenon is believed to be more general.

  3. Ag/ZnO nanomaterials as high performance sensors for flammable and toxic gases.

    PubMed

    Simon, Quentin; Barreca, Davide; Gasparotto, Alberto; Maccato, Chiara; Tondello, Eugenio; Sada, Cinzia; Comini, Elisabetta; Devi, Anjana; Fischer, Roland A

    2012-01-20

    Ag/ZnO nanocomposites supported on polycrystalline Al2O3 were synthesized by an unprecedented approach combining plasma enhanced chemical vapor deposition (PE-CVD) of ZnO matrices and the subsequent deposition of Ag nanoparticles (NPs) by radio frequency (RF) sputtering. The system structure, composition and morphology were investigated by glancing incidence x-ray diffraction (GIXRD), secondary ion mass spectrometry (SIMS), field emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy (EDXS). A tailored dispersion and distribution of silver particles could be obtained under mild conditions by the sole variation of the sputtering time. Gas sensing properties toward flammable and toxic gases, both reducing (CH3CH2OH, CH3COCH3) and oxidizing (O3), were investigated in the temperature range 100-400 °C. Beside the high sensitivity, the developed sensors exhibited a response proportional to Ag content, thanks to catalytic and electronic effects promoted by silver NPs. In addition, discrimination between oxidizing and reducing analytes was enabled by a suitable choice of the adopted working temperature.

  4. A Method for Assessing Material Flammability for Micro-Gravity Environments

    NASA Technical Reports Server (NTRS)

    Steinhaus, T.; Olenick, S. M.; Sifuentes, A.; Long, R. T.; Torero, J. L.

    1999-01-01

    On a spacecraft, one of the greatest fears during a mission is the outbreak of a fire. Since spacecraft are enclosed spaces and depend highly on technical electronics, a small fire could cause a large amount of damage. NASA uses upward flame spread as a "worst case scenario" evaluation for materials and the Heat and Visible Smoke Release Rates Test to assess the damage potential of a fire. Details of these tests and the protocols followed are provided by the "Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion" document. As pointed by Ohlemiller and Villa, the upward flame spread test does not address the effect of external radiation on ignition and spread. External radiation, as that coming from an overheated electrical component, is a plausible fire scenario in a space facility and could result in a reversal of the flammability rankings derived from the upward flame spread test. The "Upward Flame Propagation Test" has been the subject of strong criticism in the last few years. In many cases, theoretical exercises and experimental results have demonstrated the possibility of a reversal in the material flammability rankings from normal to micro-gravity. Furthermore, the need to incorporate information on the effects of external radiation and opposed flame spread when ranking materials based on their potential to burn in micro-gravity has been emphasized. Experiments conducted in a 2.2 second drop tower with an ethane burner in an air cross flow have emphasized that burning at the trailing edge is deterred in micro-gravity due to the decreased oxygen transport. For very low air flow velocities (U<0.005 m/s) the flame envelopes the burner and a slight increase in velocity results in extinction of the trailing edge (U>0.01 m/s). Only for U>0.l m/s extinction is observed at the leading edge (blow-off). Three dimensional numerical calculations performed for thin cellulose centrally

  5. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect

    Donna Post Guillen

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  6. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... shall be ventilated with a sufficient volume of air to prevent the accumulation of flammable vapors. (b) In addition, the buildings or rooms shall be— (1) Constructed to meet a fire resistance rating of...

  7. Oxygen Concentration Flammability Thresholds of Selected Aerospace Materials Considered for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Williams, James H.; Harper, Susan A.; Beeson, Harold; Pedley, Michael D.

    2007-01-01

    Materials selection for spacecraft is based on an upward flammability test conducted in a quiescent environment in the highest expected oxygen concentration environment. The test conditions and its pass/fail test logic do not provide sufficient quantitative materials flammability information for an advanced space exploration program. A modified approach has been suggested determination of materials self-extinguishment limits. The flammability threshold information will allow NASA to identify materials with increased flammability risk from oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats. This paper provides data on oxygen concentration self-extinguishment limits under quiescent conditions for selected materials considered for the Constellation Program.

  8. Evaluating Material Flammability in Microgravity and Martian Gravity Compared to the NASA Standard Normal Gravity Test

    NASA Technical Reports Server (NTRS)

    Oslon, Sandra. L.; Ferkul, Paul

    2012-01-01

    Drop tower tests are conducted at Martian gravity to determine the flammability of three materials compared to previous tests in other normal gravity and reduced gravity environments. The comparison is made with consideration of a modified NASA standard test protocol. Material flammability limits in the different gravity and flow environments are tabulated to determine the factor of safety associated with normal gravity flammability screening. Previous testing at microgravity and Lunar gravity indicated that some materials burned to lower oxygen concentrations in low gravity than in normal gravity, although the low g extinction limit criteria are not the same as 1g due to time constraints in drop testing. Similarly, the data presented in this paper for Martian gravity suggest that there is a gravity level below Earth s at which materials burn more readily than on Earth. If proven for more materials, this may indicate the need to include a factor of safety on 1g flammability limits.

  9. Calculated flame temperature (CFT) modeling of fuel mixture lower flammability limits.

    PubMed

    Zhao, Fuman; Rogers, William J; Mannan, M Sam

    2010-02-15

    Heat loss can affect experimental flammability limits, and it becomes indispensable to quantify flammability limits when apparatus quenching effect becomes significant. In this research, the lower flammability limits of binary hydrocarbon mixtures are predicted using calculated flame temperature (CFT) modeling, which is based on the principle of energy conservation. Specifically, the hydrocarbon mixture lower flammability limit is quantitatively correlated to its final flame temperature at non-adiabatic conditions. The modeling predictions are compared with experimental observations to verify the validity of CFT modeling, and the minor deviations between them indicated that CFT modeling can represent experimental measurements very well. Moreover, the CFT modeling results and Le Chatelier's Law predictions are also compared, and the agreement between them indicates that CFT modeling provides a theoretical justification for the Le Chatelier's Law. PMID:19819067

  10. Flammability, odor, offgassing, thermal vacuum stability, and compatibility with aerospace fluids of wire insulations

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Johnson, Harry

    1994-01-01

    The NASA Lewis Research Center requested NASA Johnson Space Center White Sands Test Facility to conduct flammability, odor, offgassing, thermal vacuum stability, and compatibility tests with aerospace fluids of several wire insulations.

  11. Characterization of flammability properties of some thermoplastic and thermoset resins. [for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1978-01-01

    The thermochemical and flammability properties of some thermally stable polymers considered for use in aircraft interiors are described. The properties studied include: (1) thermomechanical properties such as glass transition and melt temperature; (2) dynamic thermogravimetric analysis in anaerobic environment; (3) flammability properties such as oxygen index, flame spread, and smoke evolution; and (4) selected physical properties. The thermoplastic polymers evaluated included polyphenylene sulfide, polyaryl sulfone, 9,9-bis(4-hydroxyphenyl)-fluorene polycarbonate-poly(dimethylsiloxane) and polyether sulfone. The thermoset polymers evaluated included epoxy, bismaleimide, a modified phenolic and polyaromatic melamine resin. These resins were primarily used in the fabrication of glass reinforced prepregs for the construction of experimental panels. Test results and relative rankings of some of the flammability parameters are presented and the relationship of the molecular structure, char yield, and flammability properties of these polymers are discussed.

  12. Investigation of the Extinguishing Features for Liquid Fuels and Organic Flammable Liquids Atomized by a Water Flow

    NASA Astrophysics Data System (ADS)

    Voytkov, Ivan V.; Zabelin, Maksim V.; Vysokomornaya, Olga V.

    2016-02-01

    The processes of heat and mass transfer were investigated experimentally while moving and evaporating the atomized water flow in high-temperature combustion products of typical liquid fuels and organic flammable liquids: gasoline, kerosene, acetone, crude oil, industrial alcohol. We determined typical periods of liquid extinguishing by an atomized water flow of various dispersability. Data of the discharge of extinguishing medium corresponding to various parameters of atomization and duration of using the atomization devices was presented. It is shown that Um≈3.5 m/s is a minimal outflow velocity of droplets during moving while passing the distance of 1m in the high-temperature gas medium to stop the combustion of organic liquids.

  13. Microgravity Flammability of PMMA Rods in Concurrent Flow

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Ferkul, Paul V.

    2015-01-01

    Microgravity experiments burning cast PMMA cylindrical rods in axial flow have been conducted aboard the International Space Station in the Microgravity Science Glovebox (MSG) facility using the Burning and Suppression of Solids (BASS) flow duct, as part of the BASS-II experiment. Twenty-four concurrent-flow tests were performed, focusing on finding flammability limits as a function of oxygen and flow speed. The oxygen was varied by using gaseous nitrogen to vitiate the working volume of the MSG. The speed of the flow parallel to the rod was varied using a fan at the entrance to the duct. Both blowoff and quenching limits were obtained at several oxygen concentrations. Each experiment ignited the rod at the initially hemispherical stagnation tip of the rod, and allowed the flame to develop and heat the rod at a sufficient flow to sustain burning. For blowoff limit tests, the astronaut quickly turned up the flow to obtain extinction. Complementary 5.18-second Zero Gravity Facility drop tests were conducted to compare blowoff limits in short and long duration microgravity. For quenching tests, the flow was incrementally turned down and the flame allowed to stabilize at the new flow condition for at least the solid-phase response time before changing it again. Quenching was observed when the flow became sufficiently weak that the flame could no longer provide adequate heat flux to compensate for the heat losses (conduction into the rod and radiation). A surface energy balance is presented that shows the surface radiative loss exceeds the conductive loss into the rod near the limit. The flammability boundary is shown to represent a critical Damkohler number, expressed in terms of the reaction rate divided by the stretch rate. For the blowoff branch, the boundary exhibits a linear dependence on oxygen concentration and stretch rate, indicating that the temperature at blowoff must be fairly constant. For the quenching branch, the dominance of the exponential nature of

  14. Clothing Flammability and Burn Injuries: Public Opinion Concerning an Overlooked, Preventable Public Health Problem.

    PubMed

    Frattaroli, Shannon; Spivak, Steven M; Pollack, Keshia M; Gielen, Andrea C; Salomon, Michele; Damant, Gordon H

    2016-01-01

    The objective of this study was to describe knowledge of clothing flammability risk, public support for clothing flammability warning labels, and stronger regulation to reduce the risk. As part of a national survey of homeowners about residential sprinkler systems, the authors included questions about clothing flammability. The authors used an online web panel to sample homeowners and descriptive methods to analyze the resulting data. The sample included 2333 homeowners. Knowledge of clothing flammability and government oversight of clothing flammability risk was low. Homeowners were evenly split about the effectiveness of current standards; however, when presented with clothing-related burn injury and death data, a majority (53%) supported stricter standards. Most homeowners (64%) supported warning labels and indicated that such labels would either have no effect on their purchasing decisions (64%) or be an incentive (24%) to purchase an item. Owners of sprinkler-equipped homes were more likely to support these interventions than owners of homes without sprinkler systems. Public knowledge about clothing flammability risks is low. Most homeowners supported clothing labels to inform consumers of this risk and increased government intervention to reduce the risk. PMID:25501786

  15. Clothing Flammability and Burn Injuries: Public Opinion Concerning an Overlooked, Preventable Public Health Problem.

    PubMed

    Frattaroli, Shannon; Spivak, Steven M; Pollack, Keshia M; Gielen, Andrea C; Salomon, Michele; Damant, Gordon H

    2016-01-01

    The objective of this study was to describe knowledge of clothing flammability risk, public support for clothing flammability warning labels, and stronger regulation to reduce the risk. As part of a national survey of homeowners about residential sprinkler systems, the authors included questions about clothing flammability. The authors used an online web panel to sample homeowners and descriptive methods to analyze the resulting data. The sample included 2333 homeowners. Knowledge of clothing flammability and government oversight of clothing flammability risk was low. Homeowners were evenly split about the effectiveness of current standards; however, when presented with clothing-related burn injury and death data, a majority (53%) supported stricter standards. Most homeowners (64%) supported warning labels and indicated that such labels would either have no effect on their purchasing decisions (64%) or be an incentive (24%) to purchase an item. Owners of sprinkler-equipped homes were more likely to support these interventions than owners of homes without sprinkler systems. Public knowledge about clothing flammability risks is low. Most homeowners supported clothing labels to inform consumers of this risk and increased government intervention to reduce the risk.

  16. Model of ASTM Flammability Test in Microgravity: Iron Rods

    NASA Technical Reports Server (NTRS)

    Steinberg, Theodore A; Stoltzfus, Joel M.; Fries, Joseph (Technical Monitor)

    2000-01-01

    There is extensive qualitative results from burning metallic materials in a NASA/ASTM flammability test system in normal gravity. However, this data was shown to be inconclusive for applications involving oxygen-enriched atmospheres under microgravity conditions by conducting tests using the 2.2-second Lewis Research Center (LeRC) Drop Tower. Data from neither type of test has been reduced to fundamental kinetic and dynamic systems parameters. This paper reports the initial model analysis for burning iron rods under microgravity conditions using data obtained at the LERC tower and modeling the burning system after ignition. Under the conditions of the test the burning mass regresses up the rod to be detached upon deceleration at the end of the drop. The model describes the burning system as a semi-batch, well-mixed reactor with product accumulation only. This model is consistent with the 2.0-second duration of the test. Transient temperature and pressure measurements are made on the chamber volume. The rod solid-liquid interface melting rate is obtained from film records. The model consists of a set of 17 non-linear, first-order differential equations which are solved using MATLAB. This analysis confirms that a first-order rate, in oxygen concentration, is consistent for the iron-oxygen kinetic reaction. An apparent activation energy of 246.8 kJ/mol is consistent for this model.

  17. Testing and analysis of a modernized freight wagon's elements flammability

    NASA Astrophysics Data System (ADS)

    Płaczek, M.; Wróbel, A.; Baier, A.

    2016-08-01

    Paper concerns an issue of freight wagon modernization using composite materials. The goal of the project is to elongate the period between repairs (by better corrosion protection) and improve conditions of exploitation of modernized freight wagons (for example easier unloading during winter conditions - no freezes of the charge to the freight wagon body shell). Application of the composite panels to the freight wagon's body shell was proposed as the solution that can solve mentioned problems. The composite panels composed of fiberglass and epoxy resin were proposed. They will be mounted on the body shell using rivet nuts. What is more the body shell of the modernized freight wagon will be painted using an anti-corrosion agent. In this paper the analysis of a flammability of the proposed composition (the composite plate made of fiberglass and epoxy resin mounted to the steel sheet with additional anticorrosion agent) is presented. In the paper results of laboratory tests conducted according to international standards are presented. A series of samples of elements of modernized freight wagons was tested using the created laboratory stand. Obtained results were averaged and the proposed material was assigned to the one of the class of materials for their combustibility.

  18. The USML-1 wire insulation flammability glovebox experiment

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Sacksteder, Kurt R.; Kashiwagi, Takashi

    1995-01-01

    Flame spreading tests have been conducted using thin fuels in microgravity where buoyant convection is suppressed. In spacecraft experiments flames were ignited in quiescent atmospheres with an elevated oxygen content, demonstrating that diffusional mechanisms can be sufficient alone to sustain flame spreading. In ground-based facilities (i.e. drop towers and parabolic aircraft) low-speed convection sustains flames at much lower concentrations of atmospheric oxygen than in quiescent microgravity. Ground-based experiments are limited to very thin fuels (e.g., tissue paper); practical fuels, which are thicker, require more test time than is available. The Glovebox Facility provided for the USML 1 mission provided an opportunity to obtain flame spreading data for thicker fuel Herein we report the results from the Wire Insulation Flammability (WIF) Experiment performed in the Glovebox Facility. This experiment explored the heating, ignition and burning of 0.65 mm thick polyethylene wire insulation in low-speed flows in a reduced gravity environment. Four tests were conducted, two each in concurrent flow (WIF A and C) and opposed flow (WIF B and D), providing the first demonstration of flame spreading in controlled forced convection conducted in space.

  19. Premixed hydrogen-oxygen flames. Part II: Quasi-isobaric ignition near the flammability limits

    SciTech Connect

    He, Longting; Clavin, P. Univ. d'Aix-Marseille )

    1993-06-01

    A numerical study of one-dimensional and time-dependent problems in quasi-isobaric combustion of H2-02 mixtures is carried out with a complex chemical network and detailed molecular transport mechanisms. A first numerical result shows that a diffusive-thermal instability corresponding to a Hopf bifurcation appears in the propagation of planar flames in the neighborhood of the H2-rich flammability limit. The corresponding critical mole fraction of H2 is 0.947 at ordinary conditions with a flame velocity of about 45 cm/s, compared with 0.96 for the flammability limit. The quasi-isobaric ignition by a hot pocket of combustion products is also investigated numerically. The critical size of the hot pockets is determined as a function of the equivalence ratio. It is found that when the H2-rich flammability limit is approached, the critical radius becomes much larger than the flame thickness and moreover, it diverges before reaching the planar flammability limit, at a critical H2 mole fraction about 0.945 at ordinary conditions (compared with 0.96). Thus, planar flames cannot be ignited in this way in the range of H2 mole fractions between 0.945 and 0.96 where the burning velocity varies from about 50 cm/s to few millimeters per second. Near the H2 lean flammability limit the situation is quite different. The critical size is smaller than the planar flame thickness, and spherical flames with a very small initial radius may grow in lean mixtures even beyond the flammability limit of planar flames. These phenomena are explained by an elementary analytical study of a minimal model coupling preferential diffusion mechanisms with the kinetic effects controlling the planar flammability limits.

  20. Materials Safety - Not just Flammability and Toxic Offgassing

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.

    2007-01-01

    For many years, the safety community has focused on a limited subset of materials and processes requirements as key to safety: Materials flammability, Toxic offgassing, Propellant compatibility, Oxygen compatibility, and Stress-corrosion cracking. All these items are important, but the exclusive focus on these items neglects many other items that are equally important to materials safety. Examples include (but are not limited to): 1. Materials process control -- proper qualification and execution of manufacturing processes such as structural adhesive bonding, welding, and forging are crucial to materials safety. Limitation of discussions on materials process control to an arbitrary subset of processes, known as "critical processes" is a mistake, because any process where the quality of the product cannot be verified by inspection can potentially result in unsafe hardware 2 Materials structural design allowables -- development of valid design allowables when none exist in the literature requires extensive testing of multiple lots of materials and is extremely expensive. But, without valid allowables, structural analysis cannot verify structural safety 3. Corrosion control -- All forms of corrosion, not just stress corrosion, can affect structural integrity of hardware 4. Contamination control during ground processing -- contamination control is critical to manufacturing processes such as adhesive bonding and also to elimination foreign objects and debris (FOD) that are hazardous to the crew of manned spacecraft in microgravity environments. 5. Fasteners -- Fastener design, the use of verifiable secondary locking features, and proper verification of fastener torque are essential for proper structural performance This presentation discusses some of these key factors and the importance of considering them in ensuring the safety of space hardware.