Direction Finding Using Multiple MEMS Acoustic Sensors
2015-09-01
ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME...6 B. OBJECTIVE AND THESIS ORGANIZATION ..................................10 II. DIRECTION FINDING USING MULTIPLE
Towards building a team of intelligent robots
NASA Technical Reports Server (NTRS)
Varanasi, Murali R.; Mehrotra, R.
1987-01-01
Topics addressed include: collision-free motion planning of multiple robot arms; two-dimensional object recognition; and pictorial databases (storage and sharing of the representations of three-dimensional objects).
Three-dimensional passive sensing photon counting for object classification
NASA Astrophysics Data System (ADS)
Yeom, Seokwon; Javidi, Bahram; Watson, Edward
2007-04-01
In this keynote address, we address three-dimensional (3D) distortion-tolerant object recognition using photon-counting integral imaging (II). A photon-counting linear discriminant analysis (LDA) is discussed for classification of photon-limited images. We develop a compact distortion-tolerant recognition system based on the multiple-perspective imaging of II. Experimental and simulation results have shown that a low level of photons is sufficient to classify out-of-plane rotated objects.
Integrating Fuel Treatments into Comprehensive Ecosystem Management
Kevin Hyde; Greg Jones; Robin Silverstein; Keith Stockmann; Dan Loeffler
2006-01-01
To plan fuel treatments in the context of comprehensive ecosystem management, forest managers must meet multiple-use and environmental objectives, address administrative and budget constraints, and reconcile performance measures from multiple policy directives. We demonstrate a multiple criteria approach to measuring success of fuel treatments used in the Butte North...
Ego, drives, and the dynamics of internal objects
Boag, Simon
2014-01-01
This paper addresses the relationship between the ego, id, and internal objects. While ego psychology views the ego as autonomous of the drives, a less well-known alternative position views the ego as constituted by the drives. Based on Freud’s ego-instinct account, this position has developed into a school of thought which postulates that the drives act as knowers. Given that there are multiple drives, this position proposes that personality is constituted by multiple knowers. Following on from Freud, the ego is viewed as a composite sub-set of the instinctual drives (ego-drives), whereas those drives cut off from expression form the id. The nature of the “self” is developed in terms of identification and the possibility of multiple personalities is also established. This account is then extended to object-relations and the explanatory value of the ego-drive account is discussed in terms of the addressing the nature of ego-structures and the dynamic nature of internal objects. Finally, the impact of psychological conflict and the significance of repression for understanding the nature of splits within the psyche are also discussed. PMID:25071640
ERIC Educational Resources Information Center
Wholeben, Brent Edward
This report describing the use of operations research techniques to determine which courseware packages or what microcomputer systems best address varied instructional objectives focuses on the MICROPIK model, a highly structured evaluation technique for making such complex instructional decisions. MICROPIK is a multiple alternatives model (MAA)…
Sensing Strategies for Disambiguating among Multiple Objects in Known Poses.
1985-08-01
ELEMENT. PROIECT. TASK Artificial Inteligence Laboratory AE OKUI UBR 545 Technology Square Cambridge, MA 021.39 11. CONTROLLING OFFICE NAME AND ADDRESS 12...AD-Ali65 912 SENSING STRATEGIES FOR DISAMBIGURTING MONG MULTIPLE 1/1 OBJECTS IN KNOWN POSES(U) MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL ...or Dist Special 1 ’ MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A. I. Memo 855 August, 1985 Sensing Strategies for
A pricing approach for mitigating congestion in multimodal transportation systems.
DOT National Transportation Integrated Search
2010-02-19
The problem addressed in this research is to determine usage prices for a system with : multiple modes of transportation with the objective of reducing congestion. With multiple : modes, these prices can take on several forms. On road networks, the u...
Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras.
Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki
2016-06-24
Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system.
Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras
Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki
2016-01-01
Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system. PMID:27347961
Multi-Objective Reinforcement Learning for Cognitive Radio-Based Satellite Communications
NASA Technical Reports Server (NTRS)
Ferreira, Paulo Victor R.; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy M.; Bilen, Sven G.; Reinhart, Richard C.; Mortensen, Dale J.
2016-01-01
Previous research on cognitive radios has addressed the performance of various machine-learning and optimization techniques for decision making of terrestrial link properties. In this paper, we present our recent investigations with respect to reinforcement learning that potentially can be employed by future cognitive radios installed onboard satellite communications systems specifically tasked with radio resource management. This work analyzes the performance of learning, reasoning, and decision making while considering multiple objectives for time-varying communications channels, as well as different cross-layer requirements. Based on the urgent demand for increased bandwidth, which is being addressed by the next generation of high-throughput satellites, the performance of cognitive radio is assessed considering links between a geostationary satellite and a fixed ground station operating at Ka-band (26 GHz). Simulation results show multiple objective performance improvements of more than 3.5 times for clear sky conditions and 6.8 times for rain conditions.
Multi-Objective Reinforcement Learning for Cognitive Radio Based Satellite Communications
NASA Technical Reports Server (NTRS)
Ferreira, Paulo; Paffenroth, Randy; Wyglinski, Alexander; Hackett, Timothy; Bilen, Sven; Reinhart, Richard; Mortensen, Dale John
2016-01-01
Previous research on cognitive radios has addressed the performance of various machine learning and optimization techniques for decision making of terrestrial link properties. In this paper, we present our recent investigations with respect to reinforcement learning that potentially can be employed by future cognitive radios installed onboard satellite communications systems specifically tasked with radio resource management. This work analyzes the performance of learning, reasoning, and decision making while considering multiple objectives for time-varying communications channels, as well as different crosslayer requirements. Based on the urgent demand for increased bandwidth, which is being addressed by the next generation of high-throughput satellites, the performance of cognitive radio is assessed considering links between a geostationary satellite and a fixed ground station operating at Ka-band (26 GHz). Simulation results show multiple objective performance improvements of more than 3:5 times for clear sky conditions and 6:8 times for rain conditions.
Multiple Realities and Hybrid Objects: A Creative Approach of Schizophrenic Delusion
Cermolacce, Michel; Despax, Katherine; Richieri, Raphaëlle; Naudin, Jean
2018-01-01
Delusion is usually considered in DSM 5 as a false belief based on incorrect inference about external reality, but the issue of delusion raises crucial concerns, especially that of a possible (or absent) continuity between delusional and normal experiences, and the understanding of delusional experience. In the present study, we first aim to consider delusion from a perspectivist angle, according to the Multiple Reality Theory (MRT). In this model inherited from Alfred Schütz and recently addressed by Gallagher, we are not confronting one reality only, but several (such as the reality of everyday life, of imaginary life, of work, of delusion, etc.). In other terms, the MRT states that our own experience is not drawing its meaning from one reality identified as the outer reality but rather from a multiplicity of realities, each with their own logic and style. Two clinical cases illustrate how the Multiple Realities Theory (MRT) may help address the reality of delusion. Everyday reality and the reality of delusion may be articulated under a few conditions, such as compossibility [i.e., Double Book-Keeping (DBK), in Bleulerian terms] or flexibility. There are indeed possible bridges between them. Possible links with neuroscience or psychoanalysis are evoked. As the subject is confronting different realities, so do the objects among and toward which a subject is evolving. We call such objects Hybrid Objects (HO) due to their multiple belonging. They can operate as shifters, i.e., as some functional operators letting one switch from one reality to another. In the final section, we will emphasize how delusion flexibility, as a dynamic interaction between Multiple Realities, may offer psychotherapeutic possibilities within some reality shared with others, entailing relocation of the present subjects in regained access to some flexibility via Multiple Realities and perspectivism. PMID:29487553
Code of Federal Regulations, 2010 CFR
2010-01-01
... management plan, and addition of multiple-site components. 921.33 Section 921.33 Commerce and Foreign Trade... management plan, and addition of multiple-site components. (a) Changes in the boundary of a Reserve and major... management plan shall address goals and objectives for all components of the multi-site Reserve and the...
A Method for the Microanalysis of Pre-Algebra Transfer
ERIC Educational Resources Information Center
Pavlik, Philip I., Jr.; Yudelson, Michael; Koedinger, Kenneth R.
2011-01-01
The objective of this research was to better understand the transfer of learning between different variations of pre-algebra problems. While the authors could have addressed a specific variation that might address transfer, they were interested in developing a general model of transfer, so we gathered data from multiple problem types and their…
Least squares reverse time migration of controlled order multiples
NASA Astrophysics Data System (ADS)
Liu, Y.
2016-12-01
Imaging using the reverse time migration of multiples generates inherent crosstalk artifacts due to the interference among different order multiples. Traditionally, least-square fitting has been used to address this issue by seeking the best objective function to measure the amplitude differences between the predicted and observed data. We have developed an alternative objective function by decomposing multiples into different orders to minimize the difference between Born modeling predicted multiples and specific-order multiples from observational data in order to attenuate the crosstalk. This method is denoted as the least-squares reverse time migration of controlled order multiples (LSRTM-CM). Our numerical examples demonstrated that the LSRTM-CM can significantly improve image quality compared with reverse time migration of multiples and least-square reverse time migration of multiples. Acknowledgments This research was funded by the National Nature Science Foundation of China (Grant Nos. 41430321 and 41374138).
1991-12-01
abstract data type is, what an object-oriented design is and how to apply "software engineering" principles to the design of both of them. I owe a great... Program (ASVP), a research and development effort by two aerospace contractors to redesign and implement subsets of two existing flight simulators in...effort addresses how to implement a simulator designed using the SEI OOD Paradigm on a distributed, parallel, multiple instruction, multiple data (MIMD
Sensor fusion V; Proceedings of the Meeting, Boston, MA, Nov. 15-17, 1992
NASA Technical Reports Server (NTRS)
Schenker, Paul S. (Editor)
1992-01-01
Topics addressed include 3D object perception, human-machine interface in multisensor systems, sensor fusion architecture, fusion of multiple and distributed sensors, interface and decision models for sensor fusion, computational networks, simple sensing for complex action, multisensor-based control, and metrology and calibration of multisensor systems. Particular attention is given to controlling 3D objects by sketching 2D views, the graphical simulation and animation environment for flexible structure robots, designing robotic systems from sensorimotor modules, cylindrical object reconstruction from a sequence of images, an accurate estimation of surface properties by integrating information using Bayesian networks, an adaptive fusion model for a distributed detection system, multiple concurrent object descriptions in support of autonomous navigation, robot control with multiple sensors and heuristic knowledge, and optical array detectors for image sensors calibration. (No individual items are abstracted in this volume)
Mythogeography Works: Performing Multiplicity on Queen Street
ERIC Educational Resources Information Center
Smith, Phil
2011-01-01
This paper considers the exploration of, and performance on, a single street in Exeter, UK, as guided by an idea of "mythogeography" and a determination to address a place as a multiplicity of meanings, objects, accretions, rhythms and exceptions. It explores the virtues of and obstacles facing a performance made "on the hoof"…
Poonam Khanijo Ahluwalia; Nema, Arvind K
2011-07-01
Selection of optimum locations for locating new facilities and decision regarding capacities at the proposed facilities is a major concern for municipal authorities/managers. The decision as to whether a single facility is preferred over multiple facilities of smaller capacities would vary with varying priorities to cost and associated risks such as environmental or health risk or risk perceived by the society. Currently management of waste streams such as that of computer waste is being done using rudimentary practices and is flourishing as an unorganized sector, mainly as backyard workshops in many cities of developing nations such as India. Uncertainty in the quantification of computer waste generation is another major concern due to the informal setup of present computer waste management scenario. Hence, there is a need to simultaneously address uncertainty in waste generation quantities while analyzing the tradeoffs between cost and associated risks. The present study aimed to address the above-mentioned issues in a multi-time-step, multi-objective decision-support model, which can address multiple objectives of cost, environmental risk, socially perceived risk and health risk, while selecting the optimum configuration of existing and proposed facilities (location and capacities).
NASA Astrophysics Data System (ADS)
Gohatre, Umakant Bhaskar; Patil, Venkat P.
2018-04-01
In computer vision application, the multiple object detection and tracking, in real-time operation is one of the important research field, that have gained a lot of attentions, in last few years for finding non stationary entities in the field of image sequence. The detection of object is advance towards following the moving object in video and then representation of object is step to track. The multiple object recognition proof is one of the testing assignment from detection multiple objects from video sequence. The picture enrollment has been for quite some time utilized as a reason for the location the detection of moving multiple objects. The technique of registration to discover correspondence between back to back casing sets in view of picture appearance under inflexible and relative change. The picture enrollment is not appropriate to deal with event occasion that can be result in potential missed objects. In this paper, for address such problems, designs propose novel approach. The divided video outlines utilizing area adjancy diagram of visual appearance and geometric properties. Then it performed between graph sequences by using multi graph matching, then getting matching region labeling by a proposed graph coloring algorithms which assign foreground label to respective region. The plan design is robust to unknown transformation with significant improvement in overall existing work which is related to moving multiple objects detection in real time parameters.
Multiple-object tracking while driving: the multiple-vehicle tracking task.
Lochner, Martin J; Trick, Lana M
2014-11-01
Many contend that driving an automobile involves multiple-object tracking. At this point, no one has tested this idea, and it is unclear how multiple-object tracking would coordinate with the other activities involved in driving. To address some of the initial and most basic questions about multiple-object tracking while driving, we modified the tracking task for use in a driving simulator, creating the multiple-vehicle tracking task. In Experiment 1, we employed a dual-task methodology to determine whether there was interference between tracking and driving. Findings suggest that although it is possible to track multiple vehicles while driving, driving reduces tracking performance, and tracking compromises headway and lane position maintenance while driving. Modified change-detection paradigms were used to assess whether there were change localization advantages for tracked targets in multiple-vehicle tracking. When changes occurred during a blanking interval, drivers were more accurate (Experiment 2a) and ~250 ms faster (Experiment 2b) at locating the vehicle that changed when it was a target rather than a distractor in tracking. In a more realistic driving task where drivers had to brake in response to the sudden onset of brake lights in one of the lead vehicles, drivers were more accurate at localizing the vehicle that braked if it was a tracking target, although there was no advantage in terms of braking response time. Overall, results suggest that multiple-object tracking is possible while driving and perhaps even advantageous in some situations, but further research is required to determine whether multiple-object tracking is actually used in day-to-day driving.
Vanpool trip planning based on evolutionary multiple objective optimization
NASA Astrophysics Data System (ADS)
Zhao, Ming; Yang, Disheng; Feng, Shibing; Liu, Hengchang
2017-08-01
Carpool and vanpool draw a lot of researchers’ attention, which is the emphasis of this paper. A concrete vanpool operation definition is given, based on the given definition, this paper tackles vanpool operation optimization using user experience decline index(UEDI). This paper is focused on making each user having identical UEDI and the system having minimum sum of all users’ UEDI. Three contributions are made, the first contribution is a vanpool operation scheme diagram, each component of the scheme is explained in detail. The second contribution is getting all customer’s UEDI as a set, standard deviation and sum of all users’ UEDI set are used as objectives in multiple objective optimization to decide trip start address, trip start time and trip destination address. The third contribution is a trip planning algorithm, which tries to minimize the sum of all users’ UEDI. Geographical distribution of the charging stations and utilization rate of the charging stations are considered in the trip planning process.
Defining an economics research program to describe and evaluate ecosystem services.
Jeffrey D. Kline
2007-01-01
Balancing societyâs multiple and sometimes competing objectives regarding forests calls for information describing the direct and indirect benefits resulting from forest policy and management, whether to address wildfire, loss of open space, unmanaged recreation, ecosystem restoration, or other objectives. The USDA Forest Service recently has proposed the concept of...
Integrating regional conservation priorities for multiple objectives into national policy
Beger, Maria; McGowan, Jennifer; Treml, Eric A.; Green, Alison L.; White, Alan T.; Wolff, Nicholas H.; Klein, Carissa J.; Mumby, Peter J.; Possingham, Hugh P.
2015-01-01
Multinational conservation initiatives that prioritize investment across a region invariably navigate trade-offs among multiple objectives. It seems logical to focus where several objectives can be achieved efficiently, but such multi-objective hotspots may be ecologically inappropriate, or politically inequitable. Here we devise a framework to facilitate a regionally cohesive set of marine-protected areas driven by national preferences and supported by quantitative conservation prioritization analyses, and illustrate it using the Coral Triangle Initiative. We identify areas important for achieving six objectives to address ecosystem representation, threatened fauna, connectivity and climate change. We expose trade-offs between areas that contribute substantially to several objectives and those meeting one or two objectives extremely well. Hence there are two strategies to guide countries choosing to implement regional goals nationally: multi-objective hotspots and complementary sets of single-objective priorities. This novel framework is applicable to any multilateral or global initiative seeking to apply quantitative information in decision making. PMID:26364769
Multi-view video segmentation and tracking for video surveillance
NASA Astrophysics Data System (ADS)
Mohammadi, Gelareh; Dufaux, Frederic; Minh, Thien Ha; Ebrahimi, Touradj
2009-05-01
Tracking moving objects is a critical step for smart video surveillance systems. Despite the complexity increase, multiple camera systems exhibit the undoubted advantages of covering wide areas and handling the occurrence of occlusions by exploiting the different viewpoints. The technical problems in multiple camera systems are several: installation, calibration, objects matching, switching, data fusion, and occlusion handling. In this paper, we address the issue of tracking moving objects in an environment covered by multiple un-calibrated cameras with overlapping fields of view, typical of most surveillance setups. Our main objective is to create a framework that can be used to integrate objecttracking information from multiple video sources. Basically, the proposed technique consists of the following steps. We first perform a single-view tracking algorithm on each camera view, and then apply a consistent object labeling algorithm on all views. In the next step, we verify objects in each view separately for inconsistencies. Correspondent objects are extracted through a Homography transform from one view to the other and vice versa. Having found the correspondent objects of different views, we partition each object into homogeneous regions. In the last step, we apply the Homography transform to find the region map of first view in the second view and vice versa. For each region (in the main frame and mapped frame) a set of descriptors are extracted to find the best match between two views based on region descriptors similarity. This method is able to deal with multiple objects. Track management issues such as occlusion, appearance and disappearance of objects are resolved using information from all views. This method is capable of tracking rigid and deformable objects and this versatility lets it to be suitable for different application scenarios.
Dynamical tuning for MPC using population games: A water supply network application.
Barreiro-Gomez, Julian; Ocampo-Martinez, Carlos; Quijano, Nicanor
2017-07-01
Model predictive control (MPC) is a suitable strategy for the control of large-scale systems that have multiple design requirements, e.g., multiple physical and operational constraints. Besides, an MPC controller is able to deal with multiple control objectives considering them within the cost function, which implies to determine a proper prioritization for each of the objectives. Furthermore, when the system has time-varying parameters and/or disturbances, the appropriate prioritization might vary along the time as well. This situation leads to the need of a dynamical tuning methodology. This paper addresses the dynamical tuning issue by using evolutionary game theory. The advantages of the proposed method are highlighted and tested over a large-scale water supply network with periodic time-varying disturbances. Finally, results are analyzed with respect to a multi-objective MPC controller that uses static tuning. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Paige F. B. Ferguson; Michael J. Conroy; John F. Chamblee; Jeffrey Hepinstall-Cymerman
2015-01-01
Parcelization and forest fragmentation are of concern for ecological, economic, and social reasons. Efforts to keep large, private forests intact may be supported by a decision-making process that incorporates landownersâ objectives and uncertainty. We used structured decision making (SDM) with owners of large, private forests in Macon County, North Carolina....
NASA Technical Reports Server (NTRS)
Englander, Jacob; Vavrina, Matthew
2015-01-01
The customer (scientist or project manager) most often does not want just one point solution to the mission design problem Instead, an exploration of a multi-objective trade space is required. For a typical main-belt asteroid mission the customer might wish to see the trade-space of: Launch date vs. Flight time vs. Deliverable mass, while varying the destination asteroid, planetary flybys, launch year, etcetera. To address this question we use a multi-objective discrete outer-loop which defines many single objective real-valued inner-loop problems.
NASA Technical Reports Server (NTRS)
Breininger, David; Duncan, Brean; Eaton, Mitchell; Johnson, Fred; Nichols, James
2014-01-01
Land cover modeling is used to inform land management, but most often via a two-step process where science informs how management alternatives can influence resources and then decision makers can use this to make decisions. A more efficient process is to directly integrate science and decision making, where science allows us to learn to better accomplish management objectives and is developed to address specific decisions. Co-development of management and science is especially productive when decisions are complicated by multiple objectives and impeded by uncertainty. Multiple objectives can be met by specification of tradeoffs, and relevant uncertainty can be addressed through targeted science (i.e., models and monitoring). We describe how to integrate habitat and fuels monitoring with decision making focused on dual objectives of managing for endangered species and minimizing catastrophic fire risk. Under certain conditions, both objectives might be achieved by a similar management policy, but habitat trajectories suggest tradeoffs. Knowledge about system responses to actions can be informed by applying competing management actions to different land units in the same system state and by ideas about fire behavior. Monitoring and management integration is important to optimize state-specific management decisions and increase knowledge about system responses. We believe this approach has broad utility for and cover modeling programs intended to inform decision making.
Whole Watershed Restoration Planning Tools for Estimating Tradeoffs Among Multiple Objectives
We developed a set of decision support tools to assist whole watershed restoration planning in the Pacific Northwest. Here we describe how these tools are being integrated and applied in collaboration with tribes and community stakeholders to address restoration of hydrological ...
NASA Astrophysics Data System (ADS)
Zatarain Salazar, Jazmin; Reed, Patrick M.; Quinn, Julianne D.; Giuliani, Matteo; Castelletti, Andrea
2017-11-01
Reservoir operations are central to our ability to manage river basin systems serving conflicting multi-sectoral demands under increasingly uncertain futures. These challenges motivate the need for new solution strategies capable of effectively and efficiently discovering the multi-sectoral tradeoffs that are inherent to alternative reservoir operation policies. Evolutionary many-objective direct policy search (EMODPS) is gaining importance in this context due to its capability of addressing multiple objectives and its flexibility in incorporating multiple sources of uncertainties. This simulation-optimization framework has high potential for addressing the complexities of water resources management, and it can benefit from current advances in parallel computing and meta-heuristics. This study contributes a diagnostic assessment of state-of-the-art parallel strategies for the auto-adaptive Borg Multi Objective Evolutionary Algorithm (MOEA) to support EMODPS. Our analysis focuses on the Lower Susquehanna River Basin (LSRB) system where multiple sectoral demands from hydropower production, urban water supply, recreation and environmental flows need to be balanced. Using EMODPS with different parallel configurations of the Borg MOEA, we optimize operating policies over different size ensembles of synthetic streamflows and evaporation rates. As we increase the ensemble size, we increase the statistical fidelity of our objective function evaluations at the cost of higher computational demands. This study demonstrates how to overcome the mathematical and computational barriers associated with capturing uncertainties in stochastic multiobjective reservoir control optimization, where parallel algorithmic search serves to reduce the wall-clock time in discovering high quality representations of key operational tradeoffs. Our results show that emerging self-adaptive parallelization schemes exploiting cooperative search populations are crucial. Such strategies provide a promising new set of tools for effectively balancing exploration, uncertainty, and computational demands when using EMODPS.
Multi-objects recognition for distributed intelligent sensor networks
NASA Astrophysics Data System (ADS)
He, Haibo; Chen, Sheng; Cao, Yuan; Desai, Sachi; Hohil, Myron E.
2008-04-01
This paper proposes an innovative approach for multi-objects recognition for homeland security and defense based intelligent sensor networks. Unlike the conventional way of information analysis, data mining in such networks is typically characterized with high information ambiguity/uncertainty, data redundancy, high dimensionality and real-time constrains. Furthermore, since a typical military based network normally includes multiple mobile sensor platforms, ground forces, fortified tanks, combat flights, and other resources, it is critical to develop intelligent data mining approaches to fuse different information resources to understand dynamic environments, to support decision making processes, and finally to achieve the goals. This paper aims to address these issues with a focus on multi-objects recognition. Instead of classifying a single object as in the traditional image classification problems, the proposed method can automatically learn multiple objectives simultaneously. Image segmentation techniques are used to identify the interesting regions in the field, which correspond to multiple objects such as soldiers or tanks. Since different objects will come with different feature sizes, we propose a feature scaling method to represent each object in the same number of dimensions. This is achieved by linear/nonlinear scaling and sampling techniques. Finally, support vector machine (SVM) based learning algorithms are developed to learn and build the associations for different objects, and such knowledge will be adaptively accumulated for objects recognition in the testing stage. We test the effectiveness of proposed method in different simulated military environments.
Intelligent multi-sensor integrations
NASA Technical Reports Server (NTRS)
Volz, Richard A.; Jain, Ramesh; Weymouth, Terry
1989-01-01
Growth in the intelligence of space systems requires the use and integration of data from multiple sensors. Generic tools are being developed for extracting and integrating information obtained from multiple sources. The full spectrum is addressed for issues ranging from data acquisition, to characterization of sensor data, to adaptive systems for utilizing the data. In particular, there are three major aspects to the project, multisensor processing, an adaptive approach to object recognition, and distributed sensor system integration.
Breininger, David; Duncan, Brean; Eaton, Mitchell J.; Johnson, Fred; Nichols, James
2014-01-01
Land cover modeling is used to inform land management, but most often via a two-step process, where science informs how management alternatives can influence resources, and then, decision makers can use this information to make decisions. A more efficient process is to directly integrate science and decision-making, where science allows us to learn in order to better accomplish management objectives and is developed to address specific decisions. Co-development of management and science is especially productive when decisions are complicated by multiple objectives and impeded by uncertainty. Multiple objectives can be met by the specification of tradeoffs, and relevant uncertainty can be addressed through targeted science (i.e., models and monitoring). We describe how to integrate habitat and fuel monitoring with decision-making focused on the dual objectives of managing for endangered species and minimizing catastrophic fire risk. Under certain conditions, both objectives might be achieved by a similar management policy; other conditions require tradeoffs between objectives. Knowledge about system responses to actions can be informed by developing hypotheses based on ideas about fire behavior and then applying competing management actions to different land units in the same system state. Monitoring and management integration is important to optimize state-specific management decisions and to increase knowledge about system responses. We believe this approach has broad utility and identifies a clear role for land cover modeling programs intended to inform decision-making.
A Practical Approach to Address Uncertainty in Stakeholder Deliberations.
Gregory, Robin; Keeney, Ralph L
2017-03-01
This article addresses the difficulties of incorporating uncertainty about consequence estimates as part of stakeholder deliberations involving multiple alternatives. Although every prediction of future consequences necessarily involves uncertainty, a large gap exists between common practices for addressing uncertainty in stakeholder deliberations and the procedures of prescriptive decision-aiding models advanced by risk and decision analysts. We review the treatment of uncertainty at four main phases of the deliberative process: with experts asked to describe possible consequences of competing alternatives, with stakeholders who function both as individuals and as members of coalitions, with the stakeholder committee composed of all stakeholders, and with decisionmakers. We develop and recommend a model that uses certainty equivalents as a theoretically robust and practical approach for helping diverse stakeholders to incorporate uncertainties when evaluating multiple-objective alternatives as part of public policy decisions. © 2017 Society for Risk Analysis.
Decomposition-Based Decision Making for Aerospace Vehicle Design
NASA Technical Reports Server (NTRS)
Borer, Nicholas K.; Mavris, DImitri N.
2005-01-01
Most practical engineering systems design problems have multiple and conflicting objectives. Furthermore, the satisfactory attainment level for each objective ( requirement ) is likely uncertain early in the design process. Systems with long design cycle times will exhibit more of this uncertainty throughout the design process. This is further complicated if the system is expected to perform for a relatively long period of time, as now it will need to grow as new requirements are identified and new technologies are introduced. These points identify a need for a systems design technique that enables decision making amongst multiple objectives in the presence of uncertainty. Traditional design techniques deal with a single objective or a small number of objectives that are often aggregates of the overarching goals sought through the generation of a new system. Other requirements, although uncertain, are viewed as static constraints to this single or multiple objective optimization problem. With either of these formulations, enabling tradeoffs between the requirements, objectives, or combinations thereof is a slow, serial process that becomes increasingly complex as more criteria are added. This research proposal outlines a technique that attempts to address these and other idiosyncrasies associated with modern aerospace systems design. The proposed formulation first recasts systems design into a multiple criteria decision making problem. The now multiple objectives are decomposed to discover the critical characteristics of the objective space. Tradeoffs between the objectives are considered amongst these critical characteristics by comparison to a probabilistic ideal tradeoff solution. The proposed formulation represents a radical departure from traditional methods. A pitfall of this technique is in the validation of the solution: in a multi-objective sense, how can a decision maker justify a choice between non-dominated alternatives? A series of examples help the reader to observe how this technique can be applied to aerospace systems design and compare the results of this so-called Decomposition-Based Decision Making to more traditional design approaches.
Crafting Coherence: How Schools Strategically Manage Multiple, External Demands
ERIC Educational Resources Information Center
Honig, Meredith I.; Hatch, Thomas C.
2004-01-01
"Policy coherence" is an often cited but seldom achieved education policy goal. We argue that addressing this policy-practice gap requires a reconceptualization of coherence not as the objective alignment of external requirements but as a dynamic process. This article elaborates this re-conceptualization using theories of institutional…
Clinical Reasoning in Athletic Training Education: Modeling Expert Thinking
ERIC Educational Resources Information Center
Geisler, Paul R.; Lazenby, Todd W.
2009-01-01
Objective: To address the need for a more definitive approach to critical thinking during athletic training educational experiences by introducing the clinical reasoning model for critical thinking. Background: Educators are aware of the need to teach students how to think critically. The multiple domains of athletic training are comprehensive and…
McGowan, Conor P.; Lyons, James E.; Smith, David
2015-01-01
Structured decision making (SDM) is an increasingly utilized approach and set of tools for addressing complex decisions in environmental management. SDM is a value-focused thinking approach that places paramount importance on first establishing clear management objectives that reflect core values of stakeholders. To be useful for management, objectives must be transparently stated in unambiguous and measurable terms. We used these concepts to develop consensus objectives for the multiple stakeholders of horseshoe crab harvest in Delaware Bay. Participating stakeholders first agreed on a qualitative statement of fundamental objectives, and then worked to convert those objectives to specific and measurable quantities, so that management decisions could be assessed. We used a constraint-based approach where the conservation objectives for Red Knots, a species of migratory shorebird that relies on horseshoe crab eggs as a food resource during migration, constrained the utility of crab harvest. Developing utility functions to effectively reflect the management objectives allowed us to incorporate stakeholder risk aversion even though different stakeholder groups were averse to different or competing risks. While measurable objectives and quantitative utility functions seem scientific, developing these objectives was fundamentally driven by the values of the participating stakeholders.
NASA Astrophysics Data System (ADS)
McGowan, Conor P.; Lyons, James E.; Smith, David R.
2015-04-01
Structured decision making (SDM) is an increasingly utilized approach and set of tools for addressing complex decisions in environmental management. SDM is a value-focused thinking approach that places paramount importance on first establishing clear management objectives that reflect core values of stakeholders. To be useful for management, objectives must be transparently stated in unambiguous and measurable terms. We used these concepts to develop consensus objectives for the multiple stakeholders of horseshoe crab harvest in Delaware Bay. Participating stakeholders first agreed on a qualitative statement of fundamental objectives, and then worked to convert those objectives to specific and measurable quantities, so that management decisions could be assessed. We used a constraint-based approach where the conservation objectives for Red Knots, a species of migratory shorebird that relies on horseshoe crab eggs as a food resource during migration, constrained the utility of crab harvest. Developing utility functions to effectively reflect the management objectives allowed us to incorporate stakeholder risk aversion even though different stakeholder groups were averse to different or competing risks. While measurable objectives and quantitative utility functions seem scientific, developing these objectives was fundamentally driven by the values of the participating stakeholders.
Designs and Algorithms to Map Eye Tracking Data with Dynamic Multielement Moving Objects.
Kang, Ziho; Mandal, Saptarshi; Crutchfield, Jerry; Millan, Angel; McClung, Sarah N
2016-01-01
Design concepts and algorithms were developed to address the eye tracking analysis issues that arise when (1) participants interrogate dynamic multielement objects that can overlap on the display and (2) visual angle error of the eye trackers is incapable of providing exact eye fixation coordinates. These issues were addressed by (1) developing dynamic areas of interests (AOIs) in the form of either convex or rectangular shapes to represent the moving and shape-changing multielement objects, (2) introducing the concept of AOI gap tolerance (AGT) that controls the size of the AOIs to address the overlapping and visual angle error issues, and (3) finding a near optimal AGT value. The approach was tested in the context of air traffic control (ATC) operations where air traffic controller specialists (ATCSs) interrogated multiple moving aircraft on a radar display to detect and control the aircraft for the purpose of maintaining safe and expeditious air transportation. In addition, we show how eye tracking analysis results can differ based on how we define dynamic AOIs to determine eye fixations on moving objects. The results serve as a framework to more accurately analyze eye tracking data and to better support the analysis of human performance.
Designs and Algorithms to Map Eye Tracking Data with Dynamic Multielement Moving Objects
Mandal, Saptarshi
2016-01-01
Design concepts and algorithms were developed to address the eye tracking analysis issues that arise when (1) participants interrogate dynamic multielement objects that can overlap on the display and (2) visual angle error of the eye trackers is incapable of providing exact eye fixation coordinates. These issues were addressed by (1) developing dynamic areas of interests (AOIs) in the form of either convex or rectangular shapes to represent the moving and shape-changing multielement objects, (2) introducing the concept of AOI gap tolerance (AGT) that controls the size of the AOIs to address the overlapping and visual angle error issues, and (3) finding a near optimal AGT value. The approach was tested in the context of air traffic control (ATC) operations where air traffic controller specialists (ATCSs) interrogated multiple moving aircraft on a radar display to detect and control the aircraft for the purpose of maintaining safe and expeditious air transportation. In addition, we show how eye tracking analysis results can differ based on how we define dynamic AOIs to determine eye fixations on moving objects. The results serve as a framework to more accurately analyze eye tracking data and to better support the analysis of human performance. PMID:27725830
Policy challenges and approaches for the conservation of mangrove forests in Southeast Asia.
Friess, Daniel A; Thompson, Benjamin S; Brown, Ben; Amir, A Aldrie; Cameron, Clint; Koldewey, Heather J; Sasmito, Sigit D; Sidik, Frida
2016-10-01
Many drivers of mangrove forest loss operate over large scales and are most effectively addressed by policy interventions. However, conflicting or unclear policy objectives exist at multiple tiers of government, resulting in contradictory management decisions. To address this, we considered four approaches that are being used increasingly or could be deployed in Southeast Asia to ensure sustainable livelihoods and biodiversity conservation. First, a stronger incorporation of mangroves into marine protected areas (that currently focus largely on reefs and fisheries) could resolve some policy conflicts and ensure that mangroves do not fall through a policy gap. Second, examples of community and government comanagement exist, but achieving comanagement at scale will be important in reconciling stakeholders and addressing conflicting policy objectives. Third, private-sector initiatives could protect mangroves through existing and novel mechanisms in degraded areas and areas under future threat. Finally, payments for ecosystem services (PES) hold great promise for mangrove conservation, with carbon PES schemes (known as blue carbon) attracting attention. Although barriers remain to the implementation of PES, the potential to implement them at multiple scales exists. Closing the gap between mangrove conservation policies and action is crucial to the improved protection and management of this imperiled coastal ecosystem and to the livelihoods that depend on them. © 2016 Society for Conservation Biology.
Xue, Xiaonan; Kim, Mimi Y; Castle, Philip E; Strickler, Howard D
2014-03-01
Studies to evaluate clinical screening tests often face the problem that the "gold standard" diagnostic approach is costly and/or invasive. It is therefore common to verify only a subset of negative screening tests using the gold standard method. However, undersampling the screen negatives can lead to substantial overestimation of the sensitivity and underestimation of the specificity of the diagnostic test. Our objective was to develop a simple and accurate statistical method to address this "verification bias." We developed a weighted generalized estimating equation approach to estimate, in a single model, the accuracy (eg, sensitivity/specificity) of multiple assays and simultaneously compare results between assays while addressing verification bias. This approach can be implemented using standard statistical software. Simulations were conducted to assess the proposed method. An example is provided using a cervical cancer screening trial that compared the accuracy of human papillomavirus and Pap tests, with histologic data as the gold standard. The proposed approach performed well in estimating and comparing the accuracy of multiple assays in the presence of verification bias. The proposed approach is an easy to apply and accurate method for addressing verification bias in studies of multiple screening methods. Copyright © 2014 Elsevier Inc. All rights reserved.
Wireless Sensor Network Optimization: Multi-Objective Paradigm.
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-07-20
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.
Track Everything: Limiting Prior Knowledge in Online Multi-Object Recognition.
Wong, Sebastien C; Stamatescu, Victor; Gatt, Adam; Kearney, David; Lee, Ivan; McDonnell, Mark D
2017-10-01
This paper addresses the problem of online tracking and classification of multiple objects in an image sequence. Our proposed solution is to first track all objects in the scene without relying on object-specific prior knowledge, which in other systems can take the form of hand-crafted features or user-based track initialization. We then classify the tracked objects with a fast-learning image classifier, that is based on a shallow convolutional neural network architecture and demonstrate that object recognition improves when this is combined with object state information from the tracking algorithm. We argue that by transferring the use of prior knowledge from the detection and tracking stages to the classification stage, we can design a robust, general purpose object recognition system with the ability to detect and track a variety of object types. We describe our biologically inspired implementation, which adaptively learns the shape and motion of tracked objects, and apply it to the Neovision2 Tower benchmark data set, which contains multiple object types. An experimental evaluation demonstrates that our approach is competitive with the state-of-the-art video object recognition systems that do make use of object-specific prior knowledge in detection and tracking, while providing additional practical advantages by virtue of its generality.
Global, Multi-Objective Trajectory Optimization With Parametric Spreading
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Englander, Jacob A.; Phillips, Sean M.; Hughes, Kyle M.
2017-01-01
Mission design problems are often characterized by multiple, competing trajectory optimization objectives. Recent multi-objective trajectory optimization formulations enable generation of globally-optimal, Pareto solutions via a multi-objective genetic algorithm. A byproduct of these formulations is that clustering in design space can occur in evolving the population towards the Pareto front. This clustering can be a drawback, however, if parametric evaluations of design variables are desired. This effort addresses clustering by incorporating operators that encourage a uniform spread over specified design variables while maintaining Pareto front representation. The algorithm is demonstrated on a Neptune orbiter mission, and enhanced multidimensional visualization strategies are presented.
The memorial consequences of multiple-choice testing.
Marsh, Elizabeth J; Roediger, Henry L; Bjork, Robert A; Bjork, Elizabeth L
2007-04-01
The present article addresses whether multiple-choice tests may change knowledge even as they attempt to measure it. Overall, taking a multiple-choice test boosts performance on later tests, as compared with non-tested control conditions. This benefit is not limited to simple definitional questions, but holds true for SAT II questions and for items designed to tap concepts at a higher level in Bloom's (1956) taxonomy of educational objectives. Students, however, can also learn false facts from multiple-choice tests; testing leads to persistence of some multiple-choice lures on later general knowledge tests. Such persistence appears due to faulty reasoning rather than to an increase in the familiarity of lures. Even though students may learn false facts from multiple-choice tests, the positive effects of testing outweigh this cost.
Multiple Objectives Achieved with a Germination Experiment in a Science Education Biology Class
ERIC Educational Resources Information Center
Bergwerff, Ken; Warners, David
2007-01-01
In our college course, "Life Science for Elementary School Teachers," our investigation assesses the germination success of an invasive plant, purple loosestrife, compared to native wildflowers. Topics addressed include the scientific method, experimental design, seed dormancy, plant competition, ethno-botany, and success of non-native plants. The…
Duncan, Dustin T; Aldstadt, Jared; Whalen, John; Melly, Steven J; Gortmaker, Steven L
2011-11-01
Neighborhood walkability can influence physical activity. We evaluated the validity of Walk Score(®) for assessing neighborhood walkability based on GIS (objective) indicators of neighborhood walkability with addresses from four US metropolitan areas with several street network buffer distances (i.e., 400-, 800-, and 1,600-meters). Address data come from the YMCA-Harvard After School Food and Fitness Project, an obesity prevention intervention involving children aged 5-11 years and their families participating in YMCA-administered, after-school programs located in four geographically diverse metropolitan areas in the US (n = 733). GIS data were used to measure multiple objective indicators of neighborhood walkability. Walk Scores were also obtained for the participant's residential addresses. Spearman correlations between Walk Scores and the GIS neighborhood walkability indicators were calculated as well as Spearman correlations accounting for spatial autocorrelation. There were many significant moderate correlations between Walk Scores and the GIS neighborhood walkability indicators such as density of retail destinations and intersection density (p < 0.05). The magnitude varied by the GIS indicator of neighborhood walkability. Correlations generally became stronger with a larger spatial scale, and there were some geographic differences. Walk Score(®) is free and publicly available for public health researchers and practitioners. Results from our study suggest that Walk Score(®) is a valid measure of estimating certain aspects of neighborhood walkability, particularly at the 1600-meter buffer. As such, our study confirms and extends the generalizability of previous findings demonstrating that Walk Score is a valid measure of estimating neighborhood walkability in multiple geographic locations and at multiple spatial scales.
NASA Astrophysics Data System (ADS)
Shen, Wei; Zhao, Kai; Jiang, Yuan; Wang, Yan; Bai, Xiang; Yuille, Alan
2017-11-01
Object skeletons are useful for object representation and object detection. They are complementary to the object contour, and provide extra information, such as how object scale (thickness) varies among object parts. But object skeleton extraction from natural images is very challenging, because it requires the extractor to be able to capture both local and non-local image context in order to determine the scale of each skeleton pixel. In this paper, we present a novel fully convolutional network with multiple scale-associated side outputs to address this problem. By observing the relationship between the receptive field sizes of the different layers in the network and the skeleton scales they can capture, we introduce two scale-associated side outputs to each stage of the network. The network is trained by multi-task learning, where one task is skeleton localization to classify whether a pixel is a skeleton pixel or not, and the other is skeleton scale prediction to regress the scale of each skeleton pixel. Supervision is imposed at different stages by guiding the scale-associated side outputs toward the groundtruth skeletons at the appropriate scales. The responses of the multiple scale-associated side outputs are then fused in a scale-specific way to detect skeleton pixels using multiple scales effectively. Our method achieves promising results on two skeleton extraction datasets, and significantly outperforms other competitors. Additionally, the usefulness of the obtained skeletons and scales (thickness) are verified on two object detection applications: Foreground object segmentation and object proposal detection.
Pareto fronts for multiobjective optimization design on materials data
NASA Astrophysics Data System (ADS)
Gopakumar, Abhijith; Balachandran, Prasanna; Gubernatis, James E.; Lookman, Turab
Optimizing multiple properties simultaneously is vital in materials design. Here we apply infor- mation driven, statistical optimization strategies blended with machine learning methods, to address multi-objective optimization tasks on materials data. These strategies aim to find the Pareto front consisting of non-dominated data points from a set of candidate compounds with known character- istics. The objective is to find the pareto front in as few additional measurements or calculations as possible. We show how exploration of the data space to find the front is achieved by using uncer- tainties in predictions from regression models. We test our proposed design strategies on multiple, independent data sets including those from computations as well as experiments. These include data sets for Max phases, piezoelectrics and multicomponent alloys.
Joint Composable Object Model and LVC Methodology
NASA Technical Reports Server (NTRS)
Rheinsmith, Richard; Wallace, Jeffrey; Bizub, Warren; Ceranowicz, Andy; Cutts, Dannie; Powell, Edward T.; Gustavson, Paul; Lutz, Robert; McCloud, Terrell
2010-01-01
Within the Department of Defense, multiple architectures are created to serve and fulfill one or several specific service or mission related LVC training goals. Multiple Object Models exist across and within those architectures and it is there that those disparate object models are a major source of interoperability problems when developing and constructing the training scenarios. The two most commonly used architectures are; HLA and TENA, with DIS and CTIA following close behind in terms of the number of users. Although these multiple architectures can share and exchange data the underlying meta-models for runtime data exchange are quite different, requiring gateways/translators to bridge between the different object model representations; while the Department of Defense's use of gateways are generally effective in performing these functions, as the LVC environment increases so too does the cost and complexity of these gateways. Coupled with the wide range of different object models across the various user communities we increase the propensity for run time errors, increased programmer stop gap measures during coordinated exercises, or failure of the system as a whole due to unknown or unforeseen incompatibilities. The Joint Composable Object Model (JCOM) project was established under an M&S Steering Committee (MSSC)-sponsored effort with oversight and control placed under the Joint Forces Command J7 Advanced Concepts Program Directorate. The purpose of this paper is to address the initial and the current progress that has been made in the following areas; the Conceptual Model Development Format, the Common Object Model, the Architecture Neutral Data Exchange Model (ANDEM), and the association methodology to allow the re-use of multiple architecture object models and the development of the prototype persistent reusable library.
Multiple Hypothesis Tracking (MHT) for Space Surveillance: Results and Simulation Studies
NASA Astrophysics Data System (ADS)
Singh, N.; Poore, A.; Sheaff, C.; Aristoff, J.; Jah, M.
2013-09-01
With the anticipated installation of more accurate sensors and the increased probability of future collisions between space objects, the potential number of observable space objects is likely to increase by an order of magnitude within the next decade, thereby placing an ever-increasing burden on current operational systems. Moreover, the need to track closely-spaced objects due, for example, to breakups as illustrated by the recent Chinese ASAT test or the Iridium-Kosmos collision, requires new, robust, and autonomous methods for space surveillance to enable the development and maintenance of the present and future space catalog and to support the overall space surveillance mission. The problem of correctly associating a stream of uncorrelated tracks (UCTs) and uncorrelated optical observations (UCOs) into common objects is critical to mitigating the number of UCTs and is a prerequisite to subsequent space catalog maintenance. Presently, such association operations are mainly performed using non-statistical simple fixed-gate association logic. In this paper, we report on the salient features and the performance of a newly-developed statistically-robust system-level multiple hypothesis tracking (MHT) system for advanced space surveillance. The multiple-frame assignment (MFA) formulation of MHT, together with supporting astrodynamics algorithms, provides a new joint capability for space catalog maintenance, UCT/UCO resolution, and initial orbit determination. The MFA-MHT framework incorporates multiple hypotheses for report to system track data association and uses a multi-arc construction to accommodate recently developed algorithms for multiple hypothesis filtering (e.g., AEGIS, CAR-MHF, UMAP, and MMAE). This MHT framework allows us to evaluate the benefits of many different algorithms ranging from single- and multiple-frame data association to filtering and uncertainty quantification. In this paper, it will be shown that the MHT system can provide superior tracking performance compared to existing methods at a lower computational cost, especially for closely-spaced objects, in realistic multi-sensor multi-object tracking scenarios over multiple regimes of space. Specifically, we demonstrate that the prototype MHT system can accurately and efficiently process tens of thousands of UCTs and angles-only UCOs emanating from thousands of objects in LEO, GEO, MEO and HELO, many of which are closely-spaced, in real-time on a single laptop computer, thereby making it well-suited for large-scale breakup and tracking scenarios. This is possible in part because complexity reduction techniques are used to control the runtime of MHT without sacrificing accuracy. We assess the performance of MHT in relation to other tracking methods in multi-target, multi-sensor scenarios ranging from easy to difficult (i.e., widely-spaced objects to closely-spaced objects), using realistic physics and probabilities of detection less than one. In LEO, it is shown that the MHT system is able to address the challenges of processing breakups by analyzing multiple frames of data simultaneously in order to improve association decisions, reduce cross-tagging, and reduce unassociated UCTs. As a result, the multi-frame MHT system can establish orbits up to ten times faster than single-frame methods. Finally, it is shown that in GEO, MEO and HELO, the MHT system is able to address the challenges of processing angles-only optical observations by providing a unified multi-frame framework.
Saint-Michel, Brice; Georgelin, Marc; Deville, Sylvain; Pocheau, Alain
2017-06-13
The interaction of solidification fronts with objects such as particles, droplets, cells, or bubbles is a phenomenon with many natural and technological occurrences. For an object facing the front, it may yield various fates, from trapping to rejection, with large implications regarding the solidification pattern. However, whereas most situations involve multiple particles interacting with each other and the front, attention has focused almost exclusively on the interaction of a single, isolated object with the front. Here we address experimentally the interaction of multiple particles with a solidification front by performing solidification experiments of a monodisperse particle suspension in a Hele-Shaw cell with precise control of growth conditions and real-time visualization. We evidence the growth of a particle layer ahead of the front at a close-packing volume fraction, and we document its steady-state value at various solidification velocities. We then extend single-particle models to the situation of multiple particles by taking into account the additional force induced on an entering particle by viscous friction in the compacted particle layer. By a force balance model this provides an indirect measure of the repelling mean thermomolecular pressure over a particle entering the front. The presence of multiple particles is found to increase it following a reduction of the thickness of the thin liquid film that separates particles and front. We anticipate the findings reported here to provide a relevant basis to understand many complex solidification situations in geophysics, engineering, biology, or food engineering, where multiple objects interact with the front and control the resulting solidification patterns.
NASA Astrophysics Data System (ADS)
Ma, Chaojie; Di, Jianglei; Li, Ying; Xiao, Fajun; Zhang, Jiwei; Liu, Kaihui; Bai, Xuedong; Zhao, Jianlin
2018-06-01
We demonstrate, for the first time, the rotational memory effect of a multimode fiber (MMF) based on digital optical phase conjugation (DOPC) to achieve multiple-spot focusing. An implementation interferometer is used to address the challenging alignments in DOPC. By rotating the acquired phase conjugate pattern, rotational scanning through a MMF could be achieved by recording a single off-axis hologram. The generation of two focal spots through a MMF is also demonstrated by combining the rotational memory effect with the superposition principle. The results may be useful for ultrafast scanning imaging and optical manipulation of multiple objects through a MMF.
Large scale database scrubbing using object oriented software components.
Herting, R L; Barnes, M R
1998-01-01
Now that case managers, quality improvement teams, and researchers use medical databases extensively, the ability to share and disseminate such databases while maintaining patient confidentiality is paramount. A process called scrubbing addresses this problem by removing personally identifying information while keeping the integrity of the medical information intact. Scrubbing entire databases, containing multiple tables, requires that the implicit relationships between data elements in different tables of the database be maintained. To address this issue we developed DBScrub, a Java program that interfaces with any JDBC compliant database and scrubs the database while maintaining the implicit relationships within it. DBScrub uses a small number of highly configurable object-oriented software components to carry out the scrubbing. We describe the structure of these software components and how they maintain the implicit relationships within the database.
DuGoff, Eva H; Dy, Sydney; Giovannetti, Erin R; Leff, Bruce; Boyd, Cynthia M
2013-01-01
The primary study objective is to assess how three major health reform care coordination initiatives (Accountable Care Organizations, Independence at Home, and Community-Based Care Transitions) measure concepts critical to care coordination for people with multiple chronic conditions. We find that there are major differences in quality measurement across these three large and politically important programs. Quality measures currently used or proposed for these new health reform-related programs addressing care coordination primarily capture continuity of care. Other key areas of care coordination, such as care transitions, patient-centeredness, and cross-cutting care across multiple conditions are infrequently addressed. The lack of a comprehensive and consistent measure set for care coordination will pose challenges for healthcare providers and policy makers who seek, respectively, to provide and reward well-coordinated care. In addition, this heterogeneity in measuring care coordination quality will generate new information, but will inhibit comparisons between these care coordination programs. © 2013 National Association for Healthcare Quality.
DuGoff, Eva H.; Dy, Sydney; Giovannetti, Erin R.; Leff, Bruce; Boyd, Cynthia M.
2015-01-01
The primary study objective is to assess how three major health reform care coordination initiatives (Accountable Care Organizations, Independence at Home, and Community-based Care Transitions) measure concepts critical to care coordination for people with multiple chronic conditions. We find that there are major differences in quality measurement across these three large and politically important programs. Quality measures currently used or proposed for these new health reform-related programs addressing care coordination primarily capture continuity of care. Other key areas of care coordination, such as care transitions, patient-centeredness, and cross-cutting care across multiple conditions are infrequently addressed. The lack of a comprehensive and consistent measure set for care coordination will pose challenges for health care providers and policymakers who seek, respectively, to provide and reward well-coordinated care. In addition, this heterogeneity in measuring care coordination quality will generate new information, but will inhibit comparisons between these care coordination programs. PMID:24004040
ERIC Educational Resources Information Center
Wagner, Valentin; Jescheniak, Jorg D.; Schriefers, Herbert
2010-01-01
Three picture-word interference experiments addressed the question of whether the scope of grammatical advance planning in sentence production corresponds to some fixed unit or rather is flexible. Subjects produced sentences of different formats under varying amounts of cognitive load. When speakers described 2-object displays with simple…
Trading off species protection and timber production in forests managed for multiple objectives
Vladimir Marianov; Stephanie Snyder; Charles ReVelle
2004-01-01
We address a multiobjective forest-management problem that maximizes harvested timber volume and maximizes the protection of species through the selection of protected habitat reserves. As opposed to reserving parcels of the forest for general habitat purposes, as most published works do, the model we present, and its several variants, concentrate on the preservation...
Variability in perceived satisfaction of reservoir management objectives
Owen, W.J.; Gates, T.K.; Flug, M.
1997-01-01
Fuzzy set theory provides a useful model to address imprecision in interpreting linguistically described objectives for reservoir management. Fuzzy membership functions can be used to represent degrees of objective satisfaction for different values of management variables. However, lack of background information, differing experiences and qualifications, and complex interactions of influencing factors can contribute to significant variability among membership functions derived from surveys of multiple experts. In the present study, probabilistic membership functions are used to model variability in experts' perceptions of satisfaction of objectives for hydropower generation, fish habitat, kayaking, rafting, and scenery preservation on the Green River through operations of Flaming Gorge Dam. Degree of variability in experts' perceptions differed among objectives but resulted in substantial uncertainty in estimation of optimal reservoir releases.
Wireless Sensor Network Optimization: Multi-Objective Paradigm
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-01-01
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271
Design of a clinical notification system.
Wagner, M M; Tsui, F C; Pike, J; Pike, L
1999-01-01
We describe the requirements and design of an enterprise-wide notification system. From published descriptions of notification schemes, our own experience, and use cases provided by diverse users in our institution, we developed a set of functional requirements. The resulting design supports multiple communication channels, third party mappings (algorithms) from message to recipient and/or channel of delivery, and escalation algorithms. A requirement for multiple message formats is addressed by a document specification. We implemented this system in Java as a CORBA object. This paper describes the design and current implementation of our notification system.
Duncan, Dustin T.; Aldstadt, Jared; Whalen, John; Melly, Steven J.; Gortmaker, Steven L.
2011-01-01
Neighborhood walkability can influence physical activity. We evaluated the validity of Walk Score® for assessing neighborhood walkability based on GIS (objective) indicators of neighborhood walkability with addresses from four US metropolitan areas with several street network buffer distances (i.e., 400-, 800-, and 1,600-meters). Address data come from the YMCA-Harvard After School Food and Fitness Project, an obesity prevention intervention involving children aged 5–11 years and their families participating in YMCA-administered, after-school programs located in four geographically diverse metropolitan areas in the US (n = 733). GIS data were used to measure multiple objective indicators of neighborhood walkability. Walk Scores were also obtained for the participant’s residential addresses. Spearman correlations between Walk Scores and the GIS neighborhood walkability indicators were calculated as well as Spearman correlations accounting for spatial autocorrelation. There were many significant moderate correlations between Walk Scores and the GIS neighborhood walkability indicators such as density of retail destinations and intersection density (p < 0.05). The magnitude varied by the GIS indicator of neighborhood walkability. Correlations generally became stronger with a larger spatial scale, and there were some geographic differences. Walk Score® is free and publicly available for public health researchers and practitioners. Results from our study suggest that Walk Score® is a valid measure of estimating certain aspects of neighborhood walkability, particularly at the 1600-meter buffer. As such, our study confirms and extends the generalizability of previous findings demonstrating that Walk Score is a valid measure of estimating neighborhood walkability in multiple geographic locations and at multiple spatial scales. PMID:22163200
Hernández Esteban, Carlos; Vogiatzis, George; Cipolla, Roberto
2008-03-01
This paper addresses the problem of obtaining complete, detailed reconstructions of textureless shiny objects. We present an algorithm which uses silhouettes of the object, as well as images obtained under changing illumination conditions. In contrast with previous photometric stereo techniques, ours is not limited to a single viewpoint but produces accurate reconstructions in full 3D. A number of images of the object are obtained from multiple viewpoints, under varying lighting conditions. Starting from the silhouettes, the algorithm recovers camera motion and constructs the object's visual hull. This is then used to recover the illumination and initialise a multi-view photometric stereo scheme to obtain a closed surface reconstruction. There are two main contributions in this paper: Firstly we describe a robust technique to estimate light directions and intensities and secondly, we introduce a novel formulation of photometric stereo which combines multiple viewpoints and hence allows closed surface reconstructions. The algorithm has been implemented as a practical model acquisition system. Here, a quantitative evaluation of the algorithm on synthetic data is presented together with complete reconstructions of challenging real objects. Finally, we show experimentally how even in the case of highly textured objects, this technique can greatly improve on correspondence-based multi-view stereo results.
Toward automated formation of microsphere arrangements using multiplexed optical tweezers
NASA Astrophysics Data System (ADS)
Rajasekaran, Keshav; Bollavaram, Manasa; Banerjee, Ashis G.
2016-09-01
Optical tweezers offer certain advantages such as multiplexing using a programmable spatial light modulator, flexibility in the choice of the manipulated object and the manipulation medium, precise control, easy object release, and minimal object damage. However, automated manipulation of multiple objects in parallel, which is essential for efficient and reliable formation of micro-scale assembly structures, poses a difficult challenge. There are two primary research issues in addressing this challenge. First, the presence of stochastic Langevin force giving rise to Brownian motion requires motion control for all the manipulated objects at fast rates of several Hz. Second, the object dynamics is non-linear and even difficult to represent analytically due to the interaction of multiple optical traps that are manipulating neighboring objects. As a result, automated controllers have not been realized for tens of objects, particularly with three dimensional motions with guaranteed collision avoidances. In this paper, we model the effect of interacting optical traps on microspheres with significant Brownian motions in stationary fluid media, and develop simplified state-space representations. These representations are used to design a model predictive controller to coordinate the motions of several spheres in real time. Preliminary experiments demonstrate the utility of the controller in automatically forming desired arrangements of varying configurations starting with randomly dispersed microspheres.
Structural Analysis in a Conceptual Design Framework
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.
2012-01-01
Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.
Comparative study on collaborative interaction in non-immersive and immersive systems
NASA Astrophysics Data System (ADS)
Shahab, Qonita M.; Kwon, Yong-Moo; Ko, Heedong; Mayangsari, Maria N.; Yamasaki, Shoko; Nishino, Hiroaki
2007-09-01
This research studies the Virtual Reality simulation for collaborative interaction so that different people from different places can interact with one object concurrently. Our focus is the real-time handling of inputs from multiple users, where object's behavior is determined by the combination of the multiple inputs. Issues addressed in this research are: 1) The effects of using haptics on a collaborative interaction, 2) The possibilities of collaboration between users from different environments. We conducted user tests on our system in several cases: 1) Comparison between non-haptics and haptics collaborative interaction over LAN, 2) Comparison between non-haptics and haptics collaborative interaction over Internet, and 3) Analysis of collaborative interaction between non-immersive and immersive display environments. The case studies are the interaction of users in two cases: collaborative authoring of a 3D model by two users, and collaborative haptic interaction by multiple users. In Virtual Dollhouse, users can observe physics law while constructing a dollhouse using existing building blocks, under gravity effects. In Virtual Stretcher, multiple users can collaborate on moving a stretcher together while feeling each other's haptic motions.
Medicaid's Complex Goals: Challenges for Managed Care and Behavioral Health
Gold, Marsha; Mittler, Jessica
2000-01-01
The Medicaid program has become increasingly complex as policymakers use it to address various policy objectives, leading to structural tensions that surface with Medicaid managed care. In this article, we illustrate this complexity by focusing on the experience of three States with behavioral health carveouts—Maryland, Oregon, and Tennessee. Converting to Medicaid managed care forces policymakers to confront Medicaid's competing policy objectives, multiplicity of stakeholders, and diverse patients, many with complex needs. Emerging Medicaid managed care systems typically represent compromises in which existing inequities and fragmentation are reconfigured rather than eliminated. PMID:12500322
ERIC Educational Resources Information Center
Sinclair, Anne; Baldwin, Beatrice
An anonymous 12-item, multiple-choice questionnaire was administered to 218 southern college, introductory zoology students prior to and following a study of evolutionary theory to assess their understanding and acceptance of the credibility of the evidence supporting the theory. Key topics addressed were the history of evolutionary thought, basic…
Addressing wild turkey population declines using structured decision making
Robinson, Kelly F.; Fuller, Angela K.; Schiavone, Michael V.; Swift, Bryan L.; Diefenbach, Duane R.; Siemer, William F.; Decker, Daniel J.
2017-01-01
We present a case study from New York, USA, of the use of structured decision making (SDM) to identify fall turkey harvest regulations that best meet stakeholder objectives, in light of recent apparent declines in abundance of wild turkeys in the northeastern United States. We used the SDM framework to incorporate the multiple objectives associated with turkey hunting, stakeholder desires, and region-specific ecological and environmental factors that could influence fall harvest. We identified a set of 4 fall harvest regulations, composed of different season lengths and bag limits, and evaluated their relative achievement of the objectives. We used a stochastic turkey population model, statistical modeling, and expert elicitation to evaluate the consequences of each harvest regulation on each of the objectives. We conducted a statewide mail survey of fall turkey hunters in New York to gather the necessary information to evaluate tradeoffs among multiple objectives associated with hunter satisfaction. The optimal fall harvest regulation was a 2-week season and allowed for the harvest of 1 bird/hunter. This regulation was the most conservative of those evaluated, reflecting the concerns about recent declines in turkey abundance among agency wildlife biologists and the hunting public. Depending on the region of the state, the 2-week, 1-bird regulation was predicted to result in 7–32% more turkeys on the landscape after 5 years. The SDM process provided a transparent framework for setting fall turkey harvest regulations and reduced potential stakeholder conflict by explicitly taking the multiple objectives of different stakeholder groups into account.
Visual Prediction Error Spreads Across Object Features in Human Visual Cortex
Summerfield, Christopher; Egner, Tobias
2016-01-01
Visual cognition is thought to rely heavily on contextual expectations. Accordingly, previous studies have revealed distinct neural signatures for expected versus unexpected stimuli in visual cortex. However, it is presently unknown how the brain combines multiple concurrent stimulus expectations such as those we have for different features of a familiar object. To understand how an unexpected object feature affects the simultaneous processing of other expected feature(s), we combined human fMRI with a task that independently manipulated expectations for color and motion features of moving-dot stimuli. Behavioral data and neural signals from visual cortex were then interrogated to adjudicate between three possible ways in which prediction error (surprise) in the processing of one feature might affect the concurrent processing of another, expected feature: (1) feature processing may be independent; (2) surprise might “spread” from the unexpected to the expected feature, rendering the entire object unexpected; or (3) pairing a surprising feature with an expected feature might promote the inference that the two features are not in fact part of the same object. To formalize these rival hypotheses, we implemented them in a simple computational model of multifeature expectations. Across a range of analyses, behavior and visual neural signals consistently supported a model that assumes a mixing of prediction error signals across features: surprise in one object feature spreads to its other feature(s), thus rendering the entire object unexpected. These results reveal neurocomputational principles of multifeature expectations and indicate that objects are the unit of selection for predictive vision. SIGNIFICANCE STATEMENT We address a key question in predictive visual cognition: how does the brain combine multiple concurrent expectations for different features of a single object such as its color and motion trajectory? By combining a behavioral protocol that independently varies expectation of (and attention to) multiple object features with computational modeling and fMRI, we demonstrate that behavior and fMRI activity patterns in visual cortex are best accounted for by a model in which prediction error in one object feature spreads to other object features. These results demonstrate how predictive vision forms object-level expectations out of multiple independent features. PMID:27810936
Regularized Embedded Multiple Kernel Dimensionality Reduction for Mine Signal Processing.
Li, Shuang; Liu, Bing; Zhang, Chen
2016-01-01
Traditional multiple kernel dimensionality reduction models are generally based on graph embedding and manifold assumption. But such assumption might be invalid for some high-dimensional or sparse data due to the curse of dimensionality, which has a negative influence on the performance of multiple kernel learning. In addition, some models might be ill-posed if the rank of matrices in their objective functions was not high enough. To address these issues, we extend the traditional graph embedding framework and propose a novel regularized embedded multiple kernel dimensionality reduction method. Different from the conventional convex relaxation technique, the proposed algorithm directly takes advantage of a binary search and an alternative optimization scheme to obtain optimal solutions efficiently. The experimental results demonstrate the effectiveness of the proposed method for supervised, unsupervised, and semisupervised scenarios.
Birken, Sarah A; Powell, Byron J; Presseau, Justin; Kirk, M Alexis; Lorencatto, Fabiana; Gould, Natalie J; Shea, Christopher M; Weiner, Bryan J; Francis, Jill J; Yu, Yan; Haines, Emily; Damschroder, Laura J
2017-01-05
Over 60 implementation frameworks exist. Using multiple frameworks may help researchers to address multiple study purposes, levels, and degrees of theoretical heritage and operationalizability; however, using multiple frameworks may result in unnecessary complexity and redundancy if doing so does not address study needs. The Consolidated Framework for Implementation Research (CFIR) and the Theoretical Domains Framework (TDF) are both well-operationalized, multi-level implementation determinant frameworks derived from theory. As such, the rationale for using the frameworks in combination (i.e., CFIR + TDF) is unclear. The objective of this systematic review was to elucidate the rationale for using CFIR + TDF by (1) describing studies that have used CFIR + TDF, (2) how they used CFIR + TDF, and (2) their stated rationale for using CFIR + TDF. We undertook a systematic review to identify studies that mentioned both the CFIR and the TDF, were written in English, were peer-reviewed, and reported either a protocol or results of an empirical study in MEDLINE/PubMed, PsycInfo, Web of Science, or Google Scholar. We then abstracted data into a matrix and analyzed it qualitatively, identifying salient themes. We identified five protocols and seven completed studies that used CFIR + TDF. CFIR + TDF was applied to studies in several countries, to a range of healthcare interventions, and at multiple intervention phases; used many designs, methods, and units of analysis; and assessed a variety of outcomes. Three studies indicated that using CFIR + TDF addressed multiple study purposes. Six studies indicated that using CFIR + TDF addressed multiple conceptual levels. Four studies did not explicitly state their rationale for using CFIR + TDF. Differences in the purposes that authors of the CFIR (e.g., comprehensive set of implementation determinants) and the TDF (e.g., intervention development) propose help to justify the use of CFIR + TDF. Given that the CFIR and the TDF are both multi-level frameworks, the rationale that using CFIR + TDF is needed to address multiple conceptual levels may reflect potentially misleading conventional wisdom. On the other hand, using CFIR + TDF may more fully define the multi-level nature of implementation. To avoid concerns about unnecessary complexity and redundancy, scholars who use CFIR + TDF and combinations of other frameworks should specify how the frameworks contribute to their study. PROSPERO CRD42015027615.
Achieving interoperability for metadata registries using comparative object modeling.
Park, Yu Rang; Kim, Ju Han
2010-01-01
Achieving data interoperability between organizations relies upon agreed meaning and representation (metadata) of data. For managing and registering metadata, many organizations have built metadata registries (MDRs) in various domains based on international standard for MDR framework, ISO/IEC 11179. Following this trend, two pubic MDRs in biomedical domain have been created, United States Health Information Knowledgebase (USHIK) and cancer Data Standards Registry and Repository (caDSR), from U.S. Department of Health & Human Services and National Cancer Institute (NCI), respectively. Most MDRs are implemented with indiscriminate extending for satisfying organization-specific needs and solving semantic and structural limitation of ISO/IEC 11179. As a result it is difficult to address interoperability among multiple MDRs. In this paper, we propose an integrated metadata object model for achieving interoperability among multiple MDRs. To evaluate this model, we developed an XML Schema Definition (XSD)-based metadata exchange format. We created an XSD-based metadata exporter, supporting both the integrated metadata object model and organization-specific MDR formats.
Structured decision making for managing pneumonia epizootics in bighorn sheep
Sells, Sarah N.; Mitchell, Michael S.; Edwards, Victoria L.; Gude, Justin A.; Anderson, Neil J.
2016-01-01
Good decision-making is essential to conserving wildlife populations. Although there may be multiple ways to address a problem, perfect solutions rarely exist. Managers are therefore tasked with identifying decisions that will best achieve desired outcomes. Structured decision making (SDM) is a method of decision analysis used to identify the most effective, efficient, and realistic decisions while accounting for values and priorities of the decision maker. The stepwise process includes identifying the management problem, defining objectives for solving the problem, developing alternative approaches to achieve the objectives, and formally evaluating which alternative is most likely to accomplish the objectives. The SDM process can be more effective than informal decision-making because it provides a transparent way to quantitatively evaluate decisions for addressing multiple management objectives while incorporating science, uncertainty, and risk tolerance. To illustrate the application of this process to a management need, we present an SDM-based decision tool developed to identify optimal decisions for proactively managing risk of pneumonia epizootics in bighorn sheep (Ovis canadensis) in Montana. Pneumonia epizootics are a major challenge for managers due to long-term impacts to herds, epistemic uncertainty in timing and location of future epizootics, and consequent difficulty knowing how or when to manage risk. The decision tool facilitates analysis of alternative decisions for how to manage herds based on predictions from a risk model, herd-specific objectives, and predicted costs and benefits of each alternative. Decision analyses for 2 example herds revealed that meeting management objectives necessitates specific approaches unique to each herd. The analyses showed how and under what circumstances the alternatives are optimal compared to other approaches and current management. Managers can be confident that these decisions are effective, efficient, and realistic because they explicitly account for important considerations managers implicitly weigh when making decisions, including competing management objectives, uncertainty in potential outcomes, and risk tolerance.
Reinhardt, Kristina; Fanzo, Jessica
2014-01-01
Chronic malnutrition, including stunting, is an important example of a global challenge that spans multiple sectors, specifically health, agriculture, and the environment. The objective of this paper is to review current knowledge on the causes and consequences of chronic malnutrition and their relationship with multiple sectors. Understanding the causes includes approaching chronic malnutrition from the basic, underlying, and immediate levels. The causes reach from macro-level environmental influences to specific micronutrient intake. In order to effectively address stunting, it is important to understand the timing of stunting and the ability of individuals to catch up in terms of linear growth, cognitive ability, and immune function. The consequences of chronic malnutrition are transgenerational and they have an impact at the individual, community, and national level in the short- and long-term. There are still many gaps in knowledge regarding both the causes and consequences of chronic malnutrition, particularly when it comes to the interaction with agriculture and the environment, and understanding these gaps is important to addressing the burden of chronic malnutrition through evidence-based interventions. PMID:25988116
Grant, Stephen R
2006-01-01
SYNOPSIS Objective This study extends recent research on assessing the risk of intimate partner violence by determining the concurrent and predictive validity of a revised version of the Domestic Violence Screening Instrument (DVSI-R) and whether evidence of such validity is sustained independent of perpetrator demographic characteristics and forms of intimate violence. The analyses highlight violent incidents involving multiple victims as an indicator of “severe” violence. Previous research did not address these issues. Methods Data were analyzed on 14,970 assessments conducted in the State of Connecticut from September 1, 2004 through May 2, 2005. Hierarchical regression and receiver operating characteristic analyses were used to address the objectives of this research. Results The empirical findings support the concurrent and predictive validity of the DVSI-R and show that it is robust in its applicability. The findings further show that incidents involving multiple victims are highly associated with DVSI-R risk scores and recidivistic violence. Conclusion Validating and demonstrating the robustness of a risk assessment instrument is only a first step in preventing violence involving intimate partners or others in family or family-like relationships. The challenge is to train professionals responsible for addressing the problem of such violence to link valid risk assessments to well-crafted strategies of supervision and treatment so that the victimized or other potential victims are protected and perpetrators are held accountable for their actions. PMID:16827441
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, R.C.; Fujimura, K.; Unseren, M.A.
One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR)at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of positionmore » and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace. 15 refs., 3 figs.« less
A Comparative Analysis of Three Monocular Passive Ranging Methods on Real Infrared Sequences
NASA Astrophysics Data System (ADS)
Bondžulić, Boban P.; Mitrović, Srđan T.; Barbarić, Žarko P.; Andrić, Milenko S.
2013-09-01
Three monocular passive ranging methods are analyzed and tested on the real infrared sequences. The first method exploits scale changes of an object in successive frames, while other two use Beer-Lambert's Law. Ranging methods are evaluated by comparing with simultaneously obtained reference data at the test site. Research is addressed on scenarios where multiple sensor views or active measurements are not possible. The results show that these methods for range estimation can provide the fidelity required for object tracking. Maximum values of relative distance estimation errors in near-ideal conditions are less than 8%.
Multi-objective reverse logistics model for integrated computer waste management.
Ahluwalia, Poonam Khanijo; Nema, Arvind K
2006-12-01
This study aimed to address the issues involved in the planning and design of a computer waste management system in an integrated manner. A decision-support tool is presented for selecting an optimum configuration of computer waste management facilities (segregation, storage, treatment/processing, reuse/recycle and disposal) and allocation of waste to these facilities. The model is based on an integer linear programming method with the objectives of minimizing environmental risk as well as cost. The issue of uncertainty in the estimated waste quantities from multiple sources is addressed using the Monte Carlo simulation technique. An illustrated example of computer waste management in Delhi, India is presented to demonstrate the usefulness of the proposed model and to study tradeoffs between cost and risk. The results of the example problem show that it is possible to reduce the environmental risk significantly by a marginal increase in the available cost. The proposed model can serve as a powerful tool to address the environmental problems associated with exponentially growing quantities of computer waste which are presently being managed using rudimentary methods of reuse, recovery and disposal by various small-scale vendors.
Multi-Objective Community Detection Based on Memetic Algorithm
2015-01-01
Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels. PMID:25932646
Multi-objective community detection based on memetic algorithm.
Wu, Peng; Pan, Li
2015-01-01
Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels.
Advanced Three-Dimensional Display System
NASA Technical Reports Server (NTRS)
Geng, Jason
2005-01-01
A desktop-scale, computer-controlled display system, initially developed for NASA and now known as the VolumeViewer(TradeMark), generates three-dimensional (3D) images of 3D objects in a display volume. This system differs fundamentally from stereoscopic and holographic display systems: The images generated by this system are truly 3D in that they can be viewed from almost any angle, without the aid of special eyeglasses. It is possible to walk around the system while gazing at its display volume to see a displayed object from a changing perspective, and multiple observers standing at different positions around the display can view the object simultaneously from their individual perspectives, as though the displayed object were a real 3D object. At the time of writing this article, only partial information on the design and principle of operation of the system was available. It is known that the system includes a high-speed, silicon-backplane, ferroelectric-liquid-crystal spatial light modulator (SLM), multiple high-power lasers for projecting images in multiple colors, a rotating helix that serves as a moving screen for displaying voxels [volume cells or volume elements, in analogy to pixels (picture cells or picture elements) in two-dimensional (2D) images], and a host computer. The rotating helix and its motor drive are the only moving parts. Under control by the host computer, a stream of 2D image patterns is generated on the SLM and projected through optics onto the surface of the rotating helix. The system utilizes a parallel pixel/voxel-addressing scheme: All the pixels of the 2D pattern on the SLM are addressed simultaneously by laser beams. This parallel addressing scheme overcomes the difficulty of achieving both high resolution and a high frame rate in a raster scanning or serial addressing scheme. It has been reported that the structure of the system is simple and easy to build, that the optical design and alignment are not difficult, and that the system can be built by use of commercial off-the-shelf products. A prototype of the system displays an image of 1,024 by 768 by 170 (=133,693,440) voxels. In future designs, the resolution could be increased. The maximum number of voxels that can be generated depends upon the spatial resolution of SLM and the speed of rotation of the helix. For example, one could use an available SLM that has 1,024 by 1,024 pixels. Incidentally, this SLM is capable of operation at a switching speed of 300,000 frames per second. Implementation of full-color displays in future versions of the system would be straightforward: One could use three SLMs for red, green, and blue, respectively, and the colors of the voxels could be automatically controlled. An optically simpler alternative would be to use a single red/green/ blue light projector and synchronize the projection of each color with the generation of patterns for that color on a single SLM.
Assessment of the core learning objectives curriculum for the urology clerkship.
Rapp, David E; Gong, Edward M; Reynolds, W Stuart; Lucioni, Alvaro; Zagaja, Gregory P
2007-11-01
The traditional approach to the surgical clerkship has limitations, including variability of clinical exposure. To optimize student education we developed and introduced the core learning objectives curriculum, which is designed to allow students freedom to direct their learning and focus on core concepts. We performed a prospective, randomized, controlled study to compare the efficacy of core learning objectives vs traditional curricula through objective and subjective measures. Medical students were randomly assigned to the core learning objectives or traditional curricula during the 2-week urology clerkship. Faculty was blinded to student assignment. Upon rotation completion all students were given a 20-question multiple choice examination covering basic urology concepts. In addition, students completed a questionnaire addressing subjective clerkship satisfaction, comprising 15 questions. Between June 2005 and January 2007, 10 core learning objectives students and 10 traditional students completed the urology clerkship. The average +/- SEM multiple choice examination score was 12.1 +/- 0.87 and 9.8 +/- 0.59 for students assigned to the core learning objectives and traditional curricula, respectively (p <0.05). Subjective scores were higher in the core learning objectives cohort, although this result did not attain statistical significance (124.9 +/- 3.72 vs 114.3 +/- 4.96, p = 0.1). Core learning objectives students reported higher satisfaction in all 15 assessed subjective end points. Our experience suggests that the core learning objectives model may be an effective educational tool to help students achieve a broad and directed exposure to the core urological concepts.
Structure preserving clustering-object tracking via subgroup motion pattern segmentation
NASA Astrophysics Data System (ADS)
Fan, Zheyi; Zhu, Yixuan; Jiang, Jiao; Weng, Shuqin; Liu, Zhiwen
2018-01-01
Tracking clustering objects with similar appearances simultaneously in collective scenes is a challenging task in the field of collective motion analysis. Recent work on clustering-object tracking often suffers from poor tracking accuracy and terrible real-time performance due to the neglect or the misjudgment of the motion differences among objects. To address this problem, we propose a subgroup motion pattern segmentation framework based on a multilayer clustering structure and establish spatial constraints only among objects in the same subgroup, which entails having consistent motion direction and close spatial position. In addition, the subgroup segmentation results are updated dynamically because crowd motion patterns are changeable and affected by objects' destinations and scene structures. The spatial structure information combined with the appearance similarity information is used in the structure preserving object tracking framework to track objects. Extensive experiments conducted on several datasets containing multiple real-world crowd scenes validate the accuracy and the robustness of the presented algorithm for tracking objects in collective scenes.
Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming
2018-02-28
The brain represents visual objects with topographic cortical patterns. To address how distributed visual representations enable object categorization, we established predictive encoding models based on a deep residual network, and trained them to predict cortical responses to natural movies. Using this predictive model, we mapped human cortical representations to 64,000 visual objects from 80 categories with high throughput and accuracy. Such representations covered both the ventral and dorsal pathways, reflected multiple levels of object features, and preserved semantic relationships between categories. In the entire visual cortex, object representations were organized into three clusters of categories: biological objects, non-biological objects, and background scenes. In a finer scale specific to each cluster, object representations revealed sub-clusters for further categorization. Such hierarchical clustering of category representations was mostly contributed by cortical representations of object features from middle to high levels. In summary, this study demonstrates a useful computational strategy to characterize the cortical organization and representations of visual features for rapid categorization.
Motion and force control for multiple cooperative manipulators
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz, Kenneth
1989-01-01
The motion and force control of multiple robot arms manipulating a commonly held object is addressed. A general control paradigm that decouples the motion and force control problems is introduced. For motion control, there are three natural choices: (1) joint torques, (2) arm-tip force vectors, and (3) the acceleration of a generalized coordinate. Choice (1) allows a class of relatively model-independent control laws by exploiting the Hamiltonian structure of the open-loop system; (2) and (3) require the full model information but produce simpler problems. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, the allocation of the desired end-effector control force to the joint actuators can be optimized; otherwise the internal force can be controlled about some set point. It is shown that effective force regulation can be achieved even if little model information is available.
Model calibration criteria for estimating ecological flow characteristics
Vis, Marc; Knight, Rodney; Poole, Sandra; Wolfe, William J.; Seibert, Jan; Breuer, Lutz; Kraft, Philipp
2016-01-01
Quantification of streamflow characteristics in ungauged catchments remains a challenge. Hydrological modeling is often used to derive flow time series and to calculate streamflow characteristics for subsequent applications that may differ from those envisioned by the modelers. While the estimation of model parameters for ungauged catchments is a challenging research task in itself, it is important to evaluate whether simulated time series preserve critical aspects of the streamflow hydrograph. To address this question, seven calibration objective functions were evaluated for their ability to preserve ecologically relevant streamflow characteristics of the average annual hydrograph using a runoff model, HBV-light, at 27 catchments in the southeastern United States. Calibration trials were repeated 100 times to reduce parameter uncertainty effects on the results, and 12 ecological flow characteristics were computed for comparison. Our results showed that the most suitable calibration strategy varied according to streamflow characteristic. Combined objective functions generally gave the best results, though a clear underprediction bias was observed. The occurrence of low prediction errors for certain combinations of objective function and flow characteristic suggests that (1) incorporating multiple ecological flow characteristics into a single objective function would increase model accuracy, potentially benefitting decision-making processes; and (2) there may be a need to have different objective functions available to address specific applications of the predicted time series.
Faint Object Detection in Multi-Epoch Observations via Catalog Data Fusion
NASA Astrophysics Data System (ADS)
Budavári, Tamás; Szalay, Alexander S.; Loredo, Thomas J.
2017-03-01
Astronomy in the time-domain era faces several new challenges. One of them is the efficient use of observations obtained at multiple epochs. The work presented here addresses faint object detection and describes an incremental strategy for separating real objects from artifacts in ongoing surveys. The idea is to produce low-threshold single-epoch catalogs and to accumulate information across epochs. This is in contrast to more conventional strategies based on co-added or stacked images. We adopt a Bayesian approach, addressing object detection by calculating the marginal likelihoods for hypotheses asserting that there is no object or one object in a small image patch containing at most one cataloged source at each epoch. The object-present hypothesis interprets the sources in a patch at different epochs as arising from a genuine object; the no-object hypothesis interprets candidate sources as spurious, arising from noise peaks. We study the detection probability for constant-flux objects in a Gaussian noise setting, comparing results based on single and stacked exposures to results based on a series of single-epoch catalog summaries. Our procedure amounts to generalized cross-matching: it is the product of a factor accounting for the matching of the estimated fluxes of the candidate sources and a factor accounting for the matching of their estimated directions. We find that probabilistic fusion of multi-epoch catalogs can detect sources with similar sensitivity and selectivity compared to stacking. The probabilistic cross-matching framework underlying our approach plays an important role in maintaining detection sensitivity and points toward generalizations that could accommodate variability and complex object structure.
NASA Astrophysics Data System (ADS)
Langton, John T.; Caroli, Joseph A.; Rosenberg, Brad
2008-04-01
To support an Effects Based Approach to Operations (EBAO), Intelligence, Surveillance, and Reconnaissance (ISR) planners must optimize collection plans within an evolving battlespace. A need exists for a decision support tool that allows ISR planners to rapidly generate and rehearse high-performing ISR plans that balance multiple objectives and constraints to address dynamic collection requirements for assessment. To meet this need we have designed an evolutionary algorithm (EA)-based "Integrated ISR Plan Analysis and Rehearsal System" (I2PARS) to support Effects-based Assessment (EBA). I2PARS supports ISR mission planning and dynamic replanning to coordinate assets and optimize their routes, allocation and tasking. It uses an evolutionary algorithm to address the large parametric space of route-finding problems which is sometimes discontinuous in the ISR domain because of conflicting objectives such as minimizing asset utilization yet maximizing ISR coverage. EAs are uniquely suited for generating solutions in dynamic environments and also allow user feedback. They are therefore ideal for "streaming optimization" and dynamic replanning of ISR mission plans. I2PARS uses the Non-dominated Sorting Genetic Algorithm (NSGA-II) to automatically generate a diverse set of high performing collection plans given multiple objectives, constraints, and assets. Intended end users of I2PARS include ISR planners in the Combined Air Operations Centers and Joint Intelligence Centers. Here we show the feasibility of applying the NSGA-II algorithm and EAs in general to the ISR planning domain. Unique genetic representations and operators for optimization within the ISR domain are presented along with multi-objective optimization criteria for ISR planning. Promising results of the I2PARS architecture design, early software prototype, and limited domain testing of the new algorithm are discussed. We also present plans for future research and development, as well as technology transition goals.
NASA Astrophysics Data System (ADS)
van Elk, Michiel; van Schie, Hein; Bekkering, Harold
2014-06-01
Our capacity to use tools and objects is often considered one of the hallmarks of the human species. Many objects greatly extend our bodily capabilities to act in the physical world, such as when using a hammer or a saw. In addition, humans have the remarkable capability to use objects in a flexible fashion and to combine multiple objects in complex actions. We prepare coffee, cook dinner and drive our car. In this review we propose that humans have developed declarative and procedural knowledge, i.e. action semantics that enables us to use objects in a meaningful way. A state-of-the-art review of research on object use is provided, involving behavioral, developmental, neuropsychological and neuroimaging studies. We show that research in each of these domains is characterized by similar discussions regarding (1) the role of object affordances, (2) the relation between goals and means in object use and (3) the functional and neural organization of action semantics. We propose a novel conceptual framework of action semantics to address these issues and to integrate the previous findings. We argue that action semantics entails both multimodal object representations and modality-specific sub-systems, involving manipulation knowledge, functional knowledge and representations of the sensory and proprioceptive consequences of object use. Furthermore, we argue that action semantics are hierarchically organized and selectively activated and used depending on the action intention of the actor and the current task context. Our framework presents an integrative account of multiple findings and perspectives on object use that may guide future studies in this interdisciplinary domain.
NASA Astrophysics Data System (ADS)
Hurford, Anthony; Harou, Julien
2015-04-01
Climate change has challenged conventional methods of planning water resources infrastructure investment, relying on stationarity of time-series data. It is not clear how to best use projections of future climatic conditions. Many-objective simulation-optimisation and trade-off analysis using evolutionary algorithms has been proposed as an approach to addressing complex planning problems with multiple conflicting objectives. The search for promising assets and policies can be carried out across a range of climate projections, to identify the configurations of infrastructure investment shown by model simulation to be robust under diverse future conditions. Climate projections can be used in different ways within a simulation model to represent the range of possible future conditions and understand how optimal investments vary according to the different hydrological conditions. We compare two approaches, optimising over an ensemble of different 20-year flow and PET timeseries projections, and separately for individual future scenarios built synthetically from the original ensemble. Comparing trade-off curves and surfaces generated by the two approaches helps understand the limits and benefits of optimising under different sets of conditions. The comparison is made for the Tana Basin in Kenya, where climate change combined with multiple conflicting objectives of water management and infrastructure investment mean decision-making is particularly challenging.
Pirpinia, Kleopatra; Bosman, Peter A N; Loo, Claudette E; Winter-Warnars, Gonneke; Janssen, Natasja N Y; Scholten, Astrid N; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja
2017-06-23
Deformable image registration is typically formulated as an optimization problem involving a linearly weighted combination of terms that correspond to objectives of interest (e.g. similarity, deformation magnitude). The weights, along with multiple other parameters, need to be manually tuned for each application, a task currently addressed mainly via trial-and-error approaches. Such approaches can only be successful if there is a sensible interplay between parameters, objectives, and desired registration outcome. This, however, is not well established. To study this interplay, we use multi-objective optimization, where multiple solutions exist that represent the optimal trade-offs between the objectives, forming a so-called Pareto front. Here, we focus on weight tuning. To study the space a user has to navigate during manual weight tuning, we randomly sample multiple linear combinations. To understand how these combinations relate to desirability of registration outcome, we associate with each outcome a mean target registration error (TRE) based on expert-defined anatomical landmarks. Further, we employ a multi-objective evolutionary algorithm that optimizes the weight combinations, yielding a Pareto front of solutions, which can be directly navigated by the user. To study how the complexity of manual weight tuning changes depending on the registration problem, we consider an easy problem, prone-to-prone breast MR image registration, and a hard problem, prone-to-supine breast MR image registration. Lastly, we investigate how guidance information as an additional objective influences the prone-to-supine registration outcome. Results show that the interplay between weights, objectives, and registration outcome makes manual weight tuning feasible for the prone-to-prone problem, but very challenging for the harder prone-to-supine problem. Here, patient-specific, multi-objective weight optimization is needed, obtaining a mean TRE of 13.6 mm without guidance information reduced to 7.3 mm with guidance information, but also providing a Pareto front that exhibits an intuitively sensible interplay between weights, objectives, and registration outcome, allowing outcome selection.
NASA Astrophysics Data System (ADS)
Pirpinia, Kleopatra; Bosman, Peter A. N.; E Loo, Claudette; Winter-Warnars, Gonneke; Y Janssen, Natasja N.; Scholten, Astrid N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja
2017-07-01
Deformable image registration is typically formulated as an optimization problem involving a linearly weighted combination of terms that correspond to objectives of interest (e.g. similarity, deformation magnitude). The weights, along with multiple other parameters, need to be manually tuned for each application, a task currently addressed mainly via trial-and-error approaches. Such approaches can only be successful if there is a sensible interplay between parameters, objectives, and desired registration outcome. This, however, is not well established. To study this interplay, we use multi-objective optimization, where multiple solutions exist that represent the optimal trade-offs between the objectives, forming a so-called Pareto front. Here, we focus on weight tuning. To study the space a user has to navigate during manual weight tuning, we randomly sample multiple linear combinations. To understand how these combinations relate to desirability of registration outcome, we associate with each outcome a mean target registration error (TRE) based on expert-defined anatomical landmarks. Further, we employ a multi-objective evolutionary algorithm that optimizes the weight combinations, yielding a Pareto front of solutions, which can be directly navigated by the user. To study how the complexity of manual weight tuning changes depending on the registration problem, we consider an easy problem, prone-to-prone breast MR image registration, and a hard problem, prone-to-supine breast MR image registration. Lastly, we investigate how guidance information as an additional objective influences the prone-to-supine registration outcome. Results show that the interplay between weights, objectives, and registration outcome makes manual weight tuning feasible for the prone-to-prone problem, but very challenging for the harder prone-to-supine problem. Here, patient-specific, multi-objective weight optimization is needed, obtaining a mean TRE of 13.6 mm without guidance information reduced to 7.3 mm with guidance information, but also providing a Pareto front that exhibits an intuitively sensible interplay between weights, objectives, and registration outcome, allowing outcome selection.
Calibration of asynchronous smart phone cameras from moving objects
NASA Astrophysics Data System (ADS)
Hagen, Oksana; Istenič, Klemen; Bharti, Vibhav; Dhali, Maruf Ahmed; Barmaimon, Daniel; Houssineau, Jérémie; Clark, Daniel
2015-04-01
Calibrating multiple cameras is a fundamental prerequisite for many Computer Vision applications. Typically this involves using a pair of identical synchronized industrial or high-end consumer cameras. This paper considers an application on a pair of low-cost portable cameras with different parameters that are found in smart phones. This paper addresses the issues of acquisition, detection of moving objects, dynamic camera registration and tracking of arbitrary number of targets. The acquisition of data is performed using two standard smart phone cameras and later processed using detections of moving objects in the scene. The registration of cameras onto the same world reference frame is performed using a recently developed method for camera calibration using a disparity space parameterisation and the single-cluster PHD filter.
NASA Technical Reports Server (NTRS)
Mann, R. C.; Fujimura, K.; Unseren, M. A.
1992-01-01
One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of position and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace.
Multilateral Telecoordinated Control of Multiple Robots With Uncertain Kinematics.
Zhai, Di-Hua; Xia, Yuanqing
2017-06-06
This paper addresses the telecoordinated control of multiple robots in the simultaneous presence of asymmetric time-varying delays, nonpassive external forces, and uncertain kinematics/dynamics. To achieve the control objective, a neuroadaptive controller with utilizing prescribed performance control and switching control technique is developed, where the basic idea is to employ the concept of motion synchronization in each pair of master-slave robots and among all slave robots. By using the multiple Lyapunov-Krasovskii functionals method, the state-independent input-to-output practical stability of the closed-loop system is established. Compared with the previous approaches, the new design is straightforward and easier to implement and is applicable to a wider area. Simulation results on three pairs of three degrees-of-freedom robots confirm the theoretical findings.
Hardman, Kyle; Cowan, Nelson
2014-01-01
Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli which possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results, but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PMID:25089739
NASA Astrophysics Data System (ADS)
Giannone, Domenico; Kazmierczak, Andrzej; Dortu, Fabian; Vivien, Laurent; Sohlström, Hans
2010-04-01
We present here research work on two optical biosensors which have been developed within two separate European projects (6th and 7th EU Framework Programmes). The biosensors are based on the idea of a disposable biochip, integrating photonics and microfluidics, optically interrogated by a multichannel interrogation platform. The objective is to develop versatile tools, suitable for performing screening tests at Point of Care or for example, at schools or in the field. The two projects explore different options in terms of optical design and different materials. While SABIO used Si3N4/SiO2 ring resonators structures, P3SENS aims at the use of photonic crystal devices based on polymers, potentially a much more economical option. We discuss both approaches to show how they enable high sensitivity and multiple channel detection. The medium term objective is to develop a new detection system that has low cost and is portable but at the same time offering high sensitivity, selectivity and multiparametric detection from a sample containing various components (e.g. blood, serum, saliva, etc.). Most biological sensing devices already present on the market suffer from limitations in multichannel operation capability (either the detection of multiple analytes indicating a given pathology or the simultaneous detection of multiple pathologies). In other words, the number of different analytes that can be detected on a single chip is very limited. This limitation is a main issue addressed by the two projects. The excessive cost per test of conventional bio sensing devices is a second issue that is addressed.
Real-Time Fourier Transformed Holographic Associative Memory With Photorefractive Material
NASA Astrophysics Data System (ADS)
Changsuk, Oh; Hankyu, Park
1989-02-01
We describe a volume holographic associative memory using photorefractive material and conventional planar mirror. Multiple hologram is generated with two angular multiplexed writing beams and Fourier transformed object beam in BaTiO3 crystal at 0.6328 μm. Complete image can be recalled successfully by partial input of original stored image. It is proved that our system is useful for optical implementation of real-time associative memory and location addressable memory.
Forest management and economics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buongiorno, J.; Gilless, J.K.
1987-01-01
This volume provides a survey of quantitative methods, guiding the reader through formulation and analysis of models that address forest management problems. The authors use simple mathematics, graphics, and short computer programs to explain each method. Emphasizing applications, they discuss linear, integer, dynamic, and goal programming; simulation; network modeling; and econometrics, as these relate to problems of determining economic harvest schedules in even-aged and uneven-aged forests, the evaluation of forest policies, multiple-objective decision making, and more.
Object-graphs for context-aware visual category discovery.
Lee, Yong Jae; Grauman, Kristen
2012-02-01
How can knowing about some categories help us to discover new ones in unlabeled images? Unsupervised visual category discovery is useful to mine for recurring objects without human supervision, but existing methods assume no prior information and thus tend to perform poorly for cluttered scenes with multiple objects. We propose to leverage knowledge about previously learned categories to enable more accurate discovery, and address challenges in estimating their familiarity in unsegmented, unlabeled images. We introduce two variants of a novel object-graph descriptor to encode the 2D and 3D spatial layout of object-level co-occurrence patterns relative to an unfamiliar region and show that by using them to model the interaction between an image’s known and unknown objects, we can better detect new visual categories. Rather than mine for all categories from scratch, our method identifies new objects while drawing on useful cues from familiar ones. We evaluate our approach on several benchmark data sets and demonstrate clear improvements in discovery over conventional purely appearance-based baselines.
General methodology for simultaneous representation and discrimination of multiple object classes
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-03-01
We address a new general method for linear and nonlinear feature extraction for simultaneous representation and classification. We call this approach the maximum representation and discrimination feature (MRDF) method. We develop a novel nonlinear eigenfeature extraction technique to represent data with closed-form solutions and use it to derive a nonlinear MRDF algorithm. Results of the MRDF method on synthetic databases are shown and compared with results from standard Fukunaga-Koontz transform and Fisher discriminant function methods. The method is also applied to an automated product inspection problem and for classification and pose estimation of two similar objects under 3D aspect angle variations.
Irsik, Vanessa C; Vanden Bosch der Nederlanden, Christina M; Snyder, Joel S
2016-11-01
Attention and other processing constraints limit the perception of objects in complex scenes, which has been studied extensively in the visual sense. We used a change deafness paradigm to examine how attention to particular objects helps and hurts the ability to notice changes within complex auditory scenes. In a counterbalanced design, we examined how cueing attention to particular objects affected performance in an auditory change-detection task through the use of valid or invalid cues and trials without cues (Experiment 1). We further examined how successful encoding predicted change-detection performance using an object-encoding task and we addressed whether performing the object-encoding task along with the change-detection task affected performance overall (Experiment 2). Participants had more error for invalid compared to valid and uncued trials, but this effect was reduced in Experiment 2 compared to Experiment 1. When the object-encoding task was present, listeners who completed the uncued condition first had less overall error than those who completed the cued condition first. All participants showed less change deafness when they successfully encoded change-relevant compared to irrelevant objects during valid and uncued trials. However, only participants who completed the uncued condition first also showed this effect during invalid cue trials, suggesting a broader scope of attention. These findings provide converging evidence that attention to change-relevant objects is crucial for successful detection of acoustic changes and that encouraging broad attention to multiple objects is the best way to reduce change deafness. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Gahm, Gregory A; Reger, Mark A; Kinn, Julie T; Luxton, David D; Skopp, Nancy A; Bush, Nigel E
2012-03-01
The US National Strategy for Suicide Prevention (National Strategy) described 11 goals across multiple areas, including suicide surveillance. Consistent with these goals, the Department of Defense (DoD) has engaged aggressively in the area of suicide surveillance. The DoD's population-based surveillance system, the DoD Suicide Event Report (DoDSER) collects information on suicides and suicide attempts for all branches of the military. Data collected includes suicide event details, treatment history, military and psychosocial history, and psychosocial stressors at the time of the event. Lessons learned from the DoDSER program are shared to assist other public health professionals working to address the National Strategy objectives.
The impact of attentional, linguistic, and visual features during object naming
Clarke, Alasdair D. F.; Coco, Moreno I.; Keller, Frank
2013-01-01
Object detection and identification are fundamental to human vision, and there is mounting evidence that objects guide the allocation of visual attention. However, the role of objects in tasks involving multiple modalities is less clear. To address this question, we investigate object naming, a task in which participants have to verbally identify objects they see in photorealistic scenes. We report an eye-tracking study that investigates which features (attentional, visual, and linguistic) influence object naming. We find that the amount of visual attention directed toward an object, its position and saliency, along with linguistic factors such as word frequency, animacy, and semantic proximity, significantly influence whether the object will be named or not. We then ask how features from different modalities are combined during naming, and find significant interactions between saliency and position, saliency and linguistic features, and attention and position. We conclude that when the cognitive system performs tasks such as object naming, it uses input from one modality to constraint or enhance the processing of other modalities, rather than processing each input modality independently. PMID:24379792
Biobjective planning of GEO debris removal mission with multiple servicing spacecrafts
NASA Astrophysics Data System (ADS)
Jing, Yu; Chen, Xiao-qian; Chen, Li-hu
2014-12-01
The mission planning of GEO debris removal with multiple servicing spacecrafts (SScs) is studied in this paper. Specifically, the SScs are considered to be initially on the GEO belt, and they should rendezvous with debris of different orbital slots and different inclinations, remove them to the graveyard orbit and finally return to their initial locations. Three key problems should be resolved here: task assignment, mission sequence planning and transfer trajectory optimization for each SSc. The minimum-cost, two-impulse phasing maneuver is used for each rendezvous. The objective is to find a set of optimal planning schemes with minimum fuel cost and travel duration. Considering this mission as a hybrid optimal control problem, a mathematical model is proposed. A modified multi-objective particle swarm optimization is employed to address the model. Numerous examples are carried out to demonstrate the effectiveness of the model and solution method. In this paper, single-SSc and multiple-SSc scenarios with the same amount of fuel are compared. Numerous experiments indicate that for a definite GEO debris removal mission, that which alternative (single-SSc or multiple-SSc) is better (cost less fuel and consume less travel time) is determined by many factors. Although in some cases, multiple-SSc scenarios may perform worse than single-SSc scenarios, the extra costs are considered worth the gain in mission safety and robustness.
Faint Object Detection in Multi-Epoch Observations via Catalog Data Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budavári, Tamás; Szalay, Alexander S.; Loredo, Thomas J.
Astronomy in the time-domain era faces several new challenges. One of them is the efficient use of observations obtained at multiple epochs. The work presented here addresses faint object detection and describes an incremental strategy for separating real objects from artifacts in ongoing surveys. The idea is to produce low-threshold single-epoch catalogs and to accumulate information across epochs. This is in contrast to more conventional strategies based on co-added or stacked images. We adopt a Bayesian approach, addressing object detection by calculating the marginal likelihoods for hypotheses asserting that there is no object or one object in a small imagemore » patch containing at most one cataloged source at each epoch. The object-present hypothesis interprets the sources in a patch at different epochs as arising from a genuine object; the no-object hypothesis interprets candidate sources as spurious, arising from noise peaks. We study the detection probability for constant-flux objects in a Gaussian noise setting, comparing results based on single and stacked exposures to results based on a series of single-epoch catalog summaries. Our procedure amounts to generalized cross-matching: it is the product of a factor accounting for the matching of the estimated fluxes of the candidate sources and a factor accounting for the matching of their estimated directions. We find that probabilistic fusion of multi-epoch catalogs can detect sources with similar sensitivity and selectivity compared to stacking. The probabilistic cross-matching framework underlying our approach plays an important role in maintaining detection sensitivity and points toward generalizations that could accommodate variability and complex object structure.« less
Assessing distribution and movement of blue catfish in Kansas reservoirs
Mather, Martha E.; Gerber, Kayla M.; Peterson, Zachary
2015-01-01
This report is organized into three chapters that address six objectives. The first chapter addresses objectives 1-3. The second chapter addresses objectives 4-5. The third chapter addresses objective 6. The objectives for the project are listed below for reference.
van Elk, Michiel; van Schie, Hein; Bekkering, Harold
2014-06-01
Our capacity to use tools and objects is often considered one of the hallmarks of the human species. Many objects greatly extend our bodily capabilities to act in the physical world, such as when using a hammer or a saw. In addition, humans have the remarkable capability to use objects in a flexible fashion and to combine multiple objects in complex actions. We prepare coffee, cook dinner and drive our car. In this review we propose that humans have developed declarative and procedural knowledge, i.e. action semantics that enables us to use objects in a meaningful way. A state-of-the-art review of research on object use is provided, involving behavioral, developmental, neuropsychological and neuroimaging studies. We show that research in each of these domains is characterized by similar discussions regarding (1) the role of object affordances, (2) the relation between goals and means in object use and (3) the functional and neural organization of action semantics. We propose a novel conceptual framework of action semantics to address these issues and to integrate the previous findings. We argue that action semantics entails both multimodal object representations and modality-specific sub-systems, involving manipulation knowledge, functional knowledge and representations of the sensory and proprioceptive consequences of object use. Furthermore, we argue that action semantics are hierarchically organized and selectively activated and used depending on the action intention of the actor and the current task context. Our framework presents an integrative account of multiple findings and perspectives on object use that may guide future studies in this interdisciplinary domain. Copyright © 2013 Elsevier B.V. All rights reserved.
Battling Arrow's Paradox to Discover Robust Water Management Alternatives
NASA Astrophysics Data System (ADS)
Kasprzyk, J. R.; Reed, P. M.; Hadka, D.
2013-12-01
This study explores whether or not Arrow's Impossibility Theorem, a theory of social choice, affects the formulation of water resources systems planning problems. The theorem discusses creating an aggregation function for voters choosing from more than three alternatives for society. The Impossibility Theorem is also called Arrow's Paradox, because when trying to add more voters, a single individual's preference will dictate the optimal group decision. In the context of water resources planning, our study is motivated by recent theoretical work that has generalized the insights for Arrow's Paradox to the design of complex engineered systems. In this framing of the paradox, states of society are equivalent to water planning or design alternatives, and the voters are equivalent to multiple planning objectives (e.g. minimizing cost or maximizing performance). Seen from this point of view, multi-objective water planning problems are functionally equivalent to the social choice problem described above. Traditional solutions to such multi-objective problems aggregate multiple performance measures into a single mathematical objective. The Theorem implies that a subset of performance concerns will inadvertently dictate the overall design evaluations in unpredictable ways using such an aggregation. We suggest that instead of aggregation, an explicit many-objective approach to water planning can help overcome the challenges posed by Arrow's Paradox. Many-objective planning explicitly disaggregates measures of performance while supporting the discovery of the planning tradeoffs, employing multiobjective evolutionary algorithms (MOEAs) to find solutions. Using MOEA-based search to address Arrow's Paradox requires that the MOEAs perform robustly with increasing problem complexity, such as adding additional objectives and/or decisions. This study uses comprehensive diagnostic evaluation of MOEA search performance across multiple problem formulations (both aggregated and many-objective) to show whether or not aggregating performance measures biases decision making. In this study, we explore this hypothesis using an urban water portfolio management case study in the Lower Rio Grande Valley. The diagnostic analysis shows that modern self-adaptive MOEA search is efficient, effective, and reliable for the more complex many-objective LRGV planning formulations. Results indicate that although many classical water systems planning frameworks seek to account for multiple objectives, the common practice of reducing the problem into one or more highly aggregated performance measures can severely and negatively bias planning decisions.
Global Optimization of N-Maneuver, High-Thrust Trajectories Using Direct Multiple Shooting
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Englander, Jacob A.; Ellison, Donald H.
2016-01-01
The performance of impulsive, gravity-assist trajectories often improves with the inclusion of one or more maneuvers between flybys. However, grid-based scans over the entire design space can become computationally intractable for even one deep-space maneuver, and few global search routines are capable of an arbitrary number of maneuvers. To address this difficulty a trajectory transcription allowing for any number of maneuvers is developed within a multi-objective, global optimization framework for constrained, multiple gravity-assist trajectories. The formulation exploits a robust shooting scheme and analytic derivatives for computational efficiency. The approach is applied to several complex, interplanetary problems, achieving notable performance without a user-supplied initial guess.
Urgenson, Lauren S; Ryan, Clare M; Halpern, Charles B; Bakker, Jonathan D; Belote, R Travis; Franklin, Jerry F; Haugo, Ryan D; Nelson, Cara R; Waltz, Amy E M
2017-02-01
Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.
Toffel, Michael W; Birkner, Lawrence R
2002-07-01
The protection of people and physical assets is the objective of health and safety professionals and is accomplished through the paradigm of anticipation, recognition, evaluation, and control of risks in the occupational environment. Risk assessment concepts are not only used by health and safety professionals, but also by business and financial planners. Since meeting health and safety objectives requires financial resources provided by business and governmental managers, the hypothesis addressed here is that health and safety risk decisions should be made with probabilistic processes used in financial decision-making and which are familiar and recognizable to business and government planners and managers. This article develops the processes and demonstrates the use of incident probabilities, historic outcome information, and incremental impact analysis to estimate risk of multiple alternatives in the chemical process industry. It also analyzes how the ethical aspects of decision-making can be addressed in formulating health and safety risk management plans. It is concluded that certain, easily understood, and applied probabilistic risk assessment methods used by business and government to assess financial and outcome risk have applicability to improving workplace health and safety in three ways: 1) by linking the business and health and safety risk assessment processes to securing resources, 2) by providing an additional set of tools for health and safety risk assessment, and 3) by requiring the risk assessor to consider multiple risk management alternatives.
NASA Astrophysics Data System (ADS)
Urgenson, Lauren S.; Ryan, Clare M.; Halpern, Charles B.; Bakker, Jonathan D.; Belote, R. Travis; Franklin, Jerry F.; Haugo, Ryan D.; Nelson, Cara R.; Waltz, Amy E. M.
2017-02-01
Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.
How to Assess Vulnerabilities of Water Policies to Global Change?
NASA Astrophysics Data System (ADS)
Kumar, A.; Haasnoot, M.; Weijs, S.
2017-12-01
Water managers are confronted with uncertainties arising from hydrological, societal, economical and political drivers. To manage these uncertainties two paradigms have been identified: top-down and bottom-up approaches. Top-down or prediction-based approaches use socio-economic scenarios together with a discrete set of GCM projections (often downscaled) to assess the expected impact of drivers and policies on water resource system through various hydrological and social systems models. Adaptation strategies to alleviate these impacts are then identified and tested against the scenarios. To address GCM and downscaling uncertainties, these approaches put more focus on climate predictions, rather than the decision problem itself. Triggered by the wish to have a more scenario-neutral approach and address downscaling uncertainties, recent analyses have been shifted towards vulnerability-based (bottom-up or decision-centric) approaches. They begin at the local scale by addressing socio-economic responses to climate, often involving stakeholder's input; identify vulnerabilities under a larger sample of plausible futures and evaluate sensitivity and robustness of possible adaptation options. Several bottom-up approaches have emerged so far and are increasingly recommended. Fundamentally they share several core ideas, however, subtle differences exist in vulnerability assessment, visualization tools for exploring vulnerabilities and computational methods used for identifying robust water policies. Through this study, we try to identify how these approaches are progressing, how the climate and non-climate uncertainties are being confronted and how to integrate existing and new tools. We find that choice of a method may depend on the number of vulnerability drivers identified and type of threshold levels (environmental conditions or policy objectives) defined. Certain approaches are suited well for assessing adaptive capacities, tipping points and sequencing of decisions. However, visualization of the vulnerability domain is still challenging if multiple drivers are present. New emerging tools are focused on generating synthetic scenarios, addressing multiple objectives, linking decision-making frameworks to adaptation pathways and communicating risks to the stakeholders.
Integrated structural control design of large space structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, J.J.; Lauffer, J.P.
1995-01-01
Active control of structures has been under intensive development for the last ten years. Reference 2 reviews much of the identification and control technology for structural control developed during this time. The technology was initially focused on space structure and weapon applications; however, recently the technology is also being directed toward applications in manufacturing and transportation. Much of this technology focused on multiple-input/multiple-output (MIMO) identification and control methodology because many of the applications require a coordinated control involving multiple disturbances and control objectives where multiple actuators and sensors are necessary for high performance. There have been many optimal robust controlmore » methods developed for the design of MIMO robust control laws; however, there appears to be a significant gap between the theoretical development and experimental evaluation of control and identification methods to address structural control applications. Many methods have been developed for MIMO identification and control of structures, such as the Eigensystem Realization Algorithm (ERA), Q-Markov Covariance Equivalent Realization (Q-Markov COVER) for identification; and, Linear Quadratic Gaussian (LQG), Frequency Weighted LQG and H-/ii-synthesis methods for control. Upon implementation, many of the identification and control methods have shown limitations such as the excitation of unmodelled dynamics and sensitivity to system parameter variations. As a result, research on methods which address these problems have been conducted.« less
Observational Word Learning: Beyond Propose-But-Verify and Associative Bean Counting.
Roembke, Tanja; McMurray, Bob
2016-04-01
Learning new words is difficult. In any naming situation, there are multiple possible interpretations of a novel word. Recent approaches suggest that learners may solve this problem by tracking co-occurrence statistics between words and referents across multiple naming situations (e.g. Yu & Smith, 2007), overcoming the ambiguity in any one situation. Yet, there remains debate around the underlying mechanisms. We conducted two experiments in which learners acquired eight word-object mappings using cross-situational statistics while eye-movements were tracked. These addressed four unresolved questions regarding the learning mechanism. First, eye-movements during learning showed evidence that listeners maintain multiple hypotheses for a given word and bring them all to bear in the moment of naming. Second, trial-by-trial analyses of accuracy suggested that listeners accumulate continuous statistics about word/object mappings, over and above prior hypotheses they have about a word. Third, consistent, probabilistic context can impede learning, as false associations between words and highly co-occurring referents are formed. Finally, a number of factors not previously considered in prior analysis impact observational word learning: knowledge of the foils, spatial consistency of the target object, and the number of trials between presentations of the same word. This evidence suggests that observational word learning may derive from a combination of gradual statistical or associative learning mechanisms and more rapid real-time processes such as competition, mutual exclusivity and even inference or hypothesis testing.
Uninformative Prior Multiple Target Tracking Using Evidential Particle Filters
NASA Astrophysics Data System (ADS)
Worthy, J. L., III; Holzinger, M. J.
Space situational awareness requires the ability to initialize state estimation from short measurements and the reliable association of observations to support the characterization of the space environment. The electro-optical systems used to observe space objects cannot fully characterize the state of an object given a short, unobservable sequence of measurements. Further, it is difficult to associate these short-arc measurements if many such measurements are generated through the observation of a cluster of satellites, debris from a satellite break-up, or from spurious detections of an object. An optimization based, probabilistic short-arc observation association approach coupled with a Dempster-Shafer based evidential particle filter in a multiple target tracking framework is developed and proposed to address these problems. The optimization based approach is shown in literature to be computationally efficient and can produce probabilities of association, state estimates, and covariances while accounting for systemic errors. Rigorous application of Dempster-Shafer theory is shown to be effective at enabling ignorance to be properly accounted for in estimation by augmenting probability with belief and plausibility. The proposed multiple hypothesis framework will use a non-exclusive hypothesis formulation of Dempster-Shafer theory to assign belief mass to candidate association pairs and generate tracks based on the belief to plausibility ratio. The proposed algorithm is demonstrated using simulated observations of a GEO satellite breakup scenario.
Approaches to Understanding and Addressing Treatment-Resistant Depression: A Scoping Review
Jenkins, Emily; Goldner, Elliot M.
2012-01-01
Treatment-resistant depression is associated with significant disability and, due to its high prevalence, results in substantive economic and societal burden at a population level. The objective of this study is to synthesize extant literature on approaches currently being applied to understand and address this condition. It is hoped that the findings can be used to inform practitioners and guide future research. A scoping review of the scientific literature was conducted with findings categorized and charted by underlying research paradigm. Currently, the vast majority of research stems from a biological paradigm (81%). Research on treatment-resistant depression would benefit from a broadened field of study. Given that multiple etiological mechanisms likely contribute to treatment-resistant depression and current efforts at prevention and treatment have substantial room for improvement, an expanded research agenda could more effectively address this significant public health issue. PMID:22570778
Applying Metabolomics to differentiate amphibian responses ...
Introduction/Objectives/Methods One of the biggest challenges in ecological risk assessment is determining the impact of multiple stressors on individual organisms and populations in ‘real world’ scenarios. Emerging ‘omic technologies, notably, metabolomics, provides an opportunity to address the uncertainties surrounding ecological risk assessment of multiple stressors. The objective of this study was to use a metabolomics biomarker approach to investigate the effect of multiple stressors on amphibian metamorphs. To this end, metamorphs of Rana pipiens (northern leopard frogs) were exposed to the insecticide Carbaryl (0.32 μg/L), a conspecific predator alarm call (Lithobates catesbeianus), Carbaryl and the predator alarm call, and a control with no stressor. In addition to metabolomic fingerprinting, we measured corticosterone levels in each treatment to assess general stress response. We analyzed relative abundances of endogenous metabolites collected in liver tissue with gas chromatography coupled with mass spectrometry. Support vector machine (SVM) methods with recursive feature elimination (RFE) were applied to rank the metabolomic profiles produced. Results/Conclusions SVM-RFE of the acquired metabolomic spectra demonstrated 85-96% classification accuracy among control and all treatment groups when using the top 75 ranked retention time bins. Biochemical fluxes observed in the groups exposed to carbaryl, predation threat, and the combined treatmen
Motion and force control of multiple robotic manipulators
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz-Delgado, Kenneth
1992-01-01
This paper addresses the motion and force control problem of multiple robot arms manipulating a cooperatively held object. A general control paradigm is introduced which decouples the motion and force control problems. For motion control, different control strategies are constructed based on the variables used as the control input in the controller design. There are three natural choices; acceleration of a generalized coordinate, arm tip force vectors, and the joint torques. The first two choices require full model information but produce simple models for the control design problem. The last choice results in a class of relatively model independent control laws by exploiting the Hamiltonian structure of the open loop system. The motion control only determines the joint torque to within a manifold, due to the multiple-arm kinematic constraint. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, an optimization can be performed to best allocate the desired and effector control force to the joint actuators. The other possibility is to control the internal force about some set point. It is shown that effective force regulation can be achieved even if little model information is available.
Integrating end-to-end threads of control into object-oriented analysis and design
NASA Technical Reports Server (NTRS)
Mccandlish, Janet E.; Macdonald, James R.; Graves, Sara J.
1993-01-01
Current object-oriented analysis and design methodologies fall short in their use of mechanisms for identifying threads of control for the system being developed. The scenarios which typically describe a system are more global than looking at the individual objects and representing their behavior. Unlike conventional methodologies that use data flow and process-dependency diagrams, object-oriented methodologies do not provide a model for representing these global threads end-to-end. Tracing through threads of control is key to ensuring that a system is complete and timing constraints are addressed. The existence of multiple threads of control in a system necessitates a partitioning of the system into processes. This paper describes the application and representation of end-to-end threads of control to the object-oriented analysis and design process using object-oriented constructs. The issue of representation is viewed as a grouping problem, that is, how to group classes/objects at a higher level of abstraction so that the system may be viewed as a whole with both classes/objects and their associated dynamic behavior. Existing object-oriented development methodology techniques are extended by adding design-level constructs termed logical composite classes and process composite classes. Logical composite classes are design-level classes which group classes/objects both logically and by thread of control information. Process composite classes further refine the logical composite class groupings by using process partitioning criteria to produce optimum concurrent execution results. The goal of these design-level constructs is to ultimately provide the basis for a mechanism that can support the creation of process composite classes in an automated way. Using an automated mechanism makes it easier to partition a system into concurrently executing elements that can be run in parallel on multiple processors.
Kordes, Sebastian; Kössl, Manfred
2017-01-01
Abstract For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units’ responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams. PMID:29242823
Beetz, M Jerome; Kordes, Sebastian; García-Rosales, Francisco; Kössl, Manfred; Hechavarría, Julio C
2017-01-01
For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units' responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams.
Abnormal center-periphery gradient in spatial attention in simultanagnosia.
Balslev, Daniela; Odoj, Bartholomaeus; Rennig, Johannes; Karnath, Hans-Otto
2014-12-01
Patients suffering from simultanagnosia cannot perceive more than one object at a time. The underlying mechanism is incompletely understood. One hypothesis is that simultanagnosia reflects "tunnel vision," a constricted attention window around gaze, which precludes the grouping of individual objects. Although this idea has a long history in neuropsychology, the question whether the patients indeed have an abnormal attention gradient around the gaze has so far not been addressed. Here we tested this hypothesis in two simultanagnosia patients with bilateral parieto-occipital lesions and two control groups, with and without brain damage. We assessed the participants' ability to discriminate letters presented briefly at fixation with and without a peripheral distractor or in the visual periphery, with or without a foveal distractor. A constricted span of attention around gaze would predict an increased susceptibility to foveated versus peripheral distractors. Contrary to this prediction and unlike both control groups, the patients' ability to discriminate the target decreased more in the presence of peripheral compared with foveated distractors. Thus, the attentional spotlight in simultanagnosia does not fall on foveated objects as previously assumed, but rather abnormally highlights the periphery. Furthermore, we found the same center-periphery gradient in the patients' ability to recognize multiple objects. They detected multiple, but not single objects more accurately in the periphery than at fixation. These results suggest that an abnormal allocation of attention around the gaze can disrupt the grouping of individual objects into an integrated visual scene.
NASA Astrophysics Data System (ADS)
Acín, V.; Bird, I.; Boccali, T.; Cancio, G.; Collier, I. P.; Corney, D.; Delaunay, B.; Delfino, M.; dell'Agnello, L.; Flix, J.; Fuhrmann, P.; Gasthuber, M.; Gülzow, V.; Heiss, A.; Lamanna, G.; Macchi, P.-E.; Maggi, M.; Matthews, B.; Neissner, C.; Nief, J.-Y.; Porto, M. C.; Sansum, A.; Schulz, M.; Shiers, J.
2015-12-01
Several scientific fields, including Astrophysics, Astroparticle Physics, Cosmology, Nuclear and Particle Physics, and Research with Photons, are estimating that by the 2020 decade they will require data handling systems with data volumes approaching the Zettabyte distributed amongst as many as 1018 individually addressable data objects (Zettabyte-Exascale systems). It may be convenient or necessary to deploy such systems using multiple physical sites. This paper describes the findings of a working group composed of experts from several
Hardman, Kyle O; Cowan, Nelson
2015-03-01
Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli that possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Application of fuzzy theories to formulation of multi-objective design problems. [for helicopters
NASA Technical Reports Server (NTRS)
Dhingra, A. K.; Rao, S. S.; Miura, H.
1988-01-01
Much of the decision making in real world takes place in an environment in which the goals, the constraints, and the consequences of possible actions are not known precisely. In order to deal with imprecision quantitatively, the tools of fuzzy set theory can by used. This paper demonstrates the effectiveness of fuzzy theories in the formulation and solution of two types of helicopter design problems involving multiple objectives. The first problem deals with the determination of optimal flight parameters to accomplish a specified mission in the presence of three competing objectives. The second problem addresses the optimal design of the main rotor of a helicopter involving eight objective functions. A method of solving these multi-objective problems using nonlinear programming techniques is presented. Results obtained using fuzzy formulation are compared with those obtained using crisp optimization techniques. The outlined procedures are expected to be useful in situations where doubt arises about the exactness of permissible values, degree of credibility, and correctness of statements and judgements.
Real-Time Visual Tracking through Fusion Features
Ruan, Yang; Wei, Zhenzhong
2016-01-01
Due to their high-speed, correlation filters for object tracking have begun to receive increasing attention. Traditional object trackers based on correlation filters typically use a single type of feature. In this paper, we attempt to integrate multiple feature types to improve the performance, and we propose a new DD-HOG fusion feature that consists of discriminative descriptors (DDs) and histograms of oriented gradients (HOG). However, fusion features as multi-vector descriptors cannot be directly used in prior correlation filters. To overcome this difficulty, we propose a multi-vector correlation filter (MVCF) that can directly convolve with a multi-vector descriptor to obtain a single-channel response that indicates the location of an object. Experiments on the CVPR2013 tracking benchmark with the evaluation of state-of-the-art trackers show the effectiveness and speed of the proposed method. Moreover, we show that our MVCF tracker, which uses the DD-HOG descriptor, outperforms the structure-preserving object tracker (SPOT) in multi-object tracking because of its high-speed and ability to address heavy occlusion. PMID:27347951
Incremental concept learning with few training examples and hierarchical classification
NASA Astrophysics Data System (ADS)
Bouma, Henri; Eendebak, Pieter T.; Schutte, Klamer; Azzopardi, George; Burghouts, Gertjan J.
2015-10-01
Object recognition and localization are important to automatically interpret video and allow better querying on its content. We propose a method for object localization that learns incrementally and addresses four key aspects. Firstly, we show that for certain applications, recognition is feasible with only a few training samples. Secondly, we show that novel objects can be added incrementally without retraining existing objects, which is important for fast interaction. Thirdly, we show that an unbalanced number of positive training samples leads to biased classifier scores that can be corrected by modifying weights. Fourthly, we show that the detector performance can deteriorate due to hard-negative mining for similar or closely related classes (e.g., for Barbie and dress, because the doll is wearing a dress). This can be solved by our hierarchical classification. We introduce a new dataset, which we call TOSO, and use it to demonstrate the effectiveness of the proposed method for the localization and recognition of multiple objects in images.
The challenge of comorbidity in clinical trials for multiple sclerosis
Miller, Aaron; Sormani, Maria Pia; Thompson, Alan; Waubant, Emmanuelle; Trojano, Maria; O'Connor, Paul; Reingold, Stephen; Cohen, Jeffrey A.
2016-01-01
Objective: We aimed to provide recommendations for addressing comorbidity in clinical trial design and conduct in multiple sclerosis (MS). Methods: We held an international workshop, informed by a systematic review of the incidence and prevalence of comorbidity in MS and an international survey about research priorities for studying comorbidity including their relation to clinical trials in MS. Results: We recommend establishing age- and sex-specific incidence estimates for comorbidities in the MS population, including those that commonly raise concern in clinical trials of immunomodulatory agents; shifting phase III clinical trials of new therapies from explanatory to more pragmatic trials; describing comorbidity status of the enrolled population in publications reporting clinical trials; evaluating treatment response, tolerability, and safety in clinical trials according to comorbidity status; and considering comorbidity status in the design of pharmacovigilance strategies. Conclusion: Our recommendations will help address knowledge gaps regarding comorbidity that interfere with the ability to interpret safety in monitored trials and will enhance the generalizability of findings from clinical trials to “real world” settings where the MS population commonly has comorbid conditions. PMID:26888986
Loeslie, Vicki; Abcejo, Ma Sunnimpha; Anderson, Claudia; Leibenguth, Emily; Mielke, Cathy; Rabatin, Jeffrey
Substantial evidence in critical care literature identifies a lack of quality and quantity of communication between patients, families, and clinicians while in the intensive care unit. Barriers include time, multiple caregivers, communication skills, culture, language, stress, and optimal meeting space. For patients who are chronically critically ill, the need for a structured method of communication is paramount for discussion of goals of care. The objective of this quality improvement project was to identify barriers to communication, then develop, implement, and evaluate a process for semistructured family meetings in a 9-bed respiratory care unit. Using set dates and times, family meetings were offered to patients and families admitted to the respiratory care unit. Multiple avenues of communication were utilized to facilitate attendance. Utilizing evidence-based family meeting literature, a guide for family meetings was developed. Templates were developed for documentation of the family meeting in the electronic medical record. Multiple communication barriers were identified. Frequency of family meeting occurrence rose from 31% to 88%. Staff satisfaction with meeting frequency, meeting length, and discussion of congruent goals of care between patient/family and health care providers improved. Patient/family satisfaction with consistency of message between team members; understanding of medications, tests, and dismissal plan; and efficacy to address their concerns with the medical team improved. This quality improvement project was implemented to address the communication gap in the care of complex patients who require prolonged hospitalizations. By identifying this need, engaging stakeholders, and developing a family meeting plan to meet to address these needs, communication between all members of the patient's care team has improved.
Setting conservation management thresholds using a novel participatory modeling approach.
Addison, P F E; de Bie, K; Rumpff, L
2015-10-01
We devised a participatory modeling approach for setting management thresholds that show when management intervention is required to address undesirable ecosystem changes. This approach was designed to be used when management thresholds: must be set for environmental indicators in the face of multiple competing objectives; need to incorporate scientific understanding and value judgments; and will be set by participants with limited modeling experience. We applied our approach to a case study where management thresholds were set for a mat-forming brown alga, Hormosira banksii, in a protected area management context. Participants, including management staff and scientists, were involved in a workshop to test the approach, and set management thresholds to address the threat of trampling by visitors to an intertidal rocky reef. The approach involved trading off the environmental objective, to maintain the condition of intertidal reef communities, with social and economic objectives to ensure management intervention was cost-effective. Ecological scenarios, developed using scenario planning, were a key feature that provided the foundation for where to set management thresholds. The scenarios developed represented declines in percent cover of H. banksii that may occur under increased threatening processes. Participants defined 4 discrete management alternatives to address the threat of trampling and estimated the effect of these alternatives on the objectives under each ecological scenario. A weighted additive model was used to aggregate participants' consequence estimates. Model outputs (decision scores) clearly expressed uncertainty, which can be considered by decision makers and used to inform where to set management thresholds. This approach encourages a proactive form of conservation, where management thresholds and associated actions are defined a priori for ecological indicators, rather than reacting to unexpected ecosystem changes in the future. © 2015 The Authors Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Schultz, Carl H; Koenig, Kristi L; Whiteside, Mary; Murray, Rick
2012-03-01
The training of medical personnel to provide care for disaster victims is a priority for the physician community, the federal government, and society as a whole. Course development for such training guided by well-accepted standardized core competencies is lacking, however. This project identified a set of core competencies and performance objectives based on the knowledge, skills, and attitudes required by the specific target audience (emergency department nurses, emergency physicians, and out-of-hospital emergency medical services personnel) to ensure they can treat the injuries and illnesses experienced by victims of disasters regardless of cause. The core competencies provide a blueprint for the development or refinement of disaster training courses. This expert consensus project, supported by a grant from the Robert Wood Johnson Foundation, incorporated an all-hazard, comprehensive emergency management approach addressing every type of disaster to minimize the effect on the public's health. An instructional systems design process was used to guide the development of audience-appropriate competencies and performance objectives. Participants, representing multiple academic and provider organizations, used a modified Delphi approach to achieve consensus on recommendations. A framework of 19 content categories (domains), 19 core competencies, and more than 90 performance objectives was developed for acute medical care personnel to address the requirements of effective all-hazards disaster response. Creating disaster curricula and training based on the core competencies and performance objectives identified in this article will ensure that acute medical care personnel are prepared to treat patients and address associated ramifications/consequences during any catastrophic event. Copyright © 2012 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
Zwart, Hub
2014-11-01
Bioethical discourse on organ donation covers a wide range of topics, from informed consent procedures and scarcity issues up to 'transplant tourism' and 'organ trade'. This paper presents a 'depth ethics' approach, notably focussing on the tensions, conflicts and ambiguities concerning the status of the human body (as something which constitutes a whole, while at the same time being a set of replaceable elements or parts). These will be addressed from a psychoanalytical (Lacanian) angle. First, I will outline Lacan's view on embodiment as such. Subsequently, I will argue that, for organ recipients, the donor organ becomes what Lacan refers to as an object a, the 'partial object' of desire, the elusive thing we are deprived of, apparently beyond our grasp. Within the recipient's body an empty space emerges, a kind of 'vacuole', once occupied by a faltering organ (now removed). This space can only be filled by a 'gift' from the other, by an object a. Once implanted, however, this implant becomes an 'extimate' object: something both 'external' and 'intimate', both 'embedded' and 'foreign', and which is bound to remain an object of concern for quite some time, if not for life. A Lacanian analysis allows us, first of all, to address the question what organ transplantation has in common with other bodily practices involving bodily parts procured from others, such as cannibalism. But it also reveals the basic difference between the two, as well as the distance between the 'fragmented body' of Frankenstein's 'monster'--as an aggregate of replaceable parts--and the multiple organ recipients (the 'puzzle people') of today.
Informative graphing of continuous safety variables relative to normal reference limits.
Breder, Christopher D
2018-05-16
Interpreting graphs of continuous safety variables can be complicated because differences in age, gender, and testing site methodologies data may give rise to multiple reference limits. Furthermore, data below the lower limit of normal are compressed relative to those points above the upper limit of normal. The objective of this study is to develop a graphing technique that addresses these issues and is visually intuitive. A mock dataset with multiple reference ranges is initially used to develop the graphing technique. Formulas are developed for conditions where data are above the upper limit of normal, normal, below the lower limit of normal, and below the lower limit of normal when the data value equals zero. After the formulae are developed, an anonymized dataset from an actual set of trials for an approved drug is evaluated comparing the technique developed in this study to standard graphical methods. Formulas are derived for the novel graphing method based on multiples of the normal limits. The formula for values scaled between the upper and lower limits of normal is a novel application of a readily available scaling formula. The formula for the lower limit of normal is novel and addresses the issue of this value potentially being indeterminate when the result to be scaled as a multiple is zero. The formulae and graphing method described in this study provides a visually intuitive method to graph continuous safety data including laboratory values, vital sign data.
Every Child Left Behind -- Addressing One Important Effect of Multiple Deployments
2009-03-25
St ra te gy Re se ar ch Pr oj ec t EVERY CHILD LEFT BEHIND – ADDRESSING ONE IMPORTANT EFFECT OF MULTIPLE DEPLOYMENTS BY LIEUTENANT COLONEL TYLER J...To) 4. TITLE AND SUBTITLE Every Child Left Behind – Addressing One Important Effect of Multiple Deployments 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 USAWC STRATEGY RESEARCH PROJECT EVERY CHILD LEFT BEHIND – ADDRESSING ONE IMPORTANT EFFECT OF
Quach, Susan; Pereira, Jennifer A; Russell, Margaret L; Wormsbecker, Anne E; Ramsay, Hilary; Crowe, Lois; Quan, Sherman D; Kwong, Jeff
2013-11-14
We describe our experiences with identifying and recruiting Ontario parents through the Internet, primarily, as well as other modes, for participation in focus groups about adding the influenza vaccine to school-based immunization programs. Our objectives were to assess participation rates with and without incentives and software restrictions. We also plan to examine study response patterns of unique and multiple submissions and assess efficiency of each online advertising mode. We used social media, deal forum websites, online classified ads, conventional mass media, and email lists to invite parents of school-aged children from Ontario, Canada to complete an online questionnaire to determine eligibility for focus groups. We compared responses and paradata when an incentive was provided and there were no software restrictions to the questionnaire (Period 1) to a period when only a single submission per Internet protocol (IP) address (ie, software restrictions invoked) was permitted and no incentive was provided (Period 2). We also compared the median time to complete a questionnaire, response patterns, and percentage of missing data between questionnaires classified as multiple submissions from the same Internet protocol (IP) address or email versus unique submissions. Efficiency was calculated as the total number of hours study personnel devoted to an advertising mode divided by the resultant number of unique eligible completed questionnaires . Of 1346 submitted questionnaires, 223 (16.6%) were incomplete and 34 (2.52%) did not meet the initial eligibility criteria. Of the remaining 1089 questionnaires, 246 (22.6%) were not from Ontario based on IP address and postal code, and 469 (43.1%) were submitted from the same IP address or email address (multiple submissions). In Period 2 vs Period 1, a larger proportion of questionnaires were submitted from Ontario (92.8%, 141/152 vs 75.1%, 702/937, P<.001), and a smaller proportion of same IP addresses (7.9%, 12/152 vs 47.1%, 441/937, P<.001) were received. Compared to those who made unique submissions, those who made multiple submissions spent less time per questionnaire (166 vs 215 seconds, P<.001), and had a higher percentage of missing data among their responses (15.0% vs 7.6%, P=.004). Advertisements posted on RedFlagDeals were the most efficient for recruitment (0.03 hours of staff time per questionnaire), whereas those placed on Twitter were the least efficient (3.64 hours of staff time per questionnaire). Using multiple online advertising strategies was effective for recruiting a large sample of participants in a relatively short period time with minimal resources. However, risks such as multiple submissions and potentially fraudulent information need to be considered. In our study, these problems were associated with providing an incentive for responding, and could have been partially avoided by activating restrictive software features for online questionnaires.
Additivity of Feature-Based and Symmetry-Based Grouping Effects in Multiple Object Tracking
Wang, Chundi; Zhang, Xuemin; Li, Yongna; Lyu, Chuang
2016-01-01
Multiple object tracking (MOT) is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the “laws of perceptual organization” proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape) among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. “Additive effect” refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The “where” and “what” pathways might have played an important role in the additive grouping effect. PMID:27199875
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Brian James
There is a scientific need to obtain new data to constrain and refine next generation multi-phase equation-of-state (EOS) for metals. Experiments are needed to locate phase boundaries, determine transition kinetic times, and to obtain EOS and Hugoniot data for relevant phases. The objectives of the current work was to examine the multiphase properties for cerium including the dynamic melt boundary and the low-pressure solid-solid phase transition through the critical point. These objectives were addressed by performing plate impact experiment that used multiple experimental configuration including front-surface impact experiments to directly measure transition kinetics, multislug experiments that used the overtake methodmore » to measure sound speeds at pressure, and preheat experiments to map out phase boundaries. Preliminary data and analysis obtained for cerium will be presented.« less
Accounting for Multiple Births in Neonatal and Perinatal Trials: Systematic Review and Case Study
Hibbs, Anna Maria; Black, Dennis; Palermo, Lisa; Cnaan, Avital; Luan, Xianqun; Truog, William E; Walsh, Michele C; Ballard, Roberta A
2010-01-01
Objectives To determine the prevalence in the neonatal literature of statistical approaches accounting for the unique clustering patterns of multiple births. To explore the sensitivity of an actual trial to several analytic approaches to multiples. Methods A systematic review of recent perinatal trials assessed the prevalence of studies accounting for clustering of multiples. The NO CLD trial served as a case study of the sensitivity of the outcome to several statistical strategies. We calculated odds ratios using non-clustered (logistic regression) and clustered (generalized estimating equations, multiple outputation) analyses. Results In the systematic review, most studies did not describe the randomization of twins and did not account for clustering. Of those studies that did, exclusion of multiples and generalized estimating equations were the most common strategies. The NO CLD study included 84 infants with a sibling enrolled in the study. Multiples were more likely than singletons to be white and were born to older mothers (p<0.01). Analyses that accounted for clustering were statistically significant; analyses assuming independence were not. Conclusions The statistical approach to multiples can influence the odds ratio and width of confidence intervals, thereby affecting the interpretation of a study outcome. A minority of perinatal studies address this issue. PMID:19969305
NASA Astrophysics Data System (ADS)
Chen, Shaopei; Tan, Jianjun; Ray, C.; Claramunt, C.; Sun, Qinqin
2008-10-01
Diversity is one of the main characteristics of transportation data collected from multiple sources or formats, which can be extremely complex and disparate. Moreover, these multimodal transportation data are usually characterised by spatial and temporal properties. Multimodal transportation network data modelling involves both an engineering and research domain that has attracted the design of a number of spatio-temporal data models in the geographic information system (GIS). However, the application of these specific models to multimodal transportation network is still a challenging task. This research addresses this challenge from both integrated multimodal data organization and object-oriented modelling perspectives, that is, how a complex urban transportation network should be organized, represented and modeled appropriately when considering a multimodal point of view, and using object-oriented modelling method. We proposed an integrated GIS-based data model for multimodal urban transportation network that lays a foundation to enhance the multimodal transportation network analysis and management. This modelling method organizes and integrates multimodal transit network data, and supports multiple representations for spatio-temporal objects and relationship as both visual and graphic views. The data model is expressed by using a spatio-temporal object-oriented modelling method, i.e., the unified modelling language (UML) extended to spatial and temporal plug-in for visual languages (PVLs), which provides an essential support to the spatio-temporal data modelling for transportation GIS.
Automatic feature-based grouping during multiple object tracking.
Erlikhman, Gennady; Keane, Brian P; Mettler, Everett; Horowitz, Todd S; Kellman, Philip J
2013-12-01
Contour interpolation automatically binds targets with distractors to impair multiple object tracking (Keane, Mettler, Tsoi, & Kellman, 2011). Is interpolation special in this regard or can other features produce the same effect? To address this question, we examined the influence of eight features on tracking: color, contrast polarity, orientation, size, shape, depth, interpolation, and a combination (shape, color, size). In each case, subjects tracked 4 of 8 objects that began as undifferentiated shapes, changed features as motion began (to enable grouping), and returned to their undifferentiated states before halting. We found that intertarget grouping improved performance for all feature types except orientation and interpolation (Experiment 1 and Experiment 2). Most importantly, target-distractor grouping impaired performance for color, size, shape, combination, and interpolation. The impairments were, at times, large (>15% decrement in accuracy) and occurred relative to a homogeneous condition in which all objects had the same features at each moment of a trial (Experiment 2), and relative to a "diversity" condition in which targets and distractors had different features at each moment (Experiment 3). We conclude that feature-based grouping occurs for a variety of features besides interpolation, even when irrelevant to task instructions and contrary to the task demands, suggesting that interpolation is not unique in promoting automatic grouping in tracking tasks. Our results also imply that various kinds of features are encoded automatically and in parallel during tracking.
Robust object matching for persistent tracking with heterogeneous features.
Guo, Yanlin; Hsu, Steve; Sawhney, Harpreet S; Kumar, Rakesh; Shan, Ying
2007-05-01
This paper addresses the problem of matching vehicles across multiple sightings under variations in illumination and camera poses. Since multiple observations of a vehicle are separated in large temporal and/or spatial gaps, thus prohibiting the use of standard frame-to-frame data association, we employ features extracted over a sequence during one time interval as a vehicle fingerprint that is used to compute the likelihood that two or more sequence observations are from the same or different vehicles. Furthermore, since our domain is aerial video tracking, in order to deal with poor image quality and large resolution and quality variations, our approach employs robust alignment and match measures for different stages of vehicle matching. Most notably, we employ a heterogeneous collection of features such as lines, points, and regions in an integrated matching framework. Heterogeneous features are shown to be important. Line and point features provide accurate localization and are employed for robust alignment across disparate views. The challenges of change in pose, aspect, and appearances across two disparate observations are handled by combining a novel feature-based quasi-rigid alignment with flexible matching between two or more sequences. However, since lines and points are relatively sparse, they are not adequate to delineate the object and provide a comprehensive matching set that covers the complete object. Region features provide a high degree of coverage and are employed for continuous frames to provide a delineation of the vehicle region for subsequent generation of a match measure. Our approach reliably delineates objects by representing regions as robust blob features and matching multiple regions to multiple regions using Earth Mover's Distance (EMD). Extensive experimentation under a variety of real-world scenarios and over hundreds of thousands of Confirmatory Identification (CID) trails has demonstrated about 95 percent accuracy in vehicle reacquisition with both visible and Infrared (IR) imaging cameras.
Hierarchical extraction of urban objects from mobile laser scanning data
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Dong, Zhen; Zhao, Gang; Dai, Wenxia
2015-01-01
Point clouds collected in urban scenes contain a huge number of points (e.g., billions), numerous objects with significant size variability, complex and incomplete structures, and variable point densities, raising great challenges for the automated extraction of urban objects in the field of photogrammetry, computer vision, and robotics. This paper addresses these challenges by proposing an automated method to extract urban objects robustly and efficiently. The proposed method generates multi-scale supervoxels from 3D point clouds using the point attributes (e.g., colors, intensities) and spatial distances between points, and then segments the supervoxels rather than individual points by combining graph based segmentation with multiple cues (e.g., principal direction, colors) of the supervoxels. The proposed method defines a set of rules for merging segments into meaningful units according to types of urban objects and forms the semantic knowledge of urban objects for the classification of objects. Finally, the proposed method extracts and classifies urban objects in a hierarchical order ranked by the saliency of the segments. Experiments show that the proposed method is efficient and robust for extracting buildings, streetlamps, trees, telegraph poles, traffic signs, cars, and enclosures from mobile laser scanning (MLS) point clouds, with an overall accuracy of 92.3%.
Space assets, technology and services in support of energy policy
NASA Astrophysics Data System (ADS)
Vasko, C. A.; Adriaensen, M.; Bretel, A.; Duvaux-Bechon, I.; Giannopapa, C. G.
2017-09-01
Space can be used as a tool by decision and policy makers in developing, implementing and monitoring various policy areas including resource management, environment, transport, security and energy. This paper focuses on the role of space for the energy policy. Firstly, the paper summarizes the European Union's (EU) main objectives in energy policy enclosed in the Energy Strategy 2020-2030-2050 and demonstrates how space assets can contribute to achieving those objectives. Secondly, the paper addresses how the European Space Agency (ESA) has established multiple initiatives and programs that directly finance the development of space assets, technology and applications that deliver services in support of the EU energy policy and sector. These efforts should be continued and strengthened in order to overcome identified technological challenges. The use of space assets, technology and applications, can help achieve the energy policy objectives for the next decades.
NASA Astrophysics Data System (ADS)
Kamangir, H.; Momeni, M.; Satari, M.
2017-09-01
This paper presents an automatic method to extract road centerline networks from high and very high resolution satellite images. The present paper addresses the automated extraction roads covered with multiple natural and artificial objects such as trees, vehicles and either shadows of buildings or trees. In order to have a precise road extraction, this method implements three stages including: classification of images based on maximum likelihood algorithm to categorize images into interested classes, modification process on classified images by connected component and morphological operators to extract pixels of desired objects by removing undesirable pixels of each class, and finally line extraction based on RANSAC algorithm. In order to evaluate performance of the proposed method, the generated results are compared with ground truth road map as a reference. The evaluation performance of the proposed method using representative test images show completeness values ranging between 77% and 93%.
Expert reasoning within an object-oriented framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohn, S.J.; Pennock, K.A.
1991-10-01
A large number of contaminated waste sites across the United States await site remediation efforts. These sites can be physically complex, composed of multiple, possibly interacting, contaminants distributed throughout one or more media. The Remedial Action Assessment System (RAAS) is being designed and developed to support decisions concerning the selection of remediation alternatives. The goal of this system is to broaden the consideration of remediation alternatives, while reducing the time and cost of making these considerations. The Remedial Action Assessment System was designed and constructed using object-oriented techniques. It is a hybrid system which uses a combination of quantitative andmore » qualitative reasoning to consider and suggest remediation alternatives. the reasoning process that drives this application is centered around an object-oriented organization of remediation technology information. This paper briefly describes the waste remediation problem and then discusses the information structure and organization RAAS utilizes to address it. 4 refs., 4 figs.« less
Decentralized Formation Flying Control in a Multiple-Team Hierarchy
NASA Technical Reports Server (NTRS)
Mueller, Joseph .; Thomas, Stephanie J.
2005-01-01
This paper presents the prototype of a system that addresses these objectives-a decentralized guidance and control system that is distributed across spacecraft using a multiple-team framework. The objective is to divide large clusters into teams of manageable size, so that the communication and computational demands driven by N decentralized units are related to the number of satellites in a team rather than the entire cluster. The system is designed to provide a high-level of autonomy, to support clusters with large numbers of satellites, to enable the number of spacecraft in the cluster to change post-launch, and to provide for on-orbit software modification. The distributed guidance and control system will be implemented in an object-oriented style using MANTA (Messaging Architecture for Networking and Threaded Applications). In this architecture, tasks may be remotely added, removed or replaced post-launch to increase mission flexibility and robustness. This built-in adaptability will allow software modifications to be made on-orbit in a robust manner. The prototype system, which is implemented in MATLAB, emulates the object-oriented and message-passing features of the MANTA software. In this paper, the multiple-team organization of the cluster is described, and the modular software architecture is presented. The relative dynamics in eccentric reference orbits is reviewed, and families of periodic, relative trajectories are identified, expressed as sets of static geometric parameters. The guidance law design is presented, and an example reconfiguration scenario is used to illustrate the distributed process of assigning geometric goals to the cluster. Next, a decentralized maneuver planning approach is presented that utilizes linear-programming methods to enact reconfiguration and coarse formation keeping maneuvers. Finally, a method for performing online collision avoidance is discussed, and an example is provided to gauge its performance.
Adding Hierarchical Objects to Relational Database General-Purpose XML-Based Information Managements
NASA Technical Reports Server (NTRS)
Lin, Shu-Chun; Knight, Chris; La, Tracy; Maluf, David; Bell, David; Tran, Khai Peter; Gawdiak, Yuri
2006-01-01
NETMARK is a flexible, high-throughput software system for managing, storing, and rapid searching of unstructured and semi-structured documents. NETMARK transforms such documents from their original highly complex, constantly changing, heterogeneous data formats into well-structured, common data formats in using Hypertext Markup Language (HTML) and/or Extensible Markup Language (XML). The software implements an object-relational database system that combines the best practices of the relational model utilizing Structured Query Language (SQL) with those of the object-oriented, semantic database model for creating complex data. In particular, NETMARK takes advantage of the Oracle 8i object-relational database model using physical-address data types for very efficient keyword searches of records across both context and content. NETMARK also supports multiple international standards such as WEBDAV for drag-and-drop file management and SOAP for integrated information management using Web services. The document-organization and -searching capabilities afforded by NETMARK are likely to make this software attractive for use in disciplines as diverse as science, auditing, and law enforcement.
NASA Technical Reports Server (NTRS)
Luckring, James M.; Rizzi, Arthur; Davis, M. Bruce
2014-01-01
A coordinated project has been underway to improve CFD predictions of slender airframe aerodynamics. The work is focused on two flow conditions and leverages a unique flight data set obtained with an F-16XL aircraft. These conditions, a low-speed high angleof- attack case and a transonic low angle-of-attack case, were selected from a prior prediction campaign wherein the CFD failed to provide acceptable results. In this paper the background, objectives and approach to the current project are presented. The work embodies predictions from multiple numerical formulations that are contributed from multiple organizations, and the context of this campaign to other multi-code, multiorganizational efforts is included. The relevance of this body of work toward future supersonic commercial transport concepts is also briefly addressed.
Treatment Planning and Image Guidance for Radiofrequency Ablations of Large Tumors
Ren, Hongliang; Campos-Nanez, Enrique; Yaniv, Ziv; Banovac, Filip; Abeledo, Hernan; Hata, Nobuhiko; Cleary, Kevin
2014-01-01
This article addresses the two key challenges in computer-assisted percutaneous tumor ablation: planning multiple overlapping ablations for large tumors while avoiding critical structures, and executing the prescribed plan. Towards semi-automatic treatment planning for image-guided surgical interventions, we develop a systematic approach to the needle-based ablation placement task, ranging from pre-operative planning algorithms to an intra-operative execution platform. The planning system incorporates clinical constraints on ablations and trajectories using a multiple objective optimization formulation, which consists of optimal path selection and ablation coverage optimization based on integer programming. The system implementation is presented and validated in phantom studies and on an animal model. The presented system can potentially be further extended for other ablation techniques such as cryotherapy. PMID:24235279
Airborne Intelligent Display (AID) Phase I Software Description,
1983-10-24
Board Computer Characteristics 10 3.0 SOFTWARE GENERAL DESCRIPTION 13 3.1 Overview 13 3.2 System Software 14 3.2.1 System Startup 14 3.2.1.1 Initial...3 A-2 Task States A-4 A-3 Task Program Structure A-6 A-4 Task States and State Change Mechanisms A-7 A-5 Computing Return Addresses: RUNADR, SLPADR A...techniques. 2.2 Design Approach The stated objectives were met by: 1. distributing the processing load among multiple Z80 single-board computers (SBC’s). This
Multi-objective optimization for generating a weighted multi-model ensemble
NASA Astrophysics Data System (ADS)
Lee, H.
2017-12-01
Many studies have demonstrated that multi-model ensembles generally show better skill than each ensemble member. When generating weighted multi-model ensembles, the first step is measuring the performance of individual model simulations using observations. There is a consensus on the assignment of weighting factors based on a single evaluation metric. When considering only one evaluation metric, the weighting factor for each model is proportional to a performance score or inversely proportional to an error for the model. While this conventional approach can provide appropriate combinations of multiple models, the approach confronts a big challenge when there are multiple metrics under consideration. When considering multiple evaluation metrics, it is obvious that a simple averaging of multiple performance scores or model ranks does not address the trade-off problem between conflicting metrics. So far, there seems to be no best method to generate weighted multi-model ensembles based on multiple performance metrics. The current study applies the multi-objective optimization, a mathematical process that provides a set of optimal trade-off solutions based on a range of evaluation metrics, to combining multiple performance metrics for the global climate models and their dynamically downscaled regional climate simulations over North America and generating a weighted multi-model ensemble. NASA satellite data and the Regional Climate Model Evaluation System (RCMES) software toolkit are used for assessment of the climate simulations. Overall, the performance of each model differs markedly with strong seasonal dependence. Because of the considerable variability across the climate simulations, it is important to evaluate models systematically and make future projections by assigning optimized weighting factors to the models with relatively good performance. Our results indicate that the optimally weighted multi-model ensemble always shows better performance than an arithmetic ensemble mean and may provide reliable future projections.
Deep Space Wide Area Search Strategies
NASA Astrophysics Data System (ADS)
Capps, M.; McCafferty, J.
There is an urgent need to expand the space situational awareness (SSA) mission beyond catalog maintenance to providing near real-time indications and warnings of emerging events. While building and maintaining a catalog of space objects is essential to SSA, this does not address the threat of uncatalogued and uncorrelated deep space objects. The Air Force therefore has an interest in transformative technologies to scan the geostationary (GEO) belt for uncorrelated space objects. Traditional ground based electro-optical sensors are challenged in simultaneously detecting dim objects while covering large areas of the sky using current CCD technology. Time delayed integration (TDI) scanning has the potential to enable significantly larger coverage rates while maintaining sensitivity for detecting near-GEO objects. This paper investigates strategies of employing TDI sensing technology from a ground based electro-optical telescope, toward providing tactical indications and warnings of deep space threats. We present results of a notional wide area search TDI sensor that scans the GEO belt from three locations: Maui, New Mexico, and Diego Garcia. Deep space objects in the NASA 2030 debris catalog are propagated over multiple nights as an indicative data set to emulate notional uncatalogued near-GEO orbits which may be encountered by the TDI sensor. Multiple scan patterns are designed and simulated, to compare and contrast performance based on 1) efficiency in coverage, 2) number of objects detected, and 3) rate at which detections occur, to enable follow-up observations by other space surveillance network (SSN) sensors. A step-stare approach is also modeled using a dedicated, co-located sensor notionally similar to the Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) tower. Equivalent sensitivities are assumed. This analysis quantifies the relative benefit of TDI scanning for the wide area search mission.
Radar based autonomous sensor module
NASA Astrophysics Data System (ADS)
Styles, Tim
2016-10-01
Most surveillance systems combine camera sensors with other detection sensors that trigger an alert to a human operator when an object is detected. The detection sensors typically require careful installation and configuration for each application and there is a significant burden on the operator to react to each alert by viewing camera video feeds. A demonstration system known as Sensing for Asset Protection with Integrated Electronic Networked Technology (SAPIENT) has been developed to address these issues using Autonomous Sensor Modules (ASM) and a central High Level Decision Making Module (HLDMM) that can fuse the detections from multiple sensors. This paper describes the 24 GHz radar based ASM, which provides an all-weather, low power and license exempt solution to the problem of wide area surveillance. The radar module autonomously configures itself in response to tasks provided by the HLDMM, steering the transmit beam and setting range resolution and power levels for optimum performance. The results show the detection and classification performance for pedestrians and vehicles in an area of interest, which can be modified by the HLDMM without physical adjustment. The module uses range-Doppler processing for reliable detection of moving objects and combines Radar Cross Section and micro-Doppler characteristics for object classification. Objects are classified as pedestrian or vehicle, with vehicle sub classes based on size. Detections are reported only if the object is detected in a task coverage area and it is classified as an object of interest. The system was shown in a perimeter protection scenario using multiple radar ASMs, laser scanners, thermal cameras and visible band cameras. This combination of sensors enabled the HLDMM to generate reliable alerts with improved discrimination of objects and behaviours of interest.
Use of multicriteria decision analysis to address conservation conflicts.
Davies, A L; Bryce, R; Redpath, S M
2013-10-01
Conservation conflicts are increasing on a global scale and instruments for reconciling competing interests are urgently needed. Multicriteria decision analysis (MCDA) is a structured, decision-support process that can facilitate dialogue between groups with differing interests and incorporate human and environmental dimensions of conflict. MCDA is a structured and transparent method of breaking down complex problems and incorporating multiple objectives. The value of this process for addressing major challenges in conservation conflict management is that MCDA helps in setting realistic goals; entails a transparent decision-making process; and addresses mistrust, differing world views, cross-scale issues, patchy or contested information, and inflexible legislative tools. Overall we believe MCDA provides a valuable decision-support tool, particularly for increasing awareness of the effects of particular values and choices for working toward negotiated compromise, although an awareness of the effect of methodological choices and the limitations of the method is vital before applying it in conflict situations. © 2013 Society for Conservation Biology.
Psychosocial stress and asthma morbidity.
Yonas, Michael A; Lange, Nancy E; Celedón, Juan C
2012-04-01
The objective of this review is to provide an overview and discussion of recent epidemiologic and mechanistic studies of stress in relation to asthma incidence and morbidity. Recent findings suggest that stress, whether at the individual (i.e. epigenetics, perceived stress), family (i.e. prenatal maternal stress, early-life exposure, or intimate partner violence) or community (i.e. neighborhood violence; neighborhood disadvantage) level, influences asthma and asthma morbidity. Key recent findings regarding how psychosocial stress may influence asthma through Posttraumatic Stress Disorder, prenatal and postnatal maternal/caregiver stress, and community violence and deprivation are highlighted. New research illustrates the need to further examine, characterize, and address the influence of social and environmental factors (i.e. psychological stress) on asthma. Further, research and innovative methodologies are needed to characterize the relationship and pathways associated with stress at multiple levels to more fully understand and address asthma morbidity, and to design potential interventions, especially to address persistent disparities in asthma in ethnic minorities and economically disadvantaged communities.
Perera, Frederica P.
2016-01-01
Background: Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. Objective: This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. Discussion: The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Conclusion: Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141–148; http://dx.doi.org/10.1289/EHP299 PMID:27323709
NASA Astrophysics Data System (ADS)
Khogeer, Ahmed Sirag
2005-11-01
Petroleum refining is a capital-intensive business. With stringent environmental regulations on the processing industry and declining refining margins, political instability, increased risk of war and terrorist attacks in which refineries and fuel transportation grids may be targeted, higher pressures are exerted on refiners to optimize performance and find the best combination of feed and processes to produce salable products that meet stricter product specifications, while at the same time meeting refinery supply commitments and of course making profit. This is done through multi objective optimization. For corporate refining companies and at the national level, Intea-Refinery and Inter-Refinery optimization is the second step in optimizing the operation of the whole refining chain as a single system. Most refinery-wide optimization methods do not cover multiple objectives such as minimizing environmental impact, avoiding catastrophic failures, or enhancing product spec upgrade effects. This work starts by carrying out a refinery-wide, single objective optimization, and then moves to multi objective-single refinery optimization. The last step is multi objective-multi refinery optimization, the objectives of which are analysis of the effects of economic, environmental, product spec, strategic, and catastrophic failure. Simulation runs were carried out using both MATLAB and ASPEN PIMS utilizing nonlinear techniques to solve the optimization problem. The results addressed the need to debottleneck some refineries or transportation media in order to meet the demand for essential products under partial or total failure scenarios. They also addressed how importing some high spec products can help recover some of the losses and what is needed in order to accomplish this. In addition, the results showed nonlinear relations among local and global objectives for some refineries. The results demonstrate that refineries can have a local multi objective optimum that does not follow the same trends as either global or local single objective optimums. Catastrophic failure effects on refinery operations and on local objectives are more significant than environmental objective effects, and changes in the capacity or the local objectives follow a discrete behavioral pattern, in contrast to environmental objective cases in which the effects are smoother. (Abstract shortened by UMI.)
Sequential sampling of visual objects during sustained attention.
Jia, Jianrong; Liu, Ling; Fang, Fang; Luo, Huan
2017-06-01
In a crowded visual scene, attention must be distributed efficiently and flexibly over time and space to accommodate different contexts. It is well established that selective attention enhances the corresponding neural responses, presumably implying that attention would persistently dwell on the task-relevant item. Meanwhile, recent studies, mostly in divided attentional contexts, suggest that attention does not remain stationary but samples objects alternately over time, suggesting a rhythmic view of attention. However, it remains unknown whether the dynamic mechanism essentially mediates attentional processes at a general level. Importantly, there is also a complete lack of direct neural evidence reflecting whether and how the brain rhythmically samples multiple visual objects during stimulus processing. To address these issues, in this study, we employed electroencephalography (EEG) and a temporal response function (TRF) approach, which can dissociate responses that exclusively represent a single object from the overall neuronal activity, to examine the spatiotemporal characteristics of attention in various attentional contexts. First, attention, which is characterized by inhibitory alpha-band (approximately 10 Hz) activity in TRFs, switches between attended and unattended objects every approximately 200 ms, suggesting a sequential sampling even when attention is required to mostly stay on the attended object. Second, the attentional spatiotemporal pattern is modulated by the task context, such that alpha-mediated switching becomes increasingly prominent as the task requires a more uniform distribution of attention. Finally, the switching pattern correlates with attentional behavioral performance. Our work provides direct neural evidence supporting a generally central role of temporal organization mechanism in attention, such that multiple objects are sequentially sorted according to their priority in attentional contexts. The results suggest that selective attention, in addition to the classically posited attentional "focus," involves a dynamic mechanism for monitoring all objects outside of the focus. Our findings also suggest that attention implements a space (object)-to-time transformation by acting as a series of concatenating attentional chunks that operate on 1 object at a time.
Sequential sampling of visual objects during sustained attention
Jia, Jianrong; Liu, Ling; Fang, Fang
2017-01-01
In a crowded visual scene, attention must be distributed efficiently and flexibly over time and space to accommodate different contexts. It is well established that selective attention enhances the corresponding neural responses, presumably implying that attention would persistently dwell on the task-relevant item. Meanwhile, recent studies, mostly in divided attentional contexts, suggest that attention does not remain stationary but samples objects alternately over time, suggesting a rhythmic view of attention. However, it remains unknown whether the dynamic mechanism essentially mediates attentional processes at a general level. Importantly, there is also a complete lack of direct neural evidence reflecting whether and how the brain rhythmically samples multiple visual objects during stimulus processing. To address these issues, in this study, we employed electroencephalography (EEG) and a temporal response function (TRF) approach, which can dissociate responses that exclusively represent a single object from the overall neuronal activity, to examine the spatiotemporal characteristics of attention in various attentional contexts. First, attention, which is characterized by inhibitory alpha-band (approximately 10 Hz) activity in TRFs, switches between attended and unattended objects every approximately 200 ms, suggesting a sequential sampling even when attention is required to mostly stay on the attended object. Second, the attentional spatiotemporal pattern is modulated by the task context, such that alpha-mediated switching becomes increasingly prominent as the task requires a more uniform distribution of attention. Finally, the switching pattern correlates with attentional behavioral performance. Our work provides direct neural evidence supporting a generally central role of temporal organization mechanism in attention, such that multiple objects are sequentially sorted according to their priority in attentional contexts. The results suggest that selective attention, in addition to the classically posited attentional “focus,” involves a dynamic mechanism for monitoring all objects outside of the focus. Our findings also suggest that attention implements a space (object)-to-time transformation by acting as a series of concatenating attentional chunks that operate on 1 object at a time. PMID:28658261
Pavlacky, David C; Lukacs, Paul M; Blakesley, Jennifer A; Skorkowsky, Robert C; Klute, David S; Hahn, Beth A; Dreitz, Victoria J; George, T Luke; Hanni, David J
2017-01-01
Monitoring is an essential component of wildlife management and conservation. However, the usefulness of monitoring data is often undermined by the lack of 1) coordination across organizations and regions, 2) meaningful management and conservation objectives, and 3) rigorous sampling designs. Although many improvements to avian monitoring have been discussed, the recommendations have been slow to emerge in large-scale programs. We introduce the Integrated Monitoring in Bird Conservation Regions (IMBCR) program designed to overcome the above limitations. Our objectives are to outline the development of a statistically defensible sampling design to increase the value of large-scale monitoring data and provide example applications to demonstrate the ability of the design to meet multiple conservation and management objectives. We outline the sampling process for the IMBCR program with a focus on the Badlands and Prairies Bird Conservation Region (BCR 17). We provide two examples for the Brewer's sparrow (Spizella breweri) in BCR 17 demonstrating the ability of the design to 1) determine hierarchical population responses to landscape change and 2) estimate hierarchical habitat relationships to predict the response of the Brewer's sparrow to conservation efforts at multiple spatial scales. The collaboration across organizations and regions provided economy of scale by leveraging a common data platform over large spatial scales to promote the efficient use of monitoring resources. We designed the IMBCR program to address the information needs and core conservation and management objectives of the participating partner organizations. Although it has been argued that probabilistic sampling designs are not practical for large-scale monitoring, the IMBCR program provides a precedent for implementing a statistically defensible sampling design from local to bioregional scales. We demonstrate that integrating conservation and management objectives with rigorous statistical design and analyses ensures reliable knowledge about bird populations that is relevant and integral to bird conservation at multiple scales.
Hahn, Beth A.; Dreitz, Victoria J.; George, T. Luke
2017-01-01
Monitoring is an essential component of wildlife management and conservation. However, the usefulness of monitoring data is often undermined by the lack of 1) coordination across organizations and regions, 2) meaningful management and conservation objectives, and 3) rigorous sampling designs. Although many improvements to avian monitoring have been discussed, the recommendations have been slow to emerge in large-scale programs. We introduce the Integrated Monitoring in Bird Conservation Regions (IMBCR) program designed to overcome the above limitations. Our objectives are to outline the development of a statistically defensible sampling design to increase the value of large-scale monitoring data and provide example applications to demonstrate the ability of the design to meet multiple conservation and management objectives. We outline the sampling process for the IMBCR program with a focus on the Badlands and Prairies Bird Conservation Region (BCR 17). We provide two examples for the Brewer’s sparrow (Spizella breweri) in BCR 17 demonstrating the ability of the design to 1) determine hierarchical population responses to landscape change and 2) estimate hierarchical habitat relationships to predict the response of the Brewer’s sparrow to conservation efforts at multiple spatial scales. The collaboration across organizations and regions provided economy of scale by leveraging a common data platform over large spatial scales to promote the efficient use of monitoring resources. We designed the IMBCR program to address the information needs and core conservation and management objectives of the participating partner organizations. Although it has been argued that probabilistic sampling designs are not practical for large-scale monitoring, the IMBCR program provides a precedent for implementing a statistically defensible sampling design from local to bioregional scales. We demonstrate that integrating conservation and management objectives with rigorous statistical design and analyses ensures reliable knowledge about bird populations that is relevant and integral to bird conservation at multiple scales. PMID:29065128
Science of Integrated Approaches to Natural Resources Management
NASA Astrophysics Data System (ADS)
Tengberg, Anna; Valencia, Sandra
2017-04-01
To meet multiple environmental objectives, integrated programming is becoming increasingly important for the Global Environmental Facility (GEF), the financial mechanism of the multilateral environmental agreements, including the United Nations Convention to Combat Desertification (UNCCD). Integration of multiple environmental, social and economic objectives also contributes to the achievement of the Sustainable Development Goals (SDGs) in a timely and cost-effective way. However, integration is often not well defined. This paper therefore focuses on identifying key aspects of integration and assessing their implementation in natural resources management (NRM) projects. To that end, we draw on systems thinking literature, and carry out an analysis of a random sample of GEF integrated projects and in-depth case studies demonstrating lessons learned and good practices in addressing land degradation and other NRM challenges. We identify numerous challenges and opportunities of integrated approaches that need to be addressed in order to maximise the catalytic impact of the GEF during problem diagnosis, project design, implementation and governance. We highlight the need for projects to identify clearer system boundaries and main feedback mechanisms within those boundaries, in order to effectively address drivers of environmental change. We propose a theory of change for Integrated Natural Resources Management (INRM) projects, where short-term environmental and socio-economic benefits will first accrue at the local level. Implementation of improved INRM technologies and practices at the local level can be extended through spatial planning, strengthening of innovation systems, and financing and incentive mechanisms at the watershed and/or landscape/seascape level to sustain and enhance ecosystem services at larger scales and longer time spans. We conclude that the evolving scientific understanding of factors influencing social, technical and institutional innovations and transitions towards sustainable management of natural resources should be harnessed and integrated into GEF's influencing models and theory of change, and be coupled with updated approaches for learning, adaptive management and scaling up.
Salient Object Detection via Structured Matrix Decomposition.
Peng, Houwen; Li, Bing; Ling, Haibin; Hu, Weiming; Xiong, Weihua; Maybank, Stephen J
2016-05-04
Low-rank recovery models have shown potential for salient object detection, where a matrix is decomposed into a low-rank matrix representing image background and a sparse matrix identifying salient objects. Two deficiencies, however, still exist. First, previous work typically assumes the elements in the sparse matrix are mutually independent, ignoring the spatial and pattern relations of image regions. Second, when the low-rank and sparse matrices are relatively coherent, e.g., when there are similarities between the salient objects and background or when the background is complicated, it is difficult for previous models to disentangle them. To address these problems, we propose a novel structured matrix decomposition model with two structural regularizations: (1) a tree-structured sparsity-inducing regularization that captures the image structure and enforces patches from the same object to have similar saliency values, and (2) a Laplacian regularization that enlarges the gaps between salient objects and the background in feature space. Furthermore, high-level priors are integrated to guide the matrix decomposition and boost the detection. We evaluate our model for salient object detection on five challenging datasets including single object, multiple objects and complex scene images, and show competitive results as compared with 24 state-of-the-art methods in terms of seven performance metrics.
Cross-Domain Multi-View Object Retrieval via Multi-Scale Topic Models.
Hong, Richang; Hu, Zhenzhen; Wang, Ruxin; Wang, Meng; Tao, Dacheng
2016-09-27
The increasing number of 3D objects in various applications has increased the requirement for effective and efficient 3D object retrieval methods, which attracted extensive research efforts in recent years. Existing works mainly focus on how to extract features and conduct object matching. With the increasing applications, 3D objects come from different areas. In such circumstances, how to conduct object retrieval becomes more important. To address this issue, we propose a multi-view object retrieval method using multi-scale topic models in this paper. In our method, multiple views are first extracted from each object, and then the dense visual features are extracted to represent each view. To represent the 3D object, multi-scale topic models are employed to extract the hidden relationship among these features with respected to varied topic numbers in the topic model. In this way, each object can be represented by a set of bag of topics. To compare the objects, we first conduct topic clustering for the basic topics from two datasets, and then generate the common topic dictionary for new representation. Then, the two objects can be aligned to the same common feature space for comparison. To evaluate the performance of the proposed method, experiments are conducted on two datasets. The 3D object retrieval experimental results and comparison with existing methods demonstrate the effectiveness of the proposed method.
Duckett, Stephen J
2008-01-01
Background Hospital policy involves multiple objectives: efficiency of service delivery, pursuit of high quality care, promoting access. Funding policy based on hospital casemix has traditionally been considered to be only about promoting efficiency. Discussion Formula-based funding policy can be (and has been) used to pursue a range of policy objectives, not only efficiency. These are termed 'adjunct' goals. Strategies to incorporate adjunct goals into funding design must, implicitly or explicitly, address key decision choices outlined in this paper. Summary Policy must be clear and explicit about the behaviour to be rewarded; incentives must be designed so that all facilities with an opportunity to improve have an opportunity to benefit; the reward structure is stable and meaningful; and the funder monitors performance and gaming. PMID:18384694
Atreja, Ashish; Mehta, Neil; Miller, Deborah; Moore, Shirley; Nichols, Karen; Miller, Holly; Harris, C Martin
2005-01-01
Disabled and elderly populations are the fastest growing segment of Internet usage. However, these people face an “Inverse Information law”- access to appropriate information is particularly difficult to those who need it the most. Our tertiary care Multiple Sclerosis (MS) center received funding to develop a MS specific patient portal linked to web messaging system so as to empower patients to become more active participants in their health care. In order to design an effective portal, we conducted a qualitative study using focus groups and direct observation techniques. The study explores the perceptions, expectations and interactions of MS patients with the portal and underscores the many challenges MS patients face in getting quality health information on the Internet. Many of the patient barriers were due to inappropriate font sizes, low contrast, cluttering of web page and use of dynamic and flashing objects. Some of these issues are not addressed by Section 508 accessibility guidelines. We believe that any future patient portal or health information web site needs to address these issues and educate the patients about accessibility options to enhance utilization and user satisfaction. PMID:16778993
Chen, Liang-Chieh; Papandreou, George; Kokkinos, Iasonas; Murphy, Kevin; Yuille, Alan L
2018-04-01
In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.
Inference of emission rates from multiple sources using Bayesian probability theory.
Yee, Eugene; Flesch, Thomas K
2010-03-01
The determination of atmospheric emission rates from multiple sources using inversion (regularized least-squares or best-fit technique) is known to be very susceptible to measurement and model errors in the problem, rendering the solution unusable. In this paper, a new perspective is offered for this problem: namely, it is argued that the problem should be addressed as one of inference rather than inversion. Towards this objective, Bayesian probability theory is used to estimate the emission rates from multiple sources. The posterior probability distribution for the emission rates is derived, accounting fully for the measurement errors in the concentration data and the model errors in the dispersion model used to interpret the data. The Bayesian inferential methodology for emission rate recovery is validated against real dispersion data, obtained from a field experiment involving various source-sensor geometries (scenarios) consisting of four synthetic area sources and eight concentration sensors. The recovery of discrete emission rates from three different scenarios obtained using Bayesian inference and singular value decomposition inversion are compared and contrasted.
NASA Astrophysics Data System (ADS)
Enzenhoefer, R.; Binning, P. J.; Nowak, W.
2015-09-01
Risk is often defined as the product of probability, vulnerability and value. Drinking water supply from groundwater abstraction is often at risk due to multiple hazardous land use activities in the well catchment. Each hazard might or might not introduce contaminants into the subsurface at any point in time, which then affects the pumped quality upon transport through the aquifer. In such situations, estimating the overall risk is not trivial, and three key questions emerge: (1) How to aggregate the impacts from different contaminants and spill locations to an overall, cumulative impact on the value at risk? (2) How to properly account for the stochastic nature of spill events when converting the aggregated impact to a risk estimate? (3) How will the overall risk and subsequent decision making depend on stakeholder objectives, where stakeholder objectives refer to the values at risk, risk attitudes and risk metrics that can vary between stakeholders. In this study, we provide a STakeholder-Objective Risk Model (STORM) for assessing the total aggregated risk. Or concept is a quantitative, probabilistic and modular framework for simulation-based risk estimation. It rests on the source-pathway-receptor concept, mass-discharge-based aggregation of stochastically occuring spill events, accounts for uncertainties in the involved flow and transport models through Monte Carlo simulation, and can address different stakeholder objectives. We illustrate the application of STORM in a numerical test case inspired by a German drinking water catchment. As one may expect, the results depend strongly on the chosen stakeholder objectives, but they are equally sensitive to different approaches for risk aggregation across different hazards, contaminant types, and over time.
Real-time acquisition and tracking system with multiple Kalman filters
NASA Astrophysics Data System (ADS)
Beard, Gary C.; McCarter, Timothy G.; Spodeck, Walter; Fletcher, James E.
1994-07-01
The design of a real-time, ground-based, infrared tracking system with proven field success in tracking boost vehicles through burnout is presented with emphasis on the software design. The system was originally developed to deliver relative angular positions during boost, and thrust termination time to a sensor fusion station in real-time. Autonomous target acquisition and angle-only tracking features were developed to ensure success under stressing conditions. A unique feature of the system is the incorporation of multiple copies of a Kalman filter tracking algorithm running in parallel in order to minimize run-time. The system is capable of updating the state vector for an object at measurement rates approaching 90 Hz. This paper will address the top-level software design, details of the algorithms employed, system performance history in the field, and possible future upgrades.
Cross-situational statistical word learning in young children.
Suanda, Sumarga H; Mugwanya, Nassali; Namy, Laura L
2014-10-01
Recent empirical work has highlighted the potential role of cross-situational statistical word learning in children's early vocabulary development. In the current study, we tested 5- to 7-year-old children's cross-situational learning by presenting children with a series of ambiguous naming events containing multiple words and multiple referents. Children rapidly learned word-to-object mappings by attending to the co-occurrence regularities across these ambiguous naming events. The current study begins to address the mechanisms underlying children's learning by demonstrating that the diversity of learning contexts affects performance. The implications of the current findings for the role of cross-situational word learning at different points in development are discussed along with the methodological implications of employing school-aged children to test hypotheses regarding the mechanisms supporting early word learning. Copyright © 2014 Elsevier Inc. All rights reserved.
Toward Improved Predictions of Slender Airframe Aerodynamics Using the F-16XL Aircraft
NASA Technical Reports Server (NTRS)
Luckring, James M.; Rizzi, Arthur; Davis, M. Bruce
2016-01-01
A coordinated project has been underway to improve computational fluid dynamics predictions of slender airframe aerodynamics. The work is focused on two flow conditions and leverages a unique flight data set obtained with an F-16XL aircraft. These conditions, a low-speed high angle-of-attack case and a transonic low angle-of-attack case, were selected from a prior prediction campaign wherein the computational fluid dynamics failed to provide acceptable results. In this paper, the background, objectives, and approach to the current project are presented. The work embodies predictions from multiple numerical formulations that are contributed from multiple organizations, and the context of this campaign to other multicode, multi-organizational efforts is included. The relevance of this body of work toward future supersonic commercial transport concepts is also briefly addressed.
Williams, Julia; O'Connor, Mórna; Windle, Richard; Wharrad, Heather J
2015-12-01
Clinical skills are a critical component of pre-registration nurse education in the United Kingdom, yet there is widespread concern about the clinical skills displayed by newly-qualified nurses. Novel means of supporting clinical skills education are required to address this. A package of Reusable Learning Objects (RLOs) was developed to supplement pre-registration teaching on the clinical skill of administering injection medication. RLOs are electronic resources addressing a single learning objective whose interactivity facilitates learning. This article evaluates a package of five injection RLOs across three studies: (1) questionnaires administered to pre-registration nursing students at University of Nottingham (UoN) (n=46) evaluating the RLO package as a whole; (2) individual RLOs evaluated in online questionnaires by educators and students from UoN; from other national and international institutions; and healthcare professionals (n=265); (3) qualitative evaluation of the RLO package by UoN injection skills tutors (n=6). Data from all studies were assessed for (1) access to, (2) usefulness, (3) impact and (4) integration of the RLOs. Study one found that pre-registration nursing students rate the RLO package highly across all categories, particularly underscoring the value of their self-test elements. Study two found high ratings in online assessments of individual RLOs by multiple users. The global reach is particularly encouraging here. Tutors reported insufficient levels of student-RLO access, which might be explained by the timing of their student exposure. Tutors integrate RLOs into teaching and agree on their use as teaching supplements, not substitutes for face-to-face education. This evaluation encompasses the first years postpackage release. Encouraging data on evaluative categories in this early review suggest that future evaluations are warranted to track progress as the package is adopted and evaluated more widely. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optimum Design of High-Speed Prop-Rotors
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; McCarthy, Thomas Robert
1993-01-01
An integrated multidisciplinary optimization procedure is developed for application to rotary wing aircraft design. The necessary disciplines such as dynamics, aerodynamics, aeroelasticity, and structures are coupled within a closed-loop optimization process. The procedure developed is applied to address two different problems. The first problem considers the optimization of a helicopter rotor blade and the second problem addresses the optimum design of a high-speed tilting proprotor. In the helicopter blade problem, the objective is to reduce the critical vibratory shear forces and moments at the blade root, without degrading rotor aerodynamic performance and aeroelastic stability. In the case of the high-speed proprotor, the goal is to maximize the propulsive efficiency in high-speed cruise without deteriorating the aeroelastic stability in cruise and the aerodynamic performance in hover. The problems studied involve multiple design objectives; therefore, the optimization problems are formulated using multiobjective design procedures. A comprehensive helicopter analysis code is used for the rotary wing aerodynamic, dynamic and aeroelastic stability analyses and an algorithm developed specifically for these purposes is used for the structural analysis. A nonlinear programming technique coupled with an approximate analysis procedure is used to perform the optimization. The optimum blade designs obtained in each case are compared to corresponding reference designs.
Mathew, Geetha; Unnikrishnan, M K
2015-10-01
Inflammation is a complex, metabolically expensive process involving multiple signaling pathways and regulatory mechanisms which have evolved over evolutionary timescale. Addressing multiple targets of inflammation holistically, in moderation, is probably a more evolutionarily viable strategy, as compared to current therapy which addresses drug targets in isolation. Polypharmacology, addressing multiple targets, is commonly used in complex ailments, suggesting the superior safety and efficacy profile of multi-target (MT) drugs. Phenotypic drug discovery, which generated successful MT and first-in-class drugs in the past, is now re-emerging. A multi-pronged approach, which modulates the evolutionarily conserved, robust and pervasive cellular mechanisms of tissue repair, with AMPK at the helm, regulating the complex metabolic/immune/redox pathways underlying inflammation, is perhaps a more viable strategy than addressing single targets in isolation. Molecules that modulate multiple molecular mechanisms of inflammation in moderation (modulating TH cells toward the anti-inflammatory phenotype, activating AMPK, stimulating Nrf2 and inhibiting NFκB) might serve as a model for a novel Darwinian "first-in-class" therapeutic category that holistically addresses immune, redox and metabolic processes associated with inflammatory repair. Such a multimodal biological activity is supported by the fact that several non-calorific pleiotropic natural products with anti-inflammatory action have been incorporated into diet (chiefly guided by the adaptive development of olfacto-gustatory preferences over evolutionary timescales) rendering such molecules, endowed with evolutionarily privileged molecular scaffolds, naturally oriented toward multiple targets.
Operations management system advanced automation: Fault detection isolation and recovery prototyping
NASA Technical Reports Server (NTRS)
Hanson, Matt
1990-01-01
The purpose of this project is to address the global fault detection, isolation and recovery (FDIR) requirements for Operation's Management System (OMS) automation within the Space Station Freedom program. This shall be accomplished by developing a selected FDIR prototype for the Space Station Freedom distributed processing systems. The prototype shall be based on advanced automation methodologies in addition to traditional software methods to meet the requirements for automation. A secondary objective is to expand the scope of the prototyping to encompass multiple aspects of station-wide fault management (SWFM) as discussed in OMS requirements documentation.
Lineage mapper: A versatile cell and particle tracker
NASA Astrophysics Data System (ADS)
Chalfoun, Joe; Majurski, Michael; Dima, Alden; Halter, Michael; Bhadriraju, Kiran; Brady, Mary
2016-11-01
The ability to accurately track cells and particles from images is critical to many biomedical problems. To address this, we developed Lineage Mapper, an open-source tracker for time-lapse images of biological cells, colonies, and particles. Lineage Mapper tracks objects independently of the segmentation method, detects mitosis in confluence, separates cell clumps mistakenly segmented as a single cell, provides accuracy and scalability even on terabyte-sized datasets, and creates division and/or fusion lineages. Lineage Mapper has been tested and validated on multiple biological and simulated problems. The software is available in ImageJ and Matlab at isg.nist.gov.
Does public health advocacy seek to redress health inequities? A scoping review.
Cohen, Benita E; Marshall, Shelley G
2017-03-01
The public health (PH) sector is ideally situated to take a lead advocacy role in catalysing and guiding multi-sectoral action to address social determinants of health inequities, but evidence suggests that PH's advocacy role has not been fully realised. The purpose of this review was to determine the extent to which the PH advocacy literature addresses the goal of reducing health and social inequities, and to increase understanding of contextual factors shaping the discourse and practice of PH advocacy. We employed scoping review methods to systematically examine and chart peer-reviewed and grey literature on PH advocacy published from January 1, 2000 to June 30, 2015. Databases and search engines used included: PubMed, CINAHL, PsycINFO, Social Sciences Citation Index, Google Scholar, Google, Google Books, ProQuest Dissertations and Theses, Grey Literature Report. A total of 183 documents were charted, and included in the final analysis. Thematic analysis was both inductive and deductive according to the objectives. Although PH advocacy to address root causes of health inequities is supported theoretically and through professional practice standards, the empirical literature does not reflect that this is occurring widely in PH practice. Tensions within the discourse were noted and multiple barriers to engaging in PH advocacy for health equity were identified, including a preoccupation with individual responsibilities for healthy lifestyles and behaviours, consistent with the emergence of neoliberal governance. If the PH sector is to fulfil its advocacy role in catalysing action to reduce health inequities, it will be necessary to address advocacy barriers at multiple levels, promote multi-sectoral efforts that implicate the state and corporations in the production of health inequities, and rally state involvement to redress these injustices. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Hadley, Mark Alfred
Some important problems to overcome in the design and fabrication of vertical-cavity surface-emitting laser diodes (VCSELs) are: narrow design tolerances, molecular beam epitaxy growth control and multiple transverse modes. This dissertation addresses each of these problems. First, optical, electrical and thermal design issues are discussed in detail. Second, a new growth method using the thermal emission from the substrate during growth is described which is used to accurately control the growth of multilayer structures. The third problem addressed is that of multiple transverse modes. For many applications it is desirable for a VCSEL to lase in the lowest-order transverse mode. In most structures, this only occurs at low powers. It is shown that an external cavity can be used to force a VCSEL to lase in a single transverse mode at all power levels. A new type of VCSEL, grown on a p-doped substrate in order to increase injection uniformity, is designed specifically for use in an external cavity. There are two types of external cavities used to control modes: a long external "macro-cavity" and a short external "micro-cavity." These external cavities have been used to obtain peak powers of over 100 mW while remaining in the fundamental mode under pulsed operation. Finally, a more general topic is researched. This topic, called fluidic self-assembly (FSA), is a new integration technique that can be used not only to integrate VCSELs on a separate substrate, but to integrate many different material systems and devices together on the same substrate. The basic concept of FSA is to make a large number of objects of a particular shape. On a separate substrate, holes that match the shape of the objects are also fabricated. By placing the substrate in an inert fluid containing the objects, and recirculating the fluid and the objects over the substrate, it is possible to fill the holes with correctly oriented objects. Results of a FSA study are reported in which 100% fill factors are obtained. Specifically, FSA was used to assemble two different sizes of silicon blocks into holes in a silicon substrate. Fabrication techniques as well as FSA results are included.
Larson, Diane L.; Phillips-Mao, Laura; Quiram, Gina; Sharpe, Leah; Stark, Rebecca; Sugita, Shinya; Weiler, Annie
2011-01-01
Applying the concept of sustainability to invasive species management (ISM) is challenging but necessary, given the increasing rates of invasion and the high costs of invasion impacts and control. To be sustainable, ISM must address environmental, social, and economic factors (or *pillars*) that influence the causes, impacts, and control of invasive species across multiple spatial and temporal scales. Although these pillars are generally acknowledged, their implementation is often limited by insufficient control options and significant economic and political constraints. In this paper, we outline specific objectives in each of these three *pillars* that, if incorporated into a management plan, will improve the plan's likelihood of sustainability. We then examine three case studies that illustrate how these objectives can be effectively implemented. Each pillar reinforces the others, such that the inclusion of even a few of the outlined objectives will lead to more effective management that achieves ecological goals, while generating social support and long-term funding to maintain projects to completion. We encourage agency directors and policy-makers to consider sustainability principles when developing funding schemes, management agendas, and policy.
A structured analysis of uncertainty surrounding modeled impacts of groundwater-extraction rules
NASA Astrophysics Data System (ADS)
Guillaume, Joseph H. A.; Qureshi, M. Ejaz; Jakeman, Anthony J.
2012-08-01
Integrating economic and groundwater models for groundwater-management can help improve understanding of trade-offs involved between conflicting socioeconomic and biophysical objectives. However, there is significant uncertainty in most strategic decision-making situations, including in the models constructed to represent them. If not addressed, this uncertainty may be used to challenge the legitimacy of the models and decisions made using them. In this context, a preliminary uncertainty analysis was conducted of a dynamic coupled economic-groundwater model aimed at assessing groundwater extraction rules. The analysis demonstrates how a variety of uncertainties in such a model can be addressed. A number of methods are used including propagation of scenarios and bounds on parameters, multiple models, block bootstrap time-series sampling and robust linear regression for model calibration. These methods are described within the context of a theoretical uncertainty management framework, using a set of fundamental uncertainty management tasks and an uncertainty typology.
Hinz, T
2012-12-01
The 5 professional associations for the disabled and the self-help organisations of disabled people state that in Germany a general concept for "participation research" is needed. This concept should address expectations and processes in developing aid services and improve self-determined participation of people with disabilities according to the human rights postulated in the UN Convention on the Rights of People with Disabilities (2006). A concept of "participation research" will go beyond the objectives and methods of i. e., disability studies - it is a focus in the context of which the social and equal participation of the disabled (especially those with multiple and/or intellectual handicaps) has to be addressed. In this context the 5 professional associations for the disabled have drafted 10 theses which are presented in the following article. © Georg Thieme Verlag KG Stuttgart · New York.
Standards for vision science libraries: 2014 revision
Motte, Kristin; Caldwell, C. Brooke; Lamson, Karen S.; Ferimer, Suzanne; Nims, J. Chris
2014-01-01
Objective: This Association of Vision Science Librarians revision of the “Standards for Vision Science Libraries” aspires to provide benchmarks to address the needs for the services and resources of modern vision science libraries (academic, medical or hospital, pharmaceutical, and so on), which share a core mission, are varied by type, and are located throughout the world. Methods: Through multiple meeting discussions, member surveys, and a collaborative revision process, the standards have been updated for the first time in over a decade. Results: While the range of types of libraries supporting vision science services, education, and research is wide, all libraries, regardless of type, share core attributes, which the standards address. Conclusions: The current standards can and should be used to help develop new vision science libraries or to expand the growth of existing libraries, as well as to support vision science librarians in their work to better provide services and resources to their respective users. PMID:25349547
NASA Technical Reports Server (NTRS)
Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.
1998-01-01
In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.
Doppler radar detection of vortex hazard indicators
NASA Technical Reports Server (NTRS)
Nespor, Jerald D.; Hudson, B.; Stegall, R. L.; Freedman, Jerome E.
1994-01-01
Wake vortex experiments were conducted at White Sands Missile Range, NM using the AN/MPS-39 Multiple Object Tracking Radar (MOTR). The purpose of these experiments was twofold. The first objective was to verify that radar returns from wake vortex are observed for some time after the passage of an aircraft. The second objective was to verify that other vortex hazard indicators such as ambient wind speed and direction could also be detected. The present study addresses the Doppler characteristics of wake vortex and clear air returns based upon measurements employing MOTR, a very sensitive C-Band phased array radar. In this regard, the experiment was conducted so that the spectral characteristics could be determined on a dwell to-dwell basis. Results are presented from measurements of the backscattered power (equivalent structure constant), radial velocity and spectral width when the aircraft flies transverse and axial to the radar beam. The statistics of the backscattered power and spectral width for each case are given. In addition, the scan strategy, experimental test procedure and radar parameters are presented.
The conventionality of pictorial representation in interstellar messages
NASA Astrophysics Data System (ADS)
Vakoch, D. A.
2000-06-01
Pictorial messages have previously been advocated for interstellar communication because such messages are presumed to be capable of presenting information in a non-arbitrary and easily intelligible manner. In contrast to this view, pictorial messages actually represent information in a partially conventional way. This point is demonstrated by examining pictorial representations of human beings from a range of cultures. While such representations may be understood quite readily by individuals familiar with the conventions of a particular culture, to the uninitiated outsider, such representations can be unintelligible. In spite of the partially arbitrary nature of pictorial representation, we may be able to construct messages that would teach extraterrestrial intelligence (ETI) some of the conventions by which we view pictures. One such approach is to pair numerical information about geometrical objects with pictorial representations of the same objects. Problems of conventionality can also be addressed in part through use of (1) multiple representations of the same object, (2) contextual cues, (3) three- and four-dimensional representations and (4) non-visual representations.
A Deep Ensemble Learning Method for Monaural Speech Separation.
Zhang, Xiao-Lei; Wang, DeLiang
2016-03-01
Monaural speech separation is a fundamental problem in robust speech processing. Recently, deep neural network (DNN)-based speech separation methods, which predict either clean speech or an ideal time-frequency mask, have demonstrated remarkable performance improvement. However, a single DNN with a given window length does not leverage contextual information sufficiently, and the differences between the two optimization objectives are not well understood. In this paper, we propose a deep ensemble method, named multicontext networks, to address monaural speech separation. The first multicontext network averages the outputs of multiple DNNs whose inputs employ different window lengths. The second multicontext network is a stack of multiple DNNs. Each DNN in a module of the stack takes the concatenation of original acoustic features and expansion of the soft output of the lower module as its input, and predicts the ratio mask of the target speaker; the DNNs in the same module employ different contexts. We have conducted extensive experiments with three speech corpora. The results demonstrate the effectiveness of the proposed method. We have also compared the two optimization objectives systematically and found that predicting the ideal time-frequency mask is more efficient in utilizing clean training speech, while predicting clean speech is less sensitive to SNR variations.
2009-09-01
Tactics for Single or Multiple UAS over the Net-Centric Battlefield 6. AUTHOR( S ) Mustafa Gokhan Erdemli 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION...NAME( S ) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...MONITORING AGENCY NAME( S ) AND ADDRESS(ES) N/A 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this
Decentralized formation flying control in a multiple-team hierarchy.
Mueller, Joseph B; Thomas, Stephanie J
2005-12-01
In recent years, formation flying has been recognized as an enabling technology for a variety of mission concepts in both the scientific and defense arenas. Examples of developing missions at NASA include magnetospheric multiscale (MMS), solar imaging radio array (SIRA), and terrestrial planet finder (TPF). For each of these missions, a multiple satellite approach is required in order to accomplish the large-scale geometries imposed by the science objectives. In addition, the paradigm shift of using a multiple satellite cluster rather than a large, monolithic spacecraft has also been motivated by the expected benefits of increased robustness, greater flexibility, and reduced cost. However, the operational costs of monitoring and commanding a fleet of close-orbiting satellites is likely to be unreasonable unless the onboard software is sufficiently autonomous, robust, and scalable to large clusters. This paper presents the prototype of a system that addresses these objectives-a decentralized guidance and control system that is distributed across spacecraft using a multiple team framework. The objective is to divide large clusters into teams of "manageable" size, so that the communication and computation demands driven by N decentralized units are related to the number of satellites in a team rather than the entire cluster. The system is designed to provide a high level of autonomy, to support clusters with large numbers of satellites, to enable the number of spacecraft in the cluster to change post-launch, and to provide for on-orbit software modification. The distributed guidance and control system will be implemented in an object-oriented style using a messaging architecture for networking and threaded applications (MANTA). In this architecture, tasks may be remotely added, removed, or replaced post launch to increase mission flexibility and robustness. This built-in adaptability will allow software modifications to be made on-orbit in a robust manner. The prototype system, which is implemented in Matlab, emulates the object-oriented and message-passing features of the MANTA software. In this paper, the multiple team organization of the cluster is described, and the modular software architecture is presented. The relative dynamics in eccentric reference orbits is reviewed, and families of periodic, relative trajectories are identified, expressed as sets of static geometric parameters. The guidance law design is presented, and an example reconfiguration scenario is used to illustrate the distributed process of assigning geometric goals to the cluster. Next, a decentralized maneuver planning approach is presented that utilizes linear-programming methods to enact reconfiguration and coarse formation keeping maneuvers. Finally, a method for performing online collision avoidance is discussed, and an example is provided to gauge its performance.
Porting Social Media Contributions with SIOC
NASA Astrophysics Data System (ADS)
Bojars, Uldis; Breslin, John G.; Decker, Stefan
Social media sites, including social networking sites, have captured the attention of millions of users as well as billions of dollars in investment and acquisition. To better enable a user's access to multiple sites, portability between social media sites is required in terms of both (1) the personal profiles and friend networks and (2) a user's content objects expressed on each site. This requires representation mechanisms to interconnect both people and objects on the Web in an interoperable, extensible way. The Semantic Web provides the required representation mechanisms for portability between social media sites: it links people and objects to record and represent the heterogeneous ties that bind each to the other. The FOAF (Friend-of-a-Friend) initiative provides a solution to the first requirement, and this paper discusses how the SIOC (Semantically-Interlinked Online Communities) project can address the latter. By using agreed-upon Semantic Web formats like FOAF and SIOC to describe people, content objects, and the connections that bind them together, social media sites can interoperate and provide portable data by appealing to some common semantics. In this paper, we will discuss the application of Semantic Web technology to enhance current social media sites with semantics and to address issues with portability between social media sites. It has been shown that social media sites can serve as rich data sources for SIOC-based applications such as the SIOC Browser, but in the other direction, we will now show how SIOC data can be used to represent and port the diverse social media contributions (SMCs) made by users on heterogeneous sites.
The Jupiter System Observer Mission Concept: Scientific Investigation of the Jovian System
NASA Astrophysics Data System (ADS)
Spilker, T. R.; Senske, D. A.; Prockter, L.; Kwok, J. H.; Tan-Wang, G. H.; Sdt, J.
2007-12-01
NASA's Science Mission Directorate (SMD), in efforts to start an outer solar system flagship mission in the near future, commissioned studies of mission concepts for four high-priority outer solar system destinations: Europa, the Jovian system, Titan, and Enceladus. Our team has identified and evaluated science and mission architectures to investigate major elements of the Jovian system: Jupiter, the Galilean moons, rings, and magnetosphere, and their interactions. SMD dubbed the mission concept the "Jupiter System Observer (JSO)." This JPL-led study's final report is now complete and was submitted in August 2007. SMD intends to select a subset of these four concepts for additional detailed study, leading to a potential flagship mission new start. The study's NASA-appointed, multi-institutional Science Definition Team (SDT) identified a rich set of science objectives that JSO can address quite well. The highly capable science payload (including ~50-cm optics), an extensive tour with multiple close flybys of Io, Europa, Ganymede and Callisto, and a significant time in orbit at Ganymede, addresses a large set of Solar System Exploration Decadal Survey (2003) and NASA Solar System Exploration Roadmap (2006) high-priority objectives. With the engineering team, the SDT evaluated a suite of mission architectures and the science they enable to arrive at two architectures that provide the best science for their estimated mission costs. This paper discusses the science objectives and operational capabilities and considerations for these mission concepts, and some options available for emphasizing specific science objectives. This work was performed at JPL, APL, and other institutions under contract to NASA.
Bojanić, Ljubica; Marković-Peković, Vanda; Škrbić, Ranko; Stojaković, Nataša; Ðermanović, Mirjana; Bojanić, Janja; Fürst, Jurij; Kurdi, Amanj B; Godman, Brian
2018-01-01
Introduction: There are increasing concerns world-wide with growing rates of antibiotic resistance necessitating urgent action. There have been a number of initiatives in the Republic of Srpska in recent years to address this and improve rational antibiotic prescribing and dispensing despite limited resources to fund multiple initiatives. Objective: Analyse antibiotic utilization patterns in the Republic of Srpska following these multiple initiatives as a basis for developing future programmes in the Republic if needed. Methods: Observational retrospective study of total outpatient antibiotic utilization from 2010 to 2015, based on data obtained from the Public Health Institute, alongside documentation of ongoing initiatives to influence utilization. The quality of antibiotic utilization principally assessed according to ESAC, ECDC, and WHO quality indicators and DU 90% (the drug utilization 90%) profile as well as vs. neighboring countries. Results: Following multiple initiatives, antibiotic utilization remained relatively stable in the Republic at 15.6 to 18.4 DIDs, with a decreasing trend in recent years, with rates comparable or lower than neighboring countries. Amoxicillin and the penicillins accounted for 29-40 and 50% of total utilization, respectively. Overall, limited utilization of co-amoxiclav (7-11%), cephalosporins, macrolides, and quinolones, as well as low use of third and fourth generation cephalosporins vs. first and second cephalosporins. However, increasing utilization of co-amoxiclav and azithromycin, as well as higher rates of quinolone utilization compared to some countries, was seen. Conclusions: Multiple interventions in the Republic of Srpska in recent years have resulted in one of the lowest utilization of antibiotics when compared with similar countries, acting as an exemplar to others. However, there are some concerns with current utilization of co-amoxiclav and azithromycin which are being addressed. This will be the subject of future research activities.
Compositional mining of multiple object API protocols through state abstraction.
Dai, Ziying; Mao, Xiaoguang; Lei, Yan; Qi, Yuhua; Wang, Rui; Gu, Bin
2013-01-01
API protocols specify correct sequences of method invocations. Despite their usefulness, API protocols are often unavailable in practice because writing them is cumbersome and error prone. Multiple object API protocols are more expressive than single object API protocols. However, the huge number of objects of typical object-oriented programs poses a major challenge to the automatic mining of multiple object API protocols: besides maintaining scalability, it is important to capture various object interactions. Current approaches utilize various heuristics to focus on small sets of methods. In this paper, we present a general, scalable, multiple object API protocols mining approach that can capture all object interactions. Our approach uses abstract field values to label object states during the mining process. We first mine single object typestates as finite state automata whose transitions are annotated with states of interacting objects before and after the execution of the corresponding method and then construct multiple object API protocols by composing these annotated single object typestates. We implement our approach for Java and evaluate it through a series of experiments.
Compositional Mining of Multiple Object API Protocols through State Abstraction
Mao, Xiaoguang; Qi, Yuhua; Wang, Rui; Gu, Bin
2013-01-01
API protocols specify correct sequences of method invocations. Despite their usefulness, API protocols are often unavailable in practice because writing them is cumbersome and error prone. Multiple object API protocols are more expressive than single object API protocols. However, the huge number of objects of typical object-oriented programs poses a major challenge to the automatic mining of multiple object API protocols: besides maintaining scalability, it is important to capture various object interactions. Current approaches utilize various heuristics to focus on small sets of methods. In this paper, we present a general, scalable, multiple object API protocols mining approach that can capture all object interactions. Our approach uses abstract field values to label object states during the mining process. We first mine single object typestates as finite state automata whose transitions are annotated with states of interacting objects before and after the execution of the corresponding method and then construct multiple object API protocols by composing these annotated single object typestates. We implement our approach for Java and evaluate it through a series of experiments. PMID:23844378
Real-time optical multiple object recognition and tracking system and method
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Liu, Hua Kuang (Inventor)
1987-01-01
The invention relates to an apparatus and associated methods for the optical recognition and tracking of multiple objects in real time. Multiple point spatial filters are employed that pre-define the objects to be recognized at run-time. The system takes the basic technology of a Vander Lugt filter and adds a hololens. The technique replaces time, space and cost-intensive digital techniques. In place of multiple objects, the system can also recognize multiple orientations of a single object. This later capability has potential for space applications where space and weight are at a premium.
Fallah, Parisa Nicole; Bernstein, Mark
2018-04-06
OBJECTIVE There is a global lack of access to surgical care, and this issue disproportionately affects those in low- and middle-income countries. Global surgery academic collaborations (GSACs) between surgeons in high-income countries and those in low- and middle-income countries are one possible sustainable way to address the global surgical need. The objective of this study was to examine the barriers to participation in GSACs and to suggest ways to increase involvement. METHODS A convenience sample of 86 surgeons, anesthesiologists, other physicians, residents, fellows, and nurses from the US, Canada, and Norway was used. Participants were all health care providers from multiple specialties and multiple academic centers with varied involvement in GSACs. More than half of the participants were neurosurgeons. Participants were interviewed in person or over Skype in Toronto over the course of 2 months by using a predetermined set of open-ended questions. Thematic content analysis was used to evaluate the participants' responses. RESULTS Based on the data, 3 main themes arose that pointed to individual, community, and system barriers for involvement in GSACs. Individual barriers included loss of income, family commitments, young career, responsibility to local patients, skepticism of global surgery efforts, ethical concerns, and safety concerns. Community barriers included insufficient mentorship and lack of support from colleagues. System barriers included lack of time, minimal academic recognition, insufficient awareness, insufficient administrative support and organization, and low political and funding support. CONCLUSIONS Steps can be taken to address some of these barriers and to increase the involvement of surgeons from high-income countries in GSACs. This could lead to a necessary scale-up of global surgery efforts that may help increase worldwide access to surgical care.
2005-09-01
6. AUTHOR( S ) Muhammad Shahid 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943...5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME( S ) AND ADDRESS(ES) N/A 10. SPONSORING/MONITORING...streams which are assigned to the K subcarriers [1]. The symbol duration of the input serial data is ’sT with serial data rate of ’ s s f T
Inferring Binary and Trinary Stellar Populations in Photometric and Astrometric Surveys
NASA Astrophysics Data System (ADS)
Widmark, Axel; Leistedt, Boris; Hogg, David W.
2018-04-01
Multiple stellar systems are ubiquitous in the Milky Way but are often unresolved and seen as single objects in spectroscopic, photometric, and astrometric surveys. However, modeling them is essential for developing a full understanding of large surveys such as Gaia and connecting them to stellar and Galactic models. In this paper, we address this problem by jointly fitting the Gaia and Two Micron All Sky Survey photometric and astrometric data using a data-driven Bayesian hierarchical model that includes populations of binary and trinary systems. This allows us to classify observations into singles, binaries, and trinaries, in a robust and efficient manner, without resorting to external models. We are able to identify multiple systems and, in some cases, make strong predictions for the properties of their unresolved stars. We will be able to compare such predictions with Gaia Data Release 4, which will contain astrometric identification and analysis of binary systems.
NASA Astrophysics Data System (ADS)
Dunn, Patrice M.
1998-01-01
The Digital Distribution of Advertising for Publications (DDAP) is a graphic arts industry prototype of Electronic Intermedia Publishing (EIP). EIP is a strategic, multi- industrial concept that seeks to enable the capture and input of volumes of data (i.e., both raster and object oriented data -- as well as the latter's antecedent which is vector data -- color data and black-and-white data) from a multiplicity of devices; then flowing, controlling, manipulating, modifying, storing, retrieving, transmitting, and shipping, that data through an industrial process for output to a multiplicity of output devices (e.g., ink on paper, toner on paper, bits and bytes on CD ROM, Internet, Multimedia, HDTV, etc.). As the technical requirements of the print medium are among the most rigorous in the Intermedia milieu the DDAP prototype addresses some of the most challenging issues faced in Electronic Intermedia Publishing (EIP).
Jin, Junchen
2016-01-01
The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality. PMID:27436998
NASA Astrophysics Data System (ADS)
Aldrin, John C.; Lindgren, Eric A.
2018-04-01
This paper expands on the objective and motivation for NDE-based characterization and includes a discussion of the current approach using model-assisted inversion being pursued within the Air Force Research Laboratory (AFRL). This includes a discussion of the multiple model-based methods that can be used, including physics-based models, deep machine learning, and heuristic approaches. The benefits and drawbacks of each method is reviewed and the potential to integrate multiple methods is discussed. Initial successes are included to highlight the ability to obtain quantitative values of damage. Additional steps remaining to realize this capability with statistical metrics of accuracy are discussed, and how these results can be used to enable probabilistic life management are addressed. The outcome of this initiative will realize the long-term desired capability of NDE methods to provide quantitative characterization to accelerate certification of new materials and enhance life management of engineered systems.
A CFD study of complex missile and store configurations in relative motion
NASA Technical Reports Server (NTRS)
Baysal, Oktay
1995-01-01
An investigation was conducted from May 16, 1990 to August 31, 1994 on the development of computational fluid dynamics (CFD) methodologies for complex missiles and the store separation problem. These flowfields involved multiple-component configurations, where at least one of the objects was engaged in relative motion. The two most important issues that had to be addressed were: (1) the unsteadiness of the flowfields (time-accurate and efficient CFD algorithms for the unsteady equations), and (2) the generation of grid systems which would permit multiple and moving bodies in the computational domain (dynamic domain decomposition). The study produced two competing and promising methodologies, and their proof-of-concept cases, which have been reported in the open literature: (1) Unsteady solutions on dynamic, overlapped grids, which may also be perceived as moving, locally-structured grids, and (2) Unsteady solutions on dynamic, unstructured grids.
A subjective scheduler for subjective dedicated networks
NASA Astrophysics Data System (ADS)
Suherman; Fakhrizal, Said Reza; Al-Akaidi, Marwan
2017-09-01
Multiple access technique is one of important techniques within medium access layer in TCP/IP protocol stack. Each network technology implements the selected access method. Priority can be implemented in those methods to differentiate services. Some internet networks are dedicated for specific purpose. Education browsing or tutorial video accesses are preferred in a library hotspot, while entertainment and sport contents could be subjects of limitation. Current solution may use IP address filter or access list. This paper proposes subjective properties of users or applications are used for priority determination in multiple access techniques. The NS-2 simulator is employed to evaluate the method. A video surveillance network using WiMAX is chosen as the object. Subjective priority is implemented on WiMAX scheduler based on traffic properties. Three different traffic sources from monitoring video: palace, park, and market are evaluated. The proposed subjective scheduler prioritizes palace monitoring video that results better quality, xx dB than the later monitoring spots.
The impact of drugs for multiple sclerosis on sleep.
Lanza, Giuseppe; Ferri, Raffaele; Bella, Rita; Ferini-Strambi, Luigi
2017-01-01
Although there is a growing literature on the presence of sleep disorders in multiple sclerosis (MS), few studies have specifically addressed the impact of drugs on sleep of these patients. Moreover, even when sleep is considered, quantitative assessment by standardized questionnaires or polysomnography is lacking. The studies that have been done highlight that interferon-beta and some symptomatic medications may affect sleep, thus contributing to fatigue, depression, and poor quality of life; conversely, natalizumab and cannabinoids may improve sleep. Common limitations of the literature reviewed here are small sample size, selection bias, and often a lack of objective outcome measures. Clinicians need to remember to ask about sleep in all MS patients and intervene when appropriate. A systematic approach that takes sleep into account is recommended to enhance recognition and appropriate management of sleep disruption, including disorders related to medication. Consideration of the impact on sleep should also be part of the design of trials of new therapies.
Cultural Heritage in Smart City Environments
NASA Astrophysics Data System (ADS)
Angelidou, M.; Karachaliou, E.; Angelidou, T.; Stylianidis, E.
2017-08-01
This paper investigates how the historical and cultural heritage of cities is and can be underpinned by means of smart city tools, solutions and applications. Smart cities stand for a conceptual technology-and-innovation driven urban development model. By becoming `smart', cities seek to achieve prosperity, effectiveness and competitiveness on multiple socio-economic levels. Although cultural heritage is one of the many issues addressed by existing smart city strategies, and despite the documented bilateral benefits, our research about the positioning of urban cultural heritage within three smart city strategies (Barcelona, Amsterdam, and London) reveals fragmented approaches. Our findings suggest that the objective of cultural heritage promotion is not substantially addressed in the investigated smart city strategies. Nevertheless, we observe that cultural heritage management can be incorporated in several different strategic areas of the smart city, reflecting different lines of thinking and serving an array of goals, depending on the case. We conclude that although potential applications and approaches abound, cultural heritage currently stands for a mostly unexploited asset, presenting multiple integration opportunities within smart city contexts. We prompt for further research into bridging the two disciplines and exploiting a variety of use cases with the purpose of enriching the current knowledge base at the intersection of cultural heritage and smart cities.
Evaluating Remapped Physical Reach for Hand Interactions with Passive Haptics in Virtual Reality.
Han, Dustin T; Suhail, Mohamed; Ragan, Eric D
2018-04-01
Virtual reality often uses motion tracking to incorporate physical hand movements into interaction techniques for selection and manipulation of virtual objects. To increase realism and allow direct hand interaction, real-world physical objects can be aligned with virtual objects to provide tactile feedback and physical grasping. However, unless a physical space is custom configured to match a specific virtual reality experience, the ability to perfectly match the physical and virtual objects is limited. Our research addresses this challenge by studying methods that allow one physical object to be mapped to multiple virtual objects that can exist at different virtual locations in an egocentric reference frame. We study two such techniques: one that introduces a static translational offset between the virtual and physical hand before a reaching action, and one that dynamically interpolates the position of the virtual hand during a reaching motion. We conducted two experiments to assess how the two methods affect reaching effectiveness, comfort, and ability to adapt to the remapping techniques when reaching for objects with different types of mismatches between physical and virtual locations. We also present a case study to demonstrate how the hand remapping techniques could be used in an immersive game application to support realistic hand interaction while optimizing usability. Overall, the translational technique performed better than the interpolated reach technique and was more robust for situations with larger mismatches between virtual and physical objects.
Efficient RNA structure comparison algorithms.
Arslan, Abdullah N; Anandan, Jithendar; Fry, Eric; Monschke, Keith; Ganneboina, Nitin; Bowerman, Jason
2017-12-01
Recently proposed relative addressing-based ([Formula: see text]) RNA secondary structure representation has important features by which an RNA structure database can be stored into a suffix array. A fast substructure search algorithm has been proposed based on binary search on this suffix array. Using this substructure search algorithm, we present a fast algorithm that finds the largest common substructure of given multiple RNA structures in [Formula: see text] format. The multiple RNA structure comparison problem is NP-hard in its general formulation. We introduced a new problem for comparing multiple RNA structures. This problem has more strict similarity definition and objective, and we propose an algorithm that solves this problem efficiently. We also develop another comparison algorithm that iteratively calls this algorithm to locate nonoverlapping large common substructures in compared RNAs. With the new resulting tools, we improved the RNASSAC website (linked from http://faculty.tamuc.edu/aarslan ). This website now also includes two drawing tools: one specialized for preparing RNA substructures that can be used as input by the search tool, and another one for automatically drawing the entire RNA structure from a given structure sequence.
A multiple objective optimization approach to quality control
NASA Technical Reports Server (NTRS)
Seaman, Christopher Michael
1991-01-01
The use of product quality as the performance criteria for manufacturing system control is explored. The goal in manufacturing, for economic reasons, is to optimize product quality. The problem is that since quality is a rather nebulous product characteristic, there is seldom an analytic function that can be used as a measure. Therefore standard control approaches, such as optimal control, cannot readily be applied. A second problem with optimizing product quality is that it is typically measured along many dimensions: there are many apsects of quality which must be optimized simultaneously. Very often these different aspects are incommensurate and competing. The concept of optimality must now include accepting tradeoffs among the different quality characteristics. These problems are addressed using multiple objective optimization. It is shown that the quality control problem can be defined as a multiple objective optimization problem. A controller structure is defined using this as the basis. Then, an algorithm is presented which can be used by an operator to interactively find the best operating point. Essentially, the algorithm uses process data to provide the operator with two pieces of information: (1) if it is possible to simultaneously improve all quality criteria, then determine what changes to the process input or controller parameters should be made to do this; and (2) if it is not possible to improve all criteria, and the current operating point is not a desirable one, select a criteria in which a tradeoff should be made, and make input changes to improve all other criteria. The process is not operating at an optimal point in any sense if no tradeoff has to be made to move to a new operating point. This algorithm ensures that operating points are optimal in some sense and provides the operator with information about tradeoffs when seeking the best operating point. The multiobjective algorithm was implemented in two different injection molding scenarios: tuning of process controllers to meet specified performance objectives and tuning of process inputs to meet specified quality objectives. Five case studies are presented.
[Impact of children with multiple disabilities on families in Abidjan].
N Dri, Koumé Mathias; Yaya, Issifou; Zigoli, Robertine; Endemel Ayabakan, François; Ipou, Stéphane Yves; Lambert Moke, Botty
A child's multiple disabilities have a major impact on families in both developed and developing countries. In Côte d'Ivoire, very few data are available concerning the real experiences of families of children with multiple disabilities. The objective of this study was to improve our knowledge of the impact of children with multiple disabilities on families in Côte d'Ivoire. A qualitative study was conducted among the families consulting the Child Guidance Centre of the National Institute of Public Health in Abidjan. Data were collected in May 2015 by semi-structured individual interviews with mothers of children with multiple disabilities. Twenty mothers of multiply disabled children between the ages of 2 and 14 years were interviewed. The child's multiple disability was found to have a negative impact on finances, health, and social life. Health check-ups, treatment and transport are the main additional costs. Mothers suffer from insomnia, fatigue, back pain and anxiety and were often held responsible for their child's disability. A disabled child was a source of discord in several couples and a cause of school drop-out in some families.This study partially addresses the experiences of families with children with multiple disabilities. It confirms the results of several other studies, highlighting the vulnerability and social dysfunction of these families. The presence of a child with multiple disabilities in a family is a source of psychological, financial and social upheaval. This study raises questions about the impact of multiple disabilities on the whole family and a more detailed analysis of economic aspects.
Scientific Investigation of the Jovian System: the Jupiter System Observer Mission Concept
NASA Astrophysics Data System (ADS)
Spilker, Thomas R.; Senske, D. A.; Prockter, L.; Kwok, J. H.; Tan-Wang, G. H.; SDT, JSO
2007-10-01
NASA's Science Mission Directorate (SMD), in efforts to start an outer solar system flagship mission in the near future, commissioned studies of mission concepts for four high-priority outer solar system destinations: Europa, the Jovian system, Titan, and Enceladus. Our team has identified and evaluated science and mission architectures to investigate major elements of the Jovian system: Jupiter, the Galilean moons, rings, and magnetosphere, and their interactions. SMD dubbed the mission concept the "Jupiter System Observer (JSO)." At abstract submission this JPL-led study is nearly complete, with final report submission in August 2007. SMD intends to select a subset of these four concepts for additional detailed study, leading to a potential flagship mission new start. A rich set of science objectives that JSO can address quite well have been identified. The highly capable science payload (including 50-cm optic), an extensive tour with multiple close flybys of Io, Europa, Ganymede and Callisto, and a significant time in orbit at Ganymede, addresses a large set of Solar System Exploration Decadal Survey (2003) and NASA Solar System Exploration Roadmap (2006) high-priority objectives. With the engineering team, the Science Definition Team evaluated a suite of mission architectures and the science they enable to arrive at two architectures that provide the best science for their estimated mission costs. This paper discusses the science objectives and operational capabilities and considerations for these mission concepts. This work was performed at JPL, APL, and other institutions under contract to NASA.
Hyun, Seung Won; Wong, Weng Kee
2016-01-01
We construct an optimal design to simultaneously estimate three common interesting features in a dose-finding trial with possibly different emphasis on each feature. These features are (1) the shape of the dose-response curve, (2) the median effective dose and (3) the minimum effective dose level. A main difficulty of this task is that an optimal design for a single objective may not perform well for other objectives. There are optimal designs for dual objectives in the literature but we were unable to find optimal designs for 3 or more objectives to date with a concrete application. A reason for this is that the approach for finding a dual-objective optimal design does not work well for a 3 or more multiple-objective design problem. We propose a method for finding multiple-objective optimal designs that estimate the three features with user-specified higher efficiencies for the more important objectives. We use the flexible 4-parameter logistic model to illustrate the methodology but our approach is applicable to find multiple-objective optimal designs for other types of objectives and models. We also investigate robustness properties of multiple-objective optimal designs to mis-specification in the nominal parameter values and to a variation in the optimality criterion. We also provide computer code for generating tailor made multiple-objective optimal designs. PMID:26565557
Hyun, Seung Won; Wong, Weng Kee
2015-11-01
We construct an optimal design to simultaneously estimate three common interesting features in a dose-finding trial with possibly different emphasis on each feature. These features are (1) the shape of the dose-response curve, (2) the median effective dose and (3) the minimum effective dose level. A main difficulty of this task is that an optimal design for a single objective may not perform well for other objectives. There are optimal designs for dual objectives in the literature but we were unable to find optimal designs for 3 or more objectives to date with a concrete application. A reason for this is that the approach for finding a dual-objective optimal design does not work well for a 3 or more multiple-objective design problem. We propose a method for finding multiple-objective optimal designs that estimate the three features with user-specified higher efficiencies for the more important objectives. We use the flexible 4-parameter logistic model to illustrate the methodology but our approach is applicable to find multiple-objective optimal designs for other types of objectives and models. We also investigate robustness properties of multiple-objective optimal designs to mis-specification in the nominal parameter values and to a variation in the optimality criterion. We also provide computer code for generating tailor made multiple-objective optimal designs.
NASA Astrophysics Data System (ADS)
Mai, Juliane; Cuntz, Matthias; Shafii, Mahyar; Zink, Matthias; Schäfer, David; Thober, Stephan; Samaniego, Luis; Tolson, Bryan
2016-04-01
Hydrologic models are traditionally calibrated against observed streamflow. Recent studies have shown however, that only a few global model parameters are constrained using this kind of integral signal. They can be identified using prior screening techniques. Since different objectives might constrain different parameters, it is advisable to use multiple information to calibrate those models. One common approach is to combine these multiple objectives (MO) into one single objective (SO) function and allow the use of a SO optimization algorithm. Another strategy is to consider the different objectives separately and apply a MO Pareto optimization algorithm. In this study, two major research questions will be addressed: 1) How do multi-objective calibrations compare with corresponding single-objective calibrations? 2) How much do calibration results deteriorate when the number of calibrated parameters is reduced by a prior screening technique? The hydrologic model employed in this study is a distributed hydrologic model (mHM) with 52 model parameters, i.e. transfer coefficients. The model uses grid cells as a primary hydrologic unit, and accounts for processes like snow accumulation and melting, soil moisture dynamics, infiltration, surface runoff, evapotranspiration, subsurface storage and discharge generation. The model is applied in three distinct catchments over Europe. The SO calibrations are performed using the Dynamically Dimensioned Search (DDS) algorithm with a fixed budget while the MO calibrations are achieved using the Pareto Dynamically Dimensioned Search (PA-DDS) algorithm allowing for the same budget. The two objectives used here are the Nash Sutcliffe Efficiency (NSE) of the simulated streamflow and the NSE of the logarithmic transformation. It is shown that the SO DDS results are located close to the edges of the Pareto fronts of the PA-DDS. The MO calibrations are hence preferable due to their supply of multiple equivalent solutions from which the user can choose at the end due to the specific needs. The sequential single-objective parameter screening was employed prior to the calibrations reducing the number of parameters by at least 50% in the different catchments and for the different single objectives. The single-objective calibrations led to a faster convergence of the objectives and are hence beneficial when using a DDS on single-objectives. The above mentioned parameter screening technique is generalized for multi-objectives and applied before calibration using the PA-DDS algorithm. Two different alternatives of this MO-screening are tested. The comparison of the calibration results using all parameters and using only screened parameters shows for both alternatives that the PA-DDS algorithm does not profit in terms of trade-off size and function evaluations required to achieve converged pareto fronts. This is because the PA-DDS algorithm automatically reduces search space with progress of the calibration run. This automatic reduction should be different for other search algorithms. It is therefore hypothesized that prior screening can but must not be beneficial for parameter estimation dependent on the chosen optimization algorithm.
Types of Lay Health Influencers in Tobacco Cessation: A Qualitative Study
Yuan, Nicole P.; Wind, Steven; Nichter, Mimi; Nichter, Mark; Castañeda, Heide; Carruth, Lauren; Muramoto, Myra L.
2014-01-01
Objective To identify types of health influencers in tobacco cessation based on the frequency and characteristics of brief intervention activities. Methods Longitudinal qualitative interviews were completed with 28 individuals post-training. Results Four individuals were categorized as Rarely Active, 5 as Active with Family and Friends, 9 as Active in the Workplace, and 10 as Proactive in Multiple Settings. Unique motivators, intervention behaviors, and barriers were documented. Some individuals displayed high levels of self-efficacy necessary for expanding the reach of community-based interventions. Conclusion Training programs need to address the impact of contextual factors on initiating and sustaining intervention activities. PMID:20524890
Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems
NASA Astrophysics Data System (ADS)
Koch, Patrick Nathan
Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.
Efficient search of multiple types of targets
NASA Astrophysics Data System (ADS)
Wosniack, M. E.; Raposo, E. P.; Viswanathan, G. M.; da Luz, M. G. E.
2015-12-01
Random searches often take place in fragmented landscapes. Also, in many instances like animal foraging, significant benefits to the searcher arise from visits to a large diversity of patches with a well-balanced distribution of targets found. Up to date, such aspects have been widely ignored in the usual single-objective analysis of search efficiency, in which one seeks to maximize just the number of targets found per distance traversed. Here we address the problem of determining the best strategies for the random search when these multiple-objective factors play a key role in the process. We consider a figure of merit (efficiency function), which properly "scores" the mentioned tasks. By considering random walk searchers with a power-law asymptotic Lévy distribution of step lengths, p (ℓ ) ˜ℓ-μ , with 1 <μ ≤3 , we show that the standard optimal strategy with μopt≈2 no longer holds universally. Instead, optimal searches with enhanced superdiffusivity emerge, including values as low as μopt≈1.3 (i.e., tending to the ballistic limit). For the general theory of random search optimization, our findings emphasize the necessity to correctly characterize the multitude of aims in any concrete metric to compare among possible candidates to efficient strategies. In the context of animal foraging, our results might explain some empirical data pointing to stronger superdiffusion (μ <2 ) in the search behavior of different animal species, conceivably associated to multiple goals to be achieved in fragmented landscapes.
Simple and Multiple Endmember Mixture Analysis in the Boreal Forest
NASA Technical Reports Server (NTRS)
Roberts, Dar A.; Gamon, John A.; Qiu, Hong-Lie
2000-01-01
A key scientific objective of the original Boreal Ecosystem-Atmospheric Study (BOREAS) field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass, and trace gases in the boreal forest biome. These data sets are necessary to determine the sensitivity of the boreal forest biome to potential climatic changes and potential biophysical feedbacks on climate. A considerable volume of remotely sensed and supporting field data were acquired by numerous researchers to meet this objective. By design, remote sensing and modeling were considered critical components for scaling efforts, extending point measurements from flux towers and field sites over larger spatial and longer temporal scales. A major focus of the BOREAS Follow-on program was concerned with integrating the diverse remotely sensed and ground-based data sets to address specific questions such as carbon dynamics at local to regional scales.
NeXOS, developing and evaluating a new generation of insitu ocean observation systems.
NASA Astrophysics Data System (ADS)
Delory, Eric; del Rio, Joaquin; Golmen, Lars; Roar Hareide, Nils; Pearlman, Jay; Rolin, Jean-Francois; Waldmann, Christoph; Zielinski, Oliver
2017-04-01
Ocean biological, chemical or physical processes occur over widely varying scales in space and time: from micro- to kilometer scales, from less than seconds to centuries. While space systems supply important data and information, insitu data is necessary for comprehensive modeling and forecasting of ocean dynamics. Yet, collection of in-situ observation on these scales is inherently challenging and remains generally difficult and costly in time and resources. This paper address the innovations and significant developments for a new generation of insitu sensors in FP7 European Union project "Next generation, Cost- effective, Compact, Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management" or "NeXOS" for short. Optical and acoustics sensors are the focus of NeXOS but NeXOS moves beyond just sensors as systems that simultaneously address multiple objectives and applications are becoming increasingly important. Thus NeXOS takes a perspective of both sensors and sensor systems with significant advantages over existing observing capabilities via the implementation of innovations such as multiplatform integration, greater reliability through better antifouling management and greater sensor and data interoperability through use of OGC standards. This presentation will address the sensor system development and field-testing of the new NeXOS sensor systems. This is being done on multiple platforms including profiling floats, gliders, ships, buoys and subsea stations. The implementation of a data system based on SWE and PUCK furthers interoperability across measurements and platforms. This presentation will review the sensor system capabilities, the status of field tests and recommendations for long-term ocean monitoring.
Douglas, Susan R.; Jonghyuk, Bae; de Andrade, Ana Regina Vides; Tomlinson, M. Michele; Hargraves, Ryan Pamela; Bickman, Leonard
2015-01-01
Objective This study explored how clinician-reported content addressed in treatment sessions was predicted by clinician feedback group and multi-informant cumulative problem alerts that appeared in computerized feedback reports for 299 clients aged 11 to 18 years receiving home-based community mental health treatment. Method Measures included a clinician-report of content addressed in sessions and additional measures of treatment progress and process (e.g., therapeutic alliance) completed by clinicians, clients, and their caregivers. Item responses in the top 25th percentile in severity from these measures appeared as ‘problem alerts’ on corresponding computerized feedback reports. Clinicians randomized to the feedback group received feedback weekly while the control group did not. Analyses were conducted using the Cox proportional hazards regression for recurrent events. Results For all content domains, the results of the survival analyses indicated a robust effect of the feedback group on addressing specific content in sessions, with feedback associated with shorter duration to first occurrence and increased likelihood of addressing or focusing on a topic compared to the non-feedback group. Conclusion There appears to be an important relationship between feedback and cumulative problem alerts reported by multiple informants as they influence session content. PMID:26337327
Studying visual attention using the multiple object tracking paradigm: A tutorial review.
Meyerhoff, Hauke S; Papenmeier, Frank; Huff, Markus
2017-07-01
Human observers are capable of tracking multiple objects among identical distractors based only on their spatiotemporal information. Since the first report of this ability in the seminal work of Pylyshyn and Storm (1988, Spatial Vision, 3, 179-197), multiple object tracking has attracted many researchers. A reason for this is that it is commonly argued that the attentional processes studied with the multiple object paradigm apparently match the attentional processing during real-world tasks such as driving or team sports. We argue that multiple object tracking provides a good mean to study the broader topic of continuous and dynamic visual attention. Indeed, several (partially contradicting) theories of attentive tracking have been proposed within the almost 30 years since its first report, and a large body of research has been conducted to test these theories. With regard to the richness and diversity of this literature, the aim of this tutorial review is to provide researchers who are new in the field of multiple object tracking with an overview over the multiple object tracking paradigm, its basic manipulations, as well as links to other paradigms investigating visual attention and working memory. Further, we aim at reviewing current theories of tracking as well as their empirical evidence. Finally, we review the state of the art in the most prominent research fields of multiple object tracking and how this research has helped to understand visual attention in dynamic settings.
ERIC Educational Resources Information Center
Frame, Laurence
This teacher's guide contains the following sections: Teacher Objectives; Student Objectives; Teacher Aid Suggestions; Objectives Overview; Teacher's Guide; Drawing Page; American League Team Addresses; National League Team Addresses; Student Activities; Baseball Field Dimensions; Age Problems; Statistics from a Newspaper; Time Problems; Height…
NASA Astrophysics Data System (ADS)
Lu, Mengqian; Lall, Upmanu; Robertson, Andrew W.; Cook, Edward
2017-03-01
Streamflow forecasts at multiple time scales provide a new opportunity for reservoir management to address competing objectives. Market instruments such as forward contracts with specified reliability are considered as a tool that may help address the perceived risk associated with the use of such forecasts in lieu of traditional operation and allocation strategies. A water allocation process that enables multiple contracts for water supply and hydropower production with different durations, while maintaining a prescribed level of flood risk reduction, is presented. The allocation process is supported by an optimization model that considers multitime scale ensemble forecasts of monthly streamflow and flood volume over the upcoming season and year, the desired reliability and pricing of proposed contracts for hydropower and water supply. It solves for the size of contracts at each reliability level that can be allocated for each future period, while meeting target end of period reservoir storage with a prescribed reliability. The contracts may be insurable, given that their reliability is verified through retrospective modeling. The process can allow reservoir operators to overcome their concerns as to the appropriate skill of probabilistic forecasts, while providing water users with short-term and long-term guarantees as to how much water or energy they may be allocated. An application of the optimization model to the Bhakra Dam, India, provides an illustration of the process. The issues of forecast skill and contract performance are examined. A field engagement of the idea is useful to develop a real-world perspective and needs a suitable institutional environment.
Interactions across Multiple Stimulus Dimensions in Primary Auditory Cortex.
Sloas, David C; Zhuo, Ran; Xue, Hongbo; Chambers, Anna R; Kolaczyk, Eric; Polley, Daniel B; Sen, Kamal
2016-01-01
Although sensory cortex is thought to be important for the perception of complex objects, its specific role in representing complex stimuli remains unknown. Complex objects are rich in information along multiple stimulus dimensions. The position of cortex in the sensory hierarchy suggests that cortical neurons may integrate across these dimensions to form a more gestalt representation of auditory objects. Yet, studies of cortical neurons typically explore single or few dimensions due to the difficulty of determining optimal stimuli in a high dimensional stimulus space. Evolutionary algorithms (EAs) provide a potentially powerful approach for exploring multidimensional stimulus spaces based on real-time spike feedback, but two important issues arise in their application. First, it is unclear whether it is necessary to characterize cortical responses to multidimensional stimuli or whether it suffices to characterize cortical responses to a single dimension at a time. Second, quantitative methods for analyzing complex multidimensional data from an EA are lacking. Here, we apply a statistical method for nonlinear regression, the generalized additive model (GAM), to address these issues. The GAM quantitatively describes the dependence between neural response and all stimulus dimensions. We find that auditory cortical neurons in mice are sensitive to interactions across dimensions. These interactions are diverse across the population, indicating significant integration across stimulus dimensions in auditory cortex. This result strongly motivates using multidimensional stimuli in auditory cortex. Together, the EA and the GAM provide a novel quantitative paradigm for investigating neural coding of complex multidimensional stimuli in auditory and other sensory cortices.
Multilevel depth and image fusion for human activity detection.
Ni, Bingbing; Pei, Yong; Moulin, Pierre; Yan, Shuicheng
2013-10-01
Recognizing complex human activities usually requires the detection and modeling of individual visual features and the interactions between them. Current methods only rely on the visual features extracted from 2-D images, and therefore often lead to unreliable salient visual feature detection and inaccurate modeling of the interaction context between individual features. In this paper, we show that these problems can be addressed by combining data from a conventional camera and a depth sensor (e.g., Microsoft Kinect). We propose a novel complex activity recognition and localization framework that effectively fuses information from both grayscale and depth image channels at multiple levels of the video processing pipeline. In the individual visual feature detection level, depth-based filters are applied to the detected human/object rectangles to remove false detections. In the next level of interaction modeling, 3-D spatial and temporal contexts among human subjects or objects are extracted by integrating information from both grayscale and depth images. Depth information is also utilized to distinguish different types of indoor scenes. Finally, a latent structural model is developed to integrate the information from multiple levels of video processing for an activity detection. Extensive experiments on two activity recognition benchmarks (one with depth information) and a challenging grayscale + depth human activity database that contains complex interactions between human-human, human-object, and human-surroundings demonstrate the effectiveness of the proposed multilevel grayscale + depth fusion scheme. Higher recognition and localization accuracies are obtained relative to the previous methods.
A Reduced-Order Model For Zero-Mass Synthetic Jet Actuators
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.; Vatsa, Veer S.
2007-01-01
Accurate details of the general performance of fluid actuators is desirable over a range of flow conditions, within some predetermined error tolerance. Designers typically model actuators with different levels of fidelity depending on the acceptable level of error in each circumstance. Crude properties of the actuator (e.g., peak mass rate and frequency) may be sufficient for some designs, while detailed information is needed for other applications (e.g., multiple actuator interactions). This work attempts to address two primary objectives. The first objective is to develop a systematic methodology for approximating realistic 3-D fluid actuators, using quasi-1-D reduced-order models. Near full fidelity can be achieved with this approach at a fraction of the cost of full simulation and only a modest increase in cost relative to most actuator models used today. The second objective, which is a direct consequence of the first, is to determine the approximate magnitude of errors committed by actuator model approximations of various fidelities. This objective attempts to identify which model (ranging from simple orifice exit boundary conditions to full numerical simulations of the actuator) is appropriate for a given error tolerance.
Characterizing Student Perceptions of and Buy-In toward Common Formative Assessment Techniques
Brazeal, Kathleen R.; Brown, Tanya L.; Couch, Brian A.
2016-01-01
Formative assessments (FAs) can occur as preclass assignments, in-class activities, or postclass homework. FAs aim to promote student learning by accomplishing key objectives, including clarifying learning expectations, revealing student thinking to the instructor, providing feedback to the student that promotes learning, facilitating peer interactions, and activating student ownership of learning. While FAs have gained prominence within the education community, we have limited knowledge regarding student perceptions of these activities. We used a mixed-methods approach to determine whether students recognize and value the role of FAs in their learning and how students perceive course activities to align with five key FA objectives. To address these questions, we administered a midsemester survey in seven introductory biology course sections that were using multiple FA techniques. Overall, responses to both open-ended and closed-ended questions revealed that the majority of students held positive perceptions of FAs and perceived FAs to facilitate their learning in a variety of ways. Students consistently considered FA activities to have accomplished particular objectives, but there was greater variation among FAs in how students perceived the achievement of other objectives. We further discuss potential sources of student resistance and implications of these results for instructor practice. PMID:27909023
SOMOS: Evaluation of an HIV Prevention Intervention for Latino Gay Men
ERIC Educational Resources Information Center
Vega, Miriam Y.; Spieldenner, Andrew R.; DeLeon, Dennis; Nieto, Bolivar X.; Stroman, Carolyn A.
2011-01-01
Latino gay men face multiple barriers to human immunodeficiency virus (HIV) prevention, in particular a lack of intervention programs that integrate prevention messages with cultural norms and address issues of social marginalization from multiple communities (gay community and Latino community), homophobia and racism. In order to address these…
A Neural Network Architecture For Rapid Model Indexing In Computer Vision Systems
NASA Astrophysics Data System (ADS)
Pawlicki, Ted
1988-03-01
Models of objects stored in memory have been shown to be useful for guiding the processing of computer vision systems. A major consideration in such systems, however, is how stored models are initially accessed and indexed by the system. As the number of stored models increases, the time required to search memory for the correct model becomes high. Parallel distributed, connectionist, neural networks' have been shown to have appealing content addressable memory properties. This paper discusses an architecture for efficient storage and reference of model memories stored as stable patterns of activity in a parallel, distributed, connectionist, neural network. The emergent properties of content addressability and resistance to noise are exploited to perform indexing of the appropriate object centered model from image centered primitives. The system consists of three network modules each of which represent information relative to a different frame of reference. The model memory network is a large state space vector where fields in the vector correspond to ordered component objects and relative, object based spatial relationships between the component objects. The component assertion network represents evidence about the existence of object primitives in the input image. It establishes local frames of reference for object primitives relative to the image based frame of reference. The spatial relationship constraint network is an intermediate representation which enables the association between the object based and the image based frames of reference. This intermediate level represents information about possible object orderings and establishes relative spatial relationships from the image based information in the component assertion network below. It is also constrained by the lawful object orderings in the model memory network above. The system design is consistent with current psychological theories of recognition by component. It also seems to support Marr's notions of hierarchical indexing. (i.e. the specificity, adjunct, and parent indices) It supports the notion that multiple canonical views of an object may have to be stored in memory to enable its efficient identification. The use of variable fields in the state space vectors appears to keep the number of required nodes in the network down to a tractable number while imposing a semantic value on different areas of the state space. This semantic imposition supports an interface between the analogical aspects of neural networks and the propositional paradigms of symbolic processing.
NASA Astrophysics Data System (ADS)
Wang, Ying; Liu, Qi; Wang, Jun; Wang, Qiong-Hua
2018-03-01
We present an optical encryption method of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography. By modifying the Mach–Zehnder interferometer, the interference of the multiple objects beams and the one reference beam is used to simultaneously encrypt multiple objects into a ciphertext. During decryption, each three-dimensional object can be decrypted independently without having to decrypt other objects. Since the single-pixel digital holography based on compressive sensing theory is introduced, the encrypted data of this method is effectively reduced. In addition, recording fewer encrypted data can greatly reduce the bandwidth of network transmission. Moreover, the compressive sensing essentially serves as a secret key that makes an intruder attack invalid, which means that the system is more secure than the conventional encryption method. Simulation results demonstrate the feasibility of the proposed method and show that the system has good security performance. Project supported by the National Natural Science Foundation of China (Grant Nos. 61405130 and 61320106015).
Linguistic positivity in historical texts reflects dynamic environmental and psychological factors.
Iliev, Rumen; Hoover, Joe; Dehghani, Morteza; Axelrod, Robert
2016-12-06
People use more positive words than negative words. Referred to as "linguistic positivity bias" (LPB), this effect has been found across cultures and languages, prompting the conclusion that it is a panhuman tendency. However, although multiple competing explanations of LPB have been proposed, there is still no consensus on what mechanism(s) generate LPB or even on whether it is driven primarily by universal cognitive features or by environmental factors. In this work we propose that LPB has remained unresolved because previous research has neglected an essential dimension of language: time. In four studies conducted with two independent, time-stamped text corpora (Google books Ngrams and the New York Times), we found that LPB in American English has decreased during the last two centuries. We also observed dynamic fluctuations in LPB that were predicted by changes in objective environment, i.e., war and economic hardships, and by changes in national subjective happiness. In addition to providing evidence that LPB is a dynamic phenomenon, these results suggest that cognitive mechanisms alone cannot account for the observed dynamic fluctuations in LPB. At the least, LPB likely arises from multiple interacting mechanisms involving subjective, objective, and societal factors. In addition to having theoretical significance, our results demonstrate the value of newly available data sources in addressing long-standing scientific questions.
Hartmann, Mechthild; Wild, Beate; Herzog, Wolfgang; Nikendei, Christoph; Zipfel, Stephan; Henningsen, Peter; Löwe, Bernd
2008-06-01
Even though there is a high need of clinical research for the medical and psychotherapeutic practice in Germany, the interest in clinical research seems to be decreasing. The aim of this study was to assess the circumstances under which clinical research in psychosocial medicine is performed and to identify opportunities for improvement. n = 53 residents of the departments for Psychosomatic Medicine of the University Hospitals of Heidelberg and Tübingen and of the Technical University of Munich were asked about their research activities, their subjective research skills, and their productivity in clinical psychosocial research. In addition, objective research knowledge was investigated using a multiple-choice test. Both, subjective research skills and objective research knowledge were relatively low. The percentage of correct answers in the multiple choice test was 33 %. Subjective problems were predominately stated regarding "biostatistics" and "study design". In terms of research productivity, 33 % of residents had published as first authors of an original journal article, and 12 % had submitted a successful grant proposal. Altogether, there is a high need of training in the field of clinical psychosomatic research. We are presenting a training model that is adapted to the conditions of young clinicians and that addresses both general clinical research and specific psychosocial clinical research.
Linguistic positivity in historical texts reflects dynamic environmental and psychological factors
Iliev, Rumen; Hoover, Joe; Dehghani, Morteza
2016-01-01
People use more positive words than negative words. Referred to as “linguistic positivity bias” (LPB), this effect has been found across cultures and languages, prompting the conclusion that it is a panhuman tendency. However, although multiple competing explanations of LPB have been proposed, there is still no consensus on what mechanism(s) generate LPB or even on whether it is driven primarily by universal cognitive features or by environmental factors. In this work we propose that LPB has remained unresolved because previous research has neglected an essential dimension of language: time. In four studies conducted with two independent, time-stamped text corpora (Google books Ngrams and the New York Times), we found that LPB in American English has decreased during the last two centuries. We also observed dynamic fluctuations in LPB that were predicted by changes in objective environment, i.e., war and economic hardships, and by changes in national subjective happiness. In addition to providing evidence that LPB is a dynamic phenomenon, these results suggest that cognitive mechanisms alone cannot account for the observed dynamic fluctuations in LPB. At the least, LPB likely arises from multiple interacting mechanisms involving subjective, objective, and societal factors. In addition to having theoretical significance, our results demonstrate the value of newly available data sources in addressing long-standing scientific questions. PMID:27872286
Kalina, C M
1999-10-30
Managers are challenged to demonstrate all programs as economically essential to the business, generating an appreciable return on investment. Further challenge exists to blend and integrate clinical and business objectives in program development. Disability management programs must be viewed as economically essential to the financial success of the business to assure management support for clinical interventions and return-to-work strategies essential for a successful program. This paper discusses a disability management program integrating clinical and business goals and objectives in return-to-work strategies to effect positive clinical, social-cultural, and business results. Clinical, educational, social, and economic challenges in the development, implementation, and continued management of a disability program at a large corporation with multiple global work sites are defined. Continued discussion addresses the effective clinical interventions and educational strategies utilized successfully within the workplace environment in response to each defined challenge. A multiple disciplinary team approach, clinical and business outcome measures, and quality assurance indicators are discussed as major program components. This article discusses a successful program approach focusing on business process and methodology. These parameters are used to link resources to strategy, developing a product for implementing and managing a program demonstrating economic value added through effective clinical medical case management.
Huynh, Duong L; Tripathy, Srimant P; Bedell, Harold E; Ögmen, Haluk
2015-01-01
Human memory is content addressable-i.e., contents of the memory can be accessed using partial information about the bound features of a stored item. In this study, we used a cross-feature cuing technique to examine how the human visual system encodes, binds, and retains information about multiple stimulus features within a set of moving objects. We sought to characterize the roles of three different features (position, color, and direction of motion, the latter two of which are processed preferentially within the ventral and dorsal visual streams, respectively) in the construction and maintenance of object representations. We investigated the extent to which these features are bound together across the following processing stages: during stimulus encoding, sensory (iconic) memory, and visual short-term memory. Whereas all features examined here can serve as cues for addressing content, their effectiveness shows asymmetries and varies according to cue-report pairings and the stage of information processing and storage. Position-based indexing theories predict that position should be more effective as a cue compared to other features. While we found a privileged role for position as a cue at the stimulus-encoding stage, position was not the privileged cue at the sensory and visual short-term memory stages. Instead, the pattern that emerged from our findings is one that mirrors the parallel processing streams in the visual system. This stream-specific binding and cuing effectiveness manifests itself in all three stages of information processing examined here. Finally, we find that the Leaky Flask model proposed in our previous study is applicable to all three features.
Interactive High-Relief Reconstruction for Organic and Double-Sided Objects from a Photo.
Yeh, Chih-Kuo; Huang, Shi-Yang; Jayaraman, Pradeep Kumar; Fu, Chi-Wing; Lee, Tong-Yee
2017-07-01
We introduce an interactive user-driven method to reconstruct high-relief 3D geometry from a single photo. Particularly, we consider two novel but challenging reconstruction issues: i) common non-rigid objects whose shapes are organic rather than polyhedral/symmetric, and ii) double-sided structures, where front and back sides of some curvy object parts are revealed simultaneously on image. To address these issues, we develop a three-stage computational pipeline. First, we construct a 2.5D model from the input image by user-driven segmentation, automatic layering, and region completion, handling three common types of occlusion. Second, users can interactively mark-up slope and curvature cues on the image to guide our constrained optimization model to inflate and lift up the image layers. We provide real-time preview of the inflated geometry to allow interactive editing. Third, we stitch and optimize the inflated layers to produce a high-relief 3D model. Compared to previous work, we can generate high-relief geometry with large viewing angles, handle complex organic objects with multiple occluded regions and varying shape profiles, and reconstruct objects with double-sided structures. Lastly, we demonstrate the applicability of our method on a wide variety of input images with human, animals, flowers, etc.
NASA Astrophysics Data System (ADS)
Kuo, Chih-Hao
Efficient and accurate modeling of electromagnetic scattering from layered rough surfaces with buried objects finds applications ranging from detection of landmines to remote sensing of subsurface soil moisture. The formulation of a hybrid numerical/analytical solution to electromagnetic scattering from layered rough surfaces is first presented in this dissertation. The solution to scattering from each rough interface is sought independently based on the extended boundary condition method (EBCM), where the scattered fields of each rough interface are expressed as a summation of plane waves and then cast into reflection/transmission matrices. To account for interactions between multiple rough boundaries, the scattering matrix method (SMM) is applied to recursively cascade reflection and transmission matrices of each rough interface and obtain the composite reflection matrix from the overall scattering medium. The validation of this method against the Method of Moments (MoM) and Small Perturbation Method (SPM) is addressed and the numerical results which investigate the potential of low frequency radar systems in estimating deep soil moisture are presented. Computational efficiency of the proposed method is also discussed. In order to demonstrate the capability of this method in modeling coherent multiple scattering phenomena, the proposed method has been employed to analyze backscattering enhancement and satellite peaks due to surface plasmon waves from layered rough surfaces. Numerical results which show the appearance of enhanced backscattered peaks and satellite peaks are presented. Following the development of the EBCM/SMM technique, a technique which incorporates a buried object in layered rough surfaces by employing the T-matrix method and the cylindrical-to-spatial harmonics transformation is proposed. Validation and numerical results are provided. Finally, a multi-frequency polarimetric inversion algorithm for the retrieval of subsurface soil properties using VHF/UHF band radar measurements is devised. The top soil dielectric constant is first determined using an L-band inversion algorithm. For the retrieval of subsurface properties, a time-domain inversion technique is employed together with a parameter optimization for the pulse shape of time delay echoes from VHF/UHF band radar observations. Numerical studies to investigate the accuracy of the proposed inversion technique in presence of errors are addressed.
Multi-Objective Design Of Optimal Greenhouse Gas Observation Networks
NASA Astrophysics Data System (ADS)
Lucas, D. D.; Bergmann, D. J.; Cameron-Smith, P. J.; Gard, E.; Guilderson, T. P.; Rotman, D.; Stolaroff, J. K.
2010-12-01
One of the primary scientific functions of a Greenhouse Gas Information System (GHGIS) is to infer GHG source emission rates and their uncertainties by combining measurements from an observational network with atmospheric transport modeling. Certain features of the observational networks that serve as inputs to a GHGIS --for example, sampling location and frequency-- can greatly impact the accuracy of the retrieved GHG emissions. Observation System Simulation Experiments (OSSEs) provide a framework to characterize emission uncertainties associated with a given network configuration. By minimizing these uncertainties, OSSEs can be used to determine optimal sampling strategies. Designing a real-world GHGIS observing network, however, will involve multiple, conflicting objectives; there will be trade-offs between sampling density, coverage and measurement costs. To address these issues, we have added multi-objective optimization capabilities to OSSEs. We demonstrate these capabilities by quantifying the trade-offs between retrieval error and measurement costs for a prototype GHGIS, and deriving GHG observing networks that are Pareto optimal. [LLNL-ABS-452333: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Peralta, Richard C.; Forghani, Ali; Fayad, Hala
2014-04-01
Many real water resources optimization problems involve conflicting objectives for which the main goal is to find a set of optimal solutions on, or near to the Pareto front. E-constraint and weighting multiobjective optimization techniques have shortcomings, especially as the number of objectives increases. Multiobjective Genetic Algorithms (MGA) have been previously proposed to overcome these difficulties. Here, an MGA derives a set of optimal solutions for multiobjective multiuser conjunctive use of reservoir, stream, and (un)confined groundwater resources. The proposed methodology is applied to a hydraulically and economically nonlinear system in which all significant flows, including stream-aquifer-reservoir-diversion-return flow interactions, are simulated and optimized simultaneously for multiple periods. Neural networks represent constrained state variables. The addressed objectives that can be optimized simultaneously in the coupled simulation-optimization model are: (1) maximizing water provided from sources, (2) maximizing hydropower production, and (3) minimizing operation costs of transporting water from sources to destinations. Results show the efficiency of multiobjective genetic algorithms for generating Pareto optimal sets for complex nonlinear multiobjective optimization problems.
Pérez, Miguel A
2007-01-01
The aim of this study was to address the effect of objective age of acquisition (AoA) on picture-naming latencies when different measures of frequency (cumulative and adult word frequency) and frequency trajectory are taken into account. A total of 80 Spanish participants named a set of 178 pictures. Several multiple regression analyses assessed the influence of AoA, word frequency, frequency trajectory, object familiarity, name agreement, image agreement, image variability, name length, and orthographic neighbourhood density on naming times. The results revealed that AoA is the main predictor of picture-naming times. Cumulative frequency and adult word frequency (written or spoken) appeared as important factors in picture naming, but frequency trajectory and object familiarity did not. Other significant variables were image agreement, image variability, and neighbourhood density. These results (a) provide additional evidence of the predictive power of AoA in naming times independent of word-frequency and (b) suggest that image variability and neighbourhood density should also be taken into account in models of lexical production.
For Researchers on Obesity: Historical Review of Extra Body Weight Definitions.
Komaroff, Marina
2016-01-01
Rationale. The concept of obesity has been known since ancient world; however, the current standard definition of obesity was endorsed only about a decade ago. There is a need for researches to understand multiple approaches to defining obesity and how and why the standard definition was developed. The review will help to grasp the complexity of the problem and can lead to novel hypotheses in obesity research. Objective. This paper focuses on the objective to understand historical background on the development of "reference and standard tables" of weight as a platform for normal versus abnormal body weight definition. Methods. A systematic literature review was performed to chronologically summarize the definition of body weight from time of Hippocrates till the year of 2010. Conclusion. This paper presents the historical background on the development of "reference and standard tables" of weight as a platform for normal versus abnormal body weight definition. Knowledge of historical approaches to the concept of obesity can motivate researchers to find new hypotheses and utilize the appropriate obesity assessments to address their objectives.
Wright, Brandy; Semaan, Salaam
2013-01-01
Objectives. We assessed expected ethics competencies of public health professionals in codes and competencies, reviewed ethics instruction at schools of public health, and recommended ways to bridge the gap between them. Methods. We reviewed the code of ethics and 3 sets of competencies, separating ethics-related competencies into 3 domains: professional, research, and public health. We reviewed ethics course requirements in 2010–2011 on the Internet sites of 46 graduate schools of public health and categorized courses as required, not required, or undetermined. Results. Half of schools (n = 23) required an ethics course for graduation (master’s or doctoral level), 21 did not, and 2 had no information. Sixteen of 23 required courses were 3-credit courses. Course content varied from 1 ethics topic to many topics addressing multiple ethics domains. Conclusions. Consistent ethics education and competency evaluation can be accomplished through a combination of a required course addressing the 3 domains, integration of ethics topics in other courses, and “booster” trainings. Enhancing ethics competence of public health professionals is important to address the ethical questions that arise in public health research, surveillance, practice, and policy. PMID:22994177
Integrating Multiple Social Statuses in Health Disparities Research: The Case of Lung Cancer
Williams, David R; Kontos, Emily Z; Viswanath, K; Haas, Jennifer S; Lathan, Christopher S; MacConaill, Laura E; Chen, Jarvis; Ayanian, John Z
2012-01-01
Objective To illustrate the complex patterns that emerge when race/ethnicity, socioeconomic status (SES), and gender are considered simultaneously in health care disparities research and to outline the needed research to understand them by using disparities in lung cancer risks, treatment, and outcomes as an example. Principal Findings SES, gender, and race/ethnicity are social categories that are robust predictors of variations in health and health services utilization. These are usually considered separately, but intersectionality theory indicates that the impact of each depends on the others. Each reflects historically and culturally contingent variations in social, economic, and political status. Distinct patterns of risk and resilience emerge at the intersections of multiple social categories and shape the experience of health, health care access, utilization, quality, and outcomes where these categories intersect. Intersectional approaches call for greater attention to understand social processes at multiple levels of society and require the collection of relevant data and utilization of appropriate analytic approaches to understand how multiple risk factors and resources combine to affect the distribution of disease and its management. Conclusions Understanding how race/ethnicity, gender, and SES are interactive, interdependent, and social identities can provide new knowledge to enhance our efforts to effectively address health disparities. PMID:22568674
Multi-target detection and positioning in crowds using multiple camera surveillance
NASA Astrophysics Data System (ADS)
Huang, Jiahu; Zhu, Qiuyu; Xing, Yufeng
2018-04-01
In this study, we propose a pixel correspondence algorithm for positioning in crowds based on constraints on the distance between lines of sight, grayscale differences, and height in a world coordinates system. First, a Gaussian mixture model is used to obtain the background and foreground from multi-camera videos. Second, the hair and skin regions are extracted as regions of interest. Finally, the correspondences between each pixel in the region of interest are found under multiple constraints and the targets are positioned by pixel clustering. The algorithm can provide appropriate redundancy information for each target, which decreases the risk of losing targets due to a large viewing angle and wide baseline. To address the correspondence problem for multiple pixels, we construct a pixel-based correspondence model based on a similar permutation matrix, which converts the correspondence problem into a linear programming problem where a similar permutation matrix is found by minimizing an objective function. The correct pixel correspondences can be obtained by determining the optimal solution of this linear programming problem and the three-dimensional position of the targets can also be obtained by pixel clustering. Finally, we verified the algorithm with multiple cameras in experiments, which showed that the algorithm has high accuracy and robustness.
Anderson, Andrew James; Lalor, Edmund C; Lin, Feng; Binder, Jeffrey R; Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Raizada, Rajeev D S; Grimm, Scott; Wang, Xixi
2018-05-16
Deciphering how sentence meaning is represented in the brain remains a major challenge to science. Semantically related neural activity has recently been shown to arise concurrently in distributed brain regions as successive words in a sentence are read. However, what semantic content is represented by different regions, what is common across them, and how this relates to words in different grammatical positions of sentences is weakly understood. To address these questions, we apply a semantic model of word meaning to interpret brain activation patterns elicited in sentence reading. The model is based on human ratings of 65 sensory/motor/emotional and cognitive features of experience with words (and their referents). Through a process of mapping functional Magnetic Resonance Imaging activation back into model space we test: which brain regions semantically encode content words in different grammatical positions (e.g., subject/verb/object); and what semantic features are encoded by different regions. In left temporal, inferior parietal, and inferior/superior frontal regions we detect the semantic encoding of words in all grammatical positions tested and reveal multiple common components of semantic representation. This suggests that sentence comprehension involves a common core representation of multiple words' meaning being encoded in a network of regions distributed across the brain.
Kochanski-Ruscio, Kristen M; Carreno-Ponce, Jaime T; DeYoung, Kathryn; Grammer, Geoffrey; Ghahramanlou-Holloway, Marjan
2014-04-01
Individuals with multiple versus single suicide attempts present a more severe clinical picture and may be at greater risk for suicide. Yet group differences within military samples have been vastly understudied. The objective is to determine demographic, diagnostic, and psychosocial differences, based on suicide attempt status, among military inpatients admitted for suicide-related events. A retrospective chart review design was used with a total of 423 randomly selected medical records of psychiatric admissions to a military hospital from 2001 to 2006. Chi-square analyses indicated that individuals with multiple versus single suicide attempts were significantly more likely to have documented childhood sexual abuse (p =.025); problem substance use (p=.001); mood disorder diagnosis (p=.005); substance disorder diagnosis (p =.050); personality disorder not otherwise specified diagnosis (p =.018); and Axis II traits or diagnosis (p=.038) when compared to those with a single attempt history. Logistic regression analyses showed that males with multiple suicide attempts were more likely to have problem substance use (p=.005) and a mood disorder diagnosis (p =.002), while females with a multiple attempt history were more likely to have a history of childhood sexual (p =.027). Clinically meaningful differences among military inpatients with single versus multiple suicide attempts exist. Targeted Department of Defense suicide prevention and intervention efforts that address the unique needs of these two specific at-risk subgroups are additionally needed. Published by Elsevier Inc.
Multiple utility constrained multi-objective programs using Bayesian theory
NASA Astrophysics Data System (ADS)
Abbasian, Pooneh; Mahdavi-Amiri, Nezam; Fazlollahtabar, Hamed
2018-03-01
A utility function is an important tool for representing a DM's preference. We adjoin utility functions to multi-objective optimization problems. In current studies, usually one utility function is used for each objective function. Situations may arise for a goal to have multiple utility functions. Here, we consider a constrained multi-objective problem with each objective having multiple utility functions. We induce the probability of the utilities for each objective function using Bayesian theory. Illustrative examples considering dependence and independence of variables are worked through to demonstrate the usefulness of the proposed model.
Zullig, Leah L; Granger, Bradi B; Bosworth, Hayden B
2016-01-01
Nonadherence to prescription medications is a common and costly problem with multiple contributing factors, spanning the dimensions of individual behavior change, psychology, medicine, and health policy, among others. Addressing the problem of medication nonadherence requires strategic input from key experts in a number of fields. The Medication Adherence Alliance is a group of key experts, predominately from the US, in the field of medication nonadherence. Members include representatives from consumer advocacy groups, community health providers, nonprofit groups, the academic community, decision-making government officials, and industry. In 2015, the Medication Adherence Alliance convened to review the current landscape of medication adherence. The group then established three working groups that will develop recommendations for shifting toward solutions-oriented science. From the perspective of the Medication Adherence Alliance, the objective of this commentary is to describe changes in the US landscape of medication adherence, framing the evolving field in the context of a recent think tank meeting of experts in the field of medication adherence.
Understanding Social Isolation Among Urban Aging Adults: Informing Occupation-Based Approaches.
Hand, Carri; Retrum, Jessica; Ware, George; Iwasaki, Patricia; Moaalii, Gabe; Main, Deborah S
2017-10-01
Socially isolated aging adults are at risk of poor health and well-being. Occupational therapy can help address this issue; however, information is needed to guide such work. National surveys characterize social isolation in populations of aging adults but fail to provide meaningful information at a community level. The objective of this study is to describe multiple dimensions of social isolation and related factors among aging adults in diverse urban neighborhoods. Community-based participatory research involving a door-to-door survey of adults 50 years and older was used. Participants ( N = 161) reported social isolation in terms of small social networks (24%) and wanting more social engagement (43%). Participants aged 50 to 64 years reported the highest levels of isolation in most dimensions. Low income, poor health, lack of transportation, and infrequent information access appeared linked to social isolation. Occupational therapists can address social isolation in similar urban communities through policy and practice that facilitate social engagement and network building.
NASA Technical Reports Server (NTRS)
Jensen, Eric; Rosenlof, Karen H.; Thornberry, Troy
2018-01-01
Interest in a more complete understanding of the sources, composition and microphysics of stratospheric aerosol particles has intensified during recent years for several reasons: (1) small volcanic eruptions have been recognized as a driver of short-term changes in climate forcing; (2) emissions of sulfur dioxide (SO2) and other aerosol precursors have shifted to south Asia and other low latitude regions with intense vertical transport; (3) organic material has been recognized as a key contributor to lower stratospheric aerosol mass; and (4) interest in possible solar radiation management (geoengineering) through significant enhancements in stratospheric aerosols has intensified. To address stratospheric aerosol science issues, we are proposing a NASA Earth Ventures mission to NASA to provide extensive high-altitude aircraft measurements of critical gas-phase and aerosol properties at multiple locations across the planet. In this presentation, we will discuss the objectives of the proposed campaign, the measurements provided, the sampling strategy, and the modeling and analysis approaches that would be used to address specific science questions.
NASA Technical Reports Server (NTRS)
Moeller, Robert C.; Borden, Chester; Spilker, Thomas; Smythe, William; Lock, Robert
2011-01-01
The JPL Rapid Mission Architecture (RMA) capability is a novel collaborative team-based approach to generate new mission architectures, explore broad trade space options, and conduct architecture-level analyses. RMA studies address feasibility and identify best candidates to proceed to further detailed design studies. Development of RMA first began at JPL in 2007 and has evolved to address the need for rapid, effective early mission architectural development and trade space exploration as a precursor to traditional point design evaluations. The RMA approach integrates a small team of architecture-level experts (typically 6-10 people) to generate and explore a wide-ranging trade space of mission architectures driven by the mission science (or technology) objectives. Group brainstorming and trade space analyses are conducted at a higher level of assessment across multiple mission architectures and systems to enable rapid assessment of a set of diverse, innovative concepts. This paper describes the overall JPL RMA team, process, and high-level approach. Some illustrative results from previous JPL RMA studies are discussed.
Advanced multiple access concepts in mobile satellite systems
NASA Technical Reports Server (NTRS)
Ananasso, Fulvio
1990-01-01
Some multiple access strategies for Mobile Satellite Systems (MSS) are discussed. These strategies were investigated in the context of three separate studies conducted for the International Maritime Satellite Organization (INMARSAT) and the European Space Agency (ESA). Satellite-Switched Frequency Division Multiple Access (SS-FDMA), Code Division Multiple Access (CDMA), and Frequency-Addressable Beam architectures are addressed, discussing both system and technology aspects and outlining advantages and drawbacks of either solution with associated relevant hardware issues. An attempt is made to compare the considered option from the standpoint of user terminal/space segment complexity, synchronization requirements, spectral efficiency, and interference rejection.
Systems and Methods for Imaging of Falling Objects
NASA Technical Reports Server (NTRS)
Fallgatter, Cale (Inventor); Garrett, Tim (Inventor)
2014-01-01
Imaging of falling objects is described. Multiple images of a falling object can be captured substantially simultaneously using multiple cameras located at multiple angles around the falling object. An epipolar geometry of the captured images can be determined. The images can be rectified to parallelize epipolar lines of the epipolar geometry. Correspondence points between the images can be identified. At least a portion of the falling object can be digitally reconstructed using the identified correspondence points to create a digital reconstruction.
Preprocessing Structured Clinical Data for Predictive Modeling and Decision Support
Oliveira, Mónica Duarte; Janela, Filipe; Martins, Henrique M. G.
2016-01-01
Summary Background EHR systems have high potential to improve healthcare delivery and management. Although structured EHR data generates information in machine-readable formats, their use for decision support still poses technical challenges for researchers due to the need to preprocess and convert data into a matrix format. During our research, we observed that clinical informatics literature does not provide guidance for researchers on how to build this matrix while avoiding potential pitfalls. Objectives This article aims to provide researchers a roadmap of the main technical challenges of preprocessing structured EHR data and possible strategies to overcome them. Methods Along standard data processing stages – extracting database entries, defining features, processing data, assessing feature values and integrating data elements, within an EDPAI framework –, we identified the main challenges faced by researchers and reflect on how to address those challenges based on lessons learned from our research experience and on best practices from related literature. We highlight the main potential sources of error, present strategies to approach those challenges and discuss implications of these strategies. Results Following the EDPAI framework, researchers face five key challenges: (1) gathering and integrating data, (2) identifying and handling different feature types, (3) combining features to handle redundancy and granularity, (4) addressing data missingness, and (5) handling multiple feature values. Strategies to address these challenges include: cross-checking identifiers for robust data retrieval and integration; applying clinical knowledge in identifying feature types, in addressing redundancy and granularity, and in accommodating multiple feature values; and investigating missing patterns adequately. Conclusions This article contributes to literature by providing a roadmap to inform structured EHR data preprocessing. It may advise researchers on potential pitfalls and implications of methodological decisions in handling structured data, so as to avoid biases and help realize the benefits of the secondary use of EHR data. PMID:27924347
Nutrition-based interventions to address metabolic syndrome in the Navajo: a systematic review.
Nava, Lorenzo T; Zambrano, Jenelle M; Arviso, Karen P; Brochetti, Denise; Becker, Kathleen L
2015-11-01
The objective of this systematic review is to identify nutrition-based interventions that may be effective for the prevention and treatment of metabolic syndrome in the Navajo. Metabolic syndrome, a major risk factor for cardiovascular disease, affects almost half of the Navajo population. The diet of the Navajo, heavy in fat and refined carbohydrates, has been identified as an important contributing factor to the high rates of metabolic syndrome in this population. A search was conducted on PubMed, EMBASE and CINAHL to identify studies published before October, 2013, involving nutrition-based interventions in adult populations similar to the Navajo targeting at least one measure of metabolic syndrome. Data on efficacy and participation were gathered and synthesised qualitatively. Out of 19 studies included in this systematic review, 11 interventions were identified to be effective at improving at least one measure of metabolic syndrome. Level of exposure to the intervention, frequency of intervention activities, family and social support, cultural adaptation and case management were identified as factors that may improve the efficacy of an intervention. Multiple nutrition-based interventions have been found to be effective in populations similar to the Navajo. Development of a strategy to address metabolic syndrome in the Navajo may involve aspects from multiple interventions to increase efficacy and maximise participation. © 2015 John Wiley & Sons Ltd.
Walsh, Jennifer L.; Senn, Theresa E.; Carey, Michael P.
2013-01-01
Objective Diverse forms of violence, including childhood maltreatment (CM), intimate partner violence (IPV), and exposure to community violence (ECV), have been linked separately with sexual risk behaviors. However, few studies have explored multiple experiences of violence simultaneously in relation to sexual risk-taking, especially in women who are most vulnerable to violent experiences. Methods Participants were 481 women (66% African American, Mage = 27 years) attending a publicly-funded STD clinic who reported on their past and current experiences with violence and their current sexual risk behavior. We identified patterns of experience with violence using latent class analysis (LCA) and investigated which combinations of experiences were associated with the riskiest sexual outcomes. Results Four classes of women with different experiences of violence were identified: Low Violence (39%), Predominantly ECV (20%), Predominantly CM (23%), and Multiply Victimized (18%). Women in the Multiply Victimized and Predominantly ECV classes reported the highest levels of sexual risk behavior, including more lifetime sexual partners and a greater likelihood of receiving STD treatment and using substances before sex. Conclusions Women with different patterns of violent experiences differed in their sexual risk behavior. Interventions to reduce sexual risk should address violence against women, focusing on experiences with multiple types of violence and experiences specifically with ECV. Additional research is needed to determine the best ways to address violence in sexual risk reduction interventions. PMID:23626921
Name-Based Address Mapping for Virtual Private Networks
NASA Astrophysics Data System (ADS)
Surányi, Péter; Shinjo, Yasushi; Kato, Kazuhiko
IPv4 private addresses are commonly used in local area networks (LANs). With the increasing popularity of virtual private networks (VPNs), it has become common that a user connects to multiple LANs at the same time. However, private address ranges for LANs frequently overlap. In such cases, existing systems do not allow the user to access the resources on all LANs at the same time. In this paper, we propose name-based address mapping for VPNs, a novel method that allows connecting to hosts through multiple VPNs at the same time, even when the address ranges of the VPNs overlap. In name-based address mapping, rather than using the IP addresses used on the LANs (the real addresses), we assign a unique virtual address to each remote host based on its domain name. The local host uses the virtual addresses to communicate with remote hosts. We have implemented name-based address mapping for layer 3 OpenVPN connections on Linux and measured its performance. The communication overhead of our system is less than 1.5% for throughput and less than 0.2ms for each name resolution.
ERIC Educational Resources Information Center
Rattanarungrot, Sasithorn; White, Martin; Newbury, Paul
2014-01-01
This paper describes the design of our service-oriented architecture to support mobile multiple object tracking augmented reality applications applied to education and learning scenarios. The architecture is composed of a mobile multiple object tracking augmented reality client, a web service framework, and dynamic content providers. Tracking of…
The geographical distribution of underweight children in Africa.
Nubé, Maarten; Sonneveld, Benjamin G. J. S.
2005-01-01
OBJECTIVE: To study geographical patterns of underweight children in Africa by combining information on prevalence with headcounts at a subnational level. METHODS: We used large-scale, nationally representative nutrition surveys, in particular the Demographic and Health Surveys and the Multiple Indicator Cluster Surveys, which have been designed, analysed and presented according to largely similar protocols, and which report at the national and subnational levels. FINDINGS: We found distinct geographical patterns in the occurrence of underweight children, which could be linked to factors such as agronomic and climatic conditions, population density and economic integration. CONCLUSION: Patterns of underweight children cross national borders suggesting that regional characteristics and interactions need to be considered when addressing malnutrition. PMID:16283053
Murnion, Bridin
2015-12-01
A number of therapeutic uses of cannabis and its derivatives have been postulated from preclinical investigations. Possible clinical indications include spasticity and pain in multiple sclerosis, cancer-associated nausea and vomiting, cancer pain and HIV neuropathy. However, evidence is limited, may reflect subjective rather than objective outcomes, and is not conclusive. Controversies lie in how to produce, supply and administer cannabinoid products. Introduction of cannabinoids therapeutically should be supported by a regulatory and educational framework that minimises the risk of harm to patients and the community. The Regulator of Medicinal Cannabis Bill 2014 is under consideration in Australia to address this. Nabiximols is the only cannabinoid on the Australian Register of Therapeutic Goods at present, although cannabidiol has been recommended for inclusion in Schedule 4.
McGovern, Mark P.; Lambert-Harris, Chantal; Gotham, Heather J.; Claus, Ronald E.; Xie, Haiyi
2012-01-01
Despite increased awareness of the benefits of integrated services for persons with co-occurring substance use and psychiatric disorders, estimates of the availability of integrated services vary widely. The present study utilized standardized measures of program capacity to address co-occurring disorders, the Dual Diagnosis Capability in Addiction Treatment (DDCAT) and Dual Diagnosis Capability in Mental Health Treatment (DDCMHT) indexes, and sampled 256 programs across the United States. Approximately 18% of addiction treatment and 9% of mental health programs met criteria for dual diagnosis capable services. This is the first report on public access to integrated services using objective measures. PMID:23183873
Nose, Atsushi; Yamazaki, Tomohiro; Katayama, Hironobu; Uehara, Shuji; Kobayashi, Masatsugu; Shida, Sayaka; Odahara, Masaki; Takamiya, Kenichi; Matsumoto, Shizunori; Miyashita, Leo; Watanabe, Yoshihiro; Izawa, Takashi; Muramatsu, Yoshinori; Nitta, Yoshikazu; Ishikawa, Masatoshi
2018-04-24
We have developed a high-speed vision chip using 3D stacking technology to address the increasing demand for high-speed vision chips in diverse applications. The chip comprises a 1/3.2-inch, 1.27 Mpixel, 500 fps (0.31 Mpixel, 1000 fps, 2 × 2 binning) vision chip with 3D-stacked column-parallel Analog-to-Digital Converters (ADCs) and 140 Giga Operation per Second (GOPS) programmable Single Instruction Multiple Data (SIMD) column-parallel PEs for new sensing applications. The 3D-stacked structure and column parallel processing architecture achieve high sensitivity, high resolution, and high-accuracy object positioning.
Constrained Surface-Level Gateway Placement for Underwater Acoustic Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Li, Deying; Li, Zheng; Ma, Wenkai; Chen, Hong
One approach to guarantee the performance of underwater acoustic sensor networks is to deploy multiple Surface-level Gateways (SGs) at the surface. This paper addresses the connected (or survivable) Constrained Surface-level Gateway Placement (C-SGP) problem for 3-D underwater acoustic sensor networks. Given a set of candidate locations where SGs can be placed, our objective is to place minimum number of SGs at a subset of candidate locations such that it is connected (or 2-connected) from any USN to the base station. We propose a polynomial time approximation algorithm for the connected C-SGP problem and survivable C-SGP problem, respectively. Simulations are conducted to verify our algorithms' efficiency.
Making decisions in complex landscapes: Headwater stream management across multiple federal agencies
Katz, Rachel; Grant, Evan H. Campbell; Runge, Michael C.; Connery, Bruce; Crockett, Marquette; Herland, Libby; Johnson, Sheela; Kirk, Dawn; Wofford, Jeb; Bennett, Rick; Nislow, Keith; Norris, Marian; Hocking, Daniel; Letcher, Benjamin; Roy, Allison
2014-01-01
Headwater stream ecosystems are vulnerable to numerous threats associated with climate and land use change. In the northeastern US, many headwater stream species (e.g., brook trout and stream salamanders) are of special conservation concern and may be vulnerable to climate change influences, such as changes in stream temperature and streamflow. Federal land management agencies (e.g., US Fish and Wildlife Service, National Park Service, USDA Forest Service, Bureau of Land Management and Department of Defense) are required to adopt policies that respond to climate change and may have longer-term institutional support to enforce such policies compared to state, local, non-governmental, or private land managers. However, federal agencies largely make management decisions in regards to headwater stream ecosystems independently. This fragmentation of management resources and responsibilities across the landscape may significantly impede the efficiency and effectiveness of conservation actions, and higher degrees of collaboration may be required to achieve conservation goals. This project seeks to provide an example of cooperative landscape decision-making to address the conservation of headwater stream ecosystems. We identified shared and contrasting objectives of each federal agency and potential collaboration opportunities that may increase efficient and effective management of headwater stream ecosystems in two northeastern US watersheds. These workshops provided useful insights into the adaptive capacity of federal institutions to address threats to headwater stream ecosystems. Our ultimate goal is to provide a decision-making framework and analysis that addresses large-scale conservation threats across multiple stakeholders, as a demonstration of cooperative landscape conservation for aquatic ecosystems. Additionally, we aim to provide new scientific knowledge and a regional perspective to resource managers to help inform local management decisions.
An, Gary; Christley, Scott
2012-01-01
Given the panoply of system-level diseases that result from disordered inflammation, such as sepsis, atherosclerosis, cancer, and autoimmune disorders, understanding and characterizing the inflammatory response is a key target of biomedical research. Untangling the complex behavioral configurations associated with a process as ubiquitous as inflammation represents a prototype of the translational dilemma: the ability to translate mechanistic knowledge into effective therapeutics. A critical failure point in the current research environment is a throughput bottleneck at the level of evaluating hypotheses of mechanistic causality; these hypotheses represent the key step toward the application of knowledge for therapy development and design. Addressing the translational dilemma will require utilizing the ever-increasing power of computers and computational modeling to increase the efficiency of the scientific method in the identification and evaluation of hypotheses of mechanistic causality. More specifically, development needs to focus on facilitating the ability of non-computer trained biomedical researchers to utilize and instantiate their knowledge in dynamic computational models. This is termed "dynamic knowledge representation." Agent-based modeling is an object-oriented, discrete-event, rule-based simulation method that is well suited for biomedical dynamic knowledge representation. Agent-based modeling has been used in the study of inflammation at multiple scales. The ability of agent-based modeling to encompass multiple scales of biological process as well as spatial considerations, coupled with an intuitive modeling paradigm, suggest that this modeling framework is well suited for addressing the translational dilemma. This review describes agent-based modeling, gives examples of its applications in the study of inflammation, and introduces a proposed general expansion of the use of modeling and simulation to augment the generation and evaluation of knowledge by the biomedical research community at large.
Cortical Circuit for Binding Object Identity and Location During Multiple-Object Tracking
Nummenmaa, Lauri; Oksama, Lauri; Glerean, Erico; Hyönä, Jukka
2017-01-01
Abstract Sustained multifocal attention for moving targets requires binding object identities with their locations. The brain mechanisms of identity-location binding during attentive tracking have remained unresolved. In 2 functional magnetic resonance imaging experiments, we measured participants’ hemodynamic activity during attentive tracking of multiple objects with equivalent (multiple-object tracking) versus distinct (multiple identity tracking, MIT) identities. Task load was manipulated parametrically. Both tasks activated large frontoparietal circuits. MIT led to significantly increased activity in frontoparietal and temporal systems subserving object recognition and working memory. These effects were replicated when eye movements were prohibited. MIT was associated with significantly increased functional connectivity between lateral temporal and frontal and parietal regions. We propose that coordinated activity of this network subserves identity-location binding during attentive tracking. PMID:27913430
Pragmatic precision oncology: the secondary uses of clinical tumor molecular profiling
Thota, Ramya; Staggs, David B; Johnson, Douglas B; Warner, Jeremy L
2016-01-01
Background Precision oncology increasingly utilizes molecular profiling of tumors to determine treatment decisions with targeted therapeutics. The molecular profiling data is valuable in the treatment of individual patients as well as for multiple secondary uses. Objective To automatically parse, categorize, and aggregate clinical molecular profile data generated during cancer care as well as use this data to address multiple secondary use cases. Methods A system to parse, categorize and aggregate molecular profile data was created. A naÿve Bayesian classifier categorized results according to clinical groups. The accuracy of these systems were validated against a published expertly-curated subset of molecular profiling data. Results Following one year of operation, 819 samples have been accurately parsed and categorized to generate a data repository of 10,620 genetic variants. The database has been used for operational, clinical trial, and discovery science research. Conclusions A real-time database of molecular profiling data is a pragmatic solution to several knowledge management problems in the practice and science of precision oncology. PMID:27026612
Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity.
Franconeri, S L; Jonathan, S V; Scimeca, J M
2010-07-01
In dealing with a dynamic world, people have the ability to maintain selective attention on a subset of moving objects in the environment. Performance in such multiple-object tracking is limited by three primary factors-the number of objects that one can track, the speed at which one can track them, and how close together they can be. We argue that this last limit, of object spacing, is the root cause of all performance constraints in multiple-object tracking. In two experiments, we found that as long as the distribution of object spacing is held constant, tracking performance is unaffected by large changes in object speed and tracking time. These results suggest that barring object-spacing constraints, people could reliably track an unlimited number of objects as fast as they could track a single object.
Note: Toward multiple addressable optical trapping
Faustov, Alexei R.; Webb, Michael R.; Walt, David R.
2010-01-01
We describe a setup for addressable optical trapping in which a laser source is focused on a digital micromirror device and generates an optical trap in a microfluidic cell. In this paper, we report a proof-of-principle single beam∕single micromirror∕single three-dimensional trap arrangement that should serve as the basis for a multiple-trap instrument. PMID:20192526
Pre-impact fall detection system using dynamic threshold and 3D bounding box
NASA Astrophysics Data System (ADS)
Otanasap, Nuth; Boonbrahm, Poonpong
2017-02-01
Fall prevention and detection system have to subjugate many challenges in order to develop an efficient those system. Some of the difficult problems are obtrusion, occlusion and overlay in vision based system. Other associated issues are privacy, cost, noise, computation complexity and definition of threshold values. Estimating human motion using vision based usually involves with partial overlay, caused either by direction of view point between objects or body parts and camera, and these issues have to be taken into consideration. This paper proposes the use of dynamic threshold based and bounding box posture analysis method with multiple Kinect cameras setting for human posture analysis and fall detection. The proposed work only uses two Kinect cameras for acquiring distributed values and differentiating activities between normal and falls. If the peak value of head velocity is greater than the dynamic threshold value, bounding box posture analysis will be used to confirm fall occurrence. Furthermore, information captured by multiple Kinect placed in right angle will address the skeleton overlay problem due to single Kinect. This work contributes on the fusion of multiple Kinect based skeletons, based on dynamic threshold and bounding box posture analysis which is the only research work reported so far.
Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context
NASA Astrophysics Data System (ADS)
Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian
2016-05-01
The continuous increase of air transport demand worldwide and the push for a more economically viable and environmentally sustainable aviation are driving significant evolutions of aircraft, airspace and airport systems design and operations. Although extensive research has been performed on the optimisation of aircraft trajectories and very efficient algorithms were widely adopted for the optimisation of vertical flight profiles, it is only in the last few years that higher levels of automation were proposed for integrated flight planning and re-routing functionalities of innovative Communication Navigation and Surveillance/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) systems. In this context, the implementation of additional environmental targets and of multiple operational constraints introduces the need to efficiently deal with multiple objectives as part of the trajectory optimisation algorithm. This article provides a comprehensive review of Multi-Objective Trajectory Optimisation (MOTO) techniques for transport aircraft flight operations, with a special focus on the recent advances introduced in the CNS+A research context. In the first section, a brief introduction is given, together with an overview of the main international research initiatives where this topic has been studied, and the problem statement is provided. The second section introduces the mathematical formulation and the third section reviews the numerical solution techniques, including discretisation and optimisation methods for the specific problem formulated. The fourth section summarises the strategies to articulate the preferences and to select optimal trajectories when multiple conflicting objectives are introduced. The fifth section introduces a number of models defining the optimality criteria and constraints typically adopted in MOTO studies, including fuel consumption, air pollutant and noise emissions, operational costs, condensation trails, airspace and airport operations. A brief overview of atmospheric and weather modelling is also included. Key equations describing the optimality criteria are presented, with a focus on the latest advancements in the respective application areas. In the sixth section, a number of MOTO implementations in the CNS+A systems context are mentioned with relevant simulation case studies addressing different operational tasks. The final section draws some conclusions and outlines guidelines for future research on MOTO and associated CNS+A system implementations.
Developing Inventory and Monitoring Programs Based on Multiple Objectives
Daniel L. Schmoldt; David L. Peterson; David G. Silsbee
1995-01-01
Resource inventory and monitoring (I&M) programs in national parks combine multiple objectives in order to create a plan of action over a finite time horizon. Because all program activities are constrained by time and money, it is critical to plan I&M activities that make the best use of available agency resources. However, multiple objectives complicate a...
Ratcliffe, Michelle M
2012-08-01
Farm to School programs hold promise to address childhood obesity. These programs may increase students’ access to healthier foods, increase students’ knowledge of and desire to eat these foods, and increase their consumption of them. Implementing Farm to School programs requires the involvement of multiple people, including nutrition services, educators, and food producers. Because these groups have not traditionally worked together and each has different goals, it is important to demonstrate how Farm to School programs that are designed to decrease childhood obesity may also address others’ objectives, such as academic achievement and economic development. A logic model is an effective tool to help articulate a shared vision for how Farm to School programs may work to accomplish multiple goals. Furthermore, there is evidence that programs based on theory are more likely to be effective at changing individuals’ behaviors. Logic models based on theory may help to explain how a program works, aid in efficient and sustained implementation, and support the development of a coherent evaluation plan. This article presents a sample theory-based logic model for Farm to School programs. The presented logic model is informed by the polytheoretical model for food and garden-based education in school settings (PMFGBE). The logic model has been applied to multiple settings, including Farm to School program development and evaluation in urban and rural school districts. This article also includes a brief discussion on the development of the PMFGBE, a detailed explanation of how Farm to School programs may enhance the curricular, physical, and social learning environments of schools, and suggestions for the applicability of the logic model for practitioners, researchers, and policy makers.
Performance of the Heavy Flavor Tracker (HFT) detector in star experiment at RHIC
NASA Astrophysics Data System (ADS)
Alruwaili, Manal
With the growing technology, the number of the processors is becoming massive. Current supercomputer processing will be available on desktops in the next decade. For mass scale application software development on massive parallel computing available on desktops, existing popular languages with large libraries have to be augmented with new constructs and paradigms that exploit massive parallel computing and distributed memory models while retaining the user-friendliness. Currently, available object oriented languages for massive parallel computing such as Chapel, X10 and UPC++ exploit distributed computing, data parallel computing and thread-parallelism at the process level in the PGAS (Partitioned Global Address Space) memory model. However, they do not incorporate: 1) any extension at for object distribution to exploit PGAS model; 2) the programs lack the flexibility of migrating or cloning an object between places to exploit load balancing; and 3) lack the programming paradigms that will result from the integration of data and thread-level parallelism and object distribution. In the proposed thesis, I compare different languages in PGAS model; propose new constructs that extend C++ with object distribution and object migration; and integrate PGAS based process constructs with these extensions on distributed objects. Object cloning and object migration. Also a new paradigm MIDD (Multiple Invocation Distributed Data) is presented when different copies of the same class can be invoked, and work on different elements of a distributed data concurrently using remote method invocations. I present new constructs, their grammar and their behavior. The new constructs have been explained using simple programs utilizing these constructs.
Multiple tobacco product use among US adolescents and young adults
Soneji, Samir; Sargent, James; Tanski, Susanne
2016-01-01
Objective To assess the extent to which multiple tobacco product use among adolescents and young adults falls outside current Food and Drug Administration (FDA) regulatory authority. Methods We conducted a web-based survey of 1596 16–26-year-olds to assess use of 11 types of tobacco products. We ascertained current (past 30 days) tobacco product use among 927 respondents who ever used tobacco. Combustible tobacco products included cigarettes, cigars (little filtered, cigarillos, premium) and hookah; non-combustible tobacco products included chew, dip, dissolvables, e-cigarettes, snuff and snus. We then fitted an ordinal logistic regression model to assess demographic and behavioural associations with higher levels of current tobacco product use (single, dual and multiple product use). Results Among 448 current tobacco users, 54% were single product users, 25% dual users and 21% multiple users. The largest single use category was cigarettes (49%), followed by hookah (23%), little filtered cigars (17%) and e-cigarettes (5%). Most dual and multiple product users smoked cigarettes, along with little filtered cigars, hookah and e-cigarettes. Forty-six per cent of current single, 84% of dual and 85% of multiple tobacco product users consumed a tobacco product outside FDA regulatory authority. In multivariable analysis, the adjusted risk of multiple tobacco use was higher for males, first use of a non-combustible tobacco product, high sensation seeking respondents and declined for each additional year of age that tobacco initiation was delayed. Conclusions Nearly half of current adolescent and young adult tobacco users in this study engaged in dual and multiple tobacco product use; the majority of them used products that fall outside current FDA regulatory authority. This study supports FDA deeming of these products and their incorporation into the national media campaign to address youth tobacco use. PMID:25361744
Mohan, Vishwanathan; Sandini, Giulio; Morasso, Pietro
2014-12-01
Cumulatively developing robots offer a unique opportunity to reenact the constant interplay between neural mechanisms related to learning, memory, prospection, and abstraction from the perspective of an integrated system that acts, learns, remembers, reasons, and makes mistakes. Situated within such interplay lie some of the computationally elusive and fundamental aspects of cognitive behavior: the ability to recall and flexibly exploit diverse experiences of one's past in the context of the present to realize goals, simulate the future, and keep learning further. This article is an adventurous exploration in this direction using a simple engaging scenario of how the humanoid iCub learns to construct the tallest possible stack given an arbitrary set of objects to play with. The learning takes place cumulatively, with the robot interacting with different objects (some previously experienced, some novel) in an open-ended fashion. Since the solution itself depends on what objects are available in the "now," multiple episodes of past experiences have to be remembered and creatively integrated in the context of the present to be successful. Starting from zero, where the robot knows nothing, we explore the computational basis of organization episodic memory in a cumulatively learning humanoid and address (1) how relevant past experiences can be reconstructed based on the present context, (2) how multiple stored episodic memories compete to survive in the neural space and not be forgotten, (3) how remembered past experiences can be combined with explorative actions to learn something new, and (4) how multiple remembered experiences can be recombined to generate novel behaviors (without exploration). Through the resulting behaviors of the robot as it builds, breaks, learns, and remembers, we emphasize that mechanisms of episodic memory are fundamental design features necessary to enable the survival of autonomous robots in a real world where neither everything can be known nor can everything be experienced.
A Pragmatic Path to Investigating Europa's Habitability
NASA Technical Reports Server (NTRS)
Pappalardo; Bengenal; Bar; Bills; Blankenship; Connerney; Kurth; McGrath; Moore; Prockter;
2011-01-01
Assessment of Europa's habitability, as an overarching science goal, will progress via a comprehensive investigation of Europa's subsurface ocean, chemical composition, and internal dynamical processes, The National Research Council's Planetary Decadal Survey placed an extremely high priority on Europa science but noted that the budget profile for the Jupiter Europa Orbiter (1EO) mission concept is incompatible with NASA's projected planetary science budget Thus, NASA enlisted a small Europa Science Definition Team (ESDT) to consider more pragmatic Europa mission options, In its preliminary findings (May, 2011), the ESDT embraces a science scope and instrument complement comparable to the science "floor" for JEO, but with a radically different mission implementation. The ESDT is studying a two-element mission architecture, in which two relatively low-cost spacecraft would fulfill the Europa science objectives, An envisioned Europa orbital element would carry only a very small geophysics payload, addressing those investigations that are best carried out from Europa orbit An envisioned separate multiple Europa flyby element (in orbit about Jupiter) would emphasize remote sensing, This mission architecture would provide for a subset of radiation-shielded instruments (all relatively low mass, power, and data rate) to be delivered into Europa orbit by a modest spacecraft, saving on propellant and other spacecraft resources, More resource-intensive remote sensing instruments would achieve their science objectives through a conservative multiple-flyby approach, that is better situated to handle larger masses and higher data volumes, and which aims to limit radiation exposure, Separation of the payload into two spacecraft elements, phased in time, would permit costs to be spread more uniformly over mUltiple years, avoiding an excessively high peak in the funding profile, Implementation of each spacecraft would be greatly simplified compared to previous Europa mission concepts, minimizing new development while achieving the key Europa science objectives. We will report on the status of this evolving concept, and will solicit community feedback, as we pursue an innovative and low-cost ways to explore Europa and investigate its habitability.
Reconfigurable optical interconnections via dynamic computer-generated holograms
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor); Zhou, Shaomin (Inventor)
1994-01-01
A system is proposed for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for largescale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.
Use of multiresolution wavelet feature pyramids for automatic registration of multisensor imagery
NASA Technical Reports Server (NTRS)
Zavorin, Ilya; Le Moigne, Jacqueline
2005-01-01
The problem of image registration, or the alignment of two or more images representing the same scene or object, has to be addressed in various disciplines that employ digital imaging. In the area of remote sensing, just like in medical imaging or computer vision, it is necessary to design robust, fast, and widely applicable algorithms that would allow automatic registration of images generated by various imaging platforms at the same or different times and that would provide subpixel accuracy. One of the main issues that needs to be addressed when developing a registration algorithm is what type of information should be extracted from the images being registered, to be used in the search for the geometric transformation that best aligns them. The main objective of this paper is to evaluate several wavelet pyramids that may be used both for invariant feature extraction and for representing images at multiple spatial resolutions to accelerate registration. We find that the bandpass wavelets obtained from the steerable pyramid due to Simoncelli performs best in terms of accuracy and consistency, while the low-pass wavelets obtained from the same pyramid give the best results in terms of the radius of convergence. Based on these findings, we propose a modification of a gradient-based registration algorithm that has recently been developed for medical data. We test the modified algorithm on several sets of real and synthetic satellite imagery.
Use of Multi-Resolution Wavelet Feature Pyramids for Automatic Registration of Multi-Sensor Imagery
NASA Technical Reports Server (NTRS)
Zavorin, Ilya; LeMoigne, Jacqueline
2003-01-01
The problem of image registration, or alignment of two or more images representing the same scene or object, has to be addressed in various disciplines that employ digital imaging. In the area of remote sensing, just like in medical imaging or computer vision, it is necessary to design robust, fast and widely applicable algorithms that would allow automatic registration of images generated by various imaging platforms at the same or different times, and that would provide sub-pixel accuracy. One of the main issues that needs to be addressed when developing a registration algorithm is what type of information should be extracted from the images being registered, to be used in the search for the geometric transformation that best aligns them. The main objective of this paper is to evaluate several wavelet pyramids that may be used both for invariant feature extraction and for representing images at multiple spatial resolutions to accelerate registration. We find that the band-pass wavelets obtained from the Steerable Pyramid due to Simoncelli perform better than two types of low-pass pyramids when the images being registered have relatively small amount of nonlinear radiometric variations between them. Based on these findings, we propose a modification of a gradient-based registration algorithm that has recently been developed for medical data. We test the modified algorithm on several sets of real and synthetic satellite imagery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Ryan M.; Coble, Jamie B.; Hirt, Evelyn H.
2013-05-17
This report identifies a number of requirements for prognostics health management of passive systems in AdvSMRs, documents technical gaps in establishing a prototypical prognostic methodology for this purpose, and describes a preliminary research plan for addressing these technical gaps. AdvSMRs span multiple concepts; therefore a technology- and design-neutral approach is taken, with the focus being on characteristics that are likely to be common to all or several AdvSMR concepts. An evaluation of available literature is used to identify proposed concepts for AdvSMRs along with likely operational characteristics. Available operating experience of advanced reactors is used in identifying passive components thatmore » may be subject to degradation, materials likely to be used for these components, and potential modes of degradation of these components. This information helps in assessing measurement needs for PHM systems, as well as defining functional requirements of PHM systems. An assessment of current state-of-the-art approaches to measurements, sensors and instrumentation, diagnostics and prognostics is also documented. This state-of-the-art evaluation, combined with the requirements, may be used to identify technical gaps and research needs in the development, evaluation, and deployment of PHM systems for AdvSMRs. A preliminary research plan to address high-priority research needs for the deployment of PHM systems to AdvSMRs is described, with the objective being the demonstration of prototypic prognostics technology for passive components in AdvSMRs. Greater efficiency in achieving this objective can be gained through judicious selection of materials and degradation modes that are relevant to proposed AdvSMR concepts, and for which significant knowledge already exists. These selections were made based on multiple constraints including the analysis performed in this document, ready access to laboratory-scale facilities for materials testing and measurement, and potential synergies with other national laboratory and university partners.« less
Analyzing and Predicting Effort Associated with Finding and Fixing Software Faults
NASA Technical Reports Server (NTRS)
Hamill, Maggie; Goseva-Popstojanova, Katerina
2016-01-01
Context: Software developers spend a significant amount of time fixing faults. However, not many papers have addressed the actual effort needed to fix software faults. Objective: The objective of this paper is twofold: (1) analysis of the effort needed to fix software faults and how it was affected by several factors and (2) prediction of the level of fix implementation effort based on the information provided in software change requests. Method: The work is based on data related to 1200 failures, extracted from the change tracking system of a large NASA mission. The analysis includes descriptive and inferential statistics. Predictions are made using three supervised machine learning algorithms and three sampling techniques aimed at addressing the imbalanced data problem. Results: Our results show that (1) 83% of the total fix implementation effort was associated with only 20% of failures. (2) Both safety critical failures and post-release failures required three times more effort to fix compared to non-critical and pre-release counterparts, respectively. (3) Failures with fixes spread across multiple components or across multiple types of software artifacts required more effort. The spread across artifacts was more costly than spread across components. (4) Surprisingly, some types of faults associated with later life-cycle activities did not require significant effort. (5) The level of fix implementation effort was predicted with 73% overall accuracy using the original, imbalanced data. Using oversampling techniques improved the overall accuracy up to 77%. More importantly, oversampling significantly improved the prediction of the high level effort, from 31% to around 85%. Conclusions: This paper shows the importance of tying software failures to changes made to fix all associated faults, in one or more software components and/or in one or more software artifacts, and the benefit of studying how the spread of faults and other factors affect the fix implementation effort.
Jolley, Emma; Rhodes, Tim; Platt, Lucy; Hope, Vivian; Latypov, Alisher; Donoghoe, Martin; Wilson, David
2012-01-01
Background and objectives HIV among people who inject drugs (PWID) is a major public health concern in Eastern and Central Europe and Central Asia. HIV transmission in this group is growing and over 27 000 HIV cases were diagnosed among PWID in 2010 alone. The objective of this systematic review was to examine risk factors associated with HIV prevalence among PWID in Central and Eastern Europe and Central Asia and to describe the response to HIV in this population and the policy environments in which they live. Design A systematic review of peer-reviewed and grey literature addressing HIV prevalence and risk factors for HIV prevalence among PWID and a synthesis of key resources describing the response to HIV in this population. We used a comprehensive search strategy across multiple electronic databases to collect original research papers addressing HIV prevalence and risk factors among PWID since 2005. We summarised the extent of key harm reduction interventions, and using a simple index of ‘enabling’ environment described the policy environments in which they are implemented. Studies reviewed Of the 5644 research papers identified from electronic databases and 40 documents collected from our grey literature search, 70 documents provided unique estimates of HIV and 14 provided multivariate risk factors for HIV among PWID. Results HIV prevalence varies widely, with generally low or medium (<5%) prevalence in Central Europe and high (>10%) prevalence in Eastern Europe. We found evidence for a number of structural factors associated with HIV including gender, socio-economic position and contact with law enforcement agencies. Conclusions The HIV epidemic among PWID in the region is varied, with the greatest burden generally in Eastern Europe. Data suggest that the current response to HIV among PWID is insufficient, and hindered by multiple environmental barriers including restricted access to services and unsupportive policy or social environments. PMID:23087014
ERIC Educational Resources Information Center
Phasha, T. N.; Nyokangi, D.
2012-01-01
This paper reports part of the findings of the study which investigated sexual violence at two schools catering specifically for learners with mild intellectual disability in Gauteng Province. It looks particularly on participants' suggestions for addressing sexual violence in such school. A multiple case study within the qualitative research…
ERIC Educational Resources Information Center
Castro, Yessenia; Fernández, Maria E.; Strong, Larkin L.; Stewart, Diana W.; Krasny, Sarah; Hernandez Robles, Eden; Heredia, Natalia; Spears, Claire A.; Correa-Fernández, Virmarie; Eakin, Elizabeth; Resnicow, Ken; Basen-Engquist, Karen; Wetter, David W.
2015-01-01
More than 60% of cancer-related deaths in the United States are attributable to tobacco use, poor nutrition, and physical inactivity, and these risk factors tend to cluster together. Thus, strategies for cancer risk reduction would benefit from addressing multiple health risk behaviors. We adapted an evidence-based intervention grounded in social…
Multiple pathways to sustainability in the city: the case of San Juan, Puerto Rico
Tischa A. Munoz
2014-01-01
I examined the multiple visions of the future of the city that can emerge when city actors and organizations reconfigure themselves to address sustainability. In various cities worldwide, novel ideas, initiatives, and networks are emerging in governance to address social and ecological conditions in urban areas. However, cities can be contested spaces, bringing a...
Informed multi-objective decision-making in environmental management using Pareto optimality
Maureen C. Kennedy; E. David Ford; Peter Singleton; Mark Finney; James K. Agee
2008-01-01
Effective decisionmaking in environmental management requires the consideration of multiple objectives that may conflict. Common optimization methods use weights on the multiple objectives to aggregate them into a single value, neglecting valuable insight into the relationships among the objectives in the management problem.
Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments
Kadima, Hubert; Granado, Bertrand
2013-01-01
We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach. PMID:24319361
Multi-objective approach for energy-aware workflow scheduling in cloud computing environments.
Yassa, Sonia; Chelouah, Rachid; Kadima, Hubert; Granado, Bertrand
2013-01-01
We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.
Hylton, Ann C.; Justice, Michael
2016-01-01
Objective. To identify and address areas for curricular improvement by evaluating student achievement of expected learning outcomes and competencies on annual milestone examinations. Design. Students were tested each professional year with a comprehensive milestone examination designed to evaluate student achievement of learning outcomes and professional competencies using a combination of multiple-choice questions, standardized patient assessments (SPAs), and objective structured clinical examination (OSCE) questions. Assessment. Based on student performance on milestone examinations, curricular changes were instituted, including an increased emphasis on graded comprehensive cases, OSCE skills days, and use of patient simulation in lecture and laboratory courses. After making these changes, significant improvements were observed in second and third-year pharmacy students’ grades for the therapeutic case and physician interaction/errors and omissions components of the milestone examinations. Conclusion. Results from milestone examinations can be used to identify specific areas in which curricular improvements are needed to foster student achievement of learning outcomes and professional competencies. PMID:28090108
Are Some Negotiators Better Than Others? Individual Differences in Bargaining Outcomes
Elfenbein, Hillary Anger; Curhan, Jared R.; Eisenkraft, Noah; Shirako, Aiwa; Baccaro, Lucio
2008-01-01
The authors address the long-standing mystery of stable individual differences in negotiation performance, on which intuition and conventional wisdom have clashed with inconsistent empirical findings. The present study used the Social Relations Model to examine individual differences directly via consistency in performance across multiple negotiations and to disentangle the roles of both parties within these inherently dyadic interactions. Individual differences explained a substantial 46% of objective performance and 19% of subjective performance in a mixed-motive bargaining exercise. Previous work may have understated the influence of individual differences because conventional research designs require specific traits to be identified and measured. Exploratory analyses of a battery of traits revealed few reliable associations with consistent individual differences in objective performance—except for positive beliefs about negotiation, positive affect, and concern for one's outcome, each of which predicted better performance. Findings suggest that the field has large untapped potential to explain substantial individual differences. Limitations, areas for future research, and practical implications are discussed. PMID:21720453
Howard, Christina J; Rollings, Victoria; Hardie, Amy
2017-06-01
In tasks where people monitor moving objects, such the multiple object tracking task (MOT), observers attempt to keep track of targets as they move amongst distracters. The literature is mixed as to whether observers make use of motion information to facilitate performance. We sought to address this by two means: first by superimposing arrows on objects which varied in their informativeness about motion direction and second by asking observers to attend to motion direction. Using a position monitoring task, we calculated mean error magnitudes as a measure of the precision with which target positions are represented. We also calculated perceptual lags versus extrapolated reports, which are the times at which positions of targets best match position reports. We find that the presence of motion information in the form of superimposed arrows made no difference to position report precision nor perceptual lag. However, when we explicitly instructed observers to attend to motion, we saw facilitatory effects on position reports and in some cases reports that best matched extrapolated rather than lagging positions for small set sizes. The results indicate that attention to changing positions does not automatically recruit attention to motion, showing a dissociation between sustained attention to changing positions and attention to motion. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tal, Tali; Alkaher, Iris
2010-06-01
A multicultural socio-environmental project that is framed in the ideas of education for sustainability brought together Jew and Arab students was investigated to identify the participants' views of the program's objectives and their accomplishments. We investigated the project's strengths and weaknesses according to the participants' views and the way culturally diverse students addressed the main local socio-environmental conflict related to conservation versus development of a local creek. The participants agreed that the environmental objectives were properly attained, while the social objectives were accomplished to a limited extent. All the participants emphasized the importance of multicultural knowledge and expected to learn and work together. We found different views of the Jewish and the Arab participants regarding expectations, collaboration and overall satisfaction, with higher expectations of the Arab students and leaders. The students' views of the local conflict varied but were not associated with their ethnic background. We suggest that the differences between the groups result from the different positions and needs of each community, and mainly as a consequence of the difficulties that the Arab minority faces in Israel. Overall, we found that the project allowed the expression of multiple voices of both groups, and suggested an applicable program for education for sustainability in a multicultural society. [InlineMediaObject not available: see fulltext.][InlineMediaObject not available: see fulltext.
2011-09-08
time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection...and State’s plans to address these costs. To address these objectives, we collected data from all agencies that have deployed uplift personnel...address these costs. To address our objectives, we obtained data from civilian agencies that deploy personnel to Afghanistan. Specifically, we
NASA Astrophysics Data System (ADS)
Akhtar, Taimoor; Shoemaker, Christine
2016-04-01
Watershed model calibration is inherently a multi-criteria problem. Conflicting trade-offs exist between different quantifiable calibration criterions indicating the non-existence of a single optimal parameterization. Hence, many experts prefer a manual approach to calibration where the inherent multi-objective nature of the calibration problem is addressed through an interactive, subjective, time-intensive and complex decision making process. Multi-objective optimization can be used to efficiently identify multiple plausible calibration alternatives and assist calibration experts during the parameter estimation process. However, there are key challenges to the use of multi objective optimization in the parameter estimation process which include: 1) multi-objective optimization usually requires many model simulations, which is difficult for complex simulation models that are computationally expensive; and 2) selection of one from numerous calibration alternatives provided by multi-objective optimization is non-trivial. This study proposes a "Hybrid Automatic Manual Strategy" (HAMS) for watershed model calibration to specifically address the above-mentioned challenges. HAMS employs a 3-stage framework for parameter estimation. Stage 1 incorporates the use of an efficient surrogate multi-objective algorithm, GOMORS, for identification of numerous calibration alternatives within a limited simulation evaluation budget. The novelty of HAMS is embedded in Stages 2 and 3 where an interactive visual and metric based analytics framework is available as a decision support tool to choose a single calibration from the numerous alternatives identified in Stage 1. Stage 2 of HAMS provides a goodness-of-fit measure / metric based interactive framework for identification of a small subset (typically less than 10) of meaningful and diverse set of calibration alternatives from the numerous alternatives obtained in Stage 1. Stage 3 incorporates the use of an interactive visual analytics framework for decision support in selection of one parameter combination from the alternatives identified in Stage 2. HAMS is applied for calibration of flow parameters of a SWAT model, (Soil and Water Assessment Tool) designed to simulate flow in the Cannonsville watershed in upstate New York. Results from the application of HAMS to Cannonsville indicate that efficient multi-objective optimization and interactive visual and metric based analytics can bridge the gap between the effective use of both automatic and manual strategies for parameter estimation of computationally expensive watershed models.
Hayes, Scott M; Nadel, Lynn; Ryan, Lee
2007-01-01
Previous research has investigated intentional retrieval of contextual information and contextual influences on object identification and word recognition, yet few studies have investigated context effects in episodic memory for objects. To address this issue, unique objects embedded in a visually rich scene or on a white background were presented to participants. At test, objects were presented either in the original scene or on a white background. A series of behavioral studies with young adults demonstrated a context shift decrement (CSD)-decreased recognition performance when context is changed between encoding and retrieval. The CSD was not attenuated by encoding or retrieval manipulations, suggesting that binding of object and context may be automatic. A final experiment explored the neural correlates of the CSD, using functional Magnetic Resonance Imaging. Parahippocampal cortex (PHC) activation (right greater than left) during incidental encoding was associated with subsequent memory of objects in the context shift condition. Greater activity in right PHC was also observed during successful recognition of objects previously presented in a scene. Finally, a subset of regions activated during scene encoding, such as bilateral PHC, was reactivated when the object was presented on a white background at retrieval. Although participants were not required to intentionally retrieve contextual information, the results suggest that PHC may reinstate visual context to mediate successful episodic memory retrieval. The CSD is attributed to automatic and obligatory binding of object and context. The results suggest that PHC is important not only for processing of scene information, but also plays a role in successful episodic memory encoding and retrieval. These findings are consistent with the view that spatial information is stored in the hippocampal complex, one of the central tenets of Multiple Trace Theory. (c) 2007 Wiley-Liss, Inc.
Reconfigurable Optical Interconnections Via Dynamic Computer-Generated Holograms
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor); Zhou, Shao-Min (Inventor)
1996-01-01
A system is presented for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for large-scale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.
ERIC Educational Resources Information Center
Schotter, Elizabeth R.; Ferreira, Victor S.; Rayner, Keith
2013-01-01
Do we access information from any object we can see, or do we access information only from objects that we intend to name? In 3 experiments using a modified multiple object naming paradigm, subjects were required to name several objects in succession when previews appeared briefly and simultaneously in the same location as the target as well as at…
Paul, Lorna; Coote, Susan; Crosbie, Jean; Dixon, Diane; Hale, Leigh; Holloway, Ed; McCrone, Paul; Miller, Linda; Saxton, John; Sincock, Caroline; White, Lesley
2014-10-01
Evidence shows that exercise is beneficial for people with multiple sclerosis (MS); however, statistical pooling of data is difficult because of the diversity of outcome measures used. The objective of this review is to report the recommendations of an International Consensus Meeting for a core set of outcome measures for use in exercise studies in MS. From the 100 categories of the International Classification of Function Core Sets for MS, 57 categories were considered as likely/potentially likely to be affected by exercise and were clustered into seven core groups. Outcome measures to address each group were evaluated regarding, for example, psychometric properties. The following are recommended: Modified Fatigue Impact Scale (MFIS) or Fatigue Severity Scale (FSS) for energy and drive, 6-Minute Walk Test (6MWT) for exercise tolerance, Timed Up and Go (TUG) for muscle function and moving around, Multiple Sclerosis Impact Scale (MSIS-29) or Multiple Sclerosis Quality of Life-54 Instrument (MSQoL54) for quality of life and body mass index (BMI) or waist-hip ratio (WHR) for the health risks associated with excess body fat. A cost effectiveness analysis and qualitative evaluation should be included where possible. Using these core measures ensures that future meta-analyses of exercise studies in MS are more robust and thus more effectively inform practice. © The Author(s) 2014.
Experimental confirmation of multiple community states in a marine ecosystem.
Petraitis, Peter S; Methratta, Elizabeth T; Rhile, Erika C; Vidargas, Nicholas A; Dudgeon, Steve R
2009-08-01
Small changes in environmental conditions can unexpectedly tip an ecosystem from one community type to another, and these often irreversible shifts have been observed in semi-arid grasslands, freshwater lakes and ponds, coral reefs, and kelp forests. A commonly accepted explanation is that these ecosystems contain multiple stable points, but experimental tests confirming multiple stable states have proven elusive. Here we present a novel approach and show that mussel beds and rockweed stands are multiple stable states on intertidal shores in the Gulf of Maine, USA. Using broad-scale observational data and long-term data from experimental clearings, we show that the removal of rockweed by winter ice scour can tip persistent rockweed stands to mussel beds. The observational data were analyzed with Anderson's discriminant analysis of principal coordinates, which provided an objective function to separate mussel beds from rockweed stands. The function was then applied to 55 experimental plots, which had been established in rockweed stands in 1996. Based on 2005 data, all uncleared controls and all but one of the small clearings were classified as rockweed stands; 37% of the large clearings were classified as mussel beds. Our results address the establishment of mussels versus rockweeds and complement rather than refute the current paradigm that mussel beds and rockweed stands, once established, are maintained by site-specific differences in strong consumer control.
Privacy Protection Versus Cluster Detection in Spatial Epidemiology
Olson, Karen L.; Grannis, Shaun J.; Mandl, Kenneth D.
2006-01-01
Objectives. Patient data that includes precise locations can reveal patients’ identities, whereas data aggregated into administrative regions may preserve privacy and confidentiality. We investigated the effect of varying degrees of address precision (exact latitude and longitude vs the center points of zip code or census tracts) on detection of spatial clusters of cases. Methods. We simulated disease outbreaks by adding supplementary spatially clustered emergency department visits to authentic hospital emergency department syndromic surveillance data. We identified clusters with a spatial scan statistic and evaluated detection rate and accuracy. Results. More clusters were identified, and clusters were more accurately detected, when exact locations were used. That is, these clusters contained at least half of the simulated points and involved few additional emergency department visits. These results were especially apparent when the synthetic clustered points crossed administrative boundaries and fell into multiple zip code or census tracts. Conclusions. The spatial cluster detection algorithm performed better when addresses were analyzed as exact locations than when they were analyzed as center points of zip code or census tracts, particularly when the clustered points crossed administrative boundaries. Use of precise addresses offers improved performance, but this practice must be weighed against privacy concerns in the establishment of public health data exchange policies. PMID:17018828
Low-income individuals’ perceptions about fruit and vegetable access programs: A qualitative study
Haynes-Maslow, Lindsey; Auvergne, Lauriane; Mark, Barbara; Ammerman, Alice; Weiner, Bryan J.
2015-01-01
Objective To examine how fruit and vegetable (F&V) programs address barriers to F&V access and consumption as perceived by low-income individuals. Design From 2011–2012 thirteen focus groups were used to better understand low-income individuals’ perceptions about F&V programs. Setting Five North Carolina counties at community-serving organizations. Participants Low-income participants ages 18 or older were included in the study. A majority were African American females with a high school education or less and received government assistance. Phenomenon of Interest Low-income individuals’ perceptions about how F&V access programs can reduce barriers and increase consumption. Analysis A socioecological framework guided data analysis, and 2 trained researchers coded transcripts, identified major themes, and summarized findings. Results A total of 105 participants discussed that mobile markets could overcome barriers such as availability, convenience, transportation, and quality/variety. Some were worried about safety in higher crime communities. Participants’ opinions about how successful food assistance programs were at overcoming cost barriers were mixed. Participants agreed that community gardens could increase access to affordable, conveniently located produce, but worried about feasibility/implementation issues. Implications for Research and Practice Addressing access barriers through F&V programs could improve consumption. Programs have the potential to be successful if they address multiple access barriers. (200 words). PMID:25910929
DataHub: Knowledge-based data management for data discovery
NASA Astrophysics Data System (ADS)
Handley, Thomas H.; Li, Y. Philip
1993-08-01
Currently available database technology is largely designed for business data-processing applications, and seems inadequate for scientific applications. The research described in this paper, the DataHub, will address the issues associated with this shortfall in technology utilization and development. The DataHub development is addressing the key issues in scientific data management of scientific database models and resource sharing in a geographically distributed, multi-disciplinary, science research environment. Thus, the DataHub will be a server between the data suppliers and data consumers to facilitate data exchanges, to assist science data analysis, and to provide as systematic approach for science data management. More specifically, the DataHub's objectives are to provide support for (1) exploratory data analysis (i.e., data driven analysis); (2) data transformations; (3) data semantics capture and usage; analysis-related knowledge capture and usage; and (5) data discovery, ingestion, and extraction. Applying technologies that vary from deductive databases, semantic data models, data discovery, knowledge representation and inferencing, exploratory data analysis techniques and modern man-machine interfaces, DataHub will provide a prototype, integrated environement to support research scientists' needs in multiple disciplines (i.e. oceanography, geology, and atmospheric) while addressing the more general science data management issues. Additionally, the DataHub will provide data management services to exploratory data analysis applications such as LinkWinds and NCSA's XIMAGE.
Techniques for assessing relative values for multiple objective management on private forests
Donald F. Dennis; Thomas H. Stevens; David B. Kittredge; Mark G. Rickenbach
2003-01-01
Decision models for assessing multiple objective management of private lands will require estimates of the relative values of various nonmarket outputs or objectives that have become increasingly important. In this study, conjoint techniques are used to assess the relative values and acceptable trade-offs (marginal rates of substitution) among various objectives...
A New Computational Technique for the Generation of Optimised Aircraft Trajectories
NASA Astrophysics Data System (ADS)
Chircop, Kenneth; Gardi, Alessandro; Zammit-Mangion, David; Sabatini, Roberto
2017-12-01
A new computational technique based on Pseudospectral Discretisation (PSD) and adaptive bisection ɛ-constraint methods is proposed to solve multi-objective aircraft trajectory optimisation problems formulated as nonlinear optimal control problems. This technique is applicable to a variety of next-generation avionics and Air Traffic Management (ATM) Decision Support Systems (DSS) for strategic and tactical replanning operations. These include the future Flight Management Systems (FMS) and the 4-Dimensional Trajectory (4DT) planning and intent negotiation/validation tools envisaged by SESAR and NextGen for a global implementation. In particular, after describing the PSD method, the adaptive bisection ɛ-constraint method is presented to allow an efficient solution of problems in which two or multiple performance indices are to be minimized simultaneously. Initial simulation case studies were performed adopting suitable aircraft dynamics models and addressing a classical vertical trajectory optimisation problem with two objectives simultaneously. Subsequently, a more advanced 4DT simulation case study is presented with a focus on representative ATM optimisation objectives in the Terminal Manoeuvring Area (TMA). The simulation results are analysed in-depth and corroborated by flight performance analysis, supporting the validity of the proposed computational techniques.
NASA Astrophysics Data System (ADS)
Jara, A. J.; Bocchi, Y.; Fernandez, D.; Molina, G.; Gomez, A.
2017-09-01
Smart Cities requires the support of context-aware and enriched semantic descriptions to support a scalable and cross-domain development of smart applications. For example, nowadays general purpose sensors such as crowd monitoring (counting people in an area), environmental information (pollution, air quality, temperature, humidity, noise) etc. can be used in multiple solutions with different objectives. For that reason, a data model that offers advanced capabilities for the description of context is required. This paper presents an overview of the available technologies for this purpose and how it is being addressed by the Open and Agile Smart Cities principles and FIWARE platform through the data models defined by the ETSI ISG Context Information Management (ETSI CIM).
Distributed Representation of Visual Objects by Single Neurons in the Human Brain
Valdez, André B.; Papesh, Megan H.; Treiman, David M.; Smith, Kris A.; Goldinger, Stephen D.
2015-01-01
It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. PMID:25834044
NASA Astrophysics Data System (ADS)
Manoharan, Prabu; Vijayan, R. S. K.; Ghoshal, Nanda
2010-10-01
The ability to identify fragments that interact with a biological target is a key step in FBDD. To date, the concept of fragment based drug design (FBDD) is increasingly driven by bio-physical methods. To expand the boundaries of QSAR paradigm, and to rationalize FBDD using In silico approach, we propose a fragment based QSAR methodology referred here in as FB-QSAR. The FB-QSAR methodology was validated on a dataset consisting of 52 Hydroxy ethylamine (HEA) inhibitors, disclosed by GlaxoSmithKline Pharmaceuticals as potential anti-Alzheimer agents. To address the issue of target selectivity, a major confounding factor in the development of selective BACE1 inhibitors, FB-QSSR models were developed using the reported off target activity values. A heat map constructed, based on the activity and selectivity profile of the individual R-group fragments, and was in turn used to identify superior R-group fragments. Further, simultaneous optimization of multiple properties, an issue encountered in real-world drug discovery scenario, and often overlooked in QSAR approaches, was addressed using a Multi Objective (MO-QSPR) method that balances properties, based on the defined objectives. MO-QSPR was implemented using Derringer and Suich desirability algorithm to identify the optimal level of independent variables ( X) that could confer a trade-off between selectivity and activity. The results obtained from FB-QSAR were further substantiated using MIF (Molecular Interaction Fields) studies. To exemplify the potentials of FB-QSAR and MO-QSPR in a pragmatic fashion, the insights gleaned from the MO-QSPR study was reverse engineered using Inverse-QSAR in a combinatorial fashion to enumerate some prospective novel, potent and selective BACE1 inhibitors.
Manoharan, Prabu; Vijayan, R S K; Ghoshal, Nanda
2010-10-01
The ability to identify fragments that interact with a biological target is a key step in FBDD. To date, the concept of fragment based drug design (FBDD) is increasingly driven by bio-physical methods. To expand the boundaries of QSAR paradigm, and to rationalize FBDD using In silico approach, we propose a fragment based QSAR methodology referred here in as FB-QSAR. The FB-QSAR methodology was validated on a dataset consisting of 52 Hydroxy ethylamine (HEA) inhibitors, disclosed by GlaxoSmithKline Pharmaceuticals as potential anti-Alzheimer agents. To address the issue of target selectivity, a major confounding factor in the development of selective BACE1 inhibitors, FB-QSSR models were developed using the reported off target activity values. A heat map constructed, based on the activity and selectivity profile of the individual R-group fragments, and was in turn used to identify superior R-group fragments. Further, simultaneous optimization of multiple properties, an issue encountered in real-world drug discovery scenario, and often overlooked in QSAR approaches, was addressed using a Multi Objective (MO-QSPR) method that balances properties, based on the defined objectives. MO-QSPR was implemented using Derringer and Suich desirability algorithm to identify the optimal level of independent variables (X) that could confer a trade-off between selectivity and activity. The results obtained from FB-QSAR were further substantiated using MIF (Molecular Interaction Fields) studies. To exemplify the potentials of FB-QSAR and MO-QSPR in a pragmatic fashion, the insights gleaned from the MO-QSPR study was reverse engineered using Inverse-QSAR in a combinatorial fashion to enumerate some prospective novel, potent and selective BACE1 inhibitors.
Space transfer vehicle concepts and requirements. Volume 1: Executive summary
NASA Astrophysics Data System (ADS)
1991-04-01
The objectives of the Space Transfer Vehicle (STV) Concepts and Requirements studies were to provide sensitivity data on usage, economics, and technology associated with new space transportation systems. The study was structured to utilize data on the emerging launch vehicles, the latest mission scenarios, and Space Exploration Initiative (SEI) payload manifesting and schedules, to define a flexible, high performance, cost effective, evolutionary space transportation system for NASA. Initial activities were to support the MSFC effort in the preparation of inputs to the 90 Day Report to the National Space Council (NSC). With the results of this study establishing a point-of-departure for continuing the STV studies in 1990, additional options and mission architectures were defined. The continuing studies will update and expand the parametrics, assess new cargo and manned ETO vehicles, determine impacts on the redefined Phase 0 Space Station Freedom, and to develop a design that encompasses adequate configuration flexibility to ensure compliance with on-going NASA study recommendations with major system disconnects. In terms of general requirements, the objectives of the STV system and its mission profiles will address crew safety and mission success through a failure-tolerant and forgiving design approach. These objectives were addressed through the following: engine-out capability for all mission phases; built-in-test for vehicle health monitoring to allow testing of all critical functions such as, verification of lunar landing and ascent engines before initiating the landing sequence; critical subsystems will have multiple strings for redundancy plus adequate supplies of onboard spares for removal and replacement of failed items; crew radiation protection; and trajectories that optimize lunar and Mars performance and flyby abort capabilities.
Space transfer vehicle concepts and requirements. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1991-01-01
The objectives of the Space Transfer Vehicle (STV) Concepts and Requirements studies were to provide sensitivity data on usage, economics, and technology associated with new space transportation systems. The study was structured to utilize data on the emerging launch vehicles, the latest mission scenarios, and Space Exploration Initiative (SEI) payload manifesting and schedules, to define a flexible, high performance, cost effective, evolutionary space transportation system for NASA. Initial activities were to support the MSFC effort in the preparation of inputs to the 90 Day Report to the National Space Council (NSC). With the results of this study establishing a point-of-departure for continuing the STV studies in 1990, additional options and mission architectures were defined. The continuing studies will update and expand the parametrics, assess new cargo and manned ETO vehicles, determine impacts on the redefined Phase 0 Space Station Freedom, and to develop a design that encompasses adequate configuration flexibility to ensure compliance with on-going NASA study recommendations with major system disconnects. In terms of general requirements, the objectives of the STV system and its mission profiles will address crew safety and mission success through a failure-tolerant and forgiving design approach. These objectives were addressed through the following: engine-out capability for all mission phases; built-in-test for vehicle health monitoring to allow testing of all critical functions such as, verification of lunar landing and ascent engines before initiating the landing sequence; critical subsystems will have multiple strings for redundancy plus adequate supplies of onboard spares for removal and replacement of failed items; crew radiation protection; and trajectories that optimize lunar and Mars performance and flyby abort capabilities.
Access to medicines from a health system perspective
Bigdeli, Maryam; Jacobs, Bart; Tomson, Goran; Laing, Richard; Ghaffar, Abdul; Dujardin, Bruno; Van Damme, Wim
2013-01-01
Most health system strengthening interventions ignore interconnections between systems components. In particular, complex relationships between medicines and health financing, human resources, health information and service delivery are not given sufficient consideration. As a consequence, populations' access to medicines (ATM) is addressed mainly through fragmented, often vertical approaches usually focusing on supply, unrelated to the wider issue of access to health services and interventions. The objective of this article is to embed ATM in a health system perspective. For this purpose, we perform a structured literature review: we examine existing ATM frameworks, review determinants of ATM and define at which level of the health system they are likely to occur; we analyse to which extent existing ATM frameworks take into account access constraints at different levels of the health system. Our findings suggest that ATM barriers are complex and interconnected as they occur at multiple levels of the health system. Existing ATM frameworks only partially address the full range of ATM barriers. We propose three essential paradigm shifts that take into account complex and dynamic relationships between medicines and other components of the health system. A holistic view of demand-side constraints in tandem with consideration of multiple and dynamic relationships between medicines and other health system resources should be applied; it should be recognized that determinants of ATM are rooted in national, regional and international contexts. These are schematized in a new framework proposing a health system perspective on ATM. PMID:23174879
Identifying the Multiple Intelligences of Your Students
ERIC Educational Resources Information Center
McClellan, Joyce A.; Conti, Gary J.
2008-01-01
One way of addressing individual differences among adult learners is to identify the Multiple Intelligences of the learner. Multiple Intelligences refers to the concept developed by Howard Gardner that challenges the traditional view of intelligence and explains the presence of nine different Multiple Intelligences. The purpose of this study was…
Johnson, Carla J; Beitchman, Joseph H; Brownlie, E B
2010-02-01
Parents, professionals, and policy makers need information on the long-term prognosis for children with communication disorders. Our primary purpose in this report was to help fill this gap by profiling the family, educational, occupational, and quality of life outcomes of young adults at 25 years of age (N = 244) from the Ottawa Language Study, a 20-year, prospective, longitudinal study of a community sample of individuals with (n = 112) and without (n = 132) a history of early speech and/or language impairments. A secondary purpose of this report was to use data from earlier phases of the study to predict important, real-life outcomes at age 25. Participants were initially identified at age 5 and subsequently followed at 12, 19, and 25 years of age. Direct assessments were conducted at all 4 time periods in multiple domains (demographic, communicative, cognitive, academic, behavioral, and psychosocial). At age 25, young adults with a history of language impairments showed poorer outcomes in multiple objective domains (communication, cognitive/academic, educational attainment, and occupational status) than their peers without early communication impairments and those with early speech-only impairments. However, those with language impairments did not differ in subjective perceptions of their quality of life from those in the other 2 groups. Objective outcomes at age 25 were predicted differentially by various combinations of multiple, interrelated risk factors, including poor language and reading skills, low family socioeconomic status, low performance IQ, and child behavior problems. Subjective well-being, however, was primarily associated with strong social networks of family, friends, and others. This information on the natural history of communication disorders may be useful in answering parents' questions, anticipating challenges that children with language disorders might encounter, and planning services to address those issues.
Prevention of data duplication for high throughput sequencing repositories
Gabdank, Idan; Chan, Esther T; Davidson, Jean M; Hilton, Jason A; Davis, Carrie A; Baymuradov, Ulugbek K; Narayanan, Aditi; Onate, Kathrina C; Graham, Keenan; Miyasato, Stuart R; Dreszer, Timothy R; Strattan, J Seth; Jolanki, Otto; Tanaka, Forrest Y; Hitz, Benjamin C
2018-01-01
Abstract Prevention of unintended duplication is one of the ongoing challenges many databases have to address. Working with high-throughput sequencing data, the complexity of that challenge increases with the complexity of the definition of a duplicate. In a computational data model, a data object represents a real entity like a reagent or a biosample. This representation is similar to how a card represents a book in a paper library catalog. Duplicated data objects not only waste storage, they can mislead users into assuming the model represents more than the single entity. Even if it is clear that two objects represent a single entity, data duplication opens the door to potential inconsistencies between the objects since the content of the duplicated objects can be updated independently, allowing divergence of the metadata associated with the objects. Analogously to a situation in which a catalog in a paper library would contain by mistake two cards for a single copy of a book. If these cards are listing simultaneously two different individuals as current book borrowers, it would be difficult to determine which borrower (out of the two listed) actually has the book. Unfortunately, in a large database with multiple submitters, unintended duplication is to be expected. In this article, we present three principal guidelines the Encyclopedia of DNA Elements (ENCODE) Portal follows in order to prevent unintended duplication of both actual files and data objects: definition of identifiable data objects (I), object uniqueness validation (II) and de-duplication mechanism (III). In addition to explaining our modus operandi, we elaborate on the methods used for identification of sequencing data files. Comparison of the approach taken by the ENCODE Portal vs other widely used biological data repositories is provided. Database URL: https://www.encodeproject.org/ PMID:29688363
A SYSTEMATIC PROCEDURE FOR DESIGNING PROCESSES WITH MULTIPLE ENVIRONMENTAL OBJECTIVES
Evaluation and analysis of multiple objectives are very important in designing environmentally benign processes. They require a systematic procedure for solving multi-objective decision-making problems due to the complex nature of the problems and the need for complex assessment....
High speed polling protocol for multiple node network
NASA Technical Reports Server (NTRS)
Kirkham, Harold (Inventor)
1995-01-01
The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs a remote node polling process performed by a master node by transmitting a polling message generically addressed to all remote nodes associated with the master node. Each remote node responds upon receipt of the generically addressed polling message by transmitting a poll-answering informational message and by relaying the polling message to other adjacent remote nodes.
Hunt, Matthew R; Chung, Ryoa; Durocher, Evelyne; Henrys, Jean Hugues
2015-01-01
Following disasters, persons with disabilities (PWD) are especially vulnerable to harm, yet they have commonly been excluded from disaster planning, and their needs have been poorly addressed during disaster relief. Following the 2010 Haiti earthquake, thousands of individuals experienced acute injuries. Many more individuals with preexisting disabilities experienced heightened vulnerability related to considerations including safety, access to services, and meeting basic needs. The objective of this research was to better understand the perceptions of responders and decision-makers regarding disability and efforts to address the needs of PWD following the 2010 earthquake. We conducted a qualitative study using interpretive description methodology and semistructured interviews with 14 Haitian and 10 international participants who were involved in the earthquake response. Participants identified PWD as being among the most vulnerable individuals following the earthquake. Though some forms of disability received considerable attention in aid efforts, the needs of other PWD did not. Several factors were identified as challenges for efforts to address the needs of PWD including lack of coordination and information sharing, the involvement of multiple aid sectors, perceptions that this should be the responsibility of specialized organizations, and the need to prioritize limited resources. Participants also reported shifts in local social views related to disability following the earthquake. Addressing the needs of PWD following a disaster is a crucial population health challenge and raises questions related to equity and responsibility for non-governmental organizations, governments, and local communities.
Real-time multiple-objective path search for in-vehicle route guidance systems
DOT National Transportation Integrated Search
1997-01-01
The application of multiple-objective route choice for in-vehicle route guidance systems is discussed. A bi-objective path search algorithm is presented and its use demonstrated. A concept of trip quality is introduced that is composed of two objecti...
Multiple Object Based RFID System Using Security Level
NASA Astrophysics Data System (ADS)
Kim, Jiyeon; Jung, Jongjin; Ryu, Ukjae; Ko, Hoon; Joe, Susan; Lee, Yongjun; Kim, Boyeon; Chang, Yunseok; Lee, Kyoonha
2007-12-01
RFID systems are increasingly applied for operational convenience in wide range of industries and individual life. However, it is uneasy for a person to control many tags because common RFID systems have the restriction that a tag used to identify just a single object. In addition, RFID systems can make some serious problems in violation of privacy and security because of their radio frequency communication. In this paper, we propose a multiple object RFID tag which can keep multiple object identifiers for different applications in a same tag. The proposed tag allows simultaneous access for their pair applications. We also propose an authentication protocol for multiple object tag to prevent serious problems of security and privacy in RFID applications. Especially, we focus on efficiency of the authentication protocol by considering security levels of applications. In the proposed protocol, the applications go through different authentication procedures according to security level of the object identifier stored in the tag. We implemented the proposed RFID scheme and made experimental results about efficiency and stability for the scheme.
Self-motion impairs multiple-object tracking.
Thomas, Laura E; Seiffert, Adriane E
2010-10-01
Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement impairs the ability to keep track of other moving objects. Participants attempted to track multiple targets while either moving around the tracking area or remaining in a fixed location. Participants' tracking performance was impaired when they moved to a new location during tracking, even when they were passively moved and when they did not see a shift in viewpoint. Self-motion impaired multiple-object tracking in both an immersive virtual environment and a real-world analog, but did not interfere with a difficult non-spatial tracking task. These results suggest that people use a common mechanism to track changes both to the location of moving objects around them and to keep track of their own location. Copyright 2010 Elsevier B.V. All rights reserved.
Saiki, Jun
2002-01-01
Research on change blindness and transsaccadic memory revealed that a limited amount of information is retained across visual disruptions in visual working memory. It has been proposed that visual working memory can hold four to five coherent object representations. To investigate their maintenance and transformation in dynamic situations, I devised an experimental paradigm called multiple-object permanence tracking (MOPT) that measures memory for multiple feature-location bindings in dynamic situations. Observers were asked to detect any color switch in the middle of a regular rotation of a pattern with multiple colored disks behind an occluder. The color-switch detection performance dramatically declined as the pattern rotation velocity increased, and this effect of object motion was independent of the number of targets. The MOPT task with various shapes and colors showed that color-shape conjunctions are not available in the MOPT task. These results suggest that even completely predictable motion severely reduces our capacity of object representations, from four to only one or two.
An Integrated Method for Airfoil Optimization
NASA Astrophysics Data System (ADS)
Okrent, Joshua B.
Design exploration and optimization is a large part of the initial engineering and design process. To evaluate the aerodynamic performance of a design, viscous Navier-Stokes solvers can be used. However this method can prove to be overwhelmingly time consuming when performing an initial design sweep. Therefore, another evaluation method is needed to provide accurate results at a faster pace. To accomplish this goal, a coupled viscous-inviscid method is used. This thesis proposes an integrated method for analyzing, evaluating, and optimizing an airfoil using a coupled viscous-inviscid solver along with a genetic algorithm to find the optimal candidate. The method proposed is different from prior optimization efforts in that it greatly broadens the design space, while allowing the optimization to search for the best candidate that will meet multiple objectives over a characteristic mission profile rather than over a single condition and single optimization parameter. The increased design space is due to the use of multiple parametric airfoil families, namely the NACA 4 series, CST family, and the PARSEC family. Almost all possible airfoil shapes can be created with these three families allowing for all possible configurations to be included. This inclusion of multiple airfoil families addresses a possible criticism of prior optimization attempts since by only focusing on one airfoil family, they were inherently limiting the number of possible airfoil configurations. By using multiple parametric airfoils, it can be assumed that all reasonable airfoil configurations are included in the analysis and optimization and that a global and not local maximum is found. Additionally, the method used is amenable to customization to suit any specific needs as well as including the effects of other physical phenomena or design criteria and/or constraints. This thesis found that an airfoil configuration that met multiple objectives could be found for a given set of nominal operational conditions from a broad design space with the use of minimal computational resources on both an absolute and relative scale to traditional analysis techniques. Aerodynamicists, program managers, aircraft configuration specialist, and anyone else in charge of aircraft configuration, design studies, and program level decisions might find the evaluation and optimization method proposed of interest.
Testing for Nonuniform Differential Item Functioning with Multiple Indicator Multiple Cause Models
ERIC Educational Resources Information Center
Woods, Carol M.; Grimm, Kevin J.
2011-01-01
In extant literature, multiple indicator multiple cause (MIMIC) models have been presented for identifying items that display uniform differential item functioning (DIF) only, not nonuniform DIF. This article addresses, for apparently the first time, the use of MIMIC models for testing both uniform and nonuniform DIF with categorical indicators. A…
Spatio-Temporal Data Model for Integrating Evolving Nation-Level Datasets
NASA Astrophysics Data System (ADS)
Sorokine, A.; Stewart, R. N.
2017-10-01
Ability to easily combine the data from diverse sources in a single analytical workflow is one of the greatest promises of the Big Data technologies. However, such integration is often challenging as datasets originate from different vendors, governments, and research communities that results in multiple incompatibilities including data representations, formats, and semantics. Semantics differences are hardest to handle: different communities often use different attribute definitions and associate the records with different sets of evolving geographic entities. Analysis of global socioeconomic variables across multiple datasets over prolonged time is often complicated by the difference in how boundaries and histories of countries or other geographic entities are represented. Here we propose an event-based data model for depicting and tracking histories of evolving geographic units (countries, provinces, etc.) and their representations in disparate data. The model addresses the semantic challenge of preserving identity of geographic entities over time by defining criteria for the entity existence, a set of events that may affect its existence, and rules for mapping between different representations (datasets). Proposed model is used for maintaining an evolving compound database of global socioeconomic and environmental data harvested from multiple sources. Practical implementation of our model is demonstrated using PostgreSQL object-relational database with the use of temporal, geospatial, and NoSQL database extensions.
Hubbard, Joanna K.; Potts, Macy A.; Couch, Brian A.
2017-01-01
Assessments represent an important component of undergraduate courses because they affect how students interact with course content and gauge student achievement of course objectives. To make decisions on assessment design, instructors must understand the affordances and limitations of available question formats. Here, we use a crossover experimental design to identify differences in how multiple-true-false (MTF) and free-response (FR) exam questions reveal student thinking regarding specific conceptions. We report that correct response rates correlate across the two formats but that a higher percentage of students provide correct responses for MTF questions. We find that MTF questions reveal a high prevalence of students with mixed (correct and incorrect) conceptions, while FR questions reveal a high prevalence of students with partial (correct and unclear) conceptions. These results suggest that MTF question prompts can direct students to address specific conceptions but obscure nuances in student thinking and may overestimate the frequency of particular conceptions. Conversely, FR questions provide a more authentic portrait of student thinking but may face limitations in their ability to diagnose specific, particularly incorrect, conceptions. We further discuss an intrinsic tension between question structure and diagnostic capacity and how instructors might use multiple formats or hybrid formats to overcome these obstacles. PMID:28450446
NASA Astrophysics Data System (ADS)
Sasaya, Tenta; Sunaguchi, Naoki; Seo, Seung-Jum; Hyodo, Kazuyuki; Zeniya, Tsutomu; Kim, Jong-Ki; Yuasa, Tetsuya
2018-04-01
Gold nanoparticles (GNPs) have recently attracted attention in nanomedicine as novel contrast agents for cancer imaging. A decisive tomographic imaging technique has not yet been established to depict the 3-D distribution of GNPs in an object. An imaging technique known as pinhole-based X-ray fluorescence computed tomography (XFCT) is a promising method that can be used to reconstruct the distribution of GNPs from the X-ray fluorescence emitted by GNPs. We address the acceleration of data acquisition in pinhole-based XFCT for preclinical use using a multiple pinhole scheme. In this scheme, multiple projections are simultaneously acquired through a multi-pinhole collimator with a 2-D detector and full-field volumetric beam to enhance the signal-to-noise ratio of the projections; this enables fast data acquisition. To demonstrate the efficacy of this method, we performed an imaging experiment using a physical phantom with an actual multi-pinhole XFCT system that was constructed using the beamline AR-NE7A at KEK. The preliminary study showed that the multi-pinhole XFCT achieved a data acquisition time of 20 min at a theoretical detection limit of approximately 0.1 Au mg/ml and at a spatial resolution of 0.4 mm.
Multiple Object Tracking Reveals Object-Based Grouping Interference in Children with ASD
ERIC Educational Resources Information Center
Van der Hallen, Ruth; Evers, Kris; de-Wit, Lee; Steyaert, Jean; Noens, Ilse; Wagemans, Johan
2018-01-01
The multiple object tracking (MOT) paradigm has proven its value in targeting a number of aspects of visual cognition. This study used MOT to investigate the effect of object-based grouping, both in children with and without autism spectrum disorder (ASD). A modified MOT task was administered to both groups, who had to track and distinguish four…
NASA Technical Reports Server (NTRS)
Giesy, D. P.
1978-01-01
A technique is presented for the calculation of Pareto-optimal solutions to a multiple-objective constrained optimization problem by solving a series of single-objective problems. Threshold-of-acceptability constraints are placed on the objective functions at each stage to both limit the area of search and to mathematically guarantee convergence to a Pareto optimum.
A PDP model of the simultaneous perception of multiple objects
NASA Astrophysics Data System (ADS)
Henderson, Cynthia M.; McClelland, James L.
2011-06-01
Illusory conjunctions in normal and simultanagnosic subjects are two instances where the visual features of multiple objects are incorrectly 'bound' together. A connectionist model explores how multiple objects could be perceived correctly in normal subjects given sufficient time, but could give rise to illusory conjunctions with damage or time pressure. In this model, perception of two objects benefits from lateral connections between hidden layers modelling aspects of the ventral and dorsal visual pathways. As with simultanagnosia, simulations of dorsal lesions impair multi-object recognition. In contrast, a large ventral lesion has minimal effect on dorsal functioning, akin to dissociations between simple object manipulation (retained in visual form agnosia and semantic dementia) and object discrimination (impaired in these disorders) [Hodges, J.R., Bozeat, S., Lambon Ralph, M.A., Patterson, K., and Spatt, J. (2000), 'The Role of Conceptual Knowledge: Evidence from Semantic Dementia', Brain, 123, 1913-1925; Milner, A.D., and Goodale, M.A. (2006), The Visual Brain in Action (2nd ed.), New York: Oxford]. It is hoped that the functioning of this model might suggest potential processes underlying dorsal and ventral contributions to the correct perception of multiple objects.
Behavioral Modeling of Adversaries with Multiple Objectives in Counterterrorism.
Mazicioglu, Dogucan; Merrick, Jason R W
2018-05-01
Attacker/defender models have primarily assumed that each decisionmaker optimizes the cost of the damage inflicted and its economic repercussions from their own perspective. Two streams of recent research have sought to extend such models. One stream suggests that it is more realistic to consider attackers with multiple objectives, but this research has not included the adaption of the terrorist with multiple objectives to defender actions. The other stream builds off experimental studies that show that decisionmakers deviate from optimal rational behavior. In this article, we extend attacker/defender models to incorporate multiple objectives that a terrorist might consider in planning an attack. This includes the tradeoffs that a terrorist might consider and their adaption to defender actions. However, we must also consider experimental evidence of deviations from the rationality assumed in the commonly used expected utility model in determining such adaption. Thus, we model the attacker's behavior using multiattribute prospect theory to account for the attacker's multiple objectives and deviations from rationality. We evaluate our approach by considering an attacker with multiple objectives who wishes to smuggle radioactive material into the United States and a defender who has the option to implement a screening process to hinder the attacker. We discuss the problems with implementing such an approach, but argue that research in this area must continue to avoid misrepresenting terrorist behavior in determining optimal defensive actions. © 2017 Society for Risk Analysis.
78 FR 68449 - Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-14
... RFA-HS14-002, Addressing Methodological Challenges in Research for Patients With Multiple Chronic... applications for the ``AHRQ RFA-HS14-002, Addressing Methodological Challenges in Research for Patients With...
Distributed representation of visual objects by single neurons in the human brain.
Valdez, André B; Papesh, Megan H; Treiman, David M; Smith, Kris A; Goldinger, Stephen D; Steinmetz, Peter N
2015-04-01
It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. Copyright © 2015 the authors 0270-6474/15/355180-07$15.00/0.
A meaningful MESS (Medical Education Scholarship Support).
Whicker, Shari A; Engle, Deborah L; Chudgar, Saumil; DeMeo, Stephen; Bean, Sarah M; Narayan, Aditee P; Grochowski, Colleen O'Connor; Nagler, Alisa
2016-01-01
Graduate medical education faculty bear the responsibility of demonstrating active research and scholarship; however, faculty who choose education-focused careers may face unique obstacles related to the lack of promotion tracks, funding, career options, and research opportunities. Our objective was to address education research and scholarship barriers by providing a collaborative peer-mentoring environment and improve the production of research and scholarly outputs. We describe a Medical Education Scholarship Support (MESS) group created in 2013. MESS is an interprofessional, multidisciplinary peer-mentoring education research community that now spans multiple institutions. This group meets monthly to address education research and scholarship challenges. Through this process, we develop new knowledge, research, and scholarly products, in addition to meaningful collaborations. MESS originated with eight founding members, all of whom still actively participate. MESS has proven to be a sustainable unfunded local community of practice, encouraging faculty to pursue health professions education (HPE) careers and fostering scholarship. We have met our original objectives that involved maintaining 100% participant retention; developing increased knowledge in at least seven content areas; and contributing to the development of 13 peer-reviewed publications, eight professional presentations, one Masters of Education project, and one educational curriculum. The number of individuals engaged in HPE research continues to rise. The MESS model could be adapted for use at other institutions, thereby reducing barriers HPE researchers face, providing an effective framework for trainees interested in education-focused careers, and having a broader impact on the education research landscape.
Multiple-3D-object secure information system based on phase shifting method and single interference.
Li, Wei-Na; Shi, Chen-Xiao; Piao, Mei-Lan; Kim, Nam
2016-05-20
We propose a multiple-3D-object secure information system for encrypting multiple three-dimensional (3D) objects based on the three-step phase shifting method. During the decryption procedure, five phase functions (PFs) are decreased to three PFs, in comparison with our previous method, which implies that one cross beam splitter is utilized to implement the single decryption interference. Moreover, the advantages of the proposed scheme also include: each 3D object can be decrypted discretionarily without decrypting a series of other objects earlier; the quality of the decrypted slice image of each object is high according to the correlation coefficient values, none of which is lower than 0.95; no iterative algorithm is involved. The feasibility of the proposed scheme is demonstrated by computer simulation results.
Mishra, Girish; Sharma, Yojana; Mehta, Kanishk; Patel, Gunjan
2013-04-01
Deafness is commonest curable childhood handicap. Most remedies and programmes don't address this issue at childhood level leading to detrimental impact on development of newborns. Aims and objectives are (A) screen all newborns for deafness and detect prevalence of deafness in children less than 2 years of age. and (B) assess efficacy of multi-staged OAE/ABR protocol for hearing screening. Non-randomized, prospective study from August 2008 to August 2011. All infants underwent a series of oto-acoustic emission (OAE) and final confirmatory auditory brainstem evoked response (ABR) audiometry. Finally, out of 1,101 children, 1,069 children passed the test while 12 children had impaired hearing after final testing, confirmed by ABR. Positive predictive value of OAE after multiple test increased to 100 %. OAE-ABR test series is effective in screening neonates and multiple tests reduce economic burden. High risk screening will miss nearly 50 % deaf children, thus universal screening is indispensable in picking early deafness.
Design of Multistable Origami Structures
NASA Astrophysics Data System (ADS)
Gillman, Andrew; Fuchi, Kazuko; Bazzan, Giorgio; Reich, Gregory; Alyanak, Edward; Buskohl, Philip
Origami is being transformed from an art to a mathematically robust method for device design in a variety of scientific applications. These structures often require multiple stable configurations, e.g. efficient well-controlled deployment. However, the discovery of origami structures with mechanical instabilities is challenging given the complex geometric nonlinearities and the large design space to investigate. To address this challenge, we have developed a topology optimization framework for discovering origami fold patterns that realize stable and metastable positions. The objective function targets both the desired stable positions and nonlinear loading profiles of specific vertices in the origami structure. Multistable compliant structures have been shown to offer advantages in their stability and efficiency, and certain origami fold patterns exhibit multistable behavior. Building on this previous work of single vertex multistability analysis, e.g. waterbomb origami pattern, we are expanding the solution set of multistable mechanisms to include multiple vertices and a broader set of reference configurations. Collectively, these results enable an initial classification of geometry-induced mechanical instabilities that can be programmed into active material systems. This work was supported by the Air Force Office of Scientific Research.
Learned Manipulation at Unconstrained Contacts Does Not Transfer across Hands
Fu, Qiushi; Choi, Jason Y.; Gordon, Andrew M.; Jesunathadas, Mark; Santello, Marco
2014-01-01
Recent studies about sensorimotor control of the human hand have focused on how dexterous manipulation is learned and generalized. Here we address this question by testing the extent to which learned manipulation can be transferred when the contralateral hand is used and/or object orientation is reversed. We asked subjects to use a precision grip to lift a grip device with an asymmetrical mass distribution while minimizing object roll during lifting by generating a compensatory torque. Subjects were allowed to grasp anywhere on the object’s vertical surfaces, and were therefore able to modulate both digit positions and forces. After every block of eight trials performed in one manipulation context (i.e., using the right hand and at a given object orientation), subjects had to lift the same object in the second context for one trial (transfer trial). Context changes were made by asking subjects to switch the hand used to lift the object and/or rotate the object 180° about a vertical axis. Therefore, three transfer conditions, hand switch (HS), object rotation (OR), and both hand switch and object rotation (HS+OR), were tested and compared with hand matched control groups who did not experience context changes. We found that subjects in all transfer conditions adapted digit positions across multiple transfer trials similar to the learning of control groups, regardless of different changes of contexts. Moreover, subjects in both HS and HS+OR group also adapted digit forces similar to the control group, suggesting independent learning of the left hand. In contrast, the OR group showed significant negative transfer of the compensatory torque due to an inability to adapt digit forces. Our results indicate that internal representations of dexterous manipulation tasks may be primarily built through the hand used for learning and cannot be transferred across hands. PMID:25233091
Phase discriminating capacitive array sensor system
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor); Rahim, Wadi (Inventor)
1993-01-01
A phase discriminating capacitive sensor array system which provides multiple sensor elements which are maintained at a phase and amplitude based on a frequency reference provided by a single frequency stabilized oscillator. Sensor signals provided by the multiple sensor elements are controlled by multiple phase control units, which correspond to the multiple sensor elements, to adjust the sensor signals from the multiple sensor elements based on the frequency reference. The adjustment made to the sensor signals is indicated by output signals which indicate the proximity of the object. The output signals may also indicate the closing speed of the object based on the rate of change of the adjustment made, and the edges of the object based on a sudden decrease in the adjustment made.
Self-Motion Impairs Multiple-Object Tracking
ERIC Educational Resources Information Center
Thomas, Laura E.; Seiffert, Adriane E.
2010-01-01
Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement…
... Printed Materials : To opt out of receiving printed marketing materials at your postal address, such as advertisements, ... address exactly as they appear on the printed marketing materials you received. Emails : To opt out of ...
Simultaneously Discovering and Localizing Common Objects in Wild Images.
Wang, Zhenzhen; Yuan, Junsong
2018-09-01
Motivated by the recent success of supervised and weakly supervised common object discovery, in this paper, we move forward one step further to tackle common object discovery in a fully unsupervised way. Generally, object co-localization aims at simultaneously localizing objects of the same class across a group of images. Traditional object localization/detection usually trains specific object detectors which require bounding box annotations of object instances, or at least image-level labels to indicate the presence/absence of objects in an image. Given a collection of images without any annotations, our proposed fully unsupervised method is to simultaneously discover images that contain common objects and also localize common objects in corresponding images. Without requiring to know the total number of common objects, we formulate this unsupervised object discovery as a sub-graph mining problem from a weighted graph of object proposals, where nodes correspond to object proposals, and edges represent the similarities between neighbouring proposals. The positive images and common objects are jointly discovered by finding sub-graphs of strongly connected nodes, with each sub-graph capturing one object pattern. The optimization problem can be efficiently solved by our proposed maximal-flow-based algorithm. Instead of assuming that each image contains only one common object, our proposed solution can better address wild images where each image may contain multiple common objects or even no common object. Moreover, our proposed method can be easily tailored to the task of image retrieval in which the nodes correspond to the similarity between query and reference images. Extensive experiments on PASCAL VOC 2007 and Object Discovery data sets demonstrate that even without any supervision, our approach can discover/localize common objects of various classes in the presence of scale, view point, appearance variation, and partial occlusions. We also conduct broad experiments on image retrieval benchmarks, Holidays and Oxford5k data sets, to show that our proposed method, which considers both the similarity between query and reference images and also similarities among reference images, can help to improve the retrieval results significantly.
16 CFR § 1115.27 - Recall notice content requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... quality to a Web site or other appropriate medium. As needed for effective notification, multiple... information (such as name, address, telephone and facsimile numbers, e-mail address, and Web site address... must include the information set forth below: (a) Terms. A recall notice must include the word “recall...
Calabro, Finnegan J.; Beardsley, Scott A.; Vaina, Lucia M.
2012-01-01
Estimation of time-to-arrival for moving objects is critical to obstacle interception and avoidance, as well as to timing actions such as reaching and grasping moving objects. The source of motion information that conveys arrival time varies with the trajectory of the object raising the question of whether multiple context-dependent mechanisms are involved in this computation. To address this question we conducted a series of psychophysical studies to measure observers’ performance on time-to-arrival estimation when object trajectory was specified by angular motion (“gap closure” trajectories in the frontoparallel plane), looming (colliding trajectories, TTC) or both (passage courses, TTP). We measured performance of time-to-arrival judgments in the presence of irrelevant motion, in which a perpendicular motion vector was added to the object trajectory. Data were compared to models of expected performance based on the use of different components of optical information. Our results demonstrate that for gap closure, performance depended only on the angular motion, whereas for TTC and TTP, both angular and looming motion affected performance. This dissociation of inputs suggests that gap closures are mediated by a separate mechanism than that used for the detection of time-to-collision and time-to-passage. We show that existing models of TTC and TTP estimation make systematic errors in predicting subject performance, and suggest that a model which weights motion cues by their relative time-to-arrival provides a better account of performance. PMID:22056519
ERIC Educational Resources Information Center
Keane, Brian P.; Mettler, Everett; Tsoi, Vicky; Kellman, Philip J.
2011-01-01
Multiple object tracking (MOT) is an attentional task wherein observers attempt to track multiple targets among moving distractors. Contour interpolation is a perceptual process that fills-in nonvisible edges on the basis of how surrounding edges (inducers) are spatiotemporally related. In five experiments, we explored the automaticity of…
NASA Astrophysics Data System (ADS)
Jawak, Shridhar D.; Luis, Alvarinho J.
2016-04-01
An accurate spatial mapping and characterization of land cover features in cryospheric regions is an essential procedure for many geoscientific studies. A novel semi-automated method was devised by coupling spectral index ratios (SIRs) and geographic object-based image analysis (OBIA) to extract cryospheric geospatial information from very high resolution WorldView 2 (WV-2) satellite imagery. The present study addresses development of multiple rule sets for OBIA-based classification of WV-2 imagery to accurately extract land cover features in the Larsemann Hills, east Antarctica. Multilevel segmentation process was applied to WV-2 image to generate different sizes of geographic image objects corresponding to various land cover features with respect to scale parameter. Several SIRs were applied to geographic objects at different segmentation levels to classify land mass, man-made features, snow/ice, and water bodies. We focus on water body class to identify water areas at the image level, considering their uneven appearance on landmass and ice. The results illustrated that synergetic usage of SIRs and OBIA can provide accurate means to identify land cover classes with an overall classification accuracy of ≍97%. In conclusion, our results suggest that OBIA is a powerful tool for carrying out automatic and semiautomatic analysis for most cryospheric remote-sensing applications, and the synergetic coupling with pixel-based SIRs is found to be a superior method for mining geospatial information.
2012-10-01
5e. TASK NUMBER LC90061 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...transduction mechanism based on solid- liquid phase change nanoparticles works for the detection of multiple proteins. A series of metal and alloy...early stage. With the support from DOD-LCRP, we have proved the new signal transduction mechanism based on solid-liquid phase change nanoparticles works
Reduced SWAP-C VICTORY Services Execution and Performance Evaluation
2012-08-01
NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) UBT, Inc.,3250 W Big Beaver Rd, Suite 329, Troy ,Mi,48084 8. PERFORMING...Symposium August 14-16 Troy , Michigan 14. ABSTRACT -Executing multiple VICTORY data services, and reading multiple VICTORY-compliant sensors at the...same time resulted in the following performance measurements for the system -0.64 Amps / 3.15 Watts Power Consumption at run-time. -Roughly 0.77% System
Multiple Objects Fusion Tracker Using a Matching Network for Adaptively Represented Instance Pairs
Oh, Sang-Il; Kang, Hang-Bong
2017-01-01
Multiple-object tracking is affected by various sources of distortion, such as occlusion, illumination variations and motion changes. Overcoming these distortions by tracking on RGB frames, such as shifting, has limitations because of material distortions caused by RGB frames. To overcome these distortions, we propose a multiple-object fusion tracker (MOFT), which uses a combination of 3D point clouds and corresponding RGB frames. The MOFT uses a matching function initialized on large-scale external sequences to determine which candidates in the current frame match with the target object in the previous frame. After conducting tracking on a few frames, the initialized matching function is fine-tuned according to the appearance models of target objects. The fine-tuning process of the matching function is constructed as a structured form with diverse matching function branches. In general multiple object tracking situations, scale variations for a scene occur depending on the distance between the target objects and the sensors. If the target objects in various scales are equally represented with the same strategy, information losses will occur for any representation of the target objects. In this paper, the output map of the convolutional layer obtained from a pre-trained convolutional neural network is used to adaptively represent instances without information loss. In addition, MOFT fuses the tracking results obtained from each modality at the decision level to compensate the tracking failures of each modality using basic belief assignment, rather than fusing modalities by selectively using the features of each modality. Experimental results indicate that the proposed tracker provides state-of-the-art performance considering multiple objects tracking (MOT) and KITTIbenchmarks. PMID:28420194
Effect of sway on image fidelity in whole-body digitizing
NASA Astrophysics Data System (ADS)
Corner, Brian D.; Hu, Anmin
1998-03-01
For 3D digitizers to be useful data collection tools in scientific and human factors engineering applications, the models created from scan data must match the original object very closely. Factors such as ambient light, characteristics of the object's surface, and object movement, among others can affect the quality of the image produced by any 3D digitizing system. Recently, Cyberware has developed a whole body digitizer for collecting data on human size and shape. With a digitizing time of about 15 seconds, the effect subject movement, or sway, on model fidelity is an important issue to be addressed. The effect of sway is best measured by comparing the dimensions of an object of known geometry to the model of the same object captured by the digitizer. Since it is difficult to know the geometry of a human body accurately, it was decided to compare an object of simple geometry to its digitized counterpart. Preliminary analysis showed that a single cardboard tube would provide the best artifact for detecting sway. A tube was attached to the subjects using supports that allowed the cylinder to stand away from the body. The stand-off was necessary to minimize occluded areas. Multiple scans were taken of 1 subject and the cylinder extracted from the images. Comparison of the actual cylinder dimensions to those extracted from the whole body images found the effect of sway to be minimal. This follows earlier findings that anthropometric dimensions extracted from whole body scans are very close to the same dimensions measured using standard manual methods. Recommendations for subject preparation and stabilization are discussed.
Keane, Brian P; Silverstein, Steven M; Wang, Yushi; Papathomas, Thomas V
2013-05-01
Schizophrenia patients are less susceptible to depth inversion illusions (DIIs) in which concave faces appear as convex, but what stimulus attributes generate this effect and how does it vary with clinical state? To address these issues, we had 30 schizophrenia patients and 25 well-matched healthy controls make convexity judgments on physically concave faces and scenes. Patients were selectively sampled from three levels of care to ensure symptom heterogeneity. Half of the concave objects were painted with realistic texture to enhance the convexity illusion; the remaining objects were painted uniform beige to reduce the illusion. Subjects viewed the objects with one eye while laterally moving in front of the stimulus (to see depth via motion parallax) or with two eyes while remaining motionless (to see depth stereoscopically). For each group, DIIs were stronger with texture than without, and weaker with stereoscopic information than without, indicating that patients responded normally to stimulus alterations. More importantly, patients experienced fewer illusions than controls irrespective of the face/scene category, texture, or viewing condition (parallax/stereo). Illusions became less frequent as patients experienced more positive symptoms and required more structured treatment. Taken together, these results indicate that people with schizophrenia experience fewer DIIs with a variety of object types and viewing conditions, perhaps because of a lessened tendency to construe any type of object as convex. Moreover, positive symptoms and the need for structured treatment are associated with more accurate 3-D perception, suggesting that DII may serve as a state marker for the illness. © 2013 American Psychological Association
Mackenzie, S G; Leinonen, I; Ferguson, N; Kyriazakis, I
2016-05-28
The objective of this study was to develop a novel methodology that enables pig diets to be formulated explicitly for environmental impact objectives using a Life Cycle Assessment (LCA) approach. To achieve this, the following methodological issues had to be addressed: (1) account for environmental impacts caused by both ingredient choice and nutrient excretion, (2) formulate diets for multiple environmental impact objectives and (3) allow flexibility to identify the optimal nutritional composition for each environmental impact objective. An LCA model based on Canadian pig farms was integrated into a diet formulation tool to compare the use of different ingredients in Eastern and Western Canada. By allowing the feed energy content to vary, it was possible to identify the optimum energy density for different environmental impact objectives, while accounting for the expected effect of energy density on feed intake. A least-cost diet was compared with diets formulated to minimise the following objectives: non-renewable resource use, acidification potential, eutrophication potential, global warming potential and a combined environmental impact score (using these four categories). The resulting environmental impacts were compared using parallel Monte Carlo simulations to account for shared uncertainty. When optimising diets to minimise a single environmental impact category, reductions in the said category were observed in all cases. However, this was at the expense of increasing the impact in other categories and higher dietary costs. The methodology can identify nutritional strategies to minimise environmental impacts, such as increasing the nutritional density of the diets, compared with the least-cost formulation.
SOAP Opera: Self as Object and Agent in Prioritizing Attention.
Truong, Grace; Todd, Rebecca M
2017-06-01
A growing body of evidence has demonstrated that multiple sources of salience tune attentional sets toward aspects of the environment, including affectively and motivationally significant categories of stimuli such as angry faces and reward-associated target locations. Recent evidence further indicates that objects that have gained personal significance through ownership can elicit similar attentional prioritization. Here we discuss current research on sources of attentional prioritization that shape our awareness of the visual world from moment to moment and the underlying neural systems and contextualize what is known about attentional prioritization of our possessions within that research. We review behavioral and neuroimaging research on the influence of self-relevance and ownership on cognition and discuss challenges to this literature stemming from different modes of conceptualizing and operationalizing the self. We argue that ownership taps into both "self-as-object," which characterizes the self as an object with a constellation of traits and attributes, and "self-as-subject," which characterizes the self as an agentic perceiver and knower. Despite an abundance of research probing neural and behavioral indices of self-as-object and its effects on attention, there exists a paucity of research on the influence of self-relevance of attention when self is operationalized from the perspective of a first-person subject. To begin to address this gap, we propose the Self as Ownership in Attentional Prioritization (SOAP) framework to explain how ownership increases salience through attention to external representations of self-identity (i.e., self as object) and attention to contextually mediated permission to act (i.e., self as subject).
High-quality slab-based intermixing method for fusion rendering of multiple medical objects.
Kim, Dong-Joon; Kim, Bohyoung; Lee, Jeongjin; Shin, Juneseuk; Kim, Kyoung Won; Shin, Yeong-Gil
2016-01-01
The visualization of multiple 3D objects has been increasingly required for recent applications in medical fields. Due to the heterogeneity in data representation or data configuration, it is difficult to efficiently render multiple medical objects in high quality. In this paper, we present a novel intermixing scheme for fusion rendering of multiple medical objects while preserving the real-time performance. First, we present an in-slab visibility interpolation method for the representation of subdivided slabs. Second, we introduce virtual zSlab, which extends an infinitely thin boundary (such as polygonal objects) into a slab with a finite thickness. Finally, based on virtual zSlab and in-slab visibility interpolation, we propose a slab-based visibility intermixing method with the newly proposed rendering pipeline. Experimental results demonstrate that the proposed method delivers more effective multiple-object renderings in terms of rendering quality, compared to conventional approaches. And proposed intermixing scheme provides high-quality intermixing results for the visualization of intersecting and overlapping surfaces by resolving aliasing and z-fighting problems. Moreover, two case studies are presented that apply the proposed method to the real clinical applications. These case studies manifest that the proposed method has the outstanding advantages of the rendering independency and reusability. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Challenges for data storage in medical imaging research.
Langer, Steve G
2011-04-01
Researchers in medical imaging have multiple challenges for storing, indexing, maintaining viability, and sharing their data. Addressing all these concerns requires a constellation of tools, but not all of them need to be local to the site. In particular, the data storage challenges faced by researchers can begin to require professional information technology skills. With limited human resources and funds, the medical imaging researcher may be better served with an outsourcing strategy for some management aspects. This paper outlines an approach to manage the main objectives faced by medical imaging scientists whose work includes processing and data mining on non-standard file formats, and relating those files to the their DICOM standard descendents. The capacity of the approach scales as the researcher's need grows by leveraging the on-demand provisioning ability of cloud computing.
Planning as an Iterative Process
NASA Technical Reports Server (NTRS)
Smith, David E.
2012-01-01
Activity planning for missions such as the Mars Exploration Rover mission presents many technical challenges, including oversubscription, consideration of time, concurrency, resources, preferences, and uncertainty. These challenges have all been addressed by the research community to varying degrees, but significant technical hurdles still remain. In addition, the integration of these capabilities into a single planning engine remains largely unaddressed. However, I argue that there is a deeper set of issues that needs to be considered namely the integration of planning into an iterative process that begins before the goals, objectives, and preferences are fully defined. This introduces a number of technical challenges for planning, including the ability to more naturally specify and utilize constraints on the planning process, the ability to generate multiple qualitatively different plans, and the ability to provide deep explanation of plans.
Towards a Methodology for Identifying Program Constraints During Requirements Analysis
NASA Technical Reports Server (NTRS)
Romo, Lilly; Gates, Ann Q.; Della-Piana, Connie Kubo
1997-01-01
Requirements analysis is the activity that involves determining the needs of the customer, identifying the services that the software system should provide and understanding the constraints on the solution. The result of this activity is a natural language document, typically referred to as the requirements definition document. Some of the problems that exist in defining requirements in large scale software projects includes synthesizing knowledge from various domain experts and communicating this information across multiple levels of personnel. One approach that addresses part of this problem is called context monitoring and involves identifying the properties of and relationships between objects that the system will manipulate. This paper examines several software development methodologies, discusses the support that each provide for eliciting such information from experts and specifying the information, and suggests refinements to these methodologies.
International Space Station External Contamination Environment for Space Science Utilization
NASA Technical Reports Server (NTRS)
Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica
2014-01-01
The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.
CADD medicine: design is the potion that can cure my disease
NASA Astrophysics Data System (ADS)
Manas, Eric S.; Green, Darren V. S.
2017-03-01
The acronym "CADD" is often used interchangeably to refer to "Computer Aided Drug Discovery" and "Computer Aided Drug Design". While the former definition implies the use of a computer to impact one or more aspects of discovering a drug, in this paper we contend that computational chemists are most effective when they enable teams to apply true design principles as they strive to create medicines to treat human disease. We argue that teams must bring to bear multiple sub-disciplines of computational chemistry in an integrated manner in order to utilize these principles to address the multi-objective nature of the drug discovery problem. Impact, resourcing principles, and future directions for the field are also discussed, including areas of future opportunity as well as a cautionary note about hype and hubris.
Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark
2011-01-01
A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.
Cerebellar Abiotrophy Across Domestic Species.
Scott, Erica Yuki; Woolard, Kevin Douglas; Finno, Carrie J; Murray, James D
2018-06-01
Cerebellar abiotrophy (CA) is a neurodegenerative disorder affecting the cerebellum and occurs in multiple species. Although CA is well researched in humans and mice, domestic species such as the dog, cat, sheep, cow, and horse receive little recognition. This may be due to few studies addressing the mechanism of CA in these species. However, valuable information can still be extracted from these cases. A review of the clinicohistologic phenotype of CA in these species and determining the various etiologies of CA may aid in determining conserved and required pathways necessary for proper cerebellar development and function. This review outlines research approaches of studies of CA in domestic species, compared to the approaches used in mice, with the objective of comparing CA in domestic species while identifying areas for further research efforts.
The Essential Properties of Yoga Questionnaire (EPYQ): Psychometric Properties.
Park, Crystal L; Elwy, A Rani; Maiya, Meghan; Sarkin, Andrew J; Riley, Kristen E; Eisen, Susan V; Gutierrez, Ian; Finkelstein-Fox, Lucy; Lee, Sharon Y; Casteel, Danielle; Braun, Tosca; Groessl, Erik J
2018-03-02
Yoga interventions are heterogeneous and vary along multiple dimensions. These dimensions may affect mental and physical health outcomes in different ways or through different mechanisms. However, most studies of the effects of yoga on health do not adequately describe or quantify the components of the interventions being implemented. This lack of detail prevents researchers from making comparisons across studies and limits our understanding of the relative effects of different aspects of yoga interventions. To address this problem, we developed the Essential Properties of Yoga Questionnaire (EPYQ), which allows researchers to objectively characterize their interventions. We present here the reliability and validity data from the final phases of this measure-development project. Analyses identified fourteen key dimensions of yoga interventions measured by the EPYQ: acceptance/compassion, bandhas, body awareness, breathwork, instructor mention of health benefits, individual attention, meditation and mindfulness, mental and emotional awareness, physicality, active postures, restorative postures, social aspects, spirituality, and yoga philosophy. The EPYQ demonstrated good reliability, as assessed by internal consistency and test-retest reliability analysis, and evidence suggests that the EPYQ is a valid measure of multiple dimensions of yoga. The measure is ready for use by clinicians and researchers. Results indicate that, currently, trained objective raters should score interventions to avoid reference frame errors and potential rating bias, but alternative approaches may be developed. The EPYQ will allow researchers to link specific yoga dimensions to identifiable health outcomes and optimize the design of yoga interventions for specific conditions.
Thinking in Terms of Sensors: Personification of Self as an Object in Physics Problem Solving
ERIC Educational Resources Information Center
Tabor-Morris, A. E.
2015-01-01
How can physics teachers help students develop consistent problem solving techniques for both simple and complicated physics problems, such as those that encompass objects undergoing multiple forces (mechanical or electrical) as individually portrayed in free-body diagrams and/or phenomenon involving multiple objects, such as Doppler effect…
Multiple Object Retrieval in Image Databases Using Hierarchical Segmentation Tree
ERIC Educational Resources Information Center
Chen, Wei-Bang
2012-01-01
The purpose of this research is to develop a new visual information analysis, representation, and retrieval framework for automatic discovery of salient objects of user's interest in large-scale image databases. In particular, this dissertation describes a content-based image retrieval framework which supports multiple-object retrieval. The…
NASA Astrophysics Data System (ADS)
Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.; Birch, Phil M.
2009-04-01
θThe window unit in the design of the complex logarithmic r-θ mapping for hybrid optical neural network filter can allow multiple objects of the same class to be detected within the input image. Additionally, the architecture of the neural network unit of the complex logarithmic r-θ mapping for hybrid optical neural network filter becomes attractive for accommodating the recognition of multiple objects of different classes within the input image by modifying the output layer of the unit. We test the overall filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. Logarithmic r-θ mapping for hybrid optical neural network filter is shown to exhibit with a single pass over the input data simultaneously in-plane rotation, out-of-plane rotation, scale, log r-θ map translation and shift invariance, and good clutter tolerance by recognizing correctly the different objects within the cluttered scenes. We record in our results additional extracted information from the cluttered scenes about the objects' relative position, scale and in-plane rotation.
Dai, Yanyan; Kim, YoonGu; Wee, SungGil; Lee, DongHa; Lee, SukGyu
2016-01-01
In this paper, the problem of object caging and transporting is considered for multiple mobile robots. With the consideration of minimizing the number of robots and decreasing the rotation of the object, the proper points are calculated and assigned to the multiple mobile robots to allow them to form a symmetric caging formation. The caging formation guarantees that all of the Euclidean distances between any two adjacent robots are smaller than the minimal width of the polygonal object so that the object cannot escape. In order to avoid collision among robots, the parameter of the robots radius is utilized to design the caging formation, and the A⁎ algorithm is used so that mobile robots can move to the proper points. In order to avoid obstacles, the robots and the object are regarded as a rigid body to apply artificial potential field method. The fuzzy sliding mode control method is applied for tracking control of the nonholonomic mobile robots. Finally, the simulation and experimental results show that multiple mobile robots are able to cage and transport the polygonal object to the goal position, avoiding obstacles. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
The Business Policy Course: Multiple Methods for Multiple Goals.
ERIC Educational Resources Information Center
Thomas, Anisya S.
1998-01-01
Outlines the objectives of a capstone business policy and strategy course; the use of case analysis, article critiques, storytelling, and computer simulation; and contextual factors in matching objectives and methods. (SK)
Crane, Randolph W.; Marts, Donna J.
1994-11-01
An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.
Crane, Randolph W.; Marts, Donna J.
1994-01-01
An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.
Parental perspectives on the awareness and delivery of preconception care.
Poels, M; Koster, M P H; Franx, A; van Stel, H F
2017-09-26
The attention for Preconception Care (PCC) has grown substantially in recent years, yet the implementation of PCC appears challenging as uptake rates remain low. The objective of this study was to assess parental perspectives on how PCC should be provided. Recruitment of participants took place among couples who received antenatal care at a Dutch community midwifery practice. Between June and September 2014, five focus group sessions were held with 29 women and one focus group session with 5 men. Thematic analysis was conducted using NVivo 10 software. Participants were generally unfamiliar with the concept of PCC. It was proposed to raise awareness by means of a promotional campaign, stipulating that PCC is suited for every couple with a (future) child wish. Suggestions were made to display marketing materials in both formal and informal (local community) settings. Addressing existing social networks and raising social dialogue was expected to be most efficient. It was recommended to make PCC more accessible by offering multiple forms and to involve male partners. Opportunistic offering PCC by healthcare providers was considered more acceptable when the subject was deliberately raised, for example while discussing contraceptives, lifestyle risks or drug prescriptions. GP's or midwifes were regarded the most suitable PCC providers, however provider characteristics such as experience, empathy and communication skills were considered more important. This study showed that from the parental perspective it is recommended to address every couple with a (future) child wish by means of enlarging the awareness and accessibility of PCC. In order to enlarge the awareness, it is recommended to address social networks, to raise the social dialogue and to conduct promotional campaigns regarding PCC. In order to improve the accessibility of PCC, it was suggested to simultaneously offer multiple forms: group sessions, individual consultations, walk-in-hours and online sessions, and to involve male partners.
Frezza, E E; Girnys, R P; Silich, R J; Coppa, G F
2000-01-01
Cost containment and quality of care represent the most important objectives of all health care professionals. Because of its progressive growth over the past decade, ambulatory surgery has become an area where these 2 issues need to be addressed. The goal of this paper is to discuss the economic and quality of care challenges faced by hospitals as they strive to become competitive in the 21st century. The quality of care in ambulatory surgery has been improving because of multidisciplinary activities. Hospitals tend to hire the staff on the basis of their expertise in certain areas, and those personnel do not have to cover other hospital roles. Moreover, the hospital staff is able to seek information at any time from coworkers in other areas of specialty. Ambulatory surgery in a hospital offers advantages, such as multiple operating rooms, multiple skilled health care providers, and the ability to stay overnight if needed. The consolidation of supplies makes it easier to contract for a better price. Aggressive contract negotiations and implementation of cost-effective and cost-efficient strategies are the keys to success in the future. Quality improvement (QI) initiatives and quality of care (QC) indicators need to be developed to address various problems in the ambulatory surgery setting such as unnecessary admissions, inadequate staffing, efficient operating room (OR) utilization, quality of care, and assessment outcome. These initiatives should be addressed at regular meetings where opportunities to improve the ambulatory services are discussed. The number of ambulatory surgery procedures performed each year will continue to increase, although perhaps not at the rate we experienced in the past. Procedures that once were performed in an inpatient setting can now be accomplished on an outpatient basis or even in the physician's office. We will continue to see this shift of volume as technologic advancements and anesthetic agents allow more complex procedures to be performed on an outpatient basis.
Evaluating local indirect addressing in SIMD proc essors
NASA Technical Reports Server (NTRS)
Middleton, David; Tomboulian, Sherryl
1989-01-01
In the design of parallel computers, there exists a tradeoff between the number and power of individual processors. The single instruction stream, multiple data stream (SIMD) model of parallel computers lies at one extreme of the resulting spectrum. The available hardware resources are devoted to creating the largest possible number of processors, and consequently each individual processor must use the fewest possible resources. Disagreement exists as to whether SIMD processors should be able to generate addresses individually into their local data memory, or all processors should access the same address. The tradeoff is examined between the increased capability and the reduced number of processors that occurs in this single instruction stream, multiple, locally addressed, data (SIMLAD) model. Factors are assembled that affect this design choice, and the SIMLAD model is compared with the bare SIMD and the MIMD models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gering, Kevin L.
A method, system, and computer-readable medium are described for characterizing performance loss of an object undergoing an arbitrary aging condition. Baseline aging data may be collected from the object for at least one known baseline aging condition over time, determining baseline multiple sigmoid model parameters from the baseline data, and performance loss of the object may be determined over time through multiple sigmoid model parameters associated with the object undergoing the arbitrary aging condition using a differential deviation-from-baseline approach from the baseline multiple sigmoid model parameters. The system may include an object, monitoring hardware configured to sample performance characteristics ofmore » the object, and a processor coupled to the monitoring hardware. The processor is configured to determine performance loss for the arbitrary aging condition from a comparison of the performance characteristics of the object deviating from baseline performance characteristics associated with a baseline aging condition.« less
Dynamic Binding of Identity and Location Information: A Serial Model of Multiple Identity Tracking
ERIC Educational Resources Information Center
Oksama, Lauri; Hyona, Jukka
2008-01-01
Tracking of multiple moving objects is commonly assumed to be carried out by a fixed-capacity parallel mechanism. The present study proposes a serial model (MOMIT) to explain performance accuracy in the maintenance of multiple moving objects with distinct identities. A serial refresh mechanism is postulated, which makes recourse to continuous…
ERIC Educational Resources Information Center
Francis, Reni
2012-01-01
The purpose of this study was to foster learning through the Multiple Intelligence Approach in achieving educational objectives across the levels of Revised Bloom's Taxonomy. Multiple intelligences approach facilitates ways for students by ensuring that curriculum and instruction validate the strengths and build on the assets that students possess…
Attention Modulates Spatial Precision in Multiple-Object Tracking.
Srivastava, Nisheeth; Vul, Ed
2016-01-01
We present a computational model of multiple-object tracking that makes trial-level predictions about the allocation of visual attention and the effect of this allocation on observers' ability to track multiple objects simultaneously. This model follows the intuition that increased attention to a location increases the spatial resolution of its internal representation. Using a combination of empirical and computational experiments, we demonstrate the existence of a tight coupling between cognitive and perceptual resources in this task: Low-level tracking of objects generates bottom-up predictions of error likelihood, and high-level attention allocation selectively reduces error probabilities in attended locations while increasing it at non-attended locations. Whereas earlier models of multiple-object tracking have predicted the big picture relationship between stimulus complexity and response accuracy, our approach makes accurate predictions of both the macro-scale effect of target number and velocity on tracking difficulty and micro-scale variations in difficulty across individual trials and targets arising from the idiosyncratic within-trial interactions of targets and distractors. Copyright © 2016 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Piscopo, A. N.; Detenbeck, N. E.
2017-12-01
Managers of urban watersheds with excessive nutrient loads are more frequently turning to green infrastructure (GI) to manage their water quality impairments. The effectiveness of GI is dependent on a number of factors, including (1) the type and placement of GI within the watershed, (2) the specific nutrients to be treated, and (3) the uncertainty in future climates. Although many studies have investigated the effectiveness of individual GI units for different types of nutrients, relatively few have considered the effectiveness of GI on a watershed scale, the scale most relevant to management plans. At the watershed scale, endless combinations of GI type and location are possible, each with different effectiveness in reducing nutrient loads, minimizing costs, and maximizing co-benefits such as reducing runoff. To efficiently generate management plan options that balance the tradeoffs between these objectives, we simulate candidate options using EPA's Stormwater Management Model for multiple future climates and determine the Pareto optimal set of solution options using a multi-objective evolutionary algorithm. Our approach is demonstrated for an urban watershed in Rockville, Maryland.
Enhanced power quality based single phase photovoltaic distributed generation system
NASA Astrophysics Data System (ADS)
Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.
2016-08-01
This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.
Heterosexual Transmission of HIV in China
YANG, HONGMEI; LI, XIAOMING; STANTON, BONITA; LIU, HONGJIE; LIU, HUI; WANG, NING; FANG, XIAOYI; LIN, DANHUA; CHEN, XINGUANG
2006-01-01
Objective: The objective of this study was to address the role of heterosexual transmission of HIV in China. Goal: The goal of this study was to explore the prevalence of unsafe sex and the likelihood of HIV spread heterosexually from core populations to others. Study: The authors conducted a review of behavioral studies. Results: Drug users were more likely to be involved in higher-risk sexual behaviors than were those who abstained from using drugs. Most female drug users (52-98%) reported having engaged in commercial sex. Most female sex workers (FSWs) and individuals with sexually transmitted diseases (STDs) had concurrent sexual partners. Many continued to have unprotected sex after noticing STD symptoms in themselves or their sexual partners. From 5% to 26% of rural-to-urban migrants had multiple sexual partners and 10% of males patronized FSWs during migration. Conclusions: Factors such as high rates of FSW patronage, low rates of condom use during commercial sex, having sex with both commercial and noncommercial sexual partners, and high rates of STD infection may promote a heterosexual epidemic in China. PMID:15849527
Overview of Intelligent Systems and Operations Development
NASA Technical Reports Server (NTRS)
Pallix, Joan; Dorais, Greg; Penix, John
2004-01-01
To achieve NASA's ambitious mission objectives for the future, aircraft and spacecraft will need intelligence to take the correct action in a variety of circumstances. Vehicle intelligence can be defined as the ability to "do the right thing" when faced with a complex decision-making situation. It will be necessary to implement integrated autonomous operations and low-level adaptive flight control technologies to direct actions that enhance the safety and success of complex missions despite component failures, degraded performance, operator errors, and environment uncertainty. This paper will describe the array of technologies required to meet these complex objectives. This includes the integration of high-level reasoning and autonomous capabilities with multiple subsystem controllers for robust performance. Future intelligent systems will use models of the system, its environment, and other intelligent agents with which it interacts. They will also require planners, reasoning engines, and adaptive controllers that can recommend or execute commands enabling the system to respond intelligently. The presentation will also address the development of highly dependable software, which is a key component to ensure the reliability of intelligent systems.
Concept Representation Reflects Multimodal Abstraction: A Framework for Embodied Semantics
Fernandino, Leonardo; Binder, Jeffrey R.; Desai, Rutvik H.; Pendl, Suzanne L.; Humphries, Colin J.; Gross, William L.; Conant, Lisa L.; Seidenberg, Mark S.
2016-01-01
Recent research indicates that sensory and motor cortical areas play a significant role in the neural representation of concepts. However, little is known about the overall architecture of this representational system, including the role played by higher level areas that integrate different types of sensory and motor information. The present study addressed this issue by investigating the simultaneous contributions of multiple sensory-motor modalities to semantic word processing. With a multivariate fMRI design, we examined activation associated with 5 sensory-motor attributes—color, shape, visual motion, sound, and manipulation—for 900 words. Regions responsive to each attribute were identified using independent ratings of the attributes' relevance to the meaning of each word. The results indicate that these aspects of conceptual knowledge are encoded in multimodal and higher level unimodal areas involved in processing the corresponding types of information during perception and action, in agreement with embodied theories of semantics. They also reveal a hierarchical system of abstracted sensory-motor representations incorporating a major division between object interaction and object perception processes. PMID:25750259
Information recovery through image sequence fusion under wavelet transformation
NASA Astrophysics Data System (ADS)
He, Qiang
2010-04-01
Remote sensing is widely applied to provide information of areas with limited ground access with applications such as to assess the destruction from natural disasters and to plan relief and recovery operations. However, the data collection of aerial digital images is constrained by bad weather, atmospheric conditions, and unstable camera or camcorder. Therefore, how to recover the information from the low-quality remote sensing images and how to enhance the image quality becomes very important for many visual understanding tasks, such like feature detection, object segmentation, and object recognition. The quality of remote sensing imagery can be improved through meaningful combination of the employed images captured from different sensors or from different conditions through information fusion. Here we particularly address information fusion to remote sensing images under multi-resolution analysis in the employed image sequences. The image fusion is to recover complete information by integrating multiple images captured from the same scene. Through image fusion, a new image with high-resolution or more perceptive for human and machine is created from a time series of low-quality images based on image registration between different video frames.
Cherry, Chauncey; Cain, Demetria; Pope, Howard
2011-01-01
Objectives. As a result of the impact of HIV among men who have sex with men (MSM), multiple strategies for reducing HIV risks have emerged from within the gay community. One common HIV risk reduction strategy limits unprotected sex partners to those who are of the same HIV status (serosorting). We tested a novel, brief, one-on-one intervention, based on informed decision-making and delivered by peer counselors, designed to address the limitations of serosorting (e.g., risk for HIV transmission). Methods. In 2009, we recruited a group of 149 at-risk men living in Atlanta, Georgia, and randomly assigned them to an intervention condition addressing serosorting or a standard-of-care control condition. Results. Men in the serosorting intervention reported fewer sexual partners (Wald χ2 = 8.79, P < .01) at the study follow-ups. Behavioral results were also consistent with changes in psychosocial variables, including condom use self-efficacy and perceptions of risk for HIV transmission. Conclusions. With the current intervention, service providers can offer risk reduction for men arguably at the highest risk for HIV infection in the United States. Addressing risks associated with serosorting in a feasible, low-cost intervention has the potential to significantly affect the HIV epidemic. PMID:21233441
Knightbridge, Stephen M; King, Robert; Rolfe, Timothy J
2006-04-01
This paper describes the first phase of a larger project that utilizes participatory action research to examine complex mental health needs across an extensive group of stakeholders in the community. Within an objective qualitative analysis of focus group discussions the social ecological model is utilized to explore how integrative activities can be informed, planned and implemented across multiple elements and levels of a system. Seventy-one primary care workers, managers, policy-makers, consumers and carers from across the southern metropolitan and Gippsland regions of Victoria, Australia took part in seven focus groups. All groups responded to an identical set of focusing questions. Participants produced an explanatory model describing the service system, as it relates to people with complex needs, across the levels of social ecological analysis. Qualitative themes analysis identified four priority areas to be addressed in order to improve the system's capacity for working with complexity. These included: (i) system fragmentation; (ii) integrative case management practices; (iii) community attitudes; and (iv) money and resources. The emergent themes provide clues as to how complexity is constructed and interpreted across the system of involved agencies and interest groups. The implications these findings have for the development and evaluation of this community capacity-building project were examined from the perspective of constructing interventions that address both top-down and bottom-up processes.
Raggi, Alberto; Giovannetti, Ambra Mara; Schiavolin, Silvia; Brambilla, Laura; Brenna, Greta; Confalonieri, Paolo Agostino; Cortese, Francesca; Frangiamore, Rita; Leonardi, Matilde; Mantegazza, Renato Emilio; Moscatelli, Marco; Ponzio, Michela; Torri Clerici, Valentina; Zaratin, Paola; De Torres, Laura
2018-04-16
This cross-sectional study aims to identify the predictors of work-related difficulties in a sample of employed persons with multiple sclerosis as addressed with the Multiple Sclerosis Questionnaire for Job Difficulties. Hierarchical linear regression analysis was conducted to identify predictors of work difficulties: predictors included demographic variables (age, formal education), disease duration and severity, perceived disability and psychological variables (cognitive dysfunction, depression and anxiety). The targets were the questionnaire's overall score and its six subscales. A total of 177 participants (108 females, aged 21-63) were recruited. Age, perceived disability and depression were direct and significant predictors of the questionnaire total score, and the final model explained 43.7% of its variation. The models built on the questionnaire's subscales show that perceived disability and depression were direct and significant predictors of most of its subscales. Our results show that, among patients with multiple sclerosis, those who were older, with higher perceived disability and higher depression symptoms have more and more severe work-related difficulties. The Multiple Sclerosis Questionnaire for Job Difficulties can be fruitfully exploited to plan tailored actions to limit the likelihood of near-future job loss in persons of working age with multiple sclerosis. Implications for rehabilitation Difficulties with work are common among people with multiple sclerosis and are usually addressed in terms of unemployment or job loss. The Multiple Sclerosis Questionnaire for Job Difficulties is a disease-specific questionnaire developed to address the amount and severity of work-related difficulties. We found that work-related difficulties were associated to older age, higher perceived disability and depressive symptoms. Mental health issues and perceived disability should be consistently included in future research targeting work-related difficulties.
The Use of Meta-Analytic Statistical Significance Testing
ERIC Educational Resources Information Center
Polanin, Joshua R.; Pigott, Terri D.
2015-01-01
Meta-analysis multiplicity, the concept of conducting multiple tests of statistical significance within one review, is an underdeveloped literature. We address this issue by considering how Type I errors can impact meta-analytic results, suggest how statistical power may be affected through the use of multiplicity corrections, and propose how…
Simultaneity, Sequentiality, and Speed: Organizational Messages about Multiple-Task Completion
ERIC Educational Resources Information Center
Stephens, Keri K.; Cho, Jaehee K.; Ballard, Dawna I.
2012-01-01
Workplace norms for task completion increasingly value speed and the ability to accomplish multiple tasks at once. This study situates this popularized issue of multitasking within the context of chronemics scholarship by addressing related issues of simultaneity, sequentiality, and speed. Ultimately, we consider 2 multiple-task completion…
Complex Decision-Making Applications for the NASA Space Launch System
NASA Technical Reports Server (NTRS)
Lyles, Garry; Flores, Tim; Hundley, Jason; Monk, Timothy; Feldman, Stuart
2012-01-01
The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. NASA is working diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond LEO large ]scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decisionmaking framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing FOM-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.
Complex Decision-Making Applications for the NASA Space Launch System
NASA Technical Reports Server (NTRS)
Lyles, Garry; Flores, Tim; Hundley, Jason; Feldman, Stuart; Monk, Timothy
2012-01-01
The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. The National Aeronautics and Space Administration (NASA) has worked diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond low earth orbit (LEO) large-scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decision-making framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing figure of merit (FOM)-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.
Policies to Enhance Prescribing Efficiency in Europe: Findings and Future Implications
Godman, Brian; Shrank, William; Andersen, Morten; Berg, Christian; Bishop, Iain; Burkhardt, Thomas; Garuoliene, Kristina; Herholz, Harald; Joppi, Roberta; Kalaba, Marija; Laius, Ott; Lonsdale, Julie; Malmström, Rickard E.; Martikainen, Jaana E.; Samaluk, Vita; Sermet, Catherine; Schwabe, Ulrich; Teixeira, Inês; Tilson, Lesley; Tulunay, F. Cankat; Vlahović-Palčevski, Vera; Wendykowska, Kamila; Wettermark, Bjorn; Zara, Corinne; Gustafsson, Lars L.
2010-01-01
Introduction: European countries need to learn from each other to address unsustainable increases in pharmaceutical expenditures. Objective: To assess the influence of the many supply and demand-side initiatives introduced across Europe to enhance prescribing efficiency in ambulatory care. As a result provide future guidance to countries. Methods: Cross national retrospective observational study of utilization (DDDs – defined daily doses) and expenditure (Euros and local currency) of proton pump inhibitors (PPIs) and statins among 19 European countries and regions principally from 2001 to 2007. Demand-side measures categorized under the “4Es” – education engineering, economics, and enforcement. Results: Instigating supply side initiatives to lower the price of generics combined with demand-side measures to enhance their prescribing is important to maximize prescribing efficiency. Just addressing one component will limit potential efficiency gains. The influence of demand-side reforms appears additive, with multiple initiatives typically having a greater influence on increasing prescribing efficiency than single measures apart from potentially “enforcement.” There are also appreciable differences in expenditure (€/1000 inhabitants/year) between countries. Countries that have not introduced multiple demand side measures to counteract commercial pressures to enhance the prescribing of generics have seen considerably higher expenditures than those that have instigated a range of measures. Conclusions: There are considerable opportunities for European countries to enhance their prescribing efficiency, with countries already learning from each other. The 4E methodology allows European countries to concisely capture the range of current demand-side measures and plan for the future knowing that initiatives can be additive to further enhance their prescribing efficiency. PMID:21833180
Socioeconomic Disadvantage as a Social Determinant of Teen Childbearing in the U.S.
Penman-Aguilar, Ana; Carter, Marion; Snead, M. Christine; Kourtis, Athena P.
2013-01-01
Objectives We reviewed the literature focused on socioeconomic influences on teen childbearing and suggested directions for future research and practice related to this important indicator of teen sexual health. Methods We conducted an electronic search of Medline, ERIC, PsychLit, and Sociological Abstracts databases for articles published from January 1995 to November 2011. Selected articles from peer-reviewed journals included original quantitative analyses addressing socioeconomic influences on first birth among teen women in the U.S. Articles were abstracted for key information, ranked for quality according to the U.S. Preventive Services Task Force guidelines, assessed for bias, and synthesized. Results We selected articles with a range of observational study designs. Risk for bias varied across studies. All 12 studies that considered socioeconomic factors as influences on teen childbearing (vs. moderators or mediators of other effects) reported at least one statistically significant association relating low socioeconomic status, underemployment, low income, low education levels, neighborhood disadvantage, neighborhood physical disorder, or neighborhood-level income inequality to teen birth. Few reports included any associations contradicting this pattern. Conclusions This review suggests that unfavorable socioeconomic conditions experienced at the community and family levels contribute to the high teen birth rate in the U.S. Future research into social determinants of sexual health should include multiple levels of measurement whenever possible. Root causes of teen childbearing should be evaluated in various populations and contexts. Interventions that address socioeconomic influences at multiple levels could positively affect large numbers of teens and help eliminate disparities in teen childbearing. PMID:23450881
User Participation in Coproduction of Health Innovation: Proposal for a Synergy Project
Zukauskaite, Elena; Westberg, Niklas
2018-01-01
Background This project concerns advancing knowledge, methods, and logic for user participation in coproduction of health innovations. Such advancement is vital for several reasons. From a user perspective, participation in coproduction provides an opportunity to gain real influence over goal definition, design, and implementation of health innovations, ensuring that the solution developed solves real problems in right ways. From a societal perspective, it’s a mean to improve the efficiency of health care and the implementation of the Patient Act. As for industry, frameworks and knowledge of coproduction offer tools to operate in a complex sector, with great potential for innovation of services and products. Objective The fundamental objective of this project is to advance knowledge and methods of how user participation in the coproduction of health innovations can be applied in order to benefit users, industry, and public sector. Methods This project is a synergy project, which means that the objective will be accomplished through collaboration and meta-analysis between three subprojects that address different user groups, apply different strategies to promote human health, and relate to different parts of the health sector. Furthermore, subprojects focus on distinctive stages in the spectrum of innovation, with the objective to generate knowledge of the innovation process as a whole. The project is organized around three work packages related to three challenges—coproduction, positioning, and realization. Each subproject is designed such that it has its own field of study with clearly identified objectives but also targets work packages to contribute to the project as a whole. The work on the work packages will use case methodology for data collection and analysis based on the subprojects as data sources. More concretely, logic of multiple case studies will be applied with each subproject representing a separate case which is similar to each other in its attention to user participation in coproduction, but different regarding, for example, context and target groups. At the synergy level, the framework methodology will be used to handle and analyze the vast amount of information generated within the subprojects. Results The project period is from July 1, 2018 to June 30, 2022. Conclusions By addressing the objective of this project, we will create new knowledge on how to manage challenges to health innovation associated with the coproduction process, the positioning of solutions, and realization. PMID:29743159
NASA Technical Reports Server (NTRS)
Marvit, Maclen (Inventor); Kirkham, Harold (Inventor)
1995-01-01
The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs a remote node polling process performed by a master node by transmitting a polling message generically addressed to all remote nodes associated with the master node. Each remote node responds upon receipt of the generically addressed polling message by sequentially flooding the network with a poll-answering informational message and with the polling message.
NASA Astrophysics Data System (ADS)
Wolff, J.; Jankov, I.; Beck, J.; Carson, L.; Frimel, J.; Harrold, M.; Jiang, H.
2016-12-01
It is well known that global and regional numerical weather prediction ensemble systems are under-dispersive, producing unreliable and overconfident ensemble forecasts. Typical approaches to alleviate this problem include the use of multiple dynamic cores, multiple physics suite configurations, or a combination of the two. While these approaches may produce desirable results, they have practical and theoretical deficiencies and are more difficult and costly to maintain. An active area of research that promotes a more unified and sustainable system for addressing the deficiencies in ensemble modeling is the use of stochastic physics to represent model-related uncertainty. Stochastic approaches include Stochastic Parameter Perturbations (SPP), Stochastic Kinetic Energy Backscatter (SKEB), Stochastic Perturbation of Physics Tendencies (SPPT), or some combination of all three. The focus of this study is to assess the model performance within a convection-permitting ensemble at 3-km grid spacing across the Contiguous United States (CONUS) when using stochastic approaches. For this purpose, the test utilized a single physics suite configuration based on the operational High-Resolution Rapid Refresh (HRRR) model, with ensemble members produced by employing stochastic methods. Parameter perturbations were employed in the Rapid Update Cycle (RUC) land surface model and Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary layer scheme. Results will be presented in terms of bias, error, spread, skill, accuracy, reliability, and sharpness using the Model Evaluation Tools (MET) verification package. Due to the high level of complexity of running a frequently updating (hourly), high spatial resolution (3 km), large domain (CONUS) ensemble system, extensive high performance computing (HPC) resources were needed to meet this objective. Supercomputing resources were provided through the National Center for Atmospheric Research (NCAR) Strategic Capability (NSC) project support, allowing for a more extensive set of tests over multiple seasons, consequently leading to more robust results. Through the use of these stochastic innovations and powerful supercomputing at NCAR, further insights and advancements in ensemble forecasting at convection-permitting scales will be possible.
Castro, Yessenia; Basen-Engquist, Karen; Fernandez, Maria E; Strong, Larkin L; Eakin, Elizabeth G; Resnicow, Ken; Li, Yisheng; Wetter, David W
2013-03-18
Smoking, poor diet, and physical inactivity account for as much as 60% of cancer risk. Latinos experience profound disparities in health behaviors, as well as the cancers associated with them. Currently, there is a dearth of controlled trials addressing these health behaviors among Latinos. Further, to the best of our knowledge, no studies address all three behaviors simultaneously, are culturally sensitive, and are guided by formative work with the target population. Latinos represent 14% of the U.S. population and are the fastest growing minority group in the country. Efforts to intervene on these important lifestyle factors among Latinos may accelerate the elimination of cancer-related health disparities. The proposed study will evaluate the efficacy of an evidence-based and theoretically-driven Motivation And Problem Solving (MAPS) intervention, adapted and culturally-tailored for reducing cancer risk related to smoking, poor diet, and physical inactivity among high-risk Mexican-origin smokers who are overweight/obese (n = 400). Participants will be randomly assigned to one of two groups: Health Education (HE) or MAPS (HE + up to 18 MAPS counseling calls over 18 months). Primary outcomes are smoking status, servings of fruits and vegetables, and both self-reported and objectively measured physical activity. Outcome assessments will occur at baseline, 6 months, 12 months, and 18 months. The current study will contribute to a very limited evidence base on multiple risk factor intervention studies on Mexican-origin individuals and has the potential to inform both future research and practice related to reducing cancer risk disparities. An effective program targeting multiple cancer risk behaviors modeled after chronic care programs has the potential to make a large public health impact because of the dearth of evidence-based interventions for Latinos and the extended period of support that is provided in such a program. National Institutes of Health Clinical Trials Registry # NCT01504919.
ERIC Educational Resources Information Center
Chen, Chi-hsin; Gershkoff-Stowe, Lisa; Wu, Chih-Yi; Cheung, Hintat; Yu, Chen
2017-01-01
Two experiments were conducted to examine adult learners' ability to extract multiple statistics in simultaneously presented visual and auditory input. Experiment 1 used a cross-situational learning paradigm to test whether English speakers were able to use co-occurrences to learn word-to-object mappings and concurrently form object categories…
Phonological Planning during Sentence Production: Beyond the Verb.
Schnur, Tatiana T
2011-01-01
The current study addresses the extent of phonological planning during spontaneous sentence production. Previous work shows that at articulation, phonological encoding occurs for entire phrases, but encoding beyond the initial phrase may be due to the syntactic relevance of the verb in planning the utterance. I conducted three experiments to investigate whether phonological planning crosses multiple grammatical phrase boundaries (as defined by the number of lexical heads of phrase) within a single phonological phrase. Using the picture-word interference paradigm, I found in two separate experiments a significant phonological facilitation effect to both the verb and noun of sentences like "He opens the gate." I also altered the frequency of the direct object and found longer utterance initiation times for sentences ending with a low-frequency vs. high-frequency object offering further support that the direct object was phonologically encoded at the time of utterance initiation. That phonological information for post-verbal elements was activated suggests that the grammatical importance of the verb does not restrict the extent of phonological planning. These results suggest that the phonological phrase is unit of planning, where all elements within a phonological phrase are encoded before articulation. Thus, consistent with other action sequencing behavior, there is significant phonological planning ahead in sentence production.
Use of piezoelectric dampers for improving the feel of golf clubs
NASA Astrophysics Data System (ADS)
Bianchini, Emanuele; Spangler, Ronald L., Jr.; Pandell, Tracy
1999-06-01
Several sports are based upon a tool (club, bat, stick) striking an object (ball, puck) across a field of play. Anytime two structures collide, vibration is created by the impact of the two. The impact of the objects excites the structural modes of the tool, creating a vibration that can be felt by the player, especially if the hit is not at a `sweet spot'. Vibration adversely affects both feel and performance. This paper explains how piezoelectric dampers were developed to reduce vibration and improve the feel of ball-impact sporting goods such as golf clubs. The paper describes how the dynamic characteristics of a golf club were calculated, at first in the free-free condition, and then during its operation conditions (the swing of the club, and the impact with the ball). The dynamic characteristics were used to develop a damper that addressed a specific, or multiple, modes of interest. The damper development and testing are detailed in this paper. Both objective laboratory tests and subjective player tests were performed to evaluate the effectiveness of the piezoelectric dampers. The results of the tests, along with published medical data on the sensitivity of the human body, were used to draw a correlation between human feel and vibration reduction.
3D Reconstruction in the Presence of Glass and Mirrors by Acoustic and Visual Fusion.
Zhang, Yu; Ye, Mao; Manocha, Dinesh; Yang, Ruigang
2017-07-06
We present a practical and inexpensive method to reconstruct 3D scenes that include transparent and mirror objects. Our work is motivated by the need for automatically generating 3D models of interior scenes, which commonly include glass. These large structures are often invisible to cameras. Existing 3D reconstruction methods for transparent objects are usually not applicable in such a room-sized reconstruction setting. Our simple hardware setup augments a regular depth camera with a single ultrasonic sensor, which is able to measure the distance to any object, including transparent surfaces. The key technical challenge is the sparse sampling rate from the acoustic sensor, which only takes one point measurement per frame. To address this challenge, we take advantage of the fact that the large scale glass structures in indoor environments are usually either piece-wise planar or simple parametric surfaces. Based on these assumptions, we have developed a novel sensor fusion algorithm that first segments the (hybrid) depth map into different categories such as opaque/transparent/infinity (e.g., too far to measure) and then updates the depth map based on the segmentation outcome. We validated our algorithms with a number of challenging cases, including multiple panes of glass, mirrors, and even a curved glass cabinet.
What's what in auditory cortices?
Retsa, Chrysa; Matusz, Pawel J; Schnupp, Jan W H; Murray, Micah M
2018-08-01
Distinct anatomical and functional pathways are postulated for analysing a sound's object-related ('what') and space-related ('where') information. It remains unresolved to which extent distinct or overlapping neural resources subserve specific object-related dimensions (i.e. who is speaking and what is being said can both be derived from the same acoustic input). To address this issue, we recorded high-density auditory evoked potentials (AEPs) while participants selectively attended and discriminated sounds according to their pitch, speaker identity, uttered syllable ('what' dimensions) or their location ('where'). Sound acoustics were held constant across blocks; the only manipulation involved the sound dimension that participants had to attend to. The task-relevant dimension was varied across blocks. AEPs from healthy participants were analysed within an electrical neuroimaging framework to differentiate modulations in response strength from modulations in response topography; the latter of which forcibly follow from changes in the configuration of underlying sources. There were no behavioural differences in discrimination of sounds across the 4 feature dimensions. As early as 90ms post-stimulus onset, AEP topographies differed across 'what' conditions, supporting a functional sub-segregation within the auditory 'what' pathway. This study characterises the spatio-temporal dynamics of segregated, yet parallel, processing of multiple sound object-related feature dimensions when selective attention is directed to them. Copyright © 2018 Elsevier Inc. All rights reserved.
Overview of Contemporary Issues of Forest Research and Management in China
NASA Astrophysics Data System (ADS)
He, Hong S.; Shifley, Stephen R.; Thompson, Frank R.
2011-12-01
With 207 million ha of forest covering 22% of its land area, China ranks fifth in the world in forest area. Rapid economic growth, climate change, and forest disturbances pose new, complex challenges for forest research and management. Progress in meeting these challenges is relevant beyond China, because China's forests represent 34% of Asia's forests and 5% of the worlds' forests. To provide a broader understanding of these management challenges and of research and policies that address them, we organized this special issue on contemporary forest research and management issues in China. At the national level, papers review major forest types and the evolution of sustainable forestry, the development of China's forest-certification efforts, the establishment of a forest inventory system, and achievements and challenges in insect pest control in China. Papers focused on Northern China address historical, social, and political factors that have shaped the region's forests; the use of forest landscape models to assess how forest management can achieve multiple objectives; and analysis and modeling of fuels and fire behavior. Papers addressing Central and South China describe the "Grain for Green" program, which converts low productivity cropland to grassland and woodland to address erosion and soil carbon sequestration; the potential effects of climate change on CO2 efflux and soil respiration; and relationships between climate and net primary productivity. China shares many forest management and research issues with other countries, but in other cases China's capacity to respond to forest management challenges is unique and bears watching by the rest of the world.
Robotic Lunar Landers for Science and Exploration
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Hill, L. A.; Bassler, J. A.; Chavers, D. G.; Hammond, M. S.; Harris, D. W.; Kirby, K. W.; Morse, B. J.; Mulac, B. D.; Reed, C. L. B.
2010-01-01
NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory has been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. In 2005, the Robotic Lunar Exploration Program Mission #2 (RLEP-2) was selected as a Exploration Systems Mission Directorate precursor robotic lunar lander mission to demonstrate precision landing and definitively determine if there was water ice at the lunar poles; however, this project was canceled. Since 2008, the team has been supporting NASA s Science Mission Directorate designing small lunar robotic landers for diverse science missions. The primary emphasis has been to establish anchor nodes of the International Lunar Network (ILN), a network of lunar science stations envisioned to be emplaced by multiple nations. This network would consist of multiple landers carrying instruments to address the geophysical characteristics and evolution of the moon. Additional mission studies have been conducted to support other objectives of the lunar science community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects. This paper describes the current status of the robotic lunar mission studies that have been conducted by the MSFC/APL Robotic Lunar Lander Development team, including the ILN Anchor Nodes mission. In addition, the results to date of the lunar lander development risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing and combined GN&C and avionics testing will be addressed. The most visible elements of the risk reduction program are two autonomous lander test articles: a compressed air system with limited flight durations and a second version using hydrogen peroxide propellant to achieve significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. Robotic Lunar Lander design and development will have significant feed-forward to other missions to the Moon and, indeed, to other airless bodies such as Mercury, asteroids, and Europa, to which similar science and exploration objectives are applicable.
Deployable antenna kinematics using tensegrity structure design
NASA Astrophysics Data System (ADS)
Knight, Byron Franklin
With vast changes in spacecraft development over the last decade, a new, cheaper approach was needed for deployable kinematic systems such as parabolic antenna reflectors. Historically, these mesh-surface reflectors have resembled folded umbrellas, with incremental redesigns utilized to save packaging size. These systems are typically over-constrained designs, the assumption being that high reliability necessary for space operations requires this level of conservatism. But with the rapid commercialization of space, smaller launch platforms and satellite buses have demanded much higher efficiency from all space equipment than can be achieved through this incremental approach. This work applies an approach called tensegrity to deployable antenna development. Kenneth Snelson, a student of R. Buckminster Fuller, invented Tensegrity structures in 1948. Such structures use a minimum number of compression members (struts); stability is maintain using tension members (ties). The novelty introduced in this work is that the ties are elastic, allowing the struts to extend or contract, and in this way changing the surface of the antenna. Previously, the University of Florida developed an approach to quantify the stability and motion of parallel manipulators. This approach was applied to deployable, tensegrity, antenna structures. Based on the kinematic analyses for the 3-3 (octahedron) and 4-4 (square anti-prism) structures, the 6-6 (hexagonal anti-prism) analysis was completed which establishes usable structural parameters. The primary objective for this work was to prove the stability of this class of deployable structures, and their potential application to space structures. The secondary objective is to define special motions for tensegrity antennas, to meet the subsystem design requirements, such as addressing multiple antenna-feed locations. This work combines the historical experiences of the artist (Snelson), the mathematician (Ball), and the space systems engineer (Wertz) to develop a new, practical design approach. This kinematic analysis of tensegrity structures blends these differences to provide the design community with a new approach to lightweight, robust, adaptive structures with the high reliability that space demands. Additionally, by applying Screw Theory, a tensegrity structure antenna can be commanded to move along a screw axis, and therefore meeting the requirement to address multiple feed locations.
Connection-based and object-based grouping in multiple-object tracking: A developmental study.
Van der Hallen, Ruth; Reusens, Julie; Evers, Kris; de-Wit, Lee; Wagemans, Johan
2018-03-30
Developmental research on Gestalt laws has previously revealed that, even as young as infancy, we are bound to group visual elements into unitary structures in accordance with a variety of organizational principles. Here, we focus on the developmental trajectory of both connection-based and object-based grouping, and investigate their impact on object formation in participants, aged 9-21 years old (N = 113), using a multiple-object tracking paradigm. Results reveal a main effect of both age and grouping type, indicating that 9- to 21-year-olds are sensitive to both connection-based and object-based grouping interference, and tracking ability increases with age. In addition to its importance for typical development, these results provide an informative baseline to understand clinical aberrations in this regard. Statement of contribution What is already known on this subject? The origin of the Gestalt principles is still an ongoing debate: Are they innate, learned over time, or both? Developmental research has revealed how each Gestalt principle has its own trajectory and unique relationship to visual experience. Both connectedness and object-based grouping play an important role in object formation during childhood. What does this study add? The study identifies how sensitivity to connectedness and object-based grouping evolves in individuals, aged 9-21 years old. Using multiple-object tracking, results reveal that the ability to track multiple objects increases with age. These results provide an informative baseline to understand clinical aberrations in different types of grouping. © 2018 The Authors. British Journal of Developmental Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Clavier, Carole; Gendron, Sylvie; Lamontagne, Lise; Potvin, Louise
2012-07-01
This paper reports findings from an evaluation of the local implementation of a procedural public health programme whose objective is to create healthy environments (HE) for vulnerable families in the province of Quebec (Canada) through the funding of local projects. Considering the potential issue of programme-context interaction, our research question was the following: Does the procedural nature of this HE programme result in variation between local cases in terms of the types of projects and collaborations it subsidizes? Given that the creation of healthy environments requires intersectoral health action to address social determinants of health, the data were analysed with respect to intersectorality and cooperation. Results of this qualitative multiple case study (n = 8), for the period 2004-2009, show that the majority of subsidized projects were in the health and social services sector and focused on parenting, parent-child attachment, nutrition and the social networks of families. Only a few initiatives reached beyond the health and social services sector to address social health determinants such as education, housing and transportation. Membership and mandates of the local groups responsible for programme implementation also showed little intersectorality. The limited variation between these eight cases can be attributed to the configuration of the local networks, as well as to specific issues in urban and rural areas. To explain the overall similarity of results across cases, we turned to the literature on policy instruments which suggests that particular characteristics of a programme may produce effects that are independent of its intended objective. In our study, several programme mechanisms, such as those framing the definition of «healthy environment» and budget management rules, could have encouraged the local development of initiatives that focus on individual skills related to parenting and attachment rather than the development of intersectoral health action to address social determinants of health. Copyright © 2012 Elsevier Ltd. All rights reserved.
SYSTEMATIC PROCEDURE FOR DESIGNING PROCESSES WITH MULTIPLE ENVIRONMENTAL OBJECTIVES
Evaluation of multiple objectives is very important in designing environmentally benign processes. It requires a systematic procedure for solving multiobjective decision-making problems, due to the complex nature of the problems, the need for complex assessments, and complicated ...
Carey, Timothy S; Howard, Daniel L; Goldmon, Moses; Roberson, James T; Godley, Paul A; Ammerman, Alice
2005-11-01
Health disparities are an enormous challenge to American society. Addressing these disparities is a priority for U.S. society and especially for institutions of higher learning, with their threefold mission of education, service, and research. Collaboration across multiple intellectual disciplines will be critical as universities address health disparities. In addition, universities must collaborate with communities, with state partners, and with each other. Development of these collaborations must be sensitive to the history and unique characteristics of each academic institution and population. The authors describe the challenges of all three types of collaboration, but primarily focus on collaboration between research-intensive universities and historically black colleges and universities. The authors describe a four-year collaboration between Shaw University and the University of North Carolina at Chapel Hill (UNC-CH). These universities strategically developed multiple research initiatives to address health disparities, building on modest early success and personal relationships. These activities included participation by Shaw faculty in faculty development activities, multiple collaborative pilot studies, and joint participation in securing grants from the Agency for Health care Research and Quality of the federal Department of Health and Human Services and the National Institutes of Health, including a P-60 Project EXPORT center grant. These multiple activities were sometimes led by UNC-CH, sometimes by Shaw University. Open discussion of problems as they arose, realistic expectations, and mutual recognition of the strengths of each institution and its faculty have been critical in achieving successful collaboration to date.
Carey, Timothy S.; Howard, Daniel L.; Goldmon, Moses; Roberson, James T.; Godley, Paul A.; Ammerman, Alice
2009-01-01
Health disparities are an enormous challenge to American society. Addressing these disparities is a priority for U.S. society and especially for institutions of higher learning, with their threefold mission of education, service, and research. Collaboration across multiple intellectual disciplines will be critical as universities address health disparities. In addition, universities must collaborate with communities, with state partners, and with each other. Development of these collaborations must be sensitive to the history and unique characteristics of each academic institution and population. The authors describe the challenges of all three types of collaboration, but primarily focus on collaboration between research-intensive universities and historically black colleges and universities. The authors describe a four-year collaboration between Shaw University and the University of North Carolina at Chapel Hill (UNC-CH). These universities strategically developed multiple research initiatives to address health disparities, building on modest early success and personal relationships. These activities included participation by Shaw faculty in faculty development activities, multiple collaborative pilot studies, and joint participation in securing grants from the Agency for Health care Research and Quality of the federal Department of Health and Human Services and the National Institutes of Health, including a P-60 Project EXPORT center grant. These multiple activities were sometimes led by UNC-CH, sometimes by Shaw University. Open discussion of problems as they arose, realistic expectations, and mutual recognition of the strengths of each institution and its faculty have been critical in achieving successful collaboration to date. PMID:16249303
Assessing Multiple Object Tracking in Young Children Using a Game
ERIC Educational Resources Information Center
Ryokai, Kimiko; Farzin, Faraz; Kaltman, Eric; Niemeyer, Greg
2013-01-01
Visual tracking of multiple objects in a complex scene is a critical survival skill. When we attempt to safely cross a busy street, follow a ball's position during a sporting event, or monitor children in a busy playground, we rely on our brain's capacity to selectively attend to and track the position of specific objects in a dynamic scene. This…
NASA Astrophysics Data System (ADS)
Balint, Tibor S.; Pangaro, Paul
2017-05-01
For over half a century space exploration has been dominated by engineering and technology driven practices. This paradigm leaves limited room for art and design. Yet in other parts of our lives, art and design play important roles: they stimulate new ideas and connect people to their experiences and to each other at a deeper level, while affecting our worldview as we evolve our cognitive models. We develop these models through circular conversations with our environment, through perception and making sense through our sensory systems and responding back through language and interactions. Artists and designers create artifacts through conversation cycles of sense-giving and sense-making, thus increasing variety in the world in the form of evolving messages. Each message becomes information when the observer decodes it, through multiple sense-making and re-sampling cycles. The messages form triggers to the cognitive state of the observer. Having a shared key between the artist/designer and the observer-for example, in the form of language, gestures, and artistic/design styles-is fundamental to encode and decode the information, in conversations. Art, design, science, and engineering, are all creative practices. Yet, they often speak different languages, where some parts may correspond, while others address a different variety in a cybernetic sense. These specialized languages within disciplines streamline communications, but limit variety. Thus, different languages between disciplines may introduce communication blocks. Nevertheless, these differences are desired as they add variety to the interactions, and could lead to novel discourses and possibilities. We may dissolve communication blocks through the introduction of boundary objects in the intersection of multiple disciplines. Boundary objects can ground ideas and bridge language diversity across disciplines. These artifacts are created to facilitate circular cybernetic conversations, supporting convergence towards common shared languages between the actors. The shared language can also create new variety that evolves through conversations between the participants. Misunderstandings through conversations can also lead to new ideas, as they stimulate questions and may suggest novel solutions. In this paper we propose new categorizations for boundary objects, drawn from design and cybernetic approaches. We evidence these categories with a number of space-related object examples. Furthermore, we discuss how these boundary objects facilitate communications between diverse audiences, ranging from scientists, and engineers, to artists, designers, and the general public.
A Study on Software-based Sensing Technology for Multiple Object Control in AR Video
Jung, Sungmo; Song, Jae-gu; Hwang, Dae-Joon; Ahn, Jae Young; Kim, Seoksoo
2010-01-01
Researches on Augmented Reality (AR) have recently received attention. With these, the Machine-to-Machine (M2M) market has started to be active and there are numerous efforts to apply this to real life in all sectors of society. To date, the M2M market has applied the existing marker-based AR technology in entertainment, business and other industries. With the existing marker-based AR technology, a designated object can only be loaded on the screen from one marker and a marker has to be added to load on the screen the same object again. This situation creates a problem where the relevant marker’should be extracted and printed in screen so that loading of the multiple objects is enabled. However, since the distance between markers will not be measured in the process of detecting and copying markers, the markers can be overlapped and thus the objects would not be augmented. To solve this problem, a circle having the longest radius needs to be created from a focal point of a marker to be copied, so that no object is copied within the confines of the circle. In this paper, software-based sensing technology for multiple object detection and loading using PPHT has been developed and overlapping marker control according to multiple object control has been studied using the Bresenham and Mean Shift algorithms. PMID:22163444
A study on software-based sensing technology for multiple object control in AR video.
Jung, Sungmo; Song, Jae-Gu; Hwang, Dae-Joon; Ahn, Jae Young; Kim, Seoksoo
2010-01-01
Researches on Augmented Reality (AR) have recently received attention. With these, the Machine-to-Machine (M2M) market has started to be active and there are numerous efforts to apply this to real life in all sectors of society. To date, the M2M market has applied the existing marker-based AR technology in entertainment, business and other industries. With the existing marker-based AR technology, a designated object can only be loaded on the screen from one marker and a marker has to be added to load on the screen the same object again. This situation creates a problem where the relevant marker'should be extracted and printed in screen so that loading of the multiple objects is enabled. However, since the distance between markers will not be measured in the process of detecting and copying markers, the markers can be overlapped and thus the objects would not be augmented. To solve this problem, a circle having the longest radius needs to be created from a focal point of a marker to be copied, so that no object is copied within the confines of the circle. In this paper, software-based sensing technology for multiple object detection and loading using PPHT has been developed and overlapping marker control according to multiple object control has been studied using the Bresenham and Mean Shift algorithms.
Clueless Newbies in the MUDs: An Introduction to Multiple-User Environments.
ERIC Educational Resources Information Center
LeNoir, W. David
1998-01-01
Describes Multiple-User Dungeons (MUDs), multiple-user computer programs that allow participants to interact with others in "real time" exchanges. Discusses their potential in the writing classroom and beyond, and notes their potential for faculty development activities. Offers a list of Internet resources, some actual MUD addresses, and other…
Multiple Intelligences, Educational Reform, and a Successful Career
ERIC Educational Resources Information Center
Wu, Wu-Tien
2004-01-01
This article addresses the meaning and application of multiple intelligences theory in Taiwan in the light of educational reform. Specifically, a 4-year joint research project (1999-2003) titled The Development of Multiple Talents (DMT), sponsored by the National Science Council, R.O.C. (Taiwan), will be introduced. A 3-dimensional construct is…
Salient object detection method based on multiple semantic features
NASA Astrophysics Data System (ADS)
Wang, Chunyang; Yu, Chunyan; Song, Meiping; Wang, Yulei
2018-04-01
The existing salient object detection model can only detect the approximate location of salient object, or highlight the background, to resolve the above problem, a salient object detection method was proposed based on image semantic features. First of all, three novel salient features were presented in this paper, including object edge density feature (EF), object semantic feature based on the convex hull (CF) and object lightness contrast feature (LF). Secondly, the multiple salient features were trained with random detection windows. Thirdly, Naive Bayesian model was used for combine these features for salient detection. The results on public datasets showed that our method performed well, the location of salient object can be fixed and the salient object can be accurately detected and marked by the specific window.
Selecting and perceiving multiple visual objects
Xu, Yaoda; Chun, Marvin M.
2010-01-01
To explain how multiple visual objects are attended and perceived, we propose that our visual system first selects a fixed number of about four objects from a crowded scene based on their spatial information (object individuation) and then encode their details (object identification). We describe the involvement of the inferior intra-parietal sulcus (IPS) in object individuation and the superior IPS and higher visual areas in object identification. Our neural object-file theory synthesizes and extends existing ideas in visual cognition and is supported by behavioral and neuroimaging results. It provides a better understanding of the role of the different parietal areas in encoding visual objects and can explain various forms of capacity-limited processing in visual cognition such as working memory. PMID:19269882
Multiple Semantic Matching on Augmented N-partite Graph for Object Co-segmentation.
Wang, Chuan; Zhang, Hua; Yang, Liang; Cao, Xiaochun; Xiong, Hongkai
2017-09-08
Recent methods for object co-segmentation focus on discovering single co-occurring relation of candidate regions representing the foreground of multiple images. However, region extraction based only on low and middle level information often occupies a large area of background without the help of semantic context. In addition, seeking single matching solution very likely leads to discover local parts of common objects. To cope with these deficiencies, we present a new object cosegmentation framework, which takes advantages of semantic information and globally explores multiple co-occurring matching cliques based on an N-partite graph structure. To this end, we first propose to incorporate candidate generation with semantic context. Based on the regions extracted from semantic segmentation of each image, we design a merging mechanism to hierarchically generate candidates with high semantic responses. Secondly, all candidates are taken into consideration to globally formulate multiple maximum weighted matching cliques, which complements the discovery of part of the common objects induced by a single clique. To facilitate the discovery of multiple matching cliques, an N-partite graph, which inherently excludes intralinks between candidates from the same image, is constructed to separate multiple cliques without additional constraints. Further, we augment the graph with an additional virtual node in each part to handle irrelevant matches when the similarity between two candidates is too small. Finally, with the explored multiple cliques, we statistically compute pixel-wise co-occurrence map for each image. Experimental results on two benchmark datasets, i.e., iCoseg and MSRC datasets, achieve desirable performance and demonstrate the effectiveness of our proposed framework.
Analyzing Uncertainty and Risk in the Management of Water Resources in the State Of Texas
NASA Astrophysics Data System (ADS)
Singh, A.; Hauffpauir, R.; Mishra, S.; Lavenue, M.
2010-12-01
The State of Texas updates its state water plan every five years to determine the water demand required to meet its growing population. The plan compiles forecasts of water deficits from state-wide regional water planning groups as well as the water supply strategies to address these deficits. To date, the plan has adopted a deterministic framework, where reference values (e.g., best estimates, worst-case scenario) are used for key factors such as population growth, demand for water, severity of drought, water availability, etc. These key factors can, however, be affected by multiple sources of uncertainties such as - the impact of climate on surface water and groundwater availability, uncertainty in population projections, changes in sectoral composition of the economy, variability in water usage, feasibility of the permitting process, cost of implementation, etc. The objective of this study was to develop a generalized and scalable methodology for addressing uncertainty and risk in water resources management both at the regional and the local water planning level. The study proposes a framework defining the elements of an end-to-end system model that captures the key components of demand, supply and planning modules along with their associated uncertainties. The framework preserves the fundamental elements of the well-established planning process in the State of Texas, promoting an incremental and stakeholder-driven approach to adding different levels of uncertainty (and risk) into the decision-making environment. The uncertainty in the water planning process is broken down into two primary categories: demand uncertainty and supply uncertainty. Uncertainty in Demand is related to the uncertainty in population projections and the per-capita usage rates. Uncertainty in Supply, in turn, is dominated by the uncertainty in future climate conditions. Climate is represented in terms of time series of precipitation, temperature and/or surface evaporation flux for some future time period of interest, which can be obtained as outputs of global climate models (GCMs). These are then linked with hydrologic and water-availability models (WAMs) to estimate water availability for the worst drought conditions under each future climate scenario. Combining the demand scenarios with the water availability scenarios yields multiple scenarios for water shortage (or surplus). Given multiple shortage/surplus scenarios, various water management strategies can be assessed to evaluate the reliability of meeting projected deficits. These reliabilities are then used within a multi-criteria decision-framework to assess trade-offs between various water management objectives, thus helping to make more robust decisions while planning for the water needs of the future.
How Many Objects are You Worth? Quantification of the Self-Motion Load on Multiple Object Tracking
Thomas, Laura E.; Seiffert, Adriane E.
2011-01-01
Perhaps walking and chewing gum is effortless, but walking and tracking moving objects is not. Multiple object tracking is impaired by walking from one location to another, suggesting that updating location of the self puts demands on object tracking processes. Here, we quantified the cost of self-motion in terms of the tracking load. Participants in a virtual environment tracked a variable number of targets (1–5) among distractors while either staying in one place or moving along a path that was similar to the objects’ motion. At the end of each trial, participants decided whether a probed dot was a target or distractor. As in our previous work, self-motion significantly impaired performance in tracking multiple targets. Quantifying tracking capacity for each individual under move versus stay conditions further revealed that self-motion during tracking produced a cost to capacity of about 0.8 (±0.2) objects. Tracking your own motion is worth about one object, suggesting that updating the location of the self is similar, but perhaps slightly easier, than updating locations of objects. PMID:21991259
Micronutrient Fortification of Food in Southeast Asia: Recommendations from an Expert Workshop
Gayer, Justine; Smith, Geoffry
2015-01-01
Micronutrient deficiencies remain a significant public health issue in Southeast Asia, particularly in vulnerable populations, such as women of reproductive age and young children. An important nutrition-specific intervention to address micronutrient malnutrition is fortification of staple foods and condiments. In October 2013, the International Life Sciences Institute (ILSI) Southeast Asia Region held a workshop on micronutrient fortification of food in Bangkok, Thailand. The objective was to engage multiple stakeholders in a discussion on food fortification and its importance as a public health intervention in Southeast Asia, and to identify and address key challenges/gaps in and potential opportunities for fortification of foods in ASEAN countries. Key challenges that were identified include: “scaling up” and mobilizing sustainable support for fortification programs in the form of multi-stakeholder partnerships, effecting policy change to support mandatory fortification, long-term monitoring of the programs’ compliance and efficacy in light of limited resources, and increasing awareness and uptake of fortified products through social marketing campaigns. Future actions recommended include the development of terms of engagement and governance for multi-stakeholder partnerships, moving towards a sustainable business model and more extensive monitoring, both for effectiveness and efficacy and for enforcement of fortification legislation. PMID:25608937
Factors Related to Incomplete Treatment of Breast Cancer in Kumasi, Ghana
Obrist, Mark; Osei-Bonsu, Ernest; Ahwah, Baffour; Watanabe-Galloway, Shinobu; Merajver, Sofia D.; Schmid, Kendra; Soliman, Amr S.
2014-01-01
Purpose The burden of cancer in Africa is an enlarging public health challenge. Breast cancer in Ghana is the second most common cancer among Ghanaian women and the proportion of diagnosed patients who complete prescribed treatment is estimated to be very limited, thereby potentially adding to lower survival and poor quality of life after diagnosis. The objective of this study was to identify the patient and system factors related to incomplete treatment of breast cancer among patients. Methods This study was conducted at the Komfo Anokye Teaching Hospital in Kumasi, Ghana. We interviewed 117 breast cancer patients and next of kin of breast cancer patients diagnosed from 2008 to 2010. Results Islamic religion, seeking treatment with traditional healers, and lack of awareness about national health insurance coverage of breast cancer treatment were predictors of incomplete treatment. Conclusions The results of this study support that Ghanaian women with diagnosed breast cancer have multiple addressable and modifiable patient factors that may deter them from completing the prescribed treatment. The results highlight the need for developing and testing specific interventions about the importance of completing treatment with a special focus on addressing religious, cultural, and system navigation barriers in developing countries. PMID:25282667
Mathematical Foundation for Plane Covering Using Hexagons
NASA Technical Reports Server (NTRS)
Johnson, Gordon G.
1999-01-01
This work is to indicate the development and mathematical underpinnings of the algorithms previously developed for covering the plane and the addressing of the elements of the covering. The algorithms are of interest in that they provides a simple systematic way of increasing or decreasing resolution, in the sense that if we have the covering in place and there is an image superimposed upon the covering, then we may view the image in a rough form or in a very detailed form with minimal effort. Such ability allows for quick searches of crude forms to determine a class in which to make a detailed search. In addition, the addressing algorithms provide an efficient way to process large data sets that have related subsets. The algorithms produced were based in part upon the work of D. Lucas "A Multiplication in N Space" which suggested a set of three vectors, any two of which would serve as a bases for the plane and also that the hexagon is the natural geometric object to be used in a covering with a suggested bases. The second portion is a refinement of the eyeball vision system, the globular viewer.
Brog, M A
1995-01-01
Psychoanalytically informed clinicians are frequently challenged with recognizing and integrating into their work the diverse phenomena central to differing psychoanalytic theoretical frameworks. In addressing this dilemma, Pine has formulated a "multiple model" that recognizes the qualitatively different psychological phenomena and the distinct motivational forces emphasized by what he calls "the four psychologies of psychoanalysis," the psychologies of drive, ego, object relations and self. This model makes it possible to describe individual personality organizations in terms of psychological hierarchies of the phenomena of the four psychologies. Use of this model promotes a particular kind of listening stance that facilitates recognition and use of a wide variety of clinical data. The usefulness of this model is demonstrated through its application to a creative work, the Beatles' "White Album." This application shows the utility of Pine's psychological hierarchies in describing differing personality organizations, the "multiple functions" mental events can represent through serving the motives of multiple psychologies, and the frequent interactions that occur between the differing psychological phenomena. Pine's model facilitates a recognition that an important quality found in works by the Beatles is their demonstration in strikingly clear form, of the qualitatively different aspects of human experience emphasized by the four psychologies. The accessibility of Beatles music makes it a potentially valuable teaching tool for demonstrating Pine's model.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... associated with the multiple personal visits. The email could also be as simple as a ``Thank You'' with... collecting email addresses and collecting interest in being contacted by email or answering the survey...
Multiple degree of freedom optical pattern recognition
NASA Technical Reports Server (NTRS)
Casasent, D.
1987-01-01
Three general optical approaches to multiple degree of freedom object pattern recognition (where no stable object rest position exists) are advanced. These techniques include: feature extraction, correlation, and artificial intelligence. The details of the various processors are advanced together with initial results.
NASA Astrophysics Data System (ADS)
Bean, Jacob L.; Abbot, Dorian S.; Kempton, Eliza M.-R.
2017-06-01
The search for habitable exoplanets and life beyond the solar system is one of the most compelling scientific opportunities of our time. Nevertheless, the high cost of building facilities that can address this topic and the keen public interest in the results of such research requires rigorous development of experiments that can deliver a definitive advancement in our understanding. Most work to date in this area has focused on a “systems science” approach of obtaining and interpreting comprehensive data for individual planets to make statements about their habitability and the possibility that they harbor life. This strategy is challenging because of the diversity of exoplanets, both observed and expected, and the limited information that can be obtained with astronomical instruments. Here, we propose a complementary approach that is based on performing surveys of key planetary characteristics and using statistical marginalization to answer broader questions than can be addressed with a small sample of objects. The fundamental principle of this comparative planetology approach is maximizing what can be learned from each type of measurement by applying it widely rather than requiring that multiple kinds of observations be brought to bear on a single object. As a proof of concept, we outline a survey of terrestrial exoplanet atmospheric water and carbon dioxide abundances that would test the habitable zone hypothesis and lead to a deeper understanding of the frequency of habitable planets. We also discuss ideas for additional surveys that could be developed to test other foundational hypotheses in this area.
NASA Astrophysics Data System (ADS)
Abbot, D. S.; Bean, J. L.; Kempton, E.
2017-12-01
The search for habitable exoplanets and life beyond the solar system is one of the most compelling scientific opportunities of our time. Nevertheless, the high cost of building facilities that can address this topic and the keen public interest in the results of such research requires rigorous development of experiments that can deliver a definitive advancement in our understanding. Most work to date in this area has focused on a "systems science" approach of obtaining and interpreting comprehensive data for individual planets to make statements about their habitability and the possibility that they harbor life. This strategy is challenging because of the diversity of exoplanets, both observed and expected, and the limited information that can be obtained with astronomical instruments. Here, we propose a complementary approach that is based on performing surveys of key planetary characteristics and using statistical marginalization to answer broader questions than can be addressed with a small sample of objects. The fundamental principle of this comparative planetology approach is maximizing what can be learned from each type of measurement by applying it widely rather than requiring that multiple kinds of observations be brought to bear on a single object. As a proof of concept, we outline a survey of terrestrial exoplanet atmospheric water and carbon dioxide abundances that would test the habitable zone hypothesis and lead to a deeper understanding of the frequency of habitable planets. We also discuss ideas for additional surveys that could be developed to test other foundational hypotheses is this area.
McAlearney, Ann Scheck; Walker, Daniel; Moss, Alexandra DeNardis; Bickell, Nina A.
2015-01-01
Background Qualitative Comparative Analysis (QCA) is a methodology created to address causal complexity in social sciences research by preserving the objectivity of quantitative data analysis without losing detail inherent in qualitative research. However, its use in health services research (HSR) is limited, and questions remain about its application in this context. Objective To explore the strengths and weaknesses of using QCA for HSR. Research Design Using data from semi-structured interviews conducted as part of a multiple case study about adjuvant treatment underuse among underserved breast cancer patients, findings were compared using qualitative approaches with and without QCA to identify strengths, challenges, and opportunities presented by QCA. Subjects Ninety administrative and clinical key informants interviewed across ten NYC area safety net hospitals. Measures Transcribed interviews were coded by three investigators using an iterative and interactive approach. Codes were calibrated for QCA, as well as examined using qualitative analysis without QCA. Results Relative to traditional qualitative analysis, QCA strengths include: (1) addressing causal complexity, (2) results presentation as pathways as opposed to a list, (3) identification of necessary conditions, (4) the option of fuzzy-set calibrations, and (5) QCA-specific parameters of fit that allow researchers to compare outcome pathways. Weaknesses include: (1) few guidelines and examples exist for calibrating interview data, (2) not designed to create predictive models, and (3) unidirectionality. Conclusions Through its presentation of results as pathways, QCA can highlight factors most important for production of an outcome. This strength can yield unique benefits for HSR not available through other methods. PMID:26908085
NASA Astrophysics Data System (ADS)
Zheng, Ling; Duan, Xuwei; Deng, Zhaoxue; Li, Yinong
2014-03-01
A novel flow-mode magneto-rheological (MR) engine mount integrated a diaphragm de-coupler and the spoiler plate is designed and developed to isolate engine and the transmission from the chassis in a wide frequency range and overcome the stiffness in high frequency. A lumped parameter model of the MR engine mount in single degree of freedom system is further developed based on bond graph method to predict the performance of the MR engine mount accurately. The optimization mathematical model is established to minimize the total of force transmissibility over several frequency ranges addressed. In this mathematical model, the lumped parameters are considered as design variables. The maximum of force transmissibility and the corresponding frequency in low frequency range as well as individual lumped parameter are limited as constraints. The multiple interval sensitivity analysis method is developed to select the optimized variables and improve the efficiency of optimization process. An improved non-dominated sorting genetic algorithm (NSGA-II) is used to solve the multi-objective optimization problem. The synthesized distance between the individual in Pareto set and the individual in possible set in engineering is defined and calculated. A set of real design parameters is thus obtained by the internal relationship between the optimal lumped parameters and practical design parameters for the MR engine mount. The program flowchart for the improved non-dominated sorting genetic algorithm (NSGA-II) is given. The obtained results demonstrate the effectiveness of the proposed optimization approach in minimizing the total of force transmissibility over several frequency ranges addressed.
Hybrid optimization and Bayesian inference techniques for a non-smooth radiation detection problem
Stefanescu, Razvan; Schmidt, Kathleen; Hite, Jason; ...
2016-12-12
In this paper, we propose several algorithms to recover the location and intensity of a radiation source located in a simulated 250 × 180 m block of an urban center based on synthetic measurements. Radioactive decay and detection are Poisson random processes, so we employ likelihood functions based on this distribution. Owing to the domain geometry and the proposed response model, the negative logarithm of the likelihood is only piecewise continuous differentiable, and it has multiple local minima. To address these difficulties, we investigate three hybrid algorithms composed of mixed optimization techniques. For global optimization, we consider simulated annealing, particlemore » swarm, and genetic algorithm, which rely solely on objective function evaluations; that is, they do not evaluate the gradient in the objective function. By employing early stopping criteria for the global optimization methods, a pseudo-optimum point is obtained. This is subsequently utilized as the initial value by the deterministic implicit filtering method, which is able to find local extrema in non-smooth functions, to finish the search in a narrow domain. These new hybrid techniques, combining global optimization and implicit filtering address, difficulties associated with the non-smooth response, and their performances, are shown to significantly decrease the computational time over the global optimization methods. To quantify uncertainties associated with the source location and intensity, we employ the delayed rejection adaptive Metropolis and DiffeRential Evolution Adaptive Metropolis algorithms. Finally, marginal densities of the source properties are obtained, and the means of the chains compare accurately with the estimates produced by the hybrid algorithms.« less
Assessing the Assignment Policy for Army Women
2007-01-01
WORKFORCE AND WORKPLACE The RAND Corporation is a nonprofit research organization providing objective analysis and effective solutions that address the...research organization providing objective analysis and effective solutions that address the challenges facing the public and private sectors around the...the battlefield while locating and closing with the enemy to defeat them by fire, maneuver, or shock effect . 1 Les Aspin, Secretary of Defense
ERIC Educational Resources Information Center
Wood, David F.; Kohun, Frederick G.; Laverty, Joseph Packy
2010-01-01
This paper reports on a study of systems analysis textbooks in terms of topics covered and academic background of the authors. It addresses the consistency within IS curricula with respect to the content of a systems analysis and design course using the object-oriented approach. The research questions addressed were 1: Is there a consistency among…
Deb, Kalyanmoy; Sinha, Ankur
2010-01-01
Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.
Improvement in HPC performance through HIPPI RAID storage
NASA Technical Reports Server (NTRS)
Homan, Blake
1993-01-01
In 1986, RAID (redundant array of inexpensive (or independent) disks) technology was introduced as a viable solution to the I/O bottleneck. A number of different RAID levels were defined in 1987 by the Computer Science Division (EECS) University of California, Berkeley, each with specific advantages and disadvantages. With multiple RAID options available, taking advantage of RAID technology required matching particular RAID levels with specific applications. It was not possible to use one RAID device to address all applications. Maximum Strategy's Gen 4 Storage Server addresses this issue with a new capability called programmable RAID level partitioning. This capability enables users to have multiple RAID levels coexist on the same disks, thereby providing the versatility necessary for multiple concurrent applications.
General Astrophysics with the HabEx Workhorse Camera
NASA Astrophysics Data System (ADS)
Stern, Daniel; Clarke, John; Gaudi, B. Scott; Kiessling, Alina; Krause, Oliver; Martin, Stefan; Scowen, Paul; Somerville, Rachel; HabEx STDT
2018-01-01
The Habitable Exoplanet Imaging Mission (HabEx) concept has been designed to enable an extensive suite of science, broadly put under the rubric of General Astrophysics, in addition to its exoplanet direct imaging science. General astrophysics directly addresses multiple NASA programmatic branches, and HabEx will enable investigations ranging from cosmology, to galaxy evolution, to stellar population studies, to exoplanet transit spectroscopy, to Solar System studies. This poster briefly describes one of the two primary HabEx General Astrophysics instruments, the HabEx Workhorse Camera (HWC). HWC will be a dual-detector UV-to-near-IR imager and multi-object grism spectrometer with a microshutter array and a moderate (3' x 3') field-of-view. We detail some of the key science we expect HWC to undertake, emphasizing unique capabilities enabled by a large-aperture, highly stable space-borne platform at these wavelengths.
Elevated arousal levels enhance contrast perception.
Kim, Dongho; Lokey, Savannah; Ling, Sam
2017-02-01
Our state of arousal fluctuates from moment to moment-fluctuations that can have profound impacts on behavior. Arousal has been proposed to play a powerful, widespread role in the brain, influencing processes as far ranging as perception, memory, learning, and decision making. Although arousal clearly plays a critical role in modulating behavior, the mechanisms underlying this modulation remain poorly understood. To address this knowledge gap, we examined the modulatory role of arousal on one of the cornerstones of visual perception: contrast perception. Using a reward-driven paradigm to manipulate arousal state, we discovered that elevated arousal state substantially enhances visual sensitivity, incurring a multiplicative modulation of contrast response. Contrast defines vision, determining whether objects appear visible or invisible to us, and these results indicate that one of the consequences of decreased arousal state is an impaired ability to visually process our environment.
Nedelec, Bernadette; Parry, Ingrid; Acharya, Hernish; Benavides, Lynne; Bills, Sara; Bucher, Janelle L; Cheal, Joanne; Chouinard, Annick; Crump, Donna; Duch, Sarah; Godleski, Matthew; Guenther, Jennifer; Knox, Catherine; LaBonte, Eric; Lorello, David; Lucio, J Xavier; Macdonald, Lori E; Kemp-Offenberg, Jennifer; Osborne, Candice; Pontius, Kara; Yelvington, Miranda; de Oliveira, Ana; Kloda, Lorie A
The objective of this review was to systematically evaluate the available clinical evidence for the prescription of strength training and cardiovascular endurance exercise programs for pediatric and adult burn survivors so that practice guidelines could be proposed. This review provides evidence-based recommendations specifically for rehabilitation professionals who are responsible for burn survivor rehabilitation. Summary recommendations were made after the literature was retrieved by systematic review, was critically appraised by multiple authors and the level of evidence determined in accordance with the Oxford Centre for Evidence-based Medicine criteria. Although gaps in the literature persist and should be addressed in future research projects, currently, strong research evidence supports the prescription of strength training and aerobic conditioning exercise programs for both adult and pediatric burn survivors when in the presence of strength limitations and/or decreased cardiovascular endurance after evaluation.
Spacelab Life Sciences 1 and 2 scientific research objectives
NASA Technical Reports Server (NTRS)
Leach, Carolyn S.; Schneider, Howard J.
1987-01-01
The pressurized Spacelab module was designed and built to allow investigators to conduct research in space in an environment approximating that of a ground-based laboratory. It is configured to allow multiple investigations employing both human and nonhuman subjects. This flexability is exemplified by the SLS-1, SLS-2, and SLS-3 experiment complement. A total of 21 experiments are scheduled for these missions; the areas to be investigated are renal/endocrine function, cardiovascular/cardiopulmonary function, hematology, immunology, metabolic activity of muscle, Ca metabolism, the vestibular system, and general biology. A plan for integration of measurements will allow each investigator to use data from other experiments. The experiments make up a scientifically balanced payload that addresses fundamental biomedical problems associated with space flight and provides the first opportunity to study the acute effects of weightlessness in a comprehensive, interrelated fashion.
Berenguer, Carmen; Miranda, Ana; Colomer, Carla; Baixauli, Inmaculada; Roselló, Belén
2018-02-01
Social difficulties are a key aspect of autism, but the intervening factors are still poorly understood. This study had two objectives: to compare the profile of ToM skills, executive functioning (EF), and pragmatic competence (PC) of children with high-functioning autism (HFA) and children with typical development (TD), and analyze their mediator role in social functioning. The participants were 52 children with HFA and 37 children with TD matched on age, intelligence quotient, and expressive vocabulary. Significant differences were found on measures of ToM, both explicit and applied, EF, and PC between children with HFA and TD. Multiple mediation analysis revealed that applied ToM skills and PC mediated the relations between autism symptoms and social functioning. Implications for social cognitive interventions to address these findings are discussed.
Needle, Richard H.; Trotter, Robert T.; Singer, Merrill; Bates, Christopher; Page, J. Bryan; Metzger, David; Marcelin, Louis H.
2003-01-01
Objectives. The US Department of Health and Human Services, in collaboration with the Congressional Black Caucus, created a new initiative to address the disproportionate ongoing HIV/AIDS crisis in racial/ethnic minority populations. Methods. This initiative included deploying technical assistance teams through the Office of HIV/AIDS Policy. The teams introduced rapid assessment and response methodologies and trained minority communities in their use. Results. The first 3 eligible cities (Detroit, Miami, and Philadelphia) focused assessments in small geographic areas, using multiple methodologies to obtain data. Conclusions. Data from the first 3 eligible cities provided critical information about changing the dynamics of the HIV/AIDS epidemic at the local level, including program and policy changes and infrastructure redeployment targeted at the most serious social and environmental conditions. PMID:12773364
Optimal use of human and machine resources for Space Station assembly operations
NASA Technical Reports Server (NTRS)
Parrish, Joseph C.
1988-01-01
This paper investigates the issues involved in determining the best mix of human and machine resources for assembly of the Space Station. It presents the current Station assembly sequence, along with descriptions of the available assembly resources. A number of methodologies for optimizing the human/machine tradeoff problem have been developed, but the Space Station assembly offers some unique issues that have not yet been addressed. These include a strong constraint on available EVA time for early flights and a phased deployment of assembly resources over time. A methodology for incorporating the previously developed decision methods to the special case of the Space Station is presented. This methodology emphasizes an application of multiple qualitative and quantitative techniques, including simulation and decision analysis, for producing an objective, robust solution to the tradeoff problem.
More ethical and more efficient clinical research: multiplex trial design.
Keus, Frederik; van der Horst, Iwan C C; Nijsten, Maarten W
2014-08-14
Today's clinical research faces challenges such as a lack of clinical equipoise between treatment arms, reluctance in randomizing for multiple treatments simultaneously, inability to address interactions and increasingly restricted resources. Furthermore, many trials are biased by extensive exclusion criteria, relatively small sample size and less appropriate outcome measures. We propose a 'Multiplex' trial design that preserves clinical equipoise with a continuous and factorial trial design that will also result in more efficient use of resources. This multiplex design accommodates subtrials with appropriate choice of treatment arms within each subtrial. Clinical equipoise should increase consent rates while the factorial design is the best way to identify interactions. The multiplex design may evolve naturally from today's research limitations and challenges, while principal objections seem absent. However this new design poses important infrastructural, organisational and psychological challenges that need in depth consideration.
NASA Astrophysics Data System (ADS)
Zatarain-Salazar, J.; Reed, P. M.; Quinn, J.; Giuliani, M.; Castelletti, A.
2016-12-01
As we confront the challenges of managing river basin systems with a large number of reservoirs and increasingly uncertain tradeoffs impacting their operations (due to, e.g. climate change, changing energy markets, population pressures, ecosystem services, etc.), evolutionary many-objective direct policy search (EMODPS) solution strategies will need to address the computational demands associated with simulating more uncertainties and therefore optimizing over increasingly noisy objective evaluations. Diagnostic assessments of state-of-the-art many-objective evolutionary algorithms (MOEAs) to support EMODPS have highlighted that search time (or number of function evaluations) and auto-adaptive search are key features for successful optimization. Furthermore, auto-adaptive MOEA search operators are themselves sensitive to having a sufficient number of function evaluations to learn successful strategies for exploring complex spaces and for escaping from local optima when stagnation is detected. Fortunately, recent parallel developments allow coordinated runs that enhance auto-adaptive algorithmic learning and can handle scalable and reliable search with limited wall-clock time, but at the expense of the total number of function evaluations. In this study, we analyze this tradeoff between parallel coordination and depth of search using different parallelization schemes of the Multi-Master Borg on a many-objective stochastic control problem. We also consider the tradeoff between better representing uncertainty in the stochastic optimization, and simplifying this representation to shorten the function evaluation time and allow for greater search. Our analysis focuses on the Lower Susquehanna River Basin (LSRB) system where multiple competing objectives for hydropower production, urban water supply, recreation and environmental flows need to be balanced. Our results provide guidance for balancing exploration, uncertainty, and computational demands when using the EMODPS framework to discover key tradeoffs within the LSRB system.
Context indexing of digital cardiac ultrasound records in PACS
NASA Astrophysics Data System (ADS)
Lobodzinski, S. Suave; Meszaros, Georg N.
1998-07-01
Recent wide adoption of the DICOM 3.0 standard by ultrasound equipment vendors created a need for practical clinical implementations of cardiac imaging study visualization, management and archiving, DICOM 3.0 defines only a logical and physical format for exchanging image data (still images, video, patient and study demographics). All DICOM compliant imaging studies must presently be archived on a 650 Mb recordable compact disk. This is a severe limitation for ultrasound applications where studies of 3 to 10 minutes long are a common practice. In addition, DICOM digital echocardiography objects require physiological signal indexing, content segmentation and characterization. Since DICOM 3.0 is an interchange standard only, it does not define how to database composite video objects. The goal of this research was therefore to address the issues of efficient storage, retrieval and management of DICOM compliant cardiac video studies in a distributed PACS environment. Our Web based implementation has the advantage of accommodating both DICOM defined entity-relation modules (equipment data, patient data, video format, etc.) in standard relational database tables and digital indexed video with its attributes in an object relational database. Object relational data model facilitates content indexing of full motion cardiac imaging studies through bi-directional hyperlink generation that tie searchable video attributes and related objects to individual video frames in the temporal domain. Benefits realized from use of bi-directionally hyperlinked data models in an object relational database include: (1) real time video indexing during image acquisition, (2) random access and frame accurate instant playback of previously recorded full motion imaging data, and (3) time savings from faster and more accurate access to data through multiple navigation mechanisms such as multidimensional queries on an index, queries on a hyperlink attribute, free search and browsing.
NASA Astrophysics Data System (ADS)
Mai, J.; Cuntz, M.; Zink, M.; Schaefer, D.; Thober, S.; Samaniego, L. E.; Shafii, M.; Tolson, B.
2015-12-01
Hydrologic models are traditionally calibrated against discharge. Recent studies have shown however, that only a few global model parameters are constrained using the integral discharge measurements. It is therefore advisable to use additional information to calibrate those models. Snow pack data, for example, could improve the parametrization of snow-related processes, which might be underrepresented when using only discharge. One common approach is to combine these multiple objectives into one single objective function and allow the use of a single-objective algorithm. Another strategy is to consider the different objectives separately and apply a Pareto-optimizing algorithm. Both methods are challenging in the choice of appropriate multiple objectives with either conflicting interests or the focus on different model processes. A first aim of this study is to compare the two approaches employing the mesoscale Hydrologic Model mHM at several distinct river basins over Europe and North America. This comparison will allow the identification of the single-objective solution on the Pareto front. It is elucidated if this position is determined by the weighting and scaling of the multiple objectives when combing them to the single objective. The principal second aim is to guide the selection of proper objectives employing sensitivity analyses. These analyses are used to determine if an additional information would help to constrain additional model parameters. The additional information are either multiple data sources or multiple signatures of one measurement. It is evaluated if specific discharge signatures can inform different parts of the hydrologic model. The results show that an appropriate selection of discharge signatures increased the number of constrained parameters by more than 50% compared to using only NSE of the discharge time series. It is further assessed if the use of these signatures impose conflicting objectives on the hydrologic model. The usage of signatures is furthermore contrasted to the use of additional observations such as soil moisture or snow height. The gain of using an auxiliary dataset is determined using the parametric sensitivity on the respective modeled variable.
Evidence against a speed limit in multiple-object tracking.
Franconeri, S L; Lin, J Y; Pylyshyn, Z W; Fisher, B; Enns, J T
2008-08-01
Everyday tasks often require us to keep track of multiple objects in dynamic scenes. Past studies show that tracking becomes more difficult as objects move faster. In the present study, we show that this trade-off may not be due to increased speed itself but may, instead, be due to the increased crowding that usually accompanies increases in speed. Here, we isolate changes in speed from variations in crowding, by projecting a tracking display either onto a small area at the center of a hemispheric projection dome or onto the entire dome. Use of the larger display increased retinal image size and object speed by a factor of 4 but did not increase interobject crowding. Results showed that tracking accuracy was equally good in the large-display condition, even when the objects traveled far into the visual periphery. Accuracy was also not reduced when we tested object speeds that limited performance in the small-display condition. These results, along with a reinterpretation of past studies, suggest that we might be able to track multiple moving objects as fast as we can a single moving object, once the effect of object crowding is eliminated.
Multiple Watershed Scales Approach for Placement of BMPs in SUSTAIN
Watershed and stormwater managers need modeling tools to evaluate how best to address environmental quality restoration and protection needs in urban and developing areas. Significant investments are needed to protect and restore water quality, address total maximum daily loads ...
NASA Technical Reports Server (NTRS)
Kuhlman, Kimberly (Inventor); Buehler, Martin G. (Inventor)
2004-01-01
An ion selective electrode (ISE) array is described, as well as methods for producing the same. The array can contain multiple ISE which are individually electronically addressed. The addressing allows simplified preparation of the array. The array can be used for water quality monitoring, for example.
Thinking in terms of sensors: personification of self as an object in physics problem solving
NASA Astrophysics Data System (ADS)
Tabor-Morris, A. E.
2015-03-01
How can physics teachers help students develop consistent problem solving techniques for both simple and complicated physics problems, such as those that encompass objects undergoing multiple forces (mechanical or electrical) as individually portrayed in free-body diagrams and/or phenomenon involving multiple objects, such as Doppler effect reflection applications in echoes and ultrasonic cardiac monitoring for sound, or police radar for light? These problems can confuse novice physics students, and to sort out problem parts, the suggestion is made here to guide the student to personify self as the object in question, that is, to imagine oneself as the object undergoing outside influences such as forces and then qualify and quantify those for the problem at hand. This personification does NOT, as according to the three traditional definitions of the term (animism, anthropomorphism and teleology), empower the object to act, but instead just to detect its environment. By having students use their imagination to put themselves in the place of the object, they can ‘sense’ the influences the object is experiencing to analyze these individually, hopefully reducing the student’s feeling of being overwhelmed with information, and also imbuing the student with a sense of having experienced the situation. This can be especially useful in problems that involve both multiple forces AND multiple objects (for example, Atwood’s machine), since objects acted upon need to be considered separately and consecutively, with the idea that one cannot be two objects at once. This personification technique, documented to have been used by both Einstein and Feynman, is recommended here for secondary-school teen and university-level adult learners with discussions on specific physics and astronomy classroom strategies.
A multiple-point spatially weighted k-NN method for object-based classification
NASA Astrophysics Data System (ADS)
Tang, Yunwei; Jing, Linhai; Li, Hui; Atkinson, Peter M.
2016-10-01
Object-based classification, commonly referred to as object-based image analysis (OBIA), is now commonly regarded as able to produce more appealing classification maps, often of greater accuracy, than pixel-based classification and its application is now widespread. Therefore, improvement of OBIA using spatial techniques is of great interest. In this paper, multiple-point statistics (MPS) is proposed for object-based classification enhancement in the form of a new multiple-point k-nearest neighbour (k-NN) classification method (MPk-NN). The proposed method first utilises a training image derived from a pre-classified map to characterise the spatial correlation between multiple points of land cover classes. The MPS borrows spatial structures from other parts of the training image, and then incorporates this spatial information, in the form of multiple-point probabilities, into the k-NN classifier. Two satellite sensor images with a fine spatial resolution were selected to evaluate the new method. One is an IKONOS image of the Beijing urban area and the other is a WorldView-2 image of the Wolong mountainous area, in China. The images were object-based classified using the MPk-NN method and several alternatives, including the k-NN, the geostatistically weighted k-NN, the Bayesian method, the decision tree classifier (DTC), and the support vector machine classifier (SVM). It was demonstrated that the new spatial weighting based on MPS can achieve greater classification accuracy relative to the alternatives and it is, thus, recommended as appropriate for object-based classification.
Childhood Mourning: Prospective Case Analysis of Multiple Losses
ERIC Educational Resources Information Center
Kaufman, Kenneth R.; Kaufman, Nathaniel D.
2005-01-01
Multiple losses within short time periods make one question life and can exponentially influence one's coping skills. But what are the effects on a child and what should be done when the next loss occurs? This case addresses the multiple losses suffered by a child while assessing coping skills of the child and coping strategies used by the parents…
Multiple Questions Require Multiple Designs: An Evaluation of the 1981 Changes to the AFDC Program.
ERIC Educational Resources Information Center
Hedrick, Terry E.; Shipman, Stephanie L.
1988-01-01
Changes made in 1981 to the Aid to Families with Dependent Children (AFDC) program under the Omnibus Budget Reconciliation Act were evaluated. Multiple quasi-experimental designs (interrupted time series, non-equivalent comparison groups, and simple pre-post designs) used to address evaluation questions illustrate the issues faced by evaluators in…
1986-06-11
been specified, then the amount specified is returned. Otherwise the current amount allocated is returned. T’STORAGESIZE for task types or objects is...hrs DURATION’LAST 131071.99993896484375 36 hrs F.A Address Clauses Address clauses are implemented for objects. No storage is allocated for objects...it is ignored. at Allocation . An integer in the range 1..2,147,483,647. For CONTIGUOUS files, it specifies the number of 256 byte sectors. For ITAM
Chen, Chi-Hsin; Gershkoff-Stowe, Lisa; Wu, Chih-Yi; Cheung, Hintat; Yu, Chen
2017-08-01
Two experiments were conducted to examine adult learners' ability to extract multiple statistics in simultaneously presented visual and auditory input. Experiment 1 used a cross-situational learning paradigm to test whether English speakers were able to use co-occurrences to learn word-to-object mappings and concurrently form object categories based on the commonalities across training stimuli. Experiment 2 replicated the first experiment and further examined whether speakers of Mandarin, a language in which final syllables of object names are more predictive of category membership than English, were able to learn words and form object categories when trained with the same type of structures. The results indicate that both groups of learners successfully extracted multiple levels of co-occurrence and used them to learn words and object categories simultaneously. However, marked individual differences in performance were also found, suggesting possible interference and competition in processing the two concurrent streams of regularities. Copyright © 2016 Cognitive Science Society, Inc.
This task addresses a number of issues that arise in multimedia modeling with an emphasis on interactions among the atmosphere and multiple other environmental media. Approaches for working with multiple types of models and the data sets are being developed. Proper software tool...
Multiple environmental contexts and preterm birth risks
Human health is affected by simultaneous exposure to numerous stressors and amenities, but research often focuses on single exposure models. To address this, a United States county-level Multiple Environmental Domain Index (MEDI) was constructed with data representing five envir...
Performance Analysis of an Actor-Based Distributed Simulation
NASA Technical Reports Server (NTRS)
Schoeffler, James D.
1998-01-01
Object-oriented design of simulation programs appears to be very attractive because of the natural association of components in the simulated system with objects. There is great potential in distributing the simulation across several computers for the purpose of parallel computation and its consequent handling of larger problems in less elapsed time. One approach to such a design is to use "actors", that is, active objects with their own thread of control. Because these objects execute concurrently, communication is via messages. This is in contrast to an object-oriented design using passive objects where communication between objects is via method calls (direct calls when they are in the same address space and remote procedure calls when they are in different address spaces or different machines). This paper describes a performance analysis program for the evaluation of a design for distributed simulations based upon actors.
Memory and other properties of multiple test procedures generated by entangled graphs.
Maurer, Willi; Bretz, Frank
2013-05-10
Methods for addressing multiplicity in clinical trials have attracted much attention during the past 20 years. They include the investigation of new classes of multiple test procedures, such as fixed sequence, fallback and gatekeeping procedures. More recently, sequentially rejective graphical test procedures have been introduced to construct and visualize complex multiple test strategies. These methods propagate the local significance level of a rejected null hypothesis to not-yet rejected hypotheses. In the graph defining the test procedure, hypotheses together with their local significance levels are represented by weighted vertices and the propagation rule by weighted directed edges. An algorithm provides the rules for updating the local significance levels and the transition weights after rejecting an individual hypothesis. These graphical procedures have no memory in the sense that the origin of the propagated significance level is ignored in subsequent iterations. However, in some clinical trial applications, memory is desirable to reflect the underlying dependence structure of the study objectives. In such cases, it would allow the further propagation of significance levels to be dependent on their origin and thus reflect the grouped parent-descendant structures of the hypotheses. We will give examples of such situations and show how to induce memory and other properties by convex combination of several individual graphs. The resulting entangled graphs provide an intuitive way to represent the underlying relative importance relationships between the hypotheses, are as easy to perform as the original individual graphs, remain sequentially rejective and control the familywise error rate in the strong sense. Copyright © 2012 John Wiley & Sons, Ltd.
Partner violence, power and gender differences in South African adolescents’ HIV/STI behaviors
TEITELMAN, Anne M.; JEMMOTT, John B.; BELLAMY, Scarlett L.; ICARD, Larry D.; O'LEARY, Ann; HEEREN, G. Anita; NGWANE, Zolani; RATCLIFFE, Sarah J.
2016-01-01
Objectives Low relationship power and victimization by intimate partner violence (IPV) have been linked to HIV risks among adult females and adolescent girls. This article examines associations of IPV and relationship power with sexual-risk behaviors and whether the associations differ by gender among South African adolescents. Methods Sexual-risk behaviors (multiple partners in past 3 months; condom use at last sex), IPV, and relationship power were collected from 786 sexually experienced adolescents (mean age = 16.9) in Eastern Cape Province, South Africa during the 54-month follow-up of a HIV/STI risk-reduction intervention trial. Logistic regression examined associations of sexual-risk behaviors with IPV and relationship power and whether the associations differed by gender. Results Adolescent boys were less likely to report condom use at last sex (p=.001) and more likely to report multiple partners (p< .001). A Gender x IPV interaction (p=.002) revealed that as IPV victimization increased, self-reported condom use at last sex decreased among girls, but increased among boys. A Gender x Relationship Power interaction (p=.004) indicated that as relationship power increased, self-reported condom use at last sex increased among girls, but decreased among boys. A Gender x IPV interaction (p=.004) indicated that as IPV victimization increased, self-reports of having multiple partners increased among boys, but not among girls. As relationship power increased, self-reports of having multiple partners decreased irrespective of gender. Conclusions HIV risk-reduction interventions and policies should address gender differences in sexual-risk consequences of IPV and relationship power among adolescents and promote gender equity. PMID:27111184
Dynamical modelling of coordinated multiple robot systems
NASA Technical Reports Server (NTRS)
Hayati, Samad
1987-01-01
The state of the art in the modeling of the dynamics of coordinated multiple robot manipulators is summarized and various problems related to this subject are discussed. It is recognized that dynamics modeling is a component used in the design of controllers for multiple cooperating robots. As such, the discussion addresses some problems related to the control of multiple robots. The techniques used to date in the modeling of closed kinematic chains are summarized. Various efforts made to date for the control of coordinated multiple manipulators is summarized.
Bretagnolle, Vincent; Berthet, Elsa; Gross, Nicolas; Gauffre, Bertrand; Plumejeaud, Christine; Houte, Sylvie; Badenhausser, Isabelle; Monceau, Karine; Allier, Fabrice; Monestiez, Pascal; Gaba, Sabrina
2018-06-15
Agriculture is currently facing unprecedented challenges: ensuring food, fiber and energy production in the face of global change, maintaining the economic performance of farmers and preserving natural resources such as biodiversity and associated key ecosystem services for sustainable agriculture. Addressing these challenges requires innovative landscape scale farming systems that account for changing economic and environmental targets. These novel agricultural systems need to be recognized, accepted and promoted by all stakeholders, including local residents, and supported by public policies. Agroecosystems should be considered as socio-ecological systems and alternative farming systems should be based on ecological principles while taking societal needs into account. This requires an in-depth knowledge of the multiple interactions between sociological and ecological dynamics. Long Term Socio-Ecological Research platforms (LTSER) are ideal for acquiring this knowledge as they (i) are not constrained by traditional disciplinary boundaries, (ii) operate at a large spatial scale involving all stakeholders, and (iii) use systemic approaches to investigate biodiversity and ecosystem services. This study presents the socio-ecological research strategy from the LTSER "Zone Atelier Plaine & Val de Sèvre" (ZA PVS), a large study area where data has been sampled since 1994. Its global aim is to identify effective solutions for agricultural development and the conservation of biodiversity in farmlands. Three main objectives are targeted by the ZAPVS. The first objective is intensive monitoring of landscape features, the main taxa present and agricultural practices. The second objective is the experimental investigation, in real fields with local farmers, of important ecosystem functions and services, in relation to pesticide use, crop production and farming socio-economic value. The third aim is to involve stakeholders through participatory research, citizen science and the dissemination of scientific results. This paper underlines the relevance of LTSERs for addressing agricultural challenges, while acknowledging that there are some yet unsolved key challenges. Copyright © 2018 Elsevier B.V. All rights reserved.
Optimized Graph Learning Using Partial Tags and Multiple Features for Image and Video Annotation.
Song, Jingkuan; Gao, Lianli; Nie, Feiping; Shen, Heng Tao; Yan, Yan; Sebe, Nicu
2016-11-01
In multimedia annotation, due to the time constraints and the tediousness of manual tagging, it is quite common to utilize both tagged and untagged data to improve the performance of supervised learning when only limited tagged training data are available. This is often done by adding a geometry-based regularization term in the objective function of a supervised learning model. In this case, a similarity graph is indispensable to exploit the geometrical relationships among the training data points, and the graph construction scheme essentially determines the performance of these graph-based learning algorithms. However, most of the existing works construct the graph empirically and are usually based on a single feature without using the label information. In this paper, we propose a semi-supervised annotation approach by learning an optimized graph (OGL) from multi-cues (i.e., partial tags and multiple features), which can more accurately embed the relationships among the data points. Since OGL is a transductive method and cannot deal with novel data points, we further extend our model to address the out-of-sample issue. Extensive experiments on image and video annotation show the consistent superiority of OGL over the state-of-the-art methods.
Tobacco use transitions in the United States: The National Longitudinal Study of Adolescent Health
Kaufman, Annette R.; Land, Stephanie; Parascandola, Mark; Augustson, Erik; Backinger, Cathy L.
2015-01-01
Objectives The purpose of this study is to evaluate and describe transitions in cigarette and smokeless tobacco (ST) use, including dual use, prospectively from adolescence into young adulthood. Methods The current study utilizes four waves of the National Longitudinal Study of Adolescent Health (Add Health) to examine patterns of cigarette and ST use (within 30 days of survey) over time among a cohort in the United States beginning in 7th–12th grade (1995) into young adulthood (2008–2009). Transition probabilities were estimated using Markov modeling. Results Among the cohort (N = 20,774), 48.7% reported using cigarettes, 12.8% reported using ST, and 7.2% reported dual use (cigarettes and ST in the same wave) in at least one wave. In general, the risk for transitioning between cigarettes and ST was higher for males and those who were older. Dual users exhibited a high probability (81%) of continuing dual use over time. Conclusions Findings suggest that adolescents who use multiple tobacco products are likely to continue such use as they move into young adulthood. When addressing tobacco use among adolescents and young adults, multiple forms of tobacco use should be considered. PMID:26361752
Fox, Robert J; Thompson, Alan; Baker, David; Baneke, Peer; Brown, Doug; Browne, Paul; Chandraratna, Dhia; Ciccarelli, Olga; Coetzee, Timothy; Comi, Giancarlo; Feinstein, Anthony; Kapoor, Raj; Lee, Karen; Salvetti, Marco; Sharrock, Kersten; Toosy, Ahmed; Zaratin, Paola; Zuidwijk, Kim
2012-11-01
Despite significant progress in the development of therapies for relapsing MS, progressive MS remains comparatively disappointing. Our objective, in this paper, is to review the current challenges in developing therapies for progressive MS and identify key priority areas for research. A collaborative was convened by volunteer and staff leaders from several MS societies with the mission to expedite the development of effective disease-modifying and symptom management therapies for progressive forms of multiple sclerosis. Through a series of scientific and strategic planning meetings, the collaborative identified and developed new perspectives on five key priority areas for research: experimental models, identification and validation of targets and repurposing opportunities, proof-of-concept clinical trial strategies, clinical outcome measures, and symptom management and rehabilitation. Our conclusions, tackling the impediments in developing therapies for progressive MS will require an integrated, multi-disciplinary approach to enable effective translation of research into therapies for progressive MS. Engagement of the MS research community through an international effort is needed to address and fund these research priorities with the ultimate goal of expediting the development of disease-modifying and symptom-relief treatments for progressive MS.
Simulations & Measurements of Airframe Noise: A BANC Workshops Perspective
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Lockard, David
2016-01-01
Airframe noise corresponds to the acoustic radiation due to turbulent flow in the vicinity of airframe components such as high-lift devices and landing gears. Since 2010, the American Institute of Aeronautics and Astronautics has organized an ongoing series of workshops devoted to Benchmark Problems for Airframe Noise Computations (BANC). The BANC workshops are aimed at enabling a systematic progress in the understanding and high-fidelity predictions of airframe noise via collaborative investigations that integrate computational fluid dynamics, computational aeroacoustics, and in depth measurements targeting a selected set of canonical yet realistic configurations that advance the current state-of-the-art in multiple respects. Unique features of the BANC Workshops include: intrinsically multi-disciplinary focus involving both fluid dynamics and aeroacoustics, holistic rather than predictive emphasis, concurrent, long term evolution of experiments and simulations with a powerful interplay between the two, and strongly integrative nature by virtue of multi-team, multi-facility, multiple-entry measurements. This paper illustrates these features in the context of the BANC problem categories and outlines some of the challenges involved and how they were addressed. A brief summary of the BANC effort, including its technical objectives, strategy, and selective outcomes thus far is also included.
Thompson, Alan; Baker, David; Baneke, Peer; Brown, Doug; Browne, Paul; Chandraratna, Dhia; Ciccarelli, Olga; Coetzee, Timothy; Comi, Giancarlo; Feinstein, Anthony; Kapoor, Raj; Lee, Karen; Salvetti, Marco; Sharrock, Kersten; Toosy, Ahmed; Zaratin, Paola; Zuidwijk, Kim
2012-01-01
Despite significant progress in the development of therapies for relapsing MS, progressive MS remains comparatively disappointing. Our objective, in this paper, is to review the current challenges in developing therapies for progressive MS and identify key priority areas for research. A collaborative was convened by volunteer and staff leaders from several MS societies with the mission to expedite the development of effective disease-modifying and symptom management therapies for progressive forms of multiple sclerosis. Through a series of scientific and strategic planning meetings, the collaborative identified and developed new perspectives on five key priority areas for research: experimental models, identification and validation of targets and repurposing opportunities, proof-of-concept clinical trial strategies, clinical outcome measures, and symptom management and rehabilitation. Our conclusions, tackling the impediments in developing therapies for progressive MS will require an integrated, multi-disciplinary approach to enable effective translation of research into therapies for progressive MS. Engagement of the MS research community through an international effort is needed to address and fund these research priorities with the ultimate goal of expediting the development of disease-modifying and symptom-relief treatments for progressive MS. PMID:22917690
Exploring the quality of life (QOL) in the Indian software industry: a public health viewpoint.
Jha, Ayan; Sadhukhan, Sanjoy Kumar; Velusamy, Saravanan; Banerjee, Gargi; Banerjee, Arpita; Saha, Amitava; Talukdar, Sumit
2012-04-01
Our objectives were to describe the QOL and its determinants among software professionals of Kolkata, and to compare the same according to information technology (IT) and IT-enabled services (ITeS) sub-sectors. An institution-based cross-sectional study was conducted among software professionals of Kolkata applying a two-stage stratified random sampling technique. The WHO QOL BREF questionnaire was administered along with a list of pertinent variables. Overall, the analysis for 338 software professionals (177 IT and 161 ITeS) clearly demonstrated significant differences between mean scores of these two sectors for each of the six outcome domains of WHO QOL BREF. Multilevel multivariate analysis outlined 13 significant predictors of QOL-four positive (age, regular fitness regimes, foreign placements and changing companies frequently) and the rest of the nine, negative (multiple sex partners, multiple addictions, extended working hours, night-shift duties, income, expenditure, carrying office work home, current illness and ITeS company type). Our study helps in obtaining a clear understanding of the multifaceted risk factors prevailing in this sector, the majority of which can be effectively addressed by specific health promotional interventions. A dedicated health policy is mandated at both government and company levels.
Ball, E M.; Banks, M B.
2001-05-01
Objectives: To assess determinants of nasal continuous positive airway pressure (CPAP) compliance when applied in a community setting.Background: One-third of obstructive sleep apnea patients eventually refuse CPAP therapy. Treatment outcomes may be improved by identifying predictors of CPAP failure, including whether management by primary care physicians without sleep consultation affects results.Methods: Polysomnogram, chart review, and questionnaire results for regular CPAP users (n=123) were compared with those returning the CPAP machine (n=26).Results: Polysomnographic data and the presence of multiple sleep disorders were only modestly predictive of CPAP compliance. Striking differences in questionnaire responses separated CPAP users from non-users, who reported less satisfaction with all phases of their diagnosis and management. Rates of CPAP use were not significantly different between patients managed solely by their primary care physician or by a sleep consultant.Conclusions: Polysomnographic findings are unlikely to identify eventual CPAP non-compliers in a cost-effective fashion. Improvements in sleep apnea management may result from addressing the role of personality factors and multiple sleep disorders in determining compliance. In this practice setting, management by primary care physicians did not significantly degrade CPAP compliance.
Algorithms for Heterogeneous, Multiple Depot, Multiple Unmanned Vehicle Path Planning Problems
Sundar, Kaarthik; Rathinam, Sivakumar
2016-12-26
Unmanned vehicles, both aerial and ground, are being used in several monitoring applications to collect data from a set of targets. This article addresses a problem where a group of heterogeneous aerial or ground vehicles with different motion constraints located at distinct depots visit a set of targets. The vehicles also may be equipped with different sensors, and therefore, a target may not be visited by any vehicle. The objective is to find an optimal path for each vehicle starting and ending at its respective depot such that each target is visited at least once by some vehicle, the vehicle–targetmore » constraints are satisfied, and the sum of the length of the paths for all the vehicles is minimized. Two variants of this problem are formulated (one for ground vehicles and another for aerial vehicles) as mixed-integer linear programs and a branchand- cut algorithm is developed to compute an optimal solution to each of the variants. Computational results show that optimal solutions for problems involving 100 targets and 5 vehicles can be obtained within 300 seconds on average, further corroborating the effectiveness of the proposed approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melton, Ron
The Pacific Northwest Smart Grid Demonstration (PNWSGD), a $179 million project that was co-funded by the U.S. Department of Energy (DOE) in late 2009, was one of the largest and most comprehensive demonstrations of electricity grid modernization ever completed. The project was one of 16 regional smart grid demonstrations funded by the American Recovery and Reinvestment Act. It was the only demonstration that included multiple states and cooperation from multiple electric utilities, including rural electric co-ops, investor-owned, municipal, and other public utilities. No fewer than 55 unique instantiations of distinct smart grid systems were demonstrated at the projects’ sites. Themore » local objectives for these systems included improved reliability, energy conservation, improved efficiency, and demand responsiveness. The demonstration developed and deployed an innovative transactive system, unique in the world, that coordinated many of the project’s distributed energy resources and demand-responsive components. With the transactive system, additional regional objectives were also addressed, including the mitigation of renewable energy intermittency and the flattening of system load. Using the transactive system, the project coordinated a regional response across the 11 utilities. This region-wide connection from the transmission system down to individual premises equipment was one of the major successes of the project. The project showed that this can be done and assets at the end points can respond dynamically on a wide scale. In principle, a transactive system of this type might eventually help coordinate electricity supply, transmission, distribution, and end uses by distributing mostly automated control responsibilities among the many distributed smart grid domain members and their smart devices.« less
Activities Joining Learning Objectives to Assessments in Introductory Astronomy
NASA Astrophysics Data System (ADS)
Palen, Stacy E.; Larson, Ana M.
2015-01-01
In recent years, accreditation boards and other governing bodies have been pushing hard for explicit learning goals and quantitative measures of assessment for general education courses such as Astronomy 101. This added assessment burden can be problematic, especially for harried adjuncts teaching multiple courses at multiple institutions. It would be helpful to have a field-tested set of combined hands-on activities and assessment tools that help instructors meet these assessment requirements. The authors have produced just such a set. We have been using hands-on activities in our classrooms for more than 15 years. These activities require no special equipment or preparation and can be completed within an hour by most students working in groups of two or three. The sections of each activity are arranged in steps, guiding the students from initial knowledge-level questions or practice to a final evaluation or synthesis of what they have just accomplished. Students thus get practice thinking at higher cognitive levels. A recent addition to these activities is the inclusion of formalized learning objectives and accompanying pre- and post-activity questions. The pre-activity questions address common misconceptions, relate familiar analogous terrestrial examples to the activity, and act as a brief refresher meta-concepts like scale factors, measurements, and basic mathematics review. The post-activity questions review the most important concepts introduced in the activity. We present a number of examples as well as a summary as to how we have initiated their use in a large lecture setting of 300 students, in smaller classrooms of 15 students, and in a community college online course.
Lv, Ying; Huang, Guohe; Sun, Wei
2013-01-01
A scenario-based interval two-phase fuzzy programming (SITF) method was developed for water resources planning in a wetland ecosystem. The SITF approach incorporates two-phase fuzzy programming, interval mathematical programming, and scenario analysis within a general framework. It can tackle fuzzy and interval uncertainties in terms of cost coefficients, resources availabilities, water demands, hydrological conditions and other parameters within a multi-source supply and multi-sector consumption context. The SITF method has the advantage in effectively improving the membership degrees of the system objective and all fuzzy constraints, so that both higher satisfactory grade of the objective and more efficient utilization of system resources can be guaranteed. Under the systematic consideration of water demands by the ecosystem, the SITF method was successfully applied to Baiyangdian Lake, which is the largest wetland in North China. Multi-source supplies (including the inter-basin water sources of Yuecheng Reservoir and Yellow River), and multiple water users (including agricultural, industrial and domestic sectors) were taken into account. The results indicated that, the SITF approach would generate useful solutions to identify long-term water allocation and transfer schemes under multiple economic, environmental, ecological, and system-security targets. It can address a comparative analysis for the system satisfactory degrees of decisions under various policy scenarios. Moreover, it is of significance to quantify the relationship between hydrological change and human activities, such that a scheme on ecologically sustainable water supply to Baiyangdian Lake can be achieved. Copyright © 2012 Elsevier B.V. All rights reserved.
Warner, Daniel A
2014-11-01
Environmental factors strongly influence phenotypic variation within populations. The environment contributes to this variation in two ways: (1) by acting as a determinant of phenotypic variation (i.e., plastic responses) and (2) as an agent of selection that "chooses" among existing phenotypes. Understanding how these two environmental forces contribute to phenotypic variation is a major goal in the field of evolutionary biology and a primary objective of my research program. The objective of this article is to provide a framework to guide studies of environmental sources of phenotypic variation (specifically, developmental plasticity and maternal effects, and their adaptive significance). Two case studies from my research on reptiles are used to illustrate the general approaches I have taken to address these conceptual topics. Some key points for advancing our understanding of environmental influences on phenotypic variation include (1) merging laboratory-based research that identifies specific environmental effects with field studies to validate ecological relevance; (2) using controlled experimental approaches that mimic complex environments found in nature; (3) integrating data across biological fields (e.g., genetics, morphology, physiology, behavior, and ecology) under an evolutionary framework to provide novel insights into the underlying mechanisms that generate phenotypic variation; (4) assessing fitness consequences using measurements of survival and/or reproductive success across ontogeny (from embryos to adults) and under multiple ecologically-meaningful contexts; and (5) quantifying the strength and form of natural selection in multiple populations over multiple periods of time to understand the spatial and temporal consistency of phenotypic selection. Research programs that focus on organisms that are amenable to these approaches will provide the most promise for advancing our understanding of the environmental factors that generate the remarkable phenotypic diversity observed within populations. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Real object-based 360-degree integral-floating display using multiple depth camera
NASA Astrophysics Data System (ADS)
Erdenebat, Munkh-Uchral; Dashdavaa, Erkhembaatar; Kwon, Ki-Chul; Wu, Hui-Ying; Yoo, Kwan-Hee; Kim, Young-Seok; Kim, Nam
2015-03-01
A novel 360-degree integral-floating display based on the real object is proposed. The general procedure of the display system is similar with conventional 360-degree integral-floating displays. Unlike previously presented 360-degree displays, the proposed system displays the 3D image generated from the real object in 360-degree viewing zone. In order to display real object in 360-degree viewing zone, multiple depth camera have been utilized to acquire the depth information around the object. Then, the 3D point cloud representations of the real object are reconstructed according to the acquired depth information. By using a special point cloud registration method, the multiple virtual 3D point cloud representations captured by each depth camera are combined as single synthetic 3D point cloud model, and the elemental image arrays are generated for the newly synthesized 3D point cloud model from the given anamorphic optic system's angular step. The theory has been verified experimentally, and it shows that the proposed 360-degree integral-floating display can be an excellent way to display real object in the 360-degree viewing zone.
Kuo, Kevin H M
2017-01-01
The issue of multiple testing, also termed multiplicity, is ubiquitous in studies where multiple hypotheses are tested simultaneously. Genome-wide association study (GWAS), a type of genetic association study that has gained popularity in the past decade, is most susceptible to the issue of multiple testing. Different methodologies have been employed to address the issue of multiple testing in GWAS. The purpose of the review is to examine the methodologies employed in dealing with multiple testing in the context of gene discovery using GWAS in sickle cell disease complications.
Cost-Benefit Analysis of the 2006 Air Force Materiel Command Test and Evaluation Proposal
2008-01-01
research organization providing objective analysis and effective solutions that address the challenges facing the public and private sectors...distribution unlimited The RAND Corporation is a nonprofit research organization providing objective analysis and effective solutions that address the...paper) 1. United States. Air Force Materiel Command—Reorganization—Cost effectiveness . I. Thirtle, Michael R., 1967– UG633.2.C67 2008
A Scalable, Open Source Platform for Data Processing, Archiving and Dissemination
2016-01-01
Object Oriented Data Technology (OODT) big data toolkit developed by NASA and the Work-flow INstance Generation and Selection (WINGS) scientific work...to several challenge big data problems and demonstrated the utility of OODT-WINGS in addressing them. Specific demonstrated analyses address i...source software, Apache, Object Oriented Data Technology, OODT, semantic work-flows, WINGS, big data , work- flow management 16. SECURITY CLASSIFICATION OF
Ho, Kevin I-J; Leung, Chi-Sing; Sum, John
2010-06-01
In the last two decades, many online fault/noise injection algorithms have been developed to attain a fault tolerant neural network. However, not much theoretical works related to their convergence and objective functions have been reported. This paper studies six common fault/noise-injection-based online learning algorithms for radial basis function (RBF) networks, namely 1) injecting additive input noise, 2) injecting additive/multiplicative weight noise, 3) injecting multiplicative node noise, 4) injecting multiweight fault (random disconnection of weights), 5) injecting multinode fault during training, and 6) weight decay with injecting multinode fault. Based on the Gladyshev theorem, we show that the convergence of these six online algorithms is almost sure. Moreover, their true objective functions being minimized are derived. For injecting additive input noise during training, the objective function is identical to that of the Tikhonov regularizer approach. For injecting additive/multiplicative weight noise during training, the objective function is the simple mean square training error. Thus, injecting additive/multiplicative weight noise during training cannot improve the fault tolerance of an RBF network. Similar to injective additive input noise, the objective functions of other fault/noise-injection-based online algorithms contain a mean square error term and a specialized regularization term.
Multiple Watershed Scales Approach for Placement of Best Managemnet Practices in SUSTAIN
Watershed and stormwater managers need modeling tools to evaluate how best to address environmental quality restoration and protection needs in urban and developing areas. Significant investments are needed to protect and restore water quality, address total maximum daily loads ...
Advancing Imitation and Requesting Skills in Toddlers with Down Syndrome
ERIC Educational Resources Information Center
Feeley, Kathleen M.; Jones, Emily A.; Blackburn, Catherine; Bauer, Sara
2011-01-01
Drawing upon information about the Down syndrome behavioral phenotype and empirically based intervention strategies, we examined intervention addressing early communication impairments in young children with Down syndrome. Intervention involved multiple opportunities, shaping, prompting, and reinforcement to address both verbal imitation and…
NASA Astrophysics Data System (ADS)
Padhi, Amit; Mallick, Subhashis
2014-03-01
Inversion of band- and offset-limited single component (P wave) seismic data does not provide robust estimates of subsurface elastic parameters and density. Multicomponent seismic data can, in principle, circumvent this limitation but adds to the complexity of the inversion algorithm because it requires simultaneous optimization of multiple objective functions, one for each data component. In seismology, these multiple objectives are typically handled by constructing a single objective given as a weighted sum of the objectives of individual data components and sometimes with additional regularization terms reflecting their interdependence; which is then followed by a single objective optimization. Multi-objective problems, inclusive of the multicomponent seismic inversion are however non-linear. They have non-unique solutions, known as the Pareto-optimal solutions. Therefore, casting such problems as a single objective optimization provides one out of the entire set of the Pareto-optimal solutions, which in turn, may be biased by the choice of the weights. To handle multiple objectives, it is thus appropriate to treat the objective as a vector and simultaneously optimize each of its components so that the entire Pareto-optimal set of solutions could be estimated. This paper proposes such a novel multi-objective methodology using a non-dominated sorting genetic algorithm for waveform inversion of multicomponent seismic data. The applicability of the method is demonstrated using synthetic data generated from multilayer models based on a real well log. We document that the proposed method can reliably extract subsurface elastic parameters and density from multicomponent seismic data both when the subsurface is considered isotropic and transversely isotropic with a vertical symmetry axis. We also compute approximate uncertainty values in the derived parameters. Although we restrict our inversion applications to horizontally stratified models, we outline a practical procedure of extending the method to approximately include local dips for each source-receiver offset pair. Finally, the applicability of the proposed method is not just limited to seismic inversion but it could be used to invert different data types not only requiring multiple objectives but also multiple physics to describe them.
Classifying four-category visual objects using multiple ERP components in single-trial ERP.
Qin, Yu; Zhan, Yu; Wang, Changming; Zhang, Jiacai; Yao, Li; Guo, Xiaojuan; Wu, Xia; Hu, Bin
2016-08-01
Object categorization using single-trial electroencephalography (EEG) data measured while participants view images has been studied intensively. In previous studies, multiple event-related potential (ERP) components (e.g., P1, N1, P2, and P3) were used to improve the performance of object categorization of visual stimuli. In this study, we introduce a novel method that uses multiple-kernel support vector machine to fuse multiple ERP component features. We investigate whether fusing the potential complementary information of different ERP components (e.g., P1, N1, P2a, and P2b) can improve the performance of four-category visual object classification in single-trial EEGs. We also compare the classification accuracy of different ERP component fusion methods. Our experimental results indicate that the classification accuracy increases through multiple ERP fusion. Additional comparative analyses indicate that the multiple-kernel fusion method can achieve a mean classification accuracy higher than 72 %, which is substantially better than that achieved with any single ERP component feature (55.07 % for the best single ERP component, N1). We compare the classification results with those of other fusion methods and determine that the accuracy of the multiple-kernel fusion method is 5.47, 4.06, and 16.90 % higher than those of feature concatenation, feature extraction, and decision fusion, respectively. Our study shows that our multiple-kernel fusion method outperforms other fusion methods and thus provides a means to improve the classification performance of single-trial ERPs in brain-computer interface research.
We introduce a hierarchical optimization framework for spatially targeting green infrastructure (GI) incentive policies in order to meet objectives related to cost and environmental effectiveness. The framework explicitly simulates the interaction between multiple levels of polic...
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Dong, Zhen; Liu, Yuan; Liang, Fuxun; Wang, Yongjun
2017-04-01
In recent years, updating the inventory of road infrastructures based on field work is labor intensive, time consuming, and costly. Fortunately, vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. However, robust recognition of road facilities from huge volumes of 3D point clouds is still a challenging issue because of complicated and incomplete structures, occlusions and varied point densities. Most existing methods utilize point or object based features to recognize object candidates, and can only extract limited types of objects with a relatively low recognition rate, especially for incomplete and small objects. To overcome these drawbacks, this paper proposes a semantic labeling framework by combing multiple aggregation levels (point-segment-object) of features and contextual features to recognize road facilities, such as road surfaces, road boundaries, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, and cars, for highway infrastructure inventory. The proposed method first identifies ground and non-ground points, and extracts road surfaces facilities from ground points. Non-ground points are segmented into individual candidate objects based on the proposed multi-rule region growing method. Then, the multiple aggregation levels of features and the contextual features (relative positions, relative directions, and spatial patterns) associated with each candidate object are calculated and fed into a SVM classifier to label the corresponding candidate object. The recognition performance of combining multiple aggregation levels and contextual features was compared with single level (point, segment, or object) based features using large-scale highway scene point clouds. Comparative studies demonstrated that the proposed semantic labeling framework significantly improves road facilities recognition precision (90.6%) and recall (91.2%), particularly for incomplete and small objects.
Cha, Shi-Cho; Chen, Jyun-Fu
2017-01-01
Bluetooth Low Energy (BLE) has emerged as one of the most promising technologies to enable the Internet-of-Things (IoT) paradigm. In BLE-based IoT applications, e.g., wearables-oriented service applications, the Bluetooth MAC addresses of devices will be swapped for device pairings. The random address technique is adopted to prevent malicious users from tracking the victim’s devices with stationary Bluetooth MAC addresses and accordingly the device privacy can be preserved. However, there exists a tradeoff between privacy and security in the random address technique. That is, when device pairing is launched and one device cannot actually identify another one with addresses, it provides an opportunity for malicious users to break the system security via impersonation attacks. Hence, using random addresses may lead to higher security risks. In this study, we point out the potential risk of using random address technique and then present critical security requirements for BLE-based IoT applications. To fulfill the claimed requirements, we present a privacy-aware mechanism, which is based on elliptic curve cryptography, for secure communication and access-control among BLE-based IoT objects. Moreover, to ensure the security of smartphone application associated with BLE-based IoT objects, we construct a Smart Contract-based Investigation Report Management framework (SCIRM) which enables smartphone application users to obtain security inspection reports of BLE-based applications of interest with smart contracts. PMID:29036900
Cha, Shi-Cho; Yeh, Kuo-Hui; Chen, Jyun-Fu
2017-10-14
Bluetooth Low Energy (BLE) has emerged as one of the most promising technologies to enable the Internet-of-Things (IoT) paradigm. In BLE-based IoT applications, e.g., wearables-oriented service applications, the Bluetooth MAC addresses of devices will be swapped for device pairings. The random address technique is adopted to prevent malicious users from tracking the victim's devices with stationary Bluetooth MAC addresses and accordingly the device privacy can be preserved. However, there exists a tradeoff between privacy and security in the random address technique. That is, when device pairing is launched and one device cannot actually identify another one with addresses, it provides an opportunity for malicious users to break the system security via impersonation attacks. Hence, using random addresses may lead to higher security risks. In this study, we point out the potential risk of using random address technique and then present critical security requirements for BLE-based IoT applications. To fulfill the claimed requirements, we present a privacy-aware mechanism, which is based on elliptic curve cryptography, for secure communication and access-control among BLE-based IoT objects. Moreover, to ensure the security of smartphone application associated with BLE-based IoT objects, we construct a Smart Contract-based Investigation Report Management framework (SCIRM) which enables smartphone application users to obtain security inspection reports of BLE-based applications of interest with smart contracts.
Tickling the retina: integration of subthreshold electrical pulses can activate retinal neurons
NASA Astrophysics Data System (ADS)
Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.
2016-08-01
Objective. The field of retinal prosthetics has made major progress over the last decade, restoring visual percepts to people suffering from retinitis pigmentosa. The stimulation pulses used by present implants are suprathreshold, meaning individual pulses are designed to activate the retina. In this paper we explore subthreshold pulse sequences as an alternate stimulation paradigm. Subthreshold pulses have the potential to address important open problems such as fading of visual percepts when patients are stimulated at moderate pulse repetition rates and the difficulty in preferentially stimulating different retinal pathways. Approach. As a first step in addressing these issues we used Gaussian white noise electrical stimulation combined with spike-triggered averaging to interrogate whether a subthreshold sequence of pulses can be used to activate the mouse retina. Main results. We demonstrate that the retinal network can integrate multiple subthreshold electrical stimuli under an experimental paradigm immediately relevant to retinal prostheses. Furthermore, these characteristic stimulus sequences varied in their shape and integration window length across the population of retinal ganglion cells. Significance. Because the subthreshold sequences activate the retina at stimulation rates that would typically induce strong fading (25 Hz), such retinal ‘tickling’ has the potential to minimize the fading problem. Furthermore, the diversity found across the cell population in characteristic pulse sequences suggests that these sequences could be used to selectively address the different retinal pathways (e.g. ON versus OFF). Both of these outcomes may significantly improve visual perception in retinal implant patients.
Depression and Genetic Causal Attribution of Epilepsy in Multiplex Epilepsy Families
Sorge, Shawn T.; Hesdorffer, Dale C.; Phelan, Jo C.; Winawer, Melodie R.; Shostak, Sara; Goldsmith, Jeff; Chung, Wendy K.; Ottman, Ruth
2016-01-01
Summary Objectives Rapid advances in genetic research and increased use of genetic testing have increased the emphasis on genetic causes of epilepsy in patient encounters. Research in other disorders suggests that genetic causal attributions can influence patients’ psychological responses and coping strategies, but little is currently known about how epilepsy patients and their relatives will respond to genetic attributions of epilepsy. We investigated the possibility that depression, the most frequent psychiatric comorbidity in the epilepsies, might be related to the perception that epilepsy has a genetic cause among members of families containing multiple individuals with epilepsy. Methods A self-administered survey was completed by 417 individuals in 104 families averaging four individuals with epilepsy per family. Current depression was measured with the PHQ-9. Genetic causal attribution was assessed by three questions addressing: perceived likelihood of having an epilepsy-related mutation, perceived role of genetics in causing epilepsy in the family, and (in individuals with epilepsy) perceived influence of genetics in causing the individual’s epilepsy. Relatives without epilepsy were asked about their perceived chance of developing epilepsy in the future, compared with the average person. Results Prevalence of current depression was 14.8% in 182 individuals with epilepsy, 6.5% in 184 biological relatives without epilepsy, and 3.9% in 51 married-in individuals. Among individuals with epilepsy, depression was unrelated to genetic attribution. Among biological relatives without epilepsy, however, prevalence of depression increased with increasing perceived chance of having an epilepsy-related mutation (p=0.02). This association was not mediated by perceived future epilepsy risk among relatives without epilepsy. Significance Depression is associated with perceived likelihood of carrying an epilepsy-related mutation among individuals without epilepsy in families containing multiple affected individuals. This association should be considered when addressing mental health issues in such families. PMID:27558297
Emerging Relationships between Exercise, Sensory Nerves, and Neuropathic Pain
Cooper, Michael A.; Kluding, Patricia M.; Wright, Douglas E.
2016-01-01
The utilization of physical activity as a therapeutic tool is rapidly growing in the medical community and the role exercise may offer in the alleviation of painful disease states is an emerging research area. The development of neuropathic pain is a complex mechanism, which clinicians and researchers are continually working to better understand. The limited therapies available for alleviation of these pain states are still focused on pain abatement and as opposed to treating underlying mechanisms. The continued research into exercise and pain may address these underlying mechanisms, but the mechanisms which exercise acts through are still poorly understood. The objective of this review is to provide an overview of how the peripheral nervous system responds to exercise, the relationship of inflammation and exercise, and experimental and clinical use of exercise to treat pain. Although pain is associated with many conditions, this review highlights pain associated with diabetes as well as experimental studies on nerve damages-associated pain. Because of the global effects of exercise across multiple organ systems, exercise intervention can address multiple problems across the entire nervous system through a single intervention. This is a double-edged sword however, as the global interactions of exercise also require in depth investigations to include and identify the many changes that can occur after physical activity. A continued investment into research is necessary to advance the adoption of physical activity as a beneficial remedy for neuropathic pain. The following highlights our current understanding of how exercise alters pain, the varied pain models used to explore exercise intervention, and the molecular pathways leading to the physiological and pathological changes following exercise intervention. PMID:27601974
Experimental palaeobiomechanics: What can engineering tell us about evolution in deep time?
NASA Astrophysics Data System (ADS)
Anderson, Philip
2016-04-01
What did Tyrannosaurus rex eat? This is the sort of question that immediately bombards any palaeontologist when interacting with the general public. Even among scientists, how extinct animals moved or fed is a major objective of the palaeobiological research agenda. The last decade has seen a sharp increase in the technology and experimental methods available for collecting biomechanical data, which has greatly improved out ability to examine the function of both live and extinct animals. With new technologies and methods come new pitfalls and opportunities. In this review, I address three aspects of experimental biomechanics that exemplify the challenges and opportunities it provides for addressing deep-time problems in palaeontology. 1) Interpretation: It has never been easier to acquire large amounts of high-quality biomechanical data on extinct animals. However, the lack of behavioural information means that interpreting this data can be problematic. We will never know precisely what a dinosaur ate, but we can explore what constraints there might have been on the mechanical function of its jaws. Palaeobiomechanics defines potential function and becomes especially effective when dealing with multiple examples. 2) Comparison: Understanding the potential function of one extinct animal is interesting; however, examining mechanical features across multiple taxa allows for a greater understanding of biomechanical variation. Comparative studies help identify common trends and underlying mechanical principles which can have long reaching influences on morphological evolution. 3) Evolution: The physical principles established through comparative biomechanical studies can be utilized in phylogenetic comparative methods in order to explore evolutionary morphology across clades. Comparative evolutionary biomechanics offers potential for exploring the evolution of functional systems in deep time utilizing experimental biomechanical data.
Lipsky, Alyson B; Gribble, James N; Cahaelen, Linda; Sharma, Suneeta
2016-01-01
ABSTRACT In global health, partnerships between practitioners and policy makers facilitate stakeholders in jointly addressing those issues that require multiple perspectives for developing, implementing, and evaluating plans, strategies, and programs. For family planning, costed implementation plans (CIPs) are developed through a strategic government-led consultative process that results in a detailed plan for program activities and an estimate of the funding required to achieve an established set of goals. Since 2009, many countries have developed CIPs. Conventionally, the CIP approach has not been defined with partnerships as a focal point; nevertheless, cooperation between key stakeholders is vital to CIP development and execution. Uganda launched a CIP in November 2014, thus providing an opportunity to examine the process through a partnership lens. This article describes Uganda’s CIP development process in detail, grounded in a framework for assessing partnerships, and provides the findings from 22 key informant interviews. Findings reveal strengths in Uganda’s CIP development process, such as willingness to adapt and strong senior management support. However, the evaluation also highlighted challenges, including district health officers (DHOs), who are a key group of implementers, feeling excluded from the development process. There was also a lack of planning around long-term partnership practices that could help address anticipated execution challenges. The authors recommend that future CIP development efforts use a long-term partnership strategy that fosters accountability by encompassing both the short-term goal of developing the CIP and the longer-term goal of achieving the CIP objectives. Although this study focused on Uganda’s CIP for family planning, its lessons have implications for any policy or strategy development efforts that require multiple stakeholders to ensure successful execution. PMID:27353621
Using Online Health Communities to Deliver Patient-Centered Care to People With Chronic Conditions
2013-01-01
Background Our health care system faces major threats as the number of people with multiple chronic conditions rises dramatically. Objective To study the use of Online Health Communities (OHCs) as a tool to facilitate high-quality and affordable health care for future generations. Methods OHCs are Internet-based platforms that unite either a group of patients, a group of professionals, or a mixture of both. Members interact using modern communication technologies such as blogs, chats, forums, and wikis. We illustrate the use of OHCs for ParkinsonNet, a professional network for Parkinson disease whose participants—both patients and professionals—use various types of OHCs to deliver patient-centered care. Results We discuss several potential applications in clinical practice. First, due to rapid advances in medical knowledge, many health professionals lack sufficient expertise to address the complex health care needs of chronic patients. OHCs can be used to share experiences, exchange knowledge, and increase disease-specific expertise. Second, current health care delivery is fragmented, as many patients acquire relationships with multiple professionals and institutions. OHCs can bridge geographical distances and enable interdisciplinary collaboration across institutions and traditional echelons. Third, chronic patients lack adequate tools to self-manage their disease. OHCs can be used to actively engage and empower patients in their health care process and to tailor care to their individual needs. Personal health communities of individual patients offer unique opportunities to store all medical information in one central place, while allowing transparent communication across all members of each patient’s health care team. Conclusions OHCs are a powerful tool to address some of the challenges chronic care faces today. OHCs help to facilitate communication among professionals and patients and support coordination of care across traditional echelons, which does not happen spontaneously in busy practice. PMID:23803284
Walworth, Darcy D; Register, Dena; Engel, Judy Nguyen
2009-01-01
The purposes of this paper were to identify and compare goals and objectives addressed by music therapists that are contained in the SCERTS Model, for use with children at risk or diagnosed with a communication impartment including Autism Spectrum Disorder (ASD). A video analysis of music therapists working with clients at risk or diagnosed with ASD (N = 33) was conducted to: (a) identify the areas of the SCERTS assessment model that music therapists are currently addressing within their sessions for clients with ASD, and (b) compare the frequency of SCERTS domains and goals addressed by music therapists within sessions. Results of the analysis revealed that all three domains of social communication, emotional regulation, and transactional support were addressed within music therapy sessions. Within each domain both broad goals were all addressed including joint attention and symbol use for social communication, self-regulation and mutual regulation for emotional regulation, and interpersonal support and learning support for transactional support. Overall, music therapists addressed transactional support goals and subgoals more often than social communication and emotional regulation goals and subgoals. The highest frequency goal area addressed was interpersonal support (73.96%) and the lowest goal area addressed was joint attention (35.96%). For the social partner and language partner language stages, 58 of the 320 possible subgoals were addressed with 90% frequency or higher, while 13 of the same subgoals were never addressed. The SCERTS Model is designed for use by a multidisciplinary team of professionals and family members throughout a client's treatment and contains an ongoing assessment tool with resulting goals and objectives. This analysis indicates that many SCERTS goals and objectives can be addressed in music therapy interventions. Additionally, goals and subgoals not previously recognized in music therapy treatment can be generated by the use of the SCERTS Model.
Debris Hazards At Civil Airports
DOT National Transportation Integrated Search
1996-07-05
This advisory circular (AC) discusses problems of debris at airports, gives : information on foreign objects, and tells how to eliminate such objects from operational areas. It also addresses the acquisition of power sweepers : for foreign object dam...