Sample records for address future energy

  1. Growing America's Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts produced from a range of abundant, renewable biomass resources. Bioenergy can help ensure a secure, sustainable, and economically sound future by reducing U.S. dependence on foreign oil, developing domestic clean energy sources, and generating domestic green jobs. Bioenergy can also help address growing concerns about climate change by reducing greenhouse gas emissions to create a healthier environment for current and future generations.

  2. Bioenergy: America's Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Bruce; Volz, Sara; Male, Johnathan

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  3. Bioenergy: America's Energy Future

    ScienceCinema

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2018-01-16

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  4. Energy Frontier Research Centers: Helping Win the Energy Innovation Race (2011 EFRC Summit Keynote Address, Secretary of Energy Chu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Steven

    2011-05-25

    Secretary of Energy Steven Chu gave the keynote address at the 2011 EFRC Summit and Forum. In his talk, Secretary Chu highlighted the need to "unleash America's science and research community" to achieve energy breakthroughs. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies ofmore » the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.« less

  5. Towards a sustainable energy future: realities and opportunities.

    PubMed

    Armstrong, Lynda

    2011-05-13

    My purpose in this paper is threefold. First, I would like to examine why the world needs us to produce more energy. Second, I will look at the range of energy sources available for a sustainable future. A number of myths have grown up around the various energy sources and their relative contribution to addressing the global energy challenge: I will seek to dispel some of those. Third, I want to highlight what I see as an urgent need: for more informed decision making and more action in this complex area. © 2011 Royal Society

  6. Energy Frontier Research Centers: Helping Win the Energy Innovation Race (2011 EFRC Summit Keynote Address, Secretary of Energy Chu)

    ScienceCinema

    Chu, Steven

    2017-12-21

    Secretary of Energy Steven Chu gave the keynote address at the 2011 EFRC Summit and Forum. In his talk, Secretary Chu highlighted the need to "unleash America's science and research community" to achieve energy breakthroughs. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  7. Addressing Risk in the Valuation of Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veeramany, Arun; Hammerstrom, Donald J.; Woodward, James T.

    2017-06-26

    Valuation is a mechanism by which potential worth of a transaction between two or more parties can be evaluated. Examples include valuation of transactive energy systems such as electric power system and building energy systems. Uncertainties can manifest while exercising a valuation methodology in the form of lack of knowledge or be inherently embedded in the valuation process. Uncertainty could also exist in the temporal dimension while planning for long-term growth. This paper discusses risk considerations associated with valuation studies in support of decision-making in the presence of such uncertainties. It is often important to have foresight of uncertain entitiesmore » that can impact real-world deployments, such as the comparison or ranking of two valuation studies to determine cost-benefit impacts to multiple stakeholders. The research proposes to address this challenge through simulation and sensitivity analyses to support ‘what-if’ analysis of well-defined future scenarios. This paper describes foundational value of diagrammatic representation techniques such as unified modeling language to understand the implications of not addressing some of the risk elements encountered during the valuation process. The paper includes examples from generation resource adequacy assessment studies (e.g. loss of load) to illustrate the principles of risk in valuation.« less

  8. Transportation Energy Futures: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brogan, J. J.; Aeppli, A. E.; Brown, D. F.

    2013-03-01

    Freight transportation modes—truck, rail, water, air, and pipeline—each serve a distinct share of the freight transportation market. A variety of factors influence the modes chosen by shippers, carriers, and others involved in freight supply chains. Analytical methods can be used to project future modal shares, and federal policy actions could influence future freight mode choices. This report considers how these topics have been addressed in existing literature and offers insights on federal policy decisions with the potential to prompt mode choices that reduce energy use and greenhouse gas emissions.

  9. Earth-Science Research for Addressing the Water-Energy Nexus

    NASA Astrophysics Data System (ADS)

    Healy, R. W.; Alley, W. M.; Engle, M.; McMahon, P. B.; Bales, J. D.

    2013-12-01

    In the coming decades, the United States will face two significant and sometimes competing challenges: preserving sustainable supplies of fresh water for humans and ecosystems, and ensuring available sources of energy. This presentation provides an overview of the earth-science data collection and research needed to address these challenges. Uncertainty limits our understanding of many aspects of the water-energy nexus. These aspects include availability of water, water requirements for energy development, energy requirements for treating and delivering fresh water, effects of emerging energy development technologies on water quality and quantity, and effects of future climates and land use on water and energy needs. Uncertainties can be reduced with an integrated approach that includes assessments of water availability and energy resources; monitoring of surface water and groundwater quantity and quality, water use, and energy use; research on impacts of energy waste streams, hydraulic fracturing, and other fuel-extraction processes on water quality; and research on the viability and environmental footprint of new technologies such as carbon capture and sequestration and conversion of cellulosic material to ethanol. Planning for water and energy development requires consideration of factors such as economics, population trends, human health, and societal values; however, sound resource management must be grounded on a clear understanding of the earth-science aspects of the water-energy nexus. Information gained from an earth-science data-collection and research program can improve our understanding of water and energy issues and lay the ground work for informed resource management.

  10. Application of an Integrated Assessment Model with state-level resolution for examining strategies for addressing air, climate and energy goals

    EPA Science Inventory

    The Global Climate Assessment Model (GCAM) is a global integrated assessment model used for exploring future scenarios and examining strategies that address air pollution, climate change, and energy goals. GCAM includes technology-rich representations of the energy, transportati...

  11. Multidimensional materials and device architectures for future hybrid energy storage

    DOE PAGES

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-07

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated ‘Internet of Things’, there are intensive efforts to develop miniature yet powerful electrical energy storage devices. Here, this review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  12. Multidimensional materials and device architectures for future hybrid energy storage

    NASA Astrophysics Data System (ADS)

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-01

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated `Internet of Things', there are intensive efforts to develop miniature yet powerful electrical energy storage devices. This review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  13. Multidimensional materials and device architectures for future hybrid energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated ‘Internet of Things’, there are intensive efforts to develop miniature yet powerful electrical energy storage devices. Here, this review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  14. Presidential Address: Culture and the Future of Education Research

    ERIC Educational Resources Information Center

    Halse, Christine

    2013-01-01

    Recent changes in higher education have confronted education research with a conundrum: how our traditionally multidisciplinary field can refine itself as a unified discipline. In this address I sketch out what this conundrum may mean for education research, both substantively and methodologically, in the future. I propose that one starting point…

  15. Innovative thermal energy harvesting for future autonomous applications

    NASA Astrophysics Data System (ADS)

    Monfray, Stephane

    2013-12-01

    As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power μ-processors, μ-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies & Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market.

  16. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    AMO is developing advanced technologies that cut energy use and carbon emissions in some of the most energy-intensive processes within U.S. manufacturing. The brochure describes the AMO R&D projects that address these challenges.

  17. Global Gathering Addresses PV Role in Energy Prosperity and Climate Change

    Science.gov Websites

    Mitigation | News | NREL Global Gathering Addresses PV Role in Energy Prosperity and Climate Change Mitigation News Release: Global Gathering Addresses PV Role in Energy Prosperity and Climate Laboratory (NREL), along with their counterparts from solar energy research institutes in Germany and Japan

  18. FUTURE OF ENERGY

    EPA Science Inventory

    A complete Scientific American issue of nine specialist articles was devoted to the concern of powering the global economy and addressing the effects of global warming. Control of atmospheric carbon, transportation fuel, efficient use of energy, the disposition of coal, opportuni...

  19. Energy Options for the Future

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Obenschain, Stephen; Conover, David; Bajura, Rita; Greene, David; Brown, Marilyn; Boes, Eldon; McCarthy, Kathyrn; Christian, David; Dean, Stephen; Kulcinski, Gerald; Denholm, P. L.

    2004-06-01

    This paper summarizes the presentations and discussion at the Energy Options for the Future meeting held at the Naval Research Laboratory in March of 2004. The presentations covered the present status and future potential for coal, oil, natural gas, nuclear, wind, solar, geothermal, and biomass energy sources and the effect of measures for energy conservation. The longevity of current major energy sources, means for resolving or mitigating environmental issues, and the role to be played by yet to be deployed sources, like fusion, were major topics of presentation and discussion.

  20. Solar Energy - An Option for Future Energy Production

    ERIC Educational Resources Information Center

    Glaser, Peter E.

    1972-01-01

    Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)

  1. NREL: Speeches - Nation's Energy Future at Risk

    Science.gov Websites

    Energy Future at Risk, National Lab Director Says For more information contact: George Douglas, 303 -275-4096 e:mail: George Douglas Washington, D.C., July 27, 1999 — America must invest in its energy future now, Richard Truly, director of the U.S. Department of Energy's National Renewable Energy

  2. Models for residential-and commercial-sector energy conservation analysis: Applications, limitations, and future potential

    NASA Astrophysics Data System (ADS)

    Cole, H. E.; Fuller, R. E.

    1980-09-01

    Four of the major models used by DOE for energy conservation analyses in the residential and commercial building sectors are reviewed and critically analyzed to determine how these models can serve as tools for DOE and its Conservation Policy Office in evaluating and quantifying their policy and program requirements. The most effective role for each model in addressing future issues of buildings energy conservation policy and analysis is assessed. The four models covered are: Oak Ridge Residential Energy Model; Micro Analysis of Transfers to Households/Comprehensive Human Resources Data System (MATH/CHRDS) Model; Oak Ridge Commercial Energy Model; and Brookhaven Buildings Energy Conservation Optimization Model (BECOM).

  3. Energy future Santa Cruz: A citizens' plan for energy self-reliance

    NASA Astrophysics Data System (ADS)

    Cohn, J.; Stayton, R.

    The results of a grassroots energy conservation project which involved more than 3,100 residents of Santa Cruz, California, is discussed. Citizens attended forums and town meetings to suggest ideas for solving the community's energy problems. These ideas were then evaluated by the Energy Future Advisory Board and compiled into the Energy Future Plan. The energy plan covers such topics as new residences, residential retrofit, automobile efficiency, farm efficiency, commercial greenhouses, local food production, commercial efficiency, land use planning, energy education and financing, and solar, wind, and ocean energy. An energy implementation guide and glossary are included.

  4. The Energy Future.

    PubMed

    Newman, John; Bonino, Christopher A; Trainham, James A

    2018-06-07

    The foreseeable energy future will be driven by economics of known technologies and the desire to reduce CO 2 emissions to the atmosphere. Renewable energy options are compared with each other and with the use of fossil fuels with carbon capture and sequestration (CCS). Economic analysis is used to determine the best of several alternatives. One can disagree on the detailed costs, including externalities such as climate change and air and water pollution. But the differences in capital and operating costs between known technologies are so significant that one can draw clear conclusions. Results show that renewable energy cannot compete with fossil fuels on a cost basis alone because energy is intrinsic to the molecule, except for hydroelectricity. However, fossil fuels are implicated in climate change. Using renewable energy exclusively, including transportation and electricity needs, could reduce the standard of living in the United States by 43% to 62%, which would correspond to the level in about 1970. If capture and sequester of CO 2 are implemented, the cost of using fossil fuels will increase, but they beat renewable energy handily as an economic way to produce clean energy.

  5. Enhancing Energy in Future Conventional Munition

    NASA Astrophysics Data System (ADS)

    Peiris, Suhithi

    2017-06-01

    Future conventional weapons are envisioned to contain more energy per volume than current weapons. Current weapons comprise of inert steel outer case, with inner volume for energetic materials, fuzing, sensor package, propulsion system, etc. Recent research on reactive materials (RM) & new energetics, and exploiting additive manufacturing can optimize the use of both mass and volume to achieve much higher energy in future weapons. For instance, replacing inert steel with RM of similar strength, additively manufacturing fuzing packages within the weapon form factor, and combing the whole with new energetics, will enable the same lethality effects from smaller weapons as obtained from today's larger weapons. This paper will elaborate on reactive materials and properties necessary for optimal utilization in various weapon features, and touch on other aspects of enhancing energy in future conventional munition.

  6. The Economics of America's Energy Future.

    ERIC Educational Resources Information Center

    Simmons, Henry

    This is an Energy Research and Development Administration (ERDA) pamphlet which reviews economic and technical considerations for the future development of energy sources. Included are sections on petroleum, synthetic fuels, oil shale, nuclear power, geothermal power, and solar energy. Also presented are data pertaining to U.S. energy production…

  7. Addressing climate and energy misconceptions - teaching tools offered by the Climate Literacy and Energy Awareness Network (CLEAN)

    NASA Astrophysics Data System (ADS)

    Gold, A. U.; Ledley, T. S.; Kirk, K. B.; Grogan, M.; McCaffrey, M. S.; Buhr, S. M.; Manduca, C. A.; Fox, S.; Niepold, F.; Howell, C.; Lynds, S. E.

    2011-12-01

    Despite a prevalence of peer-reviewed scientific research and high-level reports by intergovernmental agencies (e.g., IPCC) that document changes in our climate and consequences for human societies, the public discourse regards these topics as controversial and sensitive. The chasm between scientific-based understanding of climate systems and public understanding can most easily be addressed via high quality, science-based education on these topics. Well-trained and confident educators are required to provide this education. However, climate science and energy awareness are complex topics that are rapidly evolving and have a great potential for controversy. Furthermore, the interdisciplinary nature of climate science further increases the difficulty for teachers to stay abreast of the science and the policy. Research has shown that students and educators alike hold misconceptions about the climate system in general and the causes and effects of climate change in particular. The NSF-funded CLEAN Pathway (http://cleanet.org) as part of the National Science Digital Library (http://www.nsdl.org) strives to address these needs and help educators address misconceptions by providing high quality learning resources and professional development opportunities to support educators of grade levels 6 through 16. The materials focus on teaching climate science and energy use. The scope and framework of the CLEAN Pathway is defined by the Essential Principles of Climate Science (CCSP, 2009) and the Energy Literacy Principles recently developed by the Department of Energy. Following this literacy-based approach, CLEAN helps with developing mental models to address misconceptions around climate science and energy awareness through a number of different avenues. These are: 1) Professional development opportunities for educators - interactive webinars for secondary teachers and virtual workshops for college faculty, 2) A collection of scientifically and pedagogically reviewed, high

  8. Materials, Chemistry, and Simulation for Future Energy Technology.

    PubMed

    Aguey-Zinsou, Kondo-Francois; Wang, Da-Wei; Su, Dang-Sheng

    2015-09-07

    Special Issue: The Future of Energy. The science and engineering of clean energy now is becoming a multidisciplinary area, typically when new materials, chemistry, or mechanisms are met. "Trial and error" is the past. Exploration of new concepts for future clean energy can be accomplished through computer-aided materials design and reaction simulation, thanks to innovations in information technologies. This special issue, a fruit of the Energy Future Conference organized by UNSW Australia, has compiled some excellent examples of such approaches. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Options for Kentucky's Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for itsmore » extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.« less

  10. Multifactor valuation models of energy futures and options on futures

    NASA Astrophysics Data System (ADS)

    Bertus, Mark J.

    The intent of this dissertation is to investigate continuous time pricing models for commodity derivative contracts that consider mean reversion. The motivation for pricing commodity futures and option on futures contracts leads to improved practical risk management techniques in markets where uncertainty is increasing. In the dissertation closed-form solutions to mean reverting one-factor, two-factor, three-factor Brownian motions are developed for futures contracts. These solutions are obtained through risk neutral pricing methods that yield tractable expressions for futures prices, which are linear in the state variables, hence making them attractive for estimation. These functions, however, are expressed in terms of latent variables (i.e. spot prices, convenience yield) which complicate the estimation of the futures pricing equation. To address this complication a discussion on Dynamic factor analysis is given. This procedure documents latent variables using a Kalman filter and illustrations show how this technique may be used for the analysis. In addition, to the futures contracts closed form solutions for two option models are obtained. Solutions to the one- and two-factor models are tailored solutions of the Black-Scholes pricing model. Furthermore, since these contracts are written on the futures contracts, they too are influenced by the same underlying parameters of the state variables used to price the futures contracts. To conclude, the analysis finishes with an investigation of commodity futures options that incorporate random discrete jumps.

  11. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analyticalmore » models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.« less

  12. The Hurst exponent in energy futures prices

    NASA Astrophysics Data System (ADS)

    Serletis, Apostolos; Rosenberg, Aryeh Adam

    2007-07-01

    This paper extends the work in Elder and Serletis [Long memory in energy futures prices, Rev. Financial Econ., forthcoming, 2007] and Serletis et al. [Detrended fluctuation analysis of the US stock market, Int. J. Bifurcation Chaos, forthcoming, 2007] by re-examining the empirical evidence for random walk type behavior in energy futures prices. In doing so, it uses daily data on energy futures traded on the New York Mercantile Exchange, over the period from July 2, 1990 to November 1, 2006, and a statistical physics approach-the ‘detrending moving average’ technique-providing a reliable framework for testing the information efficiency in financial markets as shown by Alessio et al. [Second-order moving average and scaling of stochastic time series, Eur. Phys. J. B 27 (2002) 197-200] and Carbone et al. [Time-dependent hurst exponent in financial time series. Physica A 344 (2004) 267-271; Analysis of clusters formed by the moving average of a long-range correlated time series. Phys. Rev. E 69 (2004) 026105]. The results show that energy futures returns display long memory and that the particular form of long memory is anti-persistence.

  13. Energy futures: Trading opportunities for the 1980's

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treat, J.E.; Cowie, S.; Davidson, F.E.

    1984-01-01

    This text gives a broad background in both theory and practice of energy futures trading. It details successful contract requirements. It analyzes fundamental and technical pricing and using both to manage risk and achieve trading objectives. Hedging strategy, financial aspects of trading, accounting procedures, internal control systems and tax implications are all expertly covered. The book concludes with the potential impact of futures trading on the structure of world markets. Contents: Energy futures: an overview; Exchanges and their contracts; Fundamental analysis and the theory of hedging; The principles of technical analysis; Putting it all together; Integrated trading strategies; Energy futures;more » Financing and exposure management in the oil industry; Accounting principles, taxation, and internal control; The potential impacts of trading in oil futures on the world oil market; Appendix; Glossary; Index.« less

  14. U.S. energy outlook and future energy impacts

    NASA Astrophysics Data System (ADS)

    Hamburger, Randolph John

    2011-12-01

    Energy markets were not immune to the 2007 financial crisis. Growth in the Indian and Chinese economies is placing strains on global energy supplies that could force a repeat of the 2008 price spike of $145/bbl for crude oil. Emerging market growth coupled with inefficiencies, frictions, and speculation in the energy markets has the potential to create drastic economic shocks throughout the world. The 2007 economic crisis has pushed back investment in energy projects where a low-growth scenario in world GDP could create drastic price increases in world energy prices. Without a long-term energy supply plan, the U.S. is destined to see growth reduced and its trade imbalances continue to deteriorate with increasing energy costs. Analysis of the U.S. natural gas futures markets and the impact of financial speculation on natural gas market pricing determined that financial speculation adds to price movements in the energy markets, which could cause violent swings in energy prices.

  15. An Entitlement Approach to Address the Water-Energy-Food Nexus in Rural India

    NASA Astrophysics Data System (ADS)

    Siegfried, T. U.; Fishman, R.; Modi, V.; Lall, U.

    2008-12-01

    prices and rainfall patterns due to climate change only enhance these concerns. Given these deficiencies, any corrective strategy should at least target the following long-term policy goals: a) increase the efficiency of rural electricity consumption in terms of grain production and rural income, b) providing the farmers greater flexibility with timely, high quality energy and more efficient means of production, c) enable proper energy accounting on the use side so as to recover costs at sufficient levels for the SEBs and thus enable long-term investments in energy infrastructure and d) secure and eventually increase agricultural production without depleting groundwater resources over the long run. We will present an entitlement approach with which the above issues can be addressed in the future. A case study example from the semi-arid Telangana Region in Andhra Pradesh will be discussed in depth and preliminary results shown.

  16. Energy Futures Synthesis for West-Wide Section 368 Energy Corridors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neill, Barbara L.; Gagne, Douglas A.; Cook, Jeffrey J.

    To comply with Section 368(a) of the Energy Policy Act of 2005 (EPAct), the U.S. Bureau of Land Management (BLM) and the U.S. Forest Service designated 6,000 miles of energy corridors on public and national forest lands in the western United States in 2009. The corridors, commonly referred to as 'West-wide' or 'Section 368' energy corridors, are intended as preferred locations for future siting of electric transmission and distribution lines and for oil, gas, and hydrogen pipelines. In response to a lawsuit filed by several organizations over the corridor designations, the BLM, Forest Service, and the U.S. Department of Energymore » entered into a Settlement Agreement, directing the formation of the Section 368 Interagency Workgroup to periodically review the energy corridors on a regional basis. In conducting the reviews, the Workgroup identifies new, relevant, existing, publicly available information to make recommendations for revisions, deletions, and additions to the Section 368 energy corridors. This report synthesizes information in available contemporary transmission, pipeline, and energy future studies to inform the regional reviews by providing a snapshot of what the western energy and transmission system will look like generally 10-15 years in the future. After an overview of the western grid implications, the analysis narrows to Region 2 and Region 3 of the BLM Section 368 energy corridors and focuses on the implications of potential developments in the oil, natural gas, and electricity markets in Colorado, New Mexico, Utah, and portions of Arizona and Nevada that could inform the current regional review. This analysis will help inform the Workgroup on potential development within existing corridors and the need for new corridors that have not yet been designated.« less

  17. Ethanol for a sustainable energy future.

    PubMed

    Goldemberg, José

    2007-02-09

    Renewable energy is one of the most efficient ways to achieve sustainable development. Increasing its share in the world matrix will help prolong the existence of fossil fuel reserves, address the threats posed by climate change, and enable better security of the energy supply on a global scale. Most of the "new renewable energy sources" are still undergoing large-scale commercial development, but some technologies are already well established. These include Brazilian sugarcane ethanol, which, after 30 years of production, is a global energy commodity that is fully competitive with motor gasoline and appropriate for replication in many countries.

  18. The future of energy security in the 21st Century

    NASA Astrophysics Data System (ADS)

    Gupta, Rajan

    2006-10-01

    Energy is essential for modern life and is a critical resource that we take for granted. Economies and security of nations depend on reliable and cost-effective access. As the world transitions from conventional oil and natural gas to nuclear, renewables, and unconventional sources we are increasingly confronted by many unsettling questions. Will there be enough cheap oil and gas for preserve the standard of living in the developed world and allow the industrializing world to develop? Will renewable sources provide a significant fraction of our energy needs in the near future? Is global warming already happening as a result of our consumption of fossil fuels? If there is a resource crunch before new sources come on line, will there be conflict or global cooperation? This talk will attempt to answer these questions by examining the global oil and gas resources, geopolitics, and key science and technology issues that need to be addressed by the global community with cooperation and a sense of urgency.

  19. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use. After describing federal policy actions that could influencemore » freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.« less

  20. Energy future Santa Cruz. A citizens plan for energy self-reliance: Executive summary

    NASA Astrophysics Data System (ADS)

    Cohn, J.; Stayton, R.

    A grassroots energy conservation project which involved more than 3100 residents of Santa Cruz, California, is discussed. Citizens attended forums and town meetings to suggest ideas for solving the community's energy problems. These ideas were then evaluated by the Energy Future Advisory Board and compiled into the Energy Future Plan. The plan covers such topics as new residences, residential retrofit, automobile efficiency, farm efficiency, commercial greenhouses, local food production, commercial efficiency, land use planning, energy eduction and financing, and solar, wind, and ocean energy. If the plan is successfully implemented, the energy that the community is projected to use in 1991 can be lowered by 24 to 35 percent.

  1. The Transforming Mobility Ecosystem: Enabling in Energy-Efficient Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Over the next decade, the transportation sector is poised for rapid change, propelled toward a new mobility future by strong technology currents and the confluence of prevailing megatrends. These major forces hold the promise of shaping a new mobility future – one that unlocks tremendous economic value, provides unprecedented gains in safety, offers affordable and equal accessibility, and enables the transition to energy-efficient transport of people and goods. They come, however, with cautionary viewpoints on energy consumption of the entire sector, necessitating the need to carefully guide the emergent future. This report examines four possible mobility futures that could existmore » in 2050 and the positive and negative impacts of these futures on energy consumption and the broader economy.« less

  2. Addressing psychosocial issues in cancer survivorship: past, present and future.

    PubMed

    Walsh, Katherine

    2016-12-01

    With a burgeoning population of cancer survivors, organizations in the USA and around the world are considering how to address the many long-term and late psychosocial effects of cancer and cancer treatment. This article reviews the changing landscape of survivorship care over the past 50 years, from the time when there were relatively few survivors to the future, when the number of cancer survivors in the USA alone is expected to reach close to 20 million. Institute of Medicine Reports, intra-organizational summits and accrediting standards that have influenced the development of survivorship care plans and programs and the roles of the Internet and smartphone applications along with oncology specialist and primary care providers are discussed.

  3. Positive thinking about the future in newspaper reports and presidential addresses predicts economic downturn.

    PubMed

    Sevincer, A Timur; Wagner, Greta; Kalvelage, Johanna; Oettingen, Gabriele

    2014-04-01

    Previous research has shown that positive thinking, in the form of fantasies about an idealized future, predicts low effort and poor performance. In the studies reported here, we used computerized content analysis of historical documents to investigate the relation between positive thinking about the future and economic development. During the financial crisis from 2007 to 2009, the more weekly newspaper articles in the economy page of USA Today contained positive thinking about the future, the more the Dow Jones Industrial Average declined in the subsequent week and 1 month later. In addition, between the New Deal era and the present time, the more presidential inaugural addresses contained positive thinking about the future, the more the gross domestic product and the employment rate declined in the presidents' subsequent tenures. These counterintuitive findings may help reveal the psychological processes that contribute to an economic crisis.

  4. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide andmore » the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the

  5. The future of energy and climate

    ScienceCinema

    Steinberger, Jack

    2018-04-26

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  6. Renewable energy for an environmentally sustainable energy future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderman, D.N.

    1993-12-31

    One of the major objectives of the renewable energy program is to allow the employment of environmentally benign energy technologies based upon the sun. Other objectives include national energy independence and industrial competitiveness in future energy technology markets. The National Renewable Energy Laboratory (formerly SERI) in Golden, Colorado, has for 15 years been the lead U.S. laboratory in research on photovoltaics, wind energy systems, and ethanol from biomass. During this period, substantional cost reductions were achieved and efficiencies improved. NREL also works closely with industry to facilitate the commercialization of these and related technologies. As much as 50% of NRELmore » funding goes to industry in cost-shared contracts for research and development, planned with industry representatives and the U.S. Department of Energy. Besides lessening dependence on fossil fuels and their short-term environmental impacts, these technologies will also alleviate the impact on the potential global warming issue. Other direct environmental research at NREL is the solar-detox program, in which solar radiation is employed to destroy hazardous organic materials in ground water and other waste streams.« less

  7. How a future energy world could look?

    NASA Astrophysics Data System (ADS)

    Ewert, M.

    2012-10-01

    The future energy system will change significantly within the next years as a result of the following Mega Trends: de-carbonization, urbanization, fast technology development, individualization, glocalization (globalization and localization) and changing demographics. Increasing fluctuating renewable production will change the role of non-renewable generation. Distributed energy from renewables and micro generation will change the direction of the energy flow in the electricity grids. Production will not follow demand but demand has to follow production. This future system is enabled by the fast technical development of information and communication technologies which will be present in the entire system. In this paper the results of a comprehensive analysis with different scenarios is summarized. Tools were used like the analysis of policy trends in the European countries, modelling of the European power grid, modelling of the European power markets and the analysis of technology developments with cost reduction potentials. With these tools the interaction of the main actors in the energy markets like conventional generation and renewable generation, grid transport, electricity storage including new storage options from E-Mobility, Power to Gas, Compressed Air Energy storage and demand side management were considered. The potential application of technologies and investments in new energy technologies were analyzed within existing frameworks and markets as well as new business models in new markets with different frameworks. In the paper the over all trend of this analysis is presented by describing a potential future energy world. This world represents only one of numerous options with comparable characteristics.

  8. Argonne Director Eric Isaacs addresses the National Press Club

    ScienceCinema

    Eric Isaccs

    2017-12-09

    Argonne Director Eric Isaacs addresses the National Press Club on 9/15/2009. To build a national economy based on sustainable energy, the nation must first "reignite its innovation ecology," he said. Issacs makes the case for investing in science to secure America's future.

  9. Argonne Director Eric Isaacs addresses the National Press Club

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric Isaccs

    2009-09-17

    Argonne Director Eric Isaacs addresses the National Press Club on 9/15/2009. To build a national economy based on sustainable energy, the nation must first "reignite its innovation ecology," he said. Issacs makes the case for investing in science to secure America's future.

  10. Helping Research Organizations Build a Clean Energy Future | Working with

    Science.gov Websites

    Us | NREL Helping Research Organizations Build a Clean Energy Future Helping Research Organizations Build a Clean Energy Future Partner with NREL to accelerate the research and development of your

  11. Is Solar Energy the Fuel of the Future?

    ERIC Educational Resources Information Center

    Cetincelik, Mauammer

    1974-01-01

    Describes the present distribution of solar energy, traces its use through history, explores its potential utilization in the future, and presents the effects of the use of solar energy on pollution. (GS)

  12. The Future of Energy from Nuclear Fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Son H.; Taiwo, Temitope

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world’s electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of thesemore » five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear

  13. Research of future network with multi-layer IP address

    NASA Astrophysics Data System (ADS)

    Li, Guoling; Long, Zhaohua; Wei, Ziqiang

    2018-04-01

    The shortage of IP addresses and the scalability of routing systems [1] are challenges for the Internet. The idea of dividing existing IP addresses between identities and locations is one of the important research directions. This paper proposed a new decimal network architecture based on IPv9 [11], and decimal network IP address from E.164 principle of traditional telecommunication network, the IP address level, which helps to achieve separation and identification and location of IP address, IP address form a multilayer network structure, routing scalability problem in remission at the same time, to solve the problem of IPv4 address depletion. On the basis of IPv9, a new decimal network architecture is proposed, and the IP address of the decimal network draws on the E.164 principle of the traditional telecommunication network, and the IP addresses are hierarchically divided, which helps to realize the identification and location separation of IP addresses, the formation of multi-layer IP address network structure, while easing the scalability of the routing system to find a way out of IPv4 address exhausted. In addition to modifying DNS [10] simply and adding the function of digital domain, a DDNS [12] is formed. At the same time, a gateway device is added, that is, IPV9 gateway. The original backbone network and user network are unchanged.

  14. Exploring Future Energy Choices with Young People

    ERIC Educational Resources Information Center

    MacGarry, Ann

    2014-01-01

    The article outlines a couple of the most recent resources developed by the Centre for Alternative Technology for teaching about energy. The key elements are providing sound information on all the significant sources and inspiring pupils to make their own decisions about energy futures based on evidence. Our experience is that engaging pupils in…

  15. Innovating a Sustainable Energy Future (2011 EFRC Summit)

    ScienceCinema

    Little, Mark

    2018-02-06

    The second speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was Mark Little, Senior Vice President and Director of GE Global Research. He discussed the role that industry and in particular GE is playing as a partner in innovative energy research. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  16. Hydrogen Storage Technologies for Future Energy Systems.

    PubMed

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  17. Low energy intake plus low energy expenditure (low energy flux), not energy surfeit, predicts future body fat gain.

    PubMed

    Hume, David John; Yokum, Sonja; Stice, Eric

    2016-06-01

    There is a paucity of studies that have prospectively tested the energy surfeit theory of obesity with the use of objectively estimated energy intake and energy expenditure in humans. An alternative theory is that homeostatic regulation of body weight is more effective when energy intake and expenditure are both high (high energy flux), implying that low energy flux should predict weight gain. We aimed to examine the predictive relations of energy balance and energy flux to future weight gain and tested whether results were replicable in 2 independent samples. Adolescents (n = 154) and college-aged women (n = 75) underwent 2-wk objective doubly labeled water, resting metabolic rate, and percentage of body fat measures at baseline. Percentage of body fat was measured annually for 3 y of follow-up for the adolescent sample and for 2 y of follow-up for the young adult sample. Low energy flux, but not energy surfeit, predicted future increases in body fat in both studies. Furthermore, high energy flux appeared to prevent fat gain in part because it was associated with a higher resting metabolic rate. Counter to the energy surfeit model of obesity, results suggest that increasing energy expenditure may be more effective for reducing body fat than caloric restriction, which is currently the treatment of choice for obesity. This trial was registered at clinicaltrials.gov as NCT02084836. © 2016 American Society for Nutrition.

  18. Considerations in projecting energy-related emissions multiple decades into the future

    EPA Science Inventory

    Use of fossil fuels for energy is the primary source of anthropogenic emissions of many air pollutants. Thus, the evolution of the energy system into the future can influence future emissions, driving those emissions up or down as a function of shifts in energy demand and fuel us...

  19. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result ofmore » the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  20. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result ofmore » the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  1. Energy Efficient School Designed for the Future

    ERIC Educational Resources Information Center

    Modern Schools, 1977

    1977-01-01

    When completed, the planned Greeley Elementary School will be able to accommodate any future changes in enrollment and technological developments, while maintaining a constant energy efficient heating and cooling operation. (Author/MLF)

  2. Naval Directed-Energy Weapons - No Longer a Future Weapon Concept

    DTIC Science & Technology

    2012-01-01

    DE efforts. High-Energy Laser Weapons HEL weapon systems have been envisioned for a great many years, to include be- ing referred to as Martian “Heat...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES... ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S

  3. Low energy intake plus low energy expenditure (low energy flux), not energy surfeit, predicts future body fat gain12

    PubMed Central

    Yokum, Sonja; Stice, Eric

    2016-01-01

    Background: There is a paucity of studies that have prospectively tested the energy surfeit theory of obesity with the use of objectively estimated energy intake and energy expenditure in humans. An alternative theory is that homeostatic regulation of body weight is more effective when energy intake and expenditure are both high (high energy flux), implying that low energy flux should predict weight gain. Objective: We aimed to examine the predictive relations of energy balance and energy flux to future weight gain and tested whether results were replicable in 2 independent samples. Design: Adolescents (n = 154) and college-aged women (n = 75) underwent 2-wk objective doubly labeled water, resting metabolic rate, and percentage of body fat measures at baseline. Percentage of body fat was measured annually for 3 y of follow-up for the adolescent sample and for 2 y of follow-up for the young adult sample. Results: Low energy flux, but not energy surfeit, predicted future increases in body fat in both studies. Furthermore, high energy flux appeared to prevent fat gain in part because it was associated with a higher resting metabolic rate. Conclusion: Counter to the energy surfeit model of obesity, results suggest that increasing energy expenditure may be more effective for reducing body fat than caloric restriction, which is currently the treatment of choice for obesity. This trial was registered at clinicaltrials.gov as NCT02084836. PMID:27169833

  4. Climate change, renewable energy and population impact on future energy demand for Burkina Faso build environment

    NASA Astrophysics Data System (ADS)

    Ouedraogo, B. I.

    This research addresses the dual challenge faced by Burkina Faso engineers to design sustainable low-energy cost public buildings and domestic dwellings while still providing the required thermal comfort under warmer temperature conditions caused by climate change. It was found base don climate change SRES scenario A2 that predicted mean temperature in Burkina Faso will increase by 2oC between 2010 and 2050. Therefore, in order to maintain a thermally comfortable 25oC inside public buildings, the projected annual energy consumption for cooling load will increase by 15%, 36% and 100% respectively for the period between 2020 to 2039, 2040 to 2059 and 2070 to 2089 when compared to the control case. It has also been found that a 1% increase in population growth will result in a 1.38% and 2.03% increase in carbon emission from primary energy consumption and future electricity consumption respectively. Furthermore, this research has investigated possible solutions for adaptation to the severe climate change and population growth impact on energy demand in Burkina Faso. Shading devices could potentially reduce the cooling load by up to 40%. Computer simulation programming of building energy consumption and a field study has shown that adobe houses have the potential of significantly reducing energy demand for cooling and offer a formidable method for climate change adaptation. Based on the Net Present Cost, hybrid photovoltaic (PV) and Diesel generator energy production configuration is the most cost effective local electricity supply system, for areas without electricity at present, with a payback time of 8 years when compared to diesel generator stand-alone configuration. It is therefore a viable solution to increase electricity access to the majority of the population.

  5. The Advanced Energetic Pair Telescope (AdEPT}: A Future Medium-Energy Gamma-Ray Balloon (and Explorer?) Mission

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.

    2011-01-01

    Gamma-ray astrophysics probes the highest energy, exotic phenomena in astrophysics. In the medium-energy regime, 0.1-200 MeV, many astrophysical objects exhibit unique and transitory behavior such as the transition from electron dominated to hadron dominated processes, spectral breaks, bursts, and flares. Medium-energy gamma-ray imaging however, continues to be a major challenge particularly because of high background, low effective area, and low source intensities. The sensitivity and angular resolution required to address these challenges requires a leap in technology. The Advance Energetic Pair Telescope (AdEPT) being developed at GSFC is designed to image gamma rays above 5 MeV via pair production with angular resolution of 1-10 deg. In addition AdEPT will, for the first time, provide high polarization sensitivity in this energy range. This performance is achieved by reducing the effective area in favor of enhanced angular resolution through the use of a low-density gaseous conversion medium. AdEPT is based on the Three-Dimensional Track Imager (3-DTI) technology that combines a large volume Negative Ion Time Projection Chamber (NITPC) with 2-D Micro-Well Detector (MWD) readout. I will review the major science topics addressable with medium-energy gamma-rays and discuss the current status of the AdEPT technology, a proposed balloon instrument, and the design of a future satellite mission.

  6. ARPA-E: Transforming Our Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ellen; Raman, Aaswath

    2016-03-02

    ARPA-E helps to translate cutting-edge inventions into technological innovations that could change how we use, generate and store energy. In just seven years, ARPA-E technologies are demonstrating technical and commercial progress, surpassing $1.25 billion in private sector follow on funding. In this video, ARPA-E Director Dr. Ellen D. Williams highlights an exciting project from Stanford University that is developing a radiative cooling technology that could enable buildings, power plants, solar cells and even clothing to cool without using electric power or loss of water. This project is just one example among ARPA-E’s 400+ innovative technologies that are reimagining energy andmore » helping to create a more secure, affordable and sustainable American energy future.« less

  7. ARPA-E: Transforming Our Energy Future

    ScienceCinema

    Williams, Ellen; Raman, Aaswath

    2018-06-22

    ARPA-E helps to translate cutting-edge inventions into technological innovations that could change how we use, generate and store energy. In just seven years, ARPA-E technologies are demonstrating technical and commercial progress, surpassing $1.25 billion in private sector follow on funding. In this video, ARPA-E Director Dr. Ellen D. Williams highlights an exciting project from Stanford University that is developing a radiative cooling technology that could enable buildings, power plants, solar cells and even clothing to cool without using electric power or loss of water. This project is just one example among ARPA-E’s 400+ innovative technologies that are reimagining energy and helping to create a more secure, affordable and sustainable American energy future.

  8. Energy: What About the Future? Easy Energy Reader, Book IV.

    ERIC Educational Resources Information Center

    Information Planning Associates, Inc., Rockville, MD.

    Four articles about future energy technologies and problems comprise this collection of readings intended for the junior high school language arts curriculum. Each entry has been scored for readability according to the Gunning Fog Index. By referring to these ratings, a teacher can provide students with increasingly more challenging reading…

  9. The Effectiveness of Taiwan Building Energy Regulation under the influence of Future Climate

    NASA Astrophysics Data System (ADS)

    Weng, Yu-Teng; Huang, Kuo-Tsang

    2017-04-01

    Building energy consumption comprises circa 40% of the national annual energy usage in Taiwan, and the majority proportion is attributed to the cooling apparatus usage. As cooling energy is closely related to the outdoor climate, it is expected that the future global climate change would amplify its demand. Considering the building energy regulation criteria are the minimum requirements that the building has to be complied with, this study tried to investigate whether the current building energy regulation in Taiwan, initiated in 2013, would still be capable of maintaining the energy use in the future as today's level. The research adopted EnergyPlus to simulate the annual cooling energy use of several virtual office building cases with the constructed hourly future weather data under future climate change scenarios of RCP45 and RCP85 defined by IPCC. The virtual building cases are generated by a structured orthogonal array with each case is constituted by 10 building design parameters. The results revealed that the building energy consumption based on the current regulation criteria failed to maintain at the same level in the future as oppose to nowadays. By comparing to the current cooling energy usage, it would rise by 13% and 22% in RCP45 and RCP85, respectively, at the end of this century. This research further parametrically studied the potential cooling energy mitigation strategies and proposed effective building envelope design schemes in order to neutralize the future building energy increase.

  10. Resource Letter AFHEP-1: Accelerators for the Future of High-Energy Physics

    NASA Astrophysics Data System (ADS)

    Barletta, William A.

    2012-02-01

    This Resource Letter provides a guide to literature concerning the development of accelerators for the future of high-energy physics. Research articles, books, and Internet resources are cited for the following topics: motivation for future accelerators, present accelerators for high-energy physics, possible future machine, and laboratory and collaboration websites.

  11. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.

    2013-03-01

    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, butmore » it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.« less

  12. Using learning curves on energy-efficient technologies to estimate future energy savings and emission reduction potentials in the U.S. iron and steel industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karali, Nihan; Park, Won Young; McNeil, Michael A.

    Increasing concerns on non-sustainable energy use and climate change spur a growing research interest in energy efficiency potentials in various critical areas such as industrial production. This paper focuses on learning curve aspects of energy efficiency measures in the U.S iron and steel sector. A number of early-stage efficient technologies (i.e., emerging or demonstration technologies) are technically feasible and have the potential to make a significant contribution to energy saving and CO 2 emissions reduction, but fall short economically to be included. However, they may also have the cost effective potential for significant cost reduction and/or performance improvement in themore » future under learning effects such as ‘learning-by-doing’. The investigation is carried out using ISEEM, a technology oriented, linear optimization model. We investigated how steel demand is balanced with/without the availability learning curve, compared to a Reference scenario. The retrofit (or investment in some cases) costs of energy efficient technologies decline in the scenario where learning curve is applied. The analysis also addresses market penetration of energy efficient technologies, energy saving, and CO 2 emissions in the U.S. iron and steel sector with/without learning impact. Accordingly, the study helps those who use energy models better manage the price barriers preventing unrealistic diffusion of energy-efficiency technologies, better understand the market and learning system involved, predict future achievable learning rates more accurately, and project future savings via energy-efficiency technologies with presence of learning. We conclude from our analysis that, most of the existing energy efficiency technologies that are currently used in the U.S. iron and steel sector are cost effective. Penetration levels increases through the years, even though there is no price reduction. However, demonstration technologies are not economically feasible in the U

  13. Two Energy Futures: A National Choice for the 80s.

    ERIC Educational Resources Information Center

    American Petroleum Inst., Washington, DC.

    Examined in this American Petroleum Institute (API) publication on energy technology and energy policy, is the future potential of oil, natural gas, coal, nuclear energy, synthetic fuels, and renewable energy resources. Among the related issues emphasized are environmental protection, access to federal lands, government policies, and the national…

  14. How to meet the increasing demands of water, food and energy in the future?

    NASA Astrophysics Data System (ADS)

    Shi, Haiyun; Chen, Ji; Sivakumar, Bellie; Peart, Mervyn

    2017-04-01

    Regarded as a driving force in water, food and energy demands, the world's population has been increasing rapidly since the beginning of the 20th century. According to the medium-growth projection scenario of the United Nations, the world's population will reach 9.5 billion by 2050. In response to the continuously growing population during this century, water, food and energy demands have also been increasing rapidly, and social problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if no proper management strategies are adopted. Then, how to meet the increasing demands of water, food and energy in the future? This study focuses on the sustainable developments of population, water, food, energy and dams, and the significances of this study can be concluded as follows: First, we reveal the close association between dams and social development through analysing the related data for the period 1960-2010, and argue that construction of additional large dams will have to be considered as one of the best available options to meet the increasing water, food and energy demands in the future. We conduct the projections of global water, food and energy consumptions and dam development for the period 2010-2050, and the results show that, compared to 2010, the total water, food and energy consumptions in 2050 will increase by 20%, 34% and 37%, respectively. Moreover, it is projected that additional 4,340 dams will be constructed by 2050 all over the world. Second, we analyse the current situation of global water scarcity based on the related data representing water resources availability (per capita available water resources), dam development (the number of dams), and the level of economic development (per capita gross domestic product). At the global scale, water scarcity exists in more than 70% of the countries around the world, including 43 countries suffering from economic water scarcity and 129 countries suffering from physical water

  15. The Global Climate and Energy Project at Stanford University: Fundamental Research Towards Future Energy Technologies

    NASA Astrophysics Data System (ADS)

    Milne, Jennifer L.; Sassoon, Richard E.; Hung, Emilie; Bosshard, Paolo; Benson, Sally M.

    The Global Climate and Energy Project (GCEP), at Stanford University, invests in research with the potential to lead to energy technologies with lower greenhouse gas emissions than current energy technologies. GCEP is sponsored by four international companies, ExxonMobil, GE, Schlumberger, and Toyota and supports research programs in academic institutions worldwide. Research falls into the broad areas of carbon based energy systems, renewables, electrochemistry, and the electric grid. Within these areas research efforts are underway that are aimed at achieving break-throughs and innovations that greatly improve efficiency, performance, functionality and cost of many potential energy technologies of the future including solar, batteries, fuel cells, biofuels, hydrogen storage and carbon capture and storage. This paper presents a summary of some of GCEP's activities over the past 7 years with current research areas of interest and potential research directions in the near future.

  16. Project EFFECT. Energy for the Future: Education, Conservation, Training.

    ERIC Educational Resources Information Center

    Indiana Univ., South Bend. Center for Energy Conservation.

    Project EFFECT (Energy for the Future: Education, Conservation, Training) was a three-year experimental program in curriculum development focusing on energy conservation, technology, and training. It had three objectives: (1) create a comprehensive training program for adults without previous technical training, applicable to community energy…

  17. Nuclear energy.

    PubMed

    Grandin, Karl; Jagers, Peter; Kullander, Sven

    2010-01-01

    Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened.

  18. Addressing the Future in Ancient and Modern Times.

    ERIC Educational Resources Information Center

    Roshwald, Mordecai

    1982-01-01

    Explores the similarities between ancient prophecy and modern futures prediction. The article suggests that the perceived degree of certainty in predictions of the future affects the patterns of emotional and rational responses in those receiving them. (AM)

  19. Opportunities and challenges for a sustainable energy future.

    PubMed

    Chu, Steven; Majumdar, Arun

    2012-08-16

    Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be sustainable. Solar and water-based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.

  20. JPL future missions and energy storage technology implications

    NASA Technical Reports Server (NTRS)

    Pawlik, Eugene V.

    1987-01-01

    The mission model for JPL future programs is presented. This model identifies mission areas where JPL is expected to have a major role and/or participate in a significant manner. These missions are focused on space science and applications missions, but they also include some participation in space station activities. The mission model is described in detail followed by a discussion on the needs for energy storage technology required to support these future activities.

  1. Energy supplies and future engines for land, sea, and air.

    PubMed

    Hidy, George M; Chow, Judith C; England, Glen C; Legge, Alan H; Lloyd, Alan C; Watson, John G

    2012-11-01

    The 2012 Critical Review Discussion complements Wilson, (2012), provides pointers to more detailed treatments of different topics and adds additional dimensions to the area of "energy". These include broader aspects of technologies driven by fuel resources and environmental issues, the concept of energy technology innovation, evolution in transportation resources, and complexities of energy policies addressing carbon taxes or carbon trading. National and global energy data bases are identified and evaluated and conversion factors are given to allow their comparability.

  2. Insights: Future of the national laboratories. National Renewable Energy Laboratory. [The future of the National Renewable Energy (Sources) Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderman, D.

    Psychologists tell us that people are born with certain personality traits, such as shyness or boldness, which their environment can encourage, subdue, or even alter. National labs have somewhat similar characteristics. They were created for particular missions and staffed by people who built organizations in which those missions could be fulfilled. As a result, the Department of Energy's (DOE) national labs are among the world's finest repositories of technology and scientific talent, especially in the fields of defense, nuclear weapons, nuclear power, and basic energy. Sunderman, director of the National Renewable Energy Laboratory, discusses the history of the laboratory andmore » its place in the future, both in terms of technologies and nurturing.« less

  3. Addressing Competencies for the Future in the Professional Curriculum

    PubMed Central

    Kelley, Kristi W.; Hammer, Dana P.; Haines, Stuart T.; Marlowe, Karen F.

    2009-01-01

    This paper reviews the literature, analyzes current and future practice, develops a list of competencies necessary for future pharmacists, and provides recommendations to pharmacy's academic enterprise regarding curricula of the future. Curricula of the future will center around 3 functional roles for pharmacists: patient-centered care, population-based care, and systems management; and must also foster the development of 5 cross-cutting abilities in student pharmacists: professionalism, self-directed learning, leadership and advocacy, interprofessional collaboration, and cultural competency. Future curricula must be developed in an evidence-based manner, focus less on information storage and retrieval, engage student pharmacists in a variety of highly interactive learning experiences, and expand experiential learning opportunities throughout all years. PMID:20221349

  4. The Future of WAC-Plenary Address, International Writing across the Curriculum Conference, (Ninth, Austin, Texas, May 2008 )

    ERIC Educational Resources Information Center

    McLeod, Susan H.

    2008-01-01

    In this Plenary Address given at the 9th IWAC Conference in 2008, Susan McLeod (who started her first WAC program in 1982) speculates about the future of the WAC movement. She focuses on four issues: The changing nature of communication and the cultural lag in assignment design, the question of who is in charge of the program, the ascendancy of…

  5. Modelling the water energy nexus: should variability in water supply impact on decision making for future energy supply options?

    NASA Astrophysics Data System (ADS)

    Cullis, James D. S.; Walker, Nicholas J.; Ahjum, Fadiel; Juan Rodriguez, Diego

    2018-02-01

    Many countries, like South Africa, Australia, India, China and the United States, are highly dependent on coal fired power stations for energy generation. These power stations require significant amounts of water, particularly when fitted with technology to reduce pollution and climate change impacts. As water resources come under stress it is important that spatial variability in water availability is taken into consideration for future energy planning particularly with regards to motivating for a switch from coal fired power stations to renewable technologies. This is particularly true in developing countries where there is a need for increased power production and associated increasing water demands for energy. Typically future energy supply options are modelled using a least cost optimization model such as TIMES that considers water supply as an input cost, but is generally constant for all technologies. Different energy technologies are located in different regions of the country with different levels of water availability and associated infrastructure development and supply costs. In this study we develop marginal cost curves for future water supply options in different regions of a country where different energy technologies are planned for development. These water supply cost curves are then used in an expanded version of the South Africa TIMES model called SATIM-W that explicitly models the water-energy nexus by taking into account the regional nature of water supply availability associated with different energy supply technologies. The results show a significant difference in the optimal future energy mix and in particular an increase in renewables and a demand for dry-cooling technologies that would not have been the case if the regional variability of water availability had not been taken into account. Choices in energy policy, such as the introduction of a carbon tax, will also significantly impact on future water resources, placing additional water

  6. Expert elicitation survey on future wind energy costs

    DOE PAGES

    Wiser, Ryan; Jenni, Karen; Seel, Joachim; ...

    2016-09-12

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends - in part - on the future costs of both onshore and offshore wind. In this paper, we summarize the results of an expert elicitation survey of 163 of the world's foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24-30% reductions bymore » 2030 and 35-41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R & D and industry strategy.« less

  7. Expert elicitation survey on future wind energy costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Jenni, Karen; Seel, Joachim

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends -- in part -- on the future costs of both onshore and offshore wind. Here, we summarize the results of an expert elicitation survey of 163 of the world's foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24-30% reductions by 2030 andmore » 35-41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R&D and industry strategy.« less

  8. Expert elicitation survey on future wind energy costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Jenni, Karen; Seel, Joachim

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends - in part - on the future costs of both onshore and offshore wind. In this paper, we summarize the results of an expert elicitation survey of 163 of the world's foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24-30% reductions bymore » 2030 and 35-41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R & D and industry strategy.« less

  9. Basic Science for a Secure Energy Future

    NASA Astrophysics Data System (ADS)

    Horton, Linda

    2010-03-01

    Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.

  10. Celebration of DOE's 35th Anniversary and the Secretary of Energy's Honor Awards, Keynote Address: Energy Secretary, Dr. Steven Chu

    ScienceCinema

    Chu, Steven

    2018-05-01

    Dr. Steven Chu gives a keynote address marking the thirty-fifth anniversary of the Department of Energy (DOE). He highlights outstanding achievements of the Department and its scientists. Several of the Department's many Nobel Prize winners over the years are mentioned.

  11. Community-based assessment and planning of energy futures

    NASA Astrophysics Data System (ADS)

    Carnes, S. A.

    1981-04-01

    The decentralized solar energy technology assessment program is discussed. Four communities were involved in an assessment of the compatibility of diverse conservation and renewable energy supply technologies and community values and goals and in community planning for the implementation of compatible energy demand and supply alternatives. The community approach has several basic components: (1) recruiting and organizing for the assessment planning process; (2) collection and analysis of data related to community energy use and indigenous renewable energy resources; (3) creation and maintenance of a community education and information program; (4) development of policies favorable to the development of preferred community futures; and (5) development of implementation or action strategies. The role of public participation, group decision making techniques, the role of technical information in citizen and group decision making, and linkage between assessment planning and the relevant policy process are emphasized.

  12. Energy Harvesting from Aerodynamic Instabilities: Current prospect and Future Trends

    NASA Astrophysics Data System (ADS)

    Bashir, M.; Rajendran, P.; Khan, S. A.

    2018-01-01

    This paper evaluates the layout and advancement of energy harvesting based on aerodynamic instabilities of an aircraft. Vibration and thermoelectric energy harvesters are substantiated as most suitable alternative low-power sources for aerospace applications. Furthermore, the facility associated with the aircraft applications in harvesting the mechanical vibrations and converting it to electric energy has fascinated the researchers. These devices are designed as an alternative to a battery-based solution especially for small aircrafts, wireless structural health monitoring for aircraft systems, and harvester plates employed in UAVs to enhance the endurance and operational flight missions. We will emphasize on various sources of energy harvesting that are designed to come from aerodynamic flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to reduce both the cost and emissions of the aviation industry. The advancements achieved in the energy harvesting based on aerodynamic instabilities show very good scope for many piezoelectric harvesters in the field of aerospace, specifically green aviation technology in the future.

  13. Superconducting Magnet Technology for Future High Energy Proton Colliders

    NASA Astrophysics Data System (ADS)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  14. Air quality and future energy system planning

    NASA Astrophysics Data System (ADS)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  15. The Future of Wind Energy in California: Future Projections in Variable-Resolution CESM

    NASA Astrophysics Data System (ADS)

    Wang, M.; Ullrich, P. A.; Millstein, D.; Collier, C.

    2017-12-01

    This study focuses on the wind energy characterization and future projection at five primary wind turbine sites in California. Historical (1980-2000) and mid-century (2030-2050) simulations were produced using the Variable-Resolution Community Earth System Model (VR-CESM) to analyze the trends and variations in wind energy under climate change. Datasets from Det Norske Veritas Germanischer Llyod (DNV GL), MERRA-2, CFSR, NARR, as well as surface observational data were used for model validation and comparison. Significant seasonal wind speed changes under RCP8.5 were detected from several wind farm sites. Large-scale patterns were then investigated to analyze the synoptic-scale impact on localized wind change. The agglomerative clustering method was applied to analyze and group different wind patterns. The associated meteorological background of each cluster was investigated to analyze the drivers of different wind patterns. This study improves the characterization of uncertainty around the magnitude and variability in space and time of California's wind resources in the near future, and also enhances understanding of the physical mechanisms related to the trends in wind resource variability.

  16. EPA Leadership on Science, Innovation, and Decision Support Tools for Addressing Current and Future Challenges.

    PubMed

    Hecht, Alan D; Ferster, Aaron; Summers, Kevin

    2017-10-16

    When the U.S. Environmental Protection Agency (EPA) was established nearly 50 years ago, the nation faced serious threats to its air, land, and water, which in turn impacted human health. These threats were effectively addressed by the creation of EPA (in 1970) and many subsequent landmark environmental legislations which in turn significantly reduced threats to the Nation's environment and public health. A key element of historic legislation is research aimed at dealing with current and future problems. Today we face national and global challenges that go beyond classic media-specific (air, land, water) environmental legislation and require an integrated paradigm of action and engagement based on (1) innovation based on science and technology, (2) stakeholder engagement and collaboration, and (3) public education and support. This three-pronged approach recognizes that current environmental problems, include social as well as physical and environmental factors, are best addressed through collaborative problem solving, the application of innovation in science and technology, and multiple stakeholder engagement. To achieve that goal, EPA's Office of Research and Development (ORD) is working directly with states and local communities to develop and apply a suite of accessible decision support tools (DST) that aim to improve environmental conditions, protect human health, enhance economic opportunity, and advance a resilient and sustainability society. This paper showcases joint EPA and state actions to develop tools and approaches that not only meet current environmental and public health challenges, but do so in a way that advances sustainable, healthy, and resilient communities well into the future. EPA's future plans should build on current work but aim to effectively respond to growing external pressures. Growing pressures from megatrends are a major challenge for the new Administration and for cities and states across the country. The recent hurricanes hitting

  17. The Future of American Power: Energy and National Security

    DTIC Science & Technology

    2010-02-17

    8 What does it all mean ? .................................................................................................................. 11...renewable energy generation and usage within the United States. What does it all mean ? The United States must prepare for a future where the use of

  18. Power technologies and the space future

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Fordyce, J. Stuart; Brandhorst, Henry W., Jr.

    1991-01-01

    Advancements in space power and energy technologies are critical to serve space development needs and help solve problems on Earth. The availability of low cost power and energy in space will be the hallmark of this advance. Space power will undergo a dramatic change for future space missions. The power systems which have served the U.S. space program so well in the past will not suffice for the missions of the future. This is especially true if the space commercialization is to become a reality. New technologies, and new and different space power architectures and topologies will replace the lower power, low-voltage systems of the past. Efficiencies will be markedly improved, specific powers will be greatly increased, and system lifetimes will be markedly extended. Space power technology is discussed - its past, its current status, and predictions about where it will go in the future. A key problem for power and energy is its cost of affordability. Power must be affordable or it will not serve future needs adequately. This aspect is also specifically addressed.

  19. The Future of Green Aviation

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas

    2012-01-01

    Dr. Edwards'presentation provides an overview of aviation's economic impact in the U.S. including aviation's impact on environment and energy. The presentation discusses NASA's contributions to the advancement of commercial aircraft design highlighting the technology drivers and recent technology advancements for addressing community noise, energy efficiency and emissions. The presentation concludes with a preview of some of NASA's integrated systems solutions, such as novel aircraft concepts and advancements in propulsion that will enable the future of more environmentally compatible aviation.

  20. Energy technologies at Sandia National Laboratories: Past, Present, Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fallmore » of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.« less

  1. Economic concepts to address future water supply-demand imbalances in Iran, Morocco and Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hellegers, Petra; Immerzeel, Walter; Droogers, Peter

    2013-10-01

    In Middle East and North Africa (MENA) countries, renewable groundwater and surface water supply are limited while demand for water is growing rapidly. Climate change is expected to increase water demand even further. The main aim of this paper is to evaluate the water supply-demand imbalances in Iran, Morocco and Saudi Arabia in 2040-2050 under dry, average and wet climate change projections and to show on the basis of the marginal cost and marginal value of water the optimum mix of supply-side and demand-side adjustments to address the imbalance. A hydrological model has been used to estimate the water supply-demand imbalance. Water supply and demand curves have been used to explore for which (marginal value of) water usage the marginal cost of supply-enhancement becomes too expensive. The results indicate that in the future in all cases, except in Iran under the wet climate projection, the quantity of water demanded has to be reduced considerably to address the imbalance, which is indeed what is currently happening already.

  2. Future Vision - Emerging Technologies and Their Transformational Potential on the Energy Industry

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2015-01-01

    Where will Digital Energy be in ten years? To look that far ahead, we need to broadly consider how artificial intelligence, robotics, big data, nanotechnology, internet-of-things and other rapidly evolving and interrelated technologies will shape mankind's future. A panel of innovative visionary leaders from inside and outside the energy industry will discuss the emerging technologies that will shape the future of industrial operations over the next decade.

  3. Two Energy Futures: A National Choice for the 80s.

    ERIC Educational Resources Information Center

    American Petroleum Inst., Washington, DC.

    In 1980, the American Petroleum Institute published the first edition of "Two Energy Futures." It described the U.S. energy experience of the 1970s and prospects for the 1980s, concluding that the nation could drastically reduce its dependence on uncertain sources of imported oil if the right choices were made by individuals and the…

  4. Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Nina; Zhou, Nan; Fridley, David

    The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specificmore » section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing different energy and CO{sub 2} savings

  5. Figures of merit for present and future dark energy probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortonson, Michael J.; Huterer, Dragan; Hu, Wayne

    2010-09-15

    We compare current and forecasted constraints on dynamical dark energy models from Type Ia supernovae and the cosmic microwave background using figures of merit based on the volume of the allowed dark energy parameter space. For a two-parameter dark energy equation of state that varies linearly with the scale factor, and assuming a flat universe, the area of the error ellipse can be reduced by a factor of {approx}10 relative to current constraints by future space-based supernova data and CMB measurements from the Planck satellite. If the dark energy equation of state is described by a more general basis ofmore » principal components, the expected improvement in volume-based figures of merit is much greater. While the forecasted precision for any single parameter is only a factor of 2-5 smaller than current uncertainties, the constraints on dark energy models bounded by -1{<=}w{<=}1 improve for approximately 6 independent dark energy parameters resulting in a reduction of the total allowed volume of principal component parameter space by a factor of {approx}100. Typical quintessence models can be adequately described by just 2-3 of these parameters even given the precision of future data, leading to a more modest but still significant improvement. In addition to advances in supernova and CMB data, percent-level measurement of absolute distance and/or the expansion rate is required to ensure that dark energy constraints remain robust to variations in spatial curvature.« less

  6. Primary energy: Present status and future perspectives

    NASA Astrophysics Data System (ADS)

    Thielheim, K. O.

    A survey of the base-load energy sources available to humans is presented, starting from the point of view that all energy used is ultimately derived from nuclear processes within the sun. Specific note is made of European energy options, noting the large dependence on imported oil. Detailed exploration of available nuclear fuel resources is carried out, with attention given to fission, fusion, and breeder reactor plants and to the state-of-the-art and technology for each. The problems of nuclear waste disposal are discussed, and long term burial in salt domes is outlined as a satisfactory method of containing the materials for acceptable periods of time. The CO2-greenhouse effect hazards caused by increased usage of coal-derived fuels are considered and precautions to be taken on a global scale to ameliorate the warming effects are recommended. The limitations to hydropower are examined, as are those of tidal power. Solar cells are projected to be produced in GW quantities by the year 2000, while wind-derived electricity is predicted to provide a minimum of 5% of the world energy needs in the future.

  7. Energy: the impact of availability and prices on future business prospects. [Collection of 12 papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peelle, D.M.

    1975-01-01

    This collection includes twelve papers, all but one being presented at an August 1974 seminar. These are entitled Energy: Policy, Availability and Prices, Harry R. Hall; Public Policy and the Energy Crisis, Edward J. Mitchell; How Federal Price and Allocation Controls on Oil Have Worsened the Energy Crisis, William A. Johnson; Energy Availability in the Near and Long-Range Future, R.R. Wright; Consideration of Natural Gas Supply for Michigan, Donald L. Katz; The Outlook for Coal, Robert V. Price; Electricity: Future Availability and Cost, G. L. Heins; Solar Energy Research and Development, F. Tom Sparrow; Energy in the Automobile, Doron K.more » Samples; Energy and Future Business Prospects: Implication for Feedstocks-Using Industries, William H. Shaker; Energy Conservation in the Processing Industries, Alfred F. Waterland; and Energy Management: Guidelines and Case Histories, G. N. Tiberio. Letter from OPEC is a dissertation by Joseph Kraft on a visit to OPEC headquarters in Vienna. (MCW)« less

  8. Addressing Energy Poverty through Smarter Technology

    ERIC Educational Resources Information Center

    Oldfield, Eddie

    2011-01-01

    Energy poverty is a key detriment to labor productivity, economic growth, and social well-being. This article presents a qualitative review of literature on the potential role of intelligent communication technology, web-based standards, and smart grid technology to alleviate energy costs and improve access to clean distributed energy in developed…

  9. Key Factors in Planning a Sustainable Energy Future Including Hydrogen and Fuel Cells

    ERIC Educational Resources Information Center

    Hedstrom, Lars; Saxe, Maria; Folkesson, Anders; Wallmark, Cecilia; Haraldsson, Kristina; Bryngelsson, Marten; Alvfors, Per

    2006-01-01

    In this article, a number of future energy visions, especially those basing the energy systems on hydrogen, are discussed. Some often missing comparisons between alternatives, from a sustainability perspective, are identified and then performed for energy storage, energy transportation, and energy use in vehicles. It is shown that it is important…

  10. Impact of future energy policy on water resources in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Rivotti, Pedro; Karatayev, Marat; Sobral Mourão, Zenaida; Shah, Nilay; Clarke, Michèle; Konadu, D. Dennis

    2017-04-01

    As part of its commitment to become one of the top-30 developed countries in the world, Kazakhstan set out an ambitious target of increasing the share of renewables and alternative sources of energy in its power generation mix to 50% by 2050. This vision greatly contrasts with the current situation, with coal and natural gas power plants producing around 90% of total electricity in 2016. While this transition provides a unique opportunity to improve the sustainability of the national energy system, major natural resources challenges currently faced in the country should be taken into account. Particularly in the case of water resources management, the current system is characterised by significant losses, heavy reliance on irrigation for the agricultural sector, unevenly distributed surface water, vulnerability to climate change and variations in transboundary inflows, amongst other issues. In this context, this study aims to investigate the future availability of water resources to support food production and the transition to a new energy system. Given the challenges mentioned above, tackling this question requires an integrated analysis of the water-energy-food systems in Kazakhstan. This is done in three stages: (1) characterising the water supply and demand in the country; (2) establishing the linkages between water resources and activities in the power production and agricultural sectors; and (3) identifying potential conflicts at the nexus between water, energy and food, taking into account future energy policy scenarios, trends for food production and water resource use.

  11. Hydrogen: Its Future Role in the Nation's Energy Economy.

    PubMed

    Winsche, W E; Hoffman, K C; Salzano, F J

    1973-06-29

    In examining the potential role of hydrogen in the energy economy of the future, we take an optimistic view. All the technology required for implementation is feasible but a great deal of development and refinement is necessary. A pessimistic approach would obviously discourage further thinking about an important and perhaps the most reasonable alternative for the future. We have considered a limited number of alternative energy systems involving hydrogen and have shown that hydrogen could be a viable secondary source of energy derived from nuclear power; for the immediate future, hydrogen could be derived from coal. A hydrogen supply system could have greater flexibility and be competitive with a more conventional all-electric delivery system. Technological improvements could make hydrogen as an energy source an economic reality. The systems examined in this article show how hydrogen can serve as a general-purpose fuel for residential and automotive applications. Aside from being a source of heat and motive power, hydrogen could also supply the electrical needs of the household via fuel cells (19), turbines, or conventional "total energy systems." The total cost of energy to a residence supplied with hydrogen fuel depends on the ratio of the requirements for direct fuel use to the requirements for electrical use. A greater direct use of hydrogen as a fuel without conversion to electricity reduces the overall cost of energy supplied to the household because of the greater expense of electrical transmission and distribution. Hydrogen fuel is especially attractive for use in domestic residential applications where the bulk of the energy requirement is for thermal energy. Although a considerable amount of research is required before any hydrogen energy delivery system can be implemented, the necessary developments are within the capability of present-day technology and the system could be made attractive economically .Techniques for producing hydrogen from water by

  12. Energy and solid/hazardous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  13. A Carbon-Free Energy Future

    NASA Astrophysics Data System (ADS)

    Linden, H. R.; Singer, S. F.

    2001-12-01

    desirable for other economic uses. A hydrogen-based energy future is inevitable as low-cost sources of petroleum and natural gas become depleted with time. However, such fundamental changes in energy systems will take time to accomplish. Coal may survive for a longer time but may not be able to compete as the century draws to a close.

  14. Probabilities of Possible Future Prices (Short-Term Energy Outlook Supplement April 2010)

    EIA Publications

    2010-01-01

    The Energy Information Administration introduced a monthly analysis of energy price volatility and forecast uncertainty in the October 2009 Short-Term Energy Outlook (STEO). Included in the analysis were charts portraying confidence intervals around the New York Mercantile Exchange (NYMEX) futures prices of West Texas Intermediate (equivalent to light sweet crude oil) and Henry Hub natural gas contracts.

  15. ARPA-E: Celebrating the Energy Entrepreneur

    ScienceCinema

    Williams, Ellen; Henshall, Dave; Babinec, Sue; Wessells, Colin; Zakhor, Avideh; Mockler, Todd

    2018-01-16

    The world faces urgent energy challenges brought on by projected population increases, aging infrastructure and the global threat of climate change. ARPA-E is investing in some of the country’s brightest energy entrepreneurs that are developing innovative technological options to help meet future energy needs. Featuring remarks from ARPA-E Director Dr. Ellen D. Williams, as well as interviews with the Deputy Director of Commercialization Dave Henshall, Senior Technology-to-Market Advisor Sue Babinec, and a number of ARPA-E awardees, this video highlights the energy entrepreneur, and the critical role they play in creating solutions to address future energy challenges and ensure a secure energy future. The video also incorporates footage shot on site with several ARPA-E awardees who are spurring innovation, much of which will be highlighted in other videos shown throughout the Summit.

  16. ARPA-E: Celebrating the Energy Entrepreneur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ellen; Henshall, Dave; Babinec, Sue

    The world faces urgent energy challenges brought on by projected population increases, aging infrastructure and the global threat of climate change. ARPA-E is investing in some of the country’s brightest energy entrepreneurs that are developing innovative technological options to help meet future energy needs. Featuring remarks from ARPA-E Director Dr. Ellen D. Williams, as well as interviews with the Deputy Director of Commercialization Dave Henshall, Senior Technology-to-Market Advisor Sue Babinec, and a number of ARPA-E awardees, this video highlights the energy entrepreneur, and the critical role they play in creating solutions to address future energy challenges and ensure a securemore » energy future. The video also incorporates footage shot on site with several ARPA-E awardees who are spurring innovation, much of which will be highlighted in other videos shown throughout the Summit.« less

  17. Addressing current and future challenges for the NHS: the role of good leadership.

    PubMed

    Elton, Lotte

    2016-10-03

    Purpose This paper aims to describe and analyse some of the ways in which good leadership can enable those working within the National Health Service (NHS) to weather the changes and difficulties likely to arise in the coming years, and takes the format of an essay written by the prize-winner of the Faculty of Medical Leadership and Management's Student Prize. The Faculty of Medical Leadership and Management ran its inaugural Student Prize in 2015-2016, which aimed at medical students with an interest in medical leadership. In running the Prize, the Faculty hoped to foster an enthusiasm for and understanding of the importance of leadership in medicine. Design/methodology/approach The Faculty asked entrants to discuss the role of good leadership in addressing the current and future challenges faced by the NHS, making reference to the Leadership and Management Standards for Medical Professionals published by the Faculty in 2015. These standards were intended to help guide current and future leaders and were grouped into three categories, namely, self, team and corporate responsibility. Findings This paper highlights the political nature of health care in the UK and the increasing impetus on medical professionals to navigate debates on austerity measures and health-care costs, particularly given the projected deficit in NHS funding. It stresses the importance of building organisational cultures prizing transparency to prevent future breaches in standards of care and the value of patient-centred approaches in improving satisfaction for both patients and staff. Identification of opportunities for collaboration and partnership is emphasised as crucial to assuage the burden that lack of appropriate social care places on clinical services. Originality/value This paper offers a novel perspective - that of a medical student - on the complex issues faced by the NHS over the coming years and utilises a well-regarded set of standards in conceptualising the role that health

  18. Key Assets for a Sustainable Low Carbon Energy Future

    NASA Astrophysics Data System (ADS)

    Carre, Frank

    2011-10-01

    Since the beginning of the 21st century, concerns of energy security and climate change gave rise to energy policies focused on energy conservation and diversified low-carbon energy sources. Provided lessons of Fukushima accident are evidently accounted for, nuclear energy will probably be confirmed in most of today's nuclear countries as a low carbon energy source needed to limit imports of oil and gas and to meet fast growing energy needs. Future challenges of nuclear energy are then in three directions: i) enhancing safety performance so as to preclude any long term impact of severe accident outside the site of the plant, even in case of hypothetical external events, ii) full use of Uranium and minimization long lived radioactive waste burden for sustainability, and iii) extension to non-electricity energy products for maximizing the share of low carbon energy source in transportation fuels, industrial process heat and district heating. Advanced LWRs (Gen-III) are today's best available technologies and can somewhat advance nuclear energy in these three directions. However, breakthroughs in sustainability call for fast neutron reactors and closed fuel cycles, and non-electric applications prompt a revival of interest in high temperature reactors for exceeding cogeneration performances achievable with LWRs. Both types of Gen-IV nuclear systems by nature call for technology breakthroughs to surpass LWRs capabilities. Current resumption in France of research on sodium cooled fast neutron reactors (SFRs) definitely aims at significant progress in safety and economic competitiveness compared to earlier reactors of this type in order to progress towards a new generation of commercially viable sodium cooled fast reactor. Along with advancing a new generation of sodium cooled fast reactor, research and development on alternative fast reactor types such as gas or lead-alloy cooled systems (GFR & LFR) is strategic to overcome technical difficulties and/or political

  19. 10 CFR 501.11 - Address for filing documents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Address for filing documents. 501.11 Section 501.11 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND SANCTIONS General Provisions... communications to the following address: Office of Fossil Energy, Office of Fuels Programs, Coal and Electricity...

  20. Tour Brookhaven Lab's Future Hub for Energy Research: The Interdisciplinary Science Building

    ScienceCinema

    Gerry Stokes; Jim Misewich; Caradonna, Peggy; Sullivan, John; Olsen, Jim

    2018-04-16

    Construction is under way for the Interdisciplinary Science Building (ISB), a future world-class facility for energy research at Brookhaven Lab. Meet two scientists who will develop solutions at the ISB to tackle some of the nation's energy challenges, and tour the construction site.

  1. Our Transforming Energy Economy: Pathways to a Decarbonized Future -

    Science.gov Websites

    a clean energy future. For example, JISEA's impacts can be seen in its growing natural gas research example, JISEA hosted the NG-RE 360 Degrees of Opportunity Forum, a series of workshops in different assets are one example, such as "smart" buildings that benefit both from solar photovoltaic

  2. Probing dark energy dynamics from current and future cosmological observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Gongbo; Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6; Zhang Xinmin

    2010-02-15

    We report the constraints on the dark energy equation-of-state w(z) using the latest 'Constitution' SNe sample combined with the WMAP5 and Sloan Digital Sky Survey data. Assuming a flat Universe, and utilizing the localized principal component analysis and the model selection criteria, we find that the {Lambda}CDM model is generally consistent with the current data, yet there exists a weak hint of the possible dynamics of dark energy. In particular, a model predicting w(z)<-1 at z is an element of [0.25,0.5) and w(z)>-1 at z is an element of [0.5,0.75), which means that w(z) crosses -1 in the range ofmore » z is an element of [0.25,0.75), is mildly favored at 95% confidence level. Given the best fit model for current data as a fiducial model, we make future forecast from the joint data sets of Joint Dark Energy Mission, Planck, and Large Synoptic Survey Telescope, and we find that the future surveys can reduce the error bars on the w bins by roughly a factor of 10 for a 5-w-bin model.« less

  3. Fueling the dragon: Alternative Chinese oil futures and their implications for the United States

    NASA Astrophysics Data System (ADS)

    Eberling, George G.

    This study examines how Chinese oil energy will likely shape future Sino-American relations under conditions of dependency and non-dependency. The study will list and describe three possible Chinese oil energy futures or scenarios (Competitive Dependency, Competitive Surplus and Cooperative Surplus) using Scenario Analysis to subsequently estimate their associated likelihoods using the PRINCE forecasting system and discuss and evaluate their strategic implications for the United States. Further, this study will determine the most likely oil energy future or scenario. Finally, the study will list and describe the most likely United States political, economic and/or military policy responses for each future or scenario. The study contributes to the literature on Chinese and United States energy security, foreign policy, political economy and political risk analysis by showing how China will most likely address its growing oil energy dependence and by determining what will be the most likely U.S. foreign policy consequences based on the most current literature available on energy security and foreign policy.

  4. Biologically inspired robotic inspectors: the engineering reality and future outlook (Keynote address)

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2005-04-01

    Human errors have long been recognized as a major factor in the reliability of nondestructive evaluation results. To minimize such errors, there is an increasing reliance on automatic inspection tools that allow faster and consistent tests. Crawlers and various manipulation devices are commonly used to perform variety of inspection procedures that include C-scan with contour following capability to rapidly inspect complex structures. The emergence of robots has been the result of the need to deal with parts that are too complex to handle by a simple automatic system. Economical factors are continuing to hamper the wide use of robotics for inspection applications however technology advances are increasingly changing this paradigm. Autonomous robots, which may look like human, can potentially address the need to inspect structures with configuration that are not predetermined. The operation of such robots that mimic biology may take place at harsh or hazardous environments that are too dangerous for human presence. Biomimetic technologies such as artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. Inspired by science fiction, making biomimetic robots is increasingly becoming an engineering reality and in this paper the state-of-the-art will be reviewed and the outlook for the future will be discussed.

  5. 10 CFR 501.11 - Address for filing documents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Address for filing documents. 501.11 Section 501.11 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND SANCTIONS General Provisions § 501.11 Address for filing documents. Send all petitions, self-certifications and written...

  6. Halide Perovskites: New Science or ``only'' future Energy Converters?

    NASA Astrophysics Data System (ADS)

    Cahen, David

    Over the years many new ideas and systems for photovoltaic, PV, solar to electrical energy conversion have been explored, but only a few have really impacted PV's role as a more sustainable, environmentally less problematic and safer source of electrical power than fossil or nuclear fuel-based generation. Will Halide Perovskites, HaPs, be able to join the very select group of commercial PV options? To try to address this question, we put Halide Perovskite(HaP) cells in perspective with respect to other PV cells. Doing so also allows to identify fundamental scientific issues that can be important for PV and beyond. What remains to be seen is if those issues lead to new science or scientific insights or additional use of existing models. Being more specific is problematic, given the fact that this will be 4 months after writing this abstract. Israel National Nano-initiative, Weizmann Institute of Science's Alternative sustainable Energy Research Initiative; Israel Ministries of -Science and of -Infrastructure, Energy & Water.

  7. 10 CFR 590.104 - Address for filing documents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Address for filing documents. 590.104 Section 590.104 Energy DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS General Provisions § 590.104 Address for...

  8. 10 CFR 590.104 - Address for filing documents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Address for filing documents. 590.104 Section 590.104 Energy DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS General Provisions § 590.104 Address for...

  9. Inventing the future: Energy and the CO2 "greenhouse" effect

    NASA Astrophysics Data System (ADS)

    Davis, E. E., Jr.

    Dennis Gabor, A winner of the Nobel Prize for Physics, once remarked that man cannot predict the future, but he can invent it. The point is that while we do not know with certainty how things will turn out, our own actions can play a powerful role in shaping the future. Naturally, Gabor had in mind the power of science and technology, and the model includes that of correction or feedback. It is an important: Man does not have the gift of prophecy. Any manager or government planner would err seriously by masterminding a plan based unalterably on some vision of the future, without provision for mid-course correction. It is also a comforting thought. With man's notorious inability to create reliable predictions about such matters as elections, stock markets, energy supply and demand, and, of course, the weather, it is a great consolation to feel that we can still retain some control of the future.

  10. Transportation Energy Futures Series. Effects of the Built Environment on Transportation. Energy Use, Greenhouse Gas Emissions, and Other Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, C. D.; Brown, A.; Dunphy, R. T.

    2013-03-15

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density,more » diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  11. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, C. D.; Brown, A.; Dunphy, R. T.

    2013-03-01

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density,more » diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  12. Revolution Now: The Future Arrives for Four Clean Energy Technologies

    DOE R&D Accomplishments Database

    Tillemann, Levi; Beck, Fredric; Brodrick, James; Brown, Austin; Feldman, David; Nguyen, Tien; Ward, Jacob

    2013-09-17

    For decades, America has anticipated the transformational impact of clean energy technologies. But even as costs fell and technology matured, a clean energy revolution always seemed just out of reach. Critics often said a clean energy future would "always be five years away." This report focuses on four technology revolutions that are here today. In the last five years they have achieved dramatic reductions in cost and this has been accompanied by a surge in consumer, industrial and commercial deployment. Although these four technologies still represent a small percentage of their total market, they are growing rapidly. The four key technologies this report focuses on are: onshore wind power, polysilicon photovoltaic modules, LED lighting, and electric vehicles.

  13. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasismore » on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.« less

  14. Future scenarios for energy consumption and carbon emissions due to demographic transitions in Chinese households

    NASA Astrophysics Data System (ADS)

    Yu, Biying; Wei, Yi-Ming; Kei, Gomi; Matsuoka, Yuzuru

    2018-02-01

    Population dynamics has been acknowledged as a key concern for projecting future emissions, partly because of the huge uncertainties related to human behaviour. However, the heterogeneous shifts of human behaviour in the process of demographic transition are not well explored when scrutinizing the impacts of population dynamics on carbon emissions. Here, we expand the existing population-economy-environment analytical structure to address the above limitations by representing the trend of demographic transitions to small-family and ageing society. We specifically accommodate for inter- and intra-life-stage variations in time allocation and consumption in the population rather than assuming a representative household, and take a less developed province, Sichuan, in China as the empirical context. Our results show that the demographic shift to small and ageing households will boost energy consumption and carbon emissions, driven by the joint variations in time-use and consumption patterns. Furthermore, biased pictures of changing emissions will emerge if the time effect is disregarded.

  15. Transportation Energy Futures Series. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, Thomas

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost andmore » potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation. View all reports on the TEF Web page, http://www.eere.energy.gov/analysis/transportationenergyfutures/index.html.« less

  16. Addressing neuropsychiatric disturbances during rehabilitation after traumatic brain injury: current and future methods

    PubMed Central

    Arciniegas, David B.

    2011-01-01

    Cognitive, emotional, behavioral, and sensorimotor disturbances are the principal clinical manifestations of traumatic brain injury (TBI) throughout the early postinjury period. These post-traumatic neuropsychiatric disturbances present substantial challenges to patients, their families, and clinicians providing their rehabilitative care, the optimal approaches to which remain incompletely developed. In this article, a neuropsychiairically informed, neurobiologically anchored approach to understanding and meeting challenges is described. The foundation for thai approach is laid, with a review of clinical case definitions of TBI and clarification of their intended referents. The differential diagnosis of event-related neuropsychiatric disturbances is considered next, after which the clinical and neurobiological heterogeneity within the diagnostic category of TBI are discussed. The clinical manifestations of biomechanical force-induced brain dysfunction are described as a state of post-traumatic encephalopathy (PTE) comprising several phenomenologically distinct stages, PTE is then used as a framework for understanding and clinically evaluating the neuropsychiatric sequelae of TBI encountered commonly during the early post-injury rehabilitation period, and for considering the types and timings of neurorehabilitative interventions. Finally, directions for future research that may address productively the challenges to TBI rehabilitation presented by neuropsychiatric disturbances are considered. PMID:22034400

  17. The future of energy gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, D.G.

    1995-04-01

    Natural gas, mainly methane, produces lower CO {sub 2}, CO, NO{sub x}, SO {sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce each 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the abovemore » rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions stemming from the need to drill an enormous number of wells, many in ecologically sensitive areas. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane is known to exist in the mantle and lower crust. Near the Earth`s surface, methane occurs in enormous oil and/or gas reservoirs in rock, and is absorbed in coal, dissolved in water, and trapped in a latticework of ice-like material called gas hydrate. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, methane accounts for roughly 25 percent of current U.S. consumption, but its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.« less

  18. The future cost of electrical energy storage based on experience rates

    NASA Astrophysics Data System (ADS)

    Schmidt, O.; Hawkes, A.; Gambhir, A.; Staffell, I.

    2017-08-01

    Electrical energy storage could play a pivotal role in future low-carbon electricity systems, balancing inflexible or intermittent supply with demand. Cost projections are important for understanding this role, but data are scarce and uncertain. Here, we construct experience curves to project future prices for 11 electrical energy storage technologies. We find that, regardless of technology, capital costs are on a trajectory towards US$340 ± 60 kWh-1 for installed stationary systems and US$175 ± 25 kWh-1 for battery packs once 1 TWh of capacity is installed for each technology. Bottom-up assessment of material and production costs indicates this price range is not infeasible. Cumulative investments of US$175-510 billion would be needed for any technology to reach 1 TWh deployment, which could be achieved by 2027-2040 based on market growth projections. Finally, we explore how the derived rates of future cost reduction influence when storage becomes economically competitive in transport and residential applications. Thus, our experience-curve data set removes a barrier for further study by industry, policymakers and academics.

  19. Seattle's System for Evaluating Energy Options

    NASA Technical Reports Server (NTRS)

    Logie, P.; Macdonald, M. J.

    1982-01-01

    In 1975, the City Council developed a blueprint called "Energy 1990" for meeting Seattle's future electric energy needs. Priorities for addressing or offsetting expected growth in demand are in order: (1) conservation; (2) hydroelectricity; (3) other renewable sources such as wind, biomass, solar, and geothermal energy; (4) abundant nonrenewable resources such as coal, and (5) other renewables. An energy resources planning group was formed and a data base was established. Resource options were investigated and the recommendations were published.

  20. A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions

    NASA Technical Reports Server (NTRS)

    Bladwin, Richard S.

    2009-01-01

    As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.

  1. 17 CFR 171.3 - Business address; hours.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 1 2011-04-01 2011-04-01 false Business address; hours. 171.3 Section 171.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES RELATING TO... MEMBER RESPONSIBILITY ACTIONS General Provisions § 171.3 Business address; hours. The principal office of...

  2. 17 CFR 12.3 - Business address; hours.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Business address; hours. 12.3 Section 12.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES RELATING TO REPARATIONS General Information and Preliminary Consideration of Pleadings § 12.3 Business address; hours. The...

  3. 17 CFR 12.3 - Business address; hours.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 1 2011-04-01 2011-04-01 false Business address; hours. 12.3 Section 12.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES RELATING TO REPARATIONS General Information and Preliminary Consideration of Pleadings § 12.3 Business address; hours. The...

  4. 17 CFR 171.3 - Business address; hours.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Business address; hours. 171.3 Section 171.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES RELATING TO... MEMBER RESPONSIBILITY ACTIONS General Provisions § 171.3 Business address; hours. The principal office of...

  5. 17 CFR 12.3 - Business address; hours.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Business address; hours. 12.3 Section 12.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES RELATING TO REPARATIONS General Information and Preliminary Consideration of Pleadings § 12.3 Business address; hours. The...

  6. 17 CFR 12.3 - Business address; hours.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Business address; hours. 12.3 Section 12.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES RELATING TO REPARATIONS General Information and Preliminary Consideration of Pleadings § 12.3 Business address; hours. The...

  7. 17 CFR 171.3 - Business address; hours.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Business address; hours. 171.3 Section 171.3 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES RELATING TO... MEMBER RESPONSIBILITY ACTIONS General Provisions § 171.3 Business address; hours. The principal office of...

  8. Future Earth -- New Approaches to address Climate Change and Sustainability in the MENA Region

    NASA Astrophysics Data System (ADS)

    Lange, Manfred; Abu Alhaija, Rana

    2016-04-01

    Interactions and feedbacks between rapidly increasing multiple pressures on water, energy and food security drive social-ecological systems at multiple scales towards critical thresholds in countries of the Eastern Mediterranean, the Middle East and North Africa (MENA Region). These pressures, including climate change, the growing demand on resources and resource degradation, urbanization and globalization, cause unprecedented challenges for countries and communities in the region. Responding to these challenges requires integrated science and a closer relationship with policy makers and stakeholders. Future Earth has been designed to respond to these urgent needs. In order to pursue such objectives, Future Earth is becoming the host organization for some 23 programs that were previously run under four global environmental change programmes, DIVERSITAS, the International Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme (IHDP) and the World Climate Research Programme (WCRP). Some further projects arose out of the Earth System Science Partnership (ESSP). It thus brings together a wide spectrum of expertise and knowledge that will be instrumental in tackling urgent problems in the MENA region and the wider Mediterranean Basin. Future Earth is being administered by a globally distributed secretariat that also includes a series of Regional Centers, which will be the nuclei for the development of new regional networks. The Cyprus Institute in Nicosia, Cyprus (CyI; www.cyi.ac.cy) is hosting the Regional Center for the MENA Region. The CyI is a non-profit research and post-graduate education institution with a strong scientific and technological orientation and a distinctive regional, Eastern Mediterranean scope. Cyprus at the crossroads of three continents and open to all nations in the region provides excellent conditions for advancing the research agenda of Future Earth in the MENA Region. Given the recent and ongoing major political

  9. Convocation address.

    PubMed

    Swaminathan, M S

    1998-07-01

    This address delivered to the 40th convocation of the International Institute for Population Sciences in India in 1998 opens by noting that a shortage of jobs for youth is India's most urgent problem but that the problems that attend the increasing numbers of elderly also require serious attention. The address then notes that the Earth's population is growing at an unsustainable rate while economic inequities among countries are increasing, so that, while intellectual property is becoming the most important asset in developed countries, nutritional anemia among pregnant women causes their offspring to be unable to achieve their full intellectual potential from birth. Next, the address uses a discussion of the 18th-century work on population of the Marquis de Condorcet and of Thomas Malthus to lead into a consideration of estimated increased needs of countries like India and China to import food grains in the near future. Next, the progress of demographic transition in Indian states is covered and applied to Mahbub ul Haq's measure of human deprivation developed for and applied to the region of the South Asian Association for Regional Cooperation (India, Pakistan, Bangladesh, Nepal, Sri Lanka, Bhutan, and the Maldives). The address continues by reiterating some of the major recommendations forwarded by a government of India committee charged in 1995 with drafting a national population policy. Finally, the address suggests specific actions that could be important components of the Hunger-Free India Programme and concludes that all success rests on the successful implementation of appropriate population policies.

  10. 17 CFR 10.4 - Business address; hours.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 1 2011-04-01 2011-04-01 false Business address; hours. 10.4 Section 10.4 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES OF PRACTICE General Provisions § 10.4 Business address; hours. The Office of Proceedings is located at Three Lafayette...

  11. 17 CFR 10.4 - Business address; hours.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Business address; hours. 10.4 Section 10.4 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES OF PRACTICE General Provisions § 10.4 Business address; hours. The Office of Proceedings is located at Three Lafayette...

  12. 17 CFR 10.4 - Business address; hours.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Business address; hours. 10.4 Section 10.4 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES OF PRACTICE General Provisions § 10.4 Business address; hours. The Office of Proceedings is located at Three Lafayette...

  13. 17 CFR 10.4 - Business address; hours.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Business address; hours. 10.4 Section 10.4 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES OF PRACTICE General Provisions § 10.4 Business address; hours. The Office of Proceedings is located at Three Lafayette...

  14. Space sciences - Keynote address

    NASA Technical Reports Server (NTRS)

    Alexander, Joseph K.

    1990-01-01

    The present status and projected future developments of the NASA Space Science and Applications Program are addressed. Emphasis is given to biochemistry experiments that are planned for the Space Station. Projects for the late 1990s which will study the sun, the earth's magnetosphere, and the geosphere are briefly discussed.

  15. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an arraymore » of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.« less

  16. Status of the Magma Energy Project

    NASA Astrophysics Data System (ADS)

    Dunn, J. C.

    The current magma energy project is assessing the engineering feasibility of extracting thermal energy directly from crustal magma bodies. The estimated size of the U.S. resource (50,000 to 500,000 quads) suggests a considerable potential impact on future power generation. In a previous seven-year study, we concluded that there are no insurmountable barriers that would invalidate the magma energy concept. Several concepts for drilling, energy extraction, and materials survivability were successfully demonstrated in Kilauea Iki lava lake, Hawaii. The present program is addressing the engineering design problems associated with accessing magma bodies and extracting thermal energy for power generation. The normal stages for development of a geothermal resource are being investigated: exploration, drilling and completions, production, and surface power plant design. Current status of the engineering program and future plans are described.

  17. Elucidating dark energy with future 21 cm observations at the epoch of reionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohri, Kazunori; Oyama, Yoshihiko; Sekiguchi, Toyokazu

    2017-02-01

    We investigate how precisely we can determine the nature of dark energy such as the equation of state (EoS) and its time dependence by using future observations of 21 cm fluctuations at the epoch of reionization (06.8∼< z ∼<1) such as Square Kilometre Array (SKA) and Omniscope in combination with those from cosmic microwave background, baryon acoustic oscillation, type Ia supernovae and direct measurement of the Hubble constant. We consider several parametrizations for the EoS and find that future 21 cm observations will be powerful in constraining models of dark energy, especially when its EoS varies at high redshifts.

  18. Unraveling the Importance of Climate Change Resilience in Planning the Future Sustainable Energy System

    NASA Astrophysics Data System (ADS)

    Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.

    2017-12-01

    In response to concerns regarding the environmental impacts of the current energy resource mix, significant research efforts have been focused on determining the future energy resource mix to meet emissions reduction and environmental sustainability goals. Many of these studies focus on various constraints such as costs, grid operability requirements, and environmental performance, and develop different plans for the rollout of energy resources between the present and future years. One aspect that has not yet been systematically taken into account in these planning studies, however, is the potential impacts that changing climates may have on the availability and performance of key energy resources that compose these plans. This presentation will focus on a case study for California which analyzes the impacts of climate change on the greenhouse gas emissions and renewable resource utilization of an energy resource plan developed by Energy Environmental Economics for meeting the state's year 2050 greenhouse gas goal of 80% reduction in emissions by the year 2050. Specifically, climate change impacts on three aspects of the energy system are investigated: 1) changes in hydropower generation due to altered precipitation, streamflow and runoff patterns, 2) changes in the availability of solar thermal and geothermal power plant capacity due to shifting water availability, and 3) changes in the residential and commercial electric building loads due to increased temperatures. These impacts were discovered to cause the proposed resource plan to deviate from meeting its emissions target by up to 5.9 MMT CO2e/yr and exhibit a reduction in renewable resource penetration of up to 3.1% of total electric energy. The impacts of climate change on energy system performance were found to be mitigated by increasing the flexibility of the energy system through increased storage and electric load dispatchability. Overall, this study highlights the importance of taking into account and

  19. 35 Years of Innovation - Leading the Way to a Clean Energy Future (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The U.S. Department of Energy (DOE) National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is at the forefront of energy innovation. For more than three decades, our researchers have built unparalleled expertise in renewable energy technologies while supporting the nation's vision that wind and water can provide clean, reliable, and cost-effective electricity. The NWTC strives to be an essential partner to companies, other DOE laboratories, government agencies, and universities around the world seeking to create a better, more sustainable future.

  20. Alternative Energy Development and China's Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thusmore » seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario

  1. CABS: Green Energy for Our Nation's Future (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    "CABS: Green Energy for our Nation's Future" was submitted by the Center for Advanced Biofuel Systems (CABS) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CABS, an EFRC directed by Jan Jaworski at the Donald Danforth Plant Science Center is a partnership of scientists from five institutions: Donald Danforth Plant Science Center (lead), Michigan State University, the University of Nebraska, New Mexico Consortium/LANL, and Washington State University. Themore » Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less

  2. Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Kotera, Kumiko; Miller, M. Coleman; Murase, Kohta; Oikonomou, Foteini

    2016-12-01

    The detection of ultrahigh-energy (UHE) neutrino sources would contribute significantly to solving the decades-old mystery of the origin of the highest-energy cosmic rays. We investigate the ability of a future UHE neutrino detector to identify the brightest neutrino point sources, by exploring the parameter space of the total number of observed events and the angular resolution of the detector. The favored parameter region can be translated to requirements for the effective area, sky coverage and angular resolution of future detectors, for a given source number density and evolution history. Moreover, by studying the typical distance to sources that are expected to emit more than one event for a given diffuse neutrino flux, we find that a significant fraction of the identifiable UHE neutrino sources may be located in the nearby Universe if the source number density is above ~10-6 Mpc-3. If sources are powerful and rare enough, as predicted in blazar scenarios, they can first be detected at distant locations. Our result also suggests that if UHE cosmic-ray accelerators are neither beamed nor transients, it will be possible to associate the detected UHE neutrino sources with nearby UHE cosmic-ray and gamma-ray sources, and that they may also be observed using other messengers, including ones with limited horizons such as TeV gamma rays, UHE gamma rays and cosmic rays. We find that for a gtrsim5σ detection of UHE neutrino sources with a uniform density, ns~10-7-10-5 Mpc-3, at least ~100-1000 events and sub-degree angular resolution are needed, and the results depend on the source evolution model.

  3. Current demographics suggest future energy supplies will be inadequate to slow human population growth.

    PubMed

    DeLong, John P; Burger, Oskar; Hamilton, Marcus J

    2010-10-05

    Influential demographic projections suggest that the global human population will stabilize at about 9-10 billion people by mid-century. These projections rest on two fundamental assumptions. The first is that the energy needed to fuel development and the associated decline in fertility will keep pace with energy demand far into the future. The second is that the demographic transition is irreversible such that once countries start down the path to lower fertility they cannot reverse to higher fertility. Both of these assumptions are problematic and may have an effect on population projections. Here we examine these assumptions explicitly. Specifically, given the theoretical and empirical relation between energy-use and population growth rates, we ask how the availability of energy is likely to affect population growth through 2050. Using a cross-country data set, we show that human population growth rates are negatively related to per-capita energy consumption, with zero growth occurring at ∼13 kW, suggesting that the global human population will stop growing only if individuals have access to this amount of power. Further, we find that current projected future energy supply rates are far below the supply needed to fuel a global demographic transition to zero growth, suggesting that the predicted leveling-off of the global population by mid-century is unlikely to occur, in the absence of a transition to an alternative energy source. Direct consideration of the energetic constraints underlying the demographic transition results in a qualitatively different population projection than produced when the energetic constraints are ignored. We suggest that energetic constraints be incorporated into future population projections.

  4. Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, T.

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost andmore » potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.« less

  5. Metrology for hydrogen energy applications: a project to address normative requirements

    NASA Astrophysics Data System (ADS)

    Haloua, Frédérique; Bacquart, Thomas; Arrhenius, Karine; Delobelle, Benoît; Ent, Hugo

    2018-03-01

    Hydrogen represents a clean and storable energy solution that could meet worldwide energy demands and reduce greenhouse gases emission. The joint research project (JRP) ‘Metrology for sustainable hydrogen energy applications’ addresses standardisation needs through pre- and co-normative metrology research in the fast emerging sector of hydrogen fuel that meet the requirements of the European Directive 2014/94/EU by supplementing the revision of two ISO standards that are currently too generic to enable a sustainable implementation of hydrogen. The hydrogen purity dispensed at refueling points should comply with the technical specifications of ISO 14687-2 for fuel cell electric vehicles. The rapid progress of fuel cell technology now requires revising this standard towards less constraining limits for the 13 gaseous impurities. In parallel, optimized validated analytical methods are proposed to reduce the number of analyses. The study aims also at developing and validating traceable methods to assess accurately the hydrogen mass absorbed and stored in metal hydride tanks; this is a research axis for the revision of the ISO 16111 standard to develop this safe storage technique for hydrogen. The probability of hydrogen impurity presence affecting fuel cells and analytical techniques for traceable measurements of hydrogen impurities will be assessed and new data of maximum concentrations of impurities based on degradation studies will be proposed. Novel validated methods for measuring the hydrogen mass absorbed in hydrides tanks AB, AB2 and AB5 types referenced to ISO 16111 will be determined, as the methods currently available do not provide accurate results. The outputs here will have a direct impact on the standardisation works for ISO 16111 and ISO 14687-2 revisions in the relevant working groups of ISO/TC 197 ‘Hydrogen technologies’.

  6. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “allmore » of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system

  7. Symposium report: the Waters Bioanalysis World Tour: the broadening impact and future of the DMPK laboratory--addressing large-molecule therapeutics.

    PubMed

    De Vooght-Johnson, Ryan

    2011-03-01

    An evening symposium was held at the Museu de Historia de Catalunya (Barcelona, Spain) as a precursor to the European Bioanalysis Forum meeting, as part of the Waters Corporation Bioanalysis World Tour. The symposium was chaired by Robert Plumb and Jing Lin (Waters Corporation, MA, USA) with a focus on the future of the DMPK laboratory and its role in addressing large-molecule therapeutics and biomarkers. Lieve Dillen (Johnson and Johnson, Belgium) spoke on ultra-sensitive peptide quantification, Richard Kay (Quotient Bioresearch, UK) discussed quantifying proteins and peptides in plasma, Ian Wilson (AstraZeneca, UK) covered metabolic biomarkers and Robert Plumb concluded the evening with a presentation on the future of MS in DMPK studies. Following the presentations, all the speakers took questions from the audience and continued lively discussion over a cocktails and canapés reception.

  8. Managing Water-Food-Energy Futures in the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Wheater, H. S.; Hassanzadeh, E.; Nazemi, A.; Elshorbagy, A. A.

    2016-12-01

    The water-food-energy nexus is a convenient phrase to highlight competing societal uses for water and the need for cross-sectoral policy integration, but this can lead to oversimplification of the multiple dimensions of water (and energy) management. In practice, water managers must balance (and prioritize) demands for water for many uses, including environmental flows, and reservoir operation often involves managing conflicting demands, for example to maximize retention for supply, reduce storage to facilitate flood control, and constrain water levels and releases for habitat protection. Agriculture and water quality are also inextricably linked: irrigated agriculture requires appropriate water quality for product quality and certification, but agriculture can be a major source of nutrient pollution, with impacts on human and ecosystem health, drinking water treatment and amenity. And energy-water interactions include energy production (hydropower and cooling water for thermal power generation) and energy consumption (e.g. for pumping and water and wastewater treatment). These dependencies are illustrated for the Canadian prairies, and a risk-based approach to the management of climate change is presented. Trade-offs between economic benefits of hydropower and irrigation are illustrated for alternative climate futures, including implications for freshwater habitats. The results illustrate that inter-sector interactions vary as a function of climate and its variability, and that there is a need for policy to manage inter-sector allocations as a function of economic risk.

  9. Energy study of rail passenger transportation. Volume 4. Efficiency improvements and industry future. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, C.; Wilhelm, J.P.

    1979-08-01

    Measures that offer promise of efficiency improvements or economy in energy usage in rail passenger transportation are identified and described; the future of rail passenger transportation in the US is discussed; and possible future roles of Federal agencies are discussed.

  10. The Decline of the Atom and the Rise of the Sun as Future Energy Sources

    ERIC Educational Resources Information Center

    Bockris, J. O'M.

    1973-01-01

    Examines the various energy sources likely to be developed in the near future, and suggests that the only satisfactory solution lies in the development of solar energy and an associated non-polluting "hydrogen economy." Concludes that Australia has ideal conditions and the technical expertise to lead in solar energy research. (JR)

  11. Second National Immunization Congress 2010: addressing vaccine financing for the future in the US.

    PubMed

    Shen, Angela K; Sobzcyk, Elizabeth; Buchanan, Anna; Wu, Lauren; Duggan-Goldstein, Sarah

    2011-01-01

    At the 2nd National Immunization Congress held in Chicago, IL, from August 31-September 2, 2010, partners from government, provider groups, academia, and manufacturers gathered to discuss the progress made and the future of financing child, adolescent, and adult vaccines. The meeting is a continuation of a solution-oriented vaccine financing dialogue held in February 2007 at the 1st Immunization Congress. The need for this forum arose from concerns that increased costs of immunization could hinder the ability of current financing and delivery systems to maintain access without financial barriers. Preventive care and additional financial coverage for vaccines are key points in federal health reform but some populations, especially adolescents and adults, could continue to experience challenges in accessing vaccines. Congress participants discussed adequate reimbursement in the public and private sectors for vaccine delivery and the potential financial resources, data, and infrastructure needed to increase vaccine uptake in the US. Participants agreed that partners from all sectors--manufacturers, providers, public health, employers, payors, insurers, and consumers--will collectively need to leverage their efforts to address financial gaps not covered by health care reform law to ensure the preventive benefits of vaccines are fully realized for all Americans.

  12. Enabling the SMART Wind Power Plant of the Future Through Science-Based Innovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L.; Hand, M. M.; Lantz, Eric J.

    This report describes the scientific challenges facing wind energy today and the recent scientific advancements that position the research community to tackle those challenges, as well as the new U.S. Department of Energy applied research program Atmosphere to Electrons that takes an integrated approach to addressing those challenges. It also ties these resulting scientific accomplishments to future technological innovation and quantifies the impact of that collection of innovations on 2030 wind power cost of energy.

  13. Using remote sensing and GIS in addressing the future decisions regarding underused urban spaces; Hajj sites in Mecca as case study

    NASA Astrophysics Data System (ADS)

    Imam, Ayman; Roca, Josep

    2017-10-01

    The term Underused Urban Spaces (UUS) refers to spaces within urban areas that have become unused, or that are being used to a lesser degree than they could or should be such as former industrial zones, abandoned facilities or buildings and Expo or Olympic Games cities. The Islamic pilgrimage sites known as Hajj sites (HS) are considered form of the UUS concept as they are used lesser degree than they should be. However, the emergence of such spaces has therefore encouraged researchers, urban planner, social and local authorities to discuses about the appropriate decision regarding their future towards conversion or alternatively using those spaces in order to achieve positive social, economic and environmental benefits, according to Pagano and Bowman (2000), UUS can be a powerful tool for governments and investors to use during the urban growth (UG) of their cities. Since, remote sensing and GIS technologies are used recently to study and analyze the UG of cities; the main objective of this paper is to demonstrate the efficiency of those technologies in addressing the future decisions regarding the underused status of Hajj sites in relation to UG of the city of Mecca. Tow classified land cover maps of Mecca for two years (1998 and 2013), in addition to entropy index and multiple regression analyses were utilized in order to quantify the relationship between HS and Mecca UG. The results showed that the urban growth of Mecca has increased by approximately 56%, and almost 32% of that increased were around HS in on hand, and on the other hand the entropy and the regression analysis showed that there is 51% probability that the future growth to be also around HS. These findings will better addressing the future decisions regarding the underused status of HS, simultaneously revel that the use of RS and GIS was highly effective to be adopted within similar cases of UUS.

  14. Forecasting of future earthquakes in the northeast region of India considering energy released concept

    NASA Astrophysics Data System (ADS)

    Zarola, Amit; Sil, Arjun

    2018-04-01

    This study presents the forecasting of time and magnitude size of the next earthquake in the northeast India, using four probability distribution models (Gamma, Lognormal, Weibull and Log-logistic) considering updated earthquake catalog of magnitude Mw ≥ 6.0 that occurred from year 1737-2015 in the study area. On the basis of past seismicity of the region, two types of conditional probabilities have been estimated using their best fit model and respective model parameters. The first conditional probability is the probability of seismic energy (e × 1020 ergs), which is expected to release in the future earthquake, exceeding a certain level of seismic energy (E × 1020 ergs). And the second conditional probability is the probability of seismic energy (a × 1020 ergs/year), which is expected to release per year, exceeding a certain level of seismic energy per year (A × 1020 ergs/year). The logarithm likelihood functions (ln L) were also estimated for all four probability distribution models. A higher value of ln L suggests a better model and a lower value shows a worse model. The time of the future earthquake is forecasted by dividing the total seismic energy expected to release in the future earthquake with the total seismic energy expected to release per year. The epicentre of recently occurred 4 January 2016 Manipur earthquake (M 6.7), 13 April 2016 Myanmar earthquake (M 6.9) and the 24 August 2016 Myanmar earthquake (M 6.8) are located in zone Z.12, zone Z.16 and zone Z.15, respectively and that are the identified seismic source zones in the study area which show that the proposed techniques and models yield good forecasting accuracy.

  15. Population growth rate and energy consumption correlations: Implications for the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffield, J.

    1998-01-01

    The fertility rate for women and the related population growth rate, for numerous developing (transitional) countries, show a downward trend with increasing annual per capita energy use. On the assumption that such historic trends will continue, estimates are made for some simple cases of the energy demands required to stabilize the world`s population in the period 2,100 to 2,150. An assessment is then made of how these energy demands might be met, capitalizing as much as possible on the indigenous energy resources for each of the ten major regions of the world: North America, Latin America, Europe OECD, Former Sovietmore » Union and Central and Eastern Europe, China, Pacific OECD, East Asia, South Asia, Africa, and the Middle East. Consideration is also given to the potential need to limit carbon emissions because of global warming concerns. The study highlights the crucial nature of energy efficiency improvements and the need to utilize all energy sources, if the world is to find a sustainable future with an improved standard of living for the developing world.« less

  16. Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ke; Miller, M. Coleman; Kotera, Kumiko

    2016-12-01

    The detection of ultrahigh-energy (UHE) neutrino sources would contribute significantly to solving the decades-old mystery of the origin of the highest-energy cosmic rays. We investigate the ability of a future UHE neutrino detector to identify the brightest neutrino point sources, by exploring the parameter space of the total number of observed events and the angular resolution of the detector. The favored parameter region can be translated to requirements for the effective area, sky coverage and angular resolution of future detectors, for a given source number density and evolution history. Moreover, by studying the typical distance to sources that are expectedmore » to emit more than one event for a given diffuse neutrino flux, we find that a significant fraction of the identifiable UHE neutrino sources may be located in the nearby Universe if the source number density is above ∼10{sup −6} Mpc{sup −3}. If sources are powerful and rare enough, as predicted in blazar scenarios, they can first be detected at distant locations. Our result also suggests that if UHE cosmic-ray accelerators are neither beamed nor transients, it will be possible to associate the detected UHE neutrino sources with nearby UHE cosmic-ray and gamma-ray sources, and that they may also be observed using other messengers, including ones with limited horizons such as TeV gamma rays, UHE gamma rays and cosmic rays. We find that for a ∼>5σ detection of UHE neutrino sources with a uniform density, n {sub s} {sub ∼}10{sup −7}−10{sup −5} Mpc{sup −3}, at least ∼100−1000 events and sub-degree angular resolution are needed, and the results depend on the source evolution model.« less

  17. Safeguarding our energy future

    NASA Astrophysics Data System (ADS)

    1993-02-01

    Throughout the past several years, states have been receiving settlement monies distributed from escrow accounts maintained by the Department of Energy and various courts. These monies are paid by oil companies for alleged violations of the petroleum pricing regulations of the 1970's. These funds, commonly referred to as Petroleum Violation Escrow (PVE) or Oil Overcharge funds, have been an important tool in supporting energy efficiency programs and technologies at the state level. The aim of this publication is to highlight some of the many interesting, replicable projects funded with PVE monies and to serve as a resource for successful, energy efficiency programs in planning, technology application, and education. By capturing a number of these innovative state-level programs, this document will expand the information network on renewable energy and energy efficiency and serve as a point of departure for others pursuing similar goals. Projects referenced throughout this publication reflect some of the program areas in which the Department of Energy takes an active interest and fall into the following categories: (1) alternative fuels; (2) industrial efficiency and waste minimization; (3) electric power production from renewable resources; (4) building efficiency; (5) integrated resource planning; and (6) energy education.

  18. Air-climate-energy investigations with a state-level Integrated Assessment Model: GCAM-USA

    EPA Science Inventory

    The Global Change Assessment Model (GCAM) is a global integrated assessment model used for exploring future scenarios and examining strategies that address air pollution, climate change, and energy goals.  GCAM includes technology-rich representations of the energy, transportatio...

  19. Green farming systems for the Southeast USA using manure-to-energy conversion platforms

    USDA-ARS?s Scientific Manuscript database

    Livestock operations in the Southeastern USA are faced with implementing holistic solutions to address effective manure treatment through efficient energy management and safeguarding of supporting natural resources. By integrating waste-to-energy conversion platforms, future green farming systems ca...

  20. Leading trends in environmental regulation that affect energy development. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, R V; Attaway, L D; Christerson, J A

    1980-01-01

    Major environmental issues that are likely to affect the implementation of energy technologies between now and the year 2000 are identified and assessed. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; true and modified in situ oil shale retorting; geothermal energy; biomass energy conversion; and nuclear power (fission). Environmental analyses of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. A comprehensive surveymore » of the environmental community (including environmental groups, researchers, and regulatory agencies) was carried out in parallel with an analysis of the technologies to identify important future environmental issues. Each of the final 20 issues selected by the project staff has the following common attributes: consensus of the environmental community that the issue is important; it is a likely candidate for future regulatory action; it deals with a major environmental aspect of energy development. The analyses of the 20 major issues address their environmental problem areas, current regulatory status, and the impact of future regulations. These analyses are followed by a quantitative assessment of the impact on energy costs and nationwide pollutant emissions of possible future regulations. This is accomplished by employing the Strategic Environmental Assessment System (SEAS) for a subset of the 20 major issues. The report concludes with a more general discussion of the impact of environmental regulatory action on energy development.« less

  1. Addressing Future Technology Challenges Through Innovation and Investment

    DTIC Science & Technology

    2012-03-01

    27   Figure  5:   High   Altitude  LIDAR  Operations  Equipment...deployment of the High Altitude LIDAR Operations Experiment (HALOE) system to Operation Enduring Freedom (OEF). DARPA took a prototype sensor and put...High_Energy_Liquid_Laser_Area_Defense_System_(HELLADS).as px.   7 DARPA, “ High Altitude LIDAR Operations Experiment (HALOE) Information Briefing”, September 2011.   8 Taylor, John

  2. 18 CFR 376.203 - Mailing address of Commission during emergency conditions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REVISED GENERAL RULES ORGANIZATION, MISSION... § 376.203 Mailing address of Commission during emergency conditions. The Chairman may direct that during... Commission shall be addressed to the Federal Energy Regulatory Commission, Official Mail and Messenger...

  3. Oral health in Libya: addressing the future challenges.

    PubMed

    Peeran, Syed Wali; Altaher, Omar Basheer; Peeran, Syed Ali; Alsaid, Fatma Mojtaba; Mugrabi, Marei Hamed; Ahmed, Aisha Mojtaba; Grain, Abdulgader

    2014-01-01

    Libya is a vast country situated in North Africa, having a relatively better functioning economy with a scanty population. This article is the first known attempt to review the current state of oral health care in Libya and to explore the present trends and future challenges. Libyan health system, oral health care, and human resources with the present status of dental education are reviewed comprehensively. A bibliographic study of oral health research and publications has been carried out. The results point toward a common indicator that oral health-related research is low. Strategies have to be developed to educate the medical and dental professionals, to update the current curriculum and enable the system to be competent in all aspects of oral health care management.

  4. Oral health in Libya: addressing the future challenges

    PubMed Central

    Peeran, Syed Wali; Altaher, Omar Basheer; Peeran, Syed Ali; Alsaid, Fatma Mojtaba; Mugrabi, Marei Hamed; Ahmed, Aisha Mojtaba; Grain, Abdulgader

    2014-01-01

    Libya is a vast country situated in North Africa, having a relatively better functioning economy with a scanty population. This article is the first known attempt to review the current state of oral health care in Libya and to explore the present trends and future challenges. Libyan health system, oral health care, and human resources with the present status of dental education are reviewed comprehensively. A bibliographic study of oral health research and publications has been carried out. The results point toward a common indicator that oral health–related research is low. Strategies have to be developed to educate the medical and dental professionals, to update the current curriculum and enable the system to be competent in all aspects of oral health care management. PMID:24666627

  5. Sustainable Skyscrapers: Designing the Net Zero Energy Building of the Future

    NASA Astrophysics Data System (ADS)

    Kothari, S.; Bartsch, A.

    2016-12-01

    Cities of the future will need to increase population density in order to keep up with the rising populations in the limited available land area. In order to provide sufficient power as the population grows, cities must become more energy efficient. Fossil fuels and grid energy will continue to become more expensive as nonrenewable resources deplete. The obvious solution to increase population density while decreasing the reliance on fossil fuels is to build taller skyscrapers that are energy neutral, i.e. self-sustaining. However, current skyscrapers are not energy efficient, and therefore cannot provide a sustainable solution to the problem of increasing population density in the face of depleting energy resources. The design of a net zero energy building that includes both residential and commercial space is presented. Alternative energy systems such as wind turbines, photovoltaic cells, and a waste-to-fuel conversion plant have been incorporated into the design of a 50 story skyscraper that is not reliant on fossil fuels and has a payback time of about six years. Although the current building was designed to be located in San Francisco, simple modifications to the design would allow this building to fit the needs of any city around the world.

  6. Meteorology and energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    In the consideration of the meteorological aspects of energy problems, the latter is divided into three main groups: energy production, energy transport and exploration, and new energy resources. Increased energy production will have an impact on the environment. Although at present there is insufficient information for precise forecasts, meteorologists and hydrologists will be able to make reasonable assumptions for the future. Human use of energy is strongly influenced by variations of weather. Such systems as electric power transmission networks, shipping of hydrocarbons by sea, and pipelines for the transportation of large quantities of oil and gas, are all particularly sensitivemore » to weather and climate. The meteorologist provides basic data on weather and climate to facilitate energy exploration. The new energy resources addressed in this article are solar, wind, geothermal, and nuclear. The World Meteorological Organization's Executive Committee established a set of priorities in dealing with energy problems. This paper also briefly examines the burden imposed on global energy resources.« less

  7. Exploring Air-Climate-Energy Impacts with GCAM-USA

    EPA Science Inventory

    The Global Climate Assessment Model (GCAM) is a global integrated assessment model used for exploring future scenarios and examining strategies that address air pollution, climate change and energy (ACE) goals. My research focuseson integration of impact factors in GCAM-USA and a...

  8. Future evolution of distributed systems for smart grid - The challenges and opportunities to using decentralized energy system

    NASA Astrophysics Data System (ADS)

    Konopko, Joanna

    2015-12-01

    A decentralized energy system is a relatively new approach in the power industry. Decentralized energy systems provide promising opportunities for deploying renewable energy sources locally available as well as for expanding access to clean energy services to remote communities. The electricity system of the future must produce and distribute electricity that is reliable and affordable. To accomplish these goals, both the electricity grid and the existing regulatory system must be smarter. In this paper, the major issues and challenges in distributed systems for smart grid are discussed and future trends are presented. The smart grid technologies and distributed generation systems are explored. A general overview of the comparison of the traditional grid and smart grid is also included.

  9. Addressing Diversity: A Call for Action.

    ERIC Educational Resources Information Center

    Henderson, Ingeborg

    1991-01-01

    Suggests a series of steps that individuals in the foreign language profession can take to effectively address the issue of demographic changes in the U.S. college student populations and keeping foreign language learning a feasible discipline in the future. (26 references) (GLR)

  10. National energy strategy to be devised

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Secretary of Energy James D. Watkins has announced the Department of Energy's plans to develop a national energy strategy. Leaders of three national associations voiced concern that organizers of the U.S. Department of Energy hearings made no contract with the American Wind Energy Association, (AWEA) and National Wood Energy Association (NWEA) or the Solar Energy Industries Association (SEIA). All three representatives urged the DOE to address the problems of acid rain, global climate change and continued reliance on imported fuel. The renewable energy industry groups expressed hope that a future DOE meeting with Watkins and the renewable energy industries willmore » be held to discuss the components of a national energy strategy encouraging the use of renewable energy sources.« less

  11. Computing in high-energy physics

    DOE PAGES

    Mount, Richard P.

    2016-05-31

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  12. Computing in high-energy physics

    NASA Astrophysics Data System (ADS)

    Mount, Richard P.

    2016-04-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Finally, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  13. Computing in high-energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mount, Richard P.

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  14. Current Status and Future Potential of Energy Derived from Chinese Agricultural Land: A Review

    PubMed Central

    Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction. PMID:25874229

  15. Current status and future potential of energy derived from Chinese agricultural land: a review.

    PubMed

    Zhai, Ningning; Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction.

  16. Opportunity for America: Mexico`s coal future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loose, V.W.

    1993-09-01

    This study examines the history, current status and future prospects for increased coal use in Mexico. Environmental implications of the power-generation capacity expansion plans are examined in general terms. Mexican environmental law and regulations are briefly reviewed along with the new sense of urgency in the cleanup of existing environmental problems and avoidance of new problems as clearly mandated in recent Mexican government policy initiatives. It is expected that new capital facilities will need to incorporate the latest in process and technology to comply with existing environmental regulation. Technology developments which address these issues are identified. What opportunities have newmore » initiatives caused by the recent diversification of Mexico`s energy economy offered US firms? This report looks at the potential future use of coal in the Mexican energy economy, examining this issue with an eye toward identifying markets that might be available to US coal producers and the best way to approach them. Market opportunities are identified by examining new developments in the Mexican economy generally and the energy economy particularly. These developments are examined in light of the current situation and the history which brought Mexico to its present status.« less

  17. A Global Look at Future Trends in the Renewable Energy Resource

    NASA Astrophysics Data System (ADS)

    Chen, S.; Freedman, J. M.; Kirk-Davidoff, D. B.; Brower, M.

    2017-12-01

    With the aggressive deployment of utility-scale and distributed generation of wind and solar energy systems, an accurate estimate of the uncertainty associated with future resource trends and plant performance is crucial in maintaining financial integrity in the renewable energy markets. With continuing concerns regarding climate change, the move towards energy resiliency, and the cost-competitiveness of renewables, a rapidly expanding fleet of utility-scale wind and solar power facilities and distributed generation of both resources is now being incorporated into the electric distribution grid. Although solar and wind account for about 3% of global power production, renewable energy is now and will continue to be the world's fastest-growing energy source. With deeper penetration of renewables, confidence in future power production output on a spectrum of temporal and spatial scales is crucial to grid stability for long-term planning and achieving national and international targets in the reduction of greenhouse gas emissions. Here, we use output from a diverse subset of Earth System Models (Climate Model Inter-comparison Project-Phase 5 members) to produce projected trends and uncertainties in regional and global seasonal and inter-annual wind and solar power production and respective capacity factors through the end of the 21st century. Our trends and uncertainty analysis focuses on the Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 scenarios. For wind and solar energy production estimates, we extract surface layer wind (extrapolated to hub height), irradiance, cloud fraction, and temperature (air temperature affects density [hence wind power production] and the efficiency of photovoltaic [PV] systems), output from the CMIP5 ensemble mean fields for the period 2020 - 2099 and an historical baseline for POR of 1986 - 2005 (compared with long-term observations and the ERA-Interim Reanalysis). Results include representative statistics such as the

  18. Onshore wind energy potential over Iberia: present and future projections

    NASA Astrophysics Data System (ADS)

    Rochinha, Carlos A.; Santos, João A.; Liberato, Margarida L. R.; Pinto, Joaquim G.

    2014-05-01

    Onshore grid-connected wind power generation has been explored for more than three decades in the Iberian Peninsula. Further, increasing attention has been devoted to renewable energy sources in a climate change context. While advantages of wind energy are widely recognized, its distribution is not spatially homogeneous and not uniform throughout the year. Hence, understanding these spatial-temporal distributions is critical in power system planning. The present study aims at assessing the potential power output estimated from 10 m wind components simulated by a regional climate model (CCLM), driven by ERA40 reanalysis. Datasets are available on a grid with a high spatial resolution (approximately 20 km) and over a 40-yr period (1961-2000). Furthermore, several target sites, located in areas with high installed wind generation capacity, are selected for local-to-regional scale assessments. The results show that potential wind power is higher over northern Iberia, mostly in Cantabria and Galicia, while Andalucía and Cataluña record the lowest values. With respect to the intra-annual variability, summer is by far the season with the lowest potential energy outputs. Furthermore, the inter-annual variability reveals an overall downward long-term trend over the 40-yr period, particularly in the winter time series. A CCLM transient experiment, forced by the SRES A1B emission scenario, is also discussed for a future period (2041-2070), after a model validation/calibration process (bias corrections). Significant changes in the wind power potential are projected for the future throughout Iberia, but their magnitude largely depends on the locations. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).

  19. Addressing Beyond Standard Model physics using cosmology

    NASA Astrophysics Data System (ADS)

    Ghalsasi, Akshay

    We have consensus models for both particle physics (i.e. standard model) and cosmology (i.e. LambdaCDM). Given certain assumptions about the initial conditions of the universe, the marriage of the standard model (SM) of particle physics and LambdaCDM cosmology has been phenomenally successful in describing the universe we live in. However it is quite clear that all is not well. The three biggest problems that the SM faces today are baryogenesis, dark matter and dark energy. These problems, along with the problem of neutrino masses, indicate the existence of physics beyond SM. Evidence of baryogenesis, dark matter and dark energy all comes from astrophysical and cosmological observations. Cosmology also provides the best (model dependent) constraints on neutrino masses. In this thesis I will try address the following problems 1) Addressing the origin of dark energy (DE) using non-standard neutrino cosmology and exploring the effects of the non-standard neutrino cosmology on terrestrial and cosmological experiments. 2) Addressing the matter anti-matter asymmetry of the universe.

  20. Opportunities for Electrochemical Capacitors as Energy-Storage Solutions in Present and Future Navy and Marine Corps Missions

    DTIC Science & Technology

    2009-12-31

    system, being used to both harvest energy through regenerative braking and to deliver that energy for quick bursts of acceleration or low-speed...conventional braking . The most visible applications of hybrid-electric systems are for transportation, with examples ranging from compact cars to garbage...EDLCs is particularly effective for regenerative energy capture in hybrid-electric systems, but is also beneficial for addressing power quality issues

  1. Energy Use in China: Sectoral Trends and Future Outlook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Nan; McNeil, Michael A.; Fridley, David

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19more » percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000

  2. Contribution of air conditioning adoption to future energy use under global warming.

    PubMed

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change.

  3. Contribution of air conditioning adoption to future energy use under global warming

    PubMed Central

    Davis, Lucas W.; Gertler, Paul J.

    2015-01-01

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  4. State of the District Address, 1982.

    ERIC Educational Resources Information Center

    Koltai, Leslie

    This address by the Chancellor of the Los Angeles Community College District (LACCD) discusses recent and long-term changes in the district's programs, educational quality, and financial standing, and suggests means for future improvements. First, the paper highlights the district's achievements in improving transfer education and developing new…

  5. The Use of Statistical Downscaling to Project Regional Climate Changes as they Relate to Future Energy Production

    NASA Astrophysics Data System (ADS)

    Werth, D. W.; O'Steen, L.; Chen, K.; Altinakar, M. S.; Garrett, A.; Aleman, S.; Ramalingam, V.

    2010-12-01

    Global climate change has the potential for profound impacts on society, and poses significant challenges to government and industry in the areas of energy security and sustainability. Given that the ability to exploit energy resources often depends on the climate, the possibility of climate change means we cannot simply assume that the untapped potential of today will still exist in the future. Predictions of future climate are generally based on global climate models (GCMs) which, due to computational limitations, are run at spatial resolutions of hundreds of kilometers. While the results from these models can predict climatic trends averaged over large spatial and temporal scales, their ability to describe the effects of atmospheric phenomena that affect weather on regional to local scales is inadequate. We propose the use of several optimized statistical downscaling techniques that can infer climate change at the local scale from coarse resolution GCM predictions, and apply the results to assess future sustainability for two sources of energy production dependent on adequate water resources: nuclear power (through the dissipation of waste heat from cooling towers, ponds, etc.) and hydroelectric power. All methods will be trained with 20th century data, and applied to data from the years 2040-2049 to get the local-scale changes. Models of cooling tower operation and hydropower potential will then use the downscaled data to predict the possible changes in energy production, and the implications of climate change on plant siting, design, and contribution to the future energy grid can then be examined.

  6. People in a Technology Driven Future: On the Social Relations of New Information Technologies.

    ERIC Educational Resources Information Center

    Ngwenyama, Ojelanki K.

    This keynote address examines the social relations of information technology in the future. Examples of the recent history of technology related to transportation, printing, and nuclear energy are presented. Some troubling examples of the social relations of new information technologies that are emerging on a global scale are then discussed,…

  7. Ten questions concerning future buildings beyond zero energy and carbon neutrality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Phelan, Patrick E.; Gonzalez, Jorge

    2017-07-01

    Architects, planners, and building scientists have been at the forefront of envisioning a future built environment for centuries. However, fragmental views that emphasize one facet of the built environment, such as energy, environment, or groundbreaking technologies, often do not achieve expected outcomes. Buildings are responsible for approximately one-third of worldwide carbon emissions and account for over 40% of primary energy consumption in the U.S. In addition to achieving the ambitious goal of reducing building greenhouse gas emissions by 75% by 2050, buildings must improve their functionality and performance to meet current and future human, societal, and environmental needs in amore » changing world. In this article, we introduce a new framework to guide potential evolution of the building stock in the next century, based on greenhouse gas emissions as the common thread to investigate the potential implications of new design paradigms, innovative operational strategies, and disruptive technologies. This framework emphasizes integration of multidisciplinary knowledge, scalability for mainstream buildings, and proactive approaches considering constraints and unknowns. The framework integrates the interrelated aspects of the built environment through a series of quantitative metrics that aim to improve environmental outcomes while optimizing building performance to achieve healthy, adaptive, and productive buildings.« less

  8. Perspectives on energy storage wheels for space station application

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1984-01-01

    Several of the issues of the workshop are addressed from the perspective of a potential Space Station developer and energy wheel user. Systems' considerations are emphasized rather than component technology. The potential of energy storage wheel (ESW) concept is discussed. The current status of the technology base is described. Justification for advanced technology development is also discussed. The study concludes that energy storage in wheels is an attractive concept for immediate technology development and future Space Station application.

  9. The Future of Energy

    ERIC Educational Resources Information Center

    Pallant, Amy; Pryputniewicz, Sarah; Lee, Hee-Sun

    2017-01-01

    This article describes a five-day online energy module, developed by the Concord Consortium (an educational research and development organization) in which students compare the effects of various energy sources on air quality, water quality, and land use. The module's interactive models explore hydraulic fracturing, real-world data on energy…

  10. Wind for Schools: Fostering the Human Talent Supply Chain for a 20% Wind Energy Future (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, I.

    2011-03-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: 1) Developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses. 2) Installing small wind turbines at community "host" schools. 3) Implementing teacher training with interactive curricula at each host school.

  11. Renewable Energy Feasibility Study Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rooney, Tim

    2013-10-30

    The Gila River Indian Community (GRIC or the Community) contracted the ANTARES Group, Inc. (“ANTARES”) to assess the feasibility of solar photovoltaic (PV) installations. A solar energy project could provide a number of benefits to the Community in terms of potential future energy savings, increased employment, environmental benefits from renewable energy generation and usage, and increased energy self-sufficiency. The study addresses a number of facets of a solar project’s overall feasibility, including: Technical appropriateness; Solar resource characteristics and expected system performance; Levelized cost of electricity (LCOE) economic assessment. The Gila River Indian Community (GRIC or the Community) contracted the ANTARESmore » Group, Inc. (“ANTARES”) to prepare a biomass resource assessment study and evaluate the feasibility of a bioenergy project on Community land. A biomass project could provide a number of benefits to the Community in terms of increased employment, environmental benefits from renewable energy generation and usage, and increased energy self-sufficiency. The study addresses a number of facets of a biomass project’s overall feasibility, including: Resource analysis and costs; Identification of potential bioenergy projects; Technical and economic (levelized cost of energy) modeling for selected project configuration.« less

  12. Water and energy link in the cities of the future - achieving net zero carbon and pollution emissions footprint.

    PubMed

    Novotny, V

    2011-01-01

    This article discusses the link between water conservation, reclamation, reuse and energy use as related to the goal of achieving the net zero carbon emission footprint in future sustainable cities. It defines sustainable ecocities and outlines quantitatively steps towards the reduction of energy use due to water and used water flows, management and limits in linear and closed loop water/stormwater/wastewater management systems. The three phase water energy nexus diagram may have a minimum inflection point beyond which reduction of water demand may not result in a reduction of energy and carbon emissions. Hence, water conservation is the best alternative solution to water shortages and minimizing the carbon footprint. A marginal water/energy chart is developed and proposed to assist planners in developing future ecocities and retrofitting older communities to achieve sustainability.

  13. Future petroleum energy resources of the world

    USGS Publications Warehouse

    Ahlbrandt, T.S.

    2002-01-01

    and gas endowment estimates. Whereas petroleum resources in the world appear to be significant, certain countries such as the United States may run into import deficits, particularly oil imports from Mexico and natural gas from both Canada and Mexico. The new assessment has been used as the reference supply case in energy supply models by the International Energy Agency and the Energy Information Agency of the Department of Energy. Climate energy modeling groups such as those at Stanford University, Massachusetts Institute of Technology, and others have also used USGS estimates in global climate models. Many of these models using the USGS estimates converge on potential oil shortfalls in 2036-2040. However, recent articles using the USGS (2000) estimates suggest peaking of oil in 2020-2035 and peaking of non-OPEC (Organization of Petroleum-Exporting Countries) oil in 2015-2020. Such a short time framework places greater emphasis on a transition to increased use of natural gas; i.e., a methane economy. Natural gas in turn may experience similar supply concerns in the 2050-2060 time frame according to some authors. Coal resources are considerable and provide significant petroleum potential either by extracting natural gas from them, by directly converting them into petroleum products, or by utilizing them to generate electricity, thereby reducing natural gas and oil requirements by fuel substitution. Non-conventional oil and gas are quite common in petroleum provinces of the world and represent a significant resources yet to be fully studied and developed. Seventeen non-conventional AU including coal-bed methane, basin-center gas, continuous oil, and gas hydrate occurrences have been preliminarily identified for future assessment. Initial efforts to assess heavy oil deposits and other non-conventional oil and gas deposits also are under way.

  14. The Energy-Water Nexus: Managing the Links between Energy and Water for a Sustainable Future

    NASA Astrophysics Data System (ADS)

    Hussey, Karen; Petit, Carine

    2010-05-01

    preliminary list of recommendations on how best to account for and integrate these impacts into policy and decision-making processes at various institutional levels was prepared and future research needs in the energy-water nexus were suggested as main outcomes. This presentation draws on the contributions to the COST water-energy-links exploratory workshops and the development of 12 case studies undertaken by researchers from Europe, the United States, Australia and China, which will be published in a Special Feature of Ecology and Society, mid-2010.

  15. Presidential address, 1995. Surgery 2000: a look back to the future

    PubMed Central

    Heughan, Christopher

    1996-01-01

    The present demoralized state of Canadian surgery is due to a number of short-term influences. They include financial restraints, the desire of government agencies to off-load blame for unpopular decisions onto doctors and altered public expectations. The major long-term challenge will be a shortage of physicians and a severe shortage of general surgeons because of the superimposition of longer-term trends in medical demographics on short-term political reactions to a perceived oversupply of doctors. General surgeons need to identify the significant, long-term threats and challenges. If they can do this and plan their responses knowledgably, with some measure of altruism, the future in general surgery will be a bright one for present and future residents and medical students. PMID:8640616

  16. Evaluation of alternative future energy scenarios for Brazil using an energy mix model

    NASA Astrophysics Data System (ADS)

    Coelho, Maysa Joppert

    The purpose of this study is to model and assess the performance and the emissions impacts of electric energy technologies in Brazil, based on selected economic scenarios, for a time frame of 40 years, taking the year of 1995 as a base year. A Base scenario has been developed, for each of three economic development projections, based upon a sectoral analysis. Data regarding the characteristics of over 300 end-use technologies and 400 energy conversion technologies have been collected. The stand-alone MARKAL technology-based energy-mix model, first developed at Brookhaven National Laboratory, was applied to a base case study and five alternative case studies, for each economic scenario. The alternative case studies are: (1) minimum increase in the thermoelectric contribution to the power production system of 20 percent after 2010; (2) extreme values for crude oil price; (3) minimum increase in the renewable technologies contribution to the power production system of 20 percent after 2010; (4) uncertainty on the cost of future renewable conversion technologies; and (5) model is forced to use the natural gas plants committed to be built in the country. Results such as the distribution of fuel used for power generation, electricity demand across economy sectors, total CO2 emissions from burning fossil fuels for power generation, shadow price (marginal cost) of technologies, and others, are evaluated and compared to the Base scenarios previous established. Among some key findings regarding the Brazilian energy system it may be inferred that: (1) diesel technologies are estimated to be the most cost-effective thermal technology in the country; (2) wind technology is estimated to be the most cost-effective technology to be used when a minimum share of renewables is imposed to the system; and (3) hydroelectric technologies present the highest cost/benefit relation among all conversion technologies considered. These results are subject to the limitations of key input

  17. Food waste-to-energy conversion technologies: current status and future directions.

    PubMed

    Pham, Thi Phuong Thuy; Kaushik, Rajni; Parshetti, Ganesh K; Mahmood, Russell; Balasubramanian, Rajasekhar

    2015-04-01

    Food waste represents a significantly fraction of municipal solid waste. Proper management and recycling of huge volumes of food waste are required to reduce its environmental burdens and to minimize risks to human health. Food waste is indeed an untapped resource with great potential for energy production. Utilization of food waste for energy conversion currently represents a challenge due to various reasons. These include its inherent heterogeneously variable compositions, high moisture contents and low calorific value, which constitute an impediment for the development of robust, large scale, and efficient industrial processes. Although a considerable amount of research has been carried out on the conversion of food waste to renewable energy, there is a lack of comprehensive and systematic reviews of the published literature. The present review synthesizes the current knowledge available in the use of technologies for food-waste-to-energy conversion involving biological (e.g. anaerobic digestion and fermentation), thermal and thermochemical technologies (e.g. incineration, pyrolysis, gasification and hydrothermal oxidation). The competitive advantages of these technologies as well as the challenges associated with them are discussed. In addition, the future directions for more effective utilization of food waste for renewable energy generation are suggested from an interdisciplinary perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Optimizing future imaging survey of galaxies to confront dark energy and modified gravity models

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Parkinson, David; Hamana, Takashi; Nichol, Robert C.; Suto, Yasushi

    2007-07-01

    We consider the extent to which future imaging surveys of galaxies can distinguish between dark energy and modified gravity models for the origin of the cosmic acceleration. Dynamical dark energy models may have similar expansion rates as models of modified gravity, yet predict different growth of structure histories. We parametrize the cosmic expansion by the two parameters, w0 and wa, and the linear growth rate of density fluctuations by Linder’s γ, independently. Dark energy models generically predict γ≈0.55, while the Dvali-Gabadadze-Porrati (DGP) model γ≈0.68. To determine if future imaging surveys can constrain γ within 20% (or Δγ<0.1), we perform the Fisher matrix analysis for a weak-lensing survey such as the ongoing Hyper Suprime-Cam (HSC) project. Under the condition that the total observation time is fixed, we compute the figure of merit (FoM) as a function of the exposure time texp. We find that the tomography technique effectively improves the FoM, which has a broad peak around texp≃several˜10min; a shallow and wide survey is preferred to constrain the γ parameter. While Δγ<0.1 cannot be achieved by the HSC weak-lensing survey alone, one can improve the constraints by combining with a follow-up spectroscopic survey like Wide-field Fiber-fed Multi-Object Spectrograph (WFMOS) and/or future cosmic microwave background (CMB) observations.

  19. Energy Requirements by the Water Sector in the Southwestern US: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Averyt, K.; Yates, D. N.; Meldrum, J.

    2014-12-01

    Climate, energy, and water are fundamentally linked such that shifts in one sector have cascading impacts on the others. Consideration of the integrated system is necessary to fully understand the individual risk profile of each sector. In defining vulnerabilities and potential adaptations, the policy and regulatory environment must be considered alongside the biological and physical systems. Take, for example, the Southwestern U.S., a naturally arid system, where water availability is declining as a consequence of climate change and population growth. Adaptations by the water sector to convey, store, and develop new water sources (e.g. desalination, groundwater pumping, water-reuse) are strategies designed to enhance sustainability of the sector. But, the energy requirements embedded in these management techniques pose challenges to electric utilities. West wide, approximately 20% of total electricity generation goes toward supplying and heating water. If future investments made by the water sector to deal with changing supply and demand regimes continue to follow current trends, the dependence of water on energy availability will grow, meaning that the water supply will be increasingly reliant on the electricity system. Here, we use the example of long-term aridity and the recent drought in the Western US to illustrate the tradeoffs and challenges inherent at the nexus between energy and water. We present long-term trends in the energy intensity of water supplies in the Southwestern US, with a specific focus on groundwater systems. Projected energy requirements for proposed and future conveyance systems are discussed. The potential impacts of reduced flows on the Colorado River on the energy demands for groundwater pumping in the Lower Colorado River Basin are highlighted.

  20. Dark energy coupling with electromagnetism as seen from future low-medium redshift probes

    NASA Astrophysics Data System (ADS)

    Calabrese, E.; Martinelli, M.; Pandolfi, S.; Cardone, V. F.; Martins, C. J. A. P.; Spiro, S.; Vielzeuf, P. E.

    2014-04-01

    Beyond the standard cosmological model the late-time accelerated expansion of the Universe can be reproduced by the introduction of an additional dynamical scalar field. In this case, the field is expected to be naturally coupled to the rest of the theory's fields, unless a (still unknown) symmetry suppresses this coupling. Therefore, this would possibly lead to some observational consequences, such as space-time variations of nature's fundamental constants. In this paper we investigate the coupling between a dynamical dark energy model and the electromagnetic field, and the corresponding evolution of the fine structure constant (α) with respect to the standard local value α0. In particular, we derive joint constraints on two dynamical dark energy model parametrizations (the Chevallier-Polarski-Linder and early dark energy model) and on the coupling with electromagnetism ζ, forecasting future low-medium redshift observations. We combine supernovae and weak lensing measurements from the Euclid experiment with high-resolution spectroscopy measurements of fundamental couplings and the redshift drift from the European Extremely Large Telescope, highlighting the contribution of each probe. Moreover, we also consider the case where the field driving the α evolution is not the one responsible for cosmic acceleration and investigate how future observations can constrain this scenario.

  1. Hydrogen: the future energy carrier.

    PubMed

    Züttel, Andreas; Remhof, Arndt; Borgschulte, Andreas; Friedrichs, Oliver

    2010-07-28

    Since the beginning of the twenty-first century the limitations of the fossil age with regard to the continuing growth of energy demand, the peaking mining rate of oil, the growing impact of CO2 emissions on the environment and the dependency of the economy in the industrialized world on the availability of fossil fuels became very obvious. A major change in the energy economy from fossil energy carriers to renewable energy fluxes is necessary. The main challenge is to efficiently convert renewable energy into electricity and the storage of electricity or the production of a synthetic fuel. Hydrogen is produced from water by electricity through an electrolyser. The storage of hydrogen in its molecular or atomic form is a materials challenge. Some hydrides are known to exhibit a hydrogen density comparable to oil; however, these hydrides require a sophisticated storage system. The system energy density is significantly smaller than the energy density of fossil fuels. An interesting alternative to the direct storage of hydrogen are synthetic hydrocarbons produced from hydrogen and CO2 extracted from the atmosphere. They are CO2 neutral and stored like fossil fuels. Conventional combustion engines and turbines can be used in order to convert the stored energy into work and heat.

  2. State of the Lab Address

    ScienceCinema

    King, Alex

    2018-05-07

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  3. State of the Lab Address

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Alex

    2010-01-01

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  4. Modelling the energy future of Switzerland after the phase out of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Diaz, Paula; Van Vliet, Oscar

    2015-04-01

    In September 2013, the Swiss Federal Office of Energy (SFOE) published the final report of the proposed measures in the context of the Energy Strategy 2050 (ES2050). The ES2050 draws an energy scenario where the nuclear must be substituted by alternative sources. This implies a fundamental change in the energy system that has already been questioned by experts, e.g. [Piot, 2014]. Therefore, we must analyse in depth the technical implications of change in the Swiss energy mix from a robust baseload power such as nuclear, to an electricity mix where intermittent sources account for higher rates. Accomplishing the ES2050 imply difficult challenges, since nowadays nuclear power is the second most consumed energy source in Switzerland. According to the SFOE, nuclear accounts for a 23.3% of the gross production, only surpassed by crude oil products (43.3%). Hydropower is the third source more consumed, representing approximately the half of the nuclear (12.2%). Considering that Switzerland has almost reached the maximum of its hydropower capacity, renewables are more likely to be the alternative when the nuclear phase out takes place. Hence, solar and wind power will play an important role in the future Swiss energy mix, even though currently new renewables account for only 1.9% of the gross energy consumption. In this study we look for realistic and efficient combinations of energy resources to substitute nuclear power. Energy modelling is a powerful tool to design an energy system with high energy security that avoids problems of intermittency [Mathiesen & Lund, 2009]. In Switzerland, energy modelling has been used by the government [Abt et. al., 2012] and also has significant relevance in academia [Mathys, 2012]. Nevertheless, we detected a gap in the study of the security in energy scenarios [Busser, 2013]. This study examines the future electricity production of Switzerland using Calliope, a multi-scale energy systems model, developed at Imperial College, London and

  5. Energy Harvesting for Structural Health Monitoring Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, G.; Farrar, C. R.; Todd, M. D.

    2007-02-26

    This report has been developed based on information exchanges at a 2.5-day workshop on energy harvesting for embedded structural health monitoring (SHM) sensing systems that was held June 28-30, 2005, at Los Alamos National Laboratory. The workshop was hosted by the LANL/UCSD Engineering Institute (EI). This Institute is an education- and research-focused collaboration between Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD), Jacobs School of Engineering. A Statistical Pattern Recognition paradigm for SHM is first presented and the concept of energy harvesting for embedded sensing systems is addressed with respect to the data acquisition portionmore » of this paradigm. Next, various existing and emerging sensing modalities used for SHM and their respective power requirements are summarized, followed by a discussion of SHM sensor network paradigms, power requirements for these networks and power optimization strategies. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. This discussion also addresses current energy harvesting applications and system integration issues. The report concludes by defining some future research directions and possible technology demonstrations that are aimed at transitioning the concept of energy harvesting for embedded SHM sensing systems from laboratory research to field-deployed engineering prototypes.« less

  6. Usage of energy reserves in crustaceans during starvation: status and future directions.

    PubMed

    Sánchez-Paz, Arturo; García-Carreño, Fernando; Muhlia-Almazán, Adriana; Peregrino-Uriarte, Alma B; Hernández-López, Jorge; Yepiz-Plascencia, Gloria

    2006-04-01

    In this paper, we review the current knowledge about the usage of carbohydrates, lipids and proteins as energy source by marine crustaceans during starvation. Crustaceans are a large and diverse group including some economically important species. The efforts to culture them for human consumption has prompted the interest to understand the preferences of energy sources to be applied for feed formulation and cost reduction. Important differences have been found among species and appear to be related not only to the biochemistry and physiology of nutrition, but also to the living environment of the crustaceans. Furthermore, crustaceans undergo morphological, physiological and behavioral changes due to their natural growing process that affect their feeding habits, an aspect that should be carefully considered. We discuss the current information on marine crustaceans about energy usage and describe areas of future research, where starvation studies render important insights.

  7. BOOK REVIEW Dark Energy: Theory and Observations Dark Energy: Theory and Observations

    NASA Astrophysics Data System (ADS)

    Faraoni, Valerio

    2011-02-01

    The 1998 discovery of what seems an acceleration of the cosmic expansion was made using type Ia supernovae and was later confirmed by other cosmological observations. It has made a huge impact on cosmology, prompting theoreticians to explain the observations and introducing the concept of dark energy into modern physics. A vast literature on dark energy and its alternatives has appeared since then, and this is the first comprehensive book devoted to the subject. This book is addressed to an advanced audience comprising graduate students and researchers in cosmology. Although it contains forty four fully solved problems and the first three chapters are rather introductory, they do not constitute a self-consistent course in cosmology and this book assumes graduate level knowledge of cosmology and general relativity. The fourth chapter focuses on observations, while the rest of this book addresses various classes of models proposed, including the cosmological constant, quintessence, k-essence, phantom energy, coupled dark energy, etc. The title of this book should not induce the reader into believing that only dark energy models are addressed—the authors devote two chapters to discussing conceptually very different approaches alternative to dark energy, including ƒ(R) and Gauss-Bonnet gravity, braneworld and void models, and the backreaction of inhomogeneities on the cosmic dynamics. Two chapters contain a general discussion of non-linear cosmological perturbations and statistical methods widely applicable in cosmology. The final chapter outlines future perspectives and the most likely lines of observational research on dark energy in the future. Overall, this book is carefully drafted, well presented, and does a good job of organizing the information available in the vast literature. The reader is pointed to the essential references and guided in a balanced way through the various proposals aimied at explaining the cosmological observations. Not all classes of

  8. Beyond Solar Fuels: Renewable Energy-Driven Chemistry.

    PubMed

    Lanzafame, Paola; Abate, Salvatare; Ampelli, Claudio; Genovese, Chiara; Passalacqua, Rosalba; Centi, Gabriele; Perathoner, Siglinda

    2017-11-23

    The future feasibility of decarbonized industrial chemical production based on the substitution of fossil feedstocks (FFs) with renewable energy (RE) sources is discussed. Indeed, the use of FFs as an energy source has the greatest impact on the greenhouse gas emissions of chemical production. This future scenario is indicated as "solar-driven" or "RE-driven" chemistry. Its possible implementation requires to go beyond the concept of solar fuels, in particular to address two key aspects: i) the use of RE-driven processes for the production of base raw materials, such as olefins, methanol, and ammonia, and ii) the development of novel RE-driven routes that simultaneously realize process and energy intensification, particularly in the direction of a significant reduction of the number of the process steps. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Report Outlines Promising Opportunities for Addressing Climate Change

    Science.gov Websites

    Report Outlines Promising Opportunities for Addressing Climate Change For more information contact , have issued a major report that finds the United States can make impressive strides toward addressing climate change through smart policies and technologies. The report, "Scenarios for a Clean Energy

  10. Eleventh annual Warren K. Sinclair keynote address-science, radiation protection and NCRP: building on the past, looking to the future.

    PubMed

    Bushberg, Jerrold T

    2015-02-01

    The many reports and other authoritative documents developed and published by the National Council on Radiation Protection and Measurements (NCRP) have been of great service to the nation and the radiation protection community since its Congressional charter was signed into law 50 y ago. There will be a continuing need for NCRP to identify the principles upon which radiation protection is to be based and to provide guidance on best practices for the practical application of those principles for the many beneficial uses of radiation in society. The unique and invaluable resource that is NCRP is in large part due to the selfless dedication and numerous contributions of its Council and scientific committee members. The multidisciplinary composition of these leading experts and their collective input on complex questions provide a unique synergy that results in a comprehensive and well-balanced approach to addressing current and future radiation protection challenges. Subsequent articles in these proceedings covering a broad range of relevant topics will review sentinel accomplishments of the past as well as current work and future challenges that are in keeping with NCRP's mission to advance the science of radiation protection in the public interest.

  11. Solar Energy Economics Revisited: The Promise and Challenge of Orbiting Reflectors for World Energy Supply

    NASA Technical Reports Server (NTRS)

    Billman, Kenneth W.; Gilbreath, William P.; Bowen, Stuart W.

    1978-01-01

    A system of orbiting, large-area, low mass density reflector satellites which provide nearly continuous solar energy to a world-distributed set of conversion sites is examined under the criteria for any potential new energy system: technical feasibility, significant and renewable energy impact, economic feasibility and social/political acceptability. Although many technical issues need further study, reasonable advances in space technology appear sufficient to implement the system. The enhanced insolation is shown to greatly improve the economic competitiveness of solar-electric generation to circa 1995 fossil/nuclear alternatives. The system is shown to have the potential for supplying a significant fraction of future domestic and world energy needs. Finally, the environmental and social issues, including a means for financing such a large shift to a world solar energy dependence, is addressed.

  12. Energy Conversion Loop: A Testbed for Nuclear Hybrid Energy Systems Use in Biomass Pyrolysis

    NASA Astrophysics Data System (ADS)

    Verner, Kelley M.

    Nuclear hybrid energy systems are a possible solution for contemporary energy challenges. Nuclear energy produces electricity without greenhouse gas emissions. However, nuclear power production is not as flexible as electrical grids demand and renewables create highly variable electricity. Nuclear hybrid energy systems are able to address both of these problems. Wasted heat can be used in processes such as desalination, hydrogen production, or biofuel production. This research explores the possible uses of nuclear process heat in bio-oil production via biomass pyrolysis. The energy conversion loop is a testbed designed and built to mimic the heat from a nuclear reactor. Small scale biomass pyrolysis experiments were performed and compared to results from the energy conversion loop tests to determine future pyrolysis experimentation with the energy conversion loop. Further improvements must be made to the energy conversion loop before more complex experiments may be performed. The current conditions produced by the energy conversion loop are not conducive for current biomass pyrolysis experimentation.tion.

  13. Electrons for Neutrinos: Using Electron Scattering to Develop New Energy Reconstruction for Future Deuterium-Based Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Silva, Adrian; Schmookler, Barak; Papadopoulou, Afroditi; Schmidt, Axel; Hen, Or; Khachatryan, Mariana; Weinstein, Lawrence

    2017-09-01

    Using wide phase-space electron scattering data, we study a novel technique for neutrino energy reconstruction for future neutrino oscillation experiments. Accelerator-based neutrino oscillation experiments require detailed understanding of neutrino-nucleus interactions, which are complicated by the underlying nuclear physics that governs the process. One area of concern is that neutrino energy must be reconstructed event-by-event from the final-state kinematics. In charged-current quasielastic scattering, Fermi motion of nucleons prevents exact energy reconstruction. However, in scattering from deuterium, the momentum of the electron and proton constrain the neutrino energy exactly, offering a new avenue for reducing systematic uncertainties. To test this approach, we analyzed d (e ,e' p) data taken with the CLAS detector at Jefferson Lab Hall B and made kinematic selection cuts to obtain quasielastic events. We estimated the remaining inelastic background by using d (e ,e' pπ-) events to produce a simulated dataset of events with an undetected π-. These results demonstrate the feasibility of energy reconstruction in a hypothetical future deuterium-based neutrino detector. Supported by the Paul E. Gray UROP Fund, MIT.

  14. Energy consumption: Past, present, future

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The energy consumption history of the United States and the changes which could occur in consumption characteristics in the next 50 years are presented. The various sources of energy are analyzed to show the limitations involved in development and utilization as a function of time available. Several scenarios were prepared to show the consumption and supply of energy under varying conditions.

  15. 2012 ARPA-E Energy Innovation Summit Keynote Presentation (Bill Clinton, 42nd President of the United States)

    ScienceCinema

    Clinton, William J.

    2018-05-03

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. Former President Bill Clinton, the 42nd President of the United States, gave the final keynote address of the 2012 Summit on February 29. He addressed the importance of government investment in research that will help move the world toward a cleaner and more secure energy future.

  16. 2012 ARPA-E Energy Innovation Summit Keynote Presentation (Bill Clinton, 42nd President of the United States)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clinton, William J.

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. Former President Bill Clinton, the 42nd President of the United States, gave the final keynote address of the 2012 Summit on February 29. He addressed the importance of government investment in research that will help move the world toward a cleaner and more secure energy future.

  17. Department of Defense Energy and Logistics: Implications of Historic and Future Cost, Risk, and Capability Analysis

    NASA Astrophysics Data System (ADS)

    Tisa, Paul C.

    Every year the DoD spends billions satisfying its large petroleum demand. This spending is highly sensitive to uncontrollable and poorly understood market forces. Additionally, while some stakeholders may not prioritize its monetary cost and risk, energy is fundamentally coupled to other critical factors. Energy, operational capability, and logistics are heavily intertwined and dependent on uncertain security environment and technology futures. These components and their relationships are less understood. Without better characterization, future capabilities may be significantly limited by present-day acquisition decisions. One attempt to demonstrate these costs and risks to decision makers has been through a metric known as the Fully Burdened Cost of Energy (FBCE). FBCE is defined as the commodity price for fuel plus many of these hidden costs. The metric encouraged a valuable conversation and is still required by law. However, most FBCE development stopped before the lessons from that conversation were incorporated. Current implementation is easy to employ but creates little value. Properly characterizing the costs and risks of energy and putting them in a useful tradespace requires a new framework. This research aims to highlight energy's complex role in many aspects of military operations, the critical need to incorporate it in decisions, and a novel framework to do so. It is broken into five parts. The first describes the motivation behind FBCE, the limits of current implementation, and outlines a new framework that aids decisions. Respectively, the second, third, and fourth present a historic analysis of the connections between military capabilities and energy, analyze the recent evolution of this conversation within the DoD, and pull the historic analysis into a revised framework. The final part quantifies the potential impacts of deeply uncertain futures and technological development and introduces an expanded framework that brings capability, energy, and

  18. Future electricity production methods. Part 1: Nuclear energy

    NASA Astrophysics Data System (ADS)

    Nifenecker, Hervé

    2011-02-01

    The global warming challenge aims at stabilizing the concentrations of Green House Gas (GHG) in the atmosphere. Carbon dioxide is the most effective of the anthropogenic GHG and is essentially produced by consumption of fossil fuels. Electricity production is the dominant cause of CO2 emissions. It is, therefore, crucial that the share of 'carbon less' electricity production techniques increases at a fast pace. This is the more so, that 'clean' electricity would be useful to displace 'dirty' techniques in other fields such as heat production and transportation. Here we examine the extent to which nuclear energy could be operational in providing 'clean' electricity. A nuclear intensive scenario is shown to give the possibility to divide CO2 emissions by a factor of 2 worldwide, within 50 years. However, the corresponding sharp increase in nuclear power will put a heavy burden on uranium reserves and will necessitate the development of breeding reactors as soon as possible. A review of present and future reactors is given with special attention to the safety issues. The delicate question of nuclear fuel cycle is discussed concerning uranium reserves and management of used fuels. It is shown that dealing with nuclear wastes is more a socio-political problem than a technical one. The third difficult question associated with the development of nuclear energy is the proliferation risk. It is advocated that, while this is, indeed, a very important question, it is only weakly related to nuclear power development. Finally, the possibilities of nuclear fusion are discussed and it is asserted that, under no circumstances, could nuclear fusion give a significant contribution to the solution of the energy problem before 50 years, too late for dealing with the global warming challenge.

  19. Coupling Power Generation, Geologic CO2 Storage and Saline Groundwater Desalination to Address Growing Energy Needs in Water Constrained Regions

    NASA Astrophysics Data System (ADS)

    Davidson, C. L.; Wurstner, S. K.; Fortson, L. A.

    2010-12-01

    As humanity works to both minimize climate change and adapt to its early impacts, co-management of energy and water resources will become increasingly important. In some parts of the US, power plants have been denied permits, in part because of the significant burden placed on local water supplies by assigning new water rights for the facility’s entire design life. Water resources may be allocated 30 to 50 years into a future where water availability and quality are uncertain due to supply impacts associated with climate change and increased demand from growing populations, agriculture and industry. In many areas, particularly those with access to seawater, desalination is being employed with increasing frequency to augment conventional sources of fresh water. At the same time, many of the world’s developed nations are moving to reduce greenhouse gas emissions. One key technological option for addressing emissions from the power generation sector is CO2 capture and geologic storage (CCS). This process is both water and energy intensive for many power and industrial facilities, compounding the impact of declining water availability for plants faced with deploying CCS in a CO2-constrained future. However, a unique opportunity may exist to couple power generation and CCS by extracting and desalinating brine from the CO2 storage formation to produce fresh water. While this coupled approach is unlikely to be attractive for most CCS projects, it may represent a viable option in areas where there is demand for additional electricity but conventional water supplies are unable to meet the needs of the power generation and CO2 capture systems, or in areas where brine produced from CCS projects can be desalinated to supplement strained municipal supplies. This paper presents a preliminary analysis of the factors impacting the feasibility of coupled CCS-desalination projects. Several injection / extraction scenarios have been examined via the STOMP geochemical flow model

  20. CIRM Alpha Stem Cell Clinics: Collaboratively Addressing Regenerative Medicine Challenges.

    PubMed

    Jamieson, Catriona H M; Millan, Maria T; Creasey, Abla A; Lomax, Geoff; Donohoe, Mary E; Walters, Mark C; Abedi, Mehrdad; Bota, Daniela A; Zaia, John A; Adams, John S

    2018-06-01

    The California Institute for Regenerative Medicine (CIRM) Alpha Stem Cell Clinic (ASCC) Network was launched in 2015 to address a compelling unmet medical need for rigorous, FDA-regulated, stem cell-related clinical trials for patients with challenging, incurable diseases. Here, we describe our multi-center experiences addressing current and future challenges. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Obama address touches on research, energy, and environmental issues

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-02-01

    President Barack Obama's State of the Union message, delivered on 24 January, touched on the need for basic research, energy production, support for clean energy, and environmental protection, but it included just one passing reference to climate change. In addition, the speech made no note of the Administration's recent denial of a controversial application for the Keystone XL pipeline to transport crude oil from Canada to the United States and made just an elliptical reference regarding the bankrupt Solyndra Corporation, which the administration had touted as a clean energy company. Innovation "demands basic research," Obama said, adding that Congress should not "gut these investments in our budget." Noting that one promise for innovation is American-made energy, Obama said he is directing the administration to "open more than 75% of our potential offshore oil and gas resources."

  2. Energy [R]Evolution: Opportunities for Decarbonizing Canada

    NASA Astrophysics Data System (ADS)

    Byrne, J. M.

    2016-12-01

    The future of conventional energy in Canada is uncertain. World oil prices have suffered steep declines recently and there are no strong arguments for recovery in the foreseeable future. The country is now engaged in serious debates and discussions over the value of GHG emissions, pipelines, oil and gas operations, and renewable energy. Oilsands deposits in northern Alberta require long-term investment and decades of consistent sales to repay those investments. The election of more progressive governments in Alberta and Canada may provide the national and global credibility and opportunity to address the environmental problems caused by Oilsands and other fossil fuel developments. The discussion will focus on the possible ways forward for Canada to diversify the regional and national economy with renewable energy networks, thereby meeting our Paris GHG emission reduction commitments. The end goal of this work is to see the Canadian economy decarbonized within two decades.

  3. The Future Potential of Wave Power in the US

    NASA Astrophysics Data System (ADS)

    Previsic, M.; Epler, J.; Hand, M.; Heimiller, D.; Short, W.; Eurek, K.

    2012-12-01

    The theoretical ocean wave energy resource potential exceeds 50% of the annual domestic energy demand of the US, is located in close proximity of coastal population centers, and, although variable in nature, may be more consistent and predictable than some other renewable generation technologies. As renewable electricity generation technologies, ocean wave energy offers a low air pollutant option for diversifying the US electricity generation portfolio. Furthermore, the output characteristics of these technologies may complement other renewable technologies. This study addresses: (1) The energy extraction potential from the US wave energy resource, (2) The present cost of wave technology in /kW, (3) The estimated cost of energy in /kWh, and (4) Cost levels at which the technology should see significant deployment. RE Vision Consulting in collaboration with NREL engaged in various analyses to establish present-day and future cost profiles for MHK technologies, compiled existing resource assessments and wave energy supply curves, and developed cost and deployment scenarios using the ReEDS analysis model to estimate the present-day technology cost reductions necessary to facilitate significant technology deployment in the US.

  4. Modeling future U.S. forest sector market and trade impacts of expansion in wood energy consumption

    Treesearch

    Peter J. Ince; Andrew D. Kramp; Kenneth E. Skog; Do-il Yoo; V. Alaric Sample

    2011-01-01

    This paper describes an approach to modeling U.S. forest sector market and trade impacts of expansion in domestic wood energy consumption under hypothetical future U.S. wood biomass energy policy scenarios. The U.S. Forest Products Module (USFPM) was created to enhance the modeling of the U.S. forest sector within the Global Forest Products Model (GFPM), providing a...

  5. Buildings of the Future Scoping Study: A Framework for Vision Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Goins, John D.

    2015-02-01

    The Buildings of the Future Scoping Study, funded by the U.S. Department of Energy (DOE) Building Technologies Office, seeks to develop a vision for what U.S. mainstream commercial and residential buildings could become in 100 years. This effort is not intended to predict the future or develop a specific building design solution. Rather, it will explore future building attributes and offer possible pathways of future development. Whether we achieve a more sustainable built environment depends not just on technologies themselves, but on how effectively we envision the future and integrate these technologies in a balanced way that generates economic, social,more » and environmental value. A clear, compelling vision of future buildings will attract the right strategies, inspire innovation, and motivate action. This project will create a cross-disciplinary forum of thought leaders to share their views. The collective views will be integrated into a future building vision and published in September 2015. This report presents a research framework for the vision development effort based on a literature survey and gap analysis. This document has four objectives. First, it defines the project scope. Next, it identifies gaps in the existing visions and goals for buildings and discusses the possible reasons why some visions did not work out as hoped. Third, it proposes a framework to address those gaps in the vision development. Finally, it presents a plan for a series of panel discussions and interviews to explore a vision that mitigates problems with past building paradigms while addressing key areas that will affect buildings going forward.« less

  6. Energy Management in Higher Education: Value for Money Study.

    ERIC Educational Resources Information Center

    Scottish Higher Education Funding Council, Edinburgh.

    This Value for Money project provides an update of the 1996 "Energy Management Study in the Higher Education Sector: National Report." It reviews the management arrangement for utilities in the higher education (HE) sector, and it identifies key actions and future issues that must be addressed by HE institutions in developing a strategic…

  7. Current and future industrial energy service characterizations. Volume III. Energy data on 15 selected states' manufacturing subsector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krawiec, F.; Thomas, T.; Jackson, F.

    1980-11-01

    An examination is made of the current and future energy demands, and uses, and cost to characterize typical applications and resulting services in the US and industrial sectors of 15 selected states. Volume III presents tables containing data on selected states' manufacturing subsector energy consumption, functional uses, and cost in 1974 and 1976. Alabama, California, Illinois, Indiana, Louisiana, Michigan, Missouri, New Jersey, New York, Ohio, Oregon, Pennsylvania, Texas, West Virginia, and Wisconsin were chosen as having the greatest potential for replacing conventional fuel with solar energy. Basic data on the quantities, cost, and types of fuel and electric energy purchasedmore » by industr for heat and power were obtained from the 1974 and 1976 Annual Survey of Manufacturers. The specific indutrial energy servic cracteristics developed for each selected state include. 1974 and 1976 manufacturing subsector fuels and electricity consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector fuel consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector average cost of purchsed fuels and electricity per million Btu by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); 1974 and 1976 manufacturing subsector fuels and electric energy intensity by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); manufacturing subsector average annual growth rates of (1) fuels and electricity consumption, (2) fuels and electric energy intensity, and (3) average cost of purchased fuels and electricity (1974 to 1976). Data are compiled on purchased fuels, distillate fuel oil, residual ful oil, coal, coal, and breeze, and natural gas. (MCW)« less

  8. Future Student Support Programs: Distinction or Extinction?

    ERIC Educational Resources Information Center

    Johnson, Sharon K.; Johnson, C. D.

    This chapter reviews changes for the future of student support programs identified and addressed by other contributing authors. It is proposed that without a blueprint of how the fields of school counseling, psychology, nursing, social work, and other student support programs will change to address the future, extinction is guaranteed. Changes…

  9. ARPA-E: Accelerating U.S. Energy Innovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manser, Joseph S.; Rollin, Joseph A.; Brown, Kristen E.

    ARPA-E is charged with addressing the most pressing issues facing the U.S. energy sector today, as well as those projected to impact national energy security in the future. The agency’s mission is clearly elucidated in its authorizing statute:2 “To overcome long-term and high-risk technological barriers in the development of energy technologies.” The three principal thrusts of the agency’s mission are (i) reducing energy imports, (ii) reducing energy-related emissions and greenhouse gases, and (iii) improving energy efficiency in all sectors of the U.S. economy. Meeting these ambitious challenges requires focused, interdisciplinary effort on a national scale that will help ensure themore » United States maintains a competitive lead in developing and deploying advanced energy technologies.« less

  10. Procrastination, consideration of future consequences, and episodic future thinking.

    PubMed

    Rebetez, Marie My Lien; Barsics, Catherine; Rochat, Lucien; D'Argembeau, Arnaud; Van der Linden, Martial

    2016-05-01

    Despite the intrinsic temporal nature of procrastination, little research has examined the link between this form of self-regulatory failure and the consideration of future consequences, and no study has addressed the link between procrastination and episodic future thinking. The aim of the present study was to explore these relationships. Participants were asked to project themselves into possible future events and to rate the amount of sensory-perceptual details and autonoetic consciousness associated with their representations. They were also asked to complete questionnaires that assessed procrastination, the consideration of future consequences, and negative affect. Results showed that both the consideration of future consequences and episodic future thinking were associated with procrastination, and in particular with procrastination-related decision making abilities and procrastination-related motivational dispositions, respectively. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Addressing Issues of Broadening Participation Highlighted in the Report on the Future of Undergraduate Geoscience Education

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Manduca, C. A.; Macdonald, H.; Iverson, E. A. R.

    2015-12-01

    The final report for the Summit on the Future of Geoscience Education lays out a consensus on issues that must be tackled by the geoscience community collectively if there are to be enough qualified people to fill the large number of expected geoscience job vacancies over the coming decade. Focus areas cited in the report include: Strengthening the connections between two-year colleges and four-year institutions Sharing and making use of successful recruitment and retention practices for students from underrepresented groups Making students aware of high-quality job prospects in the geosciences as well as its societal relevance The InTeGrate STEP Center for the Geosciences, the Supporting and Advancing Geoscience Education at Two-Year Colleges (SAGE 2YC) program, and the Building Strong Geoscience Departments (BSGD) project together have developed a suite of web resources to help faculty and program leaders begin to address these and other issues. These resources address practices that support the whole student, both in the classroom and as a part of the co-curriculum as well as information on geoscience careers, guidance for developing coherent degree programs, practical advice for mentoring and advising, and many others. In addition to developing web resources, InTeGrate has also undertaken an effort to profile successful program practices at a variety of institutions. An analysis of these data shows several common themes (e.g. proactive marketing, community building, research experiences) that align well with the existing literature on what works to support student success. But there are also indications of different approaches and emphases between Minority Serving Institutions (MSIs) and Primarily White Institutions (PWIs) as well as between different kinds of MSIs. Highlighting the different strategies in use can point both MSIs and PWIs to possible alternate solutions to the challenges their students face. InTeGrate - http

  12. Present and future experiments using bright low-energy positron beams

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2017-01-01

    Bright slow positron beams enable not only experiments with drastically reduced measurement time and improved signal-to-noise ratio but also the realization of novel experimental techniques. In solid state physics and materials science positron beams are usually applied for the depth dependent analysis of vacancy-like defects and their chemical surrounding using positron lifetime and (coincident) Doppler broadening spectroscopy. For surface studies, annihilation induced Auger-electron spectroscopy allows the analysis of the elemental composition in the topmost atomic layer, and the atomic positions at the surface can be determined by positron diffraction with outstanding accuracy. In fundamental research low-energy positron beams are used for the production of e.g. cold positronium or positronium negative ions. All the aforementioned experiments benefit from the high intensity of present positron beam facilities. In this paper, we scrutinize the technical constraints limiting the achievable positron intensity and the available kinetic energy at the sample position. Current efforts and future developments towards the generation of high intensity spin-polarized slow positron beams paving the way for new positron experiments are discussed.

  13. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMeo, E.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  14. Advanced medium-voltage bidirectional dc-dc conversion systems for future electric energy delivery and management systems

    NASA Astrophysics Data System (ADS)

    Fan, Haifeng

    2011-12-01

    The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low

  15. The future of high energy gamma ray astronomy and its potential astrophysical implications

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1982-01-01

    Future satellites should carry instruments having over an order of magnitude greater sensitivity than those flown thus far as well as improved energy and angular resolution. The information to be obtained from these experiments should greatly enhance knowledge of: the very energetic and nuclear processes associated with compact objects; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies; and the degree of matter-antimatter symmetry of the universe. The relevant aspects of extragalactic gamma ray phenomena are emphasized along with the instruments planned. The high energy gamma ray results of forthcoming programs such as GAMMA-1 and the Gamma Ray Observatory should justify even more sophisticated telescopes. These advanced instruments might be placed on the space station currently being considered by NASA.

  16. Keynote address

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheney, D.

    1997-12-31

    March 10th is an anniversary date for Dick Cheney. Eight years ago today President Bush asked him to be his Secretary of Defense. He was his second choice. John Tower was his first. On March 17, 1989, Cheney was confirmed and sworn into the office of Secretary of Defense. He quickly began closing down his office on Capital Hill and he reported to work on March 18. Much changed for him that day, but not everything. He still had constituents. But instead of the residents of Wyoming, he represented the entire Armed forces of the United States of America. Formore » this convention, he was asked to discuss the worldwide reserves and associated development risks, the risks and rewards in the US industry and 21st Century vision for energy within the US. He discusses the Halliburton view on the natural gas energy future, the US role, implications for a new business model, and political risk.« less

  17. Research on biomass energy and environment from the past to the future: A bibliometric analysis.

    PubMed

    Mao, Guozhu; Huang, Ning; Chen, Lu; Wang, Hongmei

    2018-09-01

    The development and utilization of biomass energy can help to change the ways of energy production and consumption and establish a sustainable energy system that can effectively promote the development of the national economy and strengthen the protection of the environment. Here,we perform a bibliometric analysis of 9514 literature reports in the Web of Science Core Collection searched with the key words "Biomass energy" and "Environment*" date from 1998 to 2017; hot topics in the research and development of biomass energy utilization, as well as the status and development trends of biomass energy utilization and the environment, were analyzed based on content analysis and bibliometrics. The interaction between biomass energy and the environment began to become a major concern as the research progressively deepened. This work is of great significance for the development and utilization of biomass energy to put forward specific suggestions and strategies based on the analysis and demonstration of relationships and interactions between biomass energy utilization and environment. It is also useful to researchers for selecting the future research topics. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Performance of today’s dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: A simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faby, Sebastian, E-mail: sebastian.faby@dkfz.de; Kuchenbecker, Stefan; Sawall, Stefan

    2015-07-15

    Purpose: To study the performance of different dual energy computed tomography (DECT) techniques, which are available today, and future multi energy CT (MECT) employing novel photon counting detectors in an image-based material decomposition task. Methods: The material decomposition performance of different energy-resolved CT acquisition techniques is assessed and compared in a simulation study of virtual non-contrast imaging and iodine quantification. The material-specific images are obtained via a statistically optimal image-based material decomposition. A projection-based maximum likelihood approach was used for comparison with the authors’ image-based method. The different dedicated dual energy CT techniques are simulated employing realistic noise models andmore » x-ray spectra. The authors compare dual source DECT with fast kV switching DECT and the dual layer sandwich detector DECT approach. Subsequent scanning and a subtraction method are studied as well. Further, the authors benchmark future MECT with novel photon counting detectors in a dedicated DECT application against the performance of today’s DECT using a realistic model. Additionally, possible dual source concepts employing photon counting detectors are studied. Results: The DECT comparison study shows that dual source DECT has the best performance, followed by the fast kV switching technique and the sandwich detector approach. Comparing DECT with future MECT, the authors found noticeable material image quality improvements for an ideal photon counting detector; however, a realistic detector model with multiple energy bins predicts a performance on the level of dual source DECT at 100 kV/Sn 140 kV. Employing photon counting detectors in dual source concepts can improve the performance again above the level of a single realistic photon counting detector and also above the level of dual source DECT. Conclusions: Substantial differences in the performance of today’s DECT approaches were found

  19. Addressing Human System Risks to Future Space Exploration

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Francisco, D. R.; Davis, J. R.

    2015-01-01

    NASA is contemplating future human exploration missions to destinations beyond low Earth orbit, including the Moon, deep-space asteroids, and Mars. While we have learned much about protecting crew health and performance during orbital space flight over the past half-century, the challenges of these future missions far exceed those within our current experience base. To ensure success in these missions, we have developed a Human System Risk Board (HSRB) to identify, quantify, and develop mitigation plans for the extraordinary risks associated with each potential mission scenario. The HSRB comprises research, technology, and operations experts in medicine, physiology, psychology, human factors, radiation, toxicology, microbiology, pharmacology, and food sciences. Methods: Owing to the wide range of potential mission characteristics, we first identified the hazards to human health and performance common to all exploration missions: altered gravity, isolation/confinement, increased radiation, distance from Earth, and hostile/closed environment. Each hazard leads to a set of risks to crew health and/or performance. For example the radiation hazard leads to risks of acute radiation syndrome, central nervous system dysfunction, soft tissue degeneration, and carcinogenesis. Some of these risks (e.g., acute radiation syndrome) could affect crew health or performance during the mission, while others (e.g., carcinogenesis) would more likely affect the crewmember well after the mission ends. We next defined a set of design reference missions (DRM) that would span the range of exploration missions currently under consideration. In addition to standard (6-month) and long-duration (1-year) missions in low Earth orbit (LEO), these DRM include deep space sortie missions of 1 month duration, lunar orbital and landing missions of 1 year duration, deep space journey and asteroid landing missions of 1 year duration, and Mars orbital and landing missions of 3 years duration. We then

  20. [Current recommendations for basic/advanced life support : Addressing unanswered questions and future prospects].

    PubMed

    Fink, K; Schmid, B; Busch, H-J

    2016-11-01

    The revised guidelines for cardiopulmonary resuscitation were implemented by the European Resuscitation Council (ERC) in October 2015. There were few changes concerning basic and advanced life support; however, some issues were clarified compared to the ERC recommendations from 2010. The present paper summarizes the procedures of basic and advanced life support according to the current guidelines and highlights the updates of 2015. Furthermore, the article depicts future prospects of cardiopulmonary resuscitation that may improve outcome of patients after cardiac arrest in the future.

  1. Regional overview of Latin American and Caribbean energy production, consumption, and future growth. Report series No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, K.

    1994-07-01

    The Latin American and Caribbean region - comprising Mexico, Central and South America, and the Caribbean - is relatively well endowed with energy resources, although the distribution of these resources is uneven across countries. The region produces more energy than it consumes, and the surplus energy, which amounts to 3.6 million barrels of oil equivalent per day (boe/d), is mostly oil. While the region`s total oil (crude and products) exports decreased from 4.4 million barrels per day (b/d) in 1981 to 3.8 million b/d in 1992, its net oil exports increased from about 1.6 million b/d in 1981 to 2.8more » million b/d in 1992. In 1993, the surplus oil in Latin America and the Caribbean remained at 2.8 million b/d. This report analyzes the key issues of the Latin American and Caribbean energy industry and presents the future outlook for oil, gas, coal, hydroelectricity, and nuclear power developments in the region. In addition, the status of biomass energy, geothermal, and other noncommercial energy in the region will be briefly discussed in the context of overall energy development. The rest of the report is organized as follows: Section II assesses the current situation of Latin American and Caribbean energy production and consumption, covering primary energy supply, primary energy consumption, downstream petroleum sector development, and natural gas utilization. Section III presents the results of our study of future energy growth in Latin America. Important hydrocarbons policy issues in the region are discussed in Section IV, and a summary and concluding remarks are provided in Section V.« less

  2. NASA's Vision for Potential Energy Reduction from Future Generations of Propulsion Technology

    NASA Technical Reports Server (NTRS)

    Haller, Bill

    2015-01-01

    Through a robust partnership with the aviation industry, over the past 50 years NASA programs have helped foster advances in propulsion technology that enabled substantial reductions in fuel consumption for commercial transports. Emerging global trends and continuing environmental concerns are creating challenges that will very likely transform the face of aviation over the next 20-40 years. In recognition of this development, NASA Aeronautics has established a set of Research Thrusts that will help define the future direction of the agency's research technology efforts. Two of these thrusts, Ultra-Efficient Commercial Vehicles and Transition to Low-Carbon Propulsion, serve as cornerstones for the Advanced Air Transport Technology (AATT) project. The AATT project is exploring and developing high-payoff technologies and concepts that are key to continued improvement in energy efficiency and environmental compatibility for future generations of fixed-wing, subsonic transports. The AATT project is primarily focused on the N+3 timeframe, or 3 generations from current technology levels. As should be expected, many of the propulsion system architectures technologies envisioned for N+3 vary significantly from todays engines. The use of batteries in a hybrid-electric configuration or deploying multiple fans distributed across the airframe to enable higher bypass ratios are just two examples of potential advances that could enable substantial energy reductions over current propulsion systems.

  3. Electrification Futures Study Modeling Approach | Energy Analysis | NREL

    Science.gov Websites

    Electrification Futures Study Modeling Approach Electrification Futures Study Modeling Approach To quantitatively answer the research questions of the Electrification Futures Study, researchers will use multiple accounting for infrastructure inertia through stock turnover. Load Modeling The Electrification Futures Study

  4. Energy and the Transformation of a Metropolitan Landscape: Contrasting Contemporary and Future Settlement Geographies.

    ERIC Educational Resources Information Center

    Zeigler, Donald J.

    Because of the rising real cost of energy, geographic patterns that have dominated the contemporary metropolitan landscape are in a state of change. A conceptual model of the contemporary and future metropolitan landscape is presented to stimulate thought about the changes which may evolve in the spatial organization of urban regions as the real…

  5. Future Spacelift Requirements Study

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This study addresses future space applications and the derived requirements these potential applications will have on future spacelift systems. This NASA sponsored activity is a comprehensive study of potential missions including those of the military, civil, and commercial users. The study objectively evaluated the key architectural requirements for future launch systems. The results of this study are technical, economic, and policy analyses of future spacelift systems. It is intended to assist NASA and DOD decision-makers in planning technical investments and establishing policy for future U.S. spacelift systems.

  6. Metamaterials-based enhanced energy harvesting: A review

    NASA Astrophysics Data System (ADS)

    Chen, Zhongsheng; Guo, Bin; Yang, Yongmin; Cheng, Congcong

    2014-04-01

    Advances in low power design open the possibility to harvest ambient energies to power directly the electronics or recharge a secondary battery. The key parameter of an energy harvesting (EH) device is its efficiency, which strongly depends on the conversion medium. To address this issue, metamaterials, artificial materials and structures with exotic properties, have been introduced for EH in recent years. They possess unique properties not easily achieved using naturally occurring materials, such as negative stiffness, mass, Poisson's ratio, and refractive index. The goal of this paper is to review the fundamentals, recent progresses and future directions in the field of metamaterials-based enhanced energy harvesting. An introduction on EH followed by the classification of potential metamaterials for EH is presented. A number of theoretical and experimental studies on metamaterials-based EH are outlined, including phononic crystals, acoustic metamaterials, and electromagnetic metamaterials. Finally, we give an outlook on future directions of metamaterials-based energy harvesting research including but not limited to active metamaterials-based EH, metamaterials-based thermal EH, and metamaterials-based multifunctional EH capabilities.

  7. Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes.

    PubMed

    Robertson, G Philip; Hamilton, Stephen K; Barham, Bradford L; Dale, Bruce E; Izaurralde, R Cesar; Jackson, Randall D; Landis, Douglas A; Swinton, Scott M; Thelen, Kurt D; Tiedje, James M

    2017-06-30

    Cellulosic crops are projected to provide a large fraction of transportation energy needs by mid-century. However, the anticipated land requirements are substantial, which creates a potential for environmental harm if trade-offs are not sufficiently well understood to create appropriately prescriptive policy. Recent empirical findings show that cellulosic bioenergy concerns related to climate mitigation, biodiversity, reactive nitrogen loss, and crop water use can be addressed with appropriate crop, placement, and management choices. In particular, growing native perennial species on marginal lands not currently farmed provides substantial potential for climate mitigation and other benefits. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. My future self: Young children’s ability to anticipate and explain future states

    PubMed Central

    Atance, Cristina M.; Meltzoff, Andrew N.

    2013-01-01

    Two experiments examine preschool-aged children’s ability to anticipate physiological states of the self. One hundred and eight 3-, 4-, and 5-year-olds were presented with stories and pictorial scenes designed to evoke thought about future states such as thirst, cold, and hunger. They were asked to imagine themselves in these scenarios and to choose one item from a set of three that they would need. Only one of the items could be used to address the future state. In both experiments, developmental differences were obtained for correct item choices and types of verbal explanations. In Experiment 2, the performance of the 3- and 4-year-olds was negatively affected by introducing items that were semantically associated with the scenarios but did not address the future state, whereas the 5-year-olds’ performance was not. Results are discussed with respect to children’s understanding of the future, theory of mind, and inhibitory control skills. PMID:23956493

  9. A Discussion of Future Time Perspective

    ERIC Educational Resources Information Center

    McInerney, Dennis M.

    2004-01-01

    A growing area of research in educational psychology is future time perspective and its relationship to desired educational outcomes. This article discusses and critiques five reviews of current research on future time perspective. Key questions addressed are when do individuals begin to articulate a future, how far into the future does this…

  10. Impact of innovations on future energy supply - chemical enhanced oil recovery (CEOR).

    PubMed

    Bittner, Christian

    2013-01-01

    The International Energy Agency (IEA) expects an increase of global energy demand by one-third during next 20 years together with a change in the global energy mix. A key-influencing factor is a strong expected increase in oil and gas production in the United States driven by 'new' technologies such as hydraulic fracturing. Chemical enhanced oil recovery (CEOR) is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. In the case of polymer flooding with poly acrylamide, the number of full field implementations has increased in recent years. In the meantime new polymers have been developed to cover previously unmet needs - such polymers can be applied in fields of high salinity and high temperature. Use of surfactants is in an earlier stage, but pilot tests show promising results.

  11. Reducing State Communication Anxiety for Public Speakers: An Energy Psychology Pilot Study

    ERIC Educational Resources Information Center

    Fitch, John, III; Schmuldt, Laura; Rudick, Karen L.

    2011-01-01

    This mixed-method pilot study investigates the efficacy of implementing primordial energy activation and transcendence to address public speaking anxiety. Speech anxiety was significantly reduced from pretest to posttest, as measured by the Communication Anxiety Inventory State. Suggestions for future research, limitations of the current study,…

  12. Nuclear Energy Present and Future

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.

    2006-10-01

    Nuclear power plants currently generate about 20% of US and 17% of world electricity, which makes nuclear the largest non-emitting energy source in current use. Concerns about global climate change have led to a remarkable transformation of attitudes towards nuclear energy. There remain key challenges that must be faced when considering expansion of its contribution. In summary they are: Economics, Safety, Waste Disposal, and Proliferation. Electricity from legacy fission plants is highly competitive with fossil, but perceived financial risks make the large capital cost fraction a key hurdle to new-construction, and costs of 2 per installed Watt electrical are currently considered only just economically attractive. Proliferation of nuclear-weapons-enabling technology is a major concern for global stability, in which fusion may have significant technical advantages over fission. But proliferation control requires a combination of both technical and political initiatives. The feasibility of supplying process heat or hydrogen from nuclear energy inspires additional research into novel reactor concepts and associated technologies. The presentation will lay out this overall context of the nuclear energy renaissance.

  13. Applied Mathematics at the U.S. Department of Energy: Past, Present and a View to the Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D L; Bell, J; Estep, D

    2008-02-15

    mathematical developments required to meet the future science and engineering needs of the DOE. It is important to emphasize that the panelists were not asked to speculate only on advances that might be made in their own research specialties. Instead, the guidance this panel was given was to consider the broad science and engineering challenges that the DOE faces and identify the corresponding advances that must occur across the field of mathematics for these challenges to be successfully addressed. As preparation for the meeting, each panelist was asked to review strategic planning and other informational documents available for one or more of the DOE Program Offices, including the Offices of Science, Nuclear Energy, Fossil Energy, Environmental Management, Legacy Management, Energy Efficiency & Renewable Energy, Electricity Delivery & Energy Reliability and Civilian Radioactive Waste Management as well as the National Nuclear Security Administration. The panelists reported on science and engineering needs for each of these offices, and then discussed and identified mathematical advances that will be required if these challenges are to be met. A review of DOE challenges in energy, the environment and national security brings to light a broad and varied array of questions that the DOE must answer in the coming years. A representative subset of such questions includes: (1) Can we predict the operating characteristics of a clean coal power plant? (2) How stable is the plasma containment in a tokamak? (3) How quickly is climate change occurring and what are the uncertainties in the predicted time scales? (4) How quickly can an introduced bio-weapon contaminate the agricultural environment in the US? (5) How do we modify models of the atmosphere and clouds to incorporate newly collected data of possibly of new types? (6) How quickly can the United States recover if part of the power grid became inoperable? (7) What are optimal locations and communication protocols for sensing

  14. Community Energy: A Social Architecture for an Alternative Energy Future

    ERIC Educational Resources Information Center

    Hoffman, Steven M.; High-Pippert, Angela

    2005-01-01

    Community energy based on a mix of distributed technologies offers a serious alternative to the current energy system. The nature of community energy and the role that such initiatives might play in the general fabric of civic life is not, however, well understood. Community energy initiatives might involve only those citizens who prefer to be…

  15. Addressing Disparities in Low Back Pain Care by Developing Culturally Appropriate Information for Aboriginal Australians: "My Back on Track, My Future".

    PubMed

    Lin, Ivan B; Ryder, Kim; Coffin, Juli; Green, Charmaine; Dalgety, Eric; Scott, Brian; Straker, Leon M; Smith, Anne J; O'Sullivan, Peter B

    2017-11-01

    Addressing disparities in low back pain care (LBP) is an important yet largely unaddressed issue. One avenue to addressing disparities, recommended by clinical guidelines, is to ensure that LBP information is culturally appropriate. Our objectives were, first, to develop LBP information that was culturally appropriate for Aboriginal Australians living in a rural area and, second, to compare this to traditional information. The overall information development process was guided by a "cultural security" framework and included partnerships between Aboriginal/non-Aboriginal investigators, a synthesis of research evidence, and participation of a project steering group consisting of local Aboriginal people. LBP information (entitled My Back on Track, My Future [MBOT]) was developed as five short audio-visual scenarios, filmed using Aboriginal community actors. A qualitative randomized crossover design compared MBOT with an evidence-based standard (the Back Book [BB]). Twenty Aboriginal adults participated. Qualitatively we ascertained which information participants' preferred and why, perceptions about each resource, and LBP management. Thirteen participants preferred MBOT, four the BB, two both, and one neither. Participants valued seeing "Aboriginal faces," language that was understandable, the visual format, and seeing Aboriginal people undertaking positive changes in MBOT. In contrast, many participants found the language and format of the BB a barrier. Participants who preferred the BB were more comfortable with written information and appreciated the detailed content. The MBOT information was more preferred and addressed important barriers to care, providing support for use in practice. Similar processes are needed to develop pain information for other cultural groups, particularly those underserved by existing approaches to care. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  16. Transportation Energy Futures Project | Energy Analysis | NREL

    Science.gov Websites

    Report (2013) Transportation Demand Effects of the Built Environment on Transportation: Energy Use , Greenhouse Gas Emissions, and Other Factors, DOE Technical Report (2013) Effects of Travel Reduction and

  17. Investigation of very high energy rockets for future SSTO vehicles

    NASA Astrophysics Data System (ADS)

    Froning, H. D., Jr.

    1989-04-01

    Several new propulsion possibilities are being explored in the U.S.A. which might significantly increase the amount of payload that can be propelled into orbit for a given launch vehicle weight. As such, they might enable significant reduction in the future cost of transportation between earth and space. One possibility is the combustion of matter that is in an excited atomic or molecular state. Another possibility is the annihilation of matter by means of anti-matter (by matter with identical mass and opposite electrical charge). And if an appreciable fraction of the energies released by either of these processes could be converted into the useful kinetic energy of a rocket's exhaust, a 2-6-fold increase in its specific impulse might be achieved. This paper shows that a 2-6-fold increase in rocket specific impulse might enable a 4-12-fold reduction in aerospace vehicle weight. It also shows that the specific impulse potential of excited matter or anti-matter fuels might enable transport of heavy payloads into earth orbit by means of single-stage-to-orbit vehicles that would be no heavier than current commercial airline jets.

  18. Anti-Ferroelectric Ceramics for High Energy Density Capacitors.

    PubMed

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul; Bowen, Chris R

    2015-11-25

    With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  19. Anti-Ferroelectric Ceramics for High Energy Density Capacitors

    PubMed Central

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul; Bowen, Chris R.

    2015-01-01

    With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field. PMID:28793694

  20. Hydrogen and the materials of a sustainable energy future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalbowitz, M.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings,more » develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.« less

  1. Greater future global warming inferred from Earth's recent energy budget.

    PubMed

    Brown, Patrick T; Caldeira, Ken

    2017-12-06

    Climate models provide the principal means of projecting global warming over the remainder of the twenty-first century but modelled estimates of warming vary by a factor of approximately two even under the same radiative forcing scenarios. Across-model relationships between currently observable attributes of the climate system and the simulated magnitude of future warming have the potential to inform projections. Here we show that robust across-model relationships exist between the global spatial patterns of several fundamental attributes of Earth's top-of-atmosphere energy budget and the magnitude of projected global warming. When we constrain the model projections with observations, we obtain greater means and narrower ranges of future global warming across the major radiative forcing scenarios, in general. In particular, we find that the observationally informed warming projection for the end of the twenty-first century for the steepest radiative forcing scenario is about 15 per cent warmer (+0.5 degrees Celsius) with a reduction of about a third in the two-standard-deviation spread (-1.2 degrees Celsius) relative to the raw model projections reported by the Intergovernmental Panel on Climate Change. Our results suggest that achieving any given global temperature stabilization target will require steeper greenhouse gas emissions reductions than previously calculated.

  2. The GÉANT network: addressing current and future needs of the HEP community

    NASA Astrophysics Data System (ADS)

    Capone, Vincenzo; Usman, Mian

    2015-12-01

    The GÉANT infrastructure is the backbone that serves the scientific communities in Europe for their data movement needs and their access to international research and education networks. Using the extensive fibre footprint and infrastructure in Europe the GÉANT network delivers a portfolio of services aimed to best fit the specific needs of the users, including Authentication and Authorization Infrastructure, end-to-end performance monitoring, advanced network services (dynamic circuits, L2-L3VPN, MD-VPN). This talk will outline the factors that help the GÉANT network to respond to the needs of the High Energy Physics community, both in Europe and worldwide. The Pan-European network provides the connectivity between 40 European national research and education networks. In addition, GÉANT also connects the European NRENs to the R&E networks in other world region and has reach to over 110 NREN worldwide, making GÉANT the best connected Research and Education network, with its multiple intercontinental links to different continents e.g. North and South America, Africa and Asia-Pacific. The High Energy Physics computational needs have always had (and will keep having) a leading role among the scientific user groups of the GÉANT network: the LHCONE overlay network has been built, in collaboration with the other big world REN, specifically to address the peculiar needs of the LHC data movement. Recently, as a result of a series of coordinated efforts, the LHCONE network has been expanded to the Asia-Pacific area, and is going to include some of the main regional R&E network in the area. The LHC community is not the only one that is actively using a distributed computing model (hence the need for a high-performance network); new communities are arising, as BELLE II. GÉANT is deeply involved also with the BELLE II Experiment, to provide full support to their distributed computing model, along with a perfSONAR-based network monitoring system. GÉANT has also

  3. Susceptibility of SCADA systems and the energy sector

    NASA Astrophysics Data System (ADS)

    Goike, Lindsay

    The research in this paper focused on analyzing SCADA systems in the energy sector for susceptibility to cyber attacks, in furtherance of providing suggestions to mitigate current and future cyber attacks. The research will be addressing the questions: how are SCADA systems susceptible to cyber attacks, and what are the suggested ways to mitigate both current and future cyber attacks. The five main categories of security vulnerabilities facing current SCADA systems were found to be: connectivity to the Internet, failure to plan, interdependency of sectors, numerous different types of threats, and outdated software. Some of the recommendations mentioned to mitigate current and future risks were: virtual private networks, risk assessments, increased physical security, updating of software, and firewalls.

  4. Analysis of the interrelationship of energy, economy, and environment: A model of a sustainable energy future for Korea

    NASA Astrophysics Data System (ADS)

    Boo, Kyung-Jin

    The primary purpose of this dissertation is to provide the groundwork for a sustainable energy future in Korea. For this purpose, a conceptual framework of sustainable energy development was developed to provide a deeper understanding of interrelationships between energy, the economy, and the environment (E 3). Based on this theoretical work, an empirical simulation model was developed to investigate the ways in which E3 interact. This dissertation attempts to develop a unified concept of sustainable energy development by surveying multiple efforts to integrate various definitions of sustainability. Sustainable energy development should be built on the basis of three principles: ecological carrying capacity, economic efficiency, and socio-political equity. Ecological carrying capacity delineates the earth's resource constraints as well as its ability to assimilate wastes. Socio-political equity implies an equitable distribution of the benefits and costs of energy consumption and an equitable distribution of environmental burdens. Economic efficiency dictates efficient allocation of scarce resources. The simulation model is composed of three modules: an energy module, an environmental module and an economic module. Because the model is grounded on economic structural behaviorism, the dynamic nature of the current economy is effectively depicted and simulated through manipulating exogenous policy variables. This macro-economic model is used to simulate six major policy intervention scenarios. Major findings from these policy simulations were: (1) carbon taxes are the most effective means of reducing air-pollutant emissions; (2) sustainable energy development can be achieved through reinvestment of carbon taxes into energy efficiency and renewable energy programs; and (3) carbon taxes would increase a nation's welfare if reinvested in relevant areas. The policy simulation model, because it is based on neoclassical economics, has limitations such that it cannot fully

  5. Assessment of the potential future market in Sweden for hydrogen as an energy carrier

    NASA Astrophysics Data System (ADS)

    Carleson, G.

    Future hydrogen markets for the period 1980-2025 are projected, the probable range of hydrogen production costs for various manufacturing methods is estimated, and expected market shares in competition with alternative energy carriers are evaluated. A general scenario for economic and industrial development in Sweden for the given period was evaluated, showing the average increase in gross national product to become 1.6% per year. Three different energy scenarios were then developed: alternatives were based on nuclear energy, renewable indigenous energy sources, and the present energy situation with free access to imported natural or synthetic fuels. An analysis was made within each scenario of the competitiveness of hydrogen on both the demand and the supply of the following sectors: chemical industry, steel industry, peak power production, residential and commercial heating, and transportation. Costs were calculated for the production, storage and transmission of hydrogen according to technically feasible methods and were compared to those of alternative energy carriers. Health, environmental and societal implications were also considered. The market penetration of hydrogen in each sector was estimated, and the required investment capital was shown to be less than 4% of the national gross investment sum.

  6. Boston Future Forum

    NASA Image and Video Library

    2008-09-17

    NASA Deputy Administrator Shana Dale delivers a keynote address during the NASA Future Forum event at the Museum of Science in Boston, MA, Thursday, September 18, 2008. Photo Credit: (NASA/Bill Ingalls)

  7. Wind energy resource modelling in Portugal and its future large-scale alteration due to anthropogenic induced climate changes =

    NASA Astrophysics Data System (ADS)

    Carvalho, David Joao da Silva

    The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind

  8. Sustainable Development and Energy Geotechnology Potential Roles for Geotechnical Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FragaszyProgram Dire, Dr. R. J.; Santamarina, Carlos; Espinoza, N.

    2011-01-01

    The world is facing unprecedented challenges related to energy resources, global climate change, material use, and waste generation. Failure to address these challenges will inhibit the growth of the developing world and will negatively impact the standard of living and security of future generations in all nations. The solutions to these challenges will require multidisciplinary research across the social and physical sciences and engineering. Although perhaps not always recognized, geotechnical engineering expertise is critical to the solution of many energy and sustainability-related problems. Hence, geotechnical engineers and academicians have opportunity and responsibility to contribute to the solution of these worldwidemore » problems. Research will need to be extended to non-standard issues such as thermal properties of soils; sediment and rock response to extreme conditions and at very long time scales; coupled hydro-chemo-thermo-bio-mechanical processes; positive feedback systems; the development of discontinuities; biological modification of soil properties; spatial variability; and emergent phenomena. Clearly, the challenges facing geotechnical engineering in the future will require a much broader knowledge base than our traditional educational programs provide. The geotechnical engineering curricula, from undergraduate education through continuing professional education, must address the changing needs of a profession that will increasingly be engaged in alternative/renewable energy production; energy efficiency; sustainable design, enhanced and more efficient use of natural resources, waste management, and underground utilization.« less

  9. Specifying the Concept of Future Generations for Addressing Issues Related to High-Level Radioactive Waste.

    PubMed

    Kermisch, Celine

    2016-12-01

    The nuclear community frequently refers to the concept of "future generations" when discussing the management of high-level radioactive waste. However, this notion is generally not defined. In this context, we have to assume a wide definition of the concept of future generations, conceived as people who will live after the contemporary people are dead. This definition embraces thus each generation following ours, without any restriction in time. The aim of this paper is to show that, in the debate about nuclear waste, this broad notion should be further specified and to clarify the related implications for nuclear waste management policies. Therefore, we provide an ethical analysis of different management strategies for high-level waste in the light of two principles, protection of future generations-based on safety and security-and respect for their choice. This analysis shows that high-level waste management options have different ethical impacts across future generations, depending on whether the memory of the waste and its location is lost, or not. We suggest taking this distinction into account by introducing the notions of "close future generations" and "remote future generations", which has important implications on nuclear waste management policies insofar as it stresses that a retrievable disposal has fewer benefits than usually assumed.

  10. Current State and Future Perspectives of Energy Sources for Totally Implantable Cardiac Devices.

    PubMed

    Bleszynski, Peter A; Luc, Jessica G Y; Schade, Peter; PhilLips, Steven J; Tchantchaleishvili, Vakhtang

    There is a large population of patients with end-stage congestive heart failure who cannot be treated by means of conventional cardiac surgery, cardiac transplantation, or chronic catecholamine infusions. Implantable cardiac devices, many designated as destination therapy, have revolutionized patient care and outcomes, although infection and complications related to external power sources or routine battery exchange remain a substantial risk. Complications from repeat battery replacement, power failure, and infections ultimately endanger the original objectives of implantable biomedical device therapy - eliminating the intended patient autonomy, affecting patient quality of life and survival. We sought to review the limitations of current cardiac biomedical device energy sources and discuss the current state and trends of future potential energy sources in pursuit of a lifelong fully implantable biomedical device.

  11. The Role of Adolescent Victimization in Energy Drink Consumption: Monitoring the Future, 2010-2016.

    PubMed

    Jackson, Dylan B; Leal, Wanda E; Posick, Chad; Vaughn, Michael G; Olivan, Myrah

    2018-05-21

    Energy drinks have been linked to a number of deleterious health outcomes among youth. Even so, the underlying risk factors for energy drink consumption among youth are less frequently examined. The present study examines the link between adolescent victimization experiences (i.e., property and violent victimization) and energy drink consumption among a nationally representative sample of adolescents. We employed the seven most recent cohorts (2010-2016) from the Monitoring the Future (MTF) study. A multi-stage random sampling technique was used to acquire the U.S. Youths reported the extent to which they consumed energy drinks. Additionally, three indicators of property victimization and four indicators of violent victimization were available in the data. The findings reveal a significant dose-response relationship between energy drink consumption and victimization. This relationship was especially pronounced among females. For instance, more than 52% of females with the highest count of various violent victimization experiences consumed energy drinks, which was three times the rate of females who had no previous violent victimization experiences. Practitioners who interact with adolescent victims may probe for energy drink usage in addition to other addictive substances such as alcohol, tobacco, and drugs. Additional scrutiny may also be in order in regulating the amount of caffeine and sugar allowed in these beverages.

  12. Science and the Energy Security Challenge: The Example of Solid-State Lighting

    ScienceCinema

    Philips, Julia [Sandia

    2017-12-09

    Securing a viable, carbon neutral energy future for humankind will require an effort of gargantuan proportions. As outlined clearly in a series of workshops sponsored by the DOE Office of Basic Energy Sciences (http://www.sc.doe.gov/bes/reports/list.html), fundamental advances in scientific understanding are needed to broadly implement many of the technologies that are held out as promising options to meet future energy needs, ranging from solar energy, to nuclear energy, to approaches to clean combustion. Using solid state lighting based on inorganic materials as an example, I will discuss some recent results and new directions, emphasizing the multidisciplinary, team nature of the endeavor. I will also offer some thoughts about how to encourage translation of the science into attractive, widely available products – a significant challenge that cannot be ignored. This case study offers insight into approaches that are likely to be beneficial for addressing other aspects of the energy security challenge.

  13. DIII-D research to address key challenges for ITER and fusion energy

    NASA Astrophysics Data System (ADS)

    Buttery, R. J.; the DIII-D Team

    2015-10-01

    DIII-D has made significant advances in the scientific basis for fusion energy. The physics mechanism of resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression is revealed as field penetration at the pedestal top, and reduced coil set operation was demonstrated. Disruption runaway electrons were effectively quenched by shattered pellets; runaway dissipation is explained by pitch angle scattering. Modest thermal quench radiation asymmetries are well described NIMROD modelling. With good pedestal regulation and error field correction, low torque ITER baselines have been demonstrated and shown to be compatible with an ITER test blanket module simulator. However performance and long wavelength turbulence degrade as low rotation and electron heating are approached. The alternative QH mode scenario is shown to be compatible with high Greenwald density fraction, with an edge harmonic oscillation demonstrating good impurity flushing. Discharge optimization guided by the EPED model has discovered a new super H-mode with doubled pedestal height. Lithium injection also led to wider, higher pedestals. On the path to steady state, 1 MA has been sustained fully noninductively with βN = 4 and RMP ELM suppression, while a peaked current profile scenario provides attractive options for ITER and a βN = 5 future reactor. Energetic particle transport is found to exhibit a critical gradient behaviour. Scenarios are shown to be compatible with radiative and snowflake divertor techniques. Physics studies reveal that the transition to H mode is locked in by a rise in ion diamagnetic flows. Intrinsic rotation in the plasma edge is demonstrated to arise from kinetic losses. New 3D magnetic sensors validate linear ideal MHD, but identify issues in nonlinear simulations. Detachment, characterized in 2D with sub-eV resolution, reveals a radiation shortfall in simulations. Future facility development targets burning plasma physics with torque free electron heating, the

  14. DIII-D research to address key challenges for ITER and fusion energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttery, Richard J.

    DIII-D has made significant advances in the scientific basis for fusion energy. The physics mechanism of resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression is revealed as field penetration at the pedestal top, and reduced coil set operation was demonstrated. Disruption runaway electrons were effectively quenched by shattered pellets; runaway dissipation is explained by pitch angle scattering. Modest thermal quench radiation asymmetries are well described NIMROD modeling. With good pedestal regulation and error field correction, low torque ITER baselines have been demonstrated and shown to be compatible with an ITER test blanket module simulator. However performance and long wavelengthmore » turbulence degrade as low rotation and electron heating are approached. The alternative QH mode scenario is shown to be compatible with high Greenwald density fraction, with an edge harmonic oscillation demonstrating good impurity flushing. Discharge optimization guided by the EPED model has discovered a new super H-mode with doubled pedestal height. Lithium injection also led to wider, higher pedestals. On the path to steady state, 1 MA has been sustained fully non inductively with β N = 4 and RMP ELM suppression, while a peaked current profile scenario provides attractive options for ITER and a β N = 5 future reactor. Energetic particle transport is found to exhibit a critical gradient behavior. Scenarios are shown to be compatible with radiative and snowflake diverter techniques. Physics studies reveal that the transition to H mode is locked in by a rise in ion diamagnetic flows. Intrinsic rotation in the plasma edge is demonstrated to arise from kinetic losses. New 3D magnetic sensors validate linear ideal MHD, but identify issues in nonlinear simulations. Detachment, characterized in 2D with sub-eV resolution, reveals a radiation shortfall in simulations. As a result, future facility development targets burning plasma physics with torque free

  15. DIII-D research to address key challenges for ITER and fusion energy

    DOE PAGES

    Buttery, Richard J.

    2015-07-29

    DIII-D has made significant advances in the scientific basis for fusion energy. The physics mechanism of resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression is revealed as field penetration at the pedestal top, and reduced coil set operation was demonstrated. Disruption runaway electrons were effectively quenched by shattered pellets; runaway dissipation is explained by pitch angle scattering. Modest thermal quench radiation asymmetries are well described NIMROD modeling. With good pedestal regulation and error field correction, low torque ITER baselines have been demonstrated and shown to be compatible with an ITER test blanket module simulator. However performance and long wavelengthmore » turbulence degrade as low rotation and electron heating are approached. The alternative QH mode scenario is shown to be compatible with high Greenwald density fraction, with an edge harmonic oscillation demonstrating good impurity flushing. Discharge optimization guided by the EPED model has discovered a new super H-mode with doubled pedestal height. Lithium injection also led to wider, higher pedestals. On the path to steady state, 1 MA has been sustained fully non inductively with β N = 4 and RMP ELM suppression, while a peaked current profile scenario provides attractive options for ITER and a β N = 5 future reactor. Energetic particle transport is found to exhibit a critical gradient behavior. Scenarios are shown to be compatible with radiative and snowflake diverter techniques. Physics studies reveal that the transition to H mode is locked in by a rise in ion diamagnetic flows. Intrinsic rotation in the plasma edge is demonstrated to arise from kinetic losses. New 3D magnetic sensors validate linear ideal MHD, but identify issues in nonlinear simulations. Detachment, characterized in 2D with sub-eV resolution, reveals a radiation shortfall in simulations. As a result, future facility development targets burning plasma physics with torque free

  16. IPv6 Addressing Proxy: Mapping Native Addressing from Legacy Technologies and Devices to the Internet of Things (IPv6)

    PubMed Central

    Jara, Antonio J.; Moreno-Sanchez, Pedro; Skarmeta, Antonio F.; Varakliotis, Socrates; Kirstein, Peter

    2013-01-01

    Sensors utilize a large number of heterogeneous technologies for a varied set of application environments. The sheer number of devices involved requires that this Internet be the Future Internet, with a core network based on IPv6 and a higher scalability in order to be able to address all the devices, sensors and things located around us. This capability to connect through IPv6 devices, sensors and things is what is defining the so-called Internet of Things (IoT). IPv6 provides addressing space to reach this ubiquitous set of sensors, but legacy technologies, such as X10, European Installation Bus (EIB), Controller Area Network (CAN) and radio frequency ID (RFID) from the industrial, home automation and logistic application areas, do not support the IPv6 protocol. For that reason, a technique must be devised to map the sensor and identification technologies to IPv6, thus allowing homogeneous access via IPv6 features in the context of the IoT. This paper proposes a mapping between the native addressing of each technology and an IPv6 address following a set of rules that are discussed and proposed in this work. Specifically, the paper presents a technology-dependent IPv6 addressing proxy, which maps each device to the different subnetworks built under the IPv6 prefix addresses provided by the internet service provider for each home, building or user. The IPv6 addressing proxy offers a common addressing environment based on IPv6 for all the devices, regardless of the device technology. Thereby, this offers a scalable and homogeneous solution to interact with devices that do not support IPv6 addressing. The IPv6 addressing proxy has been implemented in a multi-protocol card and evaluated successfully its performance, scalability and interoperability through a protocol built over IPv6. PMID:23686145

  17. IPv6 addressing proxy: mapping native addressing from legacy technologies and devices to the Internet of Things (IPv6).

    PubMed

    Jara, Antonio J; Moreno-Sanchez, Pedro; Skarmeta, Antonio F; Varakliotis, Socrates; Kirstein, Peter

    2013-05-17

    Sensors utilize a large number of heterogeneous technologies for a varied set of application environments. The sheer number of devices involved requires that this Internet be the Future Internet, with a core network based on IPv6 and a higher scalability in order to be able to address all the devices, sensors and things located around us. This capability to connect through IPv6 devices, sensors and things is what is defining the so-called Internet of Things (IoT). IPv6 provides addressing space to reach this ubiquitous set of sensors, but legacy technologies, such as X10, European Installation Bus (EIB), Controller Area Network (CAN) and radio frequency ID (RFID) from the industrial, home automation and logistic application areas, do not support the IPv6 protocol. For that reason, a technique must be devised to map the sensor and identification technologies to IPv6, thus allowing homogeneous access via IPv6 features in the context of the IoT. This paper proposes a mapping between the native addressing of each technology and an IPv6 address following a set of rules that are discussed and proposed in this work. Specifically, the paper presents a technology-dependent IPv6 addressing proxy, which maps each device to the different subnetworks built under the IPv6 prefix addresses provided by the internet service provider for each home, building or user. The IPv6 addressing proxy offers a common addressing environment based on IPv6 for all the devices, regardless of the device technology. Thereby, this offers a scalable and homogeneous solution to interact with devices that do not support IPv6 addressing. The IPv6 addressing proxy has been implemented in a multi-protocol Sensors 2013, 13 6688 card and evaluated successfully its performance, scalability and interoperability through a protocol built over IPv6.

  18. The Future of Higher Education.

    ERIC Educational Resources Information Center

    Schuller, Tom, Ed.

    This collection of 12 essays addresses three themes related to the future of higher education: access, governance, and quality. The contributors represent teaching, research and management, universities, polytechnics, and colleges. The collected essays and their authors are as follows: "Reassessing the Future" (Tom Schuller);…

  19. ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)

    DOE Data Explorer

    Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

    2014-06-12

    This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

  20. The Renewable Energy Data Explorer: Mapping Our Renewable Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Renewable Energy (RE) Data Explorer, developed by the National Renewable Energy Laboratory, is an innovative web-based platform that allows users to visualize and analyze renewable energy potential. The RE Data Explorer informs prospecting, integrated planning, and policymaking to enable low emission development.

  1. Environmental implications of increased biomass energy use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, T.R. Sr.; Miles, T.R. Jr.

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range ofmore » studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.« less

  2. Securing the Future of Water, Energy and Food: Can solutions for the currently stressed countries provide the direction for ensuring global water sustainability and food security in the 21st century?

    NASA Astrophysics Data System (ADS)

    Devineni, N.; Lall, U.

    2014-12-01

    Where will the food for the 9 billion people we expect on Earth by 2050 come from? The answer to this question depends on where the water and the energy for agriculture will come from. This assumes of course, that our primary food source will continue to be based on production on land, and that irrigation and the use of fertilizers to improve production are needed to address climate shocks and deteriorating soil health. Given this, establishing an economically, environmentally and physically feasible pathway to achieve water, energy and food security in the face of a changing climate is crucial to planetary well-being. A central hypothesis of the proposed paper is that innovation towards agricultural sustainability in countries such as India and China, that have large populations relative to their water, energy and arable land endowment, and yet have opportunity for improvement in productivity metrics such as crop yield per unit water or energy use, can show us the way to achieve global water-food-energy sustainability. These countries experience a monsoonal climate, which has a high frequency of climate extremes (more floods and droughts, and a short rainy season) relative to the developed countries in temperate climates. Global climate change projections indicate that the frequency and severity of extremes may pose a challenge in the future. Thus, strategies that are resilient to such extremes in monsoonal climates may be of global value in a warmer, more variable world. Much of the future population growth is expected to occur in Africa, S. America and S. Asia. Targeting these regions for higher productivity and resilience is consequently important from a national security perspective as well. Through this paper, we propose to (a) layout in detail, the challenges faced by the water, energy and food sectors in emerging countries, with specific focus on India and China and (b) provide the scientific background for an integrated systems analytic approach to

  3. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, C. D.; Brown, A.; DeFlorio, J.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategiesmore » are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  4. Transportation Energy Futures Series. Effects of Travel Reduction and Efficient Driving on Transportation. Energy Use and Greenhouse Gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, C. D.; Brown, A.; DeFlorio, J.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategiesmore » are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  5. Future of the geoscience profession

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carleton, A.T.

    1995-05-01

    I want to discuss the future of the energy industry and the geoscience profession. That`s you and me. Is there a future for us? Will there be a need for petroleum? What will we use for energy in the future? Over the past several years, those of us in the energy business have witnessed remarkable changes in our industry and our profession. We must be able to change with the conditions if we are to survive them. To do so, some idea of what the future holds is essential. I will discuss what that future may be and will covermore » these topics: world population and energy demand, exploration and production outlook, environmental considerations, geoscience demographics, education, technology, and government. Much of the statistical data and some of the projections I will discuss have been taken from the report of AAPG`s 21st Century Committee, of which I was a member.« less

  6. Current and future groundwater withdrawals: Effects, management and energy policy options for a semi-arid Indian watershed

    NASA Astrophysics Data System (ADS)

    Sishodia, Rajendra P.; Shukla, Sanjay; Graham, Wendy D.; Wani, Suhas P.; Jones, James W.; Heaney, James

    2017-12-01

    Effects of future expansion/intensification of irrigated agriculture on groundwater and surface water levels and availability in a semi-arid watershed were evaluated using an integrated hydrologic model (MIKE SHE/MIKE 11) in conjunction with biophysical measurements. Improved water use efficiency, water storage, and energy policy options were evaluated for their ability to sustain the future (2035) increased groundwater withdrawals. Three future withdrawal scenarios (low = 20, medium = 30, high = 50 wells/100 km2/year) based on the historical rate of growth of irrigation wells were formulated. While well drying from falling groundwater levels was limited to drought and consecutive below average rainfall years, under the current (2015) withdrawals, significant increases in frequency and duration (17-97 days/year) of well drying along with 13-26% (19-37 mm) reductions in surface flows were predicted under the future withdrawals. Higher (27-108%) energy demands of existing irrigation pumps due to declining groundwater levels and reduced hydroelectric generation due to decreased surface flows would create a vicious water-food-energy nexus in the future. Crop failure, one of the main causes of farmers' emotional distress and death in the region, is predicted to exacerbate under the future withdrawal scenarios. Shift to negative net recharge (-63 mm) and early and prolonged drying of wells under the high scenario will reduce the groundwater availability and negatively affect crop production in more than 60% and 90% of cropped areas in the Rabi (November-February) and summer (March-May) seasons, respectively during a drought year. Individual and combined demand (drip irrigation and reduced farm electricity subsidy) and supply (water storage) management options improved groundwater levels and reduced well drying by 55-97 days/year compared to business-as-usual management under the high scenario. The combined management (50% drip conversion, 50% reduction in subsidy, and

  7. Design study of an optical cavity for a future photon collider at ILC

    NASA Astrophysics Data System (ADS)

    Klemz, G.; Mönig, K.; Will, I.

    2006-08-01

    Hard photons well above 100 GeV have to be generated in a future photon collider which essentially will be based on the infrastructure of the planned International Linear Collider (ILC). The energy of near-infrared laser photons will be boosted by Compton backscattering against a high-energy relativistic electron beam. For high effectiveness, a very powerful laser system is required that exceeds today's state-of-the-art capabilities. In this paper a design of an auxiliary passive cavity is discussed that resonantly enhances the peak-power of the laser. The properties and prospects of such a cavity are addressed on the basis of the specifications for the European TeV Energy Superconducting Linear Accelerator (TESLA) proposal. Those of the ILC are expected to be similar.

  8. Future Energy Technology. A Basic Teaching Unit on Energy. Revised.

    ERIC Educational Resources Information Center

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Recommended for grades 7-12 language arts, science, and social studies classes, this 5-7 day unit encourages students to investigate alternative energy sources through research. Focusing on geothermal energy, tide and ocean, fusion, wind, biomass, and solar energy as possible areas of consideration, the unit attempts to create an awareness of the…

  9. Uranium, its impact on the national and global energy mix; and its history, distribution, production, nuclear fuel-cycle, future, and relation to the environment

    USGS Publications Warehouse

    Finch, Warren Irvin

    1997-01-01

    The many aspects of uranium, a heavy radioactive metal used to generate electricity throughout the world, are briefly described in relatively simple terms intended for the lay reader. An adequate glossary of unfamiliar terms is given. Uranium is a new source of electrical energy developed since 1950, and how we harness energy from it is explained. It competes with the organic coal, oil, and gas fuels as shown graphically. Uranium resources and production for the world are tabulated and discussed by country and for various energy regions in the United States. Locations of major uranium deposits and power reactors in the United States are mapped. The nuclear fuel-cycle of uranium for a typical light-water reactor is illustrated at the front end-beginning with its natural geologic occurrence in rocks through discovery, mining, and milling; separation of the scarce isotope U-235, its enrichment, and manufacture into fuel rods for power reactors to generate electricity-and at the back end-the reprocessing and handling of the spent fuel. Environmental concerns with the entire fuel cycle are addressed. The future of the use of uranium in new, simplified, 'passively safe' reactors for the utility industry is examined. The present resource assessment of uranium in the United States is out of date, and a new assessment could aid the domestic uranium industry.

  10. Rural Schools, Rural Communities: An Alternative View of the Future. Keynote Address.

    ERIC Educational Resources Information Center

    Nachtigal, Paul M.

    The urbanization and industrialization of a society based on commercial competitiveness has resulted in the marginalization of rural communities and the disempowerment of rural people. An alternative view of the future is needed, and rural schools have a part to play in creating it. Four sets of forces are driving society toward a different…

  11. Battery‐Supercapacitor Hybrid Devices: Recent Progress and Future Prospects

    PubMed Central

    Zuo, Wenhua; Li, Ruizhi; Zhou, Cheng; Xia, Jianlong

    2017-01-01

    Design and fabrication of electrochemical energy storage systems with both high energy and power densities as well as long cycling life is of great importance. As one of these systems, Battery‐supercapacitor hybrid device (BSH) is typically constructed with a high‐capacity battery‐type electrode and a high‐rate capacitive electrode, which has attracted enormous attention due to its potential applications in future electric vehicles, smart electric grids, and even miniaturized electronic/optoelectronic devices, etc. With proper design, BSH will provide unique advantages such as high performance, cheapness, safety, and environmental friendliness. This review first addresses the fundamental scientific principle, structure, and possible classification of BSHs, and then reviews the recent advances on various existing and emerging BSHs such as Li‐/Na‐ion BSHs, acidic/alkaline BSHs, BSH with redox electrolytes, and BSH with pseudocapacitive electrode, with the focus on materials and electrochemical performances. Furthermore, recent progresses in BSH devices with specific functionalities of flexibility and transparency, etc. will be highlighted. Finally, the future developing trends and directions as well as the challenges will also be discussed; especially, two conceptual BSHs with aqueous high voltage window and integrated 3D electrode/electrolyte architecture will be proposed. PMID:28725528

  12. Reviews of Data on Science Resources, No. 29. Current and Future Utilization of Scientific and Technical Personnel in Energy-Related Activities.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    This National Science Foundation (NSF) bulletin summarizes the NSF program of energy manpower studies that assessed the impact of past energy developments and future options for scientific and technical manpower. This document summarizes the utilization of scientific personnel in energy-related activities in private industry in 1975 and shortages…

  13. Addressing Climate Change in Long-Term Water Planning Using Robust Decisionmaking

    NASA Astrophysics Data System (ADS)

    Groves, D. G.; Lempert, R.

    2008-12-01

    Addressing climate change in long-term natural resource planning is difficult because future management conditions are deeply uncertain and the range of possible adaptation options are so extensive. These conditions pose challenges to standard optimization decision-support techniques. This talk will describe a methodology called Robust Decisionmaking (RDM) that can complement more traditional analytic approaches by utilizing screening-level water management models to evaluate large numbers of strategies against a wide range of plausible future scenarios. The presentation will describe a recent application of the methodology to evaluate climate adaptation strategies for the Inland Empire Utilities Agency in Southern California. This project found that RDM can provide a useful way for addressing climate change uncertainty and identify robust adaptation strategies.

  14. A Novel Addressing Scheme for PMIPv6 Based Global IP-WSNs

    PubMed Central

    Islam, Md. Motaharul; Huh, Eui-Nam

    2011-01-01

    IP based Wireless Sensor Networks (IP-WSNs) are being used in healthcare, home automation, industrial control and agricultural monitoring. In most of these applications global addressing of individual IP-WSN nodes and layer-three routing for mobility enabled IP-WSN with special attention to reliability, energy efficiency and end to end delay minimization are a few of the major issues to be addressed. Most of the routing protocols in WSN are based on layer-two approaches. For reliability and end to end communication enhancement the necessity of layer-three routing for IP-WSNs is generating significant attention among the research community, but due to the hurdle of maintaining routing state and other communication overhead, it was not possible to introduce a layer-three routing protocol for IP-WSNs. To address this issue we propose in this paper a global addressing scheme and layer-three based hierarchical routing protocol. The proposed addressing and routing approach focuses on all the above mentioned issues. Simulation results show that the proposed addressing and routing approach significantly enhances the reliability, energy efficiency and end to end delay minimization. We also present architecture, message formats and different routing scenarios in this paper. PMID:22164084

  15. A novel addressing scheme for PMIPv6 based global IP-WSNs.

    PubMed

    Islam, Md Motaharul; Huh, Eui-Nam

    2011-01-01

    IP based Wireless Sensor Networks (IP-WSNs) are being used in healthcare, home automation, industrial control and agricultural monitoring. In most of these applications global addressing of individual IP-WSN nodes and layer-three routing for mobility enabled IP-WSN with special attention to reliability, energy efficiency and end to end delay minimization are a few of the major issues to be addressed. Most of the routing protocols in WSN are based on layer-two approaches. For reliability and end to end communication enhancement the necessity of layer-three routing for IP-WSNs is generating significant attention among the research community, but due to the hurdle of maintaining routing state and other communication overhead, it was not possible to introduce a layer-three routing protocol for IP-WSNs. To address this issue we propose in this paper a global addressing scheme and layer-three based hierarchical routing protocol. The proposed addressing and routing approach focuses on all the above mentioned issues. Simulation results show that the proposed addressing and routing approach significantly enhances the reliability, energy efficiency and end to end delay minimization. We also present architecture, message formats and different routing scenarios in this paper.

  16. Impacts of High Variable Renewable Energy Futures on Wholesale Electricity Prices, and on Electric-Sector Decision Making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seel, Joachim; Mills, Andrew D.; Wiser, Ryan H.

    Increasing penetrations of variable renewable energy (VRE) can affect wholesale electricity price patterns and make them meaningfully different from past, traditional price patterns. Many long-lasting decisions for supply- and demand-side electricity infrastructure and programs are based on historical observations or assume a business-as-usual future with low shares of VRE. Our motivating question is whether certain electric-sector decisions that are made based on assumptions reflecting low VRE levels will still achieve their intended objective in a high VRE future. We qualitatively describe how various decisions may change with higher shares of VRE and outline an analytical framework for quantitatively evaluating themore » impacts of VRE on long-lasting decisions. We then present results from detailed electricity market simulations with capacity expansion and unit commitment models for multiple regions of the U.S. for low and high VRE futures. We find a general decrease in average annual hourly wholesale energy prices with more VRE penetration, increased price volatility and frequency of very low-priced hours, and changing diurnal price patterns. Ancillary service prices rise substantially and peak net-load hours with high capacity value are shifted increasingly into the evening, particularly for high solar futures. While in this report we only highlight qualitatively the possible impact of these altered price patterns on other demand- and supply-side electric sector decisions, the core set of electricity market prices derived here provides a foundation for later planned quantitative evaluations of these decisions in low and high VRE futures.« less

  17. Biofuels, fossil energy ratio, and the future of energy production

    NASA Astrophysics Data System (ADS)

    Consiglio, David

    2017-05-01

    Two hundred years ago, much of humanity's energy came from burning wood. As energy needs outstripped supplies, we began to burn fossil fuels. This transition allowed our civilization to modernize rapidly, but it came with heavy costs including climate change. Today, scientists and engineers are taking another look at biofuels as a source of energy to fuel our ever-increasing consumption.

  18. Langley Research Center Utility Risk from Future Climate Change

    NASA Technical Reports Server (NTRS)

    De Young, Russell J.; Ganoe, Rene

    2015-01-01

    The successful operation of NASA Langley Research Center (LaRC) depends on services provided by several public utility companies. These include Newport News Waterworks, Dominion Virginia Power, Virginia Natural Gas and Hampton Roads Sanitation District. LaRC's plan to respond to future climate change should take into account how these companies plan to avoid interruption of services while minimizing cost to the customers. This report summarizes our findings from publicly available documents on how each company plans to respond. This will form the basis for future planning for the Center. Our preliminary findings show that flooding and severe storms could interrupt service from the Waterworks and Sanitation District but the potential is low due to plans in place to address climate change on their system. Virginia Natural Gas supplies energy to produce steam but most current steam comes from the Hampton trash burning plant, thus interruption risk is low. Dominion Virginia Power does not address climate change impacts on their system in their public reports. The potential interruption risk is considered to be medium. The Hampton Roads Sanitation District is projecting a major upgrade of their system to mitigate clean water inflow and infiltration. This will reduce infiltration and avoid overloading the pump stations and treatment plants.

  19. Computational Intelligence and Its Impact on Future High-Performance Engineering Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    1996-01-01

    This document contains presentations from the joint UVA/NASA Workshop on Computational Intelligence held at the Virginia Consortium of Engineering and Science Universities, Hampton, Virginia, June 27-28, 1995. The presentations addressed activities in the areas of fuzzy logic, neural networks, and evolutionary computations. Workshop attendees represented NASA, the National Science Foundation, the Department of Energy, National Institute of Standards and Technology (NIST), the Jet Propulsion Laboratory, industry, and academia. The workshop objectives were to assess the state of technology in the Computational intelligence area and to provide guidelines for future research.

  20. Catholic Social Teaching: Addressing Globalization in Catholic Business Education

    ERIC Educational Resources Information Center

    Ball, James B.; Martinez, Zaida; Toyne, Brian

    2009-01-01

    Although business schools are increasingly aware of the importance of globalization in educating future business leaders, their business programs have addressed globalization from a limited perspective that fails to provide students with a broader understanding of its impact on societies and its moral consequences. The conventional approach to the…

  1. Federal Aviation Administration Memorandum of Agreement to Address Aircraft-Wildlife Strikes

    EPA Pesticide Factsheets

    This Memorandum of Agreement (MOA) establish procedures necessary to coordinate the signatory agencies missions to more effectively address existing and future environmental conditions contributing to aircraft-wildlife strikes throughout the United States.

  2. Future directions for LDEF ionizing radiation modeling and assessments

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1992-01-01

    Data from the ionizing radiation dosimetry aboard LDEF provide a unique opportunity for assessing the accuracy of current space radiation models and in identifying needed improvements for future mission applications. Details are given of the LDEF data available for radiation model evaluations. The status is given of model comparisons with LDEF data, along with future directions of planned modeling efforts and data comparison assessments. The methodology is outlined which is related to modeling being used to help insure that the LDEF ionizing radiation results can be used to address ionizing radiation issues for future missions. In general, the LDEF radiation modeling has emphasized quick-look predictions using simplified methods to make comparisons with absorbed dose measurements and induced radioactivity measurements of emissions. Modeling and LDEF data comparisons related to linear energy transfer spectra are of importance for several reasons which are outlined. The planned modeling and LDEF data comparisons for LET spectra is discussed, including components of the LET spectra due to different environment sources, contribution from different production mechanisms, and spectra in plastic detectors vs silicon.

  3. Should nuclear energy form part of the UK's energy future?

    NASA Astrophysics Data System (ADS)

    Campbell, Peter

    2003-03-01

    Energy policies are under review everywhere, as the world tries to meet targets for reducing climate change despite continuing population growth. A major change in energy patterns is needed, with the critical period for transition predictably happening when young people currently at school are in their middle years of their lives. This article describes one way of bringing the debate surrounding energy demand and supply to life in physics classrooms.

  4. Energy: options for the future. Curriculum development project for high school teachers. Final report. [Packet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, T.O.

    Recent state and regional energy crises demonstrate the delicate balance between energy systems, the environment, and the economy. Indeed, the interaction between these three elements of society is very complex. This project develops curriculum materials that would better provide students with an understanding and awareness of fundamental principles of energy supply, conversion processes, and utilization now and in the future. The project had two specific objectives: to transfer knowledge of energy systems, analysis techniques, and advanced technologies from the energy analyst community to the teacher participants; and to involve teachers in the preparation of modular case studies on energy issuesmore » for use within the classroom. These curriculum modules are intended to enhance the teacher's ability to provide energy-related education to students within his or her own academic setting. The project is organized as a three-week summer program, as noted in the flyer (Appendix A). Mornings are spent in seminars with energy and environmental specialists (their handout lecture notes are included as Appendix B); afternoons are devoted to high school curriculum development based on the seminar discussions. The curriculum development is limited to five areas: conservation, electricity demand scheduling, energy in the food system, new technologies (solar, wind, biomass), and environment. Appendix C consists of one-day lession plans in these areas.« less

  5. Focus on the future

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S.

    1988-01-01

    An assessment is made of what was learned from Halley and recommendations are made for future directions for infrared studies of comets and supporting lab investigations. The following issues are addressed: (1) What steps can be taken to achieve consistent interpretation of Halley infrared data; (2) How successful has the Halley Watch been for infrared studies; (3) What supporting lab research is needed; (4) What are the key infrared observations needed for future comets; and (5) How do current and future NASA programs relate to comet studies.

  6. Addressing Therapeutic Options for Ebola Virus Infection in Current and Future Outbreaks.

    PubMed

    Haque, Azizul; Hober, Didier; Blondiaux, Joel

    2015-10-01

    Ebola virus can cause severe hemorrhagic disease with high fatality rates. Currently, no specific therapeutic agent or vaccine has been approved for treatment and prevention of Ebola virus infection of humans. Although the number of Ebola cases has fallen in the last few weeks, multiple outbreaks of Ebola virus infection and the likelihood of future exposure highlight the need for development and rapid evaluation of pre- and postexposure treatments. Here, we briefly review the existing and future options for anti-Ebola therapy, based on the data coming from rare clinical reports, studies on animals, and results from in vitro models. We also project the mechanistic hypotheses of several potential drugs against Ebola virus, including small-molecule-based drugs, which are under development and being tested in animal models or in vitro using various cell types. Our paper discusses strategies toward identifying and testing anti-Ebola virus properties of known and medically approved drugs, especially those that can limit the pathological inflammatory response in Ebola patients and thereby provide protection from mortality. We underline the importance of developing combinational therapy for better treatment outcomes for Ebola patients. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Addressing Therapeutic Options for Ebola Virus Infection in Current and Future Outbreaks

    PubMed Central

    Hober, Didier; Blondiaux, Joel

    2015-01-01

    Ebola virus can cause severe hemorrhagic disease with high fatality rates. Currently, no specific therapeutic agent or vaccine has been approved for treatment and prevention of Ebola virus infection of humans. Although the number of Ebola cases has fallen in the last few weeks, multiple outbreaks of Ebola virus infection and the likelihood of future exposure highlight the need for development and rapid evaluation of pre- and postexposure treatments. Here, we briefly review the existing and future options for anti-Ebola therapy, based on the data coming from rare clinical reports, studies on animals, and results from in vitro models. We also project the mechanistic hypotheses of several potential drugs against Ebola virus, including small-molecule-based drugs, which are under development and being tested in animal models or in vitro using various cell types. Our paper discusses strategies toward identifying and testing anti-Ebola virus properties of known and medically approved drugs, especially those that can limit the pathological inflammatory response in Ebola patients and thereby provide protection from mortality. We underline the importance of developing combinational therapy for better treatment outcomes for Ebola patients. PMID:26248374

  8. Le futur linguistique: temps lineaire ou temps ramifie (The Linguistic Future: Linear or Branching Time)?

    ERIC Educational Resources Information Center

    Martin, Robert

    1981-01-01

    Discusses the problems posed by a semantic analysis of the future tense in French, addressing particularly its double use as a tense and as a mood. The distinction between linear and branching time, or, certainty and possibility, central to this discussion, leads to a comparative analysis of future and conditional. (MES)

  9. Aquifer thermal energy storage. International symposium: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste ormore » by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.« less

  10. Greening the Future

    ERIC Educational Resources Information Center

    Williamson, Norma Velia

    2011-01-01

    Because educators vicariously touch the future through their students, the author believes that they sometimes have the uncanny ability to see the future. One common future forecast is the phenomenal growth of green jobs in the emerging green economy, leading to the creation of the "Reach of the Sun" Solar Energy Academy at La Mirada…

  11. High energy density physics issues related to Future Circular Collider

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2017-07-01

    A design study for a post-Large Hadron Collider accelerator named, Future Circular Collider (FCC), is being carried out by the International Scientific Community. A complete design report is expected to be ready by spring 2018. The FCC will accelerate two counter rotating beams of 50 TeV protons in a tunnel having a length (circumference) of 100 km. Each beam will be comprised of 10 600 proton bunches, with each bunch having an intensity of 1011 protons. The bunch length is of 0.5 ns, and two neighboring bunches are separated by 25 ns. Although there is an option for 5 ns bunch separation as well, in the present studies, we consider the former case only. The total energy stored in each FCC beam is about 8.5 GJ, which is equivalent to the kinetic energy of Airbus 380 (560 t) flying at a speed of 850 km/h. Machine protection is a very important issue while operating with such powerful beams. It is important to have an estimate of the damage caused to the equipment and accelerator components due to the accidental release of a partial or total beam at a given point. For this purpose, we carried out numerical simulations of full impact of one FCC beam on an extended solid copper target. These simulations have been done employing an energy deposition code, FLUKA, and a two-dimensional hydrodynamic code, BIG2, iteratively. This study shows that although the static range of a single FCC proton and its shower is about 1.5 m in solid copper, the entire beam will penetrate around 350 m into the target. This substantial increase in the range is due to the hydrodynamic tunneling of the beam. Our calculations also show that a large part of the target will be converted into high energy density matter including warm dense matter and strongly coupled plasmas.

  12. The Future of NATO

    DTIC Science & Technology

    2012-03-15

    The Future of NATO by Lieutenant Colonel Kim Schmidt Danish Army United States Army War College Class of 2012...reflect the official policy or position of the Department of the Army, Department of Defense, or the U.S. Government. The U.S. Army War College is...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army War College 122 Forbes Avenue 122

  13. Regulation of water resources for sustaining global future socioeconomic development

    NASA Astrophysics Data System (ADS)

    Chen, J.; SHI, H.; Sivakumar, B.

    2016-12-01

    With population projections indicating continued growth during this century, socio-economic problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if proper planning, development, and management strategies are not adopted. In the present study, firstly, we explore the vital role of dams in promoting economic growth through analyzing the relationship between dams and Gross Domestic Product (GDP) at both global and national scales. Secondly, we analyze the current situation of global water scarcity based on the data representing water resources availability, dam development, and the level of economic development. Third, with comprehensive consideration of population growth as the major driving force, water resources availability as the basic supporting factor, and topography as the important constraint, this study addresses the question of dam development in the future and predicts the locations of future dams around the world.

  14. NASA Future Forum

    NASA Image and Video Library

    2011-08-11

    U.S. Rep. Donna Edwards, D-Md., addresses the audience at the 2011 NASA Future Forum, Thursday, Aug. 11, 2011, at the Riggs Alumni Center on the campus of the University of Maryland in College Park, Md. Photo Credit: (NASA/Paul E. Alers)

  15. Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.

    PubMed

    Marsh, M C David

    2017-01-06

    Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.

  16. Greater future global warming inferred from Earth’s recent energy budget

    NASA Astrophysics Data System (ADS)

    Brown, Patrick T.; Caldeira, Ken

    2017-12-01

    Climate models provide the principal means of projecting global warming over the remainder of the twenty-first century but modelled estimates of warming vary by a factor of approximately two even under the same radiative forcing scenarios. Across-model relationships between currently observable attributes of the climate system and the simulated magnitude of future warming have the potential to inform projections. Here we show that robust across-model relationships exist between the global spatial patterns of several fundamental attributes of Earth’s top-of-atmosphere energy budget and the magnitude of projected global warming. When we constrain the model projections with observations, we obtain greater means and narrower ranges of future global warming across the major radiative forcing scenarios, in general. In particular, we find that the observationally informed warming projection for the end of the twenty-first century for the steepest radiative forcing scenario is about 15 per cent warmer (+0.5 degrees Celsius) with a reduction of about a third in the two-standard-deviation spread (-1.2 degrees Celsius) relative to the raw model projections reported by the Intergovernmental Panel on Climate Change. Our results suggest that achieving any given global temperature stabilization target will require steeper greenhouse gas emissions reductions than previously calculated.

  17. Energy Efficiency Collaboratives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Michael; Bryson, Joe

    2015-09-01

    Collaboratives for energy efficiency have a long and successful history and are currently used, in some form, in more than half of the states. Historically, many state utility commissions have used some form of collaborative group process to resolve complex issues that emerge during a rate proceeding. Rather than debate the issues through the formality of a commission proceeding, disagreeing parties are sent to discuss issues in a less-formal setting and bring back resolutions to the commission. Energy efficiency collaboratives take this concept and apply it specifically to energy efficiency programs—often in anticipation of future issues as opposed to reactingmore » to a present disagreement. Energy efficiency collaboratives can operate long term and can address the full suite of issues associated with designing, implementing, and improving energy efficiency programs. Collaboratives can be useful to gather stakeholder input on changing program budgets and program changes in response to performance or market shifts, as well as to provide continuity while regulators come and go, identify additional energy efficiency opportunities and innovations, assess the role of energy efficiency in new regulatory contexts, and draw on lessons learned and best practices from a diverse group. Details about specific collaboratives in the United States are in the appendix to this guide. Collectively, they demonstrate the value of collaborative stakeholder processes in producing successful energy efficiency programs.« less

  18. Establishment of a National Wind Energy Center at University of Houston

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Su Su

    The DOE-supported project objectives are to: establish a national wind energy center (NWEC) at University of Houston and conduct research to address critical science and engineering issues for the development of future large MW-scale wind energy production systems, especially offshore wind turbines. The goals of the project are to: (1) establish a sound scientific/technical knowledge base of solutions to critical science and engineering issues for developing future MW-scale large wind energy production systems, (2) develop a state-of-the-art wind rotor blade research facility at the University of Houston, and (3) through multi-disciplinary research, introducing technology innovations on advanced wind-turbine materials, processing/manufacturingmore » technology, design and simulation, testing and reliability assessment methods related to future wind turbine systems for cost-effective production of offshore wind energy. To achieve the goals of the project, the following technical tasks were planned and executed during the period from April 15, 2010 to October 31, 2014 at the University of Houston: (1) Basic research on large offshore wind turbine systems (2) Applied research on innovative wind turbine rotors for large offshore wind energy systems (3) Integration of offshore wind-turbine design, advanced materials and manufacturing technologies (4) Integrity and reliability of large offshore wind turbine blades and scaled model testing (5) Education and training of graduate and undergraduate students and post- doctoral researchers (6) Development of a national offshore wind turbine blade research facility The research program addresses both basic science and engineering of current and future large wind turbine systems, especially offshore wind turbines, for MW-scale power generation. The results of the research advance current understanding of many important scientific issues and provide technical information for solving future large wind turbines with advanced

  19. Remarks by the President at Princeton University Commencement Address.

    ERIC Educational Resources Information Center

    Clinton, William

    This speech by President William Clinton addresses the 1996 graduating class of Princeton University on the occasion of Princeton's 250th anniversary. After his opening remarks, the President touches on the importance of the graduating seniors' education as well as the importance of education in general to the nation's future. He compares the…

  20. The Leader of the Future. New Visions, Strategies, and Practices for the Next Era. First Edition. Drucker Foundation Future Series.

    ERIC Educational Resources Information Center

    Hesselbein, Frances, Ed.; And Others

    The 31 papers in this volume address the requirements and qualities of leadership and leaders in the organization of the future. Papers are grouped into the following categories: Leading the Organization of the Future, Future Leaders in Action, Learning to Lead for Tomorrow, and Executives on the Future of Leadership. Some of the papers included…

  1. Energy Options: Challenge for the Future

    ERIC Educational Resources Information Center

    Hammond, Allen L.

    1972-01-01

    Summarizes alternative technological possibilities for ensuring a supply of energy for the United States, including nuclear technology, solar energy, shale oil and coal gassification, low pollutant techniques for burning coal, and a fuel cell suitable for commercial use. Reports the extent of existing research and development efforts. (AL)

  2. 10 CFR 904.14 - Future regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Future regulations. 904.14 Section 904.14 Energy DEPARTMENT OF ENERGY GENERAL REGULATIONS FOR THE CHARGES FOR THE SALE OF POWER FROM THE BOULDER CANYON PROJECT Power Marketing § 904.14 Future regulations. (a) Western may from time to time promulgate such...

  3. 10 CFR 904.14 - Future regulations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Future regulations. 904.14 Section 904.14 Energy DEPARTMENT OF ENERGY GENERAL REGULATIONS FOR THE CHARGES FOR THE SALE OF POWER FROM THE BOULDER CANYON PROJECT Power Marketing § 904.14 Future regulations. (a) Western may from time to time promulgate such...

  4. CGH Future Directions

    Cancer.gov

    Looking ahead, we have three major future directions that we believe will help us push forward in achieving NCI’s goal of advancing global cancer research, building expertise, and leveraging resources across nations to address the challenges of cancer and reduce cancer deaths worldwide.

  5. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.; Wiser, R.; Sandor, D.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  6. Reimagining Energy in the North: Developing Solutions for Improving Renewable Energy Security in Northern Communities

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Poelzer, G.; Noble, B.; Beatty, B.; Belcher, K.; Chung, T.; Loring, P. A.

    2017-12-01

    The global energy sector is at a crossroads. Efforts to reduce greenhouse gas emissions, volatile fossil fuel prices, the emergence of sustainability markets, and advances in renewable energy technologies are setting the foundation for what could be one of the most significant societal transitions since the industrial revolution. There is a growing movement to "re-energize" Canada, through embracing pathways to facilitate a societal transition a low-carbon future. For example, circumpolar jurisdictions are poised for a transition to renewable energy. There are more than 250 remote, off-grid communities across Canada's North, of which approximately 170 are Indigenous, that rely largely on diesel-fueled generators. Diesel-fueled generation is generally reliable when properly maintained; however, supply is limited, infrastructure is at capacity or in need of major upgrading, and the volatile price of fuel can mean significant social, community and economic opportunity loss. Renewable energy projects offer one possible opportunity to address these challenges. But, given the challenges of human capacity, limited fiscal resources, and regulatory barriers, how can Northern communities participate in the global energy transition and not be left behind? To answer this question, the University of Saskatchewan, together with partners from the circumpolar North, are leading an initiative to develop a cross-sectoral and multi-national consortium of communities, utilities, industries, governments, and academics engaged in renewable energy in the North. This consortium will reimagine energy security in the North by co-creating and brokering the knowledge and understanding to design renewable energy systems that enhance social and economic value. Northern communities and utilities will learn directly from other northern communities and utilities across Canada and internationally about what can be achieved in renewable energy development and the solutions to current and future

  7. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M. M.; Baldwin, S.; DeMeo, E.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  8. Improving cost-effectiveness and mitigating risks of renewable energy requirements

    NASA Astrophysics Data System (ADS)

    Griffin, James P.

    Policy makers at the federal and state levels of government are debating actions to reduce U.S. greenhouse gas emissions and dependence on oil as an energy source. Several concerns drive this debate: sharp rises in energy prices, increasing unease about the risks of climate change, energy security, and interest in expanding the domestic renewable energy industry. Renewable energy requirements are frequently proposed to address these concerns, and are currently in place, in various forms, at the federal and state levels of government. These policies specify that a certain portion of the energy supply come from renewable energy sources. This dissertation focuses on a specific proposal, known as 25 X 25, which requires 25% of electricity and motor vehicle transportation fuels supplied to U.S. consumers to come from renewable energy sources, such as wind power and ethanol, by 2025. This dissertation builds on prior energy policy analysis, and more specifically analyses of renewable energy requirements, by assessing the social welfare implications of a 25 x 25 policy and applying new methods of uncertainty analysis to multiple policy options decision makers can use to implement the policy. These methods identify policy options that can improve the cost-effectiveness and reduce the risks of renewable energy requirements. While the dissertation focuses on a specific policy, the research methods and findings are applicable to other renewable energy requirement policies. In the dissertation, I analyze six strategies for implementing a 25 x 25 policy across several hundred scenarios that represent plausible futures for uncertainties in energy markets, such as renewable energy costs, energy demand, and fossil fuel prices. The strategies vary in the availability of resources that qualify towards the policy requirement and the use of a "safety valve" that allows refiners and utilities to pay a constant fee after renewable energy costs reach a predetermined threshold. I test

  9. Present and Future Energy Scenario in India

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Bhattacharyya, B.; Gupta, V. K.

    2014-09-01

    India's energy sector is one of the most critical components of an infrastructure that affects India's economic growth and therefore is also one of the largest industries in India. India has the 5th largest electricity generating capacity and is the 6th largest energy consumer amounting for around 3.4 % of global energy consumption. India's energy demand has grown at 3.6 % pa over the past 30 years. The consumption of the energy is directly proportional to the progress of manpower with ever growing population, improvement in the living standard of the humanity and industrialization of the developing countries. Very recently smart grid technology can attribute important role in energy scenario. Smart grid refers to electric power system that enhances grid reliability and efficiency by automatically responding to system disturbances. This paper discusses the new communication infrastructure and scheme designed to integrate data.

  10. Embedding Self-Determination and Futures Planning within a Schoolwide Framework

    ERIC Educational Resources Information Center

    Bohanon, Hank; Castillo, Jose; Afton, Morgan

    2015-01-01

    This article illustrates the infusion of self-determination approaches (e.g., futures planning) within a schoolwide context. Unfortunately, some students are not explicitly instructed by school staff to address their plans for the future. This may be a result of school professionals' feelings of inadequacy to address skill sets outside of…

  11. Utility-Scale Future, Continuum Magazine: Clean Energy Innovation at NREL, Spring 2011, Issue 1 Vol. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-08-01

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on creating a utility-scale future.

  12. 41 CFR 109-26.203 - Activity address codes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Activity address codes. 109-26.203 Section 109-26.203 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 26...

  13. Forecasting Optimal Solar Energy Supply in Jiangsu Province (China): A Systematic Approach Using Hybrid of Weather and Energy Forecast Models

    PubMed Central

    Zhao, Xiuli; Yiranbon, Ethel

    2014-01-01

    The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, “least-cost,” and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor. PMID:24511292

  14. Forecasting optimal solar energy supply in Jiangsu Province (China): a systematic approach using hybrid of weather and energy forecast models.

    PubMed

    Zhao, Xiuli; Asante Antwi, Henry; Yiranbon, Ethel

    2014-01-01

    The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, "least-cost," and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.

  15. Shining India?: Assessing and addressing the risks from an unsustainable trajectory of climate, water, food, energy and income inequity

    NASA Astrophysics Data System (ADS)

    Lall, U.

    2012-12-01

    Climate and demographics are primary drivers of regional resource sustainability. In today's global economy, increasing trade has provided a mechanism to alleviate regional stresses. However, increasing regional income promotes consumption, aggravating regional and global resource pressures. South Asia, has the highest population density at a sub-continent scale. Given its monsoonal climate, and high intensity of agriculture it faces perhaps the most severe population weighted water stress in the world. Rapidly declining groundwater tables and the associated high energy use for pumping for irrigated agriculture translate into unsustainable energy imports and expenditure that contributed to the two largest blackouts in global history in summer 2012. Access to water has been progressively declining for both rural and urban populations for the last 3 decades. The increasing energy imports and poor grid reliability translate into limits to the growth of manufacturing and exports of goods and services. The growing income inequity within the population and across national borders, and the impacts of floods and droughts on access to water, food and energy collectively suggest a very high risk for social unrest and a conflict flashpoint. I present a scenario analysis that establishes this case for the emergence of internal and external strife in the region as an outcome of the current resource and natural disaster management policies in the region. Prospects for strategic policy changes for water and energy management and the design of a food procurement and distribution system that could lead to a better future are discussed.

  16. The impact of u.s. Energy policy on international health: alternate paths into the future.

    PubMed

    Ratcliffe, J W; Merrill, J C

    1982-01-01

    Historical, sociological, and epidemiological research shows that international health and mortality levels are determined primarily not by health sector policies but, instead, by national and international policies that shape the broader sociopolitical and economic systems within which health sectors are embedded. Such policies have traditionally been considered to lie outside the domain of the health sector and, therefore, not of concern to health educators. One such national policy with the potential to powerfully influence international health and mortality levels is the looming choice between alternate American energy paths: the capital-intensive, large-scale, and centralized "hard" path of non-renewable energy resources; and the labor-intensive, small-scale, and decentralized "soft" path of renewable energy sources. Substantial effort has been directed to projecting the physical environmental impacts in the United States for both paths. But the social environmental impacts of each path and their implications for international health have been ignored. This article reviews links between alternate U.S. energy paths and alternate international health futures, and their implications for health educators around the world.

  17. Blueprint for a Secure Energy Future

    DTIC Science & Technology

    2011-03-30

    impacts associated with hydraulic fracturing (“ fracking ”) practices. That is why the Administration is taking steps to address these concerns and ensure... Fracking Chemicals: The Administration is calling on industry to be more transparent about the use of fracking chemicals. Leading by Example: In...to examine the impacts of fracking on water resources. At Congress’ direction, EPA will continue with its study of fracturing impacts on drinking

  18. Colloborative International Resesarch on the Water Energy Nexus: Lessons Learned from the Clean Energy Research Center - Water Energy Technologies (CERC-WET)

    NASA Astrophysics Data System (ADS)

    Remick, C.

    2017-12-01

    The U.S.-China Clean Energy Research Center - Water and Energy Technologies (CERC-WET) is a global research partnership focused on developing and deploying technologies that to allow the U.S. and China to thrive in a future with constrained energy and water resources in a changing global climate. This presentation outlines and addresses the opportunities and challenges for international research collaboration on the so called "water-energy nexus", with a focus on industrial partnership, market readiness, and intellectual property. The U.S. Department of Energy created the CERC program as a research and development partnership between the United States and China to accelerate the development and deployment of advanced clean energy technologies. The United States and China are not only the world's largest economies; they are also the world's largest energy producers and energy consumers. Together, they account for about 40% of annual global greenhouse gas emissions. The bilateral investment in CERC-WET will total $50 million over five years and will target on the emerging issues and cut-edge research on the topics of (1) water use reduction at thermoelectric plants; (2) treatment and management of non-traditional waters; (3) improvements in sustainable hydropower design and operation; (4) climate impact modeling, methods, and scenarios to support improved understanding of energy and water systems; and (5) data and analysis to inform planning and policy.

  19. Transforming the New Brunswick Energy Hub: An Analysis on Renewable Energy

    NASA Astrophysics Data System (ADS)

    Gunter, Christopher

    This research examines the benefits and disadvantages of instituting a shift from fossil fuel dependence to renewable sources of energy in New Brunswick. The New Brunswick Energy Hub is a complex system acting under the mandate of the White Paper New Brunswick Energy Policy. In my research, I consider information derived from statistical indicators developed by Patlitzianas, Doukas, Kagiannas and Psarras (2008) and compare these findings to the efficacy of energy policies in Germany, Denmark and Spain. These countries are similar to New Brunswick in climate and organizational complexity (US Department of Commerce, 2009). Weighing the outcomes of this comparative study, I discuss my recommendations highlighting the environmental and economic benefits. My research investigates subsidies in each country that allowed them early economic and environmental advantages. Specific regional considerations, such as Denmark's trend of selling energy technology for profit over domestic applications, inform my conclusions. The future New Brunswick Energy Policy should focus on creating favorable conditions for renewable energy development to occur. Some proven conditions include infrastructure development subsidies and the development and annual review of a competitive open access transmission tariff. With the expiry of the current White Paper comes the necessity of this investigation, and the opportunity to address the growing financial and environmental concerns that many politicians and policy planners have failed to deal with in past policies.

  20. Fossil energy waste management. Technology status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includesmore » a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.« less

  1. Addressing Transportation Energy and Environmental Impacts: Technical and Policy Research Directions

    DOT National Transportation Integrated Search

    1995-08-10

    The Lawrence Livermore National Laboratory (LLNL) is establishing a local chapter of the University of California Energy Institute (UCEI). In order to most effectively contribute to the Institute, LLNL sponsored a workshop on energy and environmental...

  2. Should Nuclear Energy Form Part of the UK's Energy Future?

    ERIC Educational Resources Information Center

    Campbell, Peter

    2003-01-01

    Energy policies are under review everywhere, as the world tries to meet targets for reducing climate change despite continuing population growth. A major change in energy patterns is needed, with the critical period for transition predictably happening when young people currently at school are in their middle years of their lives. This article…

  3. The future of hydropower planning modeling

    NASA Astrophysics Data System (ADS)

    Haas, J.; Zuñiga, D.; Nowak, W.; Olivares, M. A.; Castelletti, A.; Thilmant, A.

    2017-12-01

    Planning the investment and operation of hydropower plants with optimization tools dates back to the 1970s. The focus used to be solely on the provision of energy. However, advances in computational capacity and solving algorithms, dynamic markets, expansion of renewable sources, and a better understanding of hydropower environmental impacts have recently led to the development of novel planning approaches. In this work, we provide a review, systematization, and trend analysis of these approaches. Further, through interviews with experts, we outline the future of hydropower planning modeling and identify the gaps towards it. We classified the found models along environmental, economic, multipurpose and technical criteria. Environmental interactions include hydropeaking mitigation, water quality protection and limiting greenhouse gas emissions from reservoirs. Economic and regulatory criteria consider uncertainties of fossil fuel prices and relicensing of water rights and power purchase agreements. Multipurpose considerations account for irrigation, tourism, flood protection and drinking water. Recently included technical details account for sedimentation in reservoirs and variable efficiencies of turbines. Additional operational considerations relate to hydrological aspects such as dynamic reservoir inflows, water losses, and climate change. Although many of the above criteria have been addressed in detail on a project-to-project basis, models remain overly simplistic for planning large power fleets. Future hydropower planning tools are expected to improve the representation of the water-energy nexus, including environmental and multipurpose criteria. Further, they will concentrate on identifying new sources of operational flexibility (e.g. through installing additional turbines and pumps) for integrating renewable energy. The operational detail will increase, potentially emphasizing variable efficiencies, storage capacity losses due to sedimentation, and the

  4. One Cold Fusion Speaker is One Too Many for a Future Energy Conference

    NASA Astrophysics Data System (ADS)

    Vallone, Thomas

    2001-04-01

    In 1998, a Conference on Future Energy (COFE) was scheduled to take place at the State Department Open Forum in April, 1999. Only one speaker, Ed Storms (formerly with Los Alamos Lab), was scheduled to talk about cold fusion as part of fourteen plenary lectures over a two-day period. However, the entire meeting was labeled a "cold fusion" conference by APS Spokesperson Bob Park who repeated the words four times in one 1999 What's New column. What transpired afterwards has become a part of the cold fusion suppression history, including several APS ``pseudoscience" presentations mocking COFE scientists. A review of the actual COFE contents reveals the rational side of emerging energy technologies normally associated with the scientific process. The Park-related events display an opposite pattern of behavior ultimately designed to discredit the COFE organizer and deprive him of his livelihood (see APS News, March, 2000). The compiled record shows how the communication of scientific information becomes distorted by undue prejudice and unethical lobbying.

  5. Future Workforce Strategy

    ERIC Educational Resources Information Center

    US Department of Energy, 2007

    2007-01-01

    The Department of Energy's (DOE) Office of Science is among the world's premier supporters of basic research. The Office of Science enables the U.S. to maintain its competitive edge by funding science that can transform its energy future, supports its national security and seeks to understand the fundamentals of matter and energy itself. To do…

  6. Solar Thermal Energy Storage in a Photochromic Macrocycle.

    PubMed

    Vlasceanu, Alexandru; Broman, Søren L; Hansen, Anne S; Skov, Anders B; Cacciarini, Martina; Kadziola, Anders; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2016-07-25

    The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA-DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF-VHF). A stepwise energy release over two sequential ring-closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long-term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Prospects and Limits of Energy Storage in Batteries.

    PubMed

    Abraham, K M

    2015-03-05

    Energy densities of Li ion batteries, limited by the capacities of cathode materials, must increase by a factor of 2 or more to give all-electric automobiles a 300 mile driving range on a single charge. Battery chemical couples with very low equivalent weights have to be sought to produce such batteries. Advanced Li ion batteries may not be able to meet this challenge in the near term. The state-of-the-art of Li ion batteries is discussed, and the challenges of developing ultrahigh energy density rechargeable batteries are identified. Examples of ultrahigh energy density battery chemical couples include Li/O2, Li/S, Li/metal halide, and Li/metal oxide systems. Future efforts are also expected to involve all-solid-state batteries with performance similar to their liquid electrolyte counterparts, biodegradable batteries to address environmental challenges, and low-cost long cycle-life batteries for large-scale energy storage. Ultimately, energy densities of electrochemical energy storage systems are limited by chemistry constraints.

  8. 17 CFR 1.37 - Customer's or option customer's name, address, and occupation recorded; record of guarantor or...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...'s name, address, and occupation recorded; record of guarantor or controller of account. 1.37 Section... UNDER THE COMMODITY EXCHANGE ACT Recordkeeping § 1.37 Customer's or option customer's name, address, and... each commodity futures or option account carried or introduced by it the true name and address of the...

  9. Flexible Biomanufacturing Processes that Address the Needs of the Future.

    PubMed

    Diel, Bernhard; Manzke, Christian; Peuker, Thorsten

    2014-01-01

    : As the age of the blockbuster drug recedes, the business model for the biopharmaceutical industry is evolving at an ever-increasing pace. The personalization of medicine, the emergence of biosimilars and biobetters, and the need to provide vaccines globally are just some of the factors forcing biomanufacturers to rethink how future manufacturing capability is implemented. One thing is clear: the traditional manufacturing strategy of constructing large-scale, purpose-built, capital-intensive facilities will no longer meet the industry's emerging production and economic requirements. Therefore, the authors of this chapter describe the new approach for designing and implementing flexible production processes for monoclonal antibodies and focus on the points to consider as well as the lessons learned from past experience in engineering such systems. A conceptual integrated design is presented that can be used as a blueprint for next-generation biomanufacturing facilities. In addition, this chapter discusses the benefits of the new approach with respect to flexibility, cost, and schedule. The concept presented here can be applied to other biopharmaceutical manufacturing processes and facilities, including-but not limited to-vaccine manufacturing, multiproduct and/or multiprocess capability, clinical manufacturing, and so on.

  10. Energy storage devices for future hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Karden, Eckhard; Ploumen, Servé; Fricke, Birger; Miller, Ted; Snyder, Kent

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential "battery pack" system suppliers are discussed.

  11. Industrial Technologies Program - A Clean, Secure Energy Future via Industrial Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Industrial Technologies Program (ITP) leads the national effort to save energy and reduce greenhouse gas emissions in the largest energy-using sector of the U.S. economy. ITP drives energy efficiency improvements and carbon dioxide reductions throughout the manufacturing supply chain, helping develop and deploy innovative technologies that transform the way industry uses energy.

  12. Modeling Urban Energy Savings Scenarios Using Earth System Microclimate and Urban Morphology

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Rose, A.; New, J. R.; Yuan, J.; Omitaomu, O.; Sylvester, L.; Branstetter, M. L.; Carvalhaes, T. M.; Seals, M.; Berres, A.

    2017-12-01

    We analyze and quantify the relationships among climatic conditions, urban morphology, population, land cover, and energy use so that these relationships can be used to inform energy-efficient urban development and planning. We integrate different approaches across three research areas: earth system modeling; impacts, adaptation and vulnerability; and urban planning in order to address three major gaps in the existing capability in these areas: i) neighborhood resolution modeling and simulation of urban micrometeorological processes and their effect on and from regional climate; ii) projections for future energy use under urbanization and climate change scenarios identifying best strategies for urban morphological development and energy savings; iii) analysis and visualization tools to help planners optimally use these projections.

  13. Future Experiments in Astrophysics

    NASA Technical Reports Server (NTRS)

    Krizmanic, John F.

    2002-01-01

    The measurement methodologies of astrophysics experiments reflect the enormous variation of the astrophysical radiation itself. The diverse nature of the astrophysical radiation, e.g. cosmic rays, electromagnetic radiation, and neutrinos, is further complicated by the enormous span in energy, from the 1.95 Kappa relic neutrino background to cosmic rays with energy greater than 10(exp 20)eV. The measurement of gravity waves and search for dark matter constituents are also of astrophysical interest. Thus, the experimental techniques employed to determine the energy of the incident particles are strongly dependent upon the specific particles and energy range to be measured. This paper summarizes some of the calorimetric methodologies and measurements planned by future astrophysics experiments. A focus will be placed on the measurement of higher energy astrophysical radiation. Specifically, future cosmic ray, gamma ray, and neutrino experiments will be discussed.

  14. Addressing Control of Hazardous Energy (COHE) Requirements in a Laser Safety Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Michael; /SLAC

    OSHA regulation 29CFR1910.147 specifies control of hazardous energy requirements for 'the servicing and maintenance of machines and equipment in which the unexpected energization or start up of the machines or equipment, or release of stored energy could cause injury to employees.' Class 3B and Class 4 laser beams must be considered hazardous energy sources because of the potential for serious eye injury; careful consideration is therefore needed to safely de-energize these lasers. This paper discusses and evaluates control of hazardous energy principles in this OSHA regulation, in ANSI Z136.1 ''Safe Use of Lasers,'' and in ANSI Z244.1 ''Control of Hazardousmore » Energy, Lockout/Tagout and Alternative Methods.'' Recommendations are made for updating and improving CoHE (control of hazardous energy) requirements in these standards for their applicability to safe laser operations.« less

  15. Dinosaurs and Power Plants. Energy from the Past for the Future. Teacher's Lesson Plan and Activity Guide; Teacher's Guide Supplement of Reproducible Graphics.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Fossil Energy.

    This teacher's guide and its accompanying supplement were prepared for use with the U.S. Department of Energy's Dinosaurs and Power Plants, a publication designed for students in grades 5-8 about the history, detection, extraction, transportation, use, environmental problem/solutions, and future of fossil energy. The study of energy science shows…

  16. Pin diode calibration - beam overlap monitoring for low energy cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drees, A.; Montag, C.; Thieberger, P.

    2015-09-30

    We were trying to address the question whether or not the Pin Diodes, currently installed approximately 1 meter downstream of the RHIC primary collimators, are suitable to monitor a recombination signal from the future RHIC low energy cooling section. A maximized recombination signal, with the Au+78 ions being lost on the collimator, will indicate optimal Au-electron beam overlap as well as velocity matching of the electron beam in the cooling section.

  17. 17 CFR 3.30 - Current address for purpose of delivery of communications from the Commission or the National...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Current address for purpose of... Current address for purpose of delivery of communications from the Commission or the National Futures Association. (a) The address of each registrant, applicant for registration and principal, as submitted on the...

  18. FutureCoast: "Listen to your futures"

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Eklund, K.; Thacher, S.; Orlove, B. S.; Diane Stovall-Soto, G.; Brunacini, J.; Hernandez, T.

    2014-12-01

    Two science-arts approaches are emerging as effective means to convey "futurethinking" to learners: systems gaming and experiential futures. FutureCoast exemplifies the latter: by engaging participants with voicemails supposedly leaking from the cloud of possible futures, the storymaking game frames the complexities of climate science in relatable contexts. Because participants make the voicemails themselves, FutureCoast opens up creative ways for people to think about possibly climate-changed futures and personal ways to talk about them. FutureCoast is a project of the PoLAR Partnership with a target audience of informal adult learners primarily reached via mobile devices and online platforms. Scientists increasingly use scenarios and storylines as ways to explore the implications of environmental change and societal choices. Stories help people make connections across experiences and disciplines and link large-scale events to personal consequences. By making the future seem real today, FutureCoast's framework helps people visualize and plan for future climate changes. The voicemails contributed to FutureCoast are spread through the game's intended timeframe (2020 through 2065). Based on initial content analysis of voicemail text, common themes include ecosystems and landscapes, weather, technology, societal issues, governance and policy. Other issues somewhat less frequently discussed include security, food, industry and business, health, energy, infrastructure, water, economy, and migration. Further voicemail analysis is examining: temporal dimensions (salient time frames, short vs. long term issues, intergenerational, etc.), content (adaptation vs. mitigation, challenges vs. opportunities, etc.), and emotion (hopeful, resigned, etc. and overall emotional context). FutureCoast also engaged audiences through facilitated in-person experiences, geocaching events, and social media (Tumblr, Twitter, Facebook, YouTube). Analysis of the project suggests story

  19. Future energy system in environment, economy, and energy problems (2) various nuclear energy system evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Kazuaki; Ujita, Hiroshi; Tashimo, Masanori

    2006-07-01

    Role and potentials of nuclear energy system in the energy options are discussed from the viewpoint of sustainable development with protecting from global warming by using the energy module structure of GRAPE model. They change and are affected dramatically by different sets of energy characteristics, nuclear behavior and energy policy even under the moderate set of presumptions. Introduction of thousands of reactors in the end of the century seems inevitable for better life and cleaner earth, but it will not come without efforts and cost. The analysis suggests the need of long term planning and R and D efforts undermore » the wisdom. (authors)« less

  20. Addressing diabetes at the crossroads of global pandemic and regional culture: Comment on "The curse of wealth - Middle Eastern countries need to address the rapidly rising burden of diabetes".

    PubMed

    Hsu, William C; Gabbay, Robert A

    2014-07-01

    As diabetes and obesity rates continue to climb at astronomical rates in the Middle East, future generations are at an even greater risk for diabetes and the associated complications. Many factors are at play and it is clear that creative solutions are needed to retool provider resources in the Middle East towards prevention of diabetes and its complications while leveraging technology to maximize outreach within the accepted cultural norms. Only by building the capacity to address the current diabetes burden as well focusing on prevention for the future, can Middle East countries create a strong infrastructure for a successful future.

  1. Women and development: future directions.

    PubMed

    1995-01-01

    In 1995 the UN celebrated its 50th anniversary, and the Fourth World Conference on Women in Beijing was held. INSTRAW's acting director, Martha Duenas-Loza, gives her overview of INSTRAW's future role and identifies some major issues regarding the advancement of women. INSTRAW is mandated as a UN group to accomplish research on and training of women. Some initial findings are now becoming available. The delay was due to the attention given to pressing problems of health care, nutrition, and education. In the future the international community will not have the option of neglecting women's status issues, which currently are secondary concerns. Some urgent issues are identified as the impact of rapid population growth on the elderly in the world, particularly the majority of elderly women. Migration will have an increasing impact on economic and social infrastructures of all countries. Problems of the elderly must be addressed as individual components within development plans and programs. Other articles in this issue of "INSTRAW News" discuss the situation of elderly women and women migrants. New efforts focus on a new phase of research on women's access to credit. The research aim is to analyze the experiences of current credit mechanisms, to assess the impact on individuals and families, and to consider gender effects. A progress report is available in this issue on gender statistics and a valuation of unpaid work by women. A new module is available for training women in environmental management; a description of this module is available in this issue. The new model is based on prior modules on energy and water, but includes improvements. The future agenda reflects the complexity of problems and solutions today and in the future.

  2. Keynote address: Reinventing fire: Physics + markets = energy solutions

    NASA Astrophysics Data System (ADS)

    Lovins, Amory B.

    2015-03-01

    Rocky Mountain Institute's multi-year, 61-author, peer-reviewed Reinventing Fire synthesis showed how the U.S. can realistically run a 2.6× bigger U.S. economy in 2050 with no oil, coal, or nuclear energy, one-third less natural gas, tripled efficiency, and 74% renewable supplies (80% for electricity). This transition, at historically reasonable rates, could be led by business for profit, applying normal rates of return, with some innovative subnational and administrative policies but no Acts of Congress. Excluding carbon emissions and all other externalities, the net present value would be 5 trillion more favorable than business-as-usual, averaging a 14% Internal Rate of Return.

  3. Hydrogen: A Future Energy Mediator?

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    Hydrogen may be the fuel to help the United States to a non fossil energy source. Although hydrogen may not be widely used as a fuel until after the turn of the century, special applications may become feasible in the short term. Costs, uses, safety, and production methods are discussed. (BT)

  4. Academic Futures: Prospects for Post-Secondary Education.

    ERIC Educational Resources Information Center

    Shere, Waris, Ed.; Duhamel, Ronald, Ed.

    Present trends and future directions in postsecondary education in Canada and the United States are addressed in 15 essays and an introduction by Ron Duhamel. Authors and titles are as follows: "Traditional Values in the Contemporary University" (Robin H. Farquhar); "Facing the Future" (R. J. Duhamel); "Challenges to the…

  5. Energy drinks: an emerging public health hazard for youth.

    PubMed

    Pomeranz, Jennifer L; Munsell, Christina R; Harris, Jennifer L

    2013-05-01

    Energy drinks are emerging as a public health threat and are increasingly consumed by youth internationally. Energy drinks contain high levels of caffeine, sugar, and novel ingredients, and are often marketed through youth-oriented media and venues. We review these practices and the current inconsistent state of labeling. We also examine international support for regulation of these products, including a survey showing that 85 per cent of United States parents agreed that regulations requiring caffeine content disclosure and warning labels on energy drinks are warranted. We then examine the regulatory structure for energy drinks in the United States, analyzing legal and self-regulatory strategies to protect consumers, especially youth, from these potentially dangerous products. Recommended government interventions include revised labeling requirements, addressing problematic ingredients, and enacting retail restrictions. We conclude by identifying areas for future research.

  6. Energy, Society, and Education, with Emphasis on Educational Technology Policy for K-12

    NASA Astrophysics Data System (ADS)

    Chedid, Loutfallah Georges

    2005-03-01

    This paper begins by examining the profound impact of energy usage on our lives, and on every major sector of the economy. Then, the anticipated US energy needs by the year 2025 are presented based on the Department of Energy's projections. The paper considers the much-touted National Energy Policy Report, and identifies a major flaw where the policy report neglects education as a contributor to solving future energy problems. The inextricable interaction between energy solutions and education is described, with emphasis on education policy as a potential vehicle for developing economically and commercially sustainable energy systems that have a minimal impact on the environment. With that said, an earnest argument is made as to the need to educate science, technology, engineering, and mathematics (STEM) proficient individuals for the energy technology development workforce, starting with the K-12 level. A framework for the aforementioned STEM education policies is presented that includes a sustained national awareness campaign, address the teacher's salary issues, and addresses teacher quality issues. Moreover, the framework suggests a John Dewey-style "learning-by-doing" shift in pedagogy. Finally, the framework presents specific changes to the current national standards that would be valuable to the 21st century student.

  7. Current frontiers and future directions of telecoupling research

    NASA Astrophysics Data System (ADS)

    Liu, J.

    2016-12-01

    The world has been increasingly interconnected over long distances though processes such as international trade, migration, telecommunication, and disease spread. However, previous studies often focused on socioeconomic or environmental issues of distant processes. While these studies have generated useful information for individual disciplines, integrating socioeconomic and environmental information is essential for holistic understanding of complex global challenges and unbiased decision making to address the challenges. To advance integrated research, the framework of telecoupling (socioeconomic and environmental interactions over distances) has been developed to explicitly address both socioeconomic and environmental issues simultaneously. Although the framework is relatively new, it has already been applied to tackle a variety of globally important issues, such as food security, water resources, energy sustainability, land use, international trade (e.g., food, forest products, energy, wildlife, industrial products), species invasion, investment, ecosystem services, conservation, information dissemination, and tourism. These applications have identified many important research gaps (e.g. spillover systems) and hidden linkages (e.g. feedbacks) among distant areas of the world with profound implications for sustainable development, ecosystem health, and human well-being. While working with telecoupling presents more challenges than focusing only on disciplinary issues, support from funding agencies has helped accelerate research on telecoupling and more efforts are being aimed at framework quantification and operationalization. The presenter will provide an overview of the current frontiers, discuss future research directions, and highlight emerging opportunities and challenges in telecoupling research and governance.

  8. Non-Economic Determinants of Energy Use in Rural Areas of South Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annecke, W.

    1999-03-29

    This project will begin to determine the forces and dimensions in rural energy-use patterns and begin to address policy and implementation needs for the future. This entails: Forecasting the social and economic benefits that electrification is assumed to deliver regarding education and women's lives; Assessing negative perceptions of users, which have been established through the slow uptake of electricity; Making recommendations as to how these perceptions could be addressed in policy development and in the continuing electrification program; Making recommendations to policy makers on how to support and make optimal use of current energy-use practices where these are socio-economically sound;more » Identifying misinformation and wasteful practices; and Other recommendations, which will significantly improve the success of the rural electrification program in a socio-economically sound manner, as identified in the course of the work.« less

  9. Energy Frontier Research Centers: Science for Our Nation's Energy Future, September 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    As world demand for energy rapidly expands, transforming the way energy is collected, stored, and used has become a defining challenge of the 21st century. At its heart, this challenge is a scientific one, inspiring the U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) to establish the Energy Frontier Research Center (EFRC) program in 2009. The EFRCs represent a unique approach, bringing together creative, multidisciplinary scientific teams to perform energy-relevant basic research with a complexity beyond the scope of single-investigator projects. These centers take full advantage of powerful new tools for characterizing, understanding, modeling, and manipulating mattermore » from atomic to macroscopic length scales. They also train the next-generation scientific workforce by attracting talented students and postdoctoral researchers interested in energy science. The EFRCs have collectively demonstrated the potential to substantially advance the scientific understanding underpinning transformational energy technologies. Both a BES Committee of Visitors and a Secretary of Energy Advisory Board Task Force have found the EFRC program to be highly successful in meeting its goals. The scientific output from the EFRCs is impressive, and many centers have reported that their results are already impacting both technology research and industry. This report on the EFRC program includes selected highlights from the initial 46 EFRCs and the current 36 EFRCs.« less

  10. Present Day and Future Population Dynamics of the Dengue Vector Mosquito Aedes aegypti Using a Water Container Energy Balance Model

    NASA Astrophysics Data System (ADS)

    Steinhoff, D.

    2017-12-01

    Dengue infections are estimated to total nearly 400 million per year worldwide, with both the geographic range and the magnitude of infections having increased in the past 50 years. The primary dengue vector mosquito Aedes aegypti is closely associated with humans. It lives exclusively in urban and semi-urban areas, preferentially bites humans, and spends its developmental stages in artificial water containers. Climate regulates the development of Ae. aegypti immature mosquitoes in artificial containers. Potential containers for Ae. aegypti immature development include, but are not limited to, small sundry items (e.g., bottles, cans, plastic containers), buckets, tires, barrels, tanks, and cisterns. Successful development of immature mosquitoes from eggs to larvae, pupae, and adults is largely dependent on the availability of water and the thermal properties of the water in the containers. An energy balance container model termed the Water Height And Temperature in Container Habitats Energy Model (WHATCH'EM) solves for water temperature and height for user-specified containers with readily available meteorological data. Output from WHATCH'EM is used to estimate development parameters for the immature life stages of the Ae. aegypti mosquito, allowing for assessment of habitat suitability across varying natural environments. Variability amongst different artificial containers (e.g., size, color, material, shape), shading scenarios, and water availability scenarios is also addressed. WHATCH'EM is also coupled with an Ae. aegypti life cycle model to include the effects of the aforementioned factors on survival. Projections of future climate scenarios that take into account changes not only in temperature but also precipitation, humidity, and radiative effects are used in WHATCH'EM to estimate how Ae. aegypti population dynamics may change.

  11. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Ron Sega, Vice president and enterprise executive for Energy and the Environment, The Ohio State University and Colorado State University talks during the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  12. EPA leadership on Science, Innovation, and Decision Support Tools for Addressing Current and Future Challenges

    EPA Science Inventory

    When the U.S. Environmental Protection Agency (EPA) was established nearly 50 years ago, the nation faced serious threats to its air, land, and water, which in turn impacted human health. These threats were effectively addressed by the creation of EPA (in 1970) and many subsequen...

  13. Facing Our Energy Challenges in a New Era of Science (2011 EFRC Forum)

    ScienceCinema

    Dehmer, Patricia M.

    2018-04-26

    Patricia Dehmer, Deputy Director for Science Programs at DOE, opened the May 26, 2011 EFRC Forum session, 'Global Perspectives on Frontiers in Energy Research,' with the talk, 'Facing Our Energy Challenges in a New Era of Science.' In her presentation, Dr. Dehmer gave a tutorial on the energy challenges facing our Nation and showed how the DOE research portfolio addresses those issues. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  14. Present Vision--Future Vision.

    ERIC Educational Resources Information Center

    Fitterman, L. Jeffrey

    This paper addresses issues of current and future technology use for and by individuals with visual impairments and blindness in Florida. Present technology applications used in vision programs in Florida are individually described, including video enlarging, speech output, large inkprint, braille print, paperless braille, and tactual output…

  15. Energy drink consumption and the perceived risk and disapproval of drugs: Monitoring the Future, 2010-2016.

    PubMed

    Jackson, Dylan B; Leal, Wanda E

    2018-07-01

    Energy drinks have become quite popular in recent years among adolescents, prompting a wealth of recent research examining the potential deleterious consequences of energy drink consumption among youth. The present study adds to this body of work by exploring perceptions of risk and disapproval of soft and hard drugs among adolescents and whether such attitudes are predicted by patterns of energy drink/shot consumption. Data were derived from the seven most recent cohorts (2010-2016) of the Monitoring the Future (MTF) study, a nationally representative survey of U.S. youth. The significance of associations between energy drink/shot consumption and drug perceptions/attitudes was tested using logistic regression techniques employing adjustments for covariates and cohort-specific fixed effects. Energy drink/shot consumption was largely associated with significant increases in the odds of failing to perceive any risk of drug use and failing to disapprove of drug use among youths, regardless of whether attitudes concerning soft or hard drugs were examined. These associations were particularly robust in the case of habitual energy drink/shot consumers (relative to occasional consumers or abstainers). Additional efforts should be made to heighten awareness and education concerning the potential dangers of energy drink consumption among youth, particularly as it pertains to drug attitudes and diminished perceptions of substance use risk. Policies that minimize energy drink consumption among youth as well as programs that educate parents and teachers about the drug attitudes of youths who regularly consume energy drinks and promote active monitoring of these adolescents may be worthwhile. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Exobiology and Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P. (Editor); Davis, Wanda, L. (Editor)

    1989-01-01

    Scientific questions associated with exobiology on Mars were considered and how these questions should be addressed on future Mars missions was determined. The mission that provided a focus for discussions was the Mars Rover/Sample Return Mission.

  17. Future states: the axioms underlying prospective, future-oriented, health planning instruments.

    PubMed

    Koch, T

    2001-02-01

    Proscriptive planning exercises are critical to and generally accepted as integral to health planning at varying scales. These require specific instruments designed to predict future actions on the basis of present knowledge. At the macro-level of health economics, for example, a number of future-oriented Quality of Life Instruments (QL) are commonly employed. At the level of individual decision making, on the other hand, Advance Directives (AD's) are advanced as a means by which healthy individuals can assure their wishes will be carried out if at some future point they are incapacitated. As proscriptive tools, both instrument classes appear to share an axiomatic set whose individual parts have not been rigorously considered. This paper attempts to first identify and then consider a set of five axioms underlying future oriented health planning instruments. These axioms are then critiqued using data from a pre-test survey designed specifically to address their assumptions. Results appear to challenge the validity of the axioms underlying the proscriptive planning instruments.

  18. Mapping the Future, Mapping Education: An Analysis of the 2011 State of the Union Address

    ERIC Educational Resources Information Center

    Collin, Ross

    2012-01-01

    This article presents a discourse analysis of President Barack Obama's 2011 State of the Union Address. Fredric Jameson's concepts of cognitive mapping, cultural revolution, and the unconscious are employed to examine the president's vision of educational and economic transformation. Ultimately, it is argued this vision evokes a world in which…

  19. Renewable energy.

    PubMed

    Destouni, Georgia; Frank, Harry

    2010-01-01

    The Energy Committee of the Royal Swedish Academy of Sciences has in a series of projects gathered information and knowledge on renewable energy from various sources, both within and outside the academic world. In this article, we synthesize and summarize some of the main points on renewable energy from the various Energy Committee projects and the Committee's Energy 2050 symposium, regarding energy from water and wind, bioenergy, and solar energy. We further summarize the Energy Committee's scenario estimates of future renewable energy contributions to the global energy system, and other presentations given at the Energy 2050 symposium. In general, international coordination and investment in energy research and development is crucial to enable future reliance on renewable energy sources with minimal fossil fuel use.

  20. Behavioral medicine: a voyage to the future.

    PubMed

    Keefe, Francis J

    2011-04-01

    This paper discusses trends and future directions in behavioral medicine. It is divided into three sections. The first briefly reviews key developments in the history of behavioral medicine. The second section highlights trends and future directions in pain research and practice as a way of illustrating future directions for behavioral medicine. Consistent with the biopsychosocial model of pain, this section focuses on trends and future directions in three key areas: biological, psychological, and social. The third section describes recent Society of Behavioral Medicine initiatives designed to address some of the key challenges facing our field as we prepare for the future.

  1. Use of NARCCAP Model Projections to Develop a Future Typical Meteorological Year and Estimate the Impact of a Changing Climate on Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Patton, S. L.; Takle, E. S.; Passe, U.; Kalvelage, K.

    2013-12-01

    Current simulations of building energy consumption use weather input files based on the past thirty years of climate observations. These 20th century climate conditions may be inadequate when designing buildings meant to function well into the 21st century. An alternative is using model projections of climate change to estimate future risk to the built environment. In this study, model-projected changes in climate were combined with existing typical meteorological year data to create future typical meteorological year data. These data were then formatted for use in EnergyPlus simulation software to evaluate their potential impact on commercial building energy consumption. The modeled climate data were taken from the North American Regional Climate Change Assessment Program (NARCCAP). NARCCAP uses results of global climate models to drive regional climate models, also known as dynamical downscaling. This downscaling gives higher resolution results over specific locations, and the multiple global/regional climate model combinations provide a unique opportunity to quantify the uncertainty of climate change projections and their impacts. Our results show a projected decrease in heating energy consumption and a projected increase in cooling energy consumption for nine locations across the United States for all model combinations. Warmer locations may expect a decrease in heating load of around 30% to 45% and an increase in cooling load of around 25% to 35%. Colder locations may expect a decrease in heating load of around 15% to 25% and an increase in cooling load of around 40% to 70%. The change in net energy consumption is determined by the balance between the magnitudes of heating change and cooling change. Net energy consumption is projected to increase by an average of 5% for lower-latitude locations and decrease by an average of 5% for higher-latitude locations. With these projected annual and seasonal changes presenting strong evidence for the unsuitable nature of

  2. Approaches to Addressing Environmental Challenges with Wind Energy in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Karin C

    This presentation gives an overview of U.S. wind energy development's impacts on wildlife - particularly birds and bats. It includes discussion of mitigation efforts, research collaboratives, and U.S. Department of Energy funding.

  3. Report: Some States Cannot Address Assessment Needs and Face Limitations in Meeting Future Superfund Cleanup Requirements

    EPA Pesticide Factsheets

    Report #2004-P-00027, September 1, 2004. The five States have established hazardous waste site cleanup programs that address contaminated sites posing human health and environmental risks ranging from low to high.

  4. Reagan's Quest for Freedom in the 1987 State of the Union Address.

    ERIC Educational Resources Information Center

    Moore, Mark P.

    1989-01-01

    Examines Ronald Reagan's 1987 State of the Union Address as a quest story that reaffirms his vision of America's endless search for freedom in a persuasive, archetypal pattern that produces a common vision of the future through the mythic appeals of the past. (RAE)

  5. Towards greener and more sustainable batteries for electrical energy storage

    NASA Astrophysics Data System (ADS)

    Larcher, D.; Tarascon, J.-M.

    2015-01-01

    Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

  6. "Turn on the Sunshine": A History of the Solar Future

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher E.

    This dissertation examines the history of solar energy technology alongside broad changes in the politics and geography of energy since the nineteenth century. I argue that solar technologies evolved as expressions of the anxieties of the fossil fuel age which, while never widely adopted, informed a persistent cultural interest in alternative energy futures that shaped larger developments in energy politics. I link the evolution of common types of solar technologies and ideas about their potential to four additional contexts: late nineteenth and early twentieth century imperial expansion, the advent of the Cold War, the convergence of environmentalism and the energy crisis in the 1970s, and the more recent emergence of sustainability as a framework for global energy and environmental politics. In each of these contexts, solar technologies developed as instruments of politics as well as forms of politics in their own right, reflecting and contributing to new conceptions of the limitations of fossil fuel dependence and the promise of alternatives. I also address the geographic dimensions of solar politics in each of these periods. My focus on California primarily, but also Arizona, North Africa, and - in the chapter on photovoltaic cells - outer space, reflects the importance of these places as nexuses in the development and global travel of solar technologies. Linked as peripheries of an expansionist fossil fuel society, they became sites of experimentation in new ways of deriving energy from nature and organizing society around energy. Overall, this study reveals a higher incidence of geographic variance, contestation, and uncertainty in energy technology politics during the fossil fuel age than historians typically acknowledge. It also complicates common assumptions about the origins and potentialities of existing solar technologies, drawing attention to their early associations with the politics of empire and the Cold War prior to their reformulation in the 1970s

  7. WESTERN ENERGY RESOURCES AND THE ENVIRONMENT: GEOTHERMAL ENERGY

    EPA Science Inventory

    Geothermal energy--from subsurface heat sources created by the underlying geologic configuration of the earth--is addressed, from an environmental research and development perspective. The report covers various geothermal energy systems, which serve as present or potential energy...

  8. Energy sources for the future. Proceedings of a conference held July 7--25, 1975, in Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duggan, J.L.; Cloutier, R.J.

    For several summers the Special Training Division of Oak Ridge Associated Universities has conducted a three-week program on Energy Sources for the Future. Sponsored by the U. S. Energy Research and Development Administration, the program is designed for college professors teaching or planning to teach energy courses. Participants have represented most branches of science. The invited lecturers have also represented most scientific disciplines. Although expert in specific fields, the speakers have endeavored to present their topics in a manner comprehensible to scientists and educators unacquainted with the speaker's disciplines. In doing this, the speakers distributed numerous handouts, graphs, charts, etc.,more » that have already found their way into many lectures. Since the first summer energy program, participants have encouraged the course coordinators to compile the material for wider distribution. Although this volume represents only about half of the material presented during the July 1975 symposium, it will provide the reader with useful facts and respected opinions about this nation's energy status. (from Preface). Separate abstracts are included for all seventeen lectures for ERDA Energy Research Abstracts (ERA), and fourteen are included for Energy Abstracts for Policy Analysis (EAPA). (MCW)« less

  9. Energy Security: From Deal Killers to Game Changers

    NASA Astrophysics Data System (ADS)

    Orbach, Raymond L.

    2010-03-01

    Five ``deal killers'' for achieving energy security will be addressed: 1) Global warming and CO2 emissions from fossil fuel combustion, 2) Intermittent energy sources (wind, solar) and the presence and stability of the grid, 3) Penetration of plant defenses to produce transportation fuels from biomass, 4) Mimicking nature: artificial photosynthesis for solar energy-to-fuels, and 5) Spent fuel from nuclear power reactors. Basic research can lead to ``game changers'' for these five fields: 1) Carbon capture and storage through enhanced oil and gas recovery, 2) Electrical energy storage for base-load electricity through batteries and supercapacitors, 3) Genetic modification of the plant cell wall, and catalytic methods for conversion of plant sugars to fuels, 4) Separation of solar-induced electrons from holes, and catalysis to produce fuels, and 5) Closing the nuclear fuel cycle. The present state for each of these game changers will be summarized, and future research opportunities discussed.

  10. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  11. Energy security impacts of a severe drought on the future Finnish energy system.

    PubMed

    Jääskeläinen, Jaakko; Veijalainen, Noora; Syri, Sanna; Marttunen, Mika; Zakeri, Behnam

    2018-07-01

    Finland updated its Energy and Climate Strategy in late 2016 with the aim of increasing the share of renewable energy sources, increasing energy self-sufficiency and reducing greenhouse gas emissions. Concurrently, the issue of generation adequacy has grown more topical, especially since the record-high demand peak in Finland in January 2016. This paper analyses the Finnish energy system in years 2020 and 2030 by using the EnergyPLAN simulation tool to model whether different energy policy scenarios result in a plausible generation inadequacy. Moreover, as the Nordic energy system is so heavily dependent on hydropower production, we model and analyse the impacts of a severe drought on the Finnish energy system. We simulate hydropower availability according to the weather of the worst drought of the last century (in 1939-1942) with Finnish Environment Institute's Watershed Simulation and Forecasting System and we analyse the indirect impacts via reduced availability of electricity imports based on recent realised dry periods. Moreover, we analyse the environmental impacts of hydropower production during the drought and peak demand period and the impacts of climate change on generation adequacy in Finland. The results show that the scenarios of the new Energy and Climate Strategy result in an improved generation adequacy comparing to the current situation. However, a severe drought similar to that experienced in 1940s could cause a serious energy security threat. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Building the U.S. First Offshore Wind Farm-Applying EBM Approaches to Successfully Address Offshore Energy, Commercial Fisheries, and Recreational Boating interactions

    NASA Astrophysics Data System (ADS)

    Lipsky, A.

    2016-12-01

    In August 2015 construction commenced on the Block Island Wind Farm, the first offshore wind energy project in the U.S. This pilot-scale offshore energy project, located 18 miles offshore of the Rhode Island mainland, was sited through a comprehensive ocean planning process. As the project progressed into design and construction, our team utilized potent ecosystem based management approaches to great advantage to address the human and resource interactions that existed in the project area. These practices have included designing and executing collaborative long-term monitoring ventures to fill key science gaps and reconcile fisheries concerns, establishing effective industry to industry engagement, and developing durable multi-sector agreements. This presentation will describe the specific EBM approaches used after the planning process was completed to bring the project to construction; highlighting where key aspects of the National Ocean Policy goals and principles have been successfully applied.

  13. Building the U.S. First Offshore Wind Farm-Applying EBM Approaches to Successfully Address Offshore Energy, Commercial Fisheries, and Recreational Boating interactions

    NASA Astrophysics Data System (ADS)

    Lipsky, A.

    2016-02-01

    In August 2015 construction commenced on the Block Island Wind Farm, the first offshore wind energy project in the U.S. This pilot-scale offshore energy project, located 18 miles offshore of the Rhode Island mainland, was sited through a comprehensive ocean planning process. As the project progressed into design and construction, our team utilized potent ecosystem based management approaches to great advantage to address the human and resource interactions that existed in the project area. These practices have included designing and executing collaborative long-term monitoring ventures to fill key science gaps and reconcile fisheries concerns, establishing effective industry to industry engagement, and developing durable multi-sector agreements. This presentation will describe the specific EBM approaches used after the planning process was completed to bring the project to construction; highlighting where key aspects of the National Ocean Policy goals and principles have been successfully applied.

  14. 30 CFR 250.413 - What must my description of well drilling design criteria address?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... design criteria address? 250.413 Section 250.413 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... must my description of well drilling design criteria address? Your description of well drilling design... drilling and the completion phases, including the anticipated surface pressure used for designing the...

  15. A 1,000 GtC Coal Question for Future Energy Scenarios: How Much Coal Will Renewables Need to Displace?

    NASA Astrophysics Data System (ADS)

    Ritchie, W. J.; Dowlatabadi, H.

    2016-12-01

    Twenty years ago, global coal assessments indicated reserve-to-production (R-P) ratios of more than 300 years. Consequently, most studies of energy futures established coal as a virtually unlimited backstop to meet the world's projected energy needs. Coal was modeled to offset oil and gas production declines and provide a source of energy which renewables and lower carbon supply strategies needed to outcompete. Over the past two decades, increasingly consistent methodologies have been applied globally to assess recoverable coal. Coal production has also witnessed significant mechanization to meet higher demand. Each of these has led to a significant reduction in estimates of economically recoverable coal reserves despite a doubling of market prices over this period. The current reserve to production ratio for coal is now around 100 years. It is time to reconsider coal as the inexhaustible energy backstop The energy models which develop long-term estimates of renewable energy needs and projections of greenhouse gas (GHG) emissions still adopt the characteristics of vintage coal assessments. By convention, baseline GHG emissions used by the IPCC and others, project combustion of most known coal reserves before the year 2100. When vintage assessments are used, this involves extraction of all currently known coal reserves plus twice again from resources invalidated as recoverable for geologic, environmental, social, legal, technical or economic reasons. We provide evidence for rejecting these projections of unbounded growth in coal consumption. Legacy pathways of implausibly high coal use upwardly bias long-term scenarios for total cumulative GHG emissions and subsequent research on climate change. This bias has precluded consideration of much more ambitious climate mitigation targets without significant socio-economic dislocation and unnecessarily diminishes possible future contributions from renewables.

  16. Division of energy biosciences: Annual report and summaries of FY 1995 activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    The mission of the Division of Energy Biosciences is to support research that advances the fundamental knowledge necessary for the future development of biotechnologies related to the Department of Energy`s mission. The departmental civilian objectives include effective and efficient energy production, energy conservation, environmental restoration, and waste management. The Energy Biosciences program emphasizes research in the microbiological and plant sciences, as these understudied areas offer numerous scientific opportunities to dramatically influence environmentally sensible energy production and conservation. The research supported is focused on the basic mechanisms affecting plant productivity, conversion of biomass and other organic materials into fuels and chemicalsmore » by microbial systems, and the ability of biological systems to replace energy-intensive or pollutant-producing processes. The Division also addresses the increasing number of new opportunities arising at the interface of biology with other basic energy-related sciences such as biosynthesis of novel materials and the influence of soil organisms on geological processes.« less

  17. The Importance of Exposure in Addressing Current and Emerging Air Quality Issues

    EPA Science Inventory

    The air quality issues that we face today and will face in the future are becoming increasingly more complex and require an improved understanding of human exposure to be effectively addressed. The objectives of this paper are (1) to discuss how concepts of human exposure and ex...

  18. A study of the applicability/compatibility of inertial energy storage systems to future space missions

    NASA Technical Reports Server (NTRS)

    Weldon, W. F.

    1980-01-01

    The applicability/compatibility of inertial energy storage systems like the homopolar generator (HPG) and the compensated pulsed alternator (CPA) to future space missions is explored. Areas of CPA and HPG design requiring development for space applications are identified. The manner in which acceptance parameters of the CPA and HPG scale with operating parameters of the machines are explored and the types of electrical loads which are compatible with the CPA and HPG are examined. Potential applications including the magnetoplasmadynamic (MPD) thruster, pulsed data transmission, laser ranging, welding and electromagnetic space launch are discussed.

  19. Promoting Communication: Teaching Tolerance of Homosexual Persons While Addressing Religious Fears.

    ERIC Educational Resources Information Center

    Levesque, PJ

    This paper addresses how to teach tolerance of homosexual persons in a manner that is not threatening to those with religious scruples about homosexuals. It contains an example of a presentation for college students that is designed to teach them to respect their peers and future coworkers regardless of their sexual orientation. The presentation…

  20. Renewable Electricity Futures Study. Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.; Sandor, D.; Wiser, R.

    2012-12-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  1. Quantify the energy and environmental benefits of implementing energy-efficiency measures in China’s iron and steel production

    DOE PAGES

    Ma, Ding; Chen, Wenying; Xu, Tengfang

    2015-08-21

    As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO 2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO 2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less

  2. Quantify the energy and environmental benefits of implementing energy-efficiency measures in China’s iron and steel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ding; Chen, Wenying; Xu, Tengfang

    As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO 2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO 2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less

  3. ALI (Autonomous Lunar Investigator): Revolutionary Approach to Exploring the Moon with Addressable Reconfigurable Technology

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Floyd, S. R.

    2005-01-01

    Addressable Reconfigurable Technology (ART) based structures: Mission Concepts based on Addressable Reconfigurable Technology (ART), originally studied for future ANTS (Autonomous Nanotechnology Swarm) Space Architectures, are now being developed as rovers for nearer term use in lunar and planetary surface exploration. The architecture is based on the reconfigurable tetrahedron as a building block. Tetrahedra are combined to form space-filling networks, shaped for the required function. Basic structural components are highly modular, addressable arrays of robust nodes (tetrahedral apices) from which highly reconfigurable struts (tetrahedral edges), acting as supports or tethers, are efficiently reversibly deployed/stowed, transforming and reshaping the structures as required.

  4. Solar Energy in America's Future, A Preliminary Assessment.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report was prepared as an account of work sponsored by the United States Government. The report documents a Stanford Research Institute study of the potential roles that solar energy technologies could have for meeting U.S. energy needs over the next 45 years. Computer simulations of different energy supply projections were developed by…

  5. Locally Appropriate Energy Strategies for the Developing World: A focus on Clean Energy Opportunities in Borneo

    NASA Astrophysics Data System (ADS)

    Shirley, Rebekah Grace

    This dissertation focuses on an integration of energy modeling tools to explore energy transition pathways for emerging economies. The spate of growth in the global South has led to a global energy transition, evidenced in part by a surge in the development of large scale energy infrastructure projects for the provision of reliable electricity service. The rational of energy security and exigency often usher these large scale projects through to implementation with minimal analysis of costs: social and environmental impact, ecological risk, or opportunity costs of alternative energy transition pathways foregone. Furthermore, development of energy infrastructure is inherently characterized by the involvement of a number of state and non-state actors, with varying interests, objectives and access to authority. Being woven through and into social institutions necessarily impacts the design, control and functionality of infrastructure. In this dissertation I therefore conceptualize energy infrastructure as lying at the intersection, or nexus, of people, the environment and energy security. I argue that energy infrastructure plans and policy should, and can, be informed by each of these fields of influence in order to appropriately satisfy local development needs. This case study explores the socio-techno-environmental context of contemporary mega-dam development in northern Borneo. I describe the key actors of an ongoing mega-dam debate and the constellation of their interaction. This highlights the role that information may play in public discourse and lends insight into how inertia in the established system may stymie technological evolution. I then use a combination of power system simulation, ecological modeling and spatial analysis to analyze the potential for, and costs and tradeoffs of, future energy scenarios. In this way I demonstrate reproducible methods that can support energy infrastructure decision making by directly addressing data limitation barriers. I

  6. Beef alliances: motivations, extent, and future prospects.

    PubMed

    Schroeder, Ted C; Kovanda, Joseph

    2003-07-01

    With their growth, it is important to consider how alliances will impact the beef industry in the future. Alliances have the potential to make sweeping changes to cattle production, live and feeder cattle marketing, food safety protocols, use of government grades and standards, ownership structure, supply chain management, wholesale and retail product marketing, risk management, and many other industry activities. In an effort to address these issues, this article addresses the following questions: What is an alliance? What has motivated their proliferation? What have we learned from alliances? What aspects of alliances affect their likelihood of success or failure? What is the future of alliances? Are they a fad or a long-term evolving industry structural change?

  7. Cloud computing for energy management in smart grid - an application survey

    NASA Astrophysics Data System (ADS)

    Naveen, P.; Kiing Ing, Wong; Kobina Danquah, Michael; Sidhu, Amandeep S.; Abu-Siada, Ahmed

    2016-03-01

    The smart grid is the emerging energy system wherein the application of information technology, tools and techniques that make the grid run more efficiently. It possesses demand response capacity to help balance electrical consumption with supply. The challenges and opportunities of emerging and future smart grids can be addressed by cloud computing. To focus on these requirements, we provide an in-depth survey on different cloud computing applications for energy management in the smart grid architecture. In this survey, we present an outline of the current state of research on smart grid development. We also propose a model of cloud based economic power dispatch for smart grid.

  8. Worldwide transportation/energy demand, 1975-2000. Revised Variflex model projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayres, R.U.; Ayres, L.W.

    1980-03-01

    The salient features of the transportation-energy relationships that characterize the world of 1975 are reviewed, and worldwide (34 countries) long-range transportation demand by mode to the year 2000 is reviewed. A worldwide model is used to estimate future energy demand for transportation. Projections made by the forecasting model indicate that in the year 2000, every region will be more dependent on petroleum for the transportation sector than it was in 1975. This report is intended to highlight certain trends and to suggest areas for further investigation. Forecast methodology and model output are described in detail in the appendices. The reportmore » is one of a series addressing transportation energy consumption; it supplants and replaces an earlier version published in October 1978 (ORNL/Sub-78/13536/1).« less

  9. Water footprint components required to address the water-energy-food nexus, with the recent Urban Water Atlas for Europe as an example

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2017-04-01

    The first part of this presentation analyses which water footprint (WF) components are necessary in WF accounting to provide relevant information to address the Sustainable Development Goals (SDG's) water security (SDG 6), food security (SDG 2) and energy security (SDG 7) in a nexus setting. It is strongly based on the publication Vanham (2016) http://dx.doi.org/10.1016/j.ecoser.2015.08.003. First, the nexus links between (1) the planetary boundary freshwater resources (green and blue water resources) and (2) food, energy and blue water security are discussed. Second, it is shown which water uses are mostly represented in WF accounting. General water management and WF studies only account for the water uses agriculture, industry and domestic water. Important water uses are however mostly not identified as separate entities or even included, i.e. green and blue water resources for aquaculture, wild foods, biofuels, hydroelectric cooling, hydropower, recreation/tourism, forestry (for energy and other biomass uses) and navigation. Third, therefore a list of essential separate components to be included within WF accounting is presented. The latter would be more coherent with the water-food-energy-ecosystem nexus. The second part of the presentation gives a brief overview of the recently published Urban Water Atlas for Europe. It shows for a selected city which WF components are represented and which not. As such, it also identifies research gaps.

  10. Serving two purposes: Plans for a MOOC and a World Campus course called Energy, the Environment, and Our Future (Invited)

    NASA Astrophysics Data System (ADS)

    Bralower, T. J.; Alley, R. B.; Blumsack, S.; Keller, K.; Feineman, M. D.

    2013-12-01

    We are in the final stages of developing a Massive Open Online Course entitled Energy, the Environment, and Our Future. The course is a broad overview of the implications of the current energy options on Earth's climate and the choices for more sustainable energy sources in the future. The course is founded in concepts explored in the book and PBS series Earth: The Operators' Manual, but it includes more in-depth treatment of renewable energy as well as the ethical issues surrounding energy choices. One of the key aspects of the course is that it is being designed to be taught in two formats, the first, an eight week MOOC through Coursera in Fall semester 2013, and the second, a 16 week online course developed as part of the NSF Geo-STEP InTeGrate program and offered through the Penn State World Campus. The advantage of the MOOC format is the ability to reach out to thousands of students worldwide, exposing them to the science behind important issues that may have a direct impact on the lifestyle decisions they make, while the World Campus course allows us to explore deeper levels of cognition through application of carefully designed pedagogies. The principal difference between the two versions of the course will be assessment. The MOOC will have embedded assessment between pages and end of module quizzes. The InTeGrate course will have a range of assessments that are directly linked to the goals and objectives of the course. These will include active learning exercises built around energy and climate data. Both of the versions are works in progress and we anticipate modifying them regularly based on student feedback.

  11. The US Army and Future Security Force Assistance Operations

    DTIC Science & Technology

    2013-04-01

    havens. It addresses the recent evolution of SFA doctrine, guidance and authorities, and the role of interagency cooperation related to the future...safe havens. It addresses the recent evolution of SFA doctrine, guidance and authorities, and the role of interagency cooperation related to the...organizations at all levels. 5 SFA extends well beyond military-to-military training and conceptually addresses security as a system of

  12. The importance of the different kinds of energy sources for energy future of Turkey

    NASA Astrophysics Data System (ADS)

    Kaplan, Yusuf Alper; Aladağ, Canan

    2016-11-01

    Nowadays, the need of energy has been increasing day by day with the population growth and the advancements of technology. In this study, the current state of nuclear, wind and solar energy on the worldwide has been generally investigated. The general assessments have been made based on Turkey's energy potential and the evaluation situation of this potential. The current political structures of countries are generally assessed and under this policy, the last situation and the latest implemented innovations are given. Turkey's energy demand is constantly increasing and Turkey is a country that needs to energy imports. This is a need for new energy sources to meet the growing need for energy. Nuclear, wind and solar energy are the new sources of energy to the fore in our country recently. In this study is given general information on the usage of energy sources of making and some deficiencies were been emphasized by political considerations in this regard.

  13. Addressing Future Epidemics: Historical Human Rights Lessons from the AIDS Pandemic: Understanding human rights lessons from the early AIDS pandemic can aid policy makers in addressing future epidemics of infectious diseases.

    PubMed

    Mehta, Ambar; Quinn, Thomas C

    The Ebola epidemic in West Africa sparked many ethical and polarizing public health questions on how to adequately control transmission of the virus. These deliberations had and will continue to influence patients, healthcare workers, public perceptions of disease, and governmental responses. Such extensive and potential ramifications warranted an analysis of prior epidemics to sufficiently inform policy makers and prepare them and other authorities for future epidemics. We analyzed how the general public, medical institutions, federal government, and patients themselves responded during the early stages of the AIDS pandemic in two different countries and cultures, the United States and India. Our analysis identified four key findings pertaining to the human rights of patients and healthcare workers and to the crucial roles of the government and medical community. The first demands that authoritative officials acknowledge the presence of high-risk behaviors and properly educate the public without stigmatizing groups of individuals. For this task, the medical community and federal government must form and display to the public a respectful and collaborative partnership towards battling the epidemic. These two synergistic endeavors will then allow appropriate officials to implement effective, yet civil, interventions for limiting transmission. Finally, the same officials must ensure that their interventions maintain the human rights of high-risk populations and of healthcare workers. Applying these findings to future epidemics of infectious diseases can aid policy makers in navigating complicated ethical and public health questions, and help prevent them from repeating past mistakes in handling epidemics.

  14. Military Training: DOD’s Annual Sustainable Ranges Report Addressed Statutory Reporting Requirements

    DTIC Science & Technology

    2015-06-01

    electromagnetic spectrum, (5) continued growth in domestic use of Unmanned Aerial Systems, (6) early coordination with renewable energy industry, and (7...unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 United States Government...challenges; (4) manage increasing military demand for range space; (5) address effects from new energy infrastructure and renewable energy effects; (6

  15. A novel ternary content addressable memory design based on resistive random access memory with high intensity and low search energy

    NASA Astrophysics Data System (ADS)

    Han, Runze; Shen, Wensheng; Huang, Peng; Zhou, Zheng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng

    2018-04-01

    A novel ternary content addressable memory (TCAM) design based on resistive random access memory (RRAM) is presented. Each TCAM cell consists of two parallel RRAM to both store and search for ternary data. The cell size of the proposed design is 8F2, enable a ∼60× cell area reduction compared with the conventional static random access memory (SRAM) based implementation. Simulation results also show that the search delay and energy consumption of the proposed design at the 64-bit word search are 2 ps and 0.18 fJ/bit/search respectively at 22 nm technology node, where significant improvements are achieved compared to previous works. The desired characteristics of RRAM for implementation of the high performance TCAM search chip are also discussed.

  16. ALI (Autonomous Lunar Investigator): Revolutionary Approach to Exploring the Moon with Addressable Reconfigurable Technology

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Floyd, S. R.

    2005-03-01

    Addressable Reconfigurable Technology (ART), conceived for future ANTS (Autonomous Nanotechnology Swarm) Architectures, is now implemented as Autonomous Lunar Investigator (ALI) rovers, a mission concept allowing autonomous exploration of the lunar farside and poles within 10 years.

  17. Cut-off characterisation of energy spectra of bright Fermi sources: Current instrument limits and future possibilities

    NASA Astrophysics Data System (ADS)

    Romoli, Carlo; Taylor, Andrew M.; Aharonian, Felix

    2017-01-01

    The cut-off region of the gamma-ray spectrum of astrophysical sources encodes important information about the acceleration processes producing the parent particle population. For bright AGNs the cut-off happens in an energy range around a few tens of GeV, a region where satellites are limited by their effective area and current ground based telescopes by energy threshold. In the attempt to maximise the statistics, we have looked at two of the brightest AGNs seen by the Fermi-LAT (3C 454.3 and 3C 279) during extremely luminous flares. Our analysis showed the difficulty to obtain good constraints on the cut-off parameters when a power-law with modified exponential cut-off was assumed to fit the SEDs. We discuss the potential of future low-threshold Cherenkov telescope arrays, in particular CTA, showing the impact that a much bigger effective area can have on the determination of spectral parameters in the cut-off region. This preliminary study serves as an example, demonstrating the importance of having good wide-energy coverage around 10 GeV.

  18. National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.

    2012-06-01

    To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancingmore » requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.« less

  19. Key role for nuclear energy in global biodiversity conservation.

    PubMed

    Brook, Barry W; Bradshaw, Corey J A

    2015-06-01

    Modern society uses massive amounts of energy. Usage rises as population and affluence increase, and energy production and use often have an impact on biodiversity or natural areas. To avoid a business-as-usual dependence on coal, oil, and gas over the coming decades, society must map out a future energy mix that incorporates alternative sources. This exercise can lead to radically different opinions on what a sustainable energy portfolio might entail, so an objective assessment of the relative costs and benefits of different energy sources is required. We evaluated the land use, emissions, climate, and cost implications of 3 published but divergent storylines for future energy production, none of which was optimal for all environmental and economic indicators. Using multicriteria decision-making analysis, we ranked 7 major electricity-generation sources (coal, gas, nuclear, biomass, hydro, wind, and solar) based on costs and benefits and tested the sensitivity of the rankings to biases stemming from contrasting philosophical ideals. Irrespective of weightings, nuclear and wind energy had the highest benefit-to-cost ratio. Although the environmental movement has historically rejected the nuclear energy option, new-generation reactor technologies that fully recycle waste and incorporate passive safety systems might resolve their concerns and ought to be more widely understood. Because there is no perfect energy source however, conservation professionals ultimately need to take an evidence-based approach to consider carefully the integrated effects of energy mixes on biodiversity conservation. Trade-offs and compromises are inevitable and require advocating energy mixes that minimize net environmental damage. Society cannot afford to risk wholesale failure to address energy-related biodiversity impacts because of preconceived notions and ideals. © 2014 The Authors Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  20. Future planning in preschool children.

    PubMed

    Moffett, Lillie; Moll, Henrike; FitzGibbon, Lily

    2018-05-01

    The capacity to plan ahead and provide the means for future ends is an important part of human practical reasoning. When this capacity develops in ontogeny is the matter of an ongoing debate. In this study, 4- and 5-year-olds performed a future planning task in which they had to create the means (a picture of a particular object, e.g., a banana) that was necessary to address a future end (of completing a game in which such a picture was missing). Children of both ages drew more targets than children in a control condition in which there was no future end to be pursued. Along with prior findings, the results suggest a major progression in children's future thinking between 3 and 5 years. Our findings expand on prior knowledge by showing that young children cannot only identify the probate means to future ends but determine such ends and create the means to achieve them, thus offering compelling evidence for future planning. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. The U.S. Geological Survey Energy Resources Program

    USGS Publications Warehouse

    ,

    2006-01-01

    The United States uses tremendous amounts of geologic energy resources. In 2004 alone, the United States consumed more than 7.4 billion barrels of oil, 21.9 trillion cubic feet of natural gas, and 1.1 billion short tons of coal. Forecasts indicate the Nation's need for energy resources will continue to grow, raising several questions: How much domestic and foreign petroleum resources are available to meet the growing energy demands of the Nation and world? Does the United States have coal deposits of sufficient quantity and quality to meet demand over the next century? What other geologic energy resources can be added to the U.S. energy mix? How do the occurrence and use of energy resources affect environmental quality and human health? Unbiased information from robust scientific studies is needed for sound energy policy and resource management decisions addressing these issues. The U.S. Geological Survey Energy Resources Program provides impartial, scientifically robust information to advance the understanding of geologically based energy resources including: petroleum (oil, natural gas, natural gas liquids), coal, gas hydrates, geothermal resources, oil shale, oil sands, uranium, and heavy oil and natural bitumen. This information can be used to contribute to plans for a secure energy future and to facilitate evaluation and responsible use of resources.

  2. Energy use in the marine transportation industry: Task III. Efficiency improvements; Task IV. Industry future. Final report, Volume IV. [Projections for year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1977-12-01

    Tasks III and IV measure the characteristics of potential research and development programs that could be applied to the maritime industry. It was necessary to identify potential operating scenarios for the maritime industry in the year 2000 and determine the energy consumption that would result given those scenarios. After the introductory chapter the operational, regulatory, and vessel-size scenarios for the year 2000 are developed in Chapter II. In Chapter III, future cargo flows and expected levels of energy use for the baseline 2000 projection are determined. In Chapter IV, the research and development programs are introduced into the future USmore » flag fleet and the energy-savings potential associated with each is determined. The first four appendices (A through D) describe each of the generic technologies. The fifth appendix (E) contains the baseline operating and cost parameters against which 15 program areas were evaluated. (MCW)« less

  3. A Practical Approach to Address Uncertainty in Stakeholder Deliberations.

    PubMed

    Gregory, Robin; Keeney, Ralph L

    2017-03-01

    This article addresses the difficulties of incorporating uncertainty about consequence estimates as part of stakeholder deliberations involving multiple alternatives. Although every prediction of future consequences necessarily involves uncertainty, a large gap exists between common practices for addressing uncertainty in stakeholder deliberations and the procedures of prescriptive decision-aiding models advanced by risk and decision analysts. We review the treatment of uncertainty at four main phases of the deliberative process: with experts asked to describe possible consequences of competing alternatives, with stakeholders who function both as individuals and as members of coalitions, with the stakeholder committee composed of all stakeholders, and with decisionmakers. We develop and recommend a model that uses certainty equivalents as a theoretically robust and practical approach for helping diverse stakeholders to incorporate uncertainties when evaluating multiple-objective alternatives as part of public policy decisions. © 2017 Society for Risk Analysis.

  4. Education for a Green and Resilient Economy: An Educator Framework for Teaching Climate and Energy Literacy for K-12 Teachers Across the Curriculum

    NASA Astrophysics Data System (ADS)

    Niepold, F., III; Ledley, T. S.; Lockwood, J.; Youngman, E.; Manning, C. L. B.; Sullivan, S. M.

    2015-12-01

    The U.S. is embarking on a major transition to a green and resilient economy, a monumental change requiring all sectors and segments of the population to pull together. Transforming our nation's economic, energy, and environmental systems to in this way will require a sustained level of expertise, innovation, and cooperative effort unseen since the 1940s to meet the challenges involved. Education can - and must - help people understand the true connections, the linkages and interdependencies, between the environment, our energy sources and the economy which underpin and form the very foundation of the concept of a green and resilient economy. To produce such a literate future workforce and citizenry, the United States will need to make major new investments in our educational systems. Teachers across the nation are helping to increase science-based understanding and awareness of current and future climate change, enhancing climate and energy literacy in K-12 classrooms, on college and university campuses. There has been tremendous progress to date, but there is still more work to be done. The new academic standards in mathematics and science (the Common Core State Standards in Mathematics and the Next Generation Science Standards (NGSS)) represent a sea change from the nation's previous sets of standards. Addressing these standards in the currently over 40 percent of the nation's classrooms that have adopted or adapted the NGSS will demand that we prepare new and current teachers, who can effectively address the interdisciplinary nature of climate change and societal responses. To address this opportunity and need a collaboration between NOAA, TERC and CIRES has been established to develop an Educator Framework for Teaching Climate and Energy Literacy for K-12 teachers across the curriculum based on the NRC Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. This collaboration is developing an effective way to frame the use of

  5. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling

    NASA Astrophysics Data System (ADS)

    Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar

    2017-12-01

    Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.

  6. Designing future dark energy space missions. II. Photometric redshift of space weak lensing optimized surveys

    NASA Astrophysics Data System (ADS)

    Jouvel, S.; Kneib, J.-P.; Bernstein, G.; Ilbert, O.; Jelinsky, P.; Milliard, B.; Ealet, A.; Schimd, C.; Dahlen, T.; Arnouts, S.

    2011-08-01

    Context. With the discovery of the accelerated expansion of the universe, different observational probes have been proposed to investigate the presence of dark energy, including possible modifications to the gravitation laws by accurately measuring the expansion of the Universe and the growth of structures. We need to optimize the return from future dark energy surveys to obtain the best results from these probes. Aims: A high precision weak-lensing analysis requires not an only accurate measurement of galaxy shapes but also a precise and unbiased measurement of galaxy redshifts. The survey strategy has to be defined following both the photometric redshift and shape measurement accuracy. Methods: We define the key properties of the weak-lensing instrument and compute the effective PSF and the overall throughput and sensitivities. We then investigate the impact of the pixel scale on the sampling of the effective PSF, and place upper limits on the pixel scale. We then define the survey strategy computing the survey area including in particular both the Galactic absorption and Zodiacal light variation accross the sky. Using the Le Phare photometric redshift code and realistic galaxy mock catalog, we investigate the properties of different filter-sets and the importance of the u-band photometry quality to optimize the photometric redshift and the dark energy figure of merit (FoM). Results: Using the predicted photometric redshift quality, simple shape measurement requirements, and a proper sky model, we explore what could be an optimal weak-lensing dark energy mission based on FoM calculation. We find that we can derive the most accurate the photometric redshifts for the bulk of the faint galaxy population when filters have a resolution ℛ ~ 3.2. We show that an optimal mission would survey the sky through eight filters using two cameras (visible and near infrared). Assuming a five-year mission duration, a mirror size of 1.5 m and a 0.5 deg2 FOV with a visible pixel

  7. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions

    PubMed Central

    2011-01-01

    Background Biomechanical energy harvesting from human motion presents a promising clean alternative to electrical power supplied by batteries for portable electronic devices and for computerized and motorized prosthetics. We present the theory of energy harvesting from the human body and describe the amount of energy that can be harvested from body heat and from motions of various parts of the body during walking, such as heel strike; ankle, knee, hip, shoulder, and elbow joint motion; and center of mass vertical motion. Methods We evaluated major motions performed during walking and identified the amount of work the body expends and the portion of recoverable energy. During walking, there are phases of the motion at the joints where muscles act as brakes and energy is lost to the surroundings. During those phases of motion, the required braking force or torque can be replaced by an electrical generator, allowing energy to be harvested at the cost of only minimal additional effort. The amount of energy that can be harvested was estimated experimentally and from literature data. Recommendations for future directions are made on the basis of our results in combination with a review of state-of-the-art biomechanical energy harvesting devices and energy conversion methods. Results For a device that uses center of mass motion, the maximum amount of energy that can be harvested is approximately 1 W per kilogram of device weight. For a person weighing 80 kg and walking at approximately 4 km/h, the power generation from the heel strike is approximately 2 W. For a joint-mounted device based on generative braking, the joints generating the most power are the knees (34 W) and the ankles (20 W). Conclusions Our theoretical calculations align well with current device performance data. Our results suggest that the most energy can be harvested from the lower limb joints, but to do so efficiently, an innovative and light-weight mechanical design is needed. We also compared the

  8. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions.

    PubMed

    Riemer, Raziel; Shapiro, Amir

    2011-04-26

    Biomechanical energy harvesting from human motion presents a promising clean alternative to electrical power supplied by batteries for portable electronic devices and for computerized and motorized prosthetics. We present the theory of energy harvesting from the human body and describe the amount of energy that can be harvested from body heat and from motions of various parts of the body during walking, such as heel strike; ankle, knee, hip, shoulder, and elbow joint motion; and center of mass vertical motion. We evaluated major motions performed during walking and identified the amount of work the body expends and the portion of recoverable energy. During walking, there are phases of the motion at the joints where muscles act as brakes and energy is lost to the surroundings. During those phases of motion, the required braking force or torque can be replaced by an electrical generator, allowing energy to be harvested at the cost of only minimal additional effort. The amount of energy that can be harvested was estimated experimentally and from literature data. Recommendations for future directions are made on the basis of our results in combination with a review of state-of-the-art biomechanical energy harvesting devices and energy conversion methods. For a device that uses center of mass motion, the maximum amount of energy that can be harvested is approximately 1 W per kilogram of device weight. For a person weighing 80 kg and walking at approximately 4 km/h, the power generation from the heel strike is approximately 2 W. For a joint-mounted device based on generative braking, the joints generating the most power are the knees (34 W) and the ankles (20 W). Our theoretical calculations align well with current device performance data. Our results suggest that the most energy can be harvested from the lower limb joints, but to do so efficiently, an innovative and light-weight mechanical design is needed. We also compared the option of carrying batteries to the

  9. Directed Energy Weapons

    DTIC Science & Technology

    2007-12-01

    future business . In defense systems, the key to future business is the existence of funded programs. Military commanders understand the lethality and...directed energp capabilities that can provide visibiliy into the likey futur business case for sustaining directed energy industry capabilities...the USD (I) staff to be afocalpointfor advocating improvement in all dimensions of directed energy intelligence. - The Director, Defense Inteligence

  10. Regional Seminars to Address Current Nuclear Export Control Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killinger, Mark H.

    2002-07-01

    The control of nuclear-related exports, a critical component of the nonproliferation regime, is facing several opportunities and challenges. As countries sign and ratify the International Atomic Energy Agency's (IAEA) safeguards Additional Protocol (AP), they will begin to report far more export information, including exports of a list of items similar to the Nuclear Supplier Group's Trigger List that existed when the AP was developed in the mid-1990s. This positive development contrasts with challenges such as globalization, transshipments, and tracking of end-uses. Pacific Northwest National Laboratory is proposing that the US Department of Energy (DOE) develop regional seminars that address thesemore » types of issues related to export/import controls. The DOE seminars would be designed to supplement regional seminars sponsored by the IAEA and member states on topics related to the Additional Protocol (referred to as "IAEA seminars"). The topic of nuclear export/import controls is not thoroughly addressed in the IAEA seminars. The proposed DOE seminars would therefore have two objectives: familiarizing countries with the export/import provisions of the Additional Protocol, and addressing challenges such as those noted above. The seminars would be directed particularly at countries that have not ratified the AP, and at regions where export-related problems are particularly prevalent. The intent is to encourage governments to implement more effective nuclear export control systems that meet the challenges of the 21st century.« less

  11. Geothermal Energy.

    ERIC Educational Resources Information Center

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  12. 25 CFR 224.114 - How may the tribe address a petition in its written response?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false How may the tribe address a petition in its written response? 224.114 Section 224.114 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF...

  13. 25 CFR 224.114 - How may the tribe address a petition in its written response?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false How may the tribe address a petition in its written response? 224.114 Section 224.114 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF...

  14. The Future of Systems Aeronomy in Addressing New Science Frontiers

    NASA Astrophysics Data System (ADS)

    Kozyra, J. U.; Paxton, L. J.; Ridley, A.

    2005-12-01

    The future will see a new era in our ability to characterize the state of the sun-Earth system using the SEC Great Observatory, new electronic data handling and data mining technologies, high-performance sun-to-Earth models, new techniques for assimilation of sparse data, and the development of innovative worldwide research tools through integration of ground-based observing sites. The time has come to pull these developing capabilities together into an investigation that seeks to understand aeronomy at a higher level than has previously been possible. Systems Aeronomy is a study of this global system behavior but, more than that, it investigates the large-scale systems-level features that result from elemental processes, like ion-neutral coupling, plasma drifts or radiative cooling. Currently the TIMED mission is making important contributions in identifying and characterizing the "building block" processes that change, evolve and combine to form the system response. Systems Aeronomy must have observational, theoretical and computational components to succeed. One of the key requirements is the ability to capture global data sets and integrate them into a coherent picture of the ITM system and its relationship to geospace. Success requires enhanced coordination between operating satellites throughout the sun-Earth system, new techniques for creating global maps from networks of ground-based and satellite-based sensors, and a new level of international cooperation leveraging off IPY2007, IHY2007, eGY2007, CAWSES, ICESTAR, and other planned worldwide programs. Twenty years down the road, Systems Aeronomy will provide the foundation for understanding planetary atmospheres, significantly extend the range of useful space weather prediction, and provide an important approach for investigating the impacts of anthropogenic and climatological changes in the ITM and on the geospace system as a whole.

  15. Dark energy properties from large future galaxy surveys

    NASA Astrophysics Data System (ADS)

    Basse, Tobias; Eggers Bjælde, Ole; Hamann, Jan; Hannestad, Steen; Wong, Yvonne Y. Y.

    2014-05-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (σ(wp)σ(wa))-1, we find a value of 690 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background anisotropies in a 10-dimensional cosmological parameter space, assuming a ΛCDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w0 deviates from -1 by as much as is currently observationally allowed, models with hat cs2 = 10-6 and hat cs2 = 1 can be distinguished from one another at more than 2σ significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a 1σ precision of 0.015 eV, even in complex cosmological models in which the dark energy equation of state varies with time. The 1σ sensitivity to the effective number of relativistic species Neffml is approximately 0.03, meaning that the small deviation of 0.046 from 3 in the standard value of Neffml due to non-instantaneous decoupling and finite temperature effects can be probed with 1σ precision for the first time.

  16. Zero Energy Schools: Designing for the Future: Zero Energy Ready K-12 Schools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, Paul A

    Designing, building, and operating zero energy ready K-12 schools provides benefits for districts, students, and teachers. Optimizing energy efficiency is important in any building, but it's particularly important in K-12 schools. Many U.S. school districts struggle for funding, and improving a school building's energy efficiency can free up operational funds that may then be available for educational and other purposes.

  17. Addressing submarine geohazards through scientific drilling

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.

    2009-04-01

    multi-platform drilling of the Nankai seismogenic zone. Scientific initiatives are flourishing to drive IODP towards the study of submarine geohazards. In the last three years international workshops, were held to address the topic: ESF-ECORD sponsored a Magellan Workshop focussed on submarine landslides (Barcelona, Spain, 2006); IODP sponsored a world-wide Geohazard Workshop (Portland, Oregon, 2007); ESF-ECORD sponsored another Magellan Workshop focussed on Mediterranean submarine geohazards (Luleå, Sweden, 2008). In addition, following the ECORD-Net Conference on the Deep Sea Frontier (Naples, Italy, 2006), the history, monitoring and prediction of geohazards was identified as one of the 6 major areas for a European science plan to integrate Ocean Drilling, Ocean Margin, and Seabed research. More than 200 scientists and private companies representatives have been mobilized world-wide to attend these meetings, from where it emerged that Ocean Drilling will play a key role in the future to answer the following basic open questions on submarine geohazards: - What is the frequency, magnitude, and distribution of geohazard events? - Do precursory phenomena exist and can they be recognized? - What are the physical and mechanical properties of materials prone to failure? - What are the roles of preconditioning vs. triggering in rapid seafloor deformation? - Can the tsunamigenic potential of past and future events be assessed? Within the global-ocean geohazards, worth of note is the attention given in this preparatory phase to submarine geohazards in the Mediterranean basin, a miniature ocean often called a "natural laboratory" because of the diversity of geological environments it contains. The coastline is very densely-populated, totalling 160 million inhabitants sharing 46,000 km of coastline. The Mediterranean is the World's leading holiday destination, receiving an average of 135 million visitors annually. Submarine landslides, volcanic flank collapses, volcanic island

  18. Investigation of Future Thermal Comforts in a Tropical Megacity Using Coupling of Energy Balance Model and Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Sueishi, T.; Yucel, M.; Ashie, Y.; Varquez, A. C. G.; Inagaki, A.; Darmanto, N. S.; Nakayoshi, M.; Kanda, M.

    2017-12-01

    Recently, temperature in urban areas continue to rise as an effect of climate change and urbanization. Specifically, Asian megacities are projected to expand rapidly resulting to serious in the future atmospheric environment. Thus, detailed analysis of urban meteorology for Asian megacities is needed to prescribe optimum against these negative climate modifications. A building-resolving large eddy simulation (LES) coupled with an energy balance model is conducted for a highly urbanized district in central Jakarta on typical daytime hours. Five cases were considered; case 1 utilizes present urban scenario and four cases representing different urban configurations in 2050. The future configurations were based on representative concentration pathways (RCP) and shared socio-economic pathways (SSP). Building height maps and land use maps of simulation domains are shown in the attached figure (top). Case 1 3 focuses on the difference of future scenarios. Case 1 represents current climatic and urban conditions, case 2 and 3 was an idealized future represented by RCP2.6/SSP1 and RCP8.5/SSP3, respectively. More complex urban morphology was applied in case 4, vegetation and building area were changed in case 5. Meteorological inputs and anthropogenic heat emission (AHE) were calculated using Weather Research and Forecasting (WRF) model (Varquez et al [2017]). Sensible and latent heat flux from surfaces were calculated using an energy balance model (Ashie et al [2011]), with considers multi-reflection, evapotranspiration and evaporation. The results of energy balance model (shown in the middle line of figure), in addition to WRF outputs, were used as input into the PArallelized LES Model (PALM) (Raasch et al [2001]). From standard new effective temperature (SET*) which included the effects of temperature, wind speed, humidity and radiation, thermal comfort in urban area was evaluated. SET* contours at 1 m height are shown in the bottom line of the figure. Extreme climate

  19. Department of Energy: Fundamental Reassessment Needed to Address Major Mission, Structure, and Accountability Problems

    DTIC Science & Technology

    2001-12-01

    addition, the Defense Nuclear Facilities Safety Board warned in 1997 that, given likely future reductions in DOE’s budget, the department needed to...future leaders of the acquisition workforce. The Defense Nuclear Facilities Safety Board’s 2000 report credited DOE with taking steps to improve the...technical capabilities of personnel at its defense nuclear facilities , but pointed out the need for DOE’s leadership to pay increased attention to this

  20. Task 1 Report - Assessment of Data Availability to Inform Energy Planning Analyses: Energy Alternatives Study for the Lao People's Democratic Republic: Smart Infrastructure for the Mekong Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Nathan; Lopez, Anthony J.; Katz, Jessica R.

    In an effort to address concerns such as energy security, reliability, affordability, and other objectives, the Government of the Lao People's Democratic Republic (Lao PDR) is seeking to advance its expertise and experience in energy system analysis and planning to explore energy alternatives. Assessing the potential and alternatives for deploying energy technology options is often an early step - and, in most cases, an ongoing process - in planning for the development of the energy sector as a whole. Reliable and robust data are crucial to conducting these types of planning-related analyses in a transparent manner that builds confidence amongmore » power sector stakeholders and encourages investment in future energy project development and infrastructure opportunities. This report represents the first output of the Energy Alternatives Study for the Lao PDR (Energy Alternatives Study), a collaboration between Ministry of Energy and Mines and the United States Agency for International Development (USAID) under the auspices of the Smart Infrastructure for the Mekong (SIM) program. The Energy Alternatives Study includes five tasks that build upon each other to meet the goal of the project. The report summarizes the availability, quality, and accessibility of data that serve as key inputs to energy planning activities for the power sector. The purpose of this data assessment is two-fold: 1. To facilitate the informed use of existing data by highlighting applications for these data as they relate to priority energy planning analyses; and 2. To inform future investments in energy data collection and management by identifying significant data gaps and providing guidance on how to fill these gaps.« less

  1. 75 FR 53685 - Blue Ribbon Commission on America's Nuclear Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces an open meeting of the Blue Ribbon Commission on America's Nuclear Future (the Commission). The Commission was...

  2. 76 FR 71334 - Blue Ribbon Commission on America's Nuclear Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-17

    ... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces an open meeting of the Blue Ribbon Commission on America's Nuclear Future (the Commission). The Commission was...

  3. Measurement of Physical Activity and Energy Expenditure in Wheelchair Users: Methods, Considerations and Future Directions.

    PubMed

    Nightingale, Tom E; Rouse, Peter C; Thompson, Dylan; Bilzon, James L J

    2017-12-01

    Accurately measuring physical activity and energy expenditure in persons with chronic physical disabilities who use wheelchairs is a considerable and ongoing challenge. Quantifying various free-living lifestyle behaviours in this group is at present restricted by our understanding of appropriate measurement tools and analytical techniques. This review provides a detailed evaluation of the currently available measurement tools used to predict physical activity and energy expenditure in persons who use wheelchairs. It also outlines numerous considerations specific to this population and suggests suitable future directions for the field. Of the existing three self-report methods utilised in this population, the 3-day Physical Activity Recall Assessment for People with Spinal Cord Injury (PARA-SCI) telephone interview demonstrates the best reliability and validity. However, the complexity of interview administration and potential for recall bias are notable limitations. Objective measurement tools, which overcome such considerations, have been validated using controlled laboratory protocols. These have consistently demonstrated the arm or wrist as the most suitable anatomical location to wear accelerometers. Yet, more complex data analysis methodologies may be necessary to further improve energy expenditure prediction for more intricate movements or behaviours. Multi-sensor devices that incorporate physiological signals and acceleration have recently been adapted for persons who use wheelchairs. Population specific algorithms offer considerable improvements in energy expenditure prediction accuracy. This review highlights the progress in the field and aims to encourage the wider scientific community to develop innovative solutions to accurately quantify physical activity in this population.

  4. Utility-industry restructuring and the future of state energy research and technology transfer institutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pye, M.; Nadel, S.

    1998-07-01

    State energy research and technology transfer institutions (SERTTI) are state and regional organizations that have historically filled in gaps when a state need was not met. SERTTI build on research of the federal government and universities and focus on technologies with potential for timely commercialization. They have made valuable contributions to the energy balance, economic development, and environment of their states and the nation. SERTTI prospects are uncertain given their dependency on funding from oil-overcharges and utilities in an era of utility restructuring, oil-overcharge fund depletion, and general declines in energy research and development (R and D). SERTTI are likelymore » to continue following restructuring, with funding from traditional sources or systems benefits charges, however, the R{ampersand}D mix and SERTTI activities will probably change. Unless provisions are made, utility investments in public-benefit R and D are likely to fall precipitously, reducing benefits and diminishing state-level R and D efforts because there will be less utility funding for SERTTI to leverage. Many R and D issues emerge that all states will need to address as they make restructuring decisions: What is public-benefit R and D, how can it be more effective, how much funding should be provided, who should administer funds, how should funds be allocated? Is a dedicated R and D fund needed? Is there a role for SERTTI to be involved in technology transfer? This paper looks at the current situation of state-level R and D in regard to restructuring and suggests answers to these questions.« less

  5. Diversity, Social Justice, and the Future of Libraries

    ERIC Educational Resources Information Center

    Morales, Myrna; Knowles, Em Claire; Bourg, Chris

    2014-01-01

    In this essay, we embrace a vision of the future of academic libraries where librarians confront and creatively address the lack of racial and ethnic diversity within our profession and actively pursue a social justice agenda within our libraries and in the communities we serve. This future requires that we acknowledge that many of our current…

  6. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, M.; Mai, T.; Newes, E.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompetemore » biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  7. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, M.; Mai, T.; Newes, E.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompetemore » biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  8. Presidential Address National Academy of Neuropsychology Conference Boston 2017.

    PubMed

    Meyers, John E

    2018-05-05

    This presidential address attempts to predict the future directions of neuropsychology. Predicting the future is always a difficult thing. By examining population trends such as aging and demographics, a clearer picture becomes visible. The population is getting older and more ethnically diverse. Also, examination of the spending trends in health care indicates that neuropsychology needs to be able to adapt to working with larger population-based patient care as well as individual patient care. Shifts in the demographics of neuropsychology, in that the profession previously was 70% male dominate and now is >70% female dominant are also discussed. Trends in NAN's speaker and leader demographics are examined as well as the need to stay current in the trends and latest neuropsychological research lest we become dinosaurs in the next 5-10 years. Recommendations for new neuropsychologists and post-doctoral fellows are also presented.

  9. The OSS Model and the Future of the SOF Warrior

    DTIC Science & Technology

    2011-11-01

    The OSS Model and the Future of the SOF Warrior 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Joint Special Operations University,7701 Tampa Point...Boulevard,MacDill AFB,FL,33621 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S

  10. Deja vu: The Unified Command Plan of the Future Revisited

    DTIC Science & Technology

    2011-05-19

    Command Plan of the Future Revisited. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Col( S ) Edward F...Martignetti 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Advanced Operational Art... S ) AND ADDRESS(ES) U.S. Army Command and General Staff College 100 Stimson Avenue Fort Leavenworth, KS 66027-2301 10. SPONSOR/MONITOR’S ACRONYM

  11. Design of tangential multi-energy SXR cameras for tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Yamazaki, H.; Delgado-Aparicio, L. F.; Pablant, N.; Hill, K.; Bitter, M.; Takase, Y.; Ono, M.; Stratton, B.

    2017-10-01

    A new synthetic diagnostic capability has been built to study the response of tangential multi-energy soft x-ray pin-hole cameras for arbitrary plasma densities (ne , D), temperature (Te) and ion concentrations (nZ). For tokamaks and future facilities to operate safely in a high-pressure long-pulse discharge, it is imperative to address key issues associated with impurity sources, core transport and high-Z impurity accumulation. Multi-energy soft xray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (e.g. Te, nZ and ΔZeff). These systems are designed to sample the continuum- and line-emission from low- to high-Z impurities (e.g. C, O, Al, Si, Ar, Ca, Fe, Ni and Mo) in multiple energy-ranges. These x-ray cameras will be installed in the MST-RFP, as well as NSTX-U and DIII-D tokamaks, measuring the radial structure of the photon emissivity with a radial resolution below 1 cm at a 500 Hz frame rate and a photon-energy resolution of 500 eV. The layout and response expected for the new systems will be shown for different plasma conditions and impurity concentrations. The effect of toroidal rotation driving poloidal asymmetries in the core radiation is also addressed for the case of NSTX-U.

  12. Shaping NASA's Earth Science Enterprise Workforce Development Initiative to Address Industry Needs

    NASA Technical Reports Server (NTRS)

    Rosage, David; Meeson, Blanche W. (Technical Monitor)

    2001-01-01

    It has been well recognized that the commercial remote sensing industry will expand in new directions, resulting in new applications, thus requiring a larger, more skilled workforce to fill the new positions. In preparation for this change, NASA has initiated a Remote Sensing Professional Development Program to address the workforce needs of this emerging industry by partnering with the private sector, academia, relevant professional societies, and other R&D organizations. Workforce needs will in part include understanding current industry concerns, personnel competencies, current and future skills, growth rates, geographical distributions, certifications, and sources of pre-service and in-service personnel. Dave Rosage of the NASA Goddard Space Flight Center and a panel of MAPPS members will lead a discussion to help NASA specifically address private firms' near and long-term personnel needs to be included in NASA's Remote Sensing Professional Development Program. In addition, Dave Rosage will present perspectives on how remote sensing technologies are evolving, new NASA instruments being developed, and what future workforce skills are expected to support these new developments.

  13. State - Level Regulation's Effectiveness in Addressing Global Climate Change and Promoting Solar Energy Deployment

    NASA Astrophysics Data System (ADS)

    Peterman, Carla Joy

    Paper 1, Local Solutions to Global Problems: Climate Change Policies and Regulatory Jurisdiction, considers the efficacy of various types of environmental regulations when they are applied locally to pollutants whose damages extend beyond the jurisdiction of the local regulators. Local regulations of a global pollutant may be ineffective if producers and consumers can avoid them by transacting outside the reach of the local regulator. In many cases, this may involve the physical relocation of the economic activity, a problem often referred to as "leakage." This paper highlights another way in which local policies can be circumvented: through the shuffling of who buys from whom. The paper maintains that the problems of reshuffling are exacerbated when the options for compliance with the regulations are more flexible. Numerical analyses is presented demonstrating that several proposed policies to limit greenhouse gas emissions from the California electricity sector may have very little effect on carbon emissions if they are applied only within that state. Paper 1 concludes that although local subsidies for energy efficiency, renewable electricity, and transportation biofuels constitute attempts to pick technology winners, they may be the only mechanisms that local jurisdictions, acting alone, have at their disposal to address climate change. Paper 2, Pass-Through of Solar PV Incentives to Consumers: The Early Years of California's Solar PV Incentives, examines the pass through of incentives to California solar PV system owners. The full post-subsidy price consumers pay for solar power is a key metric of the success of solar PV incentive programs and of overall PV market performance. This study examines the early years of California's most recent wave of distributed solar PV incentives (2000-2008) to determine the pass-through of incentives. Examination of this period is both intellectually and pragmatically important due to the high level of incentives provided and

  14. Smart Electrochemical Energy Storage Devices with Self-Protection and Self-Adaptation Abilities.

    PubMed

    Yang, Yun; Yu, Dandan; Wang, Hua; Guo, Lin

    2017-12-01

    Currently, with booming development and worldwide usage of rechargeable electrochemical energy storage devices, their safety issues, operation stability, service life, and user experience are garnering special attention. Smart and intelligent energy storage devices with self-protection and self-adaptation abilities aiming to address these challenges are being developed with great urgency. In this Progress Report, we highlight recent achievements in the field of smart energy storage systems that could early-detect incoming internal short circuits and self-protect against thermal runaway. Moreover, intelligent devices that are able to take actions and self-adapt in response to external mechanical disruption or deformation, i.e., exhibiting self-healing or shape-memory behaviors, are discussed. Finally, insights into the future development of smart rechargeable energy storage devices are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Dark energy properties from large future galaxy surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basse, Tobias; Bjælde, Ole Eggers; Hannestad, Steen

    2014-05-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (σ(w{sub p})σ(w{sub a})){sup −1}, we find a value of 690 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background anisotropies in a 10-dimensional cosmological parameter space, assuming amore » ΛCDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w{sub 0} deviates from -1 by as much as is currently observationally allowed, models with c-circumflex {sub s}{sup 2} = 10{sup −6} and c-circumflex {sub s}{sup 2} = 1 can be distinguished from one another at more than 2σ significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a 1σ precision of 0.015 eV, even in complex cosmological models in which the dark energy equation of state varies with time. The 1σ sensitivity to the effective number of relativistic species N{sub eff}{sup ml} is approximately 0.03, meaning that the small deviation of 0.046 from 3 in the standard value of N{sub eff}{sup ml} due to non-instantaneous decoupling

  16. Design of tangential multi-energy soft x-ray camera for NSTX-U

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, Luis F.; Maddox, J.; Pablant, N.; Hill, K.; Bitter, M.; Stratton, B.; Efthimion, Phillip

    2016-10-01

    For tokamaks and future facilities to operate safely in a high-pressure long-pulse discharge, it is imperative to address key issues associated with impurity sources, core transport and high-Z impurity accumulation. Multi-energy SXR imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (Te, nZ and ΔZeff). A new tangential multi-energy soft x-ray pin-hole camera is being design to sample the continuum- and line-emission from low-, medium- and high-Z impurities. This new x-ray diagnostic will be installed on an equatorial midplane port of NSTX-U tokamak and will measure the radial structure of the photon emissivity with a radial resolution below 1 cm at a 500 Hz frame rate and a photon-energy resolution of 500 eV. The layout and response expected of the new system will be shown for different plasma conditions and impurity concentrations. The effect of toroidal rotation driving poloidal asymmetries in the core radiation is also addressed. This effort is designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate a non-inductive operation at reduced collisionality, long energy-confinement-times and a transition to a divertor solution with metal walls.

  17. "It's Like Moving the Titanic:" Community Organizing to Address Food (In)Security.

    PubMed

    Okamoto, Kristen E

    2017-08-01

    Health communication scholars are uniquely positioned to examine the ways in which individuals organize to address current and future exigencies related to social ills. In particular, organizations are key sites in understanding our health decisions related to food choice. From a young age, children develop habits of eating that stay with them throughout their life. More specifically, food insecurity impacts childhood nutrition. Children from low-income homes experience disproportional negative health outcomes. Appalachian Ohio is an area within the United States that experiences severe poverty. In 2013, community members in a small public school district in Appalachian Ohio formed the Appalachian Nutrition Advisory Council to address the nutritional needs of students in schools. This project stories the ways in which community members creatively organized to supplement existing structures in place designed to address school nutrition and food security.

  18. A Review of the Experimental and Modeling Development of a Water Phase Change Heat Exchanger for Future Exploration Support Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas; Leimkuehler, Thomas; Ramaswamy, Balasubramaniam; Nayagam, Vedha; Hasan, Mohammad; Stephan, Ryan

    2011-01-01

    Water affords manifold benefits for human space exploration. Its properties make it useful for the storage of thermal energy as a Phase Change Material (PCM) in thermal control systems, in radiation shielding against Solar Particle Events (SPE) for the protection of crew members, and it is indisputably necessary for human life support. This paper envisions a single application for water which addresses these benefits for future exploration support vehicles and it describes recent experimental and modeling work that has been performed in order to arrive at a description of the thermal behavior of such a system. Experimental units have been developed and tested which permit the evaluation of the many parameters of design for such a system with emphasis on the latent energy content, temperature rise, mass, and interstitial material geometry. The experimental results are used to develop a robust and well correlated model which is intended to guide future design efforts toward the multi-purposed water PCM heat exchanger envisioned.

  19. Future Scenarios in Communications. Teacher's Guide. Preparing for Tomorrow's World.

    ERIC Educational Resources Information Center

    Iozzi, Louis A.; And Others

    "Future Scenarios in Communications" is one of the "Preparing for Tomorrow's World" (PTW) program modules. PTW is an interdisciplinary, future-oriented program incorporating information from the sciences and social sciences and addressing societal concerns which interface science/technology/society. The program promotes…

  20. Energy data sourcebook for the US residential sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenzel, T.P.; Koomey, J.G.; Sanchez, M.

    Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment efficiency; historical and current appliance and equipment market shares; appliances and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for newmore » and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl. gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.« less

  1. Development of Structural Energy Storage for Aeronautics Applications

    NASA Technical Reports Server (NTRS)

    Santiago-Dejesus, Diana; Loyselle, Patricia L.; Demattia, Brianne; Bednarcyk, Brett; Olson, Erik; Smith, Russell; Hare, David

    2017-01-01

    The National Aeronautics and Space Administration (NASA) has identified Multifunctional Structures for High Efficiency Lightweight Load-bearing Storage (M-SHELLS) as critical to development of hybrid gas-electric propulsion for commercial aeronautical transport in the N+3 timeframe. The established goals include reducing emissions by 80 and fuel consumption by 60 from todays state of the art. The advancement will enable technology for NASA Aeronautics Research Mission Directorates (ARMD) Strategic Thrust 3 to pioneer big leaps in efficiency and environmental performance for ultra-efficient commercial transports, as well as Strategic Thrust 4 to pioneer low-carbon propulsion technology in the transition to that scheme. The M-SHELLS concept addresses the hybrid gas-electric highest risk with its primary objective: to save structures energy storage system weight for future commercial hybrid electric propulsion aircraft by melding the load-carrying structure with energy storage in a single material. NASA's multifunctional approach also combines supercapacitor and battery chemistries in a synergistic energy storage arrangement in tandem with supporting good mechanical properties. The arrangement provides an advantageous combination of specific power, energy, and strength.

  2. Preparing Young Adolescents for a Bright Future--Right Now!

    ERIC Educational Resources Information Center

    Deering, Paul D.; Martin, Kathryn L.; Buelow, Stephanie M.; Hoffman, Jennifer T.; Cameli, Sandy; Martin, Matt; Walker, Robert E.; O'Neill, Tara B.

    2016-01-01

    We must prepare young adolescents for a bright future by examining all of our educational practices in terms of their current and future relevance. The education we provide our students must prepare them to address enormously complex issues involving demographics and international relations, environmental and human health, and the development and…

  3. Thermionic energy conversion technology - Present and future

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Morris, J. F.

    1977-01-01

    Aerospace and terrestrial applications of thermionic direct energy conversion and advances in direct energy conversion (DEC) technology are surveyed. Electrode materials, the cesium plasma drop (the difference between the barrier index and the collector work function), DEC voltage/current characteristics, conversion efficiency, and operating temperatures are discussed. Attention is centered on nuclear reactor system thermionic DEC devices, for in-core or out-of-core operation. Thermionic fuel elements, the radiation shield, power conditions, and a waste heat rejection system are considered among the thermionic DEC system components. Terrestrial applications include topping power systems in fossil fuel and solar power generation.

  4. Opening Address

    NASA Astrophysics Data System (ADS)

    Yamada, T.

    2014-12-01

    related fields such as nuclear astrophysics, hypernuclear physics, hadron physics, and condensate matter physics so on. In fact, in this workshop, we also discuss the clustering aspects in the related fields. Thus, I expect in this workshop we can grasp the present status of the nuclear cluster physics and demonstrate its perspective in near future. This workshop is sponsored by several institutes and organizations. In particular, I would express our thanks for financial supports to Research Center for Nuclear Physics (RCNP), Osaka University, Center for Nuclear Study (CNS), University of Tokyo, Joint Institute for Computational Fundamental Science (JICFuS), and RIKEN Nishina Center for Accelerator- Based Science. They are cohosting this workshop. I would like also to appreciate my University, Kanto Gakuin University, who offers this nice place for one week and helps us to hold this workshop smoothly and conveniently. Today, the president of my University, Prof. Kuku, is here to present a welcome address. Thank you very much. Finally, with many of the participants leading this field both in theory and in experiment, we wish this workshop offers an opportunity to simulate communications not only during the workshop but also in the future. In addition, we hope you enjoy exploring city of Yokohama and the area around, as well as scientific discussions. Thank you very much for your attention.

  5. Applying evolutionary biology to address global challenges

    PubMed Central

    Carroll, Scott P.; Jørgensen, Peter Søgaard; Kinnison, Michael T.; Bergstrom, Carl T.; Denison, R. Ford; Gluckman, Peter; Smith, Thomas B.; Strauss, Sharon Y.; Tabashnik, Bruce E.

    2014-01-01

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens and pests that evolve too quickly, and the second from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This review highlights both progress and gaps in genetic, developmental and environmental manipulations across the life sciences that either target the rate and direction of evolution, or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development. PMID:25213376

  6. Advancing efforts to address youth violence involvement.

    PubMed

    Weist, M D; Cooley-Quille, M

    2001-06-01

    Discusses the increased public attention on violence-related problems among youth and the concomitant increased diversity in research. Youth violence involvement is a complex construct that includes violence experienced in multiple settings (home, school, neighborhood) and in multiple forms (as victims, witnesses, perpetrators, and through family members, friends, and the media). Potential impacts of such violence involvement are considerable, including increased internalizing and externalizing behaviors among youth and future problems in school adjustment and life-course development. This introductory article reviews key dimensions of youth-related violence, describes an American Psychological Association Task Force (Division 12) developed to advance relevant research, and presents examples of national resources and efforts that attempt to address this critical public health issue.

  7. Energy from space; Proceedings of the Symposium on Solar Energy from Space, Vienna, Austria, August 9-21, 1982

    NASA Astrophysics Data System (ADS)

    Freeman, J. W.

    Aspects of solar power generation in space are considered. The subjects discussed include: a vision of future energy from space; solar power satellite concept for utilization of energy from space; the institutional challenge of solar power satellites; system study of the solar power satellite concept; market potential and possible limitations for satellite solar power stations; financing a solar power satellite project; and European questions related to satellite power systems. Also addressed are: options and high payoff choices for transportation; an electric propulsion transportation system from low-earth orbit to geostationary orbit utilizing beamed microwave power; the Canadarm robot arm of the Shuttle Remote Manipulator System; an early experimental solar power satellite; power economical considerations for the integration of terrestrial and extraterrestrial solar generators into existing power generation stations; and space solar power in perspective. For individual items see A84-21477 to A84-21489

  8. Public sector energy management: A strategy for catalyzing energy efficiency in Malaysia

    NASA Astrophysics Data System (ADS)

    Roy, Anish Kumar

    To date the public sector role in facilitating the transition to a sustainable energy future has been envisaged mainly from a regulatory perspective. In such a role, the public sector provides the push factors---enforcing regulations and providing incentives---to correct market imperfections that impede energy transitions. An alternative and complementary role of the public sector that is now gaining increasing attention is that of catalyzing energy transitions through public sector energy management initiatives. This dissertation offers a conceptual framework to rationalize such a role for the public sector by combining recent theories of sustainable energy transition and public management. In particular, the framework identifies innovative public management strategies (such as performance contracting and procurement) for effectively implementing sustainable energy projects in government facilities. The dissertation evaluates a model of sustainable public sector energy management for promoting energy efficiency in Malaysia. The public sector in Malaysia can be a major player in leading and catalyzing energy efficiency efforts as it is not only the largest and one of the most influential energy consumers, but it also plays a central role in setting national development strategy. The dissertation makes several recommendations on how a public sector energy management strategy can be implemented in Malaysia. The US Federal Energy Management Program (FEMP) is used as a practical model. The analysis, however, shows that in applying the FEMP model to the Malaysian context, there are a number of limitations that will have to be taken into consideration to enable a public sector energy management strategy to be effectively implemented. Overall the analysis of this dissertation contributes to a rethinking of the public sector role in sustainable energy development that can strengthen the sector's credibility both in terms of governance and institutional performance. In

  9. Federal Ocean Energy Technology

    NASA Astrophysics Data System (ADS)

    1987-10-01

    The Department of Energy's (DOE) Ocean Energy Technology (OET) Program is looking for cost-effective ways to harness ocean energy to help power tomorrow's world. Federally sponsored researchers are studying methods to transform the solar heat stored in the ocean's surface waters into electricity as well as new ways to convert wave energy into mechanical energy or electricity. This report provides a summary of research completed during FY86. Four major research areas are addressed in the work covered by this report: Thermodynamic Research and Analysis addresses the process and system analyses which provide the underlying understanding of physical effects which constitute the energy conversion processes, Experimental Verification and Testing provides confirmation of the analytical projections and empirical relationships, Materials and Structural Research addresses special materials compatibility issues related to operation in the sea. Much of its focus is on concepts for the system CWP which is a major technology cost driver, and Oceanographic, Environmental, and Geotechnical Research addresss those unique design requirements imposed by construction in steep slope coastal areas.

  10. Evolution of the US energy system and related emissions under varying social and technological development paradigms: Plausible scenarios for use in robust decision making.

    PubMed

    Brown, Kristen E; Hottle, Troy Alan; Bandyopadhyay, Rubenka; Babaee, Samaneh; Dodder, Rebecca Susanne; Kaplan, Pervin Ozge; Lenox, Carol; Loughlin, Dan

    2018-06-21

    The energy system is the primary source of air pollution. Thus, evolution of the energy system into the future will affect society's ability to maintain air quality. Anticipating this evolution is difficult because of inherent uncertainty in predicting future energy demand, fuel use, and technology adoption. We apply Scenario Planning to address this uncertainty, developing four very different visions of the future. Stakeholder engagement suggested technological progress and social attitudes toward the environment are critical and uncertain factors for determining future emissions. Combining transformative and static assumptions about these factors yields a matrix of four scenarios that encompass a wide range of outcomes. We implement these scenarios in the U.S. EPA MARKAL model. Results suggest that both shifting attitudes and technology transformation may lead to emission reductions relative to present, even without additional policies. Emission caps, such as the Cross State Air Pollution Rule, are most effective at protecting against future emission increases. An important outcome of this work is the scenario implementation approach, which uses technology-specific discount rates to encourage scenario-specific technology and fuel choices. End-use energy demands are modified to approximate societal changes. This implementation allows the model to respond to perturbations in manners consistent with each scenario.

  11. Ohio Advanced Energy Manufacturing Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing andmore » implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall

  12. Effective Planning of the Future of the Arctic

    NASA Astrophysics Data System (ADS)

    Sentsov, A.; Bolsunovskaya, Yu; Bolsunovskaya, L.

    2014-08-01

    The problems of the Arctic region have become the most important ones in the world. Political risks hinder the industrial development of the region. This paper addresses the problem of planning and modeling the future of this region. It presents the problems of developing a model of the future due to the ideologies and strategies of two main actors in the Arctic, the United States and the Russian Federation. The effects of a bipolar perception of the future of the region and of the whole world are shown. A model of the effective planning of the future of the Arctic region is proposed.

  13. X-Ray Microanalysis and Electron Energy Loss Spectrometry in the Analytical Electron Microscope: Review and Future Directions

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.; Williams, D. B.

    1992-01-01

    This paper reviews and discusses future directions in analytical electron microscopy for microchemical analysis using X-ray and Electron Energy Loss Spectroscopy (EELS). The technique of X-ray microanalysis, using the ratio method and k(sub AB) factors, is outlined. The X-ray absorption correction is the major barrier to the objective of obtaining I% accuracy and precision in analysis. Spatial resolution and Minimum Detectability Limits (MDL) are considered with present limitations of spatial resolution in the 2 to 3 microns range and of MDL in the 0.1 to 0.2 wt. % range when a Field Emission Gun (FEG) system is used. Future directions of X-ray analysis include improvement in X-ray spatial resolution to the I to 2 microns range and MDL as low as 0.01 wt. %. With these improvements the detection of single atoms in the analysis volume will be possible. Other future improvements include the use of clean room techniques for thin specimen preparation, quantification available at the I% accuracy and precision level with light element analysis quantification available at better than the 10% accuracy and precision level, the incorporation of a compact wavelength dispersive spectrometer to improve X-ray spectral resolution, light element analysis and MDL, and instrument improvements including source stability, on-line probe current measurements, stage stability, and computerized stage control. The paper reviews the EELS technique, recognizing that it has been slow to develop and still remains firmly in research laboratories rather than in applications laboratories. Consideration of microanalysis with core-loss edges is given along with a discussion of the limitations such as specimen thickness. Spatial resolution and MDL are considered, recognizing that single atom detection is already possible. Plasmon loss analysis is discussed as well as fine structure analysis. New techniques for energy-loss imaging are also summarized. Future directions in the EELS technique will be

  14. URISA Address Standard

    EPA Pesticide Factsheets

    The Urban and Regional Information Systems Association (URISA) standard for addresses. The document covers thoroughfare, landmark, and postal addresses within the United States, including its outlying territories and possessions.

  15. Ferroelectric polymer dielectrics: Emerging materials for future electrostatic energy storage applications

    NASA Astrophysics Data System (ADS)

    Panda, Maheswar

    2018-05-01

    In this manuscript, the dielectric behavior of a variety of ferroelectric polymer dielectrics (FPD), which may bethe materials for future electrostatic energy storage application shave been discussed. The variety of polymer dielectrics, comprising of ferroelectric polymer[polyvinylidene fluoride (PVDF)]/non-polarpolymer [low density polyethylene (LDPE)] and different sizes of metal particles (Ni, quasicrystal of Al-Cu-Fe) as filler, were prepared through different process conditions (cold press/hot press) and are investigated experimentally. Very high values of effective dielectric constants (ɛeff) with low loss tangent (Tan δ) were observed forall the prepared FPD at their respective percolation thresholds (fc). The enhancement of ɛeff and Tan δ at the insulator to metal transition (IMT) is explained through the boundary layer capacitor effect and the percolation theory respectively. The non-universal fc/critical exponents across the IMT have been explained through percolation theory andis attributed to the fillerparticle size& shape, interaction between the components, method of their preparation, adhesiveness, connectivity and homogeneity, etc. of the samples. Recent results on developed FPD with high ɛeff and low Tan δ prepared through cold press have proven themselves to be the better candidates for low frequency and static dielectric applications.

  16. Future of Space Astronomy: A Global Road Map for the Next Decades

    NASA Technical Reports Server (NTRS)

    Ubertini, Pietro; Gehrels, Neil; Corbett, Ian; DeBernardis, Paolo; Machado, Marcos; Griffin, Matt; Hauser, Michael; Manchanda, Ravinder K.; Kawai, Nobuyuki; Zhang, Shuang-Nan; hide

    2012-01-01

    The use of space techniques continues to play a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum from the radio observations to the high energy gamma rays. The increasing size, complexity and cost of large space observatories places a growing emphasis on international collaboration. Furthermore, combining existing and future datasets from space and ground based observatories is an emerging mode of powerful and relatively inexpensive research to address problems that can only be tackled by the application of large multi-wavelength observations. If the present set of space and ground-based astronomy facilities today is impressive and complete, with space and ground based astronomy telescopes nicely complementing each other, the situation becomes concerning and critical in the next 10-20 years. In fact, only a few main space missions are planned, possibly restricted to JWST and, perhaps, WFIRST and SPICA, since no other main facilities are already recommended. A "Working Group on the Future of Space Astronomy" was established at the 38th COSPAR Assembly held in Bremen, Germany in July 2010. The purpose of this Working Group was to establish a roadmap for future major space missions to complement future large ground-based telescopes. This paper presents the results of this study including a number of recommendations and a road map for the next decades of Space Astronomy research.

  17. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Laurie Leshin, dean of the School of Science, Rensselaer Polytechnic Institute, left, Mason Peck, NASA Chief Technologist, 2nd from left, Ron Sega, Vice president and enterprise executive for Energy and the Environment, The Ohio State University and Colorado State University, Michael Donovan, technology consultant, New Services Development, Hewlett-Packard Company, and, Jordan Hansell, chairman and CEO, NetJets Inc., right, participate in the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  18. Residential energy demand models: Current status and future improvements

    NASA Astrophysics Data System (ADS)

    Peabody, G.

    1980-12-01

    Two models currently used to analyze energy use by the residential sector are described. The ORNL model is used to forecast energy use by fuel type for various end uses on a yearly basis. The MATH/CHRDS model analyzes variations in energy expenditures by households of various socioeconomic and demographic characteristics. The essential features of the ORNL and MATH/CHRDS models are retained in a proposed model and integrated into a framework that is more flexible than either model. The important determinants of energy use by households are reviewed.

  19. Addressing the Biggest (Baddest) and Best Ideas Ever: Through the Lens of Humility

    ERIC Educational Resources Information Center

    Sowcik, Matthew J.; Andenoro, Anthony C.; Council, Austin

    2017-01-01

    Now and into the foreseeable future, both effective leadership and creativity are going to be important when addressing complex problems. The connection between effective leadership and creativity will be critical as leaders look to turn big ideas into innovative solutions. However, it seems that there is often a disconnect between the two…

  20. The future of human embryonic stem cell research: addressing ethical conflict with responsible scientific research.

    PubMed

    Gilbert, David M

    2004-05-01

    Embryonic stem (ES) cells have almost unlimited regenerative capacity and can potentially generate any body tissue. Hence they hold great promise for the cure of degenerative human diseases. But their derivation and the potential for misuse have raised a number of ethical issues. These ethical issues threaten to paralyze pubic funding for ES cell research, leaving experimentation in the hands of the private sector and precluding the public's ability to monitor practices, research alternatives, and effectively address the very ethical issues that are cause for concern in the first place. With new technology being inevitable, and the potential for abuse high, government must stay involved if the public is to play a role in shaping the direction of research. In this essay, I will define levels of ethical conflict that can be delineated by the anticipated advances in technology. From the urgent need to derive new ES cell lines with existing technology, to the most far-reaching goal of deriving genetically identical tissues from an adult patients cells, technology-specific ethical dilemmas can be defined and addressed. This staged approach provides a solid ethical framework for moving forward with ES cell research. Moreover, by anticipating the moral conflicts to come, one can predict the types of scientific advances that could overcome these conflicts, and appropriately direct federal funding toward these goals to offset potentially less responsible research directives that will inevitably go forward via private or foreign funding.