Science.gov

Sample records for address regional biomass

  1. Northeast Regional Biomass Program

    SciTech Connect

    Lusk, P.D.

    1992-12-01

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  2. Northeast Regional Biomass Program

    SciTech Connect

    O'Connell, R.A.

    1991-11-01

    The management structure and program objectives for the Northeast Regional Biomass Program (NRBP) remain unchanged from previous years. Additional funding was provided by the Bonneville Power Administration Regional Biomass Program to continue the publication of articles in the Biologue. The Western Area Power Administration and the Council of Great Lakes Governors funded the project Characterization of Emissions from Burning Woodwaste''. A grant for the ninth year was received from DOE. The Northeast Regional Biomass Steering Committee selected the following four projects for funding for the next fiscal year. (1) Wood Waste Utilization Conference, (2) Performance Evaluation of Wood Systems in Commercial Facilities, (3) Wood Energy Market Utilization Training, (4) Update of the Facility Directory.

  3. Northeast Regional Biomass Energy Program

    SciTech Connect

    O'Connell, R.A.

    1992-04-01

    The Northeast Regional Biomass Program (NRBP) is entering its ninth year of operation. The management and the objectives have virtually remained unchanged and are stated as follows. The program conducted by NRBP has three basic features: (1) a state grant component that provides funds (with a 50 percent matching requirement) to each of the states in the region to strengthen and integrate the work of state agencies involved in biomass energy; (2) a series of technical reports and studies in areas that have been identified as being of critical importance to the development of biomass energy in the region; and (3) a continuous long range planning component with heavy private sector involvement that helps to identify activities necessary to spur greater development and use of biomass energy in the Northeast.

  4. A region addresses patient safety.

    PubMed

    Feinstein, Karen Wolk; Grunden, Naida; Harrison, Edward I

    2002-06-01

    The Pittsburgh Regional Healthcare Initiative (PRHI) is a coalition of 35 hospitals, 4 major insurers, more than 30 major and small-business health care purchasers, dozens of corporate and civic leaders, organized labor, and partnerships with state and federal government all working together to deliver perfect patient care throughout Southwestern Pennsylvania. PRHI believes that in pursuing perfection, many of the challenges facing today's health care delivery system (eg, waste and error in the delivery of care, rising costs, frustration and shortage among clinicians and workers, financial distress, overcapacity, and lack of access to care) will be addressed. PRHI has identified patient safety (nosocomial infections and medication errors) and 5 clinical areas (obstetrics, orthopedic surgery, cardiac surgery, depression, and diabetes) as ideal starting points. In each of these areas of work, PRHI partners have assembled multifacility/multidisciplinary groups charged with defining perfection, establishing region-wide reporting systems, and devising and implementing recommended improvement strategies and interventions. Many design and conceptual elements of the PRHI strategy are adapted from the Toyota Production System and its Pittsburgh derivative, the Alcoa Business System. PRHI is in the proof-of-concept phase of development. PMID:12032502

  5. The regional environmental impact of biomass production

    SciTech Connect

    Graham, R.L.

    1994-09-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops. The subject is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of the alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing energy crops. I present an approach for quantitatively evaluating the potential environmental impact of growing energy crops at a regional scale that accounts for the environmental and economic context of the crops. However, to set the stage for this discussion, I begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics.

  6. 7 CFR 210.30 - Regional office addresses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE CHILD NUTRITION PROGRAMS NATIONAL SCHOOL LUNCH PROGRAM Additional Provisions § 210.30 Regional office addresses. School food authorities desiring information concerning the Program should write...

  7. 7 CFR 210.30 - Regional office addresses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE CHILD NUTRITION PROGRAMS NATIONAL SCHOOL LUNCH PROGRAM Additional Provisions § 210.30 Regional office addresses. School food authorities desiring information concerning the Program should write...

  8. Great Lakes Biomass State and Regional Partnership (GLBSRP)

    SciTech Connect

    Kuzel, Frederic

    2009-09-01

    The Council of Great Lakes Governors administered the Great Lakes Biomass State and Regional Partnership (GLBSRP) under contract with the U. S. Department of Energy (DOE). This Partnership grew out of the existing Regional Biomass Energy Program which the Council had administered since 1983. The GLBSRP includes the States of Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio and Wisconsin. The GLBSRP's overall goal is to facilitate the increased production and use of bioenergy and biobased products throughout the region. The GLBSRP has traditionally addressed its goals and objectives through a three-pronged approach: providing grants to the States; undertaking region-wide education, outreach and technology transfer projects; and, providing in-house management, support and information dissemination. At the direction of US Department of Energy, the primary emphasis of the GLBSRP in recent years has been education and outreach. Therefore, most activities have centered on developing educational materials, hosting workshops and conferences, and providing technical assistance. This report summarizes a selection of activities that were accomplished under this cooperative agreement.

  9. Final Scientific and Technical Report State and Regional Biomass Partnerships

    SciTech Connect

    Handley, Rick; Stubbs, Anne D.

    2008-12-29

    The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

  10. Northeast regional biomass program. Retrospective, 1983--1993

    SciTech Connect

    Savitt, S.; Morgan, S.

    1995-01-01

    Ten years ago, when Congress initiated the Regional Biomass Energy Program, biomass fuel use in the Northeast was limited primarily to the forest products industry and residential wood stoves. An enduring form of energy as old as settlement in the region, residential wood-burning now takes its place beside modern biomass combustion systems in schools and other institutions, industrial cogeneration facilities, and utility-scale power plants. Biomass today represents more than 95 percent of all renewable energy consumed in the Northeast: a little more than one-half quadrillion BTUs yearly, or five percent of the region`s total energy demand. Yet given the region`s abundance of overstocked forests, municipal solid waste and processed wood residues, this represents just a fraction of the energy potential the biomass resource has to offer.This report provides an account of the work of the Northeast Regional Biomass Program (NRBP) over it`s first ten years. The NRBP has undertaken projects to promote the use of biomass energy and technologies.

  11. Great Lakes Regional Biomass Energy Program: Quarterly report, September 1, 1986-November 30, 1986

    SciTech Connect

    Bancroft, D.

    1987-05-01

    Stressing near-term biomass feedstock production techniques and conversion processes, the objective of the program is to increase the use of biomass energy by the public and private sectors in the Great Lakes region including Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio and Wisconsin. The Great Lakes Regional Biomass Energy Program is divided into three separate operational programs. The first is the State Grant Program, which provides resources to the seven state energy offices in the region to increase their capabilities in biomass energy. State-specific activities and interagency programs are emphasized in the State Grant Program. The second, the Subcontractor Program, involves the letting of subcontracts to private organizations to address regional biomass issues and needs. The third is the In-House Technology Transfer Program in which Council staff develop biomass energy publications and reports. The primary activity this quarter has been information transfer. The program spearheaded an effort to reach the private sector and inform people about a wide range of biomass technologies. In one of the most successful events, 35 cheese manufacturers traveled to the South Alma Cheese Factory to see a woodburner supporting the process steam needs of the facility. In addition, 20 workshops were conducted throughout the region focusing on industrial wood combustion, municipal waste to energy incineration and short rotation forestry. 1 fig.

  12. 7 CFR 225.19 - Regional office addresses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Regional office addresses. 225.19 Section 225.19 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SUMMER FOOD SERVICE PROGRAM General Administrative Provisions §...

  13. 7 CFR 210.30 - Regional office addresses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS NATIONAL SCHOOL LUNCH PROGRAM Additional Provisions § 210.30 Regional office addresses. School food authorities desiring information concerning the Program should write...

  14. Regional estimation of current and future forest biomass.

    PubMed

    Mickler, R A; Earnhardt, T S; Moore, J A

    2002-01-01

    potential and their spatial relationship to other landscape features for the southern United States. At the regional scale, predicted annual NPP in 1992 ranged from 836 to 2181 g/m2/year for evergreen forests and 769-2634 g/m2/year for deciduous forests with a regional mean for all forest land of 1448 g/m2/year. Prediction of annual NPP in 2050 ranged from 913 to 2076 g/m2/year for evergreen forest types to 1214-2376 g/m2/year for deciduous forest types with a regional mean for all forest land of 1659 g/m2/year. The changes in forest productivity from 1992 to 2050 are shown to display potential areas of increased or decreased forest biomass. This methodology addresses the need for spatially quantifying forest carbon in the terrestrial biosphere to assess forest productivity and wildland fire fuels.

  15. EXPLAINING FOREST COMPOSITION AND BIOMASS ACROSS MULTIPLE BIOGEOGRAPHIC REGIONS

    EPA Science Inventory

    Current scientific concerns regarding the impacts of global change include the responses of forest composition and biomass to rapid changes in climate, and forest gap models, have often been used to address this issue. These models reflect the concept that forest composition and...

  16. Extending the ARS Experimental Watersheds to Address Regional Issues

    NASA Astrophysics Data System (ADS)

    Marks, D.; Goodrich, D. C.; Winstral, A.; Bosch, D. D.; Pool, D.

    2001-12-01

    The USDA-Agricultural Research Service's (ARS) Watershed Research Program maintains and operates a diverse, geog raphically distributed, nested, multi-scale, national ex perimental watershed network. This network, much of which has been operational for more than 40 years (several more than 60 years), constitutes one the best networks of its kind in the world. The watershed network and its instrumentation was primarily established to assess the hydrologic impacts of watershed conservation and management practices. It has evolved, through development of long-term hydrologic data, as a network of high quality outdoor laboratories for addressing emerging science issues facing hydrologists and resource managers. While the value of the experimental watershed for investigating precipitation, climatic, and hydrologic processes is unquestioned, extending the results from these investigations to other sites and larger areas is more difficult. ARS experimental watersheds are a few hundred km2 or smaller making it challenging to address regional scale issues. To address this the ARS watershed program is, with a suite of partners from universities and other federal agencies, enlarging its research focus to extend beyond the boundaries of the experimental watershed. In this poster we present several examples of this effort, with suggestions on how, using the experimental watershed and its core, a larger scale hydrologic observatory could be developed and maintained.

  17. Review of the Regional Biomass Energy Program: Technical projects

    SciTech Connect

    Lusk, P.

    1994-12-31

    This article summarizes technical projects of the regional Biomass Energy Program. Projects included are as follows: economic impact studies for renewable energy resources; alternative liquid fuels; Wood pellets fuels forum; residential fuel wood consumption; waste to energy decision-makers guide; fuel assessment for cogeneration facilities; municipal solid waste combustion characteristics.

  18. Urban, Regional and Global Impacts of Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Ferreira De Brito, J.; Barbosa, H. M.; Rizzo, L. V.; Setzer, A.; Cirino, G.

    2013-05-01

    Biomass burning is a major regional and global driver for atmospheric composition. Its effects in regional and global climate are very significant, but still difficult to assess. Even in large urban areas in Latin America such as Mexico City, Sao Paulo and Santiago, and in developed areas such as Paris and Californian cities it is possible to observe significant biomass burning effects air quality. The wood burning components as well as inner city and vicinities burning if agricultural residues impact heavily the concentration of organic aerosol, carbon monoxide and ozone in urban areas. Regionally, regions such as Amazonia and Central America show large plumes of smoke that extend their impact over continental areas, with changes in the radiation balance, air quality and climate. The deforestation rate in Amazonia have dropped strongly from 27,000 Km2 in 2004 to 6,200 Km2 in 2011, a very significant reduction, but this reduction was not observed in Africa and Southeast Asia. Health effects of biomass burning emissions are very significant, and observed in several key regions. Remote sensing techniques for fire detection have progressed significantly and long time series (10-15 years) are now feasible. The black carbon associated with biomass burning has important impacts in formation and development of clouds in Amazonia and other regions. The organic component of biomass burning emissions scatter light and increase diffuse radiation that alters carbon uptake in large regions of Amazonia and certainly other forested areas. Increase of up to 30% in carbon uptake associated with biomass burning emissions was observed in Amazonia, as part of the LBA Experiment. New analytical methods that quantify the absorption angstrom exponent of biomass burning and fossil fuel black carbon (BC) can differentiate BC from different burning sources. In addition, the hygroscopic properties of particles with a core shell of BC coated with organic compounds can be measured and shows

  19. Process evaluation of the Regional Biomass Energy Program

    SciTech Connect

    Wilson, C.R.; Brown, M.A.; Perlack, R.D.

    1994-03-01

    The U.S. Department of Energy (DOE) established the Regional Biomass Energy Program (RBEP) in 1983 to increase the production and use of biomass energy resources. Through the creation of five regional program (the Great Lakes, Northeast, Pacific Northwest, Southeast, and West), the RBEP focuses on regionally specific needs and opportunities. In 1992, Oak Ridge National (ORNL) conducted a process evaluation of the RBEP Program designed to document and explain the development of the goals and strategies of the five regional programs; describe the economic and market context surrounding commercialization of bioenergy systems; assess the criteria used to select projects; describe experiences with cost sharing; identify program accomplishments in the transfer of information and technology; and offer recommendations for program improvement.

  20. Can increased biomass offset carbon release from permafrost region soils, streams, and wildfire: an expert elicitation?

    NASA Astrophysics Data System (ADS)

    Abbott, B. W.; Jones, J.; Schuur, E. A.; Bowden, W. B.; Chapin, F. S., III; Epstein, H. E.; Flannigan, M.; Harms, T.; Hollingsworth, T. N.; Mack, M. C.; Natali, S.; Rocha, A. V.; Tank, S. E.; Turetsky, M. R.; Vonk, J.; Wickland, K.

    2013-12-01

    As the permafrost region warms, up to 288 Pg carbon (CO2 equivalent) may be released from soil by the end of the century, and up to 616 Pg by 2300. This soil carbon can be released to the atmosphere directly via mineralization or wildfire, or enter aquatic ecosystems as dissolved or particulate organic or inorganic carbon. Some models predict an increase in Arctic and boreal living biomass in response to extended growing season, enhanced nutrient cycling, and CO2 fertilization, but we have a poor understanding of how the production of new biomass will compare with loss of carbon from permafrost thaw. We administered surveys to permafrost region experts to assess current understanding of the magnitude and timing of biomass accumulation, hydrologic carbon flux, and wildfire carbon losses. Surveys addressed three time periods (present to 2040, 2100, and 2300) and four warming scenarios based on IPCC representative concentration pathways. Estimates of change in biomass and fire losses were provided individually for the boreal forest and arctic tundra. Experts estimated changes in carbon delivery to freshwater ecosystems as well as delivery to the ocean, including carbon release due to coastal erosion, fluxes infrequently captured in high-latitude models. Initial expert estimates indicated that while tundra biomass would increase substantially, total permafrost region biomass would decrease by the end of the century due to boreal forest drying and browning, followed by a modest increase by 2300 due to vegetation community shifts. Changes in aquatic systems could release an additional 2.7 Pg carbon by 2100 and 7.3 Pg by 2300. Modified wildfire regime could cause the release of an additional 13.6 Pg carbon by 2100 and 51.7 Pg by 2300. Current expert understanding therefore suggests that carbon gains in high-latitude biomass will be orders of magnitude smaller than carbon loss from permafrost soils and that hydrologic and wildfire pathways of carbon loss will likely

  1. 40 CFR 59.512 - Addresses of EPA regional offices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.512 Addresses of...

  2. 40 CFR 59.512 - Addresses of EPA regional offices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.512 Addresses of...

  3. 40 CFR 59.512 - Addresses of EPA regional offices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.512 Addresses of...

  4. 40 CFR 59.512 - Addresses of EPA regional offices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.512 Addresses of...

  5. 40 CFR 59.512 - Addresses of EPA regional offices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.512 Addresses of...

  6. Characterisation of regional ambient biomass burning organic aerosol mixing ratios

    NASA Astrophysics Data System (ADS)

    Jolleys, M.; Coe, H.; McFiggans, G.; Capes, G.; Allan, J. D.; Crosier, J.; Williams, P.; Allen, G.; Bower, K.; Jimenez, J. L.; Russell, L. M.; Grutter, M.; Baumgardner, D.

    2012-12-01

    No evidence for a regional additional source of secondary organic aerosol (SOA) has been identified in measurements of biomass burning-influenced ambient air masses. Measurements included in this study were obtained from the deployment of an Aerodyne Quadrupole Aerosol Mass Spectrometer during four field campaigns, involving both research aircraft flights and ground-based measurements. OA concentrations normalised to excess CO (OA/dCO) show strong regional and local scale variability, with a difference of almost a factor of five across fresh OA emissions between campaigns. Average OA/dCO is typically higher in the near-field than at a greater distance from source, indicating an absence of significant SOA formation, despite evidence to suggest OA becomes increasingly oxidized with age. This trend is in contrast with observations of anthropogenic OA in urban environments, where OA/dCO is consistently shown to increase with distance from source. There is no such agreement in the case of biomass burning OA (BBOA) amongst the literature base, with conflicting examples relating to the influence of SOA on aerosol loadings. A wide range of average initial emission ratios (ERs) close to source are observed both within the datasets analysed here and within the literature, together with considerable variability in individual OA/dCO values throughout fresh biomass burning plumes. The extent of this variability far outweighs any increase in OA/dCO in the few instances it is observed here, suggesting that source conditions are of greater importance for the propagation of BBOA loadings within the ambient atmosphere. However, the implications of ageing on OA/dCO variability appear to be highly uncertain, with little consistency between observed trends for different locations. Furthermore, the exact effects of the fire conditions influencing emissions from biomass burning events remain poorly constrained. These uncertainties regarding the evolution of biomass burning emissions

  7. Densified biomass can cost-effectively mitigate greenhouse gas emissions and address energy security in thermal applications.

    PubMed

    Wilson, Thomas O; McNeal, Frederick M; Spatari, Sabrina; G Abler, David; Adler, Paul R

    2012-01-17

    Regional supplies of biomass are currently being evaluated as feedstocks in energy applications to meet renewable portfolio (RPS) and low carbon fuel standards. We investigate the life cycle greenhouse gas (GHG) emissions and associated abatement costs resulting from using densified switchgrass for thermal and electrical energy. In contrast to the large and positive abatement costs for using biomass in electricity generation ($149/Mg CO(2)e) due to the low cost of coal and high feedstock and power plant operation costs, abatement costs for replacing fuel oil with biomass in thermal applications are large and negative (-$52 to -$92/Mg CO(2)e), resulting in cost savings. Replacing fuel oil with biomass in thermal applications results in least cost reductions compared to replacing coal in electricity generation, an alternative that has gained attention due to RPS legislation and the centralized production model most often considered in U.S. policy. Our estimates indicate a more than doubling of liquid fuel displacement when switchgrass is substituted for fuel oil as opposed to gasoline, suggesting that, in certain U.S. locations, such as the northeast, densified biomass would help to significantly decarbonize energy supply with regionally sourced feedstock, while also reducing imported oil. On the basis of supply projections from the recently released Billion Ton Report, there will be enough sustainably harvested biomass available in the northeast by 2022 to offset the entirety of heating oil demand in the same region. This will save NE consumers between $2.3 and $3.9 billion annually. Diverting the same resource to electricity generation would cost the region $7.7 billion per year. While there is great need for finding low carbon substitutes for coal power and liquid transportation fuels in the U.S., we argue that in certain regions it makes cost- (and GHG mitigation-) effective sense to phase out liquid heating fuels with locally produced biomass first.

  8. 40 CFR 59.210 - Addresses of EPA Regional Offices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Toxics Division, 841 Chestnut Building, Philadelphia, PA 19107. EPA Region IV (Alabama, Florida, Georgia.... EPA Region IX (American Samoa, Arizona, California, Guam, Hawaii, Nevada) Director, Air Divisions,...

  9. 40 CFR 59.210 - Addresses of EPA Regional Offices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., and Toxics Division, 841 Chestnut Building, Philadelphia, PA 19107. EPA Region IV (Alabama, Florida... 80202-2466. EPA Region IX (Arizona, California, Hawaii and Nevada; the territories of American Samoa...

  10. 40 CFR 59.210 - Addresses of EPA Regional Offices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Toxics Division, 841 Chestnut Building, Philadelphia, PA 19107. EPA Region IV (Alabama, Florida, Georgia.... EPA Region IX (Arizona, California, Hawaii and Nevada; the territories of American Samoa and Guam;...

  11. 40 CFR 59.210 - Addresses of EPA Regional Offices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and Toxics Division, 841 Chestnut Building, Philadelphia, PA 19107. EPA Region IV (Alabama, Florida.... EPA Region IX (Arizona, California, Hawaii and Nevada; the territories of American Samoa and Guam;...

  12. 40 CFR 59.210 - Addresses of EPA Regional Offices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and Toxics Division, 841 Chestnut Building, Philadelphia, PA 19107. EPA Region IV (Alabama, Florida... 80202-2466. EPA Region IX (Arizona, California, Hawaii and Nevada; the territories of American Samoa...

  13. The potential for biomass to mitigate greenhouse gas emissions in the Northeastern US. Northeast Regional Biomass Program

    SciTech Connect

    Bernow, S.S.; Gurney, K.; Prince, G.; Cyr, M.

    1992-04-01

    This study, for the Northeast Regional Biomass Program (NRBP) of the Coalition of Northeast Governors (CONEG), evaluates the potential for local, state and regional biomass policies to contribute to an overall energy/biomass strategy for the reduction of greenhouse gas releases in the Northeastern United States. Biomass is a conditionally renewable resource that can play a dual role: by reducing emissions of greenhouse gases in meeting our energy needs; and by removing carbon from the atmosphere and sequestering it in standing biomass stocks and long-lived products. In this study we examine the contribution of biomass to the energy system in the Northeast and to the region`s net releases of carbon dioxide and methane, and project these releases over three decades, given a continuation of current trends and policies. We then compare this Reference Case with three alternative scenarios, assuming successively more aggressive efforts to reduce greenhouse gas emissions through strategic implementation of energy efficiency and biomass resources. Finally, we identify and examine policy options for expanding the role of biomass in the region`s energy and greenhouse gas mitigation strategies.

  14. Southwest Region: A Report Identifying and Addressing the Educational Needs

    ERIC Educational Resources Information Center

    US Department of Education, 2011

    2011-01-01

    The Educational Technical Assistance Act of 2002, authorized the Southwest Regional Advisory Committee (RAC), whose members represent the states of Arkansas, Louisiana, New Mexico, Oklahoma, and Texas, to identify and prioritize the region's educational needs and recommend how those needs can be met. The Southwest RAC conducted three public…

  15. Pacific Region: A Report Identifying and Addressing the Educational Needs

    ERIC Educational Resources Information Center

    US Department of Education, 2011

    2011-01-01

    This report represents the deliberations of the Pacific Regional Advisory Committee (RAC), one of 10 RACs established under the Educational Technical Assistance Act of 2002 to assess the educational needs of the region. The committee's report outlines educational needs across the state, districts, and territories of Hawai'i, the Commonwealth of…

  16. Appalachian Region: A Report Identifying and Addressing the Educational Needs

    ERIC Educational Resources Information Center

    US Department of Education, 2011

    2011-01-01

    This report presents the deliberations of the Appalachia Regional Advisory Committee (Appalachia RAC), one of 10 RACs established under the Educational Technical Assistance Act of 2002 (20 U.S.C. sections 9601 et. seq.) to assess the educational needs of the region. The Committee's report outlines the educational needs across the four states of…

  17. Southeast Region: A Report Identifying and Addressing the Educational Needs

    ERIC Educational Resources Information Center

    US Department of Education, 2011

    2011-01-01

    This report presents the deliberations of the Southeast Regional Advisory Committee (RAC), one of 10 RACs established by the U.S. Department of Education, identifying educational challenges across the six states in the region: Alabama, Florida, Georgia, Mississippi, North Carolina and South Carolina. Committee deliberations took place May 23,…

  18. Western Region: A Report Identifying and Addressing the Educational Needs

    ERIC Educational Resources Information Center

    US Department of Education, 2011

    2011-01-01

    During a four-week period (May 23, 2011-June 21, 2011), the Western Regional Advisory Committee (RAC) held a series of public meetings to solicit input and deliberate on key educational needs facing the four states in the region--Arizona, California, Nevada, and Utah. A two-day, face-to-face, public meeting was held May 23-24, 2011 in Arlington,…

  19. Viability assessment of regional biomass pre-processing center based bioethanol value chains

    NASA Astrophysics Data System (ADS)

    Carolan, Joseph E.

    Petroleum accounts for 94% of all liquid fuels and 36% of the total of all energy consumed in the United States. Petroleum dependence is problematic because global petroleum reserves are estimated to last only for 40 to 60 years at current consumption rates; global supplies are often located in politically unstable or unfriendly regions; and fossil fuels have negative environmental footprints. Domestic policies have aimed at promoting alternative, renewable liquid fuels, specifically bio-fuels derived from organic matter. Cellulosic bio-ethanol is one promising alternative fuel that has featured prominently in federal bio-fuel mandates under the Energy Independence and Security Act, 2007. However, the cellulosic bio-ethanol industry faces several technical, physical and industrial organization challenges. This dissertation examines the concept of a network of regional biomass pre-treatment centers (RBPC) that form an extended biomass supply chain feeding into a simplified biorefinery as a way to overcome these challenges. The analyses conducted address the structural and transactional issues facing bio-ethanol value chain establishment; the technical and financial feasibility of a stand alone pre-treatment center (RBPC); the impact of distributed pre-treatment on biomass transport costs; a comparative systems cost evaluation of the performance of the RBPC chain versus a fully integrated biorefinery (gIBRh), followed by application of the analytical framework to three case study regions.

  20. A study of algal biomass potential in selected Canadian regions.

    SciTech Connect

    Passell, Howard David; Roach, Jesse Dillon; Klise, Geoffrey T.

    2011-11-01

    A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify

  1. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    SciTech Connect

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  2. Renewable biomass energy: Understanding regional scale environmental impacts

    SciTech Connect

    Graham, R.L.; Downing, M.

    1993-12-31

    If biomass energy is to become a significant component of the US energy sector, millions of acres of farmland must be converted to energy crops. The environmental implications of this change in land use must be quantitatively evaluated. The land use changes will be largely driven by economic considerations. Farmers will grow energy crops when it is profitable to do so. Thus, models which purport to predict environmental changes induced by energy crop production must take into account those economic features which will influence land use change. In this paper, we present an approach for projecting the probable environmental impacts of growing energy crops at the regional scale. The approach takes into account both economic and environmental factors. We demonstrate the approach by analyzing, at a county-level the probable impact of switchgrass production on erosion, evapotranspiration, nitrate in runoff, and phosphorous fertilizer use in multi-county subregions within the Tennessee Valley Authority (TVA) region. Our results show that the adoption of switchgrass production will have different impacts in each subregion as a result of differences in the initial land use and soil conditions in the subregions. Erosion, evapotranspiration, and nitrate in runoff are projected to decrease in both subregions as switchgrass displaces the current crops. Phosphorous fertilizer applications are likely to increase in one subregion and decrease in the other due to initial differences in the types of conventional crops grown in each subregion. Overall these changes portend an improvement in water quality in the subregions with the increasing adoption of switchgrass.

  3. 49 CFR Appendix C to Part 241 - Geographical Boundaries of FRA's Regions and Addresses of FRA's Regional Headquarters

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... consists of Minnesota, Wisconsin, Michigan, Illinois, and Indiana. The mailing address of the Regional Headquarters is: 300 West Adams Street, Rm 310, Chicago, Illinois 60606. The fax number is 312-886-9634. The E... mailing address of the Regional Headquarters is: Murdock Executive Plaza, 703 Broadway, Suite...

  4. 49 CFR Appendix C to Part 241 - Geographical Boundaries of FRA's Regions and Addresses of FRA's Regional Headquarters

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... consists of Minnesota, Wisconsin, Michigan, Illinois, and Indiana. The mailing address of the Regional Headquarters is: 300 West Adams Street, Rm 310, Chicago, Illinois 60606. The fax number is 312-886-9634. The E... mailing address of the Regional Headquarters is: Murdock Executive Plaza, 703 Broadway, Suite...

  5. 49 CFR Appendix C to Part 241 - Geographical Boundaries of FRA's Regions and Addresses of FRA's Regional Headquarters

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... consists of Minnesota, Wisconsin, Michigan, Illinois, and Indiana. The mailing address of the Regional Headquarters is: 300 West Adams Street, Rm 310, Chicago, Illinois 60606. The fax number is 312-886-9634. The E... mailing address of the Regional Headquarters is: Murdock Executive Plaza, 703 Broadway, Suite...

  6. 49 CFR Appendix C to Part 241 - Geographical Boundaries of FRA's Regions and Addresses of FRA's Regional Headquarters

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... consists of Minnesota, Wisconsin, Michigan, Illinois, and Indiana. The mailing address of the Regional Headquarters is: 300 West Adams Street, Rm 310, Chicago, Illinois 60606. The fax number is 312-886-9634. The E... mailing address of the Regional Headquarters is: Murdock Executive Plaza, 703 Broadway, Suite...

  7. 49 CFR Appendix C to Part 241 - Geographical Boundaries of FRA's Regions and Addresses of FRA's Regional Headquarters

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... consists of Minnesota, Wisconsin, Michigan, Illinois, and Indiana. The mailing address of the Regional Headquarters is: 300 West Adams Street, Rm 310, Chicago, Illinois 60606. The fax number is 312-886-9634. The E... mailing address of the Regional Headquarters is: Murdock Executive Plaza, 703 Broadway, Suite...

  8. Northeast Regional Biomass Program ninth year, third quarter report, April--June 1992

    SciTech Connect

    Lusk, P.D.

    1992-07-01

    The Northeast Regional Biomass Program (NRBP) operates using a state grant component that provides funds (with a 50 percent matching requirement) to each of the states in the region to strengthen and integrate the work of state agencies involved in biomass energy; a series of technical reports and studies in areas that have been identified as being of critical importance to the development of biomass energy in the region; and a continuous long range planning component with heavy private sector involvement that helps to identify activities necessary to spur greater development and use of biomass energy in the Northeast. This report describes the activities of NRBP between April and June, 1992.

  9. Regional Mapping, Modelling, and Monitoring of Tree Aboveground Biomass Carbon

    NASA Astrophysics Data System (ADS)

    Hudak, Andrew

    2016-04-01

    Airborne lidar collections are preferred for mapping aboveground biomass carbon (AGBC), while historical Landsat imagery are preferred for monitoring decadal scale forest cover change. Our modelling approach tracks AGBC change regionally using Landsat time series metrics; training areas are defined by airborne lidar extents within which AGBC is accurately mapped with high confidence. Geospatial topographic and climate layers are also included in the predictive model. Validation is accomplished using systematically sampled Forest Inventory and Analysis (FIA) plot data that have been independently collected, processed and summarized at the county level. Our goal is to demonstrate that spatially and temporally aggregated annual AGBC map predictions show no bias when compared to annual county-level summaries across the Northwest USA. A prominent source of bias is trees outside forest; much of the more arid portions of our study area meet the FIA definition of non-forest because the tree cover does not exceed their minimum tree cover threshold. We employ detailed tree cover maps derived from high-resolution aerial imagery to extend our AGBC predictions into non-forest areas. We also employ Landsat-derived annual disturbance maps into our mapped AGBC predictions prior to aggregation and validation.

  10. Regional assessment of nonforestry related biomass resources: Arkansas

    SciTech Connect

    Not Available

    1988-11-01

    This document consists of spreadsheets detailing in a county by county manner agricultural crop, agricultural waste, municipal waste and industrial waste in Arkansas that are potential biomass energy sources.

  11. Regional assessment of nonforestry related biomass resources: South Carolina

    SciTech Connect

    Not Available

    1988-11-01

    This document is a collection of spreadsheets detailing in a county by county manner the agricultural crop, agricultural wastes, municipal wastes, and industrial wastes of South Carolina that are potential biomass energy sources.

  12. Regional assessment of nonforestry related biomass resources: Georgia

    SciTech Connect

    Not Available

    1988-11-01

    This document is a collection of spreadsheets detailing in a county by county manner the agricultural crop, agricultural wastes, municipal wastes, and industrial wastes in Georgia that are potential biomass energy sources.

  13. Regional assessment of nonforestry related biomass resources: Missouri

    SciTech Connect

    Not Available

    1988-11-01

    This document is a collection of spreadsheets detailing in a county by county manner the agricultural crop, agricultural wastes, municipal waste and industrial wastes of Missouri that are potential biomass energy resources.

  14. Regional assessment of nonforestry related biomass resources: West Virginia

    SciTech Connect

    Not Available

    1988-11-01

    This document is a collection of spreadsheets detailing on a county by county basis the agricultural crop, agricultural wastes, municipal wastes, and industrial wastes of West Virginia that are potential biomass energy sources.

  15. Regional assessment of nonforestry related biomass resources: Virginia

    SciTech Connect

    Not Available

    1988-11-01

    This document is a collection of spreadsheets detailing on a county by county basis the agricultural crop, agricultural wastes, municipal wastes, and industrial wastes of Virginia that are potential biomass energy sources.

  16. Regional assessment of nonforestry related biomass resources: Alabama

    SciTech Connect

    Not Available

    1988-11-01

    This document is a collection of spreadsheets detailing on a county by county basis the agricultural crop, agricultural wastes, municipal wastes and industrial wastes of Alabama that are potential biomass energy sources.

  17. Regional assessment of nonforestry related biomass resources: North Carolina

    SciTech Connect

    Not Available

    1988-11-01

    This document is a collection of spreadsheets detailing in a county by county manner the agricultural crop, agricultural wastes, municipal wastes and industrial wastes of North Carolina that are potential biomass energy sources.

  18. Northeast regional biomass program. Second & third quarterly reports, October 1, 1995--March 31, 1996

    SciTech Connect

    1996-07-01

    The Northeast Regional Biomass Program (NRBP) is comprised of the following states: Connecticut. Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island and Vermont. It is managed for the Department of Energy (DOE) by the CONEG Policy Research Center, Inc. The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional Biomass Program (NRBP) is designed to help the eleven Northeastern states overcome these obstacles and achieve their biomass energy potentials. The objective of this program in the current and future years is to increase the role of biomass fuels in the region`s energy mix by providing the impetus for states and the private sector to develop a viable Northeast biomass fuels market.

  19. 7 CFR 210.30 - State agency and Regional office addresses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 210.30 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION... Provisions § 210.30 State agency and Regional office addresses. School food authorities and schools desiring... Office at the address or telephone number listed on the FNS Web site (www.fns.usda.gov/cnd)....

  20. 7 CFR 210.30 - State agency and Regional office addresses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 210.30 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION... Provisions § 210.30 State agency and Regional office addresses. School food authorities and schools desiring... Office at the address or telephone number listed on the FNS Web site (www.fns.usda.gov/cnd)....

  1. Insight on invasions and resilience derived from spatiotemporal discontinuities of biomass at local and regional scales

    USGS Publications Warehouse

    Angeler, David G.; Allen, Criag R.; Johnson, Richard K.

    2012-01-01

    Understanding the social and ecological consequences of species invasions is complicated by nonlinearities in processes, and differences in process and structure as scale is changed. Here we use discontinuity analyses to investigate nonlinear patterns in the distribution of biomass of an invasive nuisance species that could indicate scale-specific organization. We analyze biomass patterns in the flagellate Gonyostomum semen (Raphidophyta) in 75 boreal lakes during an 11-year period (1997-2007). With simulations using a unimodal null model and cluster analysis, we identified regional groupings of lakes based on their biomass patterns. We evaluated the variability of membership of individual lakes in regional biomass groups. Temporal trends in local and regional discontinuity patterns were analyzed using regressions and correlations with environmental variables that characterize nutrient conditions, acidity status, temperature variability, and water clarity. Regionally, there was a significant increase in the number of biomass groups over time, indicative of an increased number of scales at which algal biomass organizes across lakes. This increased complexity correlated with the invasion history of G. semen and broad-scale environmental change (recovery from acidification). Locally, no consistent patterns of lake membership to regional biomass groups were observed, and correlations with environmental variables were lake specific. The increased complexity of regional biomass patterns suggests that processes that act within or between scales reinforce the presence of G. semen and its potential to develop high-biomass blooms in boreal lakes. Emergent regional patterns combined with locally stochastic dynamics suggest a bleak future for managing G. semen, and more generally why invasive species can be ecologically successful.

  2. Northeast Regional Biomass Program first and second quarter reports, October 1, 1994--March 31, 1995

    SciTech Connect

    1995-07-01

    The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential commercial, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional biomass Program (NRBP) is designed to help the eleven Northeastern states overcome these obstacles and achieve their biomass energy potentials. The objective of this program in the current and future years is to increase the role of biomass fuels in the region`s energy mix by providing the impetus for states and the private sector to develop a viable Northeast biomass fuels market. This paper contains a management report, state program summaries, technical project status report, and technology transfer activities.

  3. Regional biomass supply: three case studies in the Midwest, US

    SciTech Connect

    English, B.C.; Dillivan, K.D.; Ojo, M.A.; Alexander, R.R.; Graham, R.L.

    1995-06-01

    Increased interest in the development and utilization of alternative energy sources has generated research demonstrating that fuels developed from energy crops (biofuels) can be a viable substitute for fossil fuels. A national energy program dedicated to the advancement of fuel derived from lignocellulosic crops could have major impacts on conventional energy supplied in the United States. Sufficient biofuel demand would allow conversion of croplands, as well as some pasture and forest lands, into biomass producing lands and possibly return to production acres formerly idled. A shift from crop, pasture or forest production activities to biomass production would likely require changes in the levels of inputs, outputs, and costs associated with these activities, which would impact producers and ultimately consumers. The conversion of cropland or idled land to biomass production will also have impacts on the physical characteristics of the soil. Soil erosion levels, soil chemical composition, soil structure, and organic matter content are some of the many soil attributes which will be impacted as a result of conversion. Research is needed to estimate the impact conversion activities have on these variables.

  4. Assessment of regional biomass-soil relationships using vegetation indexes

    NASA Technical Reports Server (NTRS)

    Lozano-Garcia, D. Fabian; Fernandez, R. Norberto; Johannsen, Chris J.

    1991-01-01

    The development of photosynthetic active biomass in different ecological conditions, as indicated by normalized difference vegetation indices (NDVIs) is compared by performing a stratified sampling (based on soil assocations) on data acquired over Indiana. Data from the NOAA-10 AVHRR were collected for the 1987 and 1988 growing seasons. An NDVI transformation was performed using the two optical bands of the sensor (0.58-0.68 microns and 0.72-1.10 microns). The NDVI is related to the amount of active photosynthetic biomass present on the ground. Samples of NDVI values over 45 fields representing eight soil associations throughout Indiana were collected to assess the effect of soil conditions and acquisition date on the spectral response of the vegetation, as shown by the NDVIs. Statistical analysis of results indicate that land-cover types (forest, forest/pasture, and crops), soil texture, and soil water-holding capacity have an important effect on vegetation biomass changes as measured by AVHRR data. Acquisition dates should be selected with condideration of the phenological stages of vegetation. Sampling of AVHRR data over extended areas should be stratified according to physiographic units rather than man-made boundaries. This will provide more homogeneous samples for statistical analysis.

  5. Regional allocation of biomass to U.S. energy demands under a portfolio of policy scenarios.

    PubMed

    Mullins, Kimberley A; Venkatesh, Aranya; Nagengast, Amy L; Kocoloski, Matt

    2014-01-01

    The potential for widespread use of domestically available energy resources, in conjunction with climate change concerns, suggest that biomass may be an essential component of U.S. energy systems in the near future. Cellulosic biomass in particular is anticipated to be used in increasing quantities because of policy efforts, such as federal renewable fuel standards and state renewable portfolio standards. Unfortunately, these independently designed biomass policies do not account for the fact that cellulosic biomass can equally be used for different, competing energy demands. An integrated assessment of multiple feedstocks, energy demands, and system costs is critical for making optimal decisions about a unified biomass energy strategy. This study develops a spatially explicit, best-use framework to optimally allocate cellulosic biomass feedstocks to energy demands in transportation, electricity, and residential heating sectors, while minimizing total system costs and tracking greenhouse gas emissions. Comparing biomass usage across three climate policy scenarios suggests that biomass used for space heating is a low cost emissions reduction option, while biomass for liquid fuel or for electricity becomes attractive only as emissions reduction targets or carbon prices increase. Regardless of the policy approach, study results make a strong case for national and regional coordination in policy design and compliance pathways.

  6. Regional allocation of biomass to U.S. energy demands under a portfolio of policy scenarios.

    PubMed

    Mullins, Kimberley A; Venkatesh, Aranya; Nagengast, Amy L; Kocoloski, Matt

    2014-01-01

    The potential for widespread use of domestically available energy resources, in conjunction with climate change concerns, suggest that biomass may be an essential component of U.S. energy systems in the near future. Cellulosic biomass in particular is anticipated to be used in increasing quantities because of policy efforts, such as federal renewable fuel standards and state renewable portfolio standards. Unfortunately, these independently designed biomass policies do not account for the fact that cellulosic biomass can equally be used for different, competing energy demands. An integrated assessment of multiple feedstocks, energy demands, and system costs is critical for making optimal decisions about a unified biomass energy strategy. This study develops a spatially explicit, best-use framework to optimally allocate cellulosic biomass feedstocks to energy demands in transportation, electricity, and residential heating sectors, while minimizing total system costs and tracking greenhouse gas emissions. Comparing biomass usage across three climate policy scenarios suggests that biomass used for space heating is a low cost emissions reduction option, while biomass for liquid fuel or for electricity becomes attractive only as emissions reduction targets or carbon prices increase. Regardless of the policy approach, study results make a strong case for national and regional coordination in policy design and compliance pathways. PMID:24512511

  7. Characteristics and applications of size-segregated biomass burning tracers in China's Pearl River Delta region

    NASA Astrophysics Data System (ADS)

    Zhang, Zhisheng; Gao, Jian; Engling, Guenter; Tao, Jun; Chai, Fahe; Zhang, Leiming; Zhang, Renjian; Sang, Xuefang; Chan, Chuen-yu; Lin, Zejian; Cao, Junji

    2015-02-01

    Biomass burning activities in China are ubiquitous and the resulting smoke emissions may pose considerable threats to human health and the environment. In the present study, size-segregated biomass burning tracers, including anhydrosugars (levoglucosan (LG) and mannosan (MN)) and non-sea-salt potassium (nss-K+), were determined at an urban and a suburban site in the Pearl River Delta (PRD) region. The size distributions of biomass burning tracers were generally characterized by a unimodal pattern peaking in the particle size range of 0.44-1.0 μm, except for MN during the wet season, for which a bimodal pattern (one in fine and one in coarse mode) was observed. These observed biomass burning tracers in the PRD region shifted towards larger particle sizes compared to the typical size distributions of fresh biomass smoke particles. Elevated biomass burning tracers were observed during the dry season when biomass burning activities were intensive and meteorological conditions favored the transport of biomass smoke particles from the rural areas in the PRD and neighboring areas to the sampling sites. The fine mode biomass burning tracers significantly correlated with each other, confirming their common sources. Rather high ΔLG/ΔMN ratios were observed at both sites, indicating limited influence from softwood combustion. High Δnss-K+/ΔLG ratios further suggested that biomass burning aerosols in the PRD were predominately associated with burning of crop residues. Using a simplified receptor-oriented approach with an emission factor of 0.075 (LG/TC) obtained from several chamber studies, average contributions of biomass burning emissions to total carbon in fine particles were estimated to be 23% and 16% at the urban and suburban site, respectively, during the dry season. In contrast, the relative contributions to total carbon were lower than 8% at both sites during the wet season.

  8. Northeast Regional Biomass Energy Program. Quarterly report, 9th year, January--March 1992

    SciTech Connect

    O`Connell, R.A.

    1992-04-01

    The Northeast Regional Biomass Program (NRBP) is entering its ninth year of operation. The management and the objectives have virtually remained unchanged and are stated as follows. The program conducted by NRBP has three basic features: (1) a state grant component that provides funds (with a 50 percent matching requirement) to each of the states in the region to strengthen and integrate the work of state agencies involved in biomass energy; (2) a series of technical reports and studies in areas that have been identified as being of critical importance to the development of biomass energy in the region; and (3) a continuous long range planning component with heavy private sector involvement that helps to identify activities necessary to spur greater development and use of biomass energy in the Northeast.

  9. Northeast Regional Biomass Program. Ninth year, Fourth quarterly report, July--September 1992

    SciTech Connect

    Lusk, P.D.

    1992-12-01

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  10. Analysis of Biomass Feedstock Availability and Variability for the Peace River Region of Alberta, Canada

    SciTech Connect

    Stephen, Jamie; Sokhansanj, Shahabaddine; Bi, X.T.; Sowlati, T.; Kloeck, T.; Townley-Smith, Lawrence; Stumborg, Mark

    2009-11-01

    Biorefineries or other biomass-dependent facilities require a predictable, dependable feedstock supplied over many years to justify capital investments. Determining inter-year variability in biomass availability is essential to quantifying the feedstock supply risk. Using a geographic information system (GIS) and historic crop yield data, average production was estimated for 10 sites in the Peace River region of Alberta, Canada. Four high-yielding potential sites were investigated for variability over a 20 year time-frame (1980 2000). The range of availability was large, from double the average in maximum years to nothing in minimum years. Biomass availability is a function of grain yield, the biomass to grain ratio, the cropping frequency, and residue retention rate to ensure future crop productivity. Storage strategies must be implemented and alternate feedstock sources identified to supply biomass processing facilities in low-yield years.

  11. Potential supply and cost of biomass from energy crops in the TVA region

    SciTech Connect

    Graham, R.L.; Downing, M.E.

    1995-04-01

    The economic and supply structures of energy crop markets have not been established. Establishing the likely price and supply of energy crop biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas, and coal. In this study, the cost and supply of short-rotation woody crop (SRWC) and switchgrass biomass for the Tennessee Valley Authority (TVA) region-a 276-county area that includes portions of 11 states in the southeastern United States - are projected. Projected prices and quantities of biomass are assumed to be a function of the amount and quality of crop and pasture land available in a region, expected energy crop yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curves of SRWC and switchgrass biomass that are projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of energy crop production. Finally, the results of sensitivity analysis on the projected cost and supply of energy crop biomass are shown. In particular, the separate impacts of varying energy crop production costs and yields, and interest rates are examined.

  12. Model Effects on GLAS-Based Regional Estimates of Forest Biomass and Carbon

    NASA Technical Reports Server (NTRS)

    Nelson, Ross F.

    2010-01-01

    Ice, Cloud, and land Elevation Satellite (ICESat) / Geosciences Laser Altimeter System (GLAS) waveform data are used to estimate biomass and carbon on a 1.27 X 10(exp 6) square km study area in the Province of Quebec, Canada, below the tree line. The same input datasets and sampling design are used in conjunction with four different predictive models to estimate total aboveground dry forest biomass and forest carbon. The four models include non-stratified and stratified versions of a multiple linear model where either biomass or (biomass)(exp 0.5) serves as the dependent variable. The use of different models in Quebec introduces differences in Provincial dry biomass estimates of up to 0.35 G, with a range of 4.94 +/- 0.28 Gt to 5.29 +/-0.36 Gt. The differences among model estimates are statistically non-significant, however, and the results demonstrate the degree to which carbon estimates vary strictly as a function of the model used to estimate regional biomass. Results also indicate that GLAS measurements become problematic with respect to height and biomass retrievals in the boreal forest when biomass values fall below 20 t/ha and when GLAS 75th percentile heights fall below 7 m.

  13. Assessment of regional biomass-soil relationships using vegetation indexes

    SciTech Connect

    Lozano-Garcia, D.F.; Fernandez, R.N.; Johannsen, C.J. )

    1991-03-01

    This paper reports on data from the NOAA-10 Advanced Very High Resolution Radiometer (AVHRR) collected over the midwestern United States for the 1987 and 1988 growing seasons. A Normalized Difference Vegetation Index (NDVI) transformation was performed using the two optical bands of the sensor (0.58-0.68 {mu}m and 0.72-1.10 {mu}m). The NDVI is related to the amount of active photosynthetic biomass present on the ground. Samples of NDVI values over 45 fields representing 8 soil associations throughout the State of Indiana were collected to assess the effect of soil conditions and acquisition data on the spectral response of the vegetation, as shown by the NDVI's.

  14. Northeast regional biomass program: Second and Third quarterlies and final report, January 1994--September 30, 1994

    SciTech Connect

    1995-07-01

    The Northeast Regional Biomass Program (NRBP) is comprised of the following states: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania. Rhode Island and Vermont. It is managed for the Department of Energy (DOE) by the CONEG Policy Research Center, Inc. The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential, commercial, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional Biomass Program (NRBP) is designed to help the eleven states overcome obstacles and achieve biomass energy potentials.

  15. Geographies of biomass and solar energy: Spatial decision support for regional energy sustainability

    NASA Astrophysics Data System (ADS)

    Calvert, Kirby Edward

    This thesis applies concepts and techniques in geography in order to contribute to our understanding of the opportunities and challenges associated with the transition toward renewable energy. The work is best understood as the sum of two parts. In the first part, the methodological and philosophical underpinnings of the field of energy geography are explored in order to situate the research in the broader constellation of geographical practices surrounding energy. I make the case that energy transitions are not merely shifts in energy supply but are also simultaneously fundamental shifts in prevailing spatial relations, so that energy transition management is best conceived as a spatial strategy with emphasis on regional level land-energy planning. In the second part of the thesis, I aim to provide decision support in favour of this spatial strategy. This begins in Chapter 4 with a comprehensive critical review of how GIScience and remote sensing has been applied in RE assessments and spatial planning. The next three chapters engage key gaps in this literature and are the analytical contributions of the thesis. The focus of the research is on biomass and solar energy in (eastern) Ontario. In Chapter 5 I develop geographically explicit supply-cost curves for forestry and agricultural biomass and assess the relative merits of a mixed biomass feedstock stream. In Chapter 6 I recognize and address the issue that developers of dedicated bioenergy crops and ground-mount solar PV systems prefer the same type of land. Land-energy trade-offs are modeled and their implications in the context of incentivizing RE development are discussed. In Chapter 7 I explore ways in which targeted facility siting can capture ancillary benefits related to RE production. I argue that focusing on the benefits as well as the costs of system siting is critical to linking developer and public interests. Ontario's feed-in tariff program is evaluated in the light of this claim. Chapter 8

  16. Northeast Regional Biomass Program. Final progress report, July--September 1991

    SciTech Connect

    O`Connell, R.A.

    1991-11-01

    The management structure and program objectives for the Northeast Regional Biomass Program (NRBP) remain unchanged from previous years. Additional funding was provided by the Bonneville Power Administration Regional Biomass Program to continue the publication of articles in the Biologue. The Western Area Power Administration and the Council of Great Lakes Governors funded the project ``Characterization of Emissions from Burning Woodwaste``. A grant for the ninth year was received from DOE. The Northeast Regional Biomass Steering Committee selected the following four projects for funding for the next fiscal year. (1) Wood Waste Utilization Conference, (2) Performance Evaluation of Wood Systems in Commercial Facilities, (3) Wood Energy Market Utilization Training, (4) Update of the Facility Directory.

  17. Model Effects on GLAS-Based Regional Estimates of Forest Biomass and Carbon

    NASA Technical Reports Server (NTRS)

    Nelson, Ross

    2008-01-01

    ICESat/GLAS waveform data are used to estimate biomass and carbon on a 1.27 million sq km study area. the Province of Quebec, Canada, below treeline. The same input data sets and sampling design are used in conjunction with four different predictive models to estimate total aboveground dry forest biomass and forest carbon. The four models include nonstratified and stratified versions of a multiple linear model where either biomass or (square root of) biomass serves as the dependent variable. The use of different models in Quebec introduces differences in Provincial biomass estimates of up to 0.35 Gt (range 4.942+/-0.28 Gt to 5.29+/-0.36 Gt). The results suggest that if different predictive models are used to estimate regional carbon stocks in different epochs, e.g., y2005, y2015, one might mistakenly infer an apparent aboveground carbon "change" of, in this case, 0.18 Gt, or approximately 7% of the aboveground carbon in Quebec, due solely to the use of different predictive models. These findings argue for model consistency in future, LiDAR-based carbon monitoring programs. Regional biomass estimates from the four GLAS models are compared to ground estimates derived from an extensive network of 16,814 ground plots located in southern Quebec. Stratified models proved to be more accurate and precise than either of the two nonstratified models tested.

  18. Regional initiatives to address the challenges of tuberculosis in children: perspectives from the Asia-Pacific region.

    PubMed

    Graham, Stephen M; Grzemska, Malgorzata; Brands, Annemieke; Nguyen, Huong; Amini, James; Triasih, Rina; Talukder, Khurshid; Ahmed, Shakil; Amanullah, Farhana; Kumar, Blessina; Tufail, Pervaiz; Detjen, Anne; Marais, Ben; Hennig, Cornelia; Islam, Tauhid

    2015-03-01

    Increasing attention is being given to the challenges of management and prevention of tuberculosis in children and adolescents. There have been a number of recent important milestones achieved at the global level to address this previously neglected disease. There is now a need to increase activities and build partnerships at the regional and national levels in order to address the wide policy-practice gaps for implementation, and to take the key steps outlined in the Roadmap for Child Tuberculosis published in 2013. In this article, we provide the rationale and suggest strategies illustrated with examples to improve diagnosis, management, outcomes and prevention for children with tuberculosis in the Asia-Pacific region, with an emphasis on the need for greatly improved recording and reporting. Effective collaboration with community engagement between the child health sector, the National Tuberculosis control Programmes, community-based services and the communities themselves are essential.

  19. Water Information System Platforms Addressing Critical Societal Needs in the Mena Region

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Kfouri, Claire; Peters, Mark

    2012-01-01

    The MENA region includes 18 countries, the occupied Palestinian territories and Western Sahara. However, the region of interest for this study has a strategic interest in countries adjacent to the Mediterranean Sea, which includes, Morocco, Tunisia, Egypt, Lebanon and Jordan. The 90% of the water in the MENA region is used for the agriculture use. By the end of this century. this region is projected to experience an increase of 3 C to 5 C in mean temperatures and a 20% decline in precipitation (lPCC, 2007). Due to lower precipitation, water run-off is projected to drop by 20% to 30% in most of MENA by 2050 Reduced stream flow and groundwater recharge might lead to a reduction in water supply of 10% or greater by 2050. Therefore, per IPCC projections in temperature rise and precipitation decline in the region, the scarcity of water will become more acute with population growth, and rising demand of food in the region. Additionally, the trans boundary water issues will continue to plague the region in terms of sharing data for better management of water resources. Such pressing issues have brought The World Bank, USAID and NASA to jointly collaborate for establishing integrated, modern, up to date NASA developed capabilities for countries in the MENA region for addressing water resource issues and adapting to climate change impacts for improved decision making and societal benefit. This initiative was launched in October 2011 and is schedule to be completed by the end of2015.

  20. [Estimation models of understory shrub biomass and their applications in red soil hilly region].

    PubMed

    Zeng, Hui-Qing; Liu, Qi-Jing; Feng, Zong-Wei; Ma, Ze-Qing; Hu, Li-Le

    2007-10-01

    With 16 familiar species of understory shrub at Qianyezhou ecological experimental station in red soil hilly region under Chinese Academy of Sciences as test objects, crown area (A(c)) and projected volume (V(c)) were used as the variables for building quadratic and power allometric equations, respectively, to estimate the biomass of individual populations, and mixed-model was used to estimate the biomass of the 16 species. The best-fit models were applied to estimate the biomass of understory shrub in different forest types. The results showed that the biomass of shrub layer varied significantly among different stand types. With species-specific models, the biomass in deciduous, secondary, and coniferous forests was estimated as 4 773, 3 175 and 733 kg x hm(-2), respectively; while with mixed model, the estimation result was a little lower, being 3 946, 2 772 and 840 kg x hm(-2), respectively. Under the conditions of species-specific models being not established, mixed model was more convenient and practical in estimating the biomass of understory shrub.

  1. An Overview of Regional Experiments on Biomass Burning Aerosols and Related Pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS

    NASA Technical Reports Server (NTRS)

    Lin, Neng-Huei; Tsay, Si-Chee; Maring, Hal B.; Yen, Ming-Cheng; Sheu, Guey-Rong; Wang, Sheng-Hsiang; Chi, Kai Hsien; Chuang, Ming-Tung; Ou-Yang, Chang-Feng; Fu, Joshua S.; Reid, Jeffrey S.; Lee, Chung-Te; Wang, Lin-Chi; Wang, Jia-Lin; Hsu, Christina N.; Sayer, Andrew M.; Holben, Brent N.; Chu, Yu-Chi; Nguyen, Xuan Anh; Sopajaree, Khajornsak; Chen, Shui-Jen; Cheng, Man-Ting; Tsuang, Ben-Jei; Tsai, Chuen-Jinn; Peng, Chi-Ming; Schnell, Russell C.; Conway, Tom; Chang, Chang-Tang; Lin, Kuen-Song; Tsai, Ying I.; Lee, Wen-Jhy; Chang, Shuenn-Chin; Liu, Jyh-Jian; Chang, Wei-Li; Huang, Shih-Jen; Lin, Tang-Huang; Liu, Gin-Rong

    2013-01-01

    By modulating the Earth-atmosphere energy, hydrological and biogeochemical cycles, and affecting regional-to-global weather and climate, biomass burning is recognized as one of the major factors affecting the global carbon cycle. However, few comprehensive and wide-ranging experiments have been conducted to characterize biomass-burning pollutants in Southeast Asia (SEA) or assess their regional impact on meteorology, the hydrological cycle, the radiative budget, or climate change. Recently, BASEASIA (Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment) and the 7-SEAS (7- South-East Asian Studies) Dongsha Experiment were conducted during the spring seasons of 2006 and 2010 in northern SEA, respectively, to characterize the chemical, physical, and radiative properties of biomass-burning emissions near the source regions, and assess their effects. This paper provides an overview of results from these two campaigns and related studies collected in this special issue, entitled Observation, modeling and impact studies of biomass burning and pollution in the SE Asian Environment. This volume includes 28 papers, which provide a synopsis of the experiments, regional weatherclimate, chemical characterization of biomass-burning aerosols and related pollutants in source and sink regions, the spatial distribution of air toxics (atmospheric mercury and dioxins) in source and remote areas, a characterization of aerosol physical, optical, and radiative properties, as well as modeling and impact studies. These studies, taken together, provide the first relatively complete dataset of aerosol chemistry and physical observations conducted in the sourcesink region in the northern SEA, with particular emphasis on the marine boundary layer and lower free troposphere (LFT). The data, analysis and modeling included in these papers advance our present knowledge of source characterization of biomass-burning pollutants near the source regions as well as the physical and

  2. Regional mapping of forest canopy water content and biomass using AIRSAR images over BOREAS study area

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan; Rignot, Eric; Vanzyl, Jakob

    1995-01-01

    In recent years, monitoring vegetation biomass over various climate zones has become the primary focus of several studies interested in assessing the role of the ecosystem responses to climate change and human activities. Airborne and spaceborne Synthetic Aperture Radar (SAR) systems provide a useful tool to directly estimate biomass due to its sensitivity to structural and moisture characteristics of vegetation canopies. Even though the sensitivity of SAR data to total aboveground biomass has been successfully demonstrated in many controlled experiments over boreal forests and forest plantations, so far, no biomass estimation algorithm has been developed. This is mainly due to the fact that the SAR data, even at lowest frequency (P-band) saturates at biomass levels of about 200 tons/ha, and the structure and moisture information in the SAR signal forces the estimation algorithm to be forest type dependent. In this paper, we discuss the development of a hybrid forest biomass algorithm which uses a SAR derived land cover map in conjunction with a forest backscatter model and an inversion algorithm to estimate forest canopy water content. It is shown that unlike the direct biomass estimation from SAR data, the estimation of water content does not depend on the seasonal and/or environmental conditions. The total aboveground biomass can then be derived from canopy water content for each type of forest by incorporating other ecological information. Preliminary results from this technique over several boreal forest stands indicate that (1) the forest biomass can be estimated with reasonable accuracy, and (2) the saturation level of the SAR signal can be enhanced by separating the crown and trunk biomass in the inversion algorithm. We have used the JPL AIRSAR data over BOREAS southern study area to test the algorithm and to generate regional scale water content and biomass maps. The results are compared with ground data and the sources of errors are discussed. Several SAR

  3. Do climate factors govern soil microbial community composition and biomass at a regional scale?

    NASA Astrophysics Data System (ADS)

    Ma, L.; Guo, C.; Lü, X.; Yuan, S.; Wang, R.

    2014-12-01

    Soil microbial communities play important role in organic matter decomposition, nutrient cycling and vegetation dynamic. However, little is known about factors driving soil microbial community composition at large scales. The objective of this study was to determine whether climate dominates among environmental factors governing microbial community composition and biomass at a regional scale. Here, we compared soil microbial communities using phospholipid fatty acid method across 7 land use types from 23 locations in North-East China Transect (850 km x 50 km). The results showed that soil water availability and land use changes exhibited the dominant effects on soil microbial community composition and biomass at the regional scale, while climate factors (expressed as a function of large-scale spatial variation) did not show strong relationships with distribution of microbial community composition. Likewise, factors such as spatial structure, soil texture, nutrient availability and vegetation types were not important. Wetter soils had higher contributions of gram-positive bacteria, whereas drier soils had higher contributions of gram-negative bacteria and fungi. Heavily disturbed soils had lower contributions of gram-negative bacteria and fungi than historically disturbed and undisturbed soils. The lowest microbial biomass appeared in the wettest and driest soils. In conclusion, dominant climate factors, commonly known to structure distribution of macroorganisms, were not the most important drivers governing regional pattern of microbial communities because of inclusion of irrigated and managed practices. In comparison, soil water regime and land use types appear to be primary determinants of microbial community composition and biomass.

  4. Analysis of genomic regions of Trichoderma harzianum IOC-3844 related to biomass degradation.

    PubMed

    Crucello, Aline; Sforça, Danilo Augusto; Horta, Maria Augusta Crivelente; dos Santos, Clelton Aparecido; Viana, Américo José Carvalho; Beloti, Lilian Luzia; de Toledo, Marcelo Augusto Szymanski; Vincentz, Michel; Kuroshu, Reginaldo Massanobu; de Souza, Anete Pereira

    2015-01-01

    Trichoderma harzianum IOC-3844 secretes high levels of cellulolytic-active enzymes and is therefore a promising strain for use in biotechnological applications in second-generation bioethanol production. However, the T. harzianum biomass degradation mechanism has not been well explored at the genetic level. The present work investigates six genomic regions (~150 kbp each) in this fungus that are enriched with genes related to biomass conversion. A BAC library consisting of 5,760 clones was constructed, with an average insert length of 90 kbp. The assembled BAC sequences revealed 232 predicted genes, 31.5% of which were related to catabolic pathways, including those involved in biomass degradation. An expression profile analysis based on RNA-Seq data demonstrated that putative regulatory elements, such as membrane transport proteins and transcription factors, are located in the same genomic regions as genes related to carbohydrate metabolism and exhibit similar expression profiles. Thus, we demonstrate a rapid and efficient tool that focuses on specific genomic regions by combining a BAC library with transcriptomic data. This is the first BAC-based structural genomic study of the cellulolytic fungus T. harzianum, and its findings provide new perspectives regarding the use of this species in biomass degradation processes. PMID:25836973

  5. Analysis of Genomic Regions of Trichoderma harzianum IOC-3844 Related to Biomass Degradation

    PubMed Central

    Crucello, Aline; Sforça, Danilo Augusto; Horta, Maria Augusta Crivelente; dos Santos, Clelton Aparecido; Viana, Américo José Carvalho; Beloti, Lilian Luzia; de Toledo, Marcelo Augusto Szymanski; Vincentz, Michel; Kuroshu, Reginaldo Massanobu; de Souza, Anete Pereira

    2015-01-01

    Trichoderma harzianum IOC-3844 secretes high levels of cellulolytic-active enzymes and is therefore a promising strain for use in biotechnological applications in second-generation bioethanol production. However, the T. harzianum biomass degradation mechanism has not been well explored at the genetic level. The present work investigates six genomic regions (~150 kbp each) in this fungus that are enriched with genes related to biomass conversion. A BAC library consisting of 5,760 clones was constructed, with an average insert length of 90 kbp. The assembled BAC sequences revealed 232 predicted genes, 31.5% of which were related to catabolic pathways, including those involved in biomass degradation. An expression profile analysis based on RNA-Seq data demonstrated that putative regulatory elements, such as membrane transport proteins and transcription factors, are located in the same genomic regions as genes related to carbohydrate metabolism and exhibit similar expression profiles. Thus, we demonstrate a rapid and efficient tool that focuses on specific genomic regions by combining a BAC library with transcriptomic data. This is the first BAC-based structural genomic study of the cellulolytic fungus T. harzianum, and its findings provide new perspectives regarding the use of this species in biomass degradation processes. PMID:25836973

  6. Analysis of genomic regions of Trichoderma harzianum IOC-3844 related to biomass degradation.

    PubMed

    Crucello, Aline; Sforça, Danilo Augusto; Horta, Maria Augusta Crivelente; dos Santos, Clelton Aparecido; Viana, Américo José Carvalho; Beloti, Lilian Luzia; de Toledo, Marcelo Augusto Szymanski; Vincentz, Michel; Kuroshu, Reginaldo Massanobu; de Souza, Anete Pereira

    2015-01-01

    Trichoderma harzianum IOC-3844 secretes high levels of cellulolytic-active enzymes and is therefore a promising strain for use in biotechnological applications in second-generation bioethanol production. However, the T. harzianum biomass degradation mechanism has not been well explored at the genetic level. The present work investigates six genomic regions (~150 kbp each) in this fungus that are enriched with genes related to biomass conversion. A BAC library consisting of 5,760 clones was constructed, with an average insert length of 90 kbp. The assembled BAC sequences revealed 232 predicted genes, 31.5% of which were related to catabolic pathways, including those involved in biomass degradation. An expression profile analysis based on RNA-Seq data demonstrated that putative regulatory elements, such as membrane transport proteins and transcription factors, are located in the same genomic regions as genes related to carbohydrate metabolism and exhibit similar expression profiles. Thus, we demonstrate a rapid and efficient tool that focuses on specific genomic regions by combining a BAC library with transcriptomic data. This is the first BAC-based structural genomic study of the cellulolytic fungus T. harzianum, and its findings provide new perspectives regarding the use of this species in biomass degradation processes.

  7. Regional Contingencies in the Relationship between Aboveground Biomass and Litter in the World’s Grasslands

    PubMed Central

    O’Halloran, Lydia R.; Borer, Elizabeth T.; Seabloom, Eric W.; MacDougall, Andrew S.; Cleland, Elsa E.; McCulley, Rebecca L.; Hobbie, Sarah; Harpole, W. Stan; DeCrappeo, Nicole M.; Chu, Chengjin; Bakker, Jonathan D.; Davies, Kendi F.; Du, Guozhen; Firn, Jennifer; Hagenah, Nicole; Hofmockel, Kirsten S.; Knops, Johannes M. H.; Li, Wei; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Stevens, Carly J.

    2013-01-01

    Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex. PMID:23405103

  8. Rural system addresses social, economic needs. Cooperation, education, and advocacy revitalize a region's healthcare delivery.

    PubMed

    Rheinecker, P

    1992-01-01

    In recent years leaders at Presentation Health System (PHS), Sioux Falls, SD, have expanded their mission to help strengthen local communities economically and socially. PHS now offers support to rural leaders in business, politics, and healthcare through its Center for Rural Health and Economic Development. In addition, educational outreach coordinators have created programs that address the needs of the entire rural community. To establish an effective network of services in the region, two of the system's tertiary care hospitals are collaborating to provide emergency helicopter service. These larger facilities also extend outreach services to rural hospitals and clinics. PHS assists rural hospitals in grant writing and in adapting to changing government reimbursement rules. In addition, the healthcare system coordinates a group purchasing program and a debt collection agency. An important voice for its region's healthcare needs, PHS has worked with the state of South Dakota to address problems and concerns about emergency medical services. The system also publishes Report, a quarterly newsletter that keeps rural residents abreast of healthcare issues affecting them. Two years ago, PHS's Center for Rural Health and Economic Development sponsored its first Invitational Rural Health Leadership Conference. These annual conferences bring together leaders to examine ways to improve rural healthcare delivery by strengthening the social and economic fabric of rural communities. PMID:10119539

  9. Spatial and topographic trends in forest expansion and biomass change, from regional to local scales.

    PubMed

    Buma, Brian; Barrett, Tara M

    2015-09-01

    Natural forest growth and expansion are important carbon sequestration processes globally. Climate change is likely to increase forest growth in some regions via CO2 fertilization, increased temperatures, and altered precipitation; however, altered disturbance regimes and climate stress (e.g. drought) will act to reduce carbon stocks in forests as well. Observations of asynchrony in forest change is useful in determining current trends in forest carbon stocks, both in terms of forest density (e.g. Mg ha(-1) ) and spatially (extent and location). Monitoring change in natural (unmanaged) areas is particularly useful, as while afforestation and recovery from historic land use are currently large carbon sinks, the long-term viability of those sinks depends on climate change and disturbance dynamics at their particular location. We utilize a large, unmanaged biome (>135 000 km(2) ) which spans a broad latitudinal gradient to explore how variation in location affects forest density and spatial patterning: the forests of the North American temperate rainforests in Alaska, which store >2.8 Pg C in biomass and soil, equivalent to >8% of the C in contiguous US forests. We demonstrate that the regional biome is shifting; gains exceed losses and are located in different spatio-topographic contexts. Forest gains are concentrated on northerly aspects, lower elevations, and higher latitudes, especially in sheltered areas, whereas loss is skewed toward southerly aspects and lower latitudes. Repeat plot-scale biomass data (n = 759) indicate that within-forest biomass gains outpace losses (live trees >12.7 cm diameter, 986 Gg yr(-1) ) on gentler slopes and in higher latitudes. This work demonstrates that while temperate rainforest dynamics occur at fine spatial scales (<1000 m(2) ), the net result of thousands of individual events is regionally patterned change. Correlations between the disturbance/establishment imbalance and biomass accumulation suggest the potential for relatively

  10. Approaches and incentives to implement integrated pest management that addresses regional and environmental issues.

    PubMed

    Brewer, Michael J; Goodell, Peter B

    2012-01-01

    Agricultural, environmental, and social and policy interests have influenced integrated pest management (IPM) from its inception. The first 50 years of IPM paid special attention to field-based management and market-driven decision making. Concurrently, IPM strategies became available that were best applied both within and beyond the bounds of individual fields and that also provided environmental benefits. This generated an incentives dilemma for farmers: selecting IPM activities for individual fields on the basis of market-based economics versus selecting IPM activities best applied regionally that have longer-term benefits, including environmental benefits, that accrue to the broader community as well as the farmer. Over the past several decades, public-supported incentives, such as financial incentives available to farmers from conservation programs for farms, have begun to be employed to encourage use of conservation techniques, including strategies with IPM relevance. Combining private investments with public support may effectively address the incentives dilemma when advanced IPM strategies are used regionally and provide public goods such as those benefiting resource conservation. This review focuses on adaptation of IPM to these broader issues, on transitions of IPM from primarily individual field-based decision making to coordinated community decision making, and on the form of partnerships needed to gain long-lasting regional and environmental benefits.

  11. Ecosystem relevance of variable jellyfish biomass in the Irish Sea between years, regions and water types

    NASA Astrophysics Data System (ADS)

    Bastian, Thomas; Lilley, Martin K. S.; Beggs, Steven E.; Hays, Graeme C.; Doyle, Thomas K.

    2014-08-01

    Monitoring the abundance and distribution of taxa is essential to assess their contribution to ecosystem processes. For marine taxa that are difficult to study or have long been perceived of little ecological importance, quantitative information is often lacking. This is the case for jellyfish (medusae and other gelatinous plankton). In the present work, 4 years of scyphomedusae by-catch data from the 2007-2010 Irish Sea juvenile gadoid fish survey were analysed with three main objectives: (1) to provide quantitative and spatially-explicit species-specific biomass data, for a region known to have an increasing trend in jellyfish abundance; (2) to investigate whether year-to-year changes in catch-biomass are due to changes in the numbers or in the size of medusa (assessed as the mean mass per individual), and (3) to determine whether inter-annual variation patterns are consistent between species and water masses. Scyphomedusae were present in 97% of samples (N = 306). Their overall annual median catch-biomass ranged from 0.19 to 0.92 g m-3 (or 8.6 to 42.4 g m-2). Aurelia aurita and Cyanea spp. (Cyanea lamarckii and Cyanea capillata) made up 77.7% and 21.5% of the total catch-biomass respectively, but species contributions varied greatly between sub-regions and years. No consistent pattern was detected between the distribution and inter-annual variations of the two genera, and contrasting inter-annual patterns emerged when considering abundance either as biomass or as density. Significantly, A. aurita medusae were heavier in stratified than in mixed waters, which we hypothesize may be linked to differences in timing and yield of primary and secondary productions between water masses. These results show the vulnerability of time-series from bycatch datasets to phenological changes and highlight the importance of taking species- and population-specific distribution patterns into account when integrating jellyfish into ecosystem models.

  12. Variation in forest biomass change highlights regional differences in forest succession in the Pacific Northwest, USA.

    NASA Astrophysics Data System (ADS)

    Bell, D. M.; Gray, A. N.

    2014-12-01

    Forest successional theory describes the changes in forest biomass and community composition from forest establishment to climax communities, but the drivers of succession are still widely debated. For example, successional models have related biomass and community change to stand age, species rarity within the community, small-scale disturbance, or the ability of species to survive under low resource conditions. The degree to which these drivers might vary regionally limits our ability to model and predict ecosystem change. Our objective was to assess whether forest successional theory explains observed changes in species biomass and community composition across forests of the U. S. Pacific Northwest. Using remeasurements of 9,700 Current Vegetation Survey (CVS) National Forest inventory plots primarily in Oregon and Washington, we quantified the effects of forest stand age, community composition, disturbance, and moisture (i.e., topography and climate) on changes in species-specific proportional live biomass (ΔB) and species dominance (ΔD). We focused on differences in forest successional patterns in two vegetation zones: the Tsuga heterophylla (TSHE) zone, found at low elevations on the wet, west side of the Cascade Mountains; and the Abies concolor (ABCO) zone, found at mid-elevations on the dry, east side of the Cascade Mountains. Preliminary results indicate that the regional differences in tree species biomass change and dominance appear to be related to responses to climate and disturbance. Strong positive effects of cover change on ΔB were observed in the drier ABCO zone, but not the wetter TSHE zone. ΔB and ΔD were more often sensitive to precipitation and topographic position in the ABCO zone. In both regions, we found that ΔB was strongly negatively related to species biomass and stand age while ΔD was strongly negatively related to relative density, highlighting the importance of both age and community in shaping succession. Given that the

  13. Developing in situ non-destructive estimates of crop biomass to address issues of scale in remote sensing

    USGS Publications Warehouse

    Marshall, Michael T.; Thenkabail, Prasad S.

    2015-01-01

    Ground-based estimates of aboveground wet (fresh) biomass (AWB) are an important input for crop growth models. In this study, we developed empirical equations of AWB for rice, maize, cotton, and alfalfa, by combining several in situ non-spectral and spectral predictors. The non-spectral predictors included: crop height (H), fraction of absorbed photosynthetically active radiation (FAPAR), leaf area index (LAI), and fraction of vegetation cover (FVC). The spectral predictors included 196 hyperspectral narrowbands (HNBs) from 350 to 2500 nm. The models for rice, maize, cotton, and alfalfa included H and HNBs in the near infrared (NIR); H, FAPAR, and HNBs in the NIR; H and HNBs in the visible and NIR; and FVC and HNBs in the visible; respectively. In each case, the non-spectral predictors were the most important, while the HNBs explained additional and statistically significant predictors, but with lower variance. The final models selected for validation yielded an R2 of 0.84, 0.59, 0.91, and 0.86 for rice, maize, cotton, and alfalfa, which when compared to models using HNBs alone from a previous study using the same spectral data, explained an additional 12%, 29%, 14%, and 6% in AWB variance. These integrated models will be used in an up-coming study to extrapolate AWB over 60 × 60 m transects to evaluate spaceborne multispectral broad bands and hyperspectral narrowbands.

  14. Individual biomass facility reports. Supplement to some employment and earnings implications of regional biomass energy utilization: New England and the Cornbelt States

    NASA Astrophysics Data System (ADS)

    Little, J. R.; Bell, S. E.; Blair, L. M.; Gove, R. M.; Stevenson, W.; Tamura, R. F.

    1981-08-01

    Research was conducted to determine the direct employment and earnings implications of regional biomass energy utilization. Details of the primary data collected during the course of the investigation are provided. A case studies approach was used to observe and analyze various biomass energy systems. Visits were made to existing biomass facilities and data on their operation and employment requirements were collected. Information on planned or potential future facilities was also obtained. When this information was analyzed, a fairly accurate picture of the current situation as well as the rate and direction of future development in biomass was attained. Separate descriptions are included for each facility visited or for each interview obtained. The facility reports are organized according to fuel cycle (wood-fuel, alcohol-fuel, municipal solid waste facilities, others).

  15. Global and regional potential for bioenergy from agricultural and forestry residue biomass

    SciTech Connect

    Gregg, Jay S.; Smith, Steven J.

    2010-02-11

    As co-products, agricultural and forestry residues represent a potential low cost, low carbon, source for bioenergy. A method is developed method for estimating the maximum sustainable amount of energy potentially available from agricultural and forestry residues by converting crop production statistics into associated residue, while allocating some of this resource to remain on the field to mitigate erosion and maintain soil nutrients. Currently, we estimate that the world produces residue biomass that could be sustainably harvested and converted into over 50 EJ yr-1 of energy. The top three countries where this resource is estimated to be most abundant are currently net energy importers: China, the United States (US), and India. The global potential from residue biomass is estimated to increase to approximately 80-95 EJ yr-1 by mid- to late- century, depending on physical assumptions such as of future crop yields and the amount of residue sustainably harvestable. The future market for biomass residues was simulated using the Object-Oriented Energy, Climate, and Technology Systems Mini Climate Assessment Model (ObjECTS MiniCAM). Utilization of residue biomass as an energy source is projected for the next century under different climate policy scenarios. Total global use of residue biomass is estimated to increase to 70-100 EJ yr-1 by mid- to late- century in a central case, depending on the presence of a climate policy and the economics of harvesting, aggregating, and transporting residue. Much of this potential is in developing regions of the world, including China, Latin America, Southeast Asia, and India.

  16. Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia

    NASA Astrophysics Data System (ADS)

    Prasad Vadrevu, Krishna; Lasko, Kristofer; Giglio, Louis; Justice, Chris

    2015-10-01

    In this study, we explored the relationships between the satellite-retrieved fire counts (FC), fire radiative power (FRP) and aerosol indices using multi-satellite datasets at a daily time-step covering ten different biomass burning regions in Asia. We first assessed the variations in MODIS-retrieved aerosol optical depths (AOD’s) in agriculture, forests, plantation and peat land burning regions and then used MODIS FC and FRP (hereafter FC/FRP) to explain the variations in AOD characteristics. Results suggest that tropical broadleaf forests in Laos burn more intensively than the other vegetation fires. FC/FRP-AOD correlations in different agricultural residue burning regions did not exceed 20% whereas in forest regions they reached 40%. To specifically account for absorbing aerosols, we used Ozone Monitoring Instrument-derived aerosol absorption optical depth (AAOD) and UV aerosol index (UVAI). Results suggest relatively high AAOD and UVAI values in forest fires compared with peat and agriculture fires. Further, FC/FRP could explain a maximum of 29% and 53% of AAOD variations, whereas FC/FRP could explain at most 33% and 51% of the variation in agricultural and forest biomass burning regions, respectively. Relatively, UVAI was found to be a better indicator than AOD and AAOD in both agriculture and forest biomass burning plumes. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations data showed vertically elevated aerosol profiles greater than 3.2-5.3 km altitude in the forest fire plumes compared to 2.2-3.9 km and less than 1 km in agriculture and peat-land fires, respectively. We infer the need to assimilate smoke plume height information for effective characterization of pollutants from different sources.

  17. Genotoxicity and composition of particulate matter from biomass burning in the eastern Brazilian Amazon region.

    PubMed

    de Oliveira Alves, Nilmara; Matos Loureiro, Ana Lúcia; Dos Santos, Fernando Cavalcante; Nascimento, Kátia Halter; Dallacort, Rivanildo; de Castro Vasconcellos, Pérola; de Souza Hacon, Sandra; Artaxo, Paulo; de Medeiros, Silvia Regina Batistuzzo

    2011-07-01

    In the present study Tradescantia pallida micronucleus (Trad-MCN) bioassay was used to assess the genotoxicity of particulate matter with a mass median aerodynamic diameter less than 10 μm (PM₁₀) in Tangara da Serra (MT), a Brazilian Amazon region that suffers the impact of biomass burning. The levels of PM (coarse and fine size fractions) and black carbon (BC) collected were also measured. Furthermore, the alkanes and polycyclic aromatic hydrocarbons (PAHs) were identified and quantified in the samples taken during the burning period by gas chromatography with flame ionization detection (GC-FID). The PM and BC results for both fractions indicate a strong correlation (p < 0.001). The analysis of alkanes indicates an anthropic influence. Retene was the most abundant PAH found, an indicator of biomass burning, and 12 other PAHs considered to be potentially mutagenic and/or carcinogenic were identified in this sample. The Trad-MCN bioassay showed a significant increase in micronucleus frequency during the period of most intense burning, possibly related to the mutagenic PAHs that were found in such extracts. This study demonstrated that Trad-MCN was sensitive and efficient in evaluating the genotoxicity of organic compounds from biomass burning. It further emphasizes the importance of performing chemical analysis, because changes in chemical composition generally have a negative effect on many living organisms. This bioassay (ex situ), using T. pallida with chemical analysis, is thus recommended for characterizing the genotoxicity of air pollution.

  18. High-Resolution Mapping of Biomass Burning Emissions in Three Tropical Regions.

    PubMed

    Shi, Yusheng; Matsunaga, Tsuneo; Yamaguchi, Yasushi

    2015-09-15

    Biomass burning in tropical regions plays a significant role in atmospheric pollution and climate change. This study quantified a comprehensive monthly biomass burning emissions inventory with 1 km high spatial resolution, which included the burning of vegetation, human waste, and fuelwood for 2010 in three tropical regions. The estimations were based on the available burned area product MCD64A1 and statistical data. The total emissions of all gases and aerosols were 17382 Tg of CO2, 719 Tg of CO, 30 Tg of CH4, 29 Tg of NOx, 114 Tg of NMOC (nonmethane organic compounds), 7 Tg of SO2, 10 Tg of NH3, 79 Tg of PM2.5 (particulate matter), 45 Tg of OC (organic carbon), and 6 Tg of BC (black carbon). Taking CO as an example, vegetation burning accounted for 74% (530 Tg) of the total CO emissions, followed by fuelwood combustion and human waste burning. Africa was the biggest emitter (440 Tg), larger than Central and South America (113 Tg) and South and Southeast Asia (166 Tg). We also noticed that the dominant fire types in vegetation burning of these three regions were woody savanna/shrubland, savanna/grassland, and forest, respectively. Although there were some slight overestimations, our results are supported by comparisons with previously published data.

  19. Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment

    NASA Astrophysics Data System (ADS)

    de Oliveira Alves, Nilmara; Brito, Joel; Caumo, Sofia; Arana, Andrea; de Souza Hacon, Sandra; Artaxo, Paulo; Hillamo, Risto; Teinilä, Kimmo; Batistuzzo de Medeiros, Silvia Regina; de Castro Vasconcellos, Pérola

    2015-11-01

    The Brazilian Amazon represents about 40% of the world's remaining tropical rainforest. However, human activities have become important drivers of disturbance in that region. The majority of forest fire hotspots in the Amazon arc due to deforestation are impacting the health of the local population of over 10 million inhabitants. In this study we characterize western Amazonia biomass burning emissions through the quantification of 14 Polycyclic Aromatic Hydrocarbons (PAHs), Organic Carbon, Elemental Carbon and unique tracers of biomass burning such as levoglucosan. From the PAHs dataset a toxic equivalence factor is calculated estimating the carcinogenic and mutagenic potential of biomass burning emissions during the studied period. Peak concentration of PM10 during the dry seasons was observed to reach 60 μg m-3 on the 24 h average. Conversely, PM10 was relatively constant throughout the wet season indicating an overall stable balance between aerosol sources and sinks within the filter sampling resolution. Similar behavior is identified for OC and EC components. Levoglucosan was found in significant concentrations (up to 4 μg m-3) during the dry season. Correspondingly, the estimated lung cancer risk calculated during the dry seasons largely exceeded the WHO health-based guideline. A source apportionment study was carried out through the use of Absolute Principal Factor Analysis (APFA), identifying a three-factor solution. The biomass burning factor is found to be the dominating aerosol source, having 75.4% of PM10 loading. The second factor depicts an important contribution of several PAHs without a single source class and therefore was considered as mixed sources factor, contributing to 6.3% of PM10. The third factor was mainly associated with fossil fuel combustion emissions, contributing to 18.4% of PM10. This work enhances the knowledge of aerosol sources and its impact on climate variability and local population, on a site representative of the

  20. 40 CFR 63.13 - Addresses of State air pollution control agencies and EPA Regional Offices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Addresses of State air pollution... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES General Provisions § 63.13 Addresses of State air pollution control...

  1. 40 CFR 63.13 - Addresses of State air pollution control agencies and EPA Regional Offices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Addresses of State air pollution... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES General Provisions § 63.13 Addresses of State air pollution control...

  2. 40 CFR 63.13 - Addresses of State air pollution control agencies and EPA Regional Offices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Addresses of State air pollution... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES General Provisions § 63.13 Addresses of State air pollution control...

  3. 40 CFR 63.13 - Addresses of State air pollution control agencies and EPA Regional Offices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Addresses of State air pollution... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES General Provisions § 63.13 Addresses of State air pollution control...

  4. 40 CFR 63.13 - Addresses of State air pollution control agencies and EPA Regional Offices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Addresses of State air pollution... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES General Provisions § 63.13 Addresses of State air pollution control...

  5. High-resolution mapping of biomass burning emissions in tropical regions across three continents

    NASA Astrophysics Data System (ADS)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto

    2015-04-01

    Biomass burning emissions from open vegetation fires (forest fires, savanna fires, agricultural waste burning), human waste and biofuel combustion contain large amounts of trace gases (e.g., CO2, CH4, and N2O) and aerosols (BC and OC), which significantly impact ecosystem productivity, global atmospheric chemistry, and climate . With the help of recently released satellite products, biomass density based on satellite and ground-based observation data, and spatial variable combustion factors, this study developed a new high-resolution emissions inventory for biomass burning in tropical regions across three continents in 2010. Emissions of trace gases and aerosols from open vegetation burning are estimated from burned areas, fuel loads, combustion factors, and emission factors. Burned areas were derived from MODIS MCD64A1 burned area product, fuel loads were mapped from biomass density data sets for herbaceous and tree-covered land based on satellite and ground-based observation data. To account for spatial heterogeneity in combustion factors, global fractional tree cover (MOD44B) and vegetation cover maps (MCD12Q1) were introduced to estimate the combustion factors in different regions by using their relationship with tree cover under less than 40%, between 40-60% and above 60% conditions. For emission factors, the average values for each fuel type from field measurements are used. In addition to biomass burning from open vegetation fires, the emissions from human waste (residential and dump) burning and biofuel burning in 2010 were also estimated for 76 countries in tropical regions across the three continents and then allocated into each pixel with 1 km grid based on the population density (Gridded Population of the World v3). Our total estimates for the tropical regions across the three continents in 2010 were 17744.5 Tg CO2, 730.3 Tg CO, 32.0 Tg CH4, 31.6 Tg NOx, 119.2 Tg NMOC, 6.3 Tg SO2, 9.8 NH3 Tg, 81.8 Tg PM2.5, 48.0 Tg OC, and 5.7 Tg BC, respectively. Open

  6. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Aouizerats, B.; van der Werf, G. R.; Balasubramanian, R.; Betha, R.

    2014-05-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled the largest fire-induced haze episode in the past decade (2006) in Indonesia using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). We focused mainly on the evolution of the fire plume composition and its interaction with the urbanized area of the city-state of Singapore, and on comparisons of modeled and measured aerosol and CO concentrations. Two simulations were run with the model using the complex Volatility Basis Set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic, and b iomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent datasets for comparison including airborne measurements of Particulate Matter with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and Aerosol Optical Depth (AOD) column observations from 4 satellite-based sensors. We found reasonable agreement of the model runs with both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m-3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while secondary organic aerosol (SOA) concentration slightly increased. The

  7. Regional processes in mangrove ecosystems: Spatial scaling relationships, biomass, and turnover rates following catastrophic disturbance

    USGS Publications Warehouse

    Ward, G.A.; Smith, T. J.; Whelan, K.R.T.; Doyle, T.W.

    2006-01-01

    Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a -1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration. ?? Springer 2006.

  8. Regional Distribution of Forest Height and Biomass from Multisensor Data Fusion

    NASA Technical Reports Server (NTRS)

    Yu, Yifan; Saatchi, Sassan; Heath, Linda S.; LaPoint, Elizabeth; Myneni, Ranga; Knyazikhin, Yuri

    2010-01-01

    Elevation data acquired from radar interferometry at C-band from SRTM are used in data fusion techniques to estimate regional scale forest height and aboveground live biomass (AGLB) over the state of Maine. Two fusion techniques have been developed to perform post-processing and parameter estimations from four data sets: 1 arc sec National Elevation Data (NED), SRTM derived elevation (30 m), Landsat Enhanced Thematic Mapper (ETM) bands (30 m), derived vegetation index (VI) and NLCD2001 land cover map. The first fusion algorithm corrects for missing or erroneous NED data using an iterative interpolation approach and produces distribution of scattering phase centers from SRTM-NED in three dominant forest types of evergreen conifers, deciduous, and mixed stands. The second fusion technique integrates the USDA Forest Service, Forest Inventory and Analysis (FIA) ground-based plot data to develop an algorithm to transform the scattering phase centers into mean forest height and aboveground biomass. Height estimates over evergreen (R2 = 0.86, P < 0.001; RMSE = 1.1 m) and mixed forests (R2 = 0.93, P < 0.001, RMSE = 0.8 m) produced the best results. Estimates over deciduous forests were less accurate because of the winter acquisition of SRTM data and loss of scattering phase center from tree ]surface interaction. We used two methods to estimate AGLB; algorithms based on direct estimation from the scattering phase center produced higher precision (R2 = 0.79, RMSE = 25 Mg/ha) than those estimated from forest height (R2 = 0.25, RMSE = 66 Mg/ha). We discuss sources of uncertainty and implications of the results in the context of mapping regional and continental scale forest biomass distribution.

  9. Biomass district heating in the Tug Hill, NY: Feasibility and regional economic impacts

    NASA Astrophysics Data System (ADS)

    Hendricks, Aaron

    Biomass district heating (BDH) has the potential to stimulate rural economies in the Tug Hill region of New York State by establishing a local industry and providing lower cost heat compared to the local alternative, #2 fuel oil. However, the competitiveness and economic impact of BDH networks in rural villages is largely unknown. This study proposes a methodology to provide initial assessments of the feasibility of BDH in rural communities. BDH would deliver heat below the cost of the local alternative in eight of the ten study villages examined. Capital costs comprised over 80% of the project costs, illuminating the importance of reaching a sufficient heat density; however, specific building heat was a stronger determinant of a village's feasibility. An input-output analysis determined that BDH would generate $18.6 million in output and create 143 jobs throughout the three county region, a significant impact if concentrated around the study villages.

  10. Regional biomass burning trends in India: Analysis of satellite fire data

    NASA Astrophysics Data System (ADS)

    Sahu, L. K.; Sheel, Varun; Pandey, Kumud; Yadav, Ravi; Saxena, P.; Gunthe, Sachin

    2015-10-01

    The results based on the analysis of satellite fire counts detected by the Along-Track Scanning Radiometer (ATSR) sensors over different regions of India during 1998-2009 have been presented. Generally, the activities of open biomass burning show large spatial and temporal variations in India. The highest and lowest values of monthly fire counts were detected during the periods of March-May and July-September, respectively over different regions of India. The activities of biomass burning in two central states of Madhya Pradesh and Maharashtra were the highest and together accounted for about 25-45% of total annual fire counts detected over India during the study period. However, in opposite phases, the rainfall and fire count data show strong seasonal variation. In addition to large regional and seasonal variations, the fire data also show significant year-to-year variation. The higher annual fire counts exceeding the mean of entire period by about 16% and 43% were detected during the two periods of 1998-2000 and 2007-2009, respectively. We have estimated normalized anomaly of annual fire count data which shows large positive departures from long-term mean for the years 1999, 2007, 2008 and 2009, while negative departures for the years 2002, 2003 and 2005. Consistently, the mixing ratio of carbon monoxide (CO) typical peaks during winter but extended to pre-monsoon season during extensive fire years. The annual data over the entire region of India show lesser positive trend of about 3% yr-1. The inter-annual variation of fire count over entire India follows the trend in the ENSO Precipitation Index (ESPI) but shows opposite trend to the multivariate ENSO Index (MEI).

  11. Reducing asthma disparities by addressing environmental inequities: a case study of regional asthma management and prevention's advocacy efforts.

    PubMed

    Lamb, Anne Kelsey; Ervice, Joel; Lorenzen, Kathryn; Prentice, Bob; White, Shannon

    2011-01-01

    Regional Asthma Management and Prevention describes its collaborative approach to address a social determinant of health--air quality--and the associated inequities that have led to asthma disparities impacting African American and Latino communities in the San Francisco Bay Area. The strategies, aimed at decreasing diesel pollution in disproportionately impacted communities, span the levels of the socioecological model, with an emphasis on policy outcomes. Regional Asthma Management and Prevention describes how this work fits within a larger comprehensive approach to address asthma disparities encompassing several components, ranging from clinical management to environmental protection. PMID:21160331

  12. The Sedimentary Charcoal Record of Regional and Global Biomass Burning on Multi-decadal-to-Orbital Time Scales

    NASA Astrophysics Data System (ADS)

    Bartlein, P. J.; Marlon, J.; Global Palaeofire Working Group

    2011-12-01

    The global charcoal database (GCD) assembled by the Global Palaeofire Working Group (GPWG) over the past several years provides over 800 sedimentary charcoal records of biomass burning that allows wildfire to be examined on a range of spatial and temporal scales. These data, and other analyses of sedimentary charcoal records show that: (1) The data-analytical aspects of sedimentary charcoal have matured to the extent that we can show that biomass burning is well represented by these records, that charcoal influx is a general indicator of area or biomass burning, and that peaks of charcoal influx in records with annual-to-decadal resolution provide evidence of individual fires. (2) The spatial coverage of the records is extensive enough to represent much of the global climate space, although coverage of Africa, Siberia, and grassland and desert ecosystems in general could be improved. (3) The temporal coverage is sufficient to resolve millennial-scale environmental changes over the past glacial cycle, and hemispheric and regional variations in biomass burning from the LGM to present. (4) Global biomass burning was very low at the LGM, and increases in biomass burning into the Holocene tracked hemispheric and regional climate changes. (5) Abrupt climate changes during deglaciation caused specific responses in the charcoal records; these responses are replicated during the abrupt warming and cooling episodes accompanying D-O cycles. (6) During the Holocene, biomass burning reflects regional climate changes and does not support the early anthropocene hypothesis. (7) Over the last millennium, biomass burning also tracks regional climate changes, and shows an unambiguous human influence only over the past 250 years. (8) The variations in global biomass burning on multiple time scales described by the sedimentary charcoal record are supported by the emerging ice core records of biomass burning. (9) Increases in biomass burning are strongly linked to temperature increases

  13. Interactions and Feedbacks Between Biomass Burning and Water Cycle Dynamics Across the Northern Sub-Saharan African Region

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2012-01-01

    The northern sub-Saharan African (NSSA) region, bounded on the north and south by the Sahara and the Equator, respectively, and stretching from the West to the East African coastlines, has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be one of the drivers of the regional carbon and energy cycles, with serious implications for the water cycle. A new interdisciplinary research effort sponsored by NASA is presently being focused on the NSSA region, to better understand the possible connection between the intense biomass burning observed from satellite year after year across the region and the rapid depletion of the regional water resources, as exemplified by the dramatic drying of Lake Chad. A combination of remote sensing and modeling approaches is being utilized in investigating multiple regional surface, atmospheric, and water-cycle processes, and inferring possible links between them. In this presentation, we will discuss preliminary results as well as the path toward improved understanding of the interrelationships and feedbacks between the biomass burning and the environmental change dynamics in the NSSA region.

  14. Aerosol transport of biomass burning to the Bolivian Andean region from remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Perez-Ramirez, Daniel; Whiteman, David; Andrade, Marcos; Gasso, Santiago; Stein, Ariel; Torres, Omar; Eck, Tom; Velarde, Fernando; Aliaga, Diego

    2016-04-01

    This work deals with the analysis of columnar aerosol optical and microphysical properties obtained by the AERONET network in the region of Bolivia and its border with Brazil. Through the long record AERONET measurements we focus in the transport of biomass-burning aerosol from the Amazon basin (stations at Rio Branco, Cuiba, Ji Parana and Santa Cruz) to the Andean Altiplano (altitude above 3000 m a.s.l. at the station in the city of La Paz). Also, measurements from the space-sensors MODIS and OMI are used to understand spatial distribution. The main results is the high impact in the aerosol load during the months of August, September and August with mean values of aerosol optical depth at 500 nm (AOD) at the low lands of ≈ 0.60 ± 0.60 and Angstrom exponent (α(440-870)) of ≈ 1.52 ± 0.38. Satellite measurements also follow very similar patterns. Also, that season is characterized by some extreme events that can reach AOD of up to 6.0. Those events are cloud-screened by MODIS but not by OMI sensor, which is attributed to different pixel resolutions. The biomass-burning is clearly transport to the Andean region where higher values of AOD (~ 0.12 ± 0.06 versus 0.09 ± 0.04 in the no biomass-burning season) and α(440-870) (~ 0.95 ± 0.30 versus 0.84 ± 0.3 in the no biomass-burning season). However, the intensity of the biomass-burning season varies between different years. Analysis of precipitation anomalies using TRNM satellites indicates a strong correlation with AOD, which suggest that on dry years there is less vegetation to burn and so less aerosol load. The opposite is found for positive anomalies of precipitation. In the transport of biomass burning larger values of the effective radius (reff) are observed in La Paz (reff = 0.26 ± 0.10 μm) than in the low lands (reff = 0.63 ± 0.24 μm), which has been explained by aerosol aging processes. Moreover, although the spectral dependence is similar, single scattering albedo (SSA) is larger in the low lands

  15. High-Resolution Regional Biomass Map of Siberia from Glas, Palsar L-Band Radar and Landsat Vcf Data

    NASA Astrophysics Data System (ADS)

    Sun, G.; Ranson, K.; Montesano, P.; Zhang, Z.; Kharuk, V.

    2015-12-01

    The Arctic-Boreal zone is known be warming at an accelerated rate relative to other biomes. The taiga or boreal forest covers over 16 x106 km2 of Arctic North America, Scandinavia, and Eurasia. A large part of the northern Boreal forests are in Russia's Siberia, as area with recent accelerated climate warming. During the last two decades we have been working on characterization of boreal forests in north-central Siberia using field and satellite measurements. We have published results of circumpolar biomass using field plots, airborne (PALS, ACTM) and spaceborne (GLAS) lidar data with ASTER DEM, LANDSAT and MODIS land cover classification, MODIS burned area and WWF's ecoregion map. Researchers from ESA and Russia have also been working on biomass (or growing stock) mapping in Siberia. For example, they developed a pan-boreal growing stock volume map at 1-kilometer scale using hyper-temporal ENVISAT ASAR ScanSAR backscatter data. Using the annual PALSAR mosaics from 2007 to 2010 growing stock volume maps were retrieved based on a supervised random forest regression approach. This method is being used in the ESA/Russia ZAPAS project for Central Siberia Biomass mapping. Spatially specific biomass maps of this region at higher resolution are desired for carbon cycle and climate change studies. In this study, our work focused on improving resolution ( 50 m) of a biomass map based on PALSAR L-band data and Landsat Vegetation Canopy Fraction products. GLAS data were carefully processed and screened using land cover classification, local slope, and acquisition dates. The biomass at remaining footprints was estimated using a model developed from field measurements at GLAS footprints. The GLAS biomass samples were then aggregated into 1 Mg/ha bins of biomass and mean VCF and PALSAR backscatter and textures were calculated for each of these biomass bins. The resulted biomass/signature data was used to train a random forest model for biomass mapping of entire region from 50o

  16. Mid-Atlantic Region: A Report Identifying and Addressing the Educational Needs

    ERIC Educational Resources Information Center

    US Department of Education, 2011

    2011-01-01

    This report presents the deliberations of the Mid-Atlantic Regional Advisory Committee (RAC), one of 10 RACs established under the Educational Technical Assistance Act of 2002 (20 U.S.C. sections 9601 et. seq.) to assess the educational needs of the region. The committee's report outlines the educational needs across the District of Columbia and…

  17. An Overview of Interdisciplinary Research at Notre Dame Addressing "Grand Challenges" in the Midwest and Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Hamlet, A. F.; Bolster, D.; Tank, J. L.; Hellmann, J.; Christopher, S. F.; Sharma, A.; Chiu, C. M.

    2014-12-01

    The Midwest and Great Lakes region face a number of "Grand Challenges" associated with climate, land use, agriculture, and water resources infrastructure. These include sustainability of agricultural systems and related impacts to food security and the regional economy; sustainability of Great Lakes water levels; changing storm statistics and impacts to stormwater management and flooding; water quality in rivers and downstream receiving water bodies related to non-point source pollution on agricultural lands and combined sewer overflows in urban areas; urban impacts related to aging infrastructure and climate change, and ecosystem management and restoration. In the context of water management, groundwater resources are poorly understood in comparison with surface water resources, and regional-scale simulation models are needed to address questions of sustainability both in terms of supply and water quality. Interdisciplinary research at the University of Notre Dame is attempting to address these research challenges via 1) integrated macro-scale groundwater and surface water modeling to address issues related to sustainable water supply, ecosystem restoration, and agricultural impacts; 2) development of high-resolution regional climate models dynamically coupled to the Great Lakes to address urban impacts, changing storm statistics and to quantify precipitation and evaporation over the Great Lakes; 3) and integrated macro-scale hydrology and water quality modeling to assess the large-scale performance of innovative land management BMPs on agricultural land (such as the two-stage ditch, cover crops, and dynamic drainage control) intended to improve water quality.

  18. 20 CFR 655.930 - Addresses of Department of Labor regional offices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... LABOR TEMPORARY EMPLOYMENT OF FOREIGN WORKERS IN THE UNITED STATES Attestations by Employers Using F-1..., Boston, MA 02114-2021. Telephone: 617-565-4446. Region II (New York, New Jersey, Puerto Rico, and...

  19. Future Earth -- New Approaches to address Climate Change and Sustainability in the MENA Region

    NASA Astrophysics Data System (ADS)

    Lange, Manfred; Abu Alhaija, Rana

    2016-04-01

    Interactions and feedbacks between rapidly increasing multiple pressures on water, energy and food security drive social-ecological systems at multiple scales towards critical thresholds in countries of the Eastern Mediterranean, the Middle East and North Africa (MENA Region). These pressures, including climate change, the growing demand on resources and resource degradation, urbanization and globalization, cause unprecedented challenges for countries and communities in the region. Responding to these challenges requires integrated science and a closer relationship with policy makers and stakeholders. Future Earth has been designed to respond to these urgent needs. In order to pursue such objectives, Future Earth is becoming the host organization for some 23 programs that were previously run under four global environmental change programmes, DIVERSITAS, the International Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme (IHDP) and the World Climate Research Programme (WCRP). Some further projects arose out of the Earth System Science Partnership (ESSP). It thus brings together a wide spectrum of expertise and knowledge that will be instrumental in tackling urgent problems in the MENA region and the wider Mediterranean Basin. Future Earth is being administered by a globally distributed secretariat that also includes a series of Regional Centers, which will be the nuclei for the development of new regional networks. The Cyprus Institute in Nicosia, Cyprus (CyI; www.cyi.ac.cy) is hosting the Regional Center for the MENA Region. The CyI is a non-profit research and post-graduate education institution with a strong scientific and technological orientation and a distinctive regional, Eastern Mediterranean scope. Cyprus at the crossroads of three continents and open to all nations in the region provides excellent conditions for advancing the research agenda of Future Earth in the MENA Region. Given the recent and ongoing major political

  20. Regional forest biomass estimation using ICESat/GLAS spaceborne LiDAR

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Saigusa, N.; Habura, B.; Sawada, Y.; Yamagata, Y.; Hirano, T.; Ichii, K.

    2015-12-01

    Spaceborne LiDAR can observe vertical structure of forests and provide a means for accurate forest monitoring, therefore, it may meet the growing demand of forest resources monitoring on a large scale. This study aims to clarify the potential of ICESat/GLAS, which had been the only spaceborne LiDAR up to now, for forest resources monitoring on a regional scale. The study areas were three regions: Hokkaido Island in Japan (cool-temperate forest), Borneo Island (tropical forest) and Siberia (boreal forest). Firstly, we conducted field measurements at 106 points in Hokkaido and 37 points in Borneo to measure the average canopy height (Lorey's height) and the above-ground biomass (AGB) for each GLAS-footprint, then, we developed some models to estimate canopy height and AGB from the GLAS waveform parameters. Next, we applied the developed models to the GLAS data which were 14,000 points in Hokkaido, and 130,000 points in Borneo, to estimate canopy height and AGB on a regional scale. As a result, we clarified the forest condition concerning canopy height and AGB for each region, namely, the average value, the comparison between the average of each forest type, and the spatial distribution. Furthermore, we detected the AGB change over the years (forest degradation) and estimated the forest loss rate of 1.6% yr-1 in Borneo. Next, we applied the developed models in Hokkaido to the 1,600,000 points GLAS data observed in Siberia. As a result, we clarified that the average AGB in Siberia was a remarkable low value as compared with those in Hokkaido and Borneo, and that the AGB change over the years (forest degradation) was significant in the southern region of western Siberia. This study showed that spaceborne LiDAR had an ability of forest resources monitoring on a regional scale for various forests over the world.

  1. Assessment of the Projected One Billion Ton Biomass for Cellulosic Biofuel Production and Its Potential Implications on Regional Water Quality and Availability

    NASA Astrophysics Data System (ADS)

    Demissie, Y. K.; Yan, E.; Wu, M.

    2011-12-01

    The DOE and USDA joint study, also commonly referred as the "Billion-Ton" study, assessed the cellulosic feedstock resources potential in the U.S. for producing second generation biofuel to replace 30 percent of the country's transportation fuels by year 2030. The available resource is expected to come from changing cropping pattern, increasing crop yield, harvesting agricultural and forest wood residues, and developing energy crops. Such large-scale changes in land use and crop managements are likely to affect the associated water quality and resources at both regional and local scales. To address the water sustainability associated with the projected biomass production in the Upper Mississippi River Basin (UMRB), we have developed a SWAT watershed model that simulate the changes in water quality (nitrogen, phosphorus, and soil erosion) and resources (soil water content, evapotranspiration, and runoff) of the region due to future biomass production scenario estimated by the Billion-Ton study. The scenario is implemented by changing the model inputs and parameters at subbasin and hydrologic response unit levels, as well as by improving the SWAT model to represent spatially varying crop properties. The potential impacts on water quality and water availability were compared with the results obtained from a baseline simulation which represents current watershed conditions and existing level of feedstock production. The basin level results suggested mixed effects on the water quality. The projected large-scale biomass production scenario is expected to decrease loadings of total nitrogen and nitrate in the streams while increase total phosphorus and suspended sediment. Results indicate an increase in the rate of evapotranspiration and a decrease in the soil water content and in surface runoff. discharge to the streams. The impacts at the subbasin or local scale varies spatially and temporally depending on the types of land use change, their locations, and crop

  2. Assessing the regional impact of Indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling

    NASA Astrophysics Data System (ADS)

    Engling, G.; He, J.; Betha, R.; Balasubramanian, R.

    2014-01-01

    Biomass burning activities commonly occur in Southeast Asia (SEA), and are particularly intense in Indonesia during dry seasons. The effect of biomass smoke emissions on air quality in the city state of Singapore was investigated during a haze episode in October 2006. Substantially increased levels of airborne particulate matter (PM) and associated chemical species were observed during the haze period. Specifically, the enhancement in the concentration of molecular tracers for biomass combustion such as levoglucosan by as much as two orders of magnitude and diagnostic ratios of individual organic compounds indicated that biomass burning emissions caused a regional smoke haze episode due to their long-range transport by prevailing winds. With the aid of air mass back trajectories and chemical mass balance modeling, large-scale forest and peat fires in Sumatra and Kalimantan were identified as the sources of the smoke aerosol, exerting a significant impact on air quality in downwind areas, such as Singapore.

  3. Assessing the regional impact of indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling

    NASA Astrophysics Data System (ADS)

    Engling, G.; He, J.; Betha, R.; Balasubramanian, R.

    2014-08-01

    Biomass burning activities commonly occur in Southeast Asia (SEA), and are particularly intense in Indonesia during the dry seasons. The effect of biomass smoke emissions on air quality in the city state of Singapore was investigated during a haze episode in October 2006. Substantially increased levels of airborne particulate matter (PM) and associated chemical species were observed during the haze period. Specifically, the enhancement in the concentration of molecular tracers for biomass combustion such as levoglucosan by as much as two orders of magnitude and the diagnostic ratios of individual organic compounds indicated that biomass burning emissions caused a regional smoke haze episode due to their long-range transport by prevailing winds. With the aid of air mass backward trajectories and chemical mass balance modeling, large-scale forest and peat fires in Sumatra and Kalimantan were identified as the sources of the smoke aerosol, exerting a significant impact on air quality in downwind areas, such as Singapore.

  4. Observations about chemical composition of aerosols in the Brazilian Amazon region - Case study: Biomass burning in the subequatorial Amazon region

    NASA Astrophysics Data System (ADS)

    Gioda, A.; Monteiro, I. L.; Almeida, A. C.; Hacon, S. S.; Dallacort, R.; Ignotti, E.; Godoy, J. M.; Loureiro, A. L.; Morais, F.; Artaxo, P.

    2012-04-01

    The study was carried out in two cities in the Brazilian Amazon region, Tangará da Serra (14 ° 37'10 "S, 57 ° 29'09" W, 427 m asl), located in a transition area between the Amazon biome and the Cerrado and has the characteristics of urban area in Amazon region; and Alta Floresta (9 ° 52 '32 "S, 56 ° 5' 10" W, 283 m asl) situated in the extreme north of the state of Mato Grosso (MT), both in the subequatorial Amazon region. Tangara da Serra has the largest production of sugar cane in the subequatorial Amazon region. They are located 800 km from each other. These two regions are inserted in a region with typical cycles of drought and rain that alter air pollution levels, and lies in the dispersion path of the pollution plume resulting from burnings in the Brazilian Amazon and pollution emanating from neighboring countries. Both cities have wet tropical climate with two well defined seasons: rainy summer (November to May) and dry winter (June to October). During the dry winter, biomass burnings are frequent in these regions. In 2008, the Department of the Environment has banned fires in the period from July 15 to September 15 throughout the State. In this study chemical characterization was performed for approximately 100 aerosol samples collected in each site during 2008. Fine and coarse aerosol samples collected in SFUs were analyzed by ion chromatography for determination of cations (Na+, K+, NH3+, Ca2+ and Mg2+), anions (SO42-, Cl- and NO3-) and organic acids (acetate and formiate) and also measures of black carbon (BC) (Aethalometer). The results showed that for both sites the average concentrations were quite similar for PM2.5 (16 µg/m3), PM10 (11 and 13 µg/m3) and black carbon (1.4 µg/m3 for PM2.5 and 1.6 µg/m3 for PM10). Sulfate was the predominant species in fine (45%) and coarse (26%) particles in both sites. The sulfate concentrations ranged from 0.01-1.92 µg/m3 in PM2.5 and 0.01-1.66 µg/m3 in PM10 in Tangará da Serra and 0.01-2.93 µg/m3 in PM2

  5. Northeast and Islands Region: A Report Identifying and Addressing the Educational Needs

    ERIC Educational Resources Information Center

    US Department of Education, 2011

    2011-01-01

    This report discusses the deliberations of the Northeast and Islands (NEI) Regional Advisory Committee (RAC), one of 10 RACs established by the U.S. Department of Education to solicit information about the educational needs of state and local educators, school officials, business leaders, state education agencies, parents, local communities, and…

  6. 75 FR 21979 - NRC Region II Address and Main Telephone Number Changes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... telephone number. The Region II office move and telephone number change will take effect on April 12, 2010...;having general applicability and legal effect, most of which are keyed #0;to and codified in the Code of..., 5849); 5 U.S.C. 552, 553; Reorganization Plan No. 1 of 1980, 45 FR 40561, June 16, 1980. 0 2. In Sec....

  7. Addressing Human Capital Challenges: Assessing the Experiences of Four Countries in the Arab Region. Research Brief

    ERIC Educational Resources Information Center

    Gonzalez, Gabriella; Karoly, Lynn A.; Constant, Louay; Salem, Hanine; Goldman, Charles A.

    2008-01-01

    This research brief describes an analysis of the reform efforts of four Arab region nations (Lebanon, Oman, Qatar, the United Arab Emirates) in response to human capital challenges they face in preparing their people to work in a global environment. (Contains 3 tables.) [For associated report, see ED503118.

  8. [Emission factors and PM chemical composition study of biomass burning in the Yangtze River Delta region].

    PubMed

    Tang, Xi-Bin; Huang, Cheng; Lou, Sheng-Rong; Qiao, Li-Ping; Wang, Hong-Li; Zhou, Min; Chen, Ming-hua; Chen, Chang-Hong; Wang, Qian; Li, Gui-Ling; Li, Li; Huang, Hai-Ying; Zhang, Gang-Feng

    2014-05-01

    The emission characteristics of five typical crops, including wheat straw, rice straw, oil rape straw, soybean straw and fuel wood, were investigated to explore the gas and particulates emission of typical biomass burning in Yangzi-River-Delta area. The straws were tested both by burning in stove and by burning in the farm with a self-developed measurement system as open burning sources. Both gas and fine particle pollutants were measured in this study as well as the chemical composition of fine particles. The results showed that the average emission factors of CO, NO, and PM2,5 in open farm burning were 28.7 g.kg -1, 1.2 g.kg-1 and 2.65 g kg-1 , respectively. Due to insufficient burning in the low oxygen level environment, the emission factors of stove burning were higher than those of open farm burning, which were 81.9 g kg-1, 2. 1 g.kg -1 and 8.5 gkg -1 , respectively. Oil rape straw had the highest emission factors in all tested straws samples. Carbonaceous matter, including organic carbon(OC) and element carbon(EC) , was the foremost component of PM2, 5from biomass burning. The average mass fractions of OC and EC were (38.92 +/- 13.93)% and (5.66 +/-1.54)% by open farm burning and (26.37 +/- 10. 14)% and (18.97 +/- 10.76)% by stove burning. Water soluble ions such as Cl-and K+ had a large contribution. The average mass fractions of CI- and K+ were (13.27 +/-6. 82)% and (12.41 +/- 3.02)% by open farm burning, and were (16.25 +/- 9.34)% and (13.62 +/- 7.91)% by stove burning. The K +/OC values of particles from wheat straw, rice straw, oil rape straw and soybean straw by open farm burning were 0. 30, 0. 52, 0. 49 and 0. 15, respectively, which can be used to evaluate the influence on the regional air quality in YRD area from biomass burning and provide direct evidence for source apportionment.

  9. Water Stress & Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2016-04-01

    results of analyzing water stress during growing season of 2012 and yielded biomass of crops three types of crops alfalfa, corn and soya irrigated by sprinkling machines at left bank of Volga River at Saratov Region of Russia are presented and analyzed. For that a combination of data received from satellite, local meteorological station and farmers as well as SWAP model was used. Analyze of data sets of monitored water deficit of each crop averaged for irrigation period was done by linear regression with yielded biomass values. Following analyze of effectiveness of irrigation water application was done by SWAP agrohydrological model.

  10. Effects of biomass burning aerosols on CO2 fluxes on Amazon Region

    NASA Astrophysics Data System (ADS)

    Soares Moreira, Demerval; Freitas, Saulo; Longo, Karla; Rosario, Nilton

    2015-04-01

    During the dry season in Central Brazil and Southern Amazon, there is an usually high concentration of aerosol particles associated with intense human activities, with extensive biomass burning. It has been observed through remote sensing that the smoke clouds in these areas often cover an area of about 4 to 5 million km2. Thus, the average aerosol optical depth of these regions at 500 ηm, is usually below 0.1 during the rainy season and can exceed 0.9 in the fire season. Aerosol particles act as condensation nuclei and also increase scattering and absorption of the incident radiation. Therefore, the layer of the aerosol alters the precipitation rate; reduces the amount of solar energy that reaches the surface, producing a cooling; and causes an increase of diffuse radiation. These factors directly and indirectly affect the CO2 fluxes at the surface. In this work, the chemical-atmospheric model CCATT-BRAMS (Coupled Chemistry-Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System) coupled to the surface model JULES (Joint UK Land Environment Simulator) was used to simulate the effects of biomass burning aerosols in CO2 fluxes in the Amazon region. Both the total effect of the aerosols and the contribution related only to the increase of the diffuse fraction caused by the their presence were analyzed. The results show that the effect of the scattered fraction is dominant over all other effects. It was also noted that the presence of aerosols from fires can substantially change biophysiological processes of the carbon cycle. In some situations, it can lead to a sign change in the net ecosystem exchange (NEE), turning it from a source of CO2 to the atmosphere, when the aerosol is not considered in the simulations, to a sink, when it is considered. Thus, this work demonstrates the importance of considering the presence of aerosols in numerical simulations of weather and climate, since carbon dioxide is a major

  11. Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region

    NASA Astrophysics Data System (ADS)

    Potter, Christopher; Brooks Genovese, Vanessa; Klooster, Steven; Bobo, Matthew; Torregrosa, Alicia

    To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1-1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301-304; Fearnside, 1997. Climatic Change 35, 321-360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr -1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.

  12. [Vegetation above-ground biomass and its affecting factors in water/wind erosion crisscross region on Loess Plateau].

    PubMed

    Wang, Jian-guo; Fan, Jun; Wang, Quan-jiu; Wang, Li

    2011-03-01

    Field investigations were conducted in Liudaogou small watershed in late September 2009 to study the differences of vegetation above-ground biomass, soil moisture content, and soil nutrient contents under different land use patterns, aimed to approach the vegetation above-ground biomass level and related affecting factors in typical small watershed in water/wind erosion crisscross region on Loess Plateau. The above-ground dry biomass of the main vegetations in Liudaogou was 177-2207 g x m(-2), and that in corn field, millet field, abandoned farmland, artificial grassland, natural grassland, and shrub land was 2097-2207, 518-775, 248-578, 280-545, 177-396, and 372-680 g x m(-2), respectively. The mean soil moisture content in 0-100 layer was the highest (14.2%) in farmlands and the lowest (10.9%) in shrub land. The coefficient of variation of soil moisture content was the greatest (26. 7% ) in abandoned farmland, indicating the strong spatial heterogeneity of soil moisture in this kind of farmland. The mean soil water storage was in the order of farmland > artificial grassland > natural grassland > shrub land. Soil dry layer was observed in alfalfa and caragana lands. There was a significant positive correlation (r = 0.639, P < 0.05) between above-ground dry biomass and 0-100 cm soil water storage, and also, a very significant positive correlation between above-ground fresh biomass and vegetation height. The above-ground biomass of the higher vegetations could potentially better control the wind and water erosion in the water/wind erosion crisscross region. Vegetation above-ground biomass was highly correlated with soil moisture and nutrient contents, but had no significant correlations with elevation, slope gradient, slope aspect, and soil bulk density.

  13. DOI Climate Science Centers--Regional science to address management priorities

    USGS Publications Warehouse

    O'Malley, Robin

    2012-01-01

    Our Nation's lands, waters, and ecosystems and the living and cultural resources they contain face myriad challenges from invasive species, the effects of changing land and water use, habitat fragmentation and degradation, and other influences. These challenges are compounded by increasing influences from a changing climate—higher temperatures, increasing droughts, floods, and wildfires, and overall increasing variability in weather and climate. The Department of the Interior (DOI) has established eight regional Climate Science Centers (CSC) (fig. 1) that will provide scientific information and tools to natural and cultural resource managers as they plan for conserving these resources in a changing world. The U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) is managing the CSCs on behalf of the DOI.

  14. Radiocarbon-based impact assessment of open biomass burning on regional carbonaceous aerosols in North China.

    PubMed

    Zong, Zheng; Chen, Yingjun; Tian, Chongguo; Fang, Yin; Wang, Xiaoping; Huang, Guopei; Zhang, Fan; Li, Jun; Zhang, Gan

    2015-06-15

    Samples of total suspended particulates (TSPs) and fine particulate matter (PM2.5) were collected from 29th May to 1st July, 2013 at a regional background site in Bohai Rim, North China. Mass concentrations of particulate matter and carbonaceous species showed a total of 50% and 97% of the measured TSP and PM2.5 levels exceeded the first grade national standard of China, respectively. Daily concentrations of organic carbon (OC) and elemental carbon (EC) were detected 7.3 and 2.5 μg m(-3) in TSP and 5.2 and 2.0 μg m(-3) in PM2.5, which accounted 5.8% and 2.0% of TSP while 5.6% and 2.2% for PM2.5, respectively. The concentrations of OC, EC, TSP and PM2.5 were observed higher in the day time than those in the night time. The observations were associated with the emission variations from anthropogenic activities. Two merged samples representing from south and north source areas were selected for radiocarbon analysis. The radiocarbon measurements showed 74% of water-insoluble OC (WINSOC) and 59% of EC in PM2.5 derived from biomass burning and biogenic sources when the air masses were from south region, and 63% and 48% for the air masses from north, respectively. Combined with backward trajectories and daily burned area, open burning of agricultural wastes was found to be predominating, which was confirmed by the potential source contribution function (PSCF).

  15. Effect of indoor air pollution from biomass fuel use on argyrophilic nuclear organizer regions in buccal epithelial cells.

    PubMed

    Mondal, Nandan K; Dutta, Anindita; Banerjee, Anirban; Chakraborty, Sreeparna; Lahiri, Twisha; Ray, Manas Ranjan

    2009-01-01

    This study investigated the effect of indoor air pollution from biomass-fuel use on the expression of argyrophilic nucleolar organizer regions (AgNORs), an indicator of ribosome biosynthesis, in epithelial cells of oral mucosa. AgNORs were evaluated using cytochemical staining in 62 nonsmoking indian women (median age, 34 years), who cooked exclusively with biomass, and 55 age-matched women, who were from a similar neighborhood and cooked with relatively clean liquefied petroleum gas (LPG). Concentrations of particulate pollutants in indoor air were measured using a real-time aerosol monitor. Compared to the LPG-using controls, biomass-fuel users showed a remarkably increased number of AgNOR dots per nucleus (6.08 +/-2.26 vs 3.16 +/-0.86, p < 0.001), AgNOR size (0.85 +/-0.19 vs 0.53 +/-0.15 mum2, p < 0.001), and percentage of AgNOR-occupied nuclear area (4.88 +/-1.49 vs 1.75 +/-0.13%, p < 0.001). Biomass-using households had 2 to 4 times more particulate pollutants than that of LPG-using households. The changes in AgNOR expression were positively associated with PM10 and PM2.5 levels in indoor air after controlling for potential confounders such as age, kitchen location, and family income. Thus, biomass smoke appears to be a risk factor for abnormal cell growth via upregulation of ribosome biogenesis.

  16. A site-related suitability analysis for the production of biomass as a contribution to sustainable regional land-use.

    PubMed

    Förster, Michael; Helms, Yvonne; Herberg, Alfred; Köppen, Antje; Kunzmann, Kathrin; Radtke, Dörte; Ross, Lutz; Itzerott, Sibylle

    2008-04-01

    The use of renewable energy in Europe offers the possibility of reducing greenhouse gas emissions, and contributes to energy security and independence. With the reform of the Common Agricultural Policy (CAP) and a variety of recently introduced national directives supporting renewable energy sources in the European Union, the economic attractiveness of bioenergy production has distinctly increased. This article combines an economic evaluation of biomass production with site-related natural conditions of the Havelland region, situated in the north-east area of Germany. Two methods for evaluating site-specific potential biomass yields were compared. For three example biomass crops, evaluations of yield estimations at agricultural lots for site-optimized suitability (SOS) and conventional suitability (CS) were carried out. Both modelling approaches were compared. The results of the GIS modelling indicate that the financial support for increasing the use of renewable energy with the German feed-in system, called Erneuerbare-Energien-Gesetz (EEG), will possibly lead to an increased cultivation of crops with high biomass output. This monocultural orientation of farming practices and the negative effects on the ecosystem could act in opposition to other environmental initiatives of the EU. The outputs of the SOS analysis show that high biomass production could be integrated into environmental policy proposals. Therefore, new EU policy should take modified subsidies into consideration in order to avoid developing conflicts between small-scale changes in landscape ecosystems caused by large-scale transformations in energy policy.

  17. A Site-Related Suitability Analysis for the Production of Biomass as a Contribution to Sustainable Regional Land-Use

    NASA Astrophysics Data System (ADS)

    Förster, Michael; Helms, Yvonne; Herberg, Alfred; Köppen, Antje; Kunzmann, Kathrin; Radtke, Dörte; Ross, Lutz; Itzerott, Sibylle

    2008-04-01

    The use of renewable energy in Europe offers the possibility of reducing greenhouse gas emissions, and contributes to energy security and independence. With the reform of the Common Agricultural Policy (CAP) and a variety of recently introduced national directives supporting renewable energy sources in the European Union, the economic attractiveness of bioenergy production has distinctly increased. This article combines an economic evaluation of biomass production with site-related natural conditions of the Havelland region, situated in the north-east area of Germany. Two methods for evaluating site-specific potential biomass yields were compared. For three example biomass crops, evaluations of yield estimations at agricultural lots for site-optimized suitability (SOS) and conventional suitability (CS) were carried out. Both modelling approaches were compared. The results of the GIS modelling indicate that the financial support for increasing the use of renewable energy with the German feed-in system, called Erneuerbare-Energien-Gesetz (EEG), will possibly lead to an increased cultivation of crops with high biomass output. This monocultural orientation of farming practices and the negative effects on the ecosystem could act in opposition to other environmental initiatives of the EU. The outputs of the SOS analysis show that high biomass production could be integrated into environmental policy proposals. Therefore, new EU policy should take modified subsidies into consideration in order to avoid developing conflicts between small-scale changes in landscape ecosystems caused by large-scale transformations in energy policy.

  18. Maintaining environmental quality while expanding biomass production: Sub-regional U.S. policy simulations

    SciTech Connect

    Egbendewe-Mondzozo, Aklesso; Swinton, S.; Izaurralde, Roberto C.; Manowitz, David H.; Zhang, Xuesong

    2013-03-01

    This paper evaluates environmental policy effects on ligno-cellulosic biomass production and environ- mental outcomes using an integrated bioeconomic optimization model. The environmental policy integrated climate (EPIC) model is used to simulate crop yields and environmental indicators in current and future potential bioenergy cropping systems based on weather, topographic and soil data. The crop yield and environmental outcome parameters from EPIC are combined with biomass transport costs and economic parameters in a representative farmer profit-maximizing mathematical optimization model. The model is used to predict the impact of alternative policies on biomass production and environmental outcomes. We find that without environmental policy, rising biomass prices initially trigger production of annual crop residues, resulting in increased greenhouse gas emissions, soil erosion, and nutrient losses to surface and ground water. At higher biomass prices, perennial bioenergy crops replace annual crop residues as biomass sources, resulting in lower environmental impacts. Simulations of three environmental policies namely a carbon price, a no-till area subsidy, and a fertilizer tax reveal that only the carbon price policy systematically mitigates environmental impacts. The fertilizer tax is ineffectual and too costly to farmers. The no-till subsidy is effective only at low biomass prices and is too costly to government.

  19. Distribution and Properties of Aerosol and Gas Phase Constituents within Biomass Burning Regional Haze in Brazil, 2012, during the Sambba (South American Biomass Burning Analysis) Field Campaign

    NASA Astrophysics Data System (ADS)

    Darbyshire, E.; Morgan, W.; Allan, J. D.; Flynn, M.; Liu, D.; O'Shea, S.; Trembath, J.; Szpek, K.; Langridge, J.; Brooke, J.; Ferreira De Brito, J.; Johnson, B. T.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2014-12-01

    Biomass Burning (BB) aerosols (BBA) impact upon weather, climate, ecosystems and human health at global and regional scales. Yet quantitative evaluation is impeded by a limited understanding of BB processes and a dearth of in-situ measurements. Thus large model uncertainties prevail, especially in data poor, intensive BB regions such as Brazil. Hence the timely nature of the SAMBBA campaign, utilizing aircraft (UK Facility for Airborne Atmospheric Measurement BAe-146) and ground based observations out of Porto Velho in Sept-Oct 2012. This work utilizes aircraft measurements to characterize BB regional haze - the inhomogeneous accumulation of aged BBA capped within the boundary layer, present across swathes of Brazil. As context, aerosol optical depth (AOD) and meteorological climatologies are presented and compared to the synoptic conditions of 2012. Throughout the early flights an expansive area of elevated (>1) AOD persisted, although in transitioning toward the wet season, rain out and advection significantly reduced its spatial extent and magnitude in western regions of Brazil. Concurrent decreases in haze BBA concentrations (~50%) were observed from the aircraft measurements sampling in these deforested/forested areas. However, the relative vertical structure, composition, physical and optical properties remained similar. The lofted maxima in aerosol concentrations at ~1.5km, typically not captured in models, is potentially important for regional climate. Significant differences were observed, however, during flights over the eastern savannah-like regions of Brazil, which remained drier throughout. Here, haze BBA concentrations resembled those in the west prior to wash out, with the exception of high loadings of refractive black carbon. This acted to lower the single scattering albedo and alter the number size distribution. The observed haze BBA west-east split is also present at source and remains similar throughout fresh plume evolution, thus we conclude

  20. Northeast regional biomass program. First quarter report, October--December 1993

    SciTech Connect

    1994-05-01

    This progress report presents summaries of various projects which were in operation or being planned during this quarter period. Projects included testing the efficiency of using wood chips as fuel in heating systems, barriers to commercial development of wood pellet fuels, studies of more efficient and less polluting wood stoves, work on landfill gas utilization, directories of facilities using biomass fuels, surveys of biomass conversion processes to liquid fuels, for commercial development, etc.

  1. The 1985 Biomass Burning Season in South America: Satellite Remote Sensing of Fires, Smoke, and Regional Radiative Energy Budgets

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Berendes, Todd A.; Welch, Ronald M.; Yang, Shi-Keng

    1998-01-01

    Using satellite imagery, more than five million square kilometers of the forest and cerrado regions over South America are extensively studied to monitor fires and smoke during the 1985 biomass burning season. The results are characterized for four major ecosystems, namely: (1) tropical rain forest, (2) tropical broadleaf seasonal, (3) savannah/grass and seasonal woods (SGW), and (4) mild/warm/hot grass/shrub (MGS). The spatial and temporal distribution of fires are examined from two different methods using the multispectral Advanced Very High Resolution Radiometer Local Area Coverage data. Using collocated measurements from the instantaneous scanner Earth Radiation Budget Experiment data, the direct regional radiative forcing of biomass burning aerosols is computed. The results show that more than 70% of the fires occur in the MGS and SGW ecosystems due to agricultural practices. The smoke generated from biomass burning has negative instantaneous net radiative forcing values for all four major ecosystems within South America. The smoke found directly over the fires has mean net radiative forcing values ranging from -25.6 to -33.9 W m(exp -2). These results confirm that the regional net radiative impact of biomass burning is one of cooling. The spectral and broadband properties for clear-sky and smoke regions are also presented that could be used as input and/or validation for other studies attempting to model the impact of aerosols on the earth-atmosphere system. These results have important applications for future instruments from the Earth Observing System (EOS) program. Specifically, the combination of the Visible Infrared Scanner and Clouds and the Earth's Radiant Energy System (CERES) instruments from the Tropical Rainfall Measuring Mission and the combination of Moderate Resolution Imaging Spectrometer and CERES instruments from the EOS morning crossing mission could provide reliable estimates of the direct radiative forcing of aerosols on a global scale

  2. Eliciting climate experts' knowledge to address model uncertainties in regional climate projections: a case study of Guanacaste, Northwest Costa Rica

    NASA Astrophysics Data System (ADS)

    Grossmann, I.; Steyn, D. G.

    2014-12-01

    Global general circulation models typically cannot provide the detailed and accurate regional climate information required by stakeholders for climate adaptation efforts, given their limited capacity to resolve the regional topography and changes in local sea surface temperature, wind and circulation patterns. The study region in Northwest Costa Rica has a tropical wet-dry climate with a double-peak wet season. During the dry season the central Costa Rican mountains prevent tropical Atlantic moisture from reaching the region. Most of the annual precipitation is received following the northward migration of the ITCZ in May that allows the region to benefit from moist southwesterly flow from the tropical Pacific. The wet season begins with a short period of "early rains" and is interrupted by the mid-summer drought associated with the intensification and westward expansion of the North Atlantic subtropical high in late June. Model projections for the 21st century indicate a lengthening and intensification of the mid-summer drought and a weakening of the early rains on which current crop cultivation practices rely. We developed an expert elicitation to systematically address uncertainties in the available model projections of changes in the seasonal precipitation pattern. Our approach extends an elicitation approach developed previously at Carnegie Mellon University. Experts in the climate of the study region or Central American climate were asked to assess the mechanisms driving precipitation during each part of the season, uncertainties regarding these mechanisms, expected changes in each mechanism in a warming climate, and the capacity of current models to reproduce these processes. To avoid overconfidence bias, a step-by-step procedure was followed to estimate changes in the timing and intensity of precipitation during each part of the season. The questions drew upon interviews conducted with the regions stakeholders to assess their climate information needs. This

  3. Micronucleus frequency in children exposed to biomass burning in the Brazilian Legal Amazon region: a control case study

    PubMed Central

    2012-01-01

    Background The Amazon represents an area of 61% of Brazilian territory and is undergoing major changes resulting from disorderly economic development, especially the advance of agribusiness. Composition of the atmosphere is controlled by several natural and anthropogenic processes, and emission from biomass burning is one with the major impact on human health. The aim of this study was to evaluate genotoxic potential of air pollutants generated by biomass burning through micronucleus assay in exfoliated buccal cells of schoolchildren in the Brazilian Amazon region. Methods The study was conducted during the dry seasons in two regions of the Brazilian Amazon. The assay was carried out on buccal epithelial cells of 574 schoolchildren between 6-16 years old. Results The results show a significant difference between micronucleus frequencies in children exposed to biomass burning compared to those in a control area. Conclusions The present study demonstrated that in situ biomonitoring using a sensitive and low cost assay (buccal micronucleus assay) may be an important tool for monitoring air quality in remote regions. It is difficult to attribute the increase in micronuclei frequency observed in our study to any specific toxic element integrated in the particulate matters. However, the contribution of the present study lies in the evidence that increased exposure to fine particulate matter generates an increased micronuclei frequency in oral epithelial cells of schoolchildren. PMID:22400801

  4. Changing Cold Regions: Addressing Atmospheric, Cryospheric, Ecological and Hydrological Change in the Saskatchewan and Mackenzie River Basins, Canada

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Wheater, H. S.; Quinton, W. L.; Stewart, R. E.

    2013-05-01

    The cold interior region of Western Canada east of the Continental Divide from the US border to the Arctic Ocean has one of the world's most extreme and variable climates and is experiencing rapid environmental change. Climate warming and precipitation change have resulted in altered patterns of snowfall and snowmelt, conversion of snowfall to rainfall, loss of glaciated area and thawing of permafrost. Effects of these changes on terrestrial ecosystems include changing alpine and arctic treelines, extreme variability in Prairie wetland extent and storage of subsurface water in soil and groundwater, "browning" of the boreal forest and prairie aspen woodlands, forest conversion to wetlands in areas of permafrost loss, increased tundra shrub height and coverage, with associated impacts on snow accumulation and melt and ground thaw regimes. These atmospheric, cryospheric and ecological changes have produced changes to water storage and cycling with lower, earlier and more variable streamflow from the Western Cordillera, earlier and more variable Prairie streamflow, more variable agricultural soil moisture, substantially earlier and sometimes higher streamflows with greater winter baseflows in the North, and indications of changes in extreme precipitation events and resulting flooding and drought. The recently formed Changing Cold Regions Network (CCRN) will investigate the integrated response of mountain, boreal forest, prairie and sub-arctic biomes to climate change at the scales of the Saskatchewan and Mackenzie River Basins and the regional climate system. The multi-prong approach will first inventory and evaluate observable recent change in the Earth system state, fluxes and variability, and then explore the complex interrelationships of changing Earth system processes through the development of improved models and their application in diagnosis and prediction at multiple scales, from small headwater basins to large river basins, major biomes and the regional

  5. Ammonia emissions in tropical biomass burning regions: Comparison between satellite-derived emissions and bottom-up fire inventories

    NASA Astrophysics Data System (ADS)

    Whitburn, S.; Van Damme, M.; Kaiser, J. W.; van der Werf, G. R.; Turquety, S.; Hurtmans, D.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.

    2015-11-01

    Vegetation fires emit large amounts of nitrogen compounds in the atmosphere, including ammonia (NH3). These emissions are still subject to large uncertainties. In this study, we analyze time series of monthly NH3 total columns (molec cm-2) from the IASI sounder on board MetOp-A satellite and their relation with MODIS fire radiative power (MW) measurements. We derive monthly NH3 emissions estimates for four regions accounting for a major part of the total area affected by fires (two in Africa, one in central South America and one in Southeast Asia), using a simplified box model, and we compare them to the emissions from both the GFEDv3.1 and GFASv1.0 biomass burning emission inventories. In order to strengthen the analysis, we perform a similar comparison for carbon monoxide (CO), also measured by IASI and for which the emission factors used in the inventories to convert biomass burned to trace gas emissions are thought to be more reliable. In general, a good correspondence between NH3 and CO columns and the FRP is found, especially for regions in central South America with correlation coefficients of 0.82 and 0.66, respectively. The comparison with the two biomass burning emission inventories GFASv1.0 and GFEDv3.1 shows good agreements, particularly in the time of the maximum of emissions for the central South America region and in the magnitude for the region of Africa south of the equator. We find evidence of significant non-pyrogenic emissions for the regions of Africa north of the equator (for NH3) and Southeast Asia (for NH3 and CO). On a yearly basis, total emissions calculated from IASI measurements for the four regions reproduce fairly well the interannual variability from the GFEDv3.1 and GFASv1.0 emissions inventories for NH3 but show values about 1.5-2 times higher than emissions given by the two biomass burning emission inventories, even when assuming a fairly long lifetime of 36 h for that species.

  6. Characterizing the aging of biomass burning organic aerosol by use of mixing ratios: a meta-analysis of four regions.

    PubMed

    Jolleys, Matthew D; Coe, Hugh; McFiggans, Gordon; Capes, Gerard; Allan, James D; Crosier, Jonathan; Williams, Paul I; Allen, Grant; Bower, Keith N; Jimenez, Jose L; Russell, Lynn M; Grutter, Michel; Baumgardner, Darrel

    2012-12-18

    Characteristic organic aerosol (OA) emission ratios (ERs) and normalized excess mixing ratios (NEMRs) for biomass burning (BB) events have been calculated from ambient measurements recorded during four field campaigns. Normalized OA mass concentrations measured using Aerodyne Research Inc. quadrupole aerosol mass spectrometers (Q-AMS) reveal a systematic variation in average values between different geographical regions. For each region, a consistent, characteristic ratio is seemingly established when measurements are collated from plumes of all ages and origins. However, there is evidence of strong regional and local-scale variability between separate measurement periods throughout the tropical, subtropical, and boreal environments studied. ERs close to source typically exceed NEMRs in the far-field, despite apparent compositional change and increasing oxidation with age. The absence of any significant downwind mass enhancement suggests no regional net source of secondary organic aerosol (SOA) from atmospheric aging of BB sources, in contrast with the substantial levels of net SOA formation associated with urban sources. A consistent trend of moderately reduced ΔOA/ΔCO ratios with aging indicates a small net loss of OA, likely as a result of the evaporation of organic material from initial fire emissions. Variability in ERs close to source is shown to substantially exceed the magnitude of any changes between fresh and aged OA, emphasizing the importance of fuel and combustion conditions in determining OA loadings from biomass burning. PMID:23163290

  7. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event

    NASA Astrophysics Data System (ADS)

    Aouizerats, B.; van der Werf, G. R.; Balasubramanian, R.; Betha, R.

    2015-01-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled a large fire-induced haze episode in 2006 stemming mostly from Indonesia using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We focused on the evolution of the fire plume composition and its interaction with the urbanized area of the city state of Singapore, and on comparisons of modeled and measured aerosol and carbon monoxide (CO) concentrations. Two simulations were run with WRF-Chem using the complex volatility basis set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic and biomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent data sets for comparison including airborne measurements of particulate matter (PM) with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and aerosol optical depth (AOD) column observations from four satellite-based sensors. We found reasonable agreement between the model runs and both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m-3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while the secondary organic aerosol (SOA) concentration

  8. Impact of forest biomass residues to the energy supply chain on regional air quality.

    PubMed

    Rafael, S; Tarelho, L; Monteiro, A; Sá, E; Miranda, A I; Borrego, C; Lopes, M

    2015-02-01

    The increase of the share of renewable energy in Portugal can be met from different sources, of which forest biomass residues (FBR) can play a main role. Taking into account the demand for information about the strategy of FBR to energy, and its implications on the Portuguese climate policy, the impact of energy conversion of FBR on air quality is evaluated. Three emission scenarios were defined and a numerical air quality model was selected to perform this evaluation. The results reveal that the biomass thermal plants contribute to an increment of the pollutant concentrations in the atmosphere, however restricted to the surrounding areas of the thermal plants, and most significant for NO₂ and O₃.

  9. Impact of forest biomass residues to the energy supply chain on regional air quality.

    PubMed

    Rafael, S; Tarelho, L; Monteiro, A; Sá, E; Miranda, A I; Borrego, C; Lopes, M

    2015-02-01

    The increase of the share of renewable energy in Portugal can be met from different sources, of which forest biomass residues (FBR) can play a main role. Taking into account the demand for information about the strategy of FBR to energy, and its implications on the Portuguese climate policy, the impact of energy conversion of FBR on air quality is evaluated. Three emission scenarios were defined and a numerical air quality model was selected to perform this evaluation. The results reveal that the biomass thermal plants contribute to an increment of the pollutant concentrations in the atmosphere, however restricted to the surrounding areas of the thermal plants, and most significant for NO₂ and O₃. PMID:25461067

  10. Creative use of pilot points to address site and regional scale heterogeneity in a variable-density model

    USGS Publications Warehouse

    Dausman, Alyssa M.; Doherty, John; Langevin, Christian D.

    2010-01-01

    Pilot points for parameter estimation were creatively used to address heterogeneity at both the well field and regional scales in a variable-density groundwater flow and solute transport model designed to test multiple hypotheses for upward migration of fresh effluent injected into a highly transmissive saline carbonate aquifer. Two sets of pilot points were used within in multiple model layers, with one set of inner pilot points (totaling 158) having high spatial density to represent hydraulic conductivity at the site, while a second set of outer points (totaling 36) of lower spatial density was used to represent hydraulic conductivity further from the site. Use of a lower spatial density outside the site allowed (1) the total number of pilot points to be reduced while maintaining flexibility to accommodate heterogeneity at different scales, and (2) development of a model with greater areal extent in order to simulate proper boundary conditions that have a limited effect on the area of interest. The parameters associated with the inner pilot points were log transformed hydraulic conductivity multipliers of the conductivity field obtained by interpolation from outer pilot points. The use of this dual inner-outer scale parameterization (with inner parameters constituting multipliers for outer parameters) allowed smooth transition of hydraulic conductivity from the site scale, where greater spatial variability of hydraulic properties exists, to the regional scale where less spatial variability was necessary for model calibration. While the model is highly parameterized to accommodate potential aquifer heterogeneity, the total number of pilot points is kept at a minimum to enable reasonable calibration run times.

  11. Biomass Burning

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Cofer, Wesley R., III; Pinto, Joseph P.

    1993-01-01

    Biomass burning may be the overwhelming regional or continental-scale source of methane (CH4) as in tropical Africa and a significant global source of CH4. Our best estimate of present methane emissions from biomass burning is about 51.9 Tg/yr, or 10% of the annual methane emissions to the atmosphere. Increased frequency of fires that may result as the Earth warms up may result in increases in this source of atmospheric methane.

  12. Characteristics of smoke emissions from biomass fires of the Amazon region - BASE-A experiment

    NASA Technical Reports Server (NTRS)

    Ward, Darold E.; Setzer, Alberto W.; Kaufman, Yoram J.; Rasmussen, Rei A.

    1991-01-01

    The Biomass Burning Airborne and Spaceborne Experiment-Amazonia was designed for study of both aerosol and gaseous emissions from fires using an airborne sampling platform. The emission factors for combustion products from four fires suggest that the proportion of carbon released in the form of CO2 is higher than for fires of logging which has been burned in the western U.S. Combustion efficiency was of the order of 97 percent for the Amazonian test fire and 86-94 percent for deforestation fires. The inorganic content of particles from tropical fires are noted to be different from those of fires in the U.S.

  13. Overview of US AID-World Bank-NASA Collaboration to Address Water Management Issues in the MENA Region

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2012-01-01

    The World Bank, USAID and NASA have recently established a joint project to study multiple issues pertaining to water related applications in the Middle East North Africa (MENA) region. The main concentration of the project is on utilization of remote sensing data and hydrological models to address crop irrigation and mapping, flood mapping and forecasting, evapotranspiration and drought problems prevalent in this large geographic area. Additional emphases are placed on understanding the climate impact on these areas as well. Per IPCC 2007 report, by the end of this century MENA region is projected to experience an increase of 3 C to 5 C rise in mean temperatures and a 20% decline in precipitation. This poses a serious problem for this geographic zone especially when majority of the hydrological consumption is for the agriculture sector and the remaining amount is for domestic consumption. The remote sensing data from space is one of the best ways to study such complex issues and further feed into the decision support systems. NASA's fleet of Earth Observing satellites offer a great vantage point from space to look at the globe and provide vital signs necessary to maintain healthy and sustainable ecosystem. These observations generate multiple products such as soil moisture, global precipitation, aerosols, cloud cover, normalized difference vegetation index, land cover/use, ocean altimetry, ocean salinity, sea surface winds, sea surface temperature, ozone and atmospheric gases, ice and snow measurements, and many more. All of the data products, models and research results are distributed-via the Internet freely through out the world. This project will utilize several NASA models such as global Land Data Assimilation System (LDAS) to generate hydrological states and fluxes in near real time. These LDAS products will then be further compared with other NASA satellite observations (MODIS, VIIRS, TRMM, etc.) and other discrete models to compare and optimize

  14. Maximizing biomass production in semi-arid regions: genotypic selection of identified species. [Saltbush and Johnson Grass

    SciTech Connect

    Goodin, J.R.; Newton, R.J.

    1983-08-31

    This project identifies genotypes selected from two species of unconventional plants previously identified as having exceptional potential for the production of biomass feedstock in semi-arid regions. The project involved collection of germ plasm from indigenous Atriplex canescens (saltbush) and introduced Sorghum halepense (Johnson grass). In addition, greenhouse and field screening techniques recently aplied to domesticated crop plants are used to identify exceptional biomass productivity based on drought tolerance, salinity tolerance, and seedling vigor. In both of these species, the genetic base is enormous. Saltbush is common to all of western North America, and Johnsongrass had established itself as an important forage and weedy species throughout most of the world. It would appear that artificial selection for desirable genotypes is a feasible process, and this project has demonstrated the possibility of selection from many accessions from the field. Preliminary screening for seedling vigor, drought tolerance, and salt tolerance has produced a few genotypes now ready for field testing. Propagation of these cloned genotypes is underway. 22 references, 2 figures, 1 table.

  15. [Effects of nitrogen fertilization rate and planting density on cotton boll biomass and nitrogen accumulation in extremely early maturing cotton region of Northeast China].

    PubMed

    Wang, Zi-Sheng; Wu, Xiao-Dong; Gao, Xiang-Bin; Xu, Min; Shen, Dan; Jin, Lu-Lu; Zhou, Zhi-Guo

    2012-02-01

    Taking cotton cultivars Liaomian 19 and NuCoTN 33B as test materials, a field experiment was conducted to study the effects of nitrogen fertilization rate (0, 240 and 480 kg x hm(-2)) and planting density (75000, 97500 and 120000 plants x hm(-2)) on the boll biomass and nitrogen accumulation in the extremely early maturing cotton region of Northeast China. With the growth and development of cotton, the biomass and nitrogen accumulation of cotton boll, cotton seed, and cotton fiber varied in 'S' shape. Both nitrogen fertilization rate and planting density had significant effects on the dynamic characteristics of boll biomass and nitrogen accumulation, and on the fiber yield and quality. In treatment 240 kg x hm(-2) and 97500 plants x hm(-2), the biomass of single boll, cotton seed and cotton fiber was the maximum, the starting time and ending time of the rapid accumulation period of the biomass and nitrogen were earlier but the duration of the accumulation was shorter, the rapid accumulation speed of the biomass was the maximum, and the distribution indices of the biomass and nitrogen were the lowest in boll shell but the highest in cotton seed and cotton fiber.

  16. Air emission regulations for small to moderate sized wood-fired boilers: Final report: Northeast Regional Biomass Program

    SciTech Connect

    Bradley, M.J.; Tennis, M.W.

    1985-01-01

    Potential commercial wood burners in the Northeast hold the general perception that air pollution regulations pose special difficulties for them. This notion is based on incomplete information regarding the regulations in place and their applicability to small to moderate sized commercial faciliaties (ie. <100 mmBtu/hr). This study was commission by the Coalition of Northeastern Governors (CONEG) Policy Research Center, Inc., under the Northeast Regional Biomass Program, to provide a review of the air quality regulations effecting commercial wood burning installations, specifically identifying those regulations applying to the small to medium size units. This report provides an organized regulatory comparison to relate the different state emission rates with various levels of control techniques. 3 refs., 11 figs., 3 tabs.

  17. Biomass Studies in Monsoon Regions Under the Coordinated Enhanced Observing Period (CEOP)

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2003-01-01

    CEOP is an international program sponsored by the World Climate Research Project (WCRP) aiming at an integrated approach towards better understanding and prediction of the global water cycle. I will discuss the scientific rationale and approach that underpin the program, especially with regard to the important implications on variability of climate and rainfall in monsoon regions around the world.

  18. The variability of biomass burning and its influence on regional aerosol properties during the wheat harvest season in North China

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Xin, Jinyuan; Li, Xingru; Wang, Yuesi

    2015-04-01

    The spatial-temporal variation of biomass burning in June during the wheat harvest season in the North China (32-41°N, 111-120°E) and its influence on the regional aerosol optical depth (AOD) and the chemical compositions of size-segregated aerosols in the urban environment were investigated to evaluate the effectiveness of the burn ban policy and the influence on regional pollution. Fire events that occurred in early and middle June accounted for approximately 89% of the events during the month, and fire points located in mid-eastern China (32.5-35.5°N, 114-120°E) comprised 71%. The occurrences exhibit oscillatory changes with a minimum in 2008 (during the Beijing Olympics) and a peak and explosive growth in 2012. Under high relative humidity and south winds, fire emissions from straw burning combined with high urban/industrial emissions to produce intensive regional haze pollution in the North Plain. The formation of secondary inorganic particles was intensified due to the interactions of smoke plumes and urban/industrial pollutants in an urban environment. Higher concentrations and percentages (79%) of sulfate, nitrate, ammonium, and organic carbon in the fine particles under high relative humidity conditions contributed to a deteriorated urban visibility. Therefore, stronger management and a comprehensive ban on wheat straw burning in June are urgently needed, especially during years when the south wind is dominant.

  19. Modeling the Complex Photochemistry of Biomass Burning Plumes in Plume-Scale, Regional, and Global Air Quality Models

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Travis, K.; Fischer, E. V.; Lin, J. C.

    2014-12-01

    Forecasting the impacts of biomass burning (BB) plumes on air quality is difficult due to the complex photochemistry that takes place in the concentrated young BB plumes. The spatial grid of global and regional scale Eulerian models is generally too large to resolve BB photochemistry, which can lead to errors in predicting the formation of secondary organic aerosol (SOA) and O3, as well as the partitioning of NOyspecies. AER's Aerosol Simulation Program (ASP v2.1) can be used within plume-scale Lagrangian models to simulate this complex photochemistry. We will present results of validation studies of the ASP model against aircraft observations of young BB smoke plumes. We will also present initial results from the coupling of ASP v2.1 into the Lagrangian particle dispersion model STILT-Chem in order to better examine the interactions between BB plume chemistry and dispersion. In addition, we have used ASP to develop a sub-grid scale parameterization of the near-source chemistry of BB plumes for use in regional and global air quality models. The parameterization takes inputs from the host model, such as solar zenith angle, temperature, and fire fuel type, and calculates enhancement ratios of O3, NOx, PAN, aerosol nitrate, and other NOy species, as well as organic aerosol (OA). We will present results from the ASP-based BB parameterization as well as its implementation into the global atmospheric composition model GEOS-Chem for the SEAC4RS campaign.

  20. Influence of regional biomass burning on the highly elevated organic carbon concentrations observed at Gosan, South Korea during a strong Asian dust period.

    PubMed

    Nguyen, Duc Luong; Kim, Jin Young; Ghim, Young Sung; Shim, Shang-Gyoo

    2015-03-01

    PM2.5 carbonaceous particles were measured at Gosan, South Korea during 29 March-11 April 2002 which includes a pollution period (30 March-01 April) when the highest concentrations of major anthropogenic species (nss-SO4 (2-), NO3 (-), and NH4 (+)) were observed and a strong Asian dust (AD) period (08-10 April) when the highest concentrations of mainly dust-originated trace elements (Al, Ca, Mg, and Fe) were seen. The concentrations of elemental carbon (EC) measured in the pollution period were higher than those measured in the strong AD period, whereas an inverse variation in the concentrations of organic carbon (OC) was observed. Based on the OC/EC ratios, the possible source that mainly contributed to the highly elevated OC concentrations measured in the strong AD period was biomass burning. The influence of the long-range transport of smoke plumes emitted from regional biomass burning sources was evaluated by using MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data for fire locations and the potential source contribution function analysis. The most potential source regions of biomass burning were the Primorsky and Amur regions in Far Eastern Russia and southeastern and southwestern Siberia, Russia. Further discussion on the source characteristics suggested that the high OC concentrations measured in the strong AD period were significantly affected by the smoldering phase of biomass burning. In addition to biomass burning, secondary OC (SOC) formed during atmospheric long-range transport should be also considered as an important source of OC concentration measured at Gosan. Although this study dealt with the episodic case of the concurrent increase of dust and biomass burning particles, understanding the characteristics of heterogeneous mixing aerosol is essential in assessing the radiative forcing of aerosol. PMID:25253054

  1. Aircraft Observations into the Characteristics of Biomass Burning Instigated 'Regional Haze' Over the Amazon during the SAMBBA Campaign

    NASA Astrophysics Data System (ADS)

    Darbyshire, Eoghan

    2013-04-01

    E. J. N. Darbyshire, J. D. Allan, M. Flynn, W. T. Morgan, A. Hodgson, B. T. Johnson, J. M. Haywood, K. Longo, P. Artaxo and H. Coe Aerosols associated with large scale Biomass Burning (BB) impact upon weather and climate at global and regional scales. However, quantitative evaluation of these effects is impeded by i) a limited understanding of BB processes and ii) a lack of quantitative knowledge of precise BB aerosol physiochemical characteristics, thus resulting in large model uncertainties. One region where these uncertainties are especially manifest is the Amazon Basin (AzB). Intense and widespread burning results in high atmospheric loadings of BB aerosol, which over the course of the dry season develops into a so-called 'regional haze'. This cloaks the AzB in a complex and inhomogeneous mix of BB emissions, characterized by large Aerosol Optical Depths (>1), low visibility and poor air quality. This haze has a substantial impact on the radiation budget over the AzB through direct scattering/absorption and indirect cloud microphysics effects. In order to best constrain the model uncertainties, and given the scale of the AzB earth-atmosphere system, an intensive observation campaign by multiple international institutions was instigated in the South American Biomass Burning Analyses (SAMBBA) project. The findings reported here are from the SAMBBA aircraft campaign, conducted during the 2012 dry season using the large UK research aircraft (FAAM BAe-146). The dense (high AOD), persistent haze expected throughout the campaign was only present for the first five or so days, due to removal via washout/transportation associated with large storms. For the remaining period, a haze was present but much reduced in area and intensity (mostly AOD's <0.6) and far more localized and spatially heterogeneous. Across the three weeks, multiple burns with differing characteristics, origins and processes were sampled, giving rise to haze from various sources, such as rainforest in

  2. Estimation of Regional Forest Aboveground Biomass Combining Icesat-Glas Waveforms and HJ-1A/HSI Hyperspectral Imageries

    NASA Astrophysics Data System (ADS)

    Xing, Yanqiu; Qiu, Sai; Ding, Jianhua; Tian, Jing

    2016-06-01

    Estimation of forest aboveground biomass (AGB) is a critical challenge for understanding the global carbon cycle because it dominates the dynamics of the terrestrial carbon cycle. Light Detection and Ranging (LiDAR) system has a unique capability for estimating accurately forest canopy height, which has a direct relationship and can provide better understanding to the forest AGB. The Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) is the first polarorbiting LiDAR instrument for global observations of Earth, and it has been widely used for extracting forest AGB with footprints of nominally 70 m in diameter on the earth's surface. However, the GLAS footprints are discrete geographically, and thus it has been restricted to produce the regional full coverage of forest AGB. To overcome the limit of discontinuity, the Hyper Spectral Imager (HSI) of HJ-1A with 115 bands was combined with GLAS waveforms to predict the regional forest AGB in the study. Corresponding with the field investigation in Wangqing of Changbai Mountain, China, the GLAS waveform metrics were derived and employed to establish the AGB model, which was used further for estimating the AGB within GLAS footprints. For HSI imagery, the Minimum Noise Fraction (MNF) method was used to decrease noise and reduce the dimensionality of spectral bands, and consequently the first three of MNF were able to offer almost 98% spectral information and qualified to regress with the GLAS estimated AGB. Afterwards, the support vector regression (SVR) method was employed in the study to establish the relationship between GLAS estimated AGB and three of HSI MNF (i.e. MNF1, MNF2 and MNF3), and accordingly the full covered regional forest AGB map was produced. The results showed that the adj.R2 and RMSE of SVR-AGB models were 0.75 and 4.68 t hm-2 for broadleaf forests, 0.73 and 5.39 t hm-2 for coniferous forests and 0.71 and 6.15 t hm-2 for mixed forests respectively. The

  3. Exploring links between biomass burning smoke and tornado likelihood: From regional to large-eddy scale simulations

    NASA Astrophysics Data System (ADS)

    Saide, P. E.; Thompson, G.; Eidhammer, T.; da Silva, A. M., Jr.; Pierce, R. B.; Carmichael, G. R.

    2015-12-01

    Biomass burning smoke from Central America can have the potential to enhance the likelihood of tornado occurrence and intensity in the SE US by changing the environment where tornadic storms form (Saide et al., GRL 2015). In this presentation we build over this study to further our understanding of these interactions on multiple dimensions: 1) Biomass burning smoke emissions are constrained using an inverse modeling technique to improve the representation of smoke loads and its impacts, 2) The representation of these smoke-tornado interactions are assessed when using a simplified aerosol scheme with the intent of introducing these feedbacks into numerical weather prediction in the future, 3) The occurrence of these interactions is investigated for other tornado outbreaks on the record to learn about their frequency and under what conditions they occur, and 4) Multi-scale simulations are performed from regional to tornado-resolving scales to assess the impact of smoke on the number of tornadoes formed and their EF intensity. Future steps will also be discussed. The image below shows MODIS-Aqua satellite products for 27 April 2011 over the southeast US, Central America and the Gulf of Mexico (GoM), along with tornado tracks (red solid lines, thickness indicates the magnitude of the tornado reports , thickest=5, thinnest=1) for the period from April 26-28. The background is a true color image of the surface, clouds, and smoke, with yellow markers indicating fire detections and an iridescent overlay showing aerosol optical depth (AOD). Red, green and purple colors show high (1.0), medium (0.6) and low (0.1) AOD values. The article by Saide et al. (2015) shows that the increase in aerosol loads in the GoM is produced by fires in Central America, and this smoke is further transported to the southeast US where it can interact with clouds and radiation producing environmental conditions more favorable to significant tornado occurrence for the historical outbreak on 27

  4. Using Existing Coastal Models To Address Ocean Acidification Modeling Needs: An Inside Look at Several East and Gulf Coast Regions

    NASA Astrophysics Data System (ADS)

    Jewett, E.

    2013-12-01

    Ecosystem forecast models have been in development for many US coastal regions for decades in an effort to understand how certain drivers, such as nutrients, freshwater and sediments, affect coastal water quality. These models have been used to inform coastal management interventions such as imposition of total maximum daily load allowances for nutrients or sediments to control hypoxia, harmful algal blooms and/or water clarity. Given the overlap of coastal acidification with hypoxia, it seems plausible that the geochemical models built to explain hypoxia and/or HABs might also be used, with additional terms, to understand how atmospheric CO2 is interacting with local biogeochemical processes to affect coastal waters. Examples of existing biogeochemical models from Galveston, the northern Gulf of Mexico, Tampa Bay, West Florida Shelf, Pamlico Sound, Chesapeake Bay, and Narragansett Bay will be presented and explored for suitability for ocean acidification modeling purposes.

  5. Coupling Power Generation, Geologic CO2 Storage and Saline Groundwater Desalination to Address Growing Energy Needs in Water Constrained Regions

    NASA Astrophysics Data System (ADS)

    Davidson, C. L.; Wurstner, S. K.; Fortson, L. A.

    2010-12-01

    As humanity works to both minimize climate change and adapt to its early impacts, co-management of energy and water resources will become increasingly important. In some parts of the US, power plants have been denied permits, in part because of the significant burden placed on local water supplies by assigning new water rights for the facility’s entire design life. Water resources may be allocated 30 to 50 years into a future where water availability and quality are uncertain due to supply impacts associated with climate change and increased demand from growing populations, agriculture and industry. In many areas, particularly those with access to seawater, desalination is being employed with increasing frequency to augment conventional sources of fresh water. At the same time, many of the world’s developed nations are moving to reduce greenhouse gas emissions. One key technological option for addressing emissions from the power generation sector is CO2 capture and geologic storage (CCS). This process is both water and energy intensive for many power and industrial facilities, compounding the impact of declining water availability for plants faced with deploying CCS in a CO2-constrained future. However, a unique opportunity may exist to couple power generation and CCS by extracting and desalinating brine from the CO2 storage formation to produce fresh water. While this coupled approach is unlikely to be attractive for most CCS projects, it may represent a viable option in areas where there is demand for additional electricity but conventional water supplies are unable to meet the needs of the power generation and CO2 capture systems, or in areas where brine produced from CCS projects can be desalinated to supplement strained municipal supplies. This paper presents a preliminary analysis of the factors impacting the feasibility of coupled CCS-desalination projects. Several injection / extraction scenarios have been examined via the STOMP geochemical flow model

  6. Soil moisture and land use are major determinants of soil microbial community composition and biomass at a regional scale in northeastern China

    NASA Astrophysics Data System (ADS)

    Ma, L.; Guo, C.; Lü, X.; Yuan, S.; Wang, R.

    2015-04-01

    Global environmental factors impact soil microbial communities and further affect organic matter decomposition, nutrient cycling and vegetation dynamic. However, little is known about the relative contributions of climate factors, soil properties, vegetation types, land management practices and spatial structure (which serves as a proxy for underlying effects of temperature and precipitation for spatial variation) on soil microbial community composition and biomass at large spatial scales. Here, we compared soil microbial communities using phospholipid fatty acid method across 7 land use types from 23 locations at a regional scale in northeastern China (850 × 50 km). The results showed that soil moisture and land use changes were most closely related to microbial community composition and biomass at the regional scale, while soil total C content and climate effects were weaker but still significant. Factors such as spatial structure, soil texture, nutrient availability and vegetation types were not important. Higher contributions of gram-positive bacteria were found in wetter soils, whereas higher contributions of gram-negative bacteria and fungi were observed in drier soils. The contributions of gram-negative bacteria and fungi were lower in heavily disturbed soils than historically disturbed and undisturbed soils. The lowest microbial biomass appeared in the wettest and driest soils. In conclusion, dominant climate and soil properties were not the most important drivers governing microbial community composition and biomass because of inclusion of irrigated and managed practices, and thus soil moisture and land use appear to be primary determinants of microbial community composition and biomass at the regional scale in northeastern China.

  7. The Impact of Biomass Feedstock Supply Variability on the Delivered Price to a Biorefinery in the Peace River Region of Alberta, Canada

    SciTech Connect

    Stephen, Jamie; Sokhansanj, Shahabaddine; Bi, X.T.; Sowlati, T.; Kloeck, T.; Townley-Smith, Lawrence; Stumborg, Mark

    2010-01-01

    Agricultural residue feedstock availability in a given region can vary significantly over the 20 25 year lifetime of a biorefinery. Since delivered price of biomass feedstock to a biorefinery is related to the distance travelled and equipment optimization, and transportation distance increases as productivity decreases, productivity is a primary determinant of feedstock price. Using the Integrated Biomass Supply Analysis and Logistics (IBSAL) modeling environment and a standard round bale harvest and delivery scenario, harvest and delivery price were modelled for minimum, average, and maximum yields at four potential biorefinery sites in the Peace River region of Alberta, Canada. Biorefinery capacities ranged from 50,000 to 500,000 tonnes per year. Delivery cost is a linear function of transportation distance and can be combined with a polynomial harvest function to create a generalized delivered cost function for agricultural residues. The range in delivered cost is substantial and is an important consideration for the operating costs of a biorefinery.

  8. Closing the gap in a regional health service in NSW: a multi-strategic approach to addressing individual and institutional racism.

    PubMed

    2012-06-01

    Building a culturally safe and respectful organisation that genuinely addresses individual and institutional racism is a substantial and complex undertaking. Achieving this outcome requires sustained commitment and a comprehensive strategy, including the active involvement of Aboriginal stakeholders. This paper describes the journey of a large regional health organisation in NSW. A multi-strategic approach is broadly described, with three strategies explored in depth. These are: staff education and training; leadership; and consultation, negotiation and partnerships. Challenges are discussed in the context of promising progress and an ongoing commitment to this important organisational goal.

  9. Assessment of biomass burning emissions and their impacts on urban and regional PM2.5: a Georgia case study.

    PubMed

    Tian, Di; Hu, Yongtao; Wang, Yuhang; Boylan, James W; Zheng, Mei; Russell, Armistead G

    2009-01-15

    Biomass burning is a major and growing contributor to particulate matter with an aerodynamic diameter less than 2.5 microm (PM2.5). Such impacts (especially individual impacts from each burning source) are quantified using the Community Multiscale Air Quality (CMAQ) Model, a chemical transport model (CTM). Given the sensitivity of CTM results to uncertain emission inputs, simulations were conducted using three biomass burning inventories. Shortcomings in the burning emissions were also evaluated by comparing simulations with observations and results from a receptor model. Model performance improved significantly with the updated emissions and speciation profiles based on recent measurements for biomass burning: mean fractional bias is reduced from 22% to 4% for elemental carbon and from 18% to 12% for organic matter; mean fractional error is reduced from 59% to 50% for elemental carbon and from 55% to 49% for organic matter. Quantified impacts of biomass burning on PM2.5 during January, March, May, and July 2002 are 3.0, 5.1, 0.8, and 0.3 microg m(-3) domainwide on average, with more than 80% of such impacts being from primary emissions. Impacts of prescribed burning dominate biomass burning impacts, contributing about 55% and 80% of PM2.5 in January and March, respectively, followed by land clearing and agriculture field burning. Significant impacts of wildfires in May and residential wood combustion in fireplaces and woodstoves in January are also found.

  10. Addressing Concerns.

    ERIC Educational Resources Information Center

    Cronin, Greg; Helmig, Mary; Kaplan, Bill; Kosch, Sharon

    2002-01-01

    Four camp directors discuss how the September 11 tragedy and current world events will affect their camps. They describe how they are addressing safety concerns, working with parents, cooperating with outside agencies, hiring and screening international staff, and revising emergency plans. Camps must continue to offer community and support to…

  11. Source apportionment of PM2.5 at a regional background site in North China using PMF linked with radiocarbon analysis: insight into the contribution of biomass burning

    NASA Astrophysics Data System (ADS)

    Zong, Zheng; Wang, Xiaoping; Tian, Chongguo; Chen, Yingjun; Qu, Lin; Ji, Ling; Zhi, Guorui; Li, Jun; Zhang, Gan

    2016-09-01

    Source apportionment of fine particles (PM2.5) at a background site in North China in the winter of 2014 was done using statistical analysis, radiocarbon (14C) measurement and positive matrix factorization (PMF) modeling. Results showed that the concentration of PM2.5 was 77.6 ± 59.3 µg m-3, of which sulfate (SO42-) concentration was the highest, followed by nitrate (NO3-), organic carbon (OC), elemental carbon (EC) and ammonium (NH4+). As demonstrated by backward trajectory, more than half of the air masses during the sampling period were from the Beijing-Tianjin-Hebei (BTH) region, followed by Mongolia and the Shandong Peninsula. Cluster analysis of chemical species suggested an obvious signal of biomass burning in the PM2.5 from the Shandong Peninsula, while the PM2.5 from the BTH region showed a vehicle emission pattern. This finding was further confirmed by the 14C measurement of OC and EC in two merged samples. The 14C result indicated that biogenic and biomass burning emission contributed 59 ± 4 and 52 ± 2 % to OC and EC concentrations, respectively, when air masses originated from the Shandong Peninsula, while the contributions fell to 46 ± 4 and 38 ± 1 %, respectively, when the prevailing wind changed and came from the BTH region. The minimum deviation between source apportionment results from PMF and 14C measurement was adopted as the optimal choice of the model exercises. Here, two minor overestimates with the same range (3 %) implied that the PMF result provided a reasonable source apportionment of the regional PM2.5 in this study. Based on the PMF modeling, eight sources were identified; of these, coal combustion, biomass burning and vehicle emission were the main contributors of PM2.5, accounting for 29.6, 19.3 and 15.9 %, respectively. Compared with overall source apportionment, the contributions of vehicle emission, mineral dust, coal combustion and biomass burning increased when air masses came from the BTH region, Mongolia and the Shandong

  12. Addressing healthcare.

    PubMed

    Daly, Rich

    2013-02-11

    Though President Barack Obama has rarely made healthcare references in his State of the Union addresses, health policy experts are hoping he changes that strategy this year. "The question is: Will he say anything? You would hope that he would, given that that was the major issue he started his presidency with," says Dr. James Weinstein, left, of the Dartmouth-Hitchcock health system. PMID:23487896

  13. Remote sensing of tamarisk biomass, insect herbivory, and defoliation: Novel methods in the Grand Canyon Region, Arizona

    USGS Publications Warehouse

    Sankey, Temuulen Ts.; Sankey, Joel B.; Horne, Rene; Bedford, Ashton

    2016-01-01

    Tamarisk is an invasive, riparian shrub species in the southwestern USA. The northern tamarisk beetle (Diorhabda carinulata) has been introduced to several states to control tamarisk. We classified tamarisk distribution in the Glen Canyon National Recreation Area, Arizona using a 0.2 m resolution, airborne multispectral data and estimated tamarisk beetle effects (overall accuracy of 86 percent) leading to leaf defoliation in a 49,408 m2 area. We also estimated individual tamarisk tree biomass and their uncertainties using airbonre liday data (100 points/m2). On average, total above ground tamarisk biomass was 8.67 kg/m2 (SD=17.6). The tamarisk beetle defoliation resulted in a mean leaf biomass loss of 0.52 kg/m2 and an equivalent of 25,692 kg across the entire study area. Our defoliated tamarisk map and biomass estimates can help inform restoration treatments to reduce tamarisk. Continued monitoring of tamarisk and tamarisk beetle effects are recommended to understand the currently-unknown eventual equilibrium between the two species and the cascading effects on ecosystem processes.

  14. Population density and total biomass of microbial communities in chestnut soils and solonetzes of the dry steppe zone in the Lower Volga region

    NASA Astrophysics Data System (ADS)

    Kashirskaya, N. N.; Khomutova, T. E.; Chernysheva, E. V.; El'tsov, M. V.; Demkin, V. A.

    2015-03-01

    The population density and total biomass of microbial communities were determined in chestnut soils and solonetzes of the dry steppe zone in the Lower Volga region with the use of the methods of sequential fractionation of the soil and direct counting. The mean weighted values of the population density of the microbial communities in the soil profiles (A1 + B1 + B2 horizons) in the studied soils varied within 3.8-8.0 × 1011 cells/g of soil. The total microbial biomass in the soils of the Privolzhskaya Upland reached 0.9-2.4 mg C/g of soil; in the soils of the Ergeni Upland, it was 20 to 75% lower. The microbial cells in the soils of the Privolzhskaya Upland were larger than those in the soils of the Ergeni Upland. Sequential fractionation of the soil prior to direct counting contributed to the more complete assessment of the population density of the microbial communities.

  15. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period

    SciTech Connect

    Granier, Claire; Bessagnet, Bertrand; Bond, Tami C.; D'Angiola, Ariela; Denier van der Gon, Hugo; Frost, G. J.; Heil, Angelika; Kaiser, Johannes W.; Kinne, Stefan; Klimont, Z.; Kloster, Jean; Lamarque, J.-F.; Liousse, Catherine; Masui, Toshihiko; Meleux, Frederik; Mieville, Aude; Ohara, Toshimasa; Raut, Jean-Christophe; Riahi, Keywan; Schultz, Martin; Smith, Steven J.; Thomson, Allison M.; van Aardenne, John; van der Werf, Guido R.; Van Vuuren, Detlef

    2011-08-08

    Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980-2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement in most years. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China where emissions in 1980 and 1990 need to be better defined. Emissions of CO need a better quantification in the USA for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50-80%, depending on the year and season. The large differences are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burnt.

  16. Regional Arctic System Model (RASM): A Tool to Address the U.S. Priorities and Advance Capabilities for Arctic Climate Modeling and Prediction

    NASA Astrophysics Data System (ADS)

    Maslowski, W.; Roberts, A.; Cassano, J. J.; Gutowski, W. J., Jr.; Nijssen, B.; Osinski, R.; Zeng, X.; Brunke, M.; Duvivier, A.; Hamman, J.; Hossainzadeh, S.; Hughes, M.; Seefeldt, M. W.

    2015-12-01

    The Arctic is undergoing some of the most coordinated rapid climatic changes currently occurring anywhere on Earth, including the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Earth System Models (ESMs) are in broad agreement with these changes, the rate of change in ESMs generally remains outpaced by observations. Reasons for that relate to a combination of coarse resolution, inadequate parameterizations, under-represented processes and a limited knowledge of physical interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the ESM limitations in simulating observed variability and trends in arctic surface climate. RASM is a high resolution, pan-Arctic coupled climate model with the sea ice and ocean model components configured at an eddy-permitting resolution of 1/12o and the atmosphere and land hydrology model components at 50 km resolution, which are all coupled at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled ESM, which due to the constraints from boundary conditions facilitates detailed comparisons with observational statistics that are not possible with ESMs. The overall goal of RASM is to address key requirements published in the Navy Arctic Roadmap: 2014-2030 and in the Implementation Plan for the National Strategy for the Arctic Region, regarding the need for advanced modeling capabilities for operational forecasting and strategic climate predictions through 2030. The main science objectives of RASM are to advance understanding and model representation of critical physical processes and feedbacks of importance to sea ice thickness and area distribution. RASM results are presented to quantify relative contributions by (i) resolved processes and feedbacks as well as (ii) sensitivity to space dependent sub-grid parameterizations to better

  17. Regional atmospheric aerosol composition and sources in the eastern Transvaal, South Africa, and impact of biomass burning

    NASA Astrophysics Data System (ADS)

    Maenhaut, Willy; Salma, Imre; Cafmeyer, Jan; Annegarn, Harold J.; Andreae, Meinrat O.

    1996-10-01

    As part of the Southern Africa Fire-Atmosphere Research Initiative (SAFARI-92), size-fractionated aerosol samples were collected during September-October 1992 at three fixed ground-based sites in the eastern Transvaal, i.e., at two sites within the Kruger National Park (KNP) and at a third site on the Transvaal highveld (about 150 km WSW of the KNP sites), and near a number of prescribed fires in the KNP. The collection devices consisted of stacked filter units, which separate the aerosol into a coarse (2-10 μm equivalent aerodynamic diameter (EAD)) and a fine (<2 μm EAD) size fraction, and of eight-stage cascade impactors, which provide more detailed size fractionation. The samples were analyzed for particulate mass (PM), black carbon (BC), and up to 47 elements. The prescribed fires gave rise to high levels of airborne soil dust, but several species (elements) were particularly enriched in the pyrogenic emissions. This was the case for BC, P, K, Ca, Mn, Zn, Sr, and I in the coarse fraction, and for BC, the halogens (Cl, Br, I), K, Cu, Zn, Rb, Sb, Cs, and Pb (and in the flaming phase also Na and S) in the fine fraction. The aerosol concentrations, compositions, and time trends at the two KNP sites were quite similar, suggesting that regionally representative samples were collected. Receptor modeling calculations, using both absolute principal component analysis and chemical mass balance, indicated that the KNP coarse PM was essentially attributable to mineral dust and sea salt, with average relative apportionments of 75% and 25%, respectively. At the highveld site, mineral dust and sea salt contributed in a 99-to-1 ratio to the coarse PM. In the fine size fraction at all three fixed sites, four components were identified, i.e., mineral dust, sea salt, biomass burning products, and sulfate. The pyrogenic component was the dominant contributor to the atmospheric concentrations of BC, K, Zn, and I, a major source for PM, Cl, Cu, Br, and Cs, but only a minor source

  18. Possibilities to reduce carbon emissions in Brazilian Amazon region with non timber biomass valorization: The case of biofuels produced by vegetable tropical oils

    SciTech Connect

    Freitas, M.A.V. de; Rosa, L.P.; Lascio, M.A. Di |

    1996-12-31

    Brazil`s annual rate of deforestation reached 2.1 million ha or about 13.6% of the total annual rate of deforestation for the whole tropical area in the world during 1981--1990. Today, the extent of gross deforestation is 10.9% of the tropical closed forest area. Relative to Brazilian participation in the greenhouse effect, the changes in forest area and associated biomass burning in Amazon region are responsible for about 25.5% of CO{sub 2} emissions in the tropics. Harvest of the non-timber biomass products may be important as a potentially sustainable use of forest in some areas. An excellent option to promote these biomass products is to provide energy and industrial goods for the Amazon communities and other external markets. In this work, the biofuels produced by vegetable tropical oils and their by-products are analyzed in relation to job creation, economics and environmental impacts, with special regards concerning the limitation of the atmospheric emissions of greenhouse gases.

  19. Inaugural address

    NASA Astrophysics Data System (ADS)

    Joshi, P. S.

    2014-03-01

    From jets to cosmos to cosmic censorship P S Joshi Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India E-mail: psj@tifr.res.in 1. Introduction At the outset, I should like to acknowledge that part of the title above, which tries to capture the main flavour of this meeting, and has been borrowed from one of the plenary talks at the conference. When we set out to make the programme for the conference, we thought of beginning with observations on the Universe, but then we certainly wanted to go further and address deeper questions, which were at the very foundations of our inquiry, and understanding on the nature and structure of the Universe. I believe, we succeeded to a good extent, and it is all here for you in the form of these Conference Proceedings, which have been aptly titled as 'Vishwa Mimansa', which could be possibly translated as 'Analysis of the Universe'! It is my great pleasure and privilege to welcome you all to the ICGC-2011 meeting at Goa. The International Conference on Gravitation and Cosmology (ICGC) series of meetings are being organized by the Indian Association for General Relativity and Gravitation (IAGRG), and the first such meeting was planned and conducted in Goa in 1987, with subsequent meetings taking place at a duration of about four years at various locations in India. So, it was thought appropriate to return to Goa to celebrate the 25 years of the ICGC meetings. The recollections from that first meeting have been recorded elsewhere here in these Proceedings. The research and teaching on gravitation and cosmology was initiated quite early in India, by V V Narlikar at the Banares Hindu University, and by N R Sen in Kolkata in the 1930s. In course of time, this activity grew and gained momentum, and in early 1969, at the felicitation held for the 60 years of V V Narlikar at a conference in Ahmedabad, P C Vaidya proposed the formation of the IAGRG society, with V V Narlikar being the first President. This

  20. Highlighting Uncertainty and Recommendations for Improvement of Black Carbon Biomass Fuel-Based Emission Inventories in the Indo-Gangetic Plain Region.

    PubMed

    Soneja, Sutyajeet I; Tielsch, James M; Khatry, Subarna K; Curriero, Frank C; Breysse, Patrick N

    2016-03-01

    Black carbon (BC) is a major contributor to hydrological cycle change and glacial retreat within the Indo-Gangetic Plain (IGP) and surrounding region. However, significant variability exists for estimates of BC regional concentration. Existing inventories within the IGP suffer from limited representation of rural sources, reliance on idealized point source estimates (e.g., utilization of emission factors or fuel-use estimates for cooking along with demographic information), and difficulty in distinguishing sources. Inventory development utilizes two approaches, termed top down and bottom up, which rely on various sources including transport models, emission factors, and remote sensing applications. Large discrepancies exist for BC source attribution throughout the IGP depending on the approach utilized. Cooking with biomass fuels, a major contributor to BC production has great source apportionment variability. Areas requiring attention tied to research of cookstove and biomass fuel use that have been recognized to improve emission inventory estimates include emission factors, particulate matter speciation, and better quantification of regional/economic sectors. However, limited attention has been given towards understanding ambient small-scale spatial variation of BC between cooking and non-cooking periods in low-resource environments. Understanding the indoor to outdoor relationship of BC emissions due to cooking at a local level is a top priority to improve emission inventories as many health and climate applications rely upon utilization of accurate emission inventories.

  1. Opening Address

    NASA Astrophysics Data System (ADS)

    Yamada, T.

    2014-12-01

    Ladies and Gentlemen, it is my great honor and pleasure to present an opening address of the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3). On the behalf of the organizing committee, I certainly welcome all your visits to KGU Kannai Media Center belonging to Kanto Gakuin University, and stay in Yokohama. In particular, to whom come from abroad more than 17 countries, I would appreciate your participations after long long trips from your homeland to Yokohama. The first international workshop on "State of the Art in Nuclear Cluster Physics", called SOTANCP, was held in Strasbourg, France, in 2008, and the second one was held in Brussels, Belgium, in 2010. Then the third workshop is now held in Yokohama. In this period, we had the traditional 10th cluster conference in Debrecen, Hungary, in 2012. Thus we have the traditional cluster conference and SOTANCP, one after another, every two years. This obviously shows our field of nuclear cluster physics is very active and flourishing. It is for the first time in about 10 years to hold the international workshop on nuclear cluster physics in Japan, because the last cluster conference held in Japan was in Nara in 2003, about 10 years ago. The president in Nara conference was Prof. K. Ikeda, and the chairpersons were Prof. H. Horiuchi and Prof. I. Tanihata. I think, quite a lot of persons in this room had participated at the Nara conference. Since then, about ten years passed. So, this workshop has profound significance for our Japanese colleagues. The subjects of this workshop are to discuss "the state of the art in nuclear cluster physics" and also discuss the prospect of this field. In a couple of years, we saw significant progresses of this field both in theory and in experiment, which have brought better and new understandings on the clustering aspects in stable and unstable nuclei. I think, the concept of clustering has been more important than ever. This is true also in the

  2. Convocation address.

    PubMed

    Ghatowar, P S

    1993-07-01

    The Union Deputy Minister of Health and Family Welfare in India addressed the 35th convocation of the International Institute for Population Sciences in Bombay in 1993. Officials in developing countries have been concerned about population growth for more than 30 years and have instituted policies to reduce population growth. In the 1960s, population growth in developing countries was around 2.5%, but today it is about 2%. Despite this decline, the world will have 1 billion more individuals by the year 2001. 95% of these new people will be born in developing countries. India's population size is so great that India does not have the time to wait for development to reduce population growth. Population needs to be viewed as an integrated part of overall development, since it is linked to poverty, illiteracy, environmental damage, gender issues, and reproductive health. Despite a large population size, India has made some important advancements in health and family planning. For example, India has reduced population growth (to 2.14% annually between 1981-1991), infant mortality, and its birth rate. It has increased the contraceptive use rate and life expectancy. Its southern states have been more successful at achieving demographic goals than have the northern states. India needs to implement efforts to improve living conditions, to change attitudes and perceptions about small families and contraception, and to promote family planning acceptance earlier among young couples. Improvement of living conditions is especially important in India, since almost 33% of the people live in poverty. India needs to invest in nutrition, health, and education. The mass media and nongovernmental organizations need to create population awareness and demand for family planning services. Improvement in women's status accelerates fertility decline, as has happened in Kerala State. The government needs to facilitate generation of jobs. Community participation is needed for India to achieve

  3. Trans-Pacific and regional atmospheric transport of polycyclic aromatic hydrocarbons and pesticides in biomass burning emissions to western North America.

    PubMed

    Genualdi, Susan A; Killin, Robert K; Woods, Jim; Wilson, Glenn; Schmedding, David; Simonich, Staci L Massey

    2009-02-15

    The trans-Pacific and regional North American atmospheric transport of polycyclic aromatic hydrocarbons (PAHs) and pesticides in biomass burning emissions was measured in air masses from April to September 2003 at two remote sites in western North America. Mary's Peak Observatory (MPO) is located in Oregon's Coast Range and Cheeka Peak Observatory (CPO) is located on the tip of the Olympic Peninsula in Washington State. During this time period, both remote sites were influenced by PAH and pesticide emissions from forest fires in Siberia and regional fires in Oregon and Washington State. Concurrent samples were taken at both sites on June 2 and August 4, 2003. On these dates, CPO had elevated gas phase PAH, alpha-hexachlorocyclohexane, and retene concentrations (p < 0.05) and MPO had elevated retene, particulate phase PAH, and levoglucosan concentrations due to trans-Pacific transport of emissions from fires in Siberia. In addition, during the April to September 2003 sampling period, CPO and MPO were influenced by emissions from regional fires that resulted in elevated levoglucosan, dacthal, endosulfan, and gas phase PAH concentrations. Burned and unburned forest soil samples collected from the regional forest fire area showed that 34-100% of the pesticide mass was lost from soil due to burning. These data suggest that the trans-Pacific and regional atmospheric transport of biomass burning emissions results in elevated PAH and pesticide concentrations in western North America. The elevated pesticide concentrations are likely due to re-emission of historically deposited pesticides from the soil and vegetation during the fire event. PMID:19320158

  4. Welcome Address

    NASA Astrophysics Data System (ADS)

    Kiku, H.

    2014-12-01

    Ladies and Gentlemen, It is an honor for me to present my welcome address in the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3), as the president of Kanto Gakuin University. Particularly to those from abroad more than 17 countries, I am very grateful for your participation after long long trips from your home to Yokohama. On the behalf of the Kanto Gakuin University, we certainly welcome your visit to our university and stay in Yokohama. First I would like to introduce Kanto Gakuin University briefly. Kanto Gakuin University, which is called KGU, traces its roots back to the Yokohama Baptist Seminary founded in 1884 in Yamate, Yokohama. The seminary's founder was Albert Arnold Bennett, alumnus of Brown University, who came to Japan from the United States to establish a theological seminary for cultivating and training Japanese missionaries. Now KGU is a major member of the Kanto Gakuin School Corporation, which is composed of two kindergartens, two primary schools, two junior high schools, two senior high schools as well as KGU. In this university, we have eight faculties with graduate school including Humanities, Economics, Law, Sciences and Engineering, Architecture and Environmental Design, Human and Environmental Studies, Nursing, and Law School. Over eleven thousands students are currently learning in our university. By the way, my major is the geotechnical engineering, and I belong to the faculty of Sciences and Engineering in my university. Prof. T. Yamada, here, is my colleague in the same faculty. I know that the nuclear physics is one of the most active academic fields in the world. In fact, about half of the participants, namely, more than 50 scientists, come from abroad in this conference. Moreover, I know that the nuclear physics is related to not only the other fundamental physics such as the elementary particle physics and astrophysics but also chemistry, medical sciences, medical cares, and radiation metrology

  5. Quantifying the dynamics of water bodies, wetlands and biomass in the Poyang Lake region: A multi-polarization SAR remote sensing approach

    NASA Astrophysics Data System (ADS)

    Sang, Huiyong

    Field measurements were combined with synthetic aperture radar (SAR) images to evaluate the use of C-band multi-polarized radar remote sensing for estimating plant parameters (plant height, fresh biomass, dry biomass and vegetation water content) of wetland vegetation, and mapping the dynamics of water bodies, wetlands (natural wetlands and rice paddies) and flooding extents in the Poyang Lake region. The capacity of L-band SAR in land cover mapping was also investigated by integrating with optical imagery. Hydrological patterns in Poyang Lake are the dominant factor controlling the spatial and temporal variations of wetland species in Poyang Lake. Water levels in this region are primarily governed by five rivers (Ganjiang river, Xiushui river, Raohe river, Fuhe river, and Xinjiang river). Its northern region is also influenced by the backflow from Yangtze River. The above-ground total biomass increased steadily from March following the hydrological cycle. Wetland species colonizing at different altitudes were gradually flooded from late spring to summer. Carex spp. died during flooding periods and started another growth cycle in autumn after flooding receded. Canopy volume dominates the radar backscattering mechanism in Carex spp. wetlands during their growth period, but the temporal variation of radar backscatter from these wetlands is mainly influenced by flooding. Tall wetland species (Miscanthus sacchariflorus, Phragmites communis Trin., and others) still emerged above water surfaces during flooding peaks and started to senesce in autumn. Surface backscattering mechanism is dominant during the early growing stage and the senescent period of tall vegetation. Plant canopy variation controlled the temporal dynamics of radar backscatters from Phragmites communis Min. Radar backscattering mechanisms from Miscanthus sacchariflorus wetlands were more complicated during the flooding periods. The variations of ground water depth and plant structure of Miscanthus

  6. Carbon sequestration and Jerusalem artichoke biomass under nitrogen applications in coastal saline zone in the northern region of Jiangsu, China.

    PubMed

    Niu, Li; Manxia, Chen; Xiumei, Gao; Xiaohua, Long; Hongbo, Shao; Zhaopu, Liu; Zed, Rengel

    2016-10-15

    Agriculture is an important source of greenhouse gases, but can also be a significant sink. Nitrogen fertilization is effective in increasing agricultural production and carbon storage. We explored the effects of different rates of nitrogen fertilization on biomass, carbon density, and carbon sequestration in fields under the cultivation of Jerusalem artichoke as well as in soil in a coastal saline zone for two years. Five nitrogen fertilization rates were tested (in guream(-2)): 4 (N1), 8 (N2), 12 (N3), 16 (N4), and 0 (control, CK). The biomass of different organs of Jerusalem artichoke during the growth cycle was significantly higher in N2 than the other treatments. Under different nitrogen treatments, carbon density in organs of Jerusalem artichoke ranged from 336 to 419gCkg(-1). Carbon sequestration in Jerusalem artichoke was higher in treatments with nitrogen fertilization compared to the CK treatment. The highest carbon sequestration was found in the N2 treatment. Soil carbon content was higher in the 0-10cm than 10-20cm layer, with nitrogen fertilization increasing carbon content in both soil layers. The highest soil carbon sequestration was measured in the N2 treatment. Carbon sequestration in both soil and Jerusalem artichoke residue was increased by nitrogen fertilization depending on the rates in the coastal saline zone studied. PMID:27317133

  7. Convocation address.

    PubMed

    Gore, M S

    1997-07-01

    In India, data from the decennial censuses have been the catalyst that has led researchers to identify social policy needs and craft programs to lower overall mortality rates, infant mortality rates, and fertility rates. A new demographic phenomenon that is being exposed by the data is the increase in life expectancy that will see large numbers of individuals surviving 15-20 years beyond age 60. This increased life expectancy will lead to an increased old age dependency ratio and will require reexamination of the issue of resources to meet the needs of the elderly. These needs are social and psychological as well as physical. Research is needed to predict the initial consequences of population aging within different states. International comparisons within the Asian region will also foster identification of effective policies. Research is also needed to identify whether longevity is tied to higher educational and socioeconomic status in order to improve life expectancy among low-income groups. Another aspect that requires consideration is that most elderly women will likely survive their husbands. This means that they will be available to care for their husbands but will have to depend upon their children to care for them. The possible demographic diversity in the experience of aging among various states and classes and between the genders may be of special interest to researchers. PMID:12293130

  8. Biomass pretreatment

    DOEpatents

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  9. Aerosols upwind of Mexico City during the MILAGRO campaign: regional scale biomass burning, dust and volcanic ash from aircraft measurements

    NASA Astrophysics Data System (ADS)

    Junkermann, W.; Steinbrecher, R.

    2009-04-01

    During the MILAGRO Campaign March/April 2006 a series of aircraft flights with the FZK microlight D-MIFU were performed in the area southeast of Mexico City starting from Puebla airport, circling the national park area of Ixtachiuatl and Popocatepetl and scanning the Chalco valley down to Cuautla in the Cuernavaca province. All flights were combined with vertical profiles up to 4500 m a.s.l. in several locations, typically north of volcano Ixtachiuatl on the Puebla side, above Chalco or Tenago del Aire and south of volcano Popocatepetl, either at Cuautla or Atlixco. In Tenango del Aire a ceilometer was additionally operated continuously for characterization of the planetary boundary layer. The aircraft carried a set of aerosol instrumentation, fine and coarse particles and size distributions as well as a 7 wavelength aethalometer. Additionally meteorological parameters, temperature and dewpoint, global radiation and actinic radiation balance, respectively photolysis rates, and ozone concentrations were measured. The instrumentation allowed to characterize the aerosol according to their sources and also their impact on radiation transfer. Biomass burning aerosol, windblown dust and volcanic ash were identified within the upwind area of Mexico City with large differences between the dry season in the first weeks of the campaign and the by far cleaner situation after beginning thunderstorm activity towards the end of the campaign. Also the aerosol characteristics inside and outside the Mexico City basin were often completely different. With wind speeds of ~ 5 m/sec from southerly directions in the Chalco valley the aerosol mixture can reach the City within ~ 2 h. Rural aerosol mixtures from the Cuernavaca plain were mixed during the transport with dust from the MC basin. Very high intensity biomass burning plumes normally reached higher altitudes and produced pyrocumulus clouds. These aerosols were injected mainly into the free troposphere. Within the MC basin a large

  10. Opening Address

    NASA Astrophysics Data System (ADS)

    Crovini, L.

    1994-01-01

    IMGC this is an extremely valuable opportunity to compare our results with others using combined x-ray and optical interferometry to measure Si lattice spacing and dimensional and mass metrology to determine Si density. The initial impetus for the organization of this workshop was given by several colleagues, and with special emphasis and competence by the late Prof. Peter Seyfried of the PTB. We all mourn the loss of such a distinguished scientist to whom very important achievements in NA determination have to be credited. Prof. Seyfried was well known at the IMGC, some of our scientists having very profitably cooperated with him and his co-workers—a cooperation that is being steadily carried on. I wish to acknowledge the endorsements of the Regione Piemonte, of the CNR, of Turin University, and of the Commission of the European Communities, in terms of grants and other resources without which the workshop could not have been realized. I also wish to very warmly thank my colleagues on the Organizing Committee who have worked so well for this event. Lastly, I am pleased to acknowledge the fruitful cooperation between the IMGC and the Istituto di Fisica Generale "A Avogadro"—not the first case of its kind and, I am convinced, not the last. To conclude, let me draw your attention to an enlargement of an Italian stamp commemorating A Avogadro. The statement reads: "Equal volumes of gas in the same temperature and pressure conditions contain the same number of molecules". He simply stated the existence of such a number, leaving us with the pleasure of measuring it.

  11. Biomass Logistics

    SciTech Connect

    J. Richard Hess; Kevin L. Kenney; William A. Smith; Ian Bonner; David J. Muth

    2015-04-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  12. Developing of a VS30 map for addressing site effects for Portugal: evaluation of the effectiveness of using VS30-proxies for stable continental regions.

    NASA Astrophysics Data System (ADS)

    Vilanova, Susana; Narciso, Joao; Carvalho, Joao; Pinto, Carlos; Lopes, Isabel; Nemser, Eliza; Borges, Jose; Oliveira, Carlos

    2014-05-01

    The need to perform first-order estimates for site amplification in a regional sense has been strongly emphasized in recent years. The use site-amplification maps is of major importance for addressing both land-use planning (seismic-hazard maps) and emergency planning (instrumental intensity maps). Project SCENE, funded by the Portuguese Foundation for Science and Technology (FCT), aimed at gathering and acquiring shear-wave velocity profiles in diverse lithological and geological formations in Portugal, in order to develop a regional site conditions map to be used for including first-order site-effects into seismic hazard assessment maps. Within the scope of project SCENE thirty sites where strong motion stations are installed were characterized using shear-wave seismic refraction. The project SCENE shear-wave database also includes a significant amount of shear-wave refraction data available from FCT project NEFITAG and from previously performed CAPSA and ERSTA campaigns. Few sites characterised by using other methods (multichannel analysis of surface waves and invasive profiles) were also included in the database. The shear-wave database currently includes 85 shear-wave depth sections or profiles from a variety of lithological/geological formations. In addition to the shear-wave profile database we compiled geotechnical and geological profiles in the vicinity of the sites analysed. We performed a careful evaluation of the geological conditions for each site in the database using the largest scale available (usually 1:50 000). A smaller scale map (1:500000) was also used in order to evaluate the bias introduced by the scale-dependent map accuracy. We grouped the sites into six generalized geological units: S1 - igneous and metamorphic rocks; S2 - old sedimentary rocks (Limestones, marly limestones, dolomites, conglomerates and sandstones); S3 - Sand, sandstones, clays and conglomerates of Miocene age; S4 - Sandstones, gravels, sands and clays of Pliocene age; S5

  13. Podophyllotoxin content, above- and belowground biomass in relation to altitude in Podophyllum hexandrum populations from Kumaun region of the Indian Central Himalaya.

    PubMed

    Nadeem, M; Palni, L M S; Kumar, A; Nandi, S K

    2007-04-01

    The morphological features of Podophyllum hexandrum Royle, a 'critically endangered' medicinal herb and a source of podophyllotoxin, were studied in populations growing in different parts of the Kumaun region of the Indian Central Himalaya. Plant growth performance in terms of biomass accumulation and podopyllotoxin levels in the rhizomes collected from eleven natural populations (P1 to P11, altitude ranging from 2740 to 3350 m) were analyzed. Morphological features, e. g., plant height, stem diameter and leaf area were, in general, negatively correlated with an increase in the altitude. Maximum aboveground (8.46 g/individual) and belowground (48.18 g/individual) biomass values were recorded from a population (P9) at the lowest altitude (2740 m) and, in general, the species was found to perform better at the lower altitudes. The podophyllotoxin content of rhizomes ranged between 0.36-1.08% (on dry wt. basis) in different populations, and a positive correlation was observed between podophyllotoxin content and an increase in the altitude.

  14. The morphology of cells and the biomass of microorganisms in the buried paleosols and modern steppe soils of the Lower Volga region

    NASA Astrophysics Data System (ADS)

    Kashirskaya, N. N.; Khomutova, T. E.; Dmitriev, V. V.; Duda, V. I.; Suzina, N. E.; Demkin, V. A.

    2010-10-01

    The morphology of microbial cells was studied, and the biomass of microorganisms was estimated in the modern steppe soils and paleosols buried under kurgans in the Lower Volga region with the methods of electron microscopy. The shape and ultrastructure of the cells in the modern soils and paleosols were similar, though their average volumes differed (0.37 and 0.28 μm3, respectively). The portion of cells with a volume above 1 μm3 in the surface soils and paleosols reached 10.9 and 9.2%, respectively, and the portion of cells with a volume less than 0.01 μm3 in the surface soils was 10% lower than that in the buried paleosols. It was found that the cells of the microorganisms have an external organomineral layer, which increases the cell volume by 4.9 times, and this fact was taken into account in the calculation of the microbial biomass. In the chestnut and light chestnut paleosols, the latter comprised 1500 and 230 μg of C/g soil, respectively.

  15. The microbial biomass in paleosols buried under kurgans and in recent soils in the steppe zone of the Lower Volga region

    NASA Astrophysics Data System (ADS)

    Kashirskaya, N. N.; Khomutova, T. E.; Demkina, T. S.; Demkin, V. A.

    2009-05-01

    The total microbial biomass (TMB) was assessed in the chestnut and light chestnut soils and in the paleosols under burial mounds (steppe kurgans) in the Lower Volga region on the basis of data on the organic carbon content in the extracted microbial fraction supplemented with the data on the extraction completeness as a conversion coefficient. The completeness of the microbial fraction extraction was determined by direct counting of the microbial cells and colony-forming units (on plates with soil agar). The total microbial biomass varied from 400 to 6600 μg of C/soil. Its values in the buried soils were 3-5 times lower than those in the surface soils. The TMB distribution in the buried chestnut soil profile was close to that in its modern analogue (with the minimum in the B1 horizon). In the buried light chestnut paleosols, the TMB values usually increased down the profile; in the recent light chestnut soils, the maximum TMB values were found in the uppermost horizon.

  16. Fiscalini Farms Biomass Energy Project

    SciTech Connect

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed

  17. Cloud Classification in Polar and Desert Regions and Smoke Classification from Biomass Burning Using a Hierarchical Neural Network

    NASA Technical Reports Server (NTRS)

    Alexander, June; Corwin, Edward; Lloyd, David; Logar, Antonette; Welch, Ronald

    1996-01-01

    This research focuses on a new neural network scene classification technique. The task is to identify scene elements in Advanced Very High Resolution Radiometry (AVHRR) data from three scene types: polar, desert and smoke from biomass burning in South America (smoke). The ultimate goal of this research is to design and implement a computer system which will identify the clouds present on a whole-Earth satellite view as a means of tracking global climate changes. Previous research has reported results for rule-based systems (Tovinkere et at 1992, 1993) for standard back propagation (Watters et at. 1993) and for a hierarchical approach (Corwin et al 1994) for polar data. This research uses a hierarchical neural network with don't care conditions and applies this technique to complex scenes. A hierarchical neural network consists of a switching network and a collection of leaf networks. The idea of the hierarchical neural network is that it is a simpler task to classify a certain pattern from a subset of patterns than it is to classify a pattern from the entire set. Therefore, the first task is to cluster the classes into groups. The switching, or decision network, performs an initial classification by selecting a leaf network. The leaf networks contain a reduced set of similar classes, and it is in the various leaf networks that the actual classification takes place. The grouping of classes in the various leaf networks is determined by applying an iterative clustering algorithm. Several clustering algorithms were investigated, but due to the size of the data sets, the exhaustive search algorithms were eliminated. A heuristic approach using a confusion matrix from a lightly trained neural network provided the basis for the clustering algorithm. Once the clusters have been identified, the hierarchical network can be trained. The approach of using don't care nodes results from the difficulty in generating extremely complex surfaces in order to separate one class from

  18. The relative influence of local and regional environmental drivers of algal biomass (chlorophyll-a) varies by estuarine location

    NASA Astrophysics Data System (ADS)

    Wainger, Lisa; Yu, Hao; Gazenski, Kim; Boynton, Walter

    2016-09-01

    A major question in restoring estuarine water quality is whether local actions to manage excess nutrients can be effective, given that estuaries are also responding to tidal inputs from adjacent water bodies. Several types of statistical analysis were used to examine spatially-detailed and long-term water quality monitoring data in eight sub-estuaries of Chesapeake Bay. These sub-estuaries are likely to be similar to other shallow systems with moderate to long water residence times. Statistical cluster analysis of spatial water quality data suggested that estuaries had spatially distinct water quality zones and that the peak algal biomass (as measured by chlorophyll-a) was most often controlled by local watershed inputs in all but one estuary, although mainstem inputs affected most estuaries at some times and places. An elasticity indicator that compared inter-annual changes in sub-estuaries to parallel changes in the mainstem Chesapeake Bay supported the idea that water quality in sub-estuaries was not strongly coupled to the mainstem. A cross-channel zonation of water quality observed near the mouth of estuaries suggested that Bay influences were stronger on the right side of the lower channel (looking up estuary) at times in all estuaries, and was most common in small estuaries closest to the mouth of the primary water source to the estuary. Where Bay influences were strong, estuarine water quality would be expected to be less responsive to nutrient reductions made in the local watershed. Regression analysis was used to evaluate hypothesized relationships between environmental driver variables and average chlorophyll-a (chl-a) concentrations. Chl-a values were calculated from unusually detailed levels of spatial sampling, potentially providing a more comprehensive view of system conditions than that provided by traditional sparse sampling networks. The univariate models with the best data support to explain variability in averaged chl-a concentration were those

  19. Chemical properties of emission from biomass fuels used in the rural sector of the western region of India

    NASA Astrophysics Data System (ADS)

    Sen, Avirup; Mandal, T. K.; Sharma, S. K.; Saxena, Mohit; Gupta, N. C.; Gautam, R.; Gupta, Anita; Gill, Tanvi; Rani, Shalu; Saud, T.; Singh, D. P.; Gadi, Ranu

    2014-12-01

    This paper presents the emission factors (EF) of particulate matter (PM), organic carbon (OC), elemental carbon (EC), SO2, NO, NO2 and water soluble ions emitted by residential biomass fuels collected from the rural sector of Western India. Burning process has been simulated using a dilution chamber. Average EF of PM, OC and EC from fuel wood (FW), agricultural residues (AR) and dung cakes (DC) from Western India are estimated as: PM: 1.69 ± 0.98 g kg-1, 2.15 ± 1.00 g kg-1 and 5.37 ± 3.90 g kg-1; OC: 0.43 ± 0.29 g kg-1, 00.54 ± 0.22 g kg-1, 1.14 ± 0.67 g kg-1; EC: 0.25 ± 0.16 g kg-1, 0.23 ± 0.11 g kg-1 and 0.14 ± 0.08 g kg-1 respectively. Similarly, the average EF of SO2, NO and NO2 from FW, AR and DC are determined to be: SO2: 0.66 ± 0.37 g kg-1, 0.29 ± 0.45 g kg-1 and 0.74 ± 0.48 g kg-1; NO: 0.55 ± 0.25 g kg-1, 0.74 ± 0.37 g kg-1 and 0.50 ± 0.23 g kg-1; NO2: 1.05 ± 0.49 g kg-1, 1.41 ± 0.81 g kg-1 and 0.91 ± 0.45 g kg-1 respectively. Cl- has the highest average EF (FW: 97.03 ± 74.98 mg kg-1, AR: 175.71 ± 145.78 mg kg-1, DC: 158.15 ± 109.07 mg kg-1) among the anions, followed by PO43-(FW: 116.59 ± 63.43 mg kg-1, AR: 58.45 ± 1.42 mg kg-1, DC: 85.77 ± 78.85 mg kg-1) and NO3- (FW: 64.23 ± 68.38 mg kg-1, AR: 36.78 ± 22.80 mg kg-1, DC: 50.25 ± 49.33 mg kg-1). Similarly, among the cations, the highest emitters are Na+ (FW: 40.25 ± 26.64 mg kg-1; AR: 47.96 ± 18.35 mg kg-1, DC: 30.51 ± 23.39 mg kg-1), K+ (FW: 29.32 ± 23.95 mg kg-1, AR: 50.89 ± 34.62 mg kg-1, DC: 18.23 ± 14.54 mg kg-1) and NH4+ (FW: 27.93 ± 22.59 mg kg-1; AR: 46.37 ± 41.79 mg kg-1, DC: 41.74 ± 36.01 mg kg-1). The total emissions of trace gases, PM and its chemical composition from FW, AR and DC have been calculated using laboratory generated EFs over Western India.

  20. Optical Properties of Boreal Region Biomass Burning Aerosols in Central Alaska and Seasonal Variation of Aerosol Optical Depth at an Arctic Coastal Site

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Sinyuk, A.; Hyer, E. J.; O'Neill, N. T.; Shaw, G. E.; VandeCastle, J. R.; Chapin, F. S.; Dubovik, O.; Smirnov, A.; Vermote, E.; Schafer, J. S.; Giles, D.; Slutsker, I.; Sorokine, M.; Newcomb, W. W.

    2010-01-01

    Long-term monitoring of aerosol optical properties at a boreal forest AERONET site in interior Alaska was performed from 1994 through 2008 (excluding winter). Large interannual variability was observed, with some years showing near background aerosol optical depth (AOD) levels (<0.1 at 500 nm) while 2004 and 2005 had August monthly means similar in magnitude to peak months at major tropical biomass burning regions. Single scattering albedo (omega (sub 0); 440 nm) at the boreal forest site ranged from approximately 0.91 to 0.99 with an average of approximately 0.96 for observations in 2004 and 2005. This suggests a significant amount of smoldering combustion of woody fuels and peat/soil layers that would result in relatively low black carbon mass fractions for smoke particles. The fine mode particle volume median radius during the heavy burning years was quite large, averaging approximately 0.17 micron at AOD(440 nm) = 0.1 and increasing to approximately 0.25 micron at AOD(440 nm) = 3.0. This large particle size for biomass burning aerosols results in a greater relative scattering component of extinction and, therefore, also contributes to higher omega (sub 0). Additionally, monitoring at an Arctic Ocean coastal site (Barrow, Alaska) suggested transport of smoke to the Arctic in summer resulting in individual events with much higher AOD than that occurring during typical spring Arctic haze. However, the springtime mean AOD(500 nm) is higher during late March through late May (approximately 0.150) than during summer months (approximately 0.085) at Barrow partly due to very few days with low background AOD levels in spring compared with many days with clean background conditions in summer.

  1. 3D Cloud Radiative Effects on Aerosol Optical Thickness Retrievals in Cumulus Cloud Fields in the Biomass Burning Region in Brazil

    NASA Technical Reports Server (NTRS)

    Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.

    2004-01-01

    Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.

  2. Satellite Remote Sensing and Mesoscale Modeling of Biomass Burning Aerosols over the Southeast Asian Maritime Continent: Climatic Implications of Smokes on Regional Energy Balance, Cloud Formations and Precipitations

    NASA Astrophysics Data System (ADS)

    Feng, N.

    2015-12-01

    The influences of anthropogenic aerosols have been suggested as an important reason for climate changes over Southeast Asia (SE Asia, 10°S~20°N and 90°E~135°E). Accurate observations and modelling of aerosols effects on the weather and climate patterns is crucial for a better understanding and mitigation of anthropogenic climate change. This study uses NASA satellite observations along with online-coupled Weather Research and Forecasting model with Chemistry (WRF-Chem) to evaluate aerosols impacts on climate over SE Asia. We assess the direct and semi-direct radiative effects of smoke particles over this region during September, 2009 when a significant El Niño event caused the highest biomass burning activity during the last 15 years. Quantification efforts are made to assess how changes of radiative and non radiative parameters (sensible and latent heat) due to smoke aerosols would affect regional climate process such as precipitations, clouds and planetary boundary layer process. Comparison of model simulations for the current land cover conditions against surface meteorological observations and satellite observations of precipitations and cloudiness show satisfactory performance of the model over our study area. In order to quantitatively validate the model results, several experiments will be performed to test the aerosols radiative feedback under different radiation schemes and with/without considering aerosol effects explicitly in the model. Relevant ground-based data (e.g. AERONET), along with aerosol vertical profile data from CALIPSO, will also be applied.

  3. Biomass Conversion

    NASA Astrophysics Data System (ADS)

    Decker, Stephen R.; Sheehan, John; Dayton, David C.; Bozell, Joseph J.; Adney, William S.; Hames, Bonnie; Thomas, Steven R.; Bain, Richard L.; Czernik, Stefan; Zhang, Min; Himmel, Michael E.

    In its simplest terms, biomass is all the plant matter found on our planet. Biomass is produced directly by photosynthesis, the fundamental engine of life on earth. Plant photosynthesis uses energy from the sun to combine carbon dioxide from the atmosphere with water to produce organic plant matter. More inclusive definitions are possible. For example, animal products and waste can be included in the definition of biomass. Animals, like plants, are renewable; but animals clearly are one step removed from the direct use of sunlight. Using animal rather than plant material thus leads to substantially less efficient use of our planet's ultimate renewable resource, the sun. So, we emphasize plant matter in our definition of biomass. It is the photosynthetic capability of plants to utlize carbon dioxide from the atmosphere that leads to its designation as a "carbon neutral" fuel, meaning that it does not introduce new carbon into the atmosphere.

  4. Biomass [updated

    SciTech Connect

    Turhollow Jr, Anthony F

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  5. Basal respiration and composition of microbial biomass in virgin and agroforest-reclaimed semidesert soils of the Northern Caspian region

    NASA Astrophysics Data System (ADS)

    Prikhod'ko, V. E.; Sizemskaya, M. L.

    2015-08-01

    Virgin semidesert soils and their analogues subjected to agroforest reclamation 60 years ago were studied in the area of the Dzhanybek Research Station of the Institute of Forest Science of the Russian Academy of Sciences in the Northern Caspian region. The values of Cmic and soil basal respiration (BR) significantly vary among the separate plots. In the 0- to 10-cm layer, the BR rate is 0.28-2.44 μg C-CO2/(g h); the minimum values are typical for the arable soils of the interbelt area, and the maximum values are found in the meadow-chestnut soils of mesodepressions under the forest belt with a strong zoogenic effect. The content of Cmic increases from 415 to 1388 μg C/g soil in the following series: virgin solonetz-agro-afforested soils- virgin meadow-chestnut soils = their forest analogues. The fungi/bacteria ratio is 1.3-3.0; the fungal component of soils reaches 53-85% of Cmic, and its absolute values increase from 236 to 1040 μg C/g in the same soil series. Correlation was found between Corg and BR ( r = 0.89), between Corg and Cmic ( r = 0.87), and between BR and Cmic ( r = 0.89). The portion of Cmic in Corg is 3.2-8.6%; the minimum values are found for virgin solonetz and meadow-chestnut soil under forest belt with strong zoogenic effect. The values of qCO2 (ratio of BR to Cmic) are in the range of 0.7-2 μg C-CO2/(mg Cmic g h). At the afforestation of soils in natural and artificial mesodepressions, the activation of microbial community and humification processes is noted compared to the virgin analogues; unstable microbiological processes and a decreased Corg content because of deep tillage and the reduced input of plant residues in the permanent bare fallow between forest belts are revealed in the agro-afforested solonetzes and meadow-chestnut soils of microdepressions.

  6. Modelling the Gross Primary Productivity of West Africa with the Regional Biomass Model RBM+, using optimized 250 m MODIS FPAR and fractional vegetation cover information

    NASA Astrophysics Data System (ADS)

    Machwitz, Miriam; Gessner, Ursula; Conrad, Christopher; Falk, Ulrike; Richters, Jochen; Dech, Stefan

    2015-12-01

    Global warming associated with climate change is one of the greatest challenges of today's world. Increasing emissions of the greenhouse gas CO2 are considered as a major contributing factor to global warming. One regulating factor of CO2 exchange between atmosphere and land surface is vegetation. Measurements of land cover changes in combination with modelling the Gross Primary Productivity (GPP) can contribute to determine important sources and sinks of CO2. The aim of this study is to accurately model the GPP for a region in West Africa with a spatial resolution of 250 m, and the differentiation of GPP based on woody and herbaceous vegetation. For this purpose, the Regional Biomass Model (RBM) was applied, which is based on a Light Use Efficiency (LUE) approach. The focus was on the spatial enhancement of the RBM from the original 1000-250 m spatial resolution (RBM+). The adaptation to the 250 m scale included the modification of two main input parameters: (1) the fraction of absorbed Photosynthetically Active Radiation (FPAR) based on the 1000 m MODIS MOD15A2 FPAR product which was downscaled to 250 m using MODIS NDVI time series; (2) the fractional cover of woody and herbaceous vegetation, which was improved by using a multi-scale approach. For validation and regional adjustments of GPP and the input parameters, in situ data from a climate station and eddy covariance measurements were integrated. The results of this approach show that the input parameters could be improved significantly: downscaling considerably reduces data gaps of the original FPAR product and the improved dataset differed less than 5.0% from the original data for cloud free regions. The RMSE of the fractional vegetation cover varied between 5.1 and 12.7%. Modelled GPP showed a slight overestimation in comparison to eddy covariance measurements. The in situ data was exceeded by 8.8% for 2005 and by 2.0% for 2006. The model results were converted to NPP and also agreed well with previous NPP

  7. Composition of diatom communities and their contribution to plankton biomass in the naturally iron-fertilized region of Kerguelen in the Southern Ocean.

    PubMed

    Lasbleiz, Marine; Leblanc, Karine; Armand, Leanne K; Christaki, Urania; Georges, Clément; Obernosterer, Ingrid; Quéguiner, Bernard

    2016-11-01

    In the naturally iron-fertilized surface waters of the northern Kerguelen Plateau region, the early spring diatom community composition and contribution to plankton carbon biomass were investigated and compared with the high nutrient, low chlorophyll (HNLC) surrounding waters. The large iron-induced blooms were dominated by small diatom species belonging to the genera Chaetoceros (Hyalochaete) and Thalassiosira, which rapidly responded to the onset of favorable light-conditions in the meander of the Polar Front. In comparison, the iron-limited HNLC area was typically characterized by autotrophic nanoeukaryote-dominated communities and by larger and more heavily silicified diatom species (e.g. Fragilariopsis spp.). Our results support the hypothesis that diatoms are valuable vectors of carbon export to depth in naturally iron-fertilized systems of the Southern Ocean. Furthermore, our results corroborate observations of the exported diatom assemblage from a sediment trap deployed in the iron-fertilized area, whereby the dominant Chaetoceros (Hyalochaete) cells were less efficiently exported than the less abundant, yet heavily silicified, cells of Thalassionema nitzschioides and Fragilariopsis kerguelensis Our observations emphasize the strong influence of species-specific diatom cell properties combined with trophic interactions on matter export efficiency, and illustrate the tight link between the specific composition of phytoplankton communities and the biogeochemical properties characterizing the study area.

  8. Thirteen years of observations on biomass burning organic tracers over Chichijima Island in the western North Pacific: An outflow region of Asian aerosols

    NASA Astrophysics Data System (ADS)

    Verma, Santosh Kumar; Kawamura, Kimitaka; Chen, Jing; Fu, Pingqing; Zhu, Chunmao

    2015-05-01

    East Asia is the world's greatest source region for the emission of anthropogenic aerosols and their precursors due to the rapid industrialization and intensive biomass burning (BB) activities. BB emits specific organic tracers such as levoglucosan, mannosan, and galactosan, which are produced by pyrolysis of cellulose and hemicellulose and then transported downwind to the western North Pacific by westerly winds. Here we present long-term observations of BB tracers over the remote Chichijima Island in the western North Pacific (WNP) from 2001 to 2013. Elevated concentrations of BB tracers by an order of magnitude were found in midautumn to midspring with winter maxima, which are strongly involved with the atmospheric transport by westerly winds from the Asian continent to the WNP, as supported by backward trajectory analyses. Throughout the observations, we found an increase in the averaged concentrations of BB tracers from 2006 to 2013, which is mainly caused by enhanced BB events in Asian urban and rural areas, as supported by enhanced fire/hot spots in East Asia via satellite images. We also found that the period of the high concentrations was prolonged from 2006 to 2013. Comparison between monthly averaged concentrations of BB tracers and backward air mass trajectories clearly demonstrates that the winter/spring maxima over Chichijima are involved with the seasonal shifting of atmospheric circulation followed by downwind transport of BB aerosols to the WNP. High abundances of BB tracers over the WNP indicate that BB-laden air masses can be transported to remote marine environments.

  9. Regions of the bread wheat D genome associated with variation in key photosynthesis traits and shoot biomass under both well watered and water deficient conditions.

    PubMed

    Osipova, Svetlana; Permyakov, Alexey; Permyakova, Marina; Pshenichnikova, Tatyana; Verkhoturov, Vasiliy; Rudikovsky, Alexandr; Rudikovskaya, Elena; Shishparenok, Alexandr; Doroshkov, Alexey; Börner, Andreas

    2016-05-01

    A quantitative trait locus (QTL) approach was taken to reveal the genetic basis in wheat of traits associated with photosynthesis during a period of exposure to water deficit stress. The performance, with respect to shoot biomass, gas exchange and chlorophyll fluorescence, leaf pigment content and the activity of various ascorbate-glutathione cycle enzymes and catalase, of a set of 80 wheat lines, each containing a single chromosomal segment introgressed from the bread wheat D genome progenitor Aegilops tauschii, was monitored in plants exposed to various water regimes. Four of the seven D genome chromosomes (1D, 2D, 5D, and 7D) carried clusters of both major (LOD >3.0) and minor (LOD between 2.0 and 3.0) QTL. A major QTL underlying the activity of glutathione reductase was located on chromosome 2D, and another, controlling the activity of ascorbate peroxidase, on chromosome 7D. A region of chromosome 2D defined by the microsatellite locus Xgwm539 and a second on chromosome 7D flanked by the marker loci Xgwm1242 and Xgwm44 harbored a number of QTL associated with the water deficit stress response.

  10. Composition of diatom communities and their contribution to plankton biomass in the naturally iron-fertilized region of Kerguelen in the Southern Ocean.

    PubMed

    Lasbleiz, Marine; Leblanc, Karine; Armand, Leanne K; Christaki, Urania; Georges, Clément; Obernosterer, Ingrid; Quéguiner, Bernard

    2016-11-01

    In the naturally iron-fertilized surface waters of the northern Kerguelen Plateau region, the early spring diatom community composition and contribution to plankton carbon biomass were investigated and compared with the high nutrient, low chlorophyll (HNLC) surrounding waters. The large iron-induced blooms were dominated by small diatom species belonging to the genera Chaetoceros (Hyalochaete) and Thalassiosira, which rapidly responded to the onset of favorable light-conditions in the meander of the Polar Front. In comparison, the iron-limited HNLC area was typically characterized by autotrophic nanoeukaryote-dominated communities and by larger and more heavily silicified diatom species (e.g. Fragilariopsis spp.). Our results support the hypothesis that diatoms are valuable vectors of carbon export to depth in naturally iron-fertilized systems of the Southern Ocean. Furthermore, our results corroborate observations of the exported diatom assemblage from a sediment trap deployed in the iron-fertilized area, whereby the dominant Chaetoceros (Hyalochaete) cells were less efficiently exported than the less abundant, yet heavily silicified, cells of Thalassionema nitzschioides and Fragilariopsis kerguelensis Our observations emphasize the strong influence of species-specific diatom cell properties combined with trophic interactions on matter export efficiency, and illustrate the tight link between the specific composition of phytoplankton communities and the biogeochemical properties characterizing the study area. PMID:27515734

  11. Microphysical properties of transported biomass burning aerosols in coastal regions, and application to improving retrievals of aerosol optical depth from SeaWiFS data

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.

    2013-05-01

    Due to the limited measurement capabilities of heritage and current spaceborne passive imaging radiometers, algorithms for the retrieval of aerosol optical depth (AOD) and related quantities must make assumptions relating to aerosol microphysical properties and surface reflectance. Over the ocean, surface reflectance can be relatively well-modelled, but knowledge of aerosol properties can remain elusive. Several field campaigns and many studies have examined the microphysical properties of biomass burning (smoke) aerosol. However, these largely focus on properties over land and near to the source regions. In coastal and open-ocean regions the properties of transported smoke may differ, due to factors such as aerosol aging, wet/dry deposition, and mixture with other aerosol sources (e.g. influence of maritime, pollution, or mineral dust aerosols). Hence, models based on near-source aerosol observations may be less representative of such transported smoke aerosols, introducing additional uncertainty into satellite retrievals of aerosol properties. This study examines case studies of transported smoke from select globally-distributed coastal and island Aerosol Robotic Network (AERONET) sites. These are used to inform improved models for over-ocean transported smoke aerosol for AOD retrievals from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). These models are used in an updated version of the SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm, which has been combined with the Deep Blue algorithm over land to create a 13-year (1997-2010) high-quality record of AOD over land and ocean. Applying these algorithms to other sensors will enable the creation of a long-term global climate data record of spectral AOD.

  12. Addressing inequities in access to primary health care: lessons for the training of health care professionals from a regional medical school.

    PubMed

    Larkins, Sarah; Sen Gupta, Tarun; Evans, Rebecca; Murray, Richard; Preston, Robyn

    2011-01-01

    Attention to the inequitable distribution and limited access to primary health care resources is key to addressing the priority health needs of underserved populations in rural, remote and outer metropolitan areas. There is little high-quality evidence about improving access to quality primary health care services for underserved groups, particularly in relation to geographic barriers, and limited discussion about the training implications of reforms to improve access. To progress equity in access to primary health care services, health professional education institutions need to work with both the health sector and policy makers to address issues of workforce mix, recruitment and retention, and new models of primary health care delivery. This requires a fundamental shift in focus from these institutions and the health sector, to each view themselves as partners in an integrated teaching, research and service-oriented health system. This paper discusses the challenges and opportunities for primary health care professionals, educators and the health sector in providing quality teaching and clinical experiences for increasing numbers of health professionals as a result of the reform agenda. It then outlines some practical strategies based on theory and evolving experience for dealing with some of these challenges and capitalising on opportunities.

  13. Addressing inequities in access to primary health care: lessons for the training of health care professionals from a regional medical school.

    PubMed

    Larkins, Sarah; Sen Gupta, Tarun; Evans, Rebecca; Murray, Richard; Preston, Robyn

    2011-01-01

    Attention to the inequitable distribution and limited access to primary health care resources is key to addressing the priority health needs of underserved populations in rural, remote and outer metropolitan areas. There is little high-quality evidence about improving access to quality primary health care services for underserved groups, particularly in relation to geographic barriers, and limited discussion about the training implications of reforms to improve access. To progress equity in access to primary health care services, health professional education institutions need to work with both the health sector and policy makers to address issues of workforce mix, recruitment and retention, and new models of primary health care delivery. This requires a fundamental shift in focus from these institutions and the health sector, to each view themselves as partners in an integrated teaching, research and service-oriented health system. This paper discusses the challenges and opportunities for primary health care professionals, educators and the health sector in providing quality teaching and clinical experiences for increasing numbers of health professionals as a result of the reform agenda. It then outlines some practical strategies based on theory and evolving experience for dealing with some of these challenges and capitalising on opportunities. PMID:22112705

  14. Addressing the Issue of Gender Equity in the Presidency of the University System in the Southern African Development Community (SADC) Region

    ERIC Educational Resources Information Center

    Guramatunhu-Mudiwa, Precious

    2010-01-01

    The Southern African Development Community (SADC) is a regional economic grouping of 15 countries whose common vision is to promote economic, social and political development and growth. Arguably, sustainable growth can be realized if there is equal access to all positions of power and influence in the area, but an investigation of 117…

  15. Developing Strategies at the Pre-Service Level to Address Critical Teacher Attraction and Retention Issues in Australian Rural, Regional and Remote Schools

    ERIC Educational Resources Information Center

    Trinidad, Sue; Sharplin, Elaine; Lock, Graeme; Ledger, Sue; Boyd, Don; Terry, Emmy

    2011-01-01

    This ALTC project is a collaborative endeavour between the four public universities involved in teacher education in Western Australia (Curtin University, Edith Cowan University, Murdoch University and The University of Western Australia), focussed on improving the quality of preparation of pre-service teachers for rural, regional and remote…

  16. Sustainable Biomass Supply Systems

    SciTech Connect

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOE’s ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  17. Biomass energy

    SciTech Connect

    Smil, V.

    1983-01-01

    This book offers a broad, interdisciplinary approach to assessing the factors that are key determinants to the use of biomass energies, stressing their limitations, complexities, uncertainties, links, and consequences. Considers photosynthesis, energy costs of nutrients, problems with monoculture, and the energy analysis of intensive tree plantations. Subjects are examined in terms of environmental and economic impact. Emphasizes the use and abuse of biomass energies in China, India, and Brazil. Topics include forests, trees for energy, crop residues, fuel crops, aquatic plants, and animal and human wastes. Recommended for environmental engineers and planners, and those involved in ecology, systematics, and forestry.

  18. Addressing the deficiencies in the evidence-base for primary practice in regional Australia - sentinel practices data sourcing (SPDS) project: a pilot study

    PubMed Central

    2013-01-01

    Background Chronic disease risk on a population level can be quantified through health surveys, either continuous or periodic. To date, information gathered from primary care interactions, using sentinel sites, has not been investigated as a potentially valuable surveillance system in Australia. Methods A pilot study was conducted in a single General Practice in a regional area of New South Wales, Australia to assess the feasibility of accessing data obtained through a computerised chronic disease management program that has been designed for desktop application (Pen Computer Systems (PCS) Clinical Audit Tool: ™ PCS CAT). Collated patient data included information on chronic disease management and prevention, prevalence of overweight and obesity, mental health indicators, medication profiling and home medicine reviews, as well as uptake of preventive health services (immunisation and cervical cancer screening). Results Higher than national average estimates were found for the age-adjusted prevalence of chronic diseases such as hypertension (14.3% for sample vs 10.4%, nationally), anxiety disorders (4.4% vs 3.8%) and obesity/overweight (67.1 vs 63.4%). Preventive health assessment items were undersubscribed, ranging from 6–20% in eligible patients. Conclusions This pilot study has demonstrated that the scope of data collected by patient visits to their General Practitioners, facilitated through the Medicare-funded primary health care system in Australia, offers a feasible opportunity for monitoring of chronic disease prevalence and its associated risk factors. The inclusion of a larger number of sentinel sites that are generalizable to the population being served would provide an accurate and region-specific system for the purposes of population health planning at the primary care level in order to improve the overall health of the community. PMID:23902663

  19. Biotechnology of biomass conversion

    SciTech Connect

    Wayman, M.; Parekh, S.R.

    1990-01-01

    This book covers: An introduction to biomass crops; The microbiology of fermentation processes; The production of ethanol from biomass crops, such as sugar cane and rubbers; The energy of biomass conversion; and The economics of biomass conversion.

  20. Biomass shock pretreatment

    DOEpatents

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  1. Assessment Planning and Evaluation of Renewable Energy Resources: an Interactive Computer Assisted Procedure. [hydroelectricity, biomass, and windpower in the Pittsfield metropolitan region, Massachusetts

    NASA Technical Reports Server (NTRS)

    Aston, T. W.; Fabos, J. G.; Macdougall, E. B.

    1982-01-01

    Adaptation and derivation were used to develop a procedure for assessing the availability of renewable energy resources on the landscape while simultaneously accounting for the economic, legal, social, and environmental issues required. Done in a step-by-step fashion, the procedure can be used interactively at the computer terminals. Its application in determining the hydroelectricity, biomass, and windpower in a 40,000 acre study area of Western Massachusetts shows that: (1) three existing dam sites are physically capable of being retrofitted for hydropower; (2) each of three general areas has a mean annual windspeed exceeding 14 mph and is conductive to windpower; and (3) 20% of the total land area consists of prime agricultural biomass while 30% of the area is prime forest biomass land.

  2. Mesozooplankton biomass, composition, and potential grazing pressure on phytoplankton during austral winter and spring 1993 in the Subtropical Convergence region near New Zealand

    NASA Astrophysics Data System (ADS)

    Bradford-Grieve, Janet; Murdoch, Rob; James, Mark; Oliver, Megan; McLeod, Jeff

    1998-10-01

    The biomass, composition, and grazing rates of three size fractions of mesozooplankton (200-500, 500-1000, and some >1000 μm) were estimated in shelf waters and the water masses associated with Subtropical Convergence east of New Zealand, in the austral winter and spring of 1993, as part of a larger New Zealand study of ocean carbon flux that contributes to the Joint Global Ocean Flux Study (JGOFS). The total biomass was largest in spring in all water types. It was similar to the biomass measurements made previously in subantarctic and subtropical water masses in the Southwest Pacific and those from the North Atlantic, except for the spring biomass in subtropical water which was unusually large (86.5 and 101.3 mg m -3 dry weight). Biomass was concentrated in the upper 100 m, especially within the 0-25 or 25-50 m layers, both day and night. Night/day biomass ratios in the surface 100 m were often >2, and are presumed to be the result of sampling patchy populations as well as vertical migration. Biomass was greatest for the >1000 μm fraction of the mesozooplankton population, followed by the 500-1000, and 200-500 μm fractions, respectively. The unusually small fraction of biomass residing in the 200-500 μm fraction is assumed to be the result of predation by larger mesozooplankton. The mesozooplankton community had maximum gut fluorescence at night only at stations where chlorophyll a was >2 mg m -3 and at many of the stations gut fluorescence was persistently low. This was probably the result of the poor feeding environment, since a large proportion of the primary production resided in the <2 μm fraction. The total meaningestion of phytoplankton was calculated to be 1-40 mgC m -2 d -1, based mainly on ingestion by the 200-500 and 500-1000 μm fractions, which were dominated by herbivores or herbivores and omnivores. The heaviest grazing pressure was in subtropical and Subtropical Convergence waters, in spring. Total grazing represented <1-4% of daily total

  3. Regional biomass and leaf-area estimates derived from satellite imagery as inputs to spatial trace-gas flux models for arctic tundra

    SciTech Connect

    Shippert, M.M.; Walker, D.A.; Auerbach, N.A.; Lewis, B.E. )

    1994-06-01

    Reflectance spectra, leaf area index (LAI), and live biomass measurements were collected for 60 plots near Toolik Lake and Imnavait Creek, Alaska during July and August, 1993. Normalized difference vegetation indices (NDVI) were calculated from the reflectance spectra. NDVI was found to be highly correlated to both LAI and biomass. These relationships have been seen in temperate ecosystems, but have never been tested in Arctic tundra previous to this study. In addition, a clear relationship is seen between NDVI values and pH and moisture. Acidic plots have much higher NDVI values than non-acidic plots, while moist plots have high NDVI values relative to dry and wet plots. The average field NDVI measurements for major physiognomic categories were compared to average NDVI values for the same categories derived from a SPOT multispectral satellite image of the area. These values were also found to be highly correlated. However, field NDVI values were consistently about 40% higher than SPOT NDVI values. Possible explanations for this consistent trend include effects of low sun angle in the Arctic in combination with relatively high view angle of the SPOT sensor. Using the regression equations for the above relationships, biomass and LAI images were calculated from the SPOT image. The resulting images show expected trends in the LAI and biomass across the landscape. The image of biomass will be used as an input to a spatial model of methane emissions for the Alaskan Arctic. Another key input variable to the methane model will be soil moisture. Alternative image processing methods and/or radar images will be used to derive this important variable.

  4. Initial soil respiration response to biomass harvesting and green-tree retention in aspen-dominated forests of the Great Lakes region

    USGS Publications Warehouse

    Kurth, Valerie J.; Bradford, John B.; Slesak, Robert A.; D'Amato, Anthony W.

    2014-01-01

    Contemporary forest management practices are increasingly designed to optimize novel objectives, such as maximizing biomass feedstocks and/or maintaining ecological legacies, but many uncertainties exist regarding how these practices influence forest carbon (C) cycling. We examined the responses of soil respiration (Rs) to biomass harvesting and green-tree retention in an effort to empirically assess their impacts on C cycling. We measured Rs and soil microclimatic variables over four growing seasons following implementation of these management practices using a fully replicated, operational-scale experiment in aspen-dominated forests in northern Minnesota. Treatments included three levels of biomass removal within harvested areas: whole-tree harvest (no slash deliberately retained), 20% slash retained, and stem-only harvest (all slash retained), and two levels of green-tree retention: 0.1 ha aggregate or none. The relative amount of biomass removed had a negligible effect on Rs in harvested areas, but treatment effects were probably obscured by heterogeneous slash configurations and rapid post-harvest regeneration of aspen in all of the treatments. Discrete measurements of Rs and soil temperature within green-tree aggregates were not discernible from surrounding harvested areas or unharvested control stands until the fourth year following harvest, when Rs was higher in unharvested controls than in aggregates and harvested stands. Growing season estimates of Rs showed that unharvested control stands had higher Rs than both harvested stands and aggregates in the first and third years following harvest. Our results suggest that retention of larger forest aggregates may be necessary to maintain ecosystem-level responses similar to those in unharvested stands. Moreover, they highlight the innate complexity of operational-scale research and suggest that the initial impacts of biomass harvest on Rs may be indiscernible from traditional harvest in systems where incidental

  5. 78 FR 35149 - Addresses of Regional Offices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... program: Wildlife and Sport Fish Restoration. As well, this final rule revises regulations at 50 CFR parts... objectives. E.O. 13563 emphasizes further that regulations must be based on the best available science and... Relations With Native American Tribal Governments'' (59 FR 22951), Executive Order 13175, and 512 DM 2,...

  6. Biosynthesis and uptake of copper nanoparticles by dead biomass of Hypocrea lixii isolated from the metal mine in the Brazilian Amazon Region.

    PubMed

    Salvadori, Marcia R; Lepre, Luiz F; Ando, Rômulo A; Oller do Nascimento, Cláudio A; Corrêa, Benedito

    2013-01-01

    A biological system for the biosynthesis of nanoparticles (NPs) and uptake of copper from wastewater, using dead biomass of Hypocrea lixii was analyzed and described for the first time. The equilibrium and kinetics investigation of the biosorption of copper onto dead, dried and live biomass of fungus were performed as a function of initial metal concentration, pH, temperature, agitation and inoculum volume. The high biosorption capacity was observed for dead biomass, completed within 60 min of contact, at pH 5.0, temperature of 40 °C and agitation speed of 150 rpm with a maximum copper biosorption of 19.0 mg g(-1). The equilibrium data were better described using the Langmuir isotherm and kinetic analysis indicated that copper biosorption follows a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the fungus were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). NPs were mainly spherical, with an average size of 24.5 nm, and were synthesized extracellularly. The X-ray diffraction (XRD) analysis confirms the presence of metallic copper particles. Infrared spectroscopy (FTIR) study revealed that the amide groups interact with the particles, which was accountable for the stability of NPs. This method further confirmed the presence of proteins as stabilizing and capping agents surrounding the copper NPs. These studies demonstrate that dead biomass of Hypocrea lixii provides an economic and technically feasible option for bioremediation of wastewater and is a potential candidate for industrial-scale production of copper NPs. PMID:24282549

  7. Comparison of Precision of Biomass Estimates in Regional Field Sample Surveys and Airborne LiDAR-Assisted Surveys in Hedmark County, Norway

    NASA Technical Reports Server (NTRS)

    Naesset, Erik; Gobakken, Terje; Bollandsas, Ole Martin; Gregoire, Timothy G.; Nelson, Ross; Stahl, Goeran

    2013-01-01

    Airborne scanning LiDAR (Light Detection and Ranging) has emerged as a promising tool to provide auxiliary data for sample surveys aiming at estimation of above-ground tree biomass (AGB), with potential applications in REDD forest monitoring. For larger geographical regions such as counties, states or nations, it is not feasible to collect airborne LiDAR data continuously ("wall-to-wall") over the entire area of interest. Two-stage cluster survey designs have therefore been demonstrated by which LiDAR data are collected along selected individual flight-lines treated as clusters and with ground plots sampled along these LiDAR swaths. Recently, analytical AGB estimators and associated variance estimators that quantify the sampling variability have been proposed. Empirical studies employing these estimators have shown a seemingly equal or even larger uncertainty of the AGB estimates obtained with extensive use of LiDAR data to support the estimation as compared to pure field-based estimates employing estimators appropriate under simple random sampling (SRS). However, comparison of uncertainty estimates under SRS and sophisticated two-stage designs is complicated by large differences in the designs and assumptions. In this study, probability-based principles to estimation and inference were followed. We assumed designs of a field sample and a LiDAR-assisted survey of Hedmark County (HC) (27,390 km2), Norway, considered to be more comparable than those assumed in previous studies. The field sample consisted of 659 systematically distributed National Forest Inventory (NFI) plots and the airborne scanning LiDAR data were collected along 53 parallel flight-lines flown over the NFI plots. We compared AGB estimates based on the field survey only assuming SRS against corresponding estimates assuming two-phase (double) sampling with LiDAR and employing model-assisted estimators. We also compared AGB estimates based on the field survey only assuming two-stage sampling (the NFI

  8. Spatial and temporal distribution in density and biomass of two Pseudodiaptomus species (Copepoda: Calanoida) in the Caeté river estuary (Amazon region--North of Brazil).

    PubMed

    Magalhães, A; Costa, R M; Liang, T H; Pereira, L C C; Ribeiro, M J S

    2006-05-01

    Spatial and temporal density and biomass distribution of the planktonic copepods Pseudodiaptomus richardi and P. acutus along a salinity gradient were investigated in the Caeté River Estuary (North-Brazil) in June and December, 1998 (dry season) and in February and May, 1999 (rainy season). Copepod biomass was estimated using regression parameters based on the relation of dry weight and body length (prosome) of adult organisms. The Caeté River Estuary was characterized by high spatial and temporal variations in salinity (0.8-37.2). Exponential length-weight relationships were observed for both Pseudodiaptomus species. Density and biomass values oscillated between 0.28-46.18 ind. m-3 and 0.0022-0.3507 mg DW. m-3 for P. richardi; and between 0.01-17.02 ind. m-3 and 0.0005-0.7181 mg DW. m-3 for P. acutus. The results showed that the contribution of P. richardi for the secondary production in the Caeté River Estuary is more important in the limnetic zone than in other zones where euhaline-polyhaline regimes were predominant. However, it was not possible to observe a clear pattern of spatial and temporal distribution for P. acutus.

  9. Spatial and temporal distribution in density and biomass of two Pseudodiaptomus species (Copepoda: Calanoida) in the Caeté river estuary (Amazon region--North of Brazil).

    PubMed

    Magalhães, A; Costa, R M; Liang, T H; Pereira, L C C; Ribeiro, M J S

    2006-05-01

    Spatial and temporal density and biomass distribution of the planktonic copepods Pseudodiaptomus richardi and P. acutus along a salinity gradient were investigated in the Caeté River Estuary (North-Brazil) in June and December, 1998 (dry season) and in February and May, 1999 (rainy season). Copepod biomass was estimated using regression parameters based on the relation of dry weight and body length (prosome) of adult organisms. The Caeté River Estuary was characterized by high spatial and temporal variations in salinity (0.8-37.2). Exponential length-weight relationships were observed for both Pseudodiaptomus species. Density and biomass values oscillated between 0.28-46.18 ind. m-3 and 0.0022-0.3507 mg DW. m-3 for P. richardi; and between 0.01-17.02 ind. m-3 and 0.0005-0.7181 mg DW. m-3 for P. acutus. The results showed that the contribution of P. richardi for the secondary production in the Caeté River Estuary is more important in the limnetic zone than in other zones where euhaline-polyhaline regimes were predominant. However, it was not possible to observe a clear pattern of spatial and temporal distribution for P. acutus. PMID:16862295

  10. Biomass torrefaction mill

    DOEpatents

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  11. Biomass Energy Research

    SciTech Connect

    Traylor, T.D.; Pitsenbarger, J.

    1996-03-01

    Biomass Energy Research announces on a bimonthly basis the current worldwide research and development (R&D) information available on biomass power systems, alternate feedstocks from biomass, and biofuels supply options.

  12. Energy from Biomass for Conversion of Biomass

    NASA Astrophysics Data System (ADS)

    Abolins, J.; Gravitis, J.

    2009-01-01

    Along with estimates of minimum energy required by steam explosion pre-treatment of biomass some general problems concerning biomass conversion into chemicals, materials, and fuels are discussed. The energy necessary for processing biomass by steam explosion auto-hydrolysis is compared with the heat content of wood and calculated in terms of the amount of saturated steam consumed per unit mass of the dry content of wood biomass. The fraction of processed biomass available for conversion after steam explosion pre-treatment is presented as function of the amount of steam consumed per unit mass of the dry content of wood. The estimates based on a simple model of energy flows show the energy required by steam explosion pre-treatment of biomass being within 10% of the heat content of biomass - a realistic amount demonstrating that energy for the process can be supplied from a reasonable proportion of biomass used as the source of energy for steam explosion pre-treatment.

  13. 40 CFR 374.6 - Addresses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 28 2011-07-01 2011-07-01 false Addresses. 374.6 Section 374.6... COMMUNITY RIGHT-TO-KNOW PROGRAMS PRIOR NOTICE OF CITIZEN SUITS § 374.6 Addresses. Administrator, U.S.... Environmental Protection Agency, 77 West Jackson Boulevard, Chicago, IL 60604. Regional Administrator, Region...

  14. The effects of variable sample biomass on comparative metagenomics.

    PubMed

    Chafee, Meghan; Maignien, Loïs; Simmons, Sheri L

    2015-07-01

    Longitudinal studies that integrate samples with variable biomass are essential to understand microbial community dynamics across space or time. Shotgun metagenomics is widely used to investigate these communities at the functional level, but little is known about the effects of combining low and high biomass samples on downstream analysis. We investigated the interacting effects of DNA input and library amplification by polymerase chain reaction on comparative metagenomic analysis using dilutions of a single complex template from an Arabidopsis thaliana-associated microbial community. We modified the Illumina Nextera kit to generate high-quality large-insert (680 bp) paired-end libraries using a range of 50 pg to 50 ng of input DNA. Using assembly-based metagenomic analysis, we demonstrate that DNA input level has a significant impact on community structure due to overrepresentation of low-GC genomic regions following library amplification. In our system, these differences were largely superseded by variations between biological replicates, but our results advocate verifying the influence of library amplification on a case-by-case basis. Overall, this study provides recommendations for quality filtering and de-replication prior to analysis, as well as a practical framework to address the issue of low biomass or biomass heterogeneity in longitudinal metagenomic surveys.

  15. Environmental implications of increased biomass energy use

    SciTech Connect

    Miles, T.R. Sr.; Miles, T.R. Jr. , Portland, OR )

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  16. Variable addressability imaging systems

    NASA Astrophysics Data System (ADS)

    Kubala, Kenneth Scott

    The use of variable addressability for creating an optimum human-machine interface is investigated. Current wide field optical systems present more information to the human visual system than it has the capacity to perceive. The axial resolution, and/or the field of view can be increased by minimizing the difference between what the eye can perceive and what the system presents. The variable addressability function was developed through the use of a human factors experiment that characterized the position of the eye during the simulated use of a binocular system. Applying the variable addressability function to a conventional optical design required the development of a new metric for evaluating the expected performance of the variable addressability system. The new metric couples psycho-visual data and traditional optical data in order to specify the required performance of the variable addressability system. A non-linear mapping of the pixels is required in order to have the system work most efficiently with the human visual system, while also compensating for eye motion. The non-linear mapping function, which is the backbone of the variable addressability technique, can be created using optical distortion. The lens and system design is demonstrated in two different spectral bands. One of the designs was fabricated, tested, and assembled into a prototype. Through a second human factors study aimed at measuring performance, the variable addressability prototype was directly compared to a uniform addressability prototype, quantifying the difference in performance for the two prototypes. The human factors results showed that the variable addressability prototype provided better resolution 13% of the time throughout the experiment, but was 15% slower in use than the uniform addressability prototype.

  17. Biomass Estimates for Five Western States.

    SciTech Connect

    Howard, James O.

    1990-10-01

    The purpose of this report is to describe the woody biomass resource within US Department of Energy's Pacific Northwest and Alaska Regional Biomass Program, comprised of southeast Alaska, Idaho, Montana, Oregon, and Washington. In addition to the regional forest biomass assessment, information will be presented for logging residue, which represents current energy conversion opportunities. The information presented in the report is based on data and relationships already published. Regionally applicable biomass equations are generally not available for species occurring in the west. Because of this, a number of assumptions were made to develop whole-tree biomass tables. These assumptions are required to link algorithms from biomass studies to regional timber inventory data published by the Forest Inventory and Analysis Research Units (FIA), of the Pacific Northwest and Intermountain Research Stations, US Forest Service. These sources and assumptions will be identified later in this report. Tabular biomass data will be presented for 11 resource areas, identified in the FS inventory publications. This report does not include information for the vast area encompassing interior Alaska. Total tress biomass as defined in the report refers to the above ground weight of a tree above a 1.0 foot stump, and exclusive of foliage. A glossary is included that defines specific terms as used in the report. Inventory terminology is derived from forest inventory reports from Forest Inventory and Analysis units at the Intermountain and Pacific Northwest Research Stations. 39 refs., 15 figs., 23 tabs.

  18. Biomass treatment method

    DOEpatents

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  19. Mixing state and sources of submicron regional background aerosols in the northern Qinghai-Tibet Plateau and the influence of biomass burning

    NASA Astrophysics Data System (ADS)

    Li, W. J.; Chen, S. R.; Xu, Y. S.; Guo, X. C.; Sun, Y. L.; Yang, X. Y.; Wang, Z. F.; Zhao, X. D.; Chen, J. M.; Wang, W. X.

    2015-12-01

    Transmission electron microscopy (TEM) was employed to obtain morphology, size, composition, and mixing state of background aerosols with diameter less than 1 μm in the northern Qinghai-Tibet Plateau (QTP) during 15 September to 15 October 2013. Individual aerosol particles mainly contained secondary inorganic aerosols (SIA - sulfate and nitrate) and organics during clean periods (PM2.5 mass concentration less than 2.5 μg m-3). The presence of K-Na-Cl associated with organics and an increase in soot particles suggest that an intense biomass burning event caused the highest PM2.5 concentrations (> 30 μg m-3) during the study. A large number fraction of the fly-ash-containing particles (21.73 %) suggests that coal combustion emissions in the QTP significantly contributed to air pollutants at the medium pollution level (PM2.5: 10-30 μg m-3). We concluded that emissions from biomass burning and from coal combustion both constantly contribute to anthropogenic particles in the QTP atmosphere. Based on size distributions of individual particles at different pollution levels, we found that gas condensation on existing particles is an important chemical process for the formation of SIA with organic coating. TEM observations show that refractory aerosols (e.g., soot, fly ash, and visible organic particles) likely adhere to the surface of SIA particles larger than 200 nm due to coagulation. Organic coating and soot on surface of the aged particles likely influence their hygroscopic and optical properties, respectively, in the QTP. To our knowledge, this study reports the first microscopic analysis of fine particles in the background QTP air.

  20. Addressivity in cogenerative dialogues

    NASA Astrophysics Data System (ADS)

    Hsu, Pei-Ling

    2014-03-01

    Ashraf Shady's paper provides a first-hand reflection on how a foreign teacher used cogens as culturally adaptive pedagogy to address cultural misalignments with students. In this paper, Shady drew on several cogen sessions to showcase his journey of using different forms of cogens with his students. To improve the quality of cogens, one strategy he used was to adjust the number of participants in cogens. As a result, some cogens worked and others did not. During the course of reading his paper, I was impressed by his creative and flexible use of cogens and at the same time was intrigued by the question of why some cogens work and not others. In searching for an answer, I found that Mikhail Bakhtin's dialogism, especially the concept of addressivity, provides a comprehensive framework to address this question. In this commentary, I reanalyze the cogen episodes described in Shady's paper in the light of dialogism. My analysis suggests that addressivity plays an important role in mediating the success of cogens. Cogens with high addressivity function as internally persuasive discourse that allows diverse consciousnesses to coexist and so likely affords productive dialogues. The implications of addressivity in teaching and learning are further discussed.

  1. Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass.

    PubMed

    Falter, Christian; Zwikowics, Claudia; Eggert, Dennis; Blümke, Antje; Naumann, Marcel; Wolff, Kerstin; Ellinger, Dorothea; Reimer, Rudolph; Voigt, Christian A

    2015-09-01

    Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions.

  2. Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass.

    PubMed

    Falter, Christian; Zwikowics, Claudia; Eggert, Dennis; Blümke, Antje; Naumann, Marcel; Wolff, Kerstin; Ellinger, Dorothea; Reimer, Rudolph; Voigt, Christian A

    2015-01-01

    Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions. PMID:26324382

  3. Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass

    PubMed Central

    Falter, Christian; Zwikowics, Claudia; Eggert, Dennis; Blümke, Antje; Naumann, Marcel; Wolff, Kerstin; Ellinger, Dorothea; Reimer, Rudolph; Voigt, Christian A.

    2015-01-01

    Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions. PMID:26324382

  4. NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra.

    PubMed

    Sweet, Shannan K; Asmus, Ashley; Rich, Matthew E; Wingfield, John; Gough, Laura; Boelman, Natalie T

    2015-04-01

    The physical and biological responses to rapid arctic warming are proving acute, and as such, there is a need to monitor, understand, and predict ecological responses over large spatial and temporal scales. The use of the normalized difference vegetation index (NDVI) acquired from airborne and satellite sensors addresses this need, as it is widely used as a tool for detecting and quantifying spatial and temporal dynamics of tundra vegetation cover, productivity, and phenology. Such extensive use of the NDVI to quantify vegetation characteristics suggests that it may be similarly applied to characterizing primary and secondary consumer communities. Here, we develop empirical models to predict canopy arthropod biomass with canopy-level measurements of the NDVI both across and within distinct tundra vegetation communities over four growing seasons in the Arctic Foothills region of the Brooks Range, Alaska, USA. When canopy arthropod biomass is predicted with the NDVI across all four growing seasons, our overall model that includes all four vegetation communities explains 63% of the variance in canopy arthropod biomass, whereas our models specific to each of the four vegetation communities explain 74% (moist tussock tundra), 82% (erect shrub tundra), 84% (riparian shrub tundra), and 87% (dwarf shrub tundra) of the observed variation in canopy arthropod biomass. Our field-based study suggests that measurements of the NDVI made from air- and spaceborne sensors may be able to quantify spatial and temporal variation in canopy arthropod biomass at landscape to regional scales.

  5. Driftless Area Initiative Biomass Energy Project

    SciTech Connect

    Wright, Angie; Bertjens, Steve; Lieurance, Mike; Berguson, Bill; Buchman, Dan

    2012-12-31

    The Driftless Area Initiative Biomass Energy Project evaluated the potential for biomass energy production and utilization throughout the Driftless Region of Illinois, Iowa, Minnesota and Wisconsin. The research and demonstration aspect of the project specifically focused on biomass energy feedstock availability and production potential in the region, as well as utilization potential of biomass feedstocks for heat, electrical energy production, or combined heat and power operations. The Driftless Region was evaluated because the topography of the area offers more acres of marginal soils on steep slopes, wooded areas, and riparian corridors than the surrounding “Corn Belt”. These regional land characteristics were identified as potentially providing opportunity for biomass feedstock production that could compete with traditional agriculture commodity crops economically. The project researched establishment methods and costs for growing switchgrass on marginal agricultural lands to determine the economic and quantitative feasibility of switchgrass production for biomass energy purposes. The project was successful in identifying the best management and establishment practices for switchgrass in the Driftless Area, but also demonstrated that simple economic payback versus commodity crops could not be achieved at the time of the research. The project also analyzed the availability of woody biomass and production potential for growing woody biomass for large scale biomass energy production in the Driftless Area. Analysis determined that significant resources exist, but costs to harvest and deliver to the site were roughly 60% greater than that of natural gas at the time of the study. The project contributed significantly to identifying both production potential of biomass energy crops and existing feedstock availability in the Driftless Area. The project also analyzed the economic feasibility of dedicated energy crops in the Driftless Area. High commodity crop prices

  6. High-biomass sorghum yield estimate with aerial imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract. To reach the goals laid out by the U.S. Government for displacing fossil fuels with biofuels, agricultural production of dedicated biomass crops is required. High-biomass sorghum is advantageous across wide regions because it requires less water per unit dry biomass and can produce very hi...

  7. Addressing Social Issues.

    ERIC Educational Resources Information Center

    Schoebel, Susan

    1991-01-01

    Maintains that advertising can help people become more aware of social responsibilities. Describes a successful nationwide newspaper advertising competition for college students in which ads address social issues such as literacy, drugs, teen suicide, and teen pregnancy. Notes how the ads have helped grassroots programs throughout the United…

  8. Addressing Sexual Harassment

    ERIC Educational Resources Information Center

    Young, Ellie L.; Ashbaker, Betty Y.

    2008-01-01

    This article discusses ways on how to address the problem of sexual harassment in schools. Sexual harassment--simply defined as any unwanted and unwelcome sexual behavior--is a sensitive topic. Merely providing students, parents, and staff members with information about the school's sexual harassment policy is insufficient; schools must take…

  9. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to the Curator, ARS Patent Culture Collection, Northern Regional Research Center, USDA-ARS, 1815...

  10. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to the Curator, ARS Patent Culture Collection, Northern Regional Research Center, USDA-ARS, 1815...

  11. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to the Curator, ARS Patent Culture Collection, Northern Regional Research Center, USDA-ARS, 1815...

  12. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to the Curator, ARS Patent Culture Collection, Northern Regional Research Center, USDA-ARS, 1815...

  13. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to the Curator, ARS Patent Culture Collection, Northern Regional Research Center, USDA-ARS, 1815...

  14. Image compression using address-vector quantization

    NASA Astrophysics Data System (ADS)

    Nasrabadi, Nasser M.; Feng, Yushu

    1990-12-01

    A novel vector quantization scheme, the address-vector quantizer (A-VQ), is proposed which exploits the interblock correlation by encoding a group of blocks together using an address-codebook (AC). The AC is a set of address-codevectors (ACVs), each representing a combination of addresses or indices. Each element of the ACV is an address of an entry in the LBG-codebook, representing a vector-quantized block. The AC consists of an active (addressable) region and an inactive (nonaddressable) region. During encoding the ACVs in the AC are reordered adaptively to bring the most probable ACVs into the active region. When encoding an ACV, the active region is checked, and if such an address combination exists, its index is transmitted to the receiver. Otherwise, the address of each block is transmitted individually. The SNR of the images encoded by the A-VQ method is the same as that of a memoryless vector quantizer, but the bit rate is by a factor of approximately two.

  15. Biomass in a petrochemical world.

    PubMed

    Roddy, Dermot J

    2013-02-01

    The world's increasingly voracious appetite for fossil fuels is driven by fast-growing populations and ever-rising aspirations for the lifestyles and standard of living exemplified in the developed world. Forecasts for higher electricity consumption, more comfortable living environments (via heating or cooling) and greater demand for transport fuels are well known. Similar growth in demand is projected for petrochemical-based products in the form of man-made fibres for clothing, ubiquitous plastic artefacts, cosmetics, etc. All drawing upon the same finite oil, gas and coal feedstocks. Biomass can, in principle, substitute for all of these feedstocks. Although ultimately finite, biomass resources can be expanded and renewed if this is a societal priority. This paper examines the projected growth of an energy-intensive international petrochemicals industry, considers its demand for both utilities and feedstocks, and considers the extent to which biomass can substitute for fossil fuels. The scope of this study includes biomass component extraction, direct chemical conversion, thermochemical conversion and biochemical conversion. Noting that the petrochemicals industry consumes around 10 per cent of the world's fossil fuels as feedstocks and almost as much again in utilities, various strategies for addressing future demand are considered. The need for long-term infrastructure and logistics planning is highlighted.

  16. Biomass in a petrochemical world

    PubMed Central

    Roddy, Dermot J.

    2013-01-01

    The world's increasingly voracious appetite for fossil fuels is driven by fast-growing populations and ever-rising aspirations for the lifestyles and standard of living exemplified in the developed world. Forecasts for higher electricity consumption, more comfortable living environments (via heating or cooling) and greater demand for transport fuels are well known. Similar growth in demand is projected for petrochemical-based products in the form of man-made fibres for clothing, ubiquitous plastic artefacts, cosmetics, etc. All drawing upon the same finite oil, gas and coal feedstocks. Biomass can, in principle, substitute for all of these feedstocks. Although ultimately finite, biomass resources can be expanded and renewed if this is a societal priority. This paper examines the projected growth of an energy-intensive international petrochemicals industry, considers its demand for both utilities and feedstocks, and considers the extent to which biomass can substitute for fossil fuels. The scope of this study includes biomass component extraction, direct chemical conversion, thermochemical conversion and biochemical conversion. Noting that the petrochemicals industry consumes around 10 per cent of the world's fossil fuels as feedstocks and almost as much again in utilities, various strategies for addressing future demand are considered. The need for long-term infrastructure and logistics planning is highlighted. PMID:24427511

  17. Holographic content addressable storage

    NASA Astrophysics Data System (ADS)

    Chao, Tien-Hsin; Lu, Thomas; Reyes, George

    2015-03-01

    We have developed a Holographic Content Addressable Storage (HCAS) architecture. The HCAS systems consists of a DMD (Digital Micromirror Array) as the input Spatial Light Modulator (SLM), a CMOS (Complementary Metal-oxide Semiconductor) sensor as the output photodetector and a photorefractive crystal as the recording media. The HCAS system is capable of performing optical correlation of an input image/feature against massive reference data set stored in the holographic memory. Detailed system analysis will be reported in this paper.

  18. Energy from Biomass.

    ERIC Educational Resources Information Center

    Carioca, J. O. B.; And Others

    1987-01-01

    Discusses how biomass in the form of fuelwood, crop residues, and animal dung can be converted into fuels such as biogas and ethanol to replace or supplement fossil fuels. Argues for future decentralized, integrated biomass energy development. (TW)

  19. Biomass for Electricity Generation

    EIA Publications

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  20. Education Highlights: Forest Biomass

    ScienceCinema

    Barone, Rachel; Canter, Christina

    2016-07-12

    Argonne intern Rachel Barone from Ithaca College worked with Argonne mentor Christina Canter in studying forest biomass. This research will help scientists develop large scale use of biofuels from forest biomass.

  1. Pretreated densified biomass products

    DOEpatents

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  2. BIOMASS DRYING TECHNOLOGIES

    EPA Science Inventory

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the d...

  3. Biomass Program Biopower Factsheet

    SciTech Connect

    2010-03-01

    Generating electricity and thermal energy from biomass has the potential to help meet national goals for renewable energy. The forest products industry has used biomass for power and heat for many decades, yet widespread use of biomass to supply electricity to the U.S. power grid and other applications is relatively recent.

  4. Small Modular Biomass Systems

    SciTech Connect

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  5. Bioreactors Addressing Diabetes Mellitus

    PubMed Central

    Minteer, Danielle M.; Gerlach, Jorg C.

    2014-01-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies. PMID:25160666

  6. Bioreactors addressing diabetes mellitus.

    PubMed

    Minteer, Danielle M; Gerlach, Jorg C; Marra, Kacey G

    2014-11-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies.

  7. Content addressable memory project

    NASA Technical Reports Server (NTRS)

    Hall, J. Storrs; Levy, Saul; Smith, Donald E.; Miyake, Keith M.

    1992-01-01

    A parameterized version of the tree processor was designed and tested (by simulation). The leaf processor design is 90 percent complete. We expect to complete and test a combination of tree and leaf cell designs in the next period. Work is proceeding on algorithms for the computer aided manufacturing (CAM), and once the design is complete we will begin simulating algorithms for large problems. The following topics are covered: (1) the practical implementation of content addressable memory; (2) design of a LEAF cell for the Rutgers CAM architecture; (3) a circuit design tool user's manual; and (4) design and analysis of efficient hierarchical interconnection networks.

  8. Cloud Condensation Nuclei and Chemical Composition of size-resolved particles in a Brazilian megacity: Effect of NPF event, biomass burning and sea salt from remote regions on the CCN properties

    NASA Astrophysics Data System (ADS)

    Souto-Oliveira, Carlos; de Fátima Andrade, Maria; Kumar, Prashant; Lopes, Fabio; Babinski, Marly; Landulfo, Eduado; Vara-Vela, Angel

    2016-04-01

    Atmospheric aerosol particles are an important source of cloud condensation nuclei (CCN). Their microphysics and chemical composition can directly affect development of clouds and precipitation process1,2. Only a few studies in Latin American have reported the impact of urban aerosol on the formation of CCN and their contribution to global climate change3. In this study, we simultaneously measured size distributed particle number concentration (PNC), CCN, black carbon (BC) and elemental concentrations (EC) in aerosol samples from São Paulo city. The PNC was measured by DMPS (model 3936) operated with a DMA (model 3080) and CPC (TSI, model 3010). The CCN was measuredby a single-column continuous-flow stream-wise thermal gradient CCN chamber (DMT CCNC-100). The BC and EC were determined in polycarbonate filter collected by Cascade Impactor (MOUDI-MSP), using a smoke stain reflectometer and an ED-XRF (EDX 700; Shimadzu), respectively. During the study period, which was August to September 2014, four events of new particle formation (NPF), characterizing secondary process of aerosol formation were noted. The total PNC varied between 1106 and 29168 cm-3, while CCN presented concentrations of 206 to 12761 cm-3for SS=1.0%. The PNC showed different concentrations during diurnal and nocturnal periods with average of 16392±7811 cm-3 and 6874±3444cm-3, respectively. The activated ratio (CCN/CN) presented diurnal and nocturnal values of 0.19±0.10 and 0.41±0.18, while apparent activation diameter (Dact,a) was estimated to be 110±29 and 71±28 nm (SS=0.6%), respectively. Combining EC and BC results with air mass trajectory analysis (Lidar aerosol profiles and Hysplit air trajectories), apportionment events were identified for sea salt and biomass burning from coastal and continental regions, respectively. The nocturnal AR and Dact,apresented values of 0.46±0.11 and 49±15 nm (SS=0.6%) for sea salt events as opposed to 0.33±0.14 and 64±30 nm (SS=0.6%) during biomass

  9. Cloud Condensation Nuclei and Chemical Composition of size-resolved particles in a Brazilian megacity: Effect of NPF event, biomass burning and sea salt from remote regions on the CCN properties

    NASA Astrophysics Data System (ADS)

    Souto-Oliveira, Carlos; de Fátima Andrade, Maria; Kumar, Prashant; Lopes, Fabio; Babinski, Marly; Landulfo, Eduado; Vara-Vela, Angel

    2016-04-01

    Atmospheric aerosol particles are an important source of cloud condensation nuclei (CCN). Their microphysics and chemical composition can directly affect development of clouds and precipitation process1,2. Only a few studies in Latin American have reported the impact of urban aerosol on the formation of CCN and their contribution to global climate change3. In this study, we simultaneously measured size distributed particle number concentration (PNC), CCN, black carbon (BC) and elemental concentrations (EC) in aerosol samples from São Paulo city. The PNC was measured by DMPS (model 3936) operated with a DMA (model 3080) and CPC (TSI, model 3010). The CCN was measuredby a single-column continuous-flow stream-wise thermal gradient CCN chamber (DMT CCNC-100). The BC and EC were determined in polycarbonate filter collected by Cascade Impactor (MOUDI-MSP), using a smoke stain reflectometer and an ED-XRF (EDX 700; Shimadzu), respectively. During the study period, which was August to September 2014, four events of new particle formation (NPF), characterizing secondary process of aerosol formation were noted. The total PNC varied between 1106 and 29168 cm‑3, while CCN presented concentrations of 206 to 12761 cm‑3for SS=1.0%. The PNC showed different concentrations during diurnal and nocturnal periods with average of 16392±7811 cm‑3 and 6874±3444cm‑3, respectively. The activated ratio (CCN/CN) presented diurnal and nocturnal values of 0.19±0.10 and 0.41±0.18, while apparent activation diameter (Dact,a) was estimated to be 110±29 and 71±28 nm (SS=0.6%), respectively. Combining EC and BC results with air mass trajectory analysis (Lidar aerosol profiles and Hysplit air trajectories), apportionment events were identified for sea salt and biomass burning from coastal and continental regions, respectively. The nocturnal AR and Dact,apresented values of 0.46±0.11 and 49±15 nm (SS=0.6%) for sea salt events as opposed to 0.33±0.14 and 64±30 nm (SS=0.6%) during

  10. Addressing Environmental Health Inequalities

    PubMed Central

    Gouveia, Nelson

    2016-01-01

    Environmental health inequalities refer to health hazards disproportionately or unfairly distributed among the most vulnerable social groups, which are generally the most discriminated, poor populations and minorities affected by environmental risks. Although it has been known for a long time that health and disease are socially determined, only recently has this idea been incorporated into the conceptual and practical framework for the formulation of policies and strategies regarding health. In this Special Issue of the International Journal of Environmental Research and Public Health (IJERPH), “Addressing Environmental Health Inequalities—Proceedings from the ISEE Conference 2015”, we incorporate nine papers that were presented at the 27th Conference of the International Society for Environmental Epidemiology (ISEE), held in Sao Paulo, Brazil, in 2015. This small collection of articles provides a brief overview of the different aspects of this topic. Addressing environmental health inequalities is important for the transformation of our reality and for changing the actual development model towards more just, democratic, and sustainable societies driven by another form of relationship between nature, economy, science, and politics. PMID:27618906

  11. Addressing Environmental Health Inequalities.

    PubMed

    Gouveia, Nelson

    2016-01-01

    Environmental health inequalities refer to health hazards disproportionately or unfairly distributed among the most vulnerable social groups, which are generally the most discriminated, poor populations and minorities affected by environmental risks. Although it has been known for a long time that health and disease are socially determined, only recently has this idea been incorporated into the conceptual and practical framework for the formulation of policies and strategies regarding health. In this Special Issue of the International Journal of Environmental Research and Public Health (IJERPH), "Addressing Environmental Health Inequalities-Proceedings from the ISEE Conference 2015", we incorporate nine papers that were presented at the 27th Conference of the International Society for Environmental Epidemiology (ISEE), held in Sao Paulo, Brazil, in 2015. This small collection of articles provides a brief overview of the different aspects of this topic. Addressing environmental health inequalities is important for the transformation of our reality and for changing the actual development model towards more just, democratic, and sustainable societies driven by another form of relationship between nature, economy, science, and politics. PMID:27618906

  12. Understanding Biomass Feedstock Variability

    SciTech Connect

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  13. Understanding Biomass Feedstock Variability

    SciTech Connect

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  14. Biomass resilience of Neotropical secondary forests.

    PubMed

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  15. Biomass resilience of Neotropical secondary forests

    NASA Astrophysics Data System (ADS)

    Poorter, Lourens; Bongers, Frans; Aide, T. Mitchell; Almeyda Zambrano, Angélica M.; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Broadbent, Eben N.; Chazdon, Robin L.; Craven, Dylan; de Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben H. J.; Denslow, Julie S.; Dent, Daisy H.; Dewalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; de Oliveira, Alexandre A.; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velázquez, Jorge; Romero-Pérez, I. Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans F. M.; Vicentini, Alberto; Vieira, Ima C. G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Rozendaal, Danaë M. A.

    2016-02-01

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha-1), corresponding to a net carbon uptake of 3.05 Mg C ha-1 yr-1, 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha-1) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  16. Content addressable memory project

    NASA Technical Reports Server (NTRS)

    Hall, Josh; Levy, Saul; Smith, D.; Wei, S.; Miyake, K.; Murdocca, M.

    1991-01-01

    The progress on the Rutgers CAM (Content Addressable Memory) Project is described. The overall design of the system is completed at the architectural level and described. The machine is composed of two kinds of cells: (1) the CAM cells which include both memory and processor, and support local processing within each cell; and (2) the tree cells, which have smaller instruction set, and provide global processing over the CAM cells. A parameterized design of the basic CAM cell is completed. Progress was made on the final specification of the CPS. The machine architecture was driven by the design of algorithms whose requirements are reflected in the resulted instruction set(s). A few of these algorithms are described.

  17. Bax: Addressed to kill.

    PubMed

    Renault, Thibaud T; Manon, Stéphen

    2011-09-01

    The pro-apoptototic protein Bax (Bcl-2 Associated protein X) plays a central role in the mitochondria-dependent apoptotic pathway. In healthy mammalian cells, Bax is essentially cytosolic and inactive. Following a death signal, the protein is translocated to the outer mitochondrial membrane, where it promotes a permeabilization that favors the release of different apoptogenic factors, such as cytochrome c. The regulation of Bax translocation is associated to conformational changes that are under the control of different factors. The evidences showing the involvement of different Bax domains in its mitochondrial localization are presented. The interactions between Bax and its different partners are described in relation to their ability to promote (or prevent) Bax conformational changes leading to mitochondrial addressing and to the acquisition of the capacity to permeabilize the outer mitochondrial membrane. PMID:21641962

  18. [Forest biomass and its dynamics in Pearl River Delta].

    PubMed

    Yang, Kun; Guan, Dong-Sheng

    2007-04-01

    Based on the observation data obtained from 69 sampling sites of different age class forests, and by using biomass expansion factor function, the regression equations of stand biomass and volume of the main forest types in Pearl River Delta were built, and the regional forest biomass and its dynamics were estimated on the basis of forest inventory data. The results showed that most of the forests in Pearl River Delta were of young-medium age, which occupied 80% or more of the total forest area, and their undergrowth biomass accounted for about 33% of the total forest biomass, indicating that the regional forest biomass could be estimated more exactly if undergrowth biomass was fully concerned. In the periods of 1989-1993, 1994-1998 and 1999-2003, the forest biomass in Pearl River Delta increased by 14. 67 x 10(6) t in total, among which, Pinus massoniana forest, evergreen broadleaf forest, and conifer and deciduous mixed forest contributed about 80%. Young-medium age forest biomass accounted for 90% of the total, but the proportion was decreased gradually. The forest area in the Delta almost kept unvaried, and the forest biomass was increasing year after year, with an annual increment of about 1.2%. Better fostering and managing the existing forests is very important to have more forest biomass and better environmental effect that regional forests offered.

  19. The Potential for Biomass District Energy Production in Port Graham, Alaska

    SciTech Connect

    Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

    2008-05-08

    This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating

  20. Dynamics of nitrogen, phosphorus, algal biomass, and suspended solids in an artificial lentic ecosystem and significant implications of regional hydrology on trophic status.

    PubMed

    An, Kwang-Guk; Park, Seok Soon; Ahn, Kyu-Hong; Urchin, Christopher G

    2003-01-01

    Chemical and biological parameters were analyzed to examine how regional hydrological fluctuations influence water quality of a artificial lentic ecosystem over a two-year period The intensity of seasonal monsoon rain accounted for most of annual inflow and discharge and influenced flow pathway (interflow vs. overflow), resulting in a modification of chemical and biological conditions. Sharp contrasting interannual hydrology of intense vs. weak monsoon occurred during the study. The intense monsoon disrupted thermal stratification and resulted in ionic dilution, high TP and high inorganic solids (NVSS) in the headwater reach. The variation of NVSS accounted 75% of TP variation (slope = 4.14, p < 0.01, n = 48). Regression analysis of residual chlorophyll-a (Chl) versus flushing rate indicated that short hydraulic retention time and high mineral turbidity affected algal growth in the headwater reach during summer monsoon. In contrast, severe drought during weak monsoon produced strong thermal stratification, low inorganic solids, high total dissolved solids (TDS), and low TP in the entire system. In addition, Chl concentrations were controlled by phosphorus. Based on the physical, chemical and biological parameters, riverine conditions, dominated during the intense monsoon, but lacustrine conditions were evident during the weak monsoon. The interannual dynamics suggest that monsoon seasonality is considered the main forcing factor regulating overall functions and processes of the waterbody and this characteristic has an important implication to eutrophication of the system.

  1. Monitoring of the CO2 emission and the contents of microbial biomass in agroecosystems on gray forest soils of the Cisbaikal region under conditions of fluoride pollution

    NASA Astrophysics Data System (ADS)

    Pomazkina, L. V.

    2015-08-01

    The influence of the technogenic pollution of gray forest soils in the forest-steppe zone of the Cisbaikal region with fluorides emitted by aluminum smelters on the functioning and state of local agroecosystems was studied within the framework of a long-term agroecological monitoring program. Hydrothermic conditions of the growing season during the monitoring period (1997-2012) were compared with the climatic norm (1961-1990). It was found that the adverse effect of the technogenic pollution on the agroecosystem becomes more pronounced during the years with abnormal weather conditions. An increase in the CO2 emission into the atmosphere as a response of the microbial complex to the rise in the air temperatures was characterized by the linear dependence irrespectively of the degree of soil contamination. The methods of systems analysis were applied to generalize the results. The considered agroecosystem was studied as the system of particular components (soil-microorganisms-plants-atmosphere) integrated by the carbon fluxes. The regimes of the agroecosystem functioning and the ecological loads on it were estimated on the basis of data on the fluxes of net mineralized and (re)immobilized carbon. The environmental factors affecting the state and functioning of the agroecosystem were identified.

  2. Researching the Link Between Biomass Burning and Drought Across the Northern Sub-Saharan African Savanna/Sahel Belt

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Ellison, Luke

    2012-01-01

    The northern sub-Saharan African (NSSA) region, bounded by the Sahara, Equator, and the West and East African coastlines, is subjected to intense biomass burning every year during the dry season. This is believed to be one of the drivers of the regional carbon and energy cycles, with serious implications for the water cycle anomalies that probably contribute to drought and desertification. In this presentation, we will discuss a new multi-disciplinary research in the NSSA region, review progress, evaluate preliminary results, and interact with the research and user communities to examine how best to coordinate with other research activities in order to address related environmental issues most effectively.

  3. EERC Center for Biomass Utilization 2005

    SciTech Connect

    Zygarlicke, C J; Schmidt, D D; Olson, E S; Leroux, K M; Wocken, C A; Aulich, T A; WIlliams, K D

    2008-07-28

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with

  4. [Keynote address: Climate change

    SciTech Connect

    Forrister, D.

    1994-12-31

    Broadly speaking, the climate issue is moving from talk to action both in the United States and internationally. While few nations have adopted strict controls or stiff new taxes, a number of them are developing action plans that are making clear their intention to ramp up activity between now and the year 2000... and beyond. There are sensible, economically efficient strategies to be undertaken in the near term that offer the possibility, in many countries, to avoid more draconian measures. These strategies are by-and-large the same measures that the National Academy of Sciences recommended in a 1991 report called, Policy Implications of Greenhouse Warming. The author thinks the Academy`s most important policy contribution was how it recommended the nations act in the face of uncertain science and high risks--that cost effective measures are adopted as cheap insurance... just as nations insure against other high risk, low certainty possibilities, like catastrophic health insurance, auto insurance, and fire insurance. This insurance theme is still right. First, the author addresses how the international climate change negotiations are beginning to produce insurance measures. Next, the author will discuss some of the key issues to watch in those negotiations that relate to longer-term insurance. And finally, the author will report on progress in the United States on the climate insurance plan--The President`s Climate Action Plan.

  5. Assessing algal biomass and bio-optical distributions in perennially ice-covered polar ocean ecosystems

    NASA Astrophysics Data System (ADS)

    Laney, Samuel R.; Krishfield, Richard A.; Toole, John M.; Hammar, Terence R.; Ashjian, Carin J.; Timmermans, Mary-Louise

    2014-06-01

    Under-ice observations of algal biomass and seasonality are critical for understanding better how climate-driven changes affect polar ocean ecosystems. However, seasonal and interannual variability in algal biomass has been studied sparsely in perennially ice-covered polar ocean regions. To address this gap in polar ocean observing, bio-optical sensors for measuring chlorophyll fluorescence, optical scattering, dissolved organic matter fluorescence, and incident solar radiation were integrated into Ice-Tethered Profilers (ITPs). Eight such systems have been deployed in the Arctic Ocean, with five profilers completing their deployments to date including two that observed an entire annual cycle in the central Arctic Ocean and Beaufort Sea respectively. These time series revealed basic seasonal differences in the vertical distributions of algal biomass and related bio-optical properties in these two regions of the Arctic Ocean. Because they conduct profiles on daily or sub-daily scales, ITP bio-optical data allow more accurate assessments of the timing of changes in under-ice algal biomass such as the onset of the growing season in the water column, the subsequent export of particulate organic matter at the end, and the frequency of intermittent perturbations, which in the central Arctic Ocean were observed to have time scales of between one and two weeks.

  6. Mapping Africa Biomass with MODIS Imagery

    NASA Astrophysics Data System (ADS)

    Laporte, N.; Baccini, A.; Houghton, R.

    2006-12-01

    Central Africa contains the second largest block of tropical forest remaining in the world, and is one of the largest carbon reservoirs on Earth. The carbon dynamics of the region differ substantially from other tropical forests because most deforestation and land use is associated with selective logging and small-scale landholders practicing traditional "slash-and-burn" agriculture. Despite estimates of 1-2 PgC/yr released to the atmosphere from tropical deforestation, the amount released from Central Africa is highly uncertain relative to the amounts released from other tropical forest areas. The uncertainty in carbon fluxes results from inadequate estimates of both rates of deforestation and standing stocks of carbon (forest biomass). Here we present new results mapping above-ground forest biomass for tropical Africa using machine learning techniques to integrate MODIS 1km spectral reflectance with forest inventory measurements to calibrate an empirical relationship. The derived forest biomass at each MODIS pixel shows the spatial distribution of forest biomass over the entire tropical forest region. The model has been tested in Uganda, Mali and part of Republic of Congo where field data were available. The regression tree model based on MODIS NBAR surface reflectance for Uganda, Mali and Republic of Congo explains 94 percent of the variance in above-ground biomass with a root mean square error (RMSE) of 27 Tons/ha. The approach shows promise for use of optical remote sensing data in mapping the spatial distribution of forest biomass across the region.

  7. Light addressable photoelectrochemical cyanide sensor

    SciTech Connect

    Licht, S.; Myung, N.; Sun, Y.

    1996-03-15

    A sensor is demonstrated that is capable of spatial discrimination of cyanide with use of only a single stationary sensing element. Different spatial regions of the sensing element are light activated to reveal the solution cyanide concentration only at the point of illumination. In this light addressable photoelectrochemical (LAP) sensor the sensing element consists of an n-CdSe electrode immersed in solution, with the open-circuit potential determined under illumination. In alkaline ferro-ferri-cyanide solution, the open-circuit photopotential is highly responsive to cyanide, with a linear response of (120 mV) log [KCN]. LAP detection with a spatial resolution of {+-}1 mm for cyanide detection is demonstrated. The response is almost linear for 0.001-0.100 m cyanide with a resolution of 5 mV. 38 refs., 7 figs., 1 tab.

  8. Complex pendulum biomass sensor

    DOEpatents

    Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.

    2007-12-25

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  9. Gasification of Woody Biomass.

    PubMed

    Dai, Jianjun; Saayman, Jean; Grace, John R; Ellis, Naoko

    2015-01-01

    Interest in biomass to produce heat, power, liquid fuels, hydrogen, and value-added chemicals with reduced greenhouse gas emissions is increasing worldwide. Gasification is becoming a promising technology for biomass utilization with a positive environmental impact. This review focuses specifically on woody biomass gasification and recent advances in the field. The physical properties, chemical structure, and composition of biomass greatly affect gasification performance, pretreatment, and handling. Primary and secondary catalysts are of key importance to improve the conversion and cracking of tars, and lime-enhanced gasification advantageously combines CO2 capture with gasification. These topics are covered here, including the reaction mechanisms and biomass characterization. Experimental research and industrial experience are investigated to elucidate concepts, processes, and characteristics of woody biomass gasification and to identify challenges.

  10. Gasification of Woody Biomass.

    PubMed

    Dai, Jianjun; Saayman, Jean; Grace, John R; Ellis, Naoko

    2015-01-01

    Interest in biomass to produce heat, power, liquid fuels, hydrogen, and value-added chemicals with reduced greenhouse gas emissions is increasing worldwide. Gasification is becoming a promising technology for biomass utilization with a positive environmental impact. This review focuses specifically on woody biomass gasification and recent advances in the field. The physical properties, chemical structure, and composition of biomass greatly affect gasification performance, pretreatment, and handling. Primary and secondary catalysts are of key importance to improve the conversion and cracking of tars, and lime-enhanced gasification advantageously combines CO2 capture with gasification. These topics are covered here, including the reaction mechanisms and biomass characterization. Experimental research and industrial experience are investigated to elucidate concepts, processes, and characteristics of woody biomass gasification and to identify challenges. PMID:26247289

  11. Atmospheric Effects of Biomass Burning

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2000-01-01

    Biomass fires are both natural and anthropogenic in origin. The natural trigger is lightning, which leads to mid- and high-latitude fires and episodes of smoke and pollution associated with them. Lightning is also prominent in tropical regions when the dry season gives way to the wet season and lightning in convective systems ignites dry vegetation. Atmospheric consequences of biomass fires are complex. When considering the impacts of fires for a given ecosystem, inputs of fires must be compared to other process that emit trace gases and particles into the atmosphere. Other processes include industrial activity, fires for household purposes and biogenic sources which may themselves interact with fires. That is, fires may promote or restrict biogenic processes. Several books have presented various aspects of fire interactions with atmospheric chemistry and a cross-disciplinary review of a 1992 fire-oriented experiment appears in SAFARI: The Role of southern African Fires in Atmospheric and Ecological Environments. The IGAC/BIBEX core activity (see acronyms at end of Chapter) has sponsored field campaigns that integrate multiple aspects of fires ground-based measurements with an ecological perspective, atmospheric measurements with chemical and meteorological components, and remote sensing. This Chapter presents two aspects of biomass fires and the environment. Namely, the relationship between biomass burning and ozone is described, starting with a brief description of the chemical reactions involved and illustrative measurements and interpretation. Second, because of the need to observe biomass burning and its consequences globally, a summary of remote sensing approaches to the study of fires and trace gases is given. Examples in this Chapter are restricted to tropical burning for matters of brevity and because most burning activity globally is within this zone.

  12. Process for treating biomass

    SciTech Connect

    Campbell, Timothy J.; Teymouri, Farzaneh

    2015-08-11

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  13. Process for treating biomass

    DOEpatents

    Campbell, Timothy J; Teymouri, Farzaneh

    2015-11-04

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  14. Biomass Processing Photolibrary

    DOE Data Explorer

    Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

  15. Gasification-based biomass

    SciTech Connect

    None, None

    2009-01-18

    The gasification-based biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  16. Sources, Transport, and Climate Impacts of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2010-01-01

    In this presentation, I will first talk about fundamentals of modeling of biomass burning emissions of aerosols, then show the results of GOCART model simulated biomass burning aerosols. I will compare the model results with observations of satellite and ground-based network in terms of total aerosol optical depth, aerosol absorption optical depth, and vertical distributions. Finally the long-range transport of biomass burning aerosols and the climate effects will be addressed. I will also discuss the uncertainties associated with modeling and observations of biomass burning aerosols

  17. Quantifying the Carbon Intensity of Biomass Energy

    NASA Astrophysics Data System (ADS)

    Hodson, E. L.; Wise, M.; Clarke, L.; McJeon, H.; Mignone, B.

    2012-12-01

    Regulatory agencies at the national and regional level have recognized the importance of quantitative information about greenhouse gas emissions from biomass used in transportation fuels or in electricity generation. For example, in the recently enacted California Low-Carbon Fuel Standard, the California Air Resources Board conducted a comprehensive study to determine an appropriate methodology for setting carbon intensities for biomass-derived transportation fuels. Furthermore, the U.S. Environmental Protection Agency is currently conducting a multi-year review to develop a methodology for estimating biogenic carbon dioxide (CO2) emissions from stationary sources. Our study develops and explores a methodology to compute carbon emission intensities (CIs) per unit of biomass energy, which is a metric that could be used to inform future policy development exercises. To compute CIs for biomass, we use the Global Change Assessment Model (GCAM), which is an integrated assessment model that represents global energy, agriculture, land and physical climate systems with regional, sectoral, and technological detail. The GCAM land use and land cover component includes both managed and unmanaged land cover categories such as food crop production, forest products, and various non-commercial land uses, and it is subdivided into 151 global land regions (wiki.umd.edu/gcam), ten of which are located in the U.S. To illustrate a range of values for different biomass resources, we use GCAM to compute CIs for a variety of biomass crops grown in different land regions of the U.S. We investigate differences in emissions for biomass crops such as switchgrass, miscanthus and willow. Specifically, we use GCAM to compute global carbon emissions from the land use change caused by a marginal increase in the amount of biomass crop grown in a specific model region. Thus, we are able to explore how land use change emissions vary by the type and location of biomass crop grown in the U.S. Direct

  18. Addressing psychiatric comorbidity.

    PubMed

    Woody, G E; McLellan, A T; O'Brien, C P; Luborsky, L

    1991-01-01

    Research studies indicate that addressing psychiatric comorbidity can improve treatment for selected groups of substance-abusing patients. However, the chances for implementing the necessary techniques on a large scale are compromised by the absence of professional input and guidance within programs. This is especially true in public programs, which treat some of the most disadvantaged, disturbed, and socially destructive individuals in the entire mental health system. One starting point for upgrading the level of knowledge and training of staff members who work in this large treatment system could be to develop a better and more authoritative information dissemination network. Such a system exists in medicine; physicians are expected to read appropriate journals and to guide their treatment decisions using the data contained in the journals. Standards of practice and methods for modifying current practice are within the tradition of reading new facts, studying old ones, and comparing treatment outcome under different conditions with what is actually being done. No such general system of information-gathering or -sharing exists, particularly in public treatment programs. One of the most flagrant examples of this "educational shortfall" can be found among those methadone programs that adamantly insist on prescribing no more than 30 to 35 mg/day for all patients, in spite of the overwhelming evidence that these dose levels generally are inadequate. In some cases, program directors are unaware of studies that have shown the relationship between dose and outcome. In other cases, they are aware of the studies but do not modify their practices accordingly. This example of inadequate dosing is offered as an example of one situation that could be improved by adherence to a system of authoritative and systematic information dissemination. Many issues in substance abuse treatment do not lend themselves to information dissemination as readily as that of methadone dosing

  19. Miscanthus as cellulosic biomass for bioethanol production.

    PubMed

    Lee, Wen-Chien; Kuan, Wei-Chih

    2015-06-01

    The members of the genus Miscanthus are potential feedstocks for biofuels because of the promising high yields of biomass per unit of planted area. This review addresses species, cultivation, and lignocellulose composition of Miscanthus, as well as pretreatment and enzyme saccharification of Miscanthus biomass for ethanol fermentation. The average cellulose contents in dried biomass of Miscanthus floridulus, Miscanthus sinensis, Miscanthus sacchariflorus, and Miscanthus × giganteus (M × G) are 37.2, 37.6, 38.9, and 41.1% wt/wt, respectively. A number of pretreatment methods have been applied in order to enhance digestibility of Miscanthus biomass for enzymatic saccharification. Pretreatment of Miscanthus using liquid hot water or alkaline results in a significant release of glucose; while glucose yields can be 90% or higher if a pretreatment like AFEX that combines both chemical and physical processes is used. As ethanol is produced by yeast fermentation of the hydrolysate from enzymatic hydrolysis of residual solids (pulp) after pretreatment, theoretical ethanol yields are 0.211-0.233 g/g-raw biomass if only cellulose is taken into account. Simultaneous saccharification and fermentation of pretreated M × G and M. lutarioriparius results in experimental ethanol yields of 0.13 and 0.15 g/g-raw biomass, respectively. Co-production of value-added products can reduce the overall production cost of bioethanol.

  20. Opportunities for Small Biomass Power Systems. Final Technical Report

    SciTech Connect

    Schmidt, D. D.; Pinapati, V. S.

    2000-11-15

    The purpose of this study was to provide information to key stakeholders and the general public about biomass resource potential for power generation. Ten types of biomass were identified and evaluated. The quantities available for power generation were estimated separately for five U.S. regions and Canada. A method entitled ''competitive resource profile'' was used to rank resources based on economics, utilization, and environmental impact. The results of the analysis may be used to set priorities for utilization of biomass in each U.S. region. A review of current biomass conversion technologies was accomplished, linking technologies to resources.

  1. Does chronic nitrogen deposition during biomass growth affect atmospheric emissions from biomass burning?

    NASA Astrophysics Data System (ADS)

    Giordano, Michael R.; Chong, Joey; Weise, David R.; Asa-Awuku, Akua A.

    2016-03-01

    Chronic nitrogen deposition has measureable impacts on soil and plant health. We investigate burning emissions from biomass grown in areas of high and low NO x deposition. Gas and aerosol-phase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not available, results indicate a systemic compositional difference between biomass grown in high and low deposition areas. Aerosol emissions from biomass grown in areas of high NO x deposition exhibit a lower volatility than biomass grown in a low deposition area. Furthermore, fuel elemental analysis, NO x emission rates, and aerosol particle number distributions differed significantly between the two sites. Despite the limited scale of fuels explored, there is strong evidence that the atmospheric emissions community must pay attention to the regional air quality of biomass fuels growth areas.

  2. Biomass Research Program

    ScienceCinema

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2016-07-12

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  3. Biomass Research Program

    SciTech Connect

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2011-01-01

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  4. Energetische Verwertung von Biomasse

    NASA Astrophysics Data System (ADS)

    Zahoransky, Richard; Allelein, Hans-Josef; Bollin, Elmar; Oehler, Helmut; Schelling, Udo

    Etwa 0,1% der Solarenergie wandeln sich durch Photosynthese aus dem Kohlendioxid der Luft in Biomasse um. Die Biomassen sind als Festbrennstoff nutzbar oder zu gasförmigen Brennstoffen weiterverarbeitbar. Zwei Arten von Biomassen sind zu unterscheiden: Anfallende Biomasse

  5. Rangeland biomass estimation demonstration. [Texas Experimenta Ranch

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Boyd, W. E.; Clark, B. V.

    1982-01-01

    Because of their sensitivity to chlorophyll density, green leaf density, and leaf water density, two hand-held radiometers which have sensor bands coinciding with thematic mapper bands 3, 4, and 5 were used to calibrate green biomass to LANDSAT spectral ratios as a step towards using portable radiometers to speed up ground data acquisition. Two field reflectance panels monitored incoming radiation concurrently with sampling. Software routines were developed and used to extract data from uncorrected tapes of MSS data provided in NASA LANDSAT universal format. A LANDSAT biomass calibration curve estimated the range biomass over a four scene area and displayed this information spatially as a product in a format of use to ranchers. The regional biomass contour map is discussed.

  6. Tropospheric Ozone and Biomass Burning

    NASA Technical Reports Server (NTRS)

    Chandra, Sushil; Ziemke, J. R.; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This paper studies the significance of pyrogenic (e.g., biomass burning) emissions in the production of tropospheric ozone in the tropics associated with the forest and savanna fires in the African, South American, and Indonesian regions. Using aerosol index (Al) and tropospheric column ozone (TCO) time series from 1979 to 2000 derived from the Nimbus-7 and Earth Probe TOMS measurements, our study shows significant differences in the seasonal and spatial characteristics of pyrogenic emissions north and south of the equator in the African region and Brazil in South America. In general, they are not related to the seasonal and spatial characteristics of tropospheric ozone in these regions. In the Indonesian region, the most significant increase in TCO occurred during September and October 1997, following large-scale forest and savanna fires associated with the El Nino-induced dry season. However, the increase in TCO extended over most of the western Pacific well outside the burning region and was accompanied by a decrease in the eastern Pacific resembling a west-to-east dipole about the date-line. The net increase in TCO integrated over the tropical region between 15 deg N and 15 deg S was about 6-8 Tg (1 Tg = 10(exp 12) gm) over the mean climatological value of about 72 Tg. This increase is well within the range of interannual variability of TCO in the tropical region and does not necessarily suggest a photochemical source related to biomass burning. The interannual variability in TCO appears to be out of phase with the interannual variability of stratospheric column ozone (SCO). These variabilities seem to be manifestations of solar cycle and quasibiennial oscillations.

  7. The economic prospects of cellulosic biomass for biofuel production

    NASA Astrophysics Data System (ADS)

    Kumarappan, Subbu

    Alternative fuels for transportation have become the focus of intense policy debate and legislative action due to volatile oil prices, an unstable political environment in many major oil producing regions, increasing global demand, dwindling reserves of low-cost oil, and concerns over global warming. A major potential source of alternative fuels is biofuels produced from cellulosic biomass, which have a number of potential benefits. Recognizing these potential advantages, the Energy Independence and Security Act of 2007 has mandated 21 billion gallons of cellulosic/advanced biofuels per year by 2022. The United States needs 220-300 million tons of cellulosic biomass per year from the major sources such as agricultural residues, forestry and mill residues, herbaceous resources, and waste materials (supported by Biomass Crop Assistance Program) to meet these biofuel targets. My research addresses three key major questions concerning cellulosic biomass supply. The first paper analyzes cellulosic biomass availability in the United States and Canada. The estimated supply curves show that, at a price of 100 per ton, about 568 million metric tons of biomass is available in the United States, while 123 million metric tons is available in Canada. In fact, the 300 million tons of biomass required to meet EISA mandates can be supplied at a price of 50 per metric ton or lower. The second paper evaluates the farmers' perspective in growing new energy crops, such as switchgrass and miscanthus, in prime cropland, in pasture areas, or on marginal lands. My analysis evaluates how the farmers' returns from energy crops compare with those from other field crops and other agricultural land uses. The results suggest that perennial energy crops yielding at least 10 tons per acre annually will be competitive with a traditional corn-soybean rotation if crude oil prices are high (ranging from 88-178 per barrel over 2010-2019). If crude oil prices are low, then energy crops will not be

  8. Hydropyrolysis of biomass

    SciTech Connect

    Kobayashi, Atsushi; Steinberg, M.

    1992-01-01

    The pyrolysis and hydropyrolysis of biomass was investigated. Experimental runs using the biomass (Poplar wood sawdust) were performed using a tubular reactor of dimensions 1 inch inside diameter and 8 feet long heated at a temperature of 800 C and pressures between 450 and 750 psig. At low heat-up rate the reaction precedes in two steps. First pyrolysis takes place at temperatures of 300 to 400 c and subsequent hydropyrolysis takes place at 700 C and above. This is also confirmed by pressurized thermogravimetric analysis (PTGA). Under conditions of rapid heat-up at higher temperatures and higher hydrogen pressure gasification and hydrogasification of biomass is especially effective in producing carbon monoxide and methane. An overall conversion of 88 to 90 wt % of biomass was obtained. This value is in agreement with the previous work of flash pyrolysis and hydropyrolysis of biomass for rapid heat-up and short residence time. Initial rates of biomass conversion indicate that the rate increases significantly with increase in hydrogen pressure. At 800 C and 755 psig the initial rate of biomass conversion to gases is 0.92 1/min.

  9. Coal and biomass to fuels and power.

    PubMed

    Williams, Robert H; Liu, Guangjian; Kreutz, Thomas G; Larson, Eric D

    2011-01-01

    Systems with CO(2) capture and storage (CCS) that coproduce transportation fuels and electricity from coal plus biomass can address simultaneously challenges of climate change from fossil energy and dependence on imported oil. Under a strong carbon policy, such systems can provide competitively clean low-carbon energy from secure domestic feedstocks by exploiting the negative emissions benefit of underground storage of biomass-derived CO(2), the low cost of coal, the scale economies of coal energy conversion, the inherently low cost of CO(2) capture, the thermodynamic advantages of coproduction, and expected high oil prices. Such systems require much less biomass to make low-carbon fuels than do biofuels processes. The economics are especially attractive when these coproduction systems are deployed as alternatives to CCS for stand-alone fossil fuel power plants. If CCS proves to be viable as a major carbon mitigation option, the main obstacles to deployment of coproduction systems as power generators would be institutional.

  10. Synthetic and Biomass Alternate Fueling in Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, R.C.; Bushnell, D.M.

    2009-01-01

    Worldwide, aviation alone uses 85 to 95 billion gallons of nonrenewable fossil fuel per year (2008). General transportation fueling can accommodate several different fuels; however, aviation fuels have very specific requirements. Biofuels have been flight demonstrated, are considered renewable, have the capacity to become "drop-in" replacements for Jet-A fuel, and solve the CO2 climate change problem. The major issue is cost; current biomass biofuels are not economically competitive. Biofuel feedstock sources being researched are halophytes, algae, cyanobacteria, weeds-to-crops, wastes with contingent restraints on use of crop land, freshwater, and climate change. There are five major renewable energy sources: solar thermal, solar photovoltaic, wind, drilled geothermal and biomass, each of which have an order of magnitude greater capacity to meet all energy needs. All five address aspects of climate change; biomass has massive potential as an energy fuel feedstock.

  11. Biomass Burning Emissions from Fire Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  12. Is It More Important to Address the Issue of Patient Mobility or to Guarantee Universal Health Coverage in Europe?: Comment on "Regional Incentives and Patient Cross-Border Mobility: Evidence From the Italian Experience".

    PubMed

    Legido-Quigley, Helena

    2015-09-02

    This paper discusses whether European institutions should devote so much attention and funding to cross-border healthcare or they should instead prioritise guaranteeing universal health coverage (UHC), "addressing inequalities" and tackling the effects of austerity measures. The paper argues through providing the evidence in both areas of research, that the priority at European level from a public health and social justice perspective should be to guarantee UHC for all the population living in Europe and prioritise protective action for those who are most in need.

  13. Is It More Important to Address the Issue of Patient Mobility or to Guarantee Universal Health Coverage in Europe?: Comment on "Regional Incentives and Patient Cross-Border Mobility: Evidence From the Italian Experience".

    PubMed

    Legido-Quigley, Helena

    2016-01-01

    This paper discusses whether European institutions should devote so much attention and funding to cross-border healthcare or they should instead prioritise guaranteeing universal health coverage (UHC), "addressing inequalities" and tackling the effects of austerity measures. The paper argues through providing the evidence in both areas of research, that the priority at European level from a public health and social justice perspective should be to guarantee UHC for all the population living in Europe and prioritise protective action for those who are most in need. PMID:26673649

  14. First biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 3

    SciTech Connect

    Not Available

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume deal with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  15. Environmental implications of increased biomass energy use. Final report

    SciTech Connect

    Miles, T.R. Sr.; Miles, T.R. Jr.

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  16. Biomass -- A new assessment

    SciTech Connect

    Hartung, H.A.

    1999-07-01

    Photo-conversion of atmospheric CO{sub 2} to biomass by plants is the world's basic source of food, fiber, oxygen and fossil fuel; for many people and some industries, biomass combustion supplies a significant amount of the energy they need. Much ingenuity has been applied to developing strategies for recovering energy directly from biomass by cleaning burning, gasification and liquid fuel production; these processes generally have economic or ecological features that keep them out of the main stream of technological development. By contrast, fresh biomass can be digested anaerobically at high conversion, with stimulation, to methane-rich gas and a stabilized organic residue, using technology already at hand. As an example, methane can be produced from sugarcane at a total cost of about $.50/mcf. This process, originally devised to control the level of CO{sub 2} in the atmosphere, provides opportunities to contribute to that goal while supplying clean pipeline gas, electricity or petrochemicals.

  17. 2007 Biomass Program Overview

    SciTech Connect

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  18. Genetic variation of flowering time and biomass in switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The timing of phase change from juvenile (vegetative) to adult with reproductive competence is a key factor influencing biomass yield of switchgrass. A decline in biomass yield is typically observed in switchgrass immediately following completion of flowering. In temperate regions of the USA, if flo...

  19. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  20. Genetic control of flowering and biomass in switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early flowering can negatively affect biomass yield of switchgrass. In temperate regions of the USA, flowering occurs in switchgrass around the time of peak biomass yield (about 5 to 8 weeks prior to killing frost), effectively reducing the length of the growing season. The use of late-flowering swi...

  1. Mechanical shear and tensile properties of selected biomass stems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic biomass, such as big bluestem, corn stalk, intermediate wheat grass and switchgrass stem are abundant and dominant species in the Midwest region of US. There is a need to understand the mechanical properties for these crops for better handling and processing of the biomass feedstocks...

  2. Biomass resilience of Neotropical secondary forests.

    PubMed

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience. PMID:26840632

  3. 2015 ASHG Awards and Addresses

    PubMed Central

    2016-01-01

    Each year at the annual meeting of The American Society of Human Genetics (ASHG), addresses are given in honor of The Society and a number of award winners. A summary of each of these is given below. On the following pages, we have printed the presidential address and the addresses for the William Allan Award, the Curt Stern Award, and the Victor A. McKusick Leadership Award. Webcasts of these addresses, as well as those of many other presentations, can be found at http://www.ashg.org.

  4. Biomass cogeneration. A business assessment

    SciTech Connect

    Skelton, J.C.

    1981-11-01

    This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  5. Nitrated Secondary Organic Tracer Compounds in Biomass Burning Smoke

    NASA Astrophysics Data System (ADS)

    Iinuma, Y.; Böge, O.; Gräfe, R.; Herrmann, H.

    2010-12-01

    Natural and human-initiated biomass burning releases large amounts of gases and particles into the atmosphere, impacting climate, environment and affecting public health. Several hundreds of compounds are emitted from biomass burning and these compounds largely originate from the pyrolysis of biopolymers such as lignin, cellulose and hemicellulose. Some of compounds are known to be specific to biomass burning and widely recognized as tracer compounds that can be used to identify the presence of biomass burning PM. Detailed chemical analysis of biomass burning influenced PM samples often reveals the presence compounds that correlated well with levoglucosan, a known biomass burning tracer compound. In particular, nitrated aromatic compounds correlated very well with levoglucosan, indicating that biomass burning as a source for this class of compounds. In the present study, we present evidence for the presence of biomass burning originating secondary organic aerosol (BSOA) compounds in biomass burning influenced ambient PM. These BSOA compounds are typically nitrated aromatic compounds that are produced in the oxidation of precursor compounds in the presence of NOx. The precursor identification was performed from a series of aerosol chamber experiments. m-Cresol, which is emitted from biomass burning at significant levels, is found to be a major precursor compounds for nitrated BSOA compounds found in the ambient PM. We estimate that the total concentrations of these compounds in the ambient PM are comparable to biogenic SOA compounds in winter months, indicating the BSOA contributes important amounts to the regional organic aerosol loading.

  6. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    SciTech Connect

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin; Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia; Drs. Clint Williford; Al Mikell; Drs. Robert Moore; Roger Hester .

    2009-03-31

    conversion. All three of these processes are of particular interest to states in the Southeastern US since the agricultural products produced in this region are highly variable in terms of actual crop, production quantity, and the ability of land areas to support a particular type of crop. This greatly differs from the Midwestern US where most of this region's agricultural land supports one to two primary crops, such as corn and soybean. Therefore, developing processes which are relatively flexible in terms of biomass feedstock is key to the southeastern region of the US if this area is going to be a 'player' in the developing biomass to chemicals arena. With regard to the fermentation of syngas, research was directed toward developing improved biocatalysts through organism discovery and optimization, improving ethanol/acetic acid separations, evaluating potential bacterial contaminants, and assessing the use of innovative fermentors that are better suited for supporting syngas fermentation. Acid hydrolysis research was directed toward improved conversion yields and rates, acid recovery using membranes, optimization of fermenting organisms, and hydrolyzate characterization with changing feedstocks. Additionally, a series of development efforts addressed novel separation techniques for the separation of key chemicals from fermentation activities. Biogas related research focused on key factors hindering the widespread use of digester technologies in non-traditional industries. The digestion of acetic acids and other fermentation wastewaters was studied and methods used to optimize the process were undertaken. Additionally, novel laboratory methods were designed along with improved methods of digester operation. A search for better performing digester consortia was initiated coupled with improved methods to initiate their activity within digester environments. The third activity of the consortium generally studied the production of 'other' chemicals from waste biomass materials

  7. Methane production from global biomass burning

    SciTech Connect

    Wei Min Hao; Ward, D.E.

    1993-11-20

    Emissions of methane from various sources of biomass burning are determined quantitatively for tropical, temperate, and boreal regions. About 85% of the total CH{sub 4} is emitted in the tropical area, which is mainly the result of shifting cultivation, fuelwood use, and deforestation. Methane emissions from biomass burning may have increased by at least 9% during the last decade because of increases in tropical deforestation and the use of fuelwood. Changes in land use practices and population growth in the tropics are possible causes of the increase of atmospheric CH{sub 4} concentration. 31 refs., 1 fig., 4 tabs.

  8. MODIS Based Estimation of Forest Aboveground Biomass in China

    PubMed Central

    Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  9. MODIS Based Estimation of Forest Aboveground Biomass in China.

    PubMed

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  10. MODIS Based Estimation of Forest Aboveground Biomass in China.

    PubMed

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  11. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    NASA Astrophysics Data System (ADS)

    Abbott, Benjamin W.; Jones, Jeremy B.; Schuur, Edward A. G.; Chapin, F. Stuart, III; Bowden, William B.; Syndonia Bret-Harte, M.; Epstein, Howard E.; Flannigan, Michael D.; Harms, Tamara K.; Hollingsworth, Teresa N.; Mack, Michelle C.; McGuire, A. David; Natali, Susan M.; Rocha, Adrian V.; Tank, Suzanne E.; Turetsky, Merritt R.; Vonk, Jorien E.; Wickland, Kimberly P.; Aiken, George R.; Alexander, Heather D.; Amon, Rainer M. W.; Benscoter, Brian W.; Bergeron, Yves; Bishop, Kevin; Blarquez, Olivier; Bond-Lamberty, Ben; Breen, Amy L.; Buffam, Ishi; Cai, Yihua; Carcaillet, Christopher; Carey, Sean K.; Chen, Jing M.; Chen, Han Y. H.; Christensen, Torben R.; Cooper, Lee W.; Cornelissen, J. Hans C.; de Groot, William J.; DeLuca, Thomas H.; Dorrepaal, Ellen; Fetcher, Ned; Finlay, Jacques C.; Forbes, Bruce C.; French, Nancy H. F.; Gauthier, Sylvie; Girardin, Martin P.; Goetz, Scott J.; Goldammer, Johann G.; Gough, Laura; Grogan, Paul; Guo, Laodong; Higuera, Philip E.; Hinzman, Larry; Hu, Feng Sheng; Hugelius, Gustaf; Jafarov, Elchin E.; Jandt, Randi; Johnstone, Jill F.; Karlsson, Jan; Kasischke, Eric S.; Kattner, Gerhard; Kelly, Ryan; Keuper, Frida; Kling, George W.; Kortelainen, Pirkko; Kouki, Jari; Kuhry, Peter; Laudon, Hjalmar; Laurion, Isabelle; Macdonald, Robie W.; Mann, Paul J.; Martikainen, Pertti J.; McClelland, James W.; Molau, Ulf; Oberbauer, Steven F.; Olefeldt, David; Paré, David; Parisien, Marc-André; Payette, Serge; Peng, Changhui; Pokrovsky, Oleg S.; Rastetter, Edward B.; Raymond, Peter A.; Raynolds, Martha K.; Rein, Guillermo; Reynolds, James F.; Robards, Martin; Rogers, Brendan M.; Schädel, Christina; Schaefer, Kevin; Schmidt, Inger K.; Shvidenko, Anatoly; Sky, Jasper; Spencer, Robert G. M.; Starr, Gregory; Striegl, Robert G.; Teisserenc, Roman; Tranvik, Lars J.; Virtanen, Tarmo; Welker, Jeffrey M.; Zimov, Sergei

    2016-03-01

    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.

  12. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    USGS Publications Warehouse

    Benjamin W. Abbott,; Jeremy B. Jones,; Edward A.G. Schuur,; F.S. Chapin, III; William B. Bowden,; M. Syndonia Bret-Harte,; Howard E. Epstein,; Michael D. Flannigan,; Tamara K. Harms,; Teresa N. Hollingsworth,; Michelle Mack,; McGuire, Anthony; Susan M. Natali,; Adrian V. Rocha,; Suzanne E. Tank,; Merrit R. Turetsky,; Jorien E. Vonk,; Wickland, Kimberly P.; Aiken, George R.

    2016-01-01

    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced.

  13. Combustion of Micropowdered Biomass

    NASA Astrophysics Data System (ADS)

    Geil, Ethan; Thorne, Robert

    2009-03-01

    Combustion of finely powdered biomass has the potential to replace heating oil, which accounts for a significant fraction of US oil consumption, in heating, cooling and local power generation applications. When ground to 30-150 micron powders and dispersed in air, wood and other biomass can undergo deflagrating combustion, as occurs with gaseous and dispersed liquid fuels. Combustion is very nearly complete, and in contrast to sugar/starch or cellulose-derived ethanol, nearly all of the available plant mass is converted to usable energy so the economics are much more promising. We are exploring the fundamental combustion science of biomass powders in this size range. In particular, we are examining how powder size, powder composition (including the fraction of volatile organics) and other parameters affect the combustion regime and the combustion products.

  14. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  15. SERI Biomass Program

    NASA Astrophysics Data System (ADS)

    Bergeron, P. W.; Corder, R. E.; Hill, A. M.; Lindsey, H.; Lowenstein, M. Z.

    1983-02-01

    The biomass with which this report is concerned includes aquatic plants, which can be converted into liquid fuels and chemicals; organic wastes (crop residues as well as animal and municipal wastes), from which biogas can be produced via anerobic digestion; and organic or inorganic waste streams, from which hydrogen can be produced by photobiological processes. The Biomass Program Office supports research in three areas which, although distinct, all use living organisms to create the desired products. The Aquatic Species Program (ASP) supports research on organisms that are themselves processed into the final products, while the Anaerobic Digestion (ADP) and Photo/Biological Hydrogen Program (P/BHP) deals with organisms that transform waste streams into energy products. The P/BHP is also investigating systems using water as a feedstock and cell-free systems which do not utilize living organisms. This report summarizes the progress and research accomplishments of the SERI Biomass Program during FY 1982.

  16. Validating Community-Led Forest Biomass Assessments.

    PubMed

    Venter, Michelle; Venter, Oscar; Edwards, Will; Bird, Michael I

    2015-01-01

    The lack of capacity to monitor forest carbon stocks in developing countries is undermining global efforts to reduce carbon emissions. Involving local people in monitoring forest carbon stocks could potentially address this capacity gap. This study conducts a complete expert remeasurement of community-led biomass inventories in remote tropical forests of Papua New Guinea. By fully remeasuring and isolating the effects of 4,481 field measurements, we demonstrate that programmes employing local people (non-experts) can produce forest monitoring data as reliable as those produced by scientists (experts). Overall, non-experts reported lower biomass estimates by an average of 9.1%, equivalent to 55.2 fewer tonnes of biomass ha(-1), which could have important financial implications for communities. However, there were no significant differences between forest biomass estimates of expert and non-expert, nor were there significant differences in some of the components used to calculate these estimates, such as tree diameter at breast height (DBH), tree counts and plot surface area, but were significant differences between tree heights. At the landscape level, the greatest biomass discrepancies resulted from height measurements (41%) and, unexpectedly, a few large missing trees contributing to a third of the overall discrepancies. We show that 85% of the biomass discrepancies at the tree level were caused by measurement taken on large trees (DBH ≥50 cm), even though they consisted of only 14% of the stems. We demonstrate that programmes that engage local people can provide high-quality forest carbon data that could help overcome barriers to reducing forest carbon emissions in developing countries. Nonetheless, community-based monitoring programmes should prioritise reducing errors in the field that lead to the most important discrepancies, notably; overcoming challenges to accurately measure large trees. PMID:26126186

  17. Addressing Climate Change Adaptation in Regional Transportation Plans in California: A Guide and Online Visualization Tool for Planners to Incorporate Risks of Climate Change Impacts in Policy and Decision-Making

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tucker, K.; DeFlorio, J.

    2012-12-01

    The reality of a changing climate means that transportation and planning agencies need to understand the potential effects of changes in storm activity, sea levels, temperature, and precipitation patterns; and develop strategies to ensure the continuing robustness and resilience of transportation infrastructure and services. This is a relatively new challenge for California's regional planning agencies - adding yet one more consideration to an already complex and multifaceted planning process. In that light, the California Department of Transportation (Caltrans) is developing a strategy framework using a module-based process that planning agencies can undertake to incorporating the risks of climate change impacts into their decision-making and long-range transportation plans. The module-based approach was developed using a best practices survey of existing work nationally, along with a set of structured interviews with metropolitan planning organizations (MPOs) and regional transportation planning agencies (RTPAs) within California. Findings led to the development of a process, as well as a package of foundational geospatial layers (i.e. the Statewide Transportation Asset Geodatabase - STAG), primarily comprising state and Federal transportation assets. These assets are intersected with a set of geospatial layers for the climate stressors of relevance in the state which are placed in the same reference layers as the STAG; thus providing a full set of GIS layers that can be a starting point for MPOs/RTPAs that want to follow the step-by-step module-based approach in its entirety. The fast-paced changes in science and climate change knowledge requires a flexible platform to display continuously evolving information. To this end, the development of the modules are accompanied by a set of geospatial analysis disseminated using an online web portal. In this way, the information can be relayed to MPO/RTPAs in a easy-to-use fashion that can help them follow the modules

  18. Resolution of grass canopy biomass classes

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.

    1977-01-01

    Analysis of variance methods has been applied to in situ grassland spectral reflectance data in order to determine the classes or levels of total wet biomass that can be resolved spectrally by a single narrow band measurement. Ground-truth clipping of blue grama grass plots was performed immediately following spectral reflectance measurements at 91 wavelength intervals which were 0.005 microns apart over the spectral range from 0.350 to 0.800 microns. It was found that the photographic infrared region of 0.750 to 0.800 microns could be used to distinguish three classes or levels of total wet biomass. Four or five classes, particularly at higher biomass levels, could not be distinguished by this technique.

  19. Fixed Bed Biomass Gasifier

    SciTech Connect

    Carl Bielenberg

    2006-03-31

    The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

  20. Biomass production in Florida

    SciTech Connect

    Smith, W.H.; Dowd, M.L.

    1981-08-01

    Florida posseses climatic, land, and water resources favorable for abundant biomass production. Therefore, a statewide program has been initiated to determine adapted species for the available array of production sites. Plant resources under investigation include woody, aquatic, grasses, hydrocarbon, and root crop species. The goal is to produce a continuous stream of biomass for the various biofuel conversion options. Preliminary yields from energy cropping experiments range from about 10 to nearly 90 metric tons per hectare per year, depending on the crop and the production systems employed. (Refs. 15).

  1. Clean fuels from biomass

    NASA Technical Reports Server (NTRS)

    Hsu, Y.-Y.

    1976-01-01

    The paper discusses the U.S. resources to provide fuels from agricultural products, the present status of conversion technology of clean fuels from biomass, and a system study directed to determine the energy budget, and environmental and socioeconomic impacts. Conversion processes are discussed relative to pyrolysis and anaerobic fermentation. Pyrolysis breaks the cellulose molecules to smaller molecules under high temperature in the absence of oxygen, wheras anaerobic fermentation is used to convert biomass to methane by means of bacteria. Cost optimization and energy utilization are also discussed.

  2. Minimally refined biomass fuel

    DOEpatents

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  3. Method for pretreating lignocellulosic biomass

    DOEpatents

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  4. Addressing adolescent pregnancy with legislation.

    PubMed

    Montgomery, Tiffany M; Folken, Lori; Seitz, Melody A

    2014-01-01

    Adolescent pregnancy is a concern among many women's health practitioners. While it is practical and appropriate to work to prevent adolescent pregnancy by educating adolescents in health care clinics, schools and adolescent-friendly community-based organizations, suggesting and supporting legislative efforts to reduce adolescent pregnancy can help address the issue on an even larger scale. This article aims to help nurses better understand current legislation that addresses adolescent pregnancy, and to encourage support of future adolescent pregnancy prevention legislation. PMID:25145716

  5. Addressing adolescent pregnancy with legislation.

    PubMed

    Montgomery, Tiffany M; Folken, Lori; Seitz, Melody A

    2014-01-01

    Adolescent pregnancy is a concern among many women's health practitioners. While it is practical and appropriate to work to prevent adolescent pregnancy by educating adolescents in health care clinics, schools and adolescent-friendly community-based organizations, suggesting and supporting legislative efforts to reduce adolescent pregnancy can help address the issue on an even larger scale. This article aims to help nurses better understand current legislation that addresses adolescent pregnancy, and to encourage support of future adolescent pregnancy prevention legislation.

  6. Ant Abundance along a Productivity Gradient: Addressing Two Conflicting Hypotheses.

    PubMed

    Segev, Udi; Kigel, Jaime; Lubin, Yael; Tielbörger, Katja

    2015-01-01

    The number of individuals within a population or community and their body size can be associated with changes in resource supply. While these relationships may provide a key to better understand the role of abiotic vs. biotic constraints in animal communities, little is known about the way size and abundance of organisms change along resource gradients. Here, we studied this interplay in ants, addressing two hypotheses with opposite predictions regarding variation in population densities along resource gradients- the 'productivity hypothesis' and the 'productivity-based thinning hypothesis'. The hypotheses were tested in two functional groups of ground-dwelling ants that are directly primary consumers feeding on seeds: specialized seed-eaters and generalist species. We examined variations in colony density and foraging activity (a size measurement of the forager caste) in six ant assemblages along a steep productivity gradient in a semi-arid region, where precipitation and plant biomass vary 6-fold over a distance of 250km. An increase in the density or foraging activity of ant colonies along productivity gradients is also likely to affect competitive interactions among colonies, and consequently clinal changes in competition intensity were also examined. Ant foraging activity increased with productivity for both functional groups. However, colony density revealed opposing patterns: it increased with productivity for the specialized seed-eaters, but decreased for the generalist species. Competition intensity, evaluated by spatial partitioning of species at food baits and distribution of colonies, was uncorrelated with productivity in the specialized seed-eaters, but decreased with increasing productivity in the generalists. Our results provide support for two contrasting hypotheses regarding the effect of resource availability on the abundance of colonial organisms- the 'productivity hypothesis' for specialized seed-eaters and the 'productivity-based thinning

  7. Ant Abundance along a Productivity Gradient: Addressing Two Conflicting Hypotheses

    PubMed Central

    Segev, Udi; Kigel, Jaime; Lubin, Yael; Tielbörger, Katja

    2015-01-01

    The number of individuals within a population or community and their body size can be associated with changes in resource supply. While these relationships may provide a key to better understand the role of abiotic vs. biotic constraints in animal communities, little is known about the way size and abundance of organisms change along resource gradients. Here, we studied this interplay in ants, addressing two hypotheses with opposite predictions regarding variation in population densities along resource gradients- the ‘productivity hypothesis’ and the ‘productivity-based thinning hypothesis’. The hypotheses were tested in two functional groups of ground-dwelling ants that are directly primary consumers feeding on seeds: specialized seed-eaters and generalist species. We examined variations in colony density and foraging activity (a size measurement of the forager caste) in six ant assemblages along a steep productivity gradient in a semi-arid region, where precipitation and plant biomass vary 6-fold over a distance of 250km. An increase in the density or foraging activity of ant colonies along productivity gradients is also likely to affect competitive interactions among colonies, and consequently clinal changes in competition intensity were also examined. Ant foraging activity increased with productivity for both functional groups. However, colony density revealed opposing patterns: it increased with productivity for the specialized seed-eaters, but decreased for the generalist species. Competition intensity, evaluated by spatial partitioning of species at food baits and distribution of colonies, was uncorrelated with productivity in the specialized seed-eaters, but decreased with increasing productivity in the generalists. Our results provide support for two contrasting hypotheses regarding the effect of resource availability on the abundance of colonial organisms- the ‘productivity hypothesis’ for specialized seed-eaters and the

  8. Activated carbon from biomass

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  9. Biomass Scenario Model

    SciTech Connect

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  10. Biomass Program Factsheet

    SciTech Connect

    2010-03-01

    The emerging U.S. bioindustry is using a range of biomass resources to provide a secure and growing supply of transportation fuels and electric power. Displacing an increasing portion of our imported oil with renewable, domestic bioenergy will provide clear benefits:Reduced greenhouse gas (GHG) emissions; A cleaner, more secure energy future; Sustainable transportation fuels; Opportunities for economic growth

  11. Potential transgenic routes to increase tree biomass.

    PubMed

    Dubouzet, Joseph G; Strabala, Timothy J; Wagner, Armin

    2013-11-01

    Biomass is a prime target for genetic engineering in forestry because increased biomass yield will benefit most downstream applications such as timber, fiber, pulp, paper, and bioenergy production. Transgenesis can increase biomass by improving resource acquisition and product utilization and by enhancing competitive ability for solar energy, water, and mineral nutrients. Transgenes that affect juvenility, winter dormancy, and flowering have been shown to influence biomass as well. Transgenic approaches have increased yield potential by mitigating the adverse effects of prevailing stress factors in the environment. Simultaneous introduction of multiple genes for resistance to various stress factors into trees may help forest trees cope with multiple or changing environments. We propose multi-trait engineering for tree crops, simultaneously deploying multiple independent genes to address a set of genetically uncorrelated traits that are important for crop improvement. This strategy increases the probability of unpredictable (synergistic or detrimental) interactions that may substantially affect the overall phenotype and its long-term performance. The very limited ability to predict the physiological processes that may be impacted by such a strategy requires vigilance and care during implementation. Hence, we recommend close monitoring of the resultant transgenic genotypes in multi-year, multi-location field trials. PMID:24094056

  12. Environmental issues related to biomass: An overview

    SciTech Connect

    Hughes, M.; Ranney, J.W.

    1993-12-31

    Now that public attention has grown increasingly focused on environmentalism and climate change, the commercial use of biomass could greatly accelerate. Renewable feedstocks like biomass can provide better environmentally balanced sources of energy and other nonfood products than fossil fuels. The future of biomass is uncertain, however, because public attention focuses on both its potential and its challenges. This paper is divided into five sections. Section 2 briefly addresses economic environmental issues. The extent to which externalities are accounted for in the market price of fuels plays a significant role in determining both the ultimate size of biofuel markets and the extent of the environmental benefits of feedstock cultivation and conversion processes. Sections 3 and 4 catalog the main hazards and benefits that are likely to arise in the large-scale commercialization of biomass fuel and note where the major uncertainties lay. Environmental issues arise with the cultivation of each feedstock and with each step in the process of its conversion to fuel. Feedstocks are discussed in Section 3 in terms of three main groups: wastes, energy crops, and traditional agricultural crops. In Section 4, conversion processes are also divided into three groups, on the basis of the end energy carrier: gas, liquid, and solid and electricity. Section 5 provides a conclusion and summary.

  13. Remote Characterization of Biomass Measurements: Case Study of Mangrove Forests

    NASA Technical Reports Server (NTRS)

    Fatoyinbo, Temilola E.

    2010-01-01

    Accurately quantifying forest biomass is of crucial importance for climate change studies. By quantifying the amount of above and below ground biomass and consequently carbon stored in forest ecosystems, we are able to derive estimates of carbon sequestration, emission and storage and help close the carbon budget. Mangrove forests, in addition to providing habitat and nursery grounds for over 1300 animal species, are also an important sink of biomass. Although they only constitute about 3% of the total forested area globally, their carbon storage capacity -- in forested biomass and soil carbon -- is greater than that of tropical forests (Lucas et al, 2007). In addition, the amount of mangrove carbon -- in the form of litter and leaves exported into offshore areas is immense, resulting in over 10% of the ocean's dissolved organic carbon originating from mangroves (Dittmar et al, 2006) The measurement of forest above ground biomass is carried out on two major scales: on the plot scale, biomass can be measured using field measurements through allometric equation derivation and measurements of forest plots. On the larger scale, the field data are used to calibrate remotely sensed data to obtain stand-wide or even regional estimates of biomass. Currently, biomass can be calculated using average stand biomass values and optical data, such as aerial photography or satellite images (Landsat, Modis, Ikonos, SPOT, etc.). More recent studies have concentrated on deriving forest biomass values using radar (JERS, SIR-C, SRTM, Airsar) and/or lidar (ICEsat/GLAS, LVIS) active remote sensing to retrieve more accurate and detailed measurements of forest biomass. The implementation of a generation of new active sensors (UAVSar, DesdynI, Alos/Palsar, TerraX) has prompted the development of new tecm'liques of biomass estimation that use the combination of multiple sensors and datasets, to quantify past, current and future biomass stocks. Focusing on mangrove forest biomass estimation

  14. Enzymes for improved biomass conversion

    DOEpatents

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  15. Synfuels from biomass grow slowly

    SciTech Connect

    Black, J.; Wedlock, J.C.

    1982-01-01

    Current developments in the manufacture of synfuels are discussed with emphasis on the sources of biomass suitable for synfuels production, processes for converting biomass to synfuels, and the economics of the technology. The sources include wood, nonwood crops, root crops, aquatic biomass, and oils from plants such as soybean, safflower, and peanut. The biomass conversion processes discussed include pyrolysis, gasification, liquefaction, and aerobic and anaerobic digestion.

  16. Biomass and biomass change in lodgepole pine stands in Alberta.

    PubMed

    Monserud, Robert A; Huang, Shongming; Yang, Yuqing

    2006-06-01

    We describe methods and results for broad-scale estimation and mapping of forest biomass for the Canadian province of Alberta. Differences over successive decades provided an estimate of biomass change. Over 1500 permanent sample plots (PSP) were analyzed from across the range of lodgepole pine (Pinus contorta var. latifolia Engelm.), the major forest tree species of Alberta. The PSP network is densest in stands aged between 70 and 100 years and is well-represented by stands of all ages to 150 years of age. Stand biomass (Mg ha(-1)) was estimated for each PSP plot as the sum of the respective biomass components for each tree (live and standing dead). The biomass components for live trees were stem, bark, branches, foliage and roots. The components for standing dead trees excluded foliage. Equations from previous biomass studies were used for biomass component estimation. Biomass estimates of additional non-tree components were attempted, but without much success. Biomass of the soil organic layer was estimated once on 452 PSPs and a mean estimate of total dead fuels on the ground (28.4 Mg ha(-1)) was available only for the entire distribution of lodgepole pine. However, values of these two components were essentially constant over time and therefore did not alter the analysis or conclusions obtained by analyzing total tree biomass alone. We then used this spatial network of 1549 plots as the basis for mapping biomass across Alberta. Mapping methods were based on Australian National University SPLINe (ANUSPLIN) software, Hutchinson's thin-plate smoothing spline in four dimensions (latitude, longitude, elevation and biomass). Total tree biomass (mean = 172 Mg ha(-1)) was dominated by stem biomass (mean = 106 Mg ha(-1)), which was an order of magnitude greater than the mean estimates for the bark (11 Mg ha(-1)), branch (12 Mg ha(-1)) and foliage (12 Mg ha(-1)) components. A close relationship was found between total tree biomass and stand stem volume (R(2) = 0

  17. Biomass Burning Data and Information

    Atmospheric Science Data Center

    2015-04-21

    Biomass Burning Data and Information This data set represents ... geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ... models of the atmosphere. Project Title:  Biomass Burning Discipline:  Tropospheric Chemistry ...

  18. Biomass energy conversion in Hawaii

    NASA Astrophysics Data System (ADS)

    Ritschard, R. L.; Ghirardi, A.

    1981-06-01

    Materials and processes for producing liquid fuels from biomass are discussed. Direct combustion of biomass is discussed. The use of sugar industry products, tree crops, municipal solid wastes, and other biomass resources is discussed, as well as the environmental impacts of direct combustion systems.

  19. Reburn system with feedlot biomass

    DOEpatents

    Annamalai, Kalyan; Sweeten, John M.

    2005-12-13

    The present invention pertains to the use of feedlot biomass as reburn fuel matter to reduce NO.sub.x emissions. According to one embodiment of the invention, feedlot biomass is used as the reburn fuel to reduce NO.sub.x. The invention also includes burners and boiler in which feedlot biomass serves a reburn fuel.

  20. Mini-biomass electric generation

    SciTech Connect

    Elliot, G.

    1997-12-01

    Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

  1. Addressing problems of employee performance.

    PubMed

    McConnell, Charles R

    2011-01-01

    Employee performance problems are essentially of 2 kinds: those that are motivational in origin and those resulting from skill deficiencies. Both kinds of problems are the province of the department manager. Performance problems differ from problems of conduct in that traditional disciplinary processes ordinarily do not apply. Rather, performance problems are addressed through educational and remedial processes. The manager has a basic responsibility in ensuring that everything reasonable is done to help each employee succeed. There are a number of steps the manager can take to address employee performance problems.

  2. Is it time to tackle PM(2.5) air pollutions in China from biomass-burning emissions?

    PubMed

    Zhang, Yan-Lin; Cao, Fang

    2015-07-01

    An increase in haze days has been observed in China over the past two decades due to the rapid industrialization, urbanization and energy consumptions. To address this server issue, Chinese central government has recently released the Action Plan on Prevention and Control of Air Pollution, which mainly focuses on regulation of indusial and transport-related emissions with major energy consumption from fossil fuels. This comprehensive and toughest plan is definitely a major step in the right direction aiming at beautiful and environmental-friendly China; however, based on recent source apportionment results, we suggest that strengthening regulation emissions from biomass-burning sources in both urban and rural areas is needed to meet a rigorous reduction target. Here, household biofuel and open biomass burning are highlighted, as impacts of these emissions can cause local and regional pollution. PMID:25681875

  3. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems.

    PubMed

    Barnes, Andrew D; Weigelt, Patrick; Jochum, Malte; Ott, David; Hodapp, Dorothee; Haneda, Noor Farikhah; Brose, Ulrich

    2016-05-19

    Predicting ecosystem functioning at large spatial scales rests on our ability to scale up from local plots to landscapes, but this is highly contingent on our understanding of how functioning varies through space. Such an understanding has been hampered by a strong experimental focus of biodiversity-ecosystem functioning research restricted to small spatial scales. To address this limitation, we investigate the drivers of spatial variation in multitrophic energy flux-a measure of ecosystem functioning in complex communities-at the landscape scale. We use a structural equation modelling framework based on distance matrices to test how spatial and environmental distances drive variation in community energy flux via four mechanisms: species composition, species richness, niche complementarity and biomass. We found that in both a tropical and a temperate study region, geographical and environmental distance indirectly influence species richness and biomass, with clear evidence that these are the dominant mechanisms explaining variability in community energy flux over spatial and environmental gradients. Our results reveal that species composition and trait variability may become redundant in predicting ecosystem functioning at the landscape scale. Instead, we demonstrate that species richness and total biomass may best predict rates of ecosystem functioning at larger spatial scales. PMID:27114580

  4. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems.

    PubMed

    Barnes, Andrew D; Weigelt, Patrick; Jochum, Malte; Ott, David; Hodapp, Dorothee; Haneda, Noor Farikhah; Brose, Ulrich

    2016-05-19

    Predicting ecosystem functioning at large spatial scales rests on our ability to scale up from local plots to landscapes, but this is highly contingent on our understanding of how functioning varies through space. Such an understanding has been hampered by a strong experimental focus of biodiversity-ecosystem functioning research restricted to small spatial scales. To address this limitation, we investigate the drivers of spatial variation in multitrophic energy flux-a measure of ecosystem functioning in complex communities-at the landscape scale. We use a structural equation modelling framework based on distance matrices to test how spatial and environmental distances drive variation in community energy flux via four mechanisms: species composition, species richness, niche complementarity and biomass. We found that in both a tropical and a temperate study region, geographical and environmental distance indirectly influence species richness and biomass, with clear evidence that these are the dominant mechanisms explaining variability in community energy flux over spatial and environmental gradients. Our results reveal that species composition and trait variability may become redundant in predicting ecosystem functioning at the landscape scale. Instead, we demonstrate that species richness and total biomass may best predict rates of ecosystem functioning at larger spatial scales.

  5. Addressing Phonological Questions with Ultrasound

    ERIC Educational Resources Information Center

    Davidson, Lisa

    2005-01-01

    Ultrasound can be used to address unresolved questions in phonological theory. To date, some studies have shown that results from ultrasound imaging can shed light on how differences in phonological elements are implemented. Phenomena that have been investigated include transitional schwa, vowel coalescence, and transparent vowels. A study of…

  6. Every Other Day. Keynote Address.

    ERIC Educational Resources Information Center

    Tiller, Tom

    Schools need to be reoriented and restructured so that what is taught and learned, and the way in which it is taught and learned, are better integrated with young people's real-world experiences. Many indicators suggest that the meaningful aspects of school have been lost in the encounter with modern times. The title of this address--"Every Other…

  7. State of the Lab Address

    SciTech Connect

    King, Alex

    2010-01-01

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  8. State of the Lab Address

    ScienceCinema

    King, Alex

    2016-07-12

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  9. GASIFICATION BASED BIOMASS CO-FIRING

    SciTech Connect

    Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

    2003-01-01

    Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter

  10. {open_quotes}Green{close_quotes} certification: An option for helping the biomass energy industry grow

    SciTech Connect

    Easterly, J.L.

    1995-09-01

    This article explores the potential merits of `green` certification as an approach that may help overcome barriers and facilitate the future growth of the biomass power industry. Two methods of certification are addressed in this article, independent certification and self certification. Topics discussed include the following: utility `green Pricing` opportunities; perspectives on sustainable forestry and biomass energy; market incentives and the role of biomass in mitigating greenhouse gas emissions. 7 refs.

  11. Biomass sustainability and certification.

    PubMed

    Pavanan, Krishna C; Bosch, Roeland A; Cornelissen, Rob; Philp, Jim C

    2013-07-01

    The major challenges for humanity include energy security, food security, climate change, and a growing world population. They are all linked together by an instinctive, and yet increasingly complex and evolving concept, that of sustainability. Industrial biotechnology is seen as part of the overall solution, principally to combat climate change and strengthen energy security. At its beating heart is a huge policy challenge - the sustainability of biomass. PMID:23427899

  12. 41 CFR 105-53.120 - Address and telephone numbers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Federal Supply Service is located at Crystal Mall Building 4, 1941 Jefferson Davis Highway, Arlington, VA...-472-1082. The addresses of the eleven regional offices are provided in § 105-53.151....

  13. 41 CFR 105-53.120 - Address and telephone numbers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Federal Supply Service is located at Crystal Mall Building 4, 1941 Jefferson Davis Highway, Arlington, VA...-472-1082. The addresses of the eleven regional offices are provided in § 105-53.151....

  14. 41 CFR 105-53.120 - Address and telephone numbers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Federal Supply Service is located at Crystal Mall Building 4, 1941 Jefferson Davis Highway, Arlington, VA...-472-1082. The addresses of the eleven regional offices are provided in § 105-53.151....

  15. Hydrolysis of biomass material

    DOEpatents

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  16. 40 CFR 59.107 - Addresses of EPA Regional Offices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Automobile Refinish Coatings § 59.107...

  17. 40 CFR 59.107 - Addresses of EPA Regional Offices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Automobile Refinish Coatings § 59.107...

  18. 40 CFR 59.107 - Addresses of EPA Regional Offices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Automobile Refinish Coatings § 59.107...

  19. 40 CFR 59.107 - Addresses of EPA Regional Offices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Automobile Refinish Coatings § 59.107...

  20. 40 CFR 59.107 - Addresses of EPA Regional Offices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Automobile Refinish Coatings § 59.107...

  1. Distribution of Aboveground Live Biomass in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Saatchi, S. S.; Houghton, R. A.; DosSantos Alvala, R. C.; Soares, J. V.; Yu, Y.

    2007-01-01

    The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land-cover and land-use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site-specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old-growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300Mgha(sup 1) here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300Mgha(sup 1). Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200Mgha(sup 1). The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and below ground biomass, is 86 PgC with +/- 20% uncertainty.

  2. Thermochemical conversion of microalgal biomass into biofuels: a review.

    PubMed

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed.

  3. Thermochemical conversion of microalgal biomass into biofuels: a review.

    PubMed

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. PMID:25479688

  4. Biomass Cookstoves Technical Meeting. Summary Report

    SciTech Connect

    none,

    2011-05-01

    In regions where biomass is a traditional fuel for cooking, improved cookstoves can enhance indoor air quality, personal health, livelihoods, and the environment—while substantially reducing greenhouse gas (GHG) emissions. Although ongoing efforts have successfully disseminated improved stoves that achieve many of these benefits, substantially greater emissions reductions are needed to comply with international guidelines for indoor air quality and to limit GHG emissions like black carbon.

  5. Environmentally-benign conversion of biomass residues to electricity

    NASA Astrophysics Data System (ADS)

    Davies, Andrew

    As petroleum resources are finite, it is imperative to use them wisely in energy conversion applications and, at the same time, develop alternative energy sources. Biomass is one of the renewable energy sources that can be used to partially replace fossil fuels. Biomass-based fuels can be produced domestically and can reduce dependency on fuel imports. Due to their abundant supply, and given that to an appreciable extent they can be considered carbon-neutral, their use for power generation is of technological interest. However, whereas biomasses can be directly burned in furnaces, such a conventional direct combustion technique is ill-controlled and typically produces considerable amounts of health-hazardous airborne compounds [1,2]. Thus, an alternative technology for biomass utilization is described herein to address increasing energy needs in an environmentally-benign manner. More specifically, a multi-step process/device is presented to accept granulated or pelletized biomass, and generate an easily-identifiable form of energy as a final product. To achieve low emissions of products of incomplete combustion, the biomass is gasified pyrolytically, mixed with air, ignited and, finally, burned in nominally premixed low-emission flames. Combustion is thus indirect, since the biomass is not directly burned, instead its gaseous pyrolyzates are burned upon mixing with air. Thereby, combustion is well-controlled and can be complete. A demonstration device has been constructed to convert the internal energy of plastics into "clean" thermal energy and, eventually to electricity.

  6. A profile of biomass stove use in Sri Lanka.

    PubMed

    Elledge, Myles F; Phillips, Michael J; Thornburg, Vanessa E; Everett, Kibri H; Nandasena, Sumal

    2012-04-01

    A large body of evidence has confirmed that the indoor air pollution (IAP) from biomass fuel use is a major cause of premature deaths, and acute and chronic diseases. Over 78% of Sri Lankans use biomass fuel for cooking, the major source of IAP in developing countries. We conducted a review of the available literature and data sources to profile biomass fuel use in Sri Lanka. We also produced two maps (population density and biomass use; and cooking fuel sources by district) to illustrate the problem in a geographical context. The biomass use in Sri Lanka is limited to wood while coal, charcoal, and cow dung are not used. Government data sources indicate poor residents in rural areas are more likely to use biomass fuel. Respiratory diseases, which may have been caused by cooking emissions, are one of the leading causes of hospitalizations and death. The World Health Organization estimated that the number of deaths attributable to IAP in Sri Lanka in 2004 was 4300. Small scale studies have been conducted in-country in an attempt to associate biomass fuel use with cataracts, low birth weight, respiratory diseases and lung cancer. However, the IAP issue has not been broadly researched and is not prominent in Sri Lankan public health policies and programs to date. Our profile of Sri Lanka calls for further analytical studies and new innovative initiatives to inform public health policy, advocacy and program interventions to address the IAP problem of Sri Lanka.

  7. Biomass Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect

    Jacob J. Jacobson; Mohammad S. Roni; Patrick Lamers; Kara G. Cafferty

    2014-09-01

    . The 2012 $55/dry T. programmatic target included only logistics costs with a limited focus on biomass quantity, quality and did not include a grower payment. The 2017 Design Case explores two approaches to addressing the logistics challenge: one is an agronomic solution based on blending and integrated landscape management and the second is a logistics solution based on distributed biomass preprocessing depots. The concept behind blended feedstocks and integrated landscape management is to gain access to more regional feedstock at lower access fees (i.e., grower payment) and to reduce preprocessing costs by blending high quality feedstocks with marginal quality feedstocks. Blending has been used in the grain industry for a long time; however, the concept of blended feedstocks in the biofuel industry is a relatively new concept. The blended feedstock strategy relies on the availability of multiple feedstock sources that are blended using a least-cost formulation within an economical supply radius, which, in turn, decreases the grower payment by reducing the amount of any single biomass. This report will introduce the concepts of blending and integrated landscape management and justify their importance in meeting the 2017 programmatic goals.

  8. H-ZSM5 Catalyzed co-pyrolysis of biomass and plastics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aims at addressing two important problems vital to agriculture, disposal of agricultural plastics and production of drop-in fuels from biomass via co-pyrolysis of both feedstocks. Mixtures of biomass (switchgrass, cellulose, xylan and lignin) and plastic (polyethylene terephthalate (PET),...

  9. Biofuel from "humified" biomass

    NASA Astrophysics Data System (ADS)

    Kpogbemabou, D.; Lemée, L.; Amblès, A.

    2009-04-01

    In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do

  10. Harvesting forest biomass for energy in Minnesota: An assessment of guidelines, costs and logistics

    NASA Astrophysics Data System (ADS)

    Saleh, Dalia El Sayed Abbas Mohamed

    The emerging market for renewable energy in Minnesota has generated a growing interest in utilizing more forest biomass for energy. However, this growing interest is paralleled with limited knowledge of the environmental impacts and cost effectiveness of utilizing this resource. To address environmental and economic viability concerns, this dissertation has addressed three areas related to biomass harvest: First, existing biomass harvesting guidelines and sustainability considerations are examined. Second, the potential contribution of biomass energy production to reduce the costs of hazardous fuel reduction treatments in these trials is assessed. Third, the logistics of biomass production trials are analyzed. Findings show that: (1) Existing forest related guidelines are not sufficient to allow large-scale production of biomass energy from forest residue sustainably. Biomass energy guidelines need to be based on scientific assessments of how repeated and large scale biomass production is going to affect soil, water and habitat values, in an integrated and individual manner over time. Furthermore, such guidelines would need to recommend production logistics (planning, implementation, and coordination of operations) necessary for a potential supply with the least site and environmental impacts. (2) The costs of biomass production trials were assessed and compared with conventional treatment costs. In these trials, conventional mechanical treatment costs were lower than biomass energy production costs less income from biomass sale. However, a sensitivity analysis indicated that costs reductions are possible under certain site, prescriptions and distance conditions. (3) Semi-structured interviews with forest machine operators indicate that existing fuel reduction prescriptions need to be more realistic in making recommendations that can overcome operational barriers (technical and physical) and planning and coordination concerns (guidelines and communications

  11. Carbon Monoxide from Biomass Burning

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This pair of images shows levels of carbon monoxide at the atmospheric pressure level of 700 millibars (roughly 12,000 feet in altitude) over the continent of South America, as observed by the Measurements Of Pollution In The Troposphere (MOPITT) sensor flying aboard NASA's Terra spacecraft. Data for producing the image on the left were acquired on March 3, 2000, and for the image on the right on September 7, 2000. Blue pixels show low values, yellows show intermediate values, and the red to pink and then white pixels are progressively higher values. In the lefthand image (March 3), notice the fairly low levels of carbon monoxide over the entire continent. The slightly higher equatorial values are the result of burning emissions in sub-Saharan Africa that are convected at the Intertropical Convergence Zone (ITCZ) and spread by the trade winds. Also, notice the effect of the elevated surface topography across the Andes Mountains running north to south along the western coastline. (In this region, white pixels show no data.) In the righthand image (September 7), a large carbon monoxide plume is seen over Brazil, produced primarily by biomass burning across Amazonia and lofted into the atmosphere by strong cloud convection. The generally higher carbon monoxide levels as compared to March are both the result of South American fire emissions and the transport of carbon monoxide across the Atlantic Ocean from widespread biomass burning over Southern Africa. These images were produced using MOPITT data, which are currently being validated. These data were assimilated into an atmospheric chemical transport model using wind vectors provided by the National Center for Environmental Prediction (NCEP). Although there is good confidence in the relative seasonal values and geographic variation measured by MOPITT, that team anticipates their level of confidence will improve further with ongoing intensive validation campaigns and comparisons with in situ and ground

  12. Global repowering opportunities for biomass

    SciTech Connect

    Demeter, C.P.; Gray, E.E.; Lindsey, C.A.

    1996-12-31

    Global demand for electricity is growing during a time of significant structural change in electric markets. Many countries are creating more competitive markets for power production and sales through regulation and ownership structure. Governments are reducing monopolies, enhancing competition and unbundling electricity services. Equipment suppliers, developers, and service providers are expanding into the global market. Meeting future electric energy needs has forced the power community to examine alternatives to Greenfield Development. Repowering existing facilities to gain a competitive advantage is a promising option. Repowering has the potential to offer increased capacity, heat rate reductions, and improved environmental profiles in a manner consistent with an asset and capital deployment rationalization strategy that appears to characterize the future of the power industry. It is also a defensive strategy for extending the life of existing assets. The breadth of repowering options continues to expand as technologies are introduced to increase plant capacities, efficiencies or both. Some options such as feedwater heater repowering appear to offer advantages to repowering with biomass fuels as an alternative to natural gas projects. By repowering solid fueled facilities, developed and developing countries can receive multiple benefits. Most developing countries are largely agrarian with traditional policies that have relied on trickle-down rural development. By turning agricultural and forestry by-products into commodities, farmers and foresters can benefit from a sustainable source of income. As power demand and biomass requirements are expanded to a regional scale, the government can reduce some agricultural subsidies and shift that money to other economically and socially beneficial programs. Furthermore, rural development can minimize rural-to-urban flight and thus lessen the strain on already overburdened urban infrastructure.

  13. Impact of logging on aboveground biomass stocks in lowland rain forest, Papua New Guinea.

    PubMed

    Bryan, Jane; Shearman, Phil; Ash, Julian; Kirkpatrick, J B

    2010-12-01

    Greenhouse-gas emissions resulting from logging are poorly quantified across the tropics. There is a need for robust measurement of rain forest biomass and the impacts of logging from which carbon losses can be reliably estimated at regional and global scales. We used a modified Bitterlich plotless technique to measure aboveground live biomass at six unlogged and six logged rain forest areas (coupes) across two approximately 3000-ha regions at the Makapa concession in lowland Papua New Guinea. "Reduced-impact logging" is practiced at Makapa. We found the mean unlogged aboveground biomass in the two regions to be 192.96 +/- 4.44 Mg/ha and 252.92 +/- 7.00 Mg/ha (mean +/- SE), which was reduced by logging to 146.92 +/- 4.58 Mg/ha and 158.84 +/- 4.16, respectively. Killed biomass was not a fixed proportion, but varied with unlogged biomass, with 24% killed in the lower-biomass region, and 37% in the higher-biomass region. Across the two regions logging resulted in a mean aboveground carbon loss of 35 +/- 2.8 Mg/ha. The plotless technique proved efficient at estimating mean aboveground biomass and logging damage. We conclude that substantial bias is likely to occur within biomass estimates derived from single unreplicated plots. PMID:21265444

  14. Biomass process handbook

    SciTech Connect

    Not Available

    1983-01-01

    Descriptions are given of 42 processes which use biomass to produce chemical products. Marketing and economic background, process description, flow sheets, costs, major equipment, and availability of technology are given for each of the 42 processes. Some of the chemicals discussed are: ethanol, ethylene, acetaldehyde, butanol, butadiene, acetone, citric acid, gluconates, itaconic acid, lactic acid, xanthan gum, sorbitol, starch polymers, fatty acids, fatty alcohols, glycerol, soap, azelaic acid, perlargonic acid, nylon-11, jojoba oil, furfural, furfural alcohol, tetrahydrofuran, cellulose polymers, products from pulping wastes, and methane. Processes include acid hydrolysis, enzymatic hydrolysis, fermentation, distillation, Purox process, and anaerobic digestion.

  15. Hydrothermal Liquefaction of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with

  16. Addressing Passive Smoking in Children

    PubMed Central

    Hutchinson, Sasha G.; Kuijlaars, Jennifer S.; Mesters, Ilse; Muris, Jean W. M.; van Schayck, Constant P.; Dompeling, Edward; Feron, Frans J. M.

    2014-01-01

    Background A significant number of parents are unaware or unconvinced of the health consequences of passive smoking (PS) in children. Physicians could increase parental awareness by giving personal advice. Aim To evaluate the current practices of three Dutch health professions (paediatricians, youth health care physicians, and family physicians) regarding parental counselling for passive smoking (PS) in children. Methods All physicians (n = 720) representing the three health professions in Limburg, the Netherlands, received an invitation to complete a self-administered electronic questionnaire including questions on their: sex, work experience, personal smoking habits, counselling practices and education regarding PS in children. Results The response rate was 34%. One tenth (11%) of the responding physicians always addressed PS in children, 32% often, 54% occasionally and 4% reported to never attend to it. The three health professions appeared comparable regarding their frequency of parental counselling for PS in children. Addressing PS was more likely when children had respiratory problems. Lack of time was the most frequently mentioned barrier, being very and somewhat applicable for respectively 14% and 43% of the physicians. One fourth of the responders had received postgraduate education about PS. Additionally, 49% of the responders who did not have any education about PS were interested in receiving it. Conclusions Physicians working in the paediatric field in Limburg, the Netherlands, could more frequently address PS in children with parents. Lack of time appeared to be the most mentioned barrier and physicians were more likely to counsel parents for PS in children with respiratory complaints/diseases. Finally, a need for more education on parental counselling for PS was expressed. PMID:24809443

  17. Addressing inequities in healthy eating.

    PubMed

    Friel, Sharon; Hattersley, Libby; Ford, Laura; O'Rourke, Kerryn

    2015-09-01

    What, when, where and how much people eat is influenced by a complex mix of factors at societal, community and individual levels. These influences operate both directly through the food system and indirectly through political, economic, social and cultural pathways that cause social stratification and influence the quality of conditions in which people live their lives. These factors are the social determinants of inequities in healthy eating. This paper provides an overview of the current evidence base for addressing these determinants and for the promotion of equity in healthy eating. PMID:26420812

  18. Identifying and Addressing Vaccine Hesitancy

    PubMed Central

    Kestenbaum, Lori A.; Feemster, Kristen A.

    2015-01-01

    In the 20th century, the introduction of multiple vaccines significantly reduced childhood morbidity, mortality, and disease outbreaks. Despite, and perhaps because of, their public health impact, an increasing number of parents and patients are choosing to delay or refuse vaccines. These individuals are described as vaccine hesitant. This phenomenon has developed due to the confluence of multiple social, cultural, political and personal factors. As immunization programs continue to expand, understanding and addressing vaccine hesitancy will be crucial to their successful implementation. This review explores the history of vaccine hesitancy, its causes, and suggested approaches for reducing hesitancy and strengthening vaccine acceptance. PMID:25875982

  19. Nanoscale content-addressable memory

    NASA Technical Reports Server (NTRS)

    Davis, Bryan (Inventor); Principe, Jose C. (Inventor); Fortes, Jose (Inventor)

    2009-01-01

    A combined content addressable memory device and memory interface is provided. The combined device and interface includes one or more one molecular wire crossbar memories having spaced-apart key nanowires, spaced-apart value nanowires adjacent to the key nanowires, and configurable switches between the key nanowires and the value nanowires. The combination further includes a key microwire-nanowire grid (key MNG) electrically connected to the spaced-apart key nanowires, and a value microwire-nanowire grid (value MNG) electrically connected to the spaced-apart value nanowires. A key or value MNGs selects multiple nanowires for a given key or value.

  20. Addressing the workforce pipeline challenge

    SciTech Connect

    Leonard Bond; Kevin Kostelnik; Richard Holman

    2006-11-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

  1. Fuels from biomass and wastes

    NASA Astrophysics Data System (ADS)

    Klass, D. L.; Emert, G. H.

    The production, use, and effects of fuels from biomass and waste energy sources are discussed. Biomass procurement from silviculture, including hybrid poplar and sycamore farms, in addition to the growth of mass algal culture and Jerusalem artichokes for fuels are considered. The conversion of biomass and solid waste materials through biological and thermal gasification, hydrolysis and extraction, and fermentation to produce ethanol, along with natural and thermal liquefaction processes involving euphorbia lathyris and cellulosic materials are elaborated. Environmental and health aspects of biomass and waste conversion systems are outlined, noting the large land surface areas needed for significant contributions to total demands from biomass, specific instances and case studies are reviewed for biomass use in Indiana, the Dominican Republic, the southeast U.S., and in small wood stoves.

  2. Considerations for biomass energy systems

    SciTech Connect

    Carson, C.C.; Hart, C.M.

    1980-05-01

    Several different biomass forms, or feedstocks, contribute to the total potential for biomass energy. A summary of the energy potential of the US biomass resource base is presented along with a survey of existing thermochemical and biochemical processes for converting the feedstocks into usable energy products. Energy requirements, economics, and alternate uses for biomass resources are included in the discussion. It is concluded that the current biomass resources could provide up to 2.5 EJ of usable energy and that with a concentrated, long-term program this contribution could grow to between 10 and 15 EJ. The biomass feedstock with the largest potential is wood, which provides more than half of the estimated total.

  3. Development potentials and policy options of biomass in China.

    PubMed

    Shen, Lei; Liu, Litao; Yao, Zhijun; Liu, Gang; Lucas, Mario

    2010-10-01

    Biomass, one of the most important renewable energies, is playing and will continue to play an important role in the future energy structure of the world. This article aims to analyze the position and role, assess the resource availability, discuss the geographic distribution, market scale and industry development, and present the policy options of biomass in China. The resource availability and geographical distribution of biomass byproducts are assessed in terms of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater. The position of biomass use for power generation is just next to hydropower among types of renewable energy in China. The potential quantity of all biomass byproducts energy in 2004 is 3511 Mtce (Mtce is the abbreviation of million tons of coal equivalents and 1 Mtce is equal to10(6) tce.), while the acquirable quantity is 460 Mtce. Biomass energy plays a critical role in rural regions of China. The geographical distribution and quantity of biomass byproducts resources depends mainly on the relationship between ecological zones and climate conditions. Our estimation shows that the total quantity of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater resources are 728, 3926, 2175, 155 and 48240 Mt (million tons), respectively. Crop residues come mainly from the provinces of Henan, Shandong, Heilongjiang, Jilin and Sichuan. All manure is mainly located in the provinces of Henan, Shandong, Sichuan, Hebei and Hunan. Forest and wood biomass byproducts are mainly produced in the provinces or autonomous regions of Tibet, Sichuan, Yunnan, Heilongjiang and Inner Mongolia, while most of municipal waste mainly comes from Guangdong, Shandong, Heilongjiang, Hubei and Jiangsu. Most of wastewater is largely discharged from advanced provinces like Guangdong, Jiangsu, Zhejiang, Shandong and Henan. Biomass byproducts' energy distribution also varies from province to province in China

  4. Development Potentials and Policy Options of Biomass in China

    NASA Astrophysics Data System (ADS)

    Shen, Lei; Liu, Litao; Yao, Zhijun; Liu, Gang; Lucas, Mario

    2010-10-01

    Biomass, one of the most important renewable energies, is playing and will continue to play an important role in the future energy structure of the world. This article aims to analyze the position and role, assess the resource availability, discuss the geographic distribution, market scale and industry development, and present the policy options of biomass in China. The resource availability and geographical distribution of biomass byproducts are assessed in terms of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater. The position of biomass use for power generation is just next to hydropower among types of renewable energy in China. The potential quantity of all biomass byproducts energy in 2004 is 3511 Mtce (Mtce is the abbreviation of million tons of coal equivalents and 1 Mtce is equal to106 tce.), while the acquirable quantity is 460 Mtce. Biomass energy plays a critical role in rural regions of China. The geographical distribution and quantity of biomass byproducts resources depends mainly on the relationship between ecological zones and climate conditions. Our estimation shows that the total quantity of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater resources are 728, 3926, 2175, 155 and 48240 Mt (million tons), respectively. Crop residues come mainly from the provinces of Henan, Shandong, Heilongjiang, Jilin and Sichuan. All manure is mainly located in the provinces of Henan, Shandong, Sichuan, Hebei and Hunan. Forest and wood biomass byproducts are mainly produced in the provinces or autonomous regions of Tibet, Sichuan, Yunnan, Heilongjiang and Inner Mongolia, while most of municipal waste mainly comes from Guangdong, Shandong, Heilongjiang, Hubei and Jiangsu. Most of wastewater is largely discharged from advanced provinces like Guangdong, Jiangsu, Zhejiang, Shandong and Henan. Biomass byproducts’ energy distribution also varies from province to province in China. Based on

  5. Decadal changes in aerosol absorption across Brazil resulting from changes in biomass burning practices

    NASA Astrophysics Data System (ADS)

    Coe, H.; Morgan, W.; Darbyshire, E.; Allan, J. D.; Flynn, M.; Liu, D.; Langridge, J.; Johnson, B. T.; Haywood, J. M.; Longo, K.; Artaxo, P.; Highwood, E.; Mollard, J.

    2015-12-01

    Open biomass burning makes a substantial contribution to the global budget of black carbon, yet models significantly underestimate absorption aerosol optical depth compared to observations by approximately a factor of two over South America. These large differences need to be addressed. Recent work has shown that the number of deforestation fires has decreased across Amazonia over the last decade, giving rise to a decrease in the abundance of biomass burning aerosol across the region. At the same time there has been an increase in the frequency of agricultural burning across regions that have previously been deforested, as well as increased burning in the east of Brazil in the Cerrado regions. We sampled both of these types of open burning extensively during a recent aircraft experiment. Significant concentrations of organic carbon as well as black carbon were observed, with this ratio providing the main control on the single scattering albedo (SSA).Deforestation fires and wild forest fires are prevalent across the south west of the Amazon Basin, where smouldering burning dominates. In the east of Brazil, agricultural burning proceeds via a much more efficient form of combustion and as a result, black carbon is a much larger fraction of the aerosol mass and SSAs are much lower than in the west. We have analysed MISR data across the region to show that whilst aerosol optical depths have decreased during the dry season over the last decade, with greater rates of reduction occurring over the south western margins of Amazonia, absorption aerosol optical depths have significantly increased over the Cerrado and remained constant over south western Amazonia. This has led to a decline in SSA across the whole of the region with greater reductions occurring over the eastern states. This finding is consistent with our aircraft measurements. We will discuss the implications of these changes for air quality and climate across the region.

  6. Pipeline transport of biomass.

    PubMed

    Kumar, Amit; Cameron, Jay B; Flynn, Peter C

    2004-01-01

    The cost of transporting wood chips by truck and by pipeline as a water slurry was determined. In a practical application of field delivery by truck of biomass to a pipeline inlet, the pipeline will only be economical at large capacity ( >0.5 million dry t/yr for a one-way pipeline, and >1.25 million dry t/yr for a two-way pipeline that returns the carrier fluid to the pipeline inlet), and at medium to long distances ( >75 km [one-way] and >470 km [two-way] at a capacity of 2 million dry t/yr). Mixed hardwood and softwood chips in western Canada rise in moisture level from about 50% to 67% when transported in water; the loss in lower heating value (LHV) would preclude the use of water slurry pipelines for direct combustion applications. The same chips, when transported in a heavy gas oil, take up as much as 50% oil by weight and result in a fuel that is >30% oil on mass basis and is about two-thirds oil on a thermal basis. Uptake of water by straw during slurry transport is so extreme that it has effectively no LHV. Pipeline-delivered biomass could be used in processes that do not produce contained water as a vapor, such as supercritical water gasification.

  7. Biomass power for rural development

    SciTech Connect

    Shepherd, P.

    2000-06-02

    Biomass is a proven option for electricity generation. A diverse range of biopower producers includes electric utilities, independent power producers, and the pulp and paper industry. To help expand opportunities for biomass power production, the U.S. Department of Energy established the Biopower Program and is sponsoring efforts to increase the productivity of dedicated energy crops. The Program aims to double biomass conversion efficiencies, thus reducing biomass power generation costs. These efforts will promote industrial and agricultural growth, improve the environment, create jobs, increase U.S. energy security, and provide new export markets.

  8. National level biomass database comparison for Mexico in relation to vegetation degradation stages

    NASA Astrophysics Data System (ADS)

    Mas, Jean Francois; Gao, Yan; Paneque-Galvez, Jaime; Rodriguez, Adriana

    2014-12-01

    Anthropogenic land cover change, e.g. deforestation and forest degradation cause carbon emission. To estimate deforestation and forest degradation, it is important to have reliable data on vegetation and carbon distribution. In Mexico, land cover maps are available at national level in which vegetation is described in four statuses: primary, secondary ("woodland"), secondary ("shrub land"), and secondary ("grass") according to degradation stages. Data on biomass/carbon distribution are also available including: (1) INFyS: national forest and soil inventory; (2) MODIS WHRC: biomass data by Woodshole Research Center for Pantropical region using MODIS data; (3) PALSAR EHRC: biomass data produced by WHRC for Mexico using PALSAR data; (4) MODIS VCF: Vegetation Continuous Fields percent tree cover layer. The aim of this study is 1) to evaluate if degradation stages and biomass are positively correlated, e.g. better preserved vegetation has more biomass, and 2) to evaluate the spatial patterns of the comparison in 1) using geographically weighted regression (GWR), 3) to assess the correlation among the biomass datasets including VCF data. Results show that 1) in general, the biomass value decreases following the degradation stages and the most degraded stage corresponds to the least biomass value. Cuzick value shows that this trend is significant in most of the cases. However, there is serious overlapping in biomass values in various stages. 2) GWR results show that in some regions the four disturbance stages corresponds better with the difference in biomass values. The regions with higher parameter value show better correlation. 3) The biomass data from PALSAR WHRC show higher Spearman values and thus stronger correlation with the biomass data from INFyS. However, due to that biomass data from INfyS and PALSAR WHRC are not independent; we consider the better correlation is from the rest two biomass datasets.

  9. Biomass in the Deregulated Marketplace: Current Issues for Biomass Power

    SciTech Connect

    Not Available

    1998-12-01

    This issue brief provides readers with a monthly review and analysis of electric utility deregulation as it impacts biomass power production and distribution. The topical areas to be routinely covered will include Federal activities, State activities, Current challenges, and Current opportunities. Additionally, a monthly highlighted topic will provide more in-depth analysis of current issue impacting biomass power.

  10. Addressing viral resistance through vaccines

    PubMed Central

    Laughlin, Catherine; Schleif, Amanda; Heilman, Carole A

    2015-01-01

    Antimicrobial resistance is a serious healthcare concern affecting millions of people around the world. Antiviral resistance has been viewed as a lesser threat than antibiotic resistance, but it is important to consider approaches to address this growing issue. While vaccination is a logical strategy, and has been shown to be successful many times over, next generation viral vaccines with a specific goal of curbing antiviral resistance will need to clear several hurdles including vaccine design, evaluation and implementation. This article suggests that a new model of vaccination may need to be considered: rather than focusing on public health, this model would primarily target sectors of the population who are at high risk for complications from certain infections. PMID:26604979

  11. Changing concepts: the presidential address.

    PubMed

    Weed, J C

    1974-09-01

    A discussion of conceptual change in areas related to fertility and medicine is presented in an address by the president of the American Fertility Society. Advances in technological research and medicine, particularly in steroids and reporductive physiology, have been the most readily acceptable changes. Cesarean section and surgical sterilization have also become increasingly accepted. Newer developments such as sperm banks, artificial insemination, and ovum transfer have created profound ethical, moral, and medical issued in human engineering research and evolutionary theory. The legalization of abortion has brought moral, ethical, and legal problems for many members of the medical profession. It is urged that the Society promote education of the people in reproductive function, sexual activity, and parental obligation while being acutely aware of the problems in influencing or altering human reproduction.

  12. Addressing Failures in Exascale Computing

    SciTech Connect

    Snir, Marc; Wisniewski, Robert; Abraham, Jacob; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, J.; Bose, Pradip; Cappello, Franck; Carlson, Bill; Chien, Andrew; Coteus, Paul; DeBardeleben, Nathan; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Fazzari, Saverio; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Rob; Stearley, Jon; Van Hensbergen, Eric

    2014-01-01

    We present here a report produced by a workshop on Addressing failures in exascale computing' held in Park City, Utah, 4-11 August 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system, discuss existing knowledge on resilience across the various hardware and software layers of an exascale system, and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia, and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  13. Addressing failures in exascale computing

    SciTech Connect

    Snir, Marc; Wisniewski, Robert W.; Abraham, Jacob A.; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, Jim; Bose, Pradip; Cappello, Franck; Carlson, William; Chien, Andrew A.; Coteus, Paul; Debardeleben, Nathan A.; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Saverio, Fazzari; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Robert; Stearly, Jon; Van Hensbergen, Eric

    2014-05-01

    We present here a report produced by a workshop on “Addressing Failures in Exascale Computing” held in Park City, Utah, August 4–11, 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system; discuss existing knowledge on resilience across the various hardware and software layers of an exascale system; and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia; and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  14. System and process for biomass treatment

    SciTech Connect

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  15. Production of new biomass/waste-containing solid fuels

    SciTech Connect

    Akers, D.; Shirey, G.; Zitron, Z.; Nowak, M.

    2000-07-01

    The electric utility industry is interested in the use of biomass and waste byproducts as fuel to reduce both emissions and fuel costs. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. One method of addressing these issues is to produce composite fuels composed of a pelletized mixture of biomass and other constituents. However, for composite fuels to be extensively used in the US, especially in the steam market, a lower cost method of producing these fuels must be developed. Also, standard formulations of biomass and coal (possibly including waste) with broad application to US boilers must be identified. In addition to acceptable cost, these standard formulations can provide environmental benefits relative to coal. The Department of Energy along with the Electric Power Research Institute and various industry partners has funded CQ Inc. to develop both a dewatering/pelletizing die and three standard formulations of biomass, coal, and waste byproducts. Six biomass/waste sources were initially selected for study: petroleum coke, mixed waste plastic, switchgrass, waxed cardboard, poultry manure, and sewage sludge. A sample representative of each source was collected and analyzed. Also, two sources of coal, recovered from waste ponds, were collected for use in the project.

  16. Modeling biomass gasification in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  17. Increasing biomass in Amazonian forest plots.

    PubMed Central

    Baker, Timothy R; Phillips, Oliver L; Malhi, Yadvinder; Almeida, Samuel; Arroyo, Luzmila; Di Fiore, Anthony; Erwin, Terry; Higuchi, Niro; Killeen, Timothy J; Laurance, Susan G; Laurance, William F; Lewis, Simon L; Monteagudo, Abel; Neill, David A; Vargas, Percy Núñez; Pitman, Nigel C A; Silva, J Natalino M; Martínez, Rodolfo Vásquez

    2004-01-01

    A previous study by Phillips et al. of changes in the biomass of permanent sample plots in Amazonian forests was used to infer the presence of a regional carbon sink. However, these results generated a vigorous debate about sampling and methodological issues. Therefore we present a new analysis of biomass change in old-growth Amazonian forest plots using updated inventory data. We find that across 59 sites, the above-ground dry biomass in trees that are more than 10 cm in diameter (AGB) has increased since plot establishment by 1.22 +/- 0.43 Mg per hectare per year (ha(-1) yr(-1), where 1 ha = 10(4) m2), or 0.98 +/- 0.38 Mg ha(-1) yr(-1) if individual plot values are weighted by the number of hectare years of monitoring. This significant increase is neither confounded by spatial or temporal variation in wood specific gravity, nor dependent on the allometric equation used to estimate AGB. The conclusion is also robust to uncertainty about diameter measurements for problematic trees: for 34 plots in western Amazon forests a significant increase in AGB is found even with a conservative assumption of zero growth for all trees where diameter measurements were made using optical methods and/or growth rates needed to be estimated following fieldwork. Overall, our results suggest a slightly greater rate of net stand-level change than was reported by Phillips et al. Considering the spatial and temporal scale of sampling and associated studies showing increases in forest growth and stem turnover, the results presented here suggest that the total biomass of these plots has on average increased and that there has been a regional-scale carbon sink in old-growth Amazonian forests during the previous two decades. PMID:15212090

  18. Alternative biomass sources for thermal energy generation

    NASA Astrophysics Data System (ADS)

    Steensen, Torge; Müller, Sönke; Dresen, Boris; Büscher, Olaf

    2015-04-01

    of Bottrop-Kirchhellen in the state of North Rhine-Westphalia. This region consists of nature reserves, forests, farmland and a few villages. To present a qualitative comparison between simulated and true biomass volume, we conducted field work by mapping the spatial extent of the desired biomass occurrences in the area. First results indicate a qualitative match of about 75%. Our research highlights the small-scale biomass features that have not been incorporated in previous biomass estimates. With the regular trimming and the accompanied raw material that becomes available, a new sector of thermal energy generation can be outlined. An automated quantification using satellite and GIS data will allow a regular monitoring of the vegetation growth and an assessment of the transport routes and costs as well as the location of the prospective power plants. In the endeavour of creating a sustainable energy supply, these biomass units should not be neglected, especially since the usage of the traditional units is limited due to competing interests in food production and nature conservation.

  19. Mobile Biomass Pelletizing System

    SciTech Connect

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  20. Impact of biomass burning on the atmosphere. Revision 1

    SciTech Connect

    Dignon, J.

    1994-04-01

    Fire has played an important part in biogeochemical cycling throughout much of the history of our plant. This report addresses the coupled evolution of our planet`s atmospheric composition and biomass burning. Special attention is paid to the chemical and climatic impacts of biomass burning on the atmosphere throughout the last century, specifically looking at the cycles of carbon, nitrogen, and sulfur. Information from ice core measurements may be useful in understanding the history of fire and its historic affect on the composition of the atmosphere and climate.

  1. Soybean biomass produced in Argentina: Myths and realities

    NASA Astrophysics Data System (ADS)

    Semino, S.; Paul, H.; Tomei, J.; Joensen, L.; Monti, M.; Jelsøe, E.

    2009-11-01

    Soybean biomass for biodiesel, produced in Argentina amongst other places, is considered by some to reduce greenhouse gas emissions and mitigate climate change when compared with fossil fuel alternatives. To ensure that the production of biofuels is 'sustainable', EU institutions and national governments are designing certification schemes for the sustainable production of biomass. In this paper, we question the validity of these proposed environmental standards, using the production of Argentine soybean as a case study. We highlight the negative environmental and social impacts of intensive soybean production, and conclude that certification schemes are unlikely to be able to address the detrimental impacts of increased biofuel production and trade.

  2. Growing perennial forages for biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent attention given to converting biomass into ethanol to fuel cars and trucks or burning it to generate electricity has captured society’s interest. There are three main routes for converting biomass into usable forms of energy or other chemical end products: (i) biochemical, (ii) thermochemical...

  3. Process for concentrated biomass saccharification

    DOEpatents

    Hennessey, Susan M.; Seapan, Mayis; Elander, Richard T.; Tucker, Melvin P.

    2010-10-05

    Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

  4. Comparative study of different waste biomass for energy application.

    PubMed

    Motghare, Kalyani A; Rathod, Ajit P; Wasewar, Kailas L; Labhsetwar, Nitin K

    2016-01-01

    Biomass is available in many varieties, consisting of crops as well as its residues from agriculture, forestry, and the agro-industry. These different biomass find their way as freely available fuel in rural areas but are also responsible for air pollution. Emissions from such solid fuel combustion to indoor, regional and global air pollution largely depend on fuel types, combustion device, fuel properties, fuel moisture, amount of air supply for combustion and also on climatic conditions. In both economic and environment point of view, gasification constitutes an attractive alternative for the use of biomass as a fuel, than the combustion process. A large number of studies have been reported on a variety of biomass and agriculture residues for their possible use as renewable fuels. Considering the area specific agriculture residues and biomass availability and related transportation cost, it is important to explore various local biomass for their suitability as a fuel. Maharashtra (India) is the mainstay for the agriculture and therefore, produces a significant amount of waste biomass. The aim of the present research work is to analyze different local biomass wastes for their proximate analysis and calorific value to assess their potential as fuel. The biomass explored include cotton waste, leaf, soybean waste, wheat straw, rice straw, coconut coir, forest residues, etc. mainly due to their abundance. The calorific value and the proximate analysis of the different components of the biomass helped in assessing its potential for utilization in different industries. It is observed that ash content of these biomass species is quite low, while the volatile matter content is high as compared to Indian Coal. This may be appropriate for briquetting and thus can be used as a domestic fuel in biomass based gasifier cook stoves. Utilizing these biomass species as fuel in improved cook-stove and domestic gasifier cook-stoves would be a perspective step in the rural energy and

  5. Comparative study of different waste biomass for energy application.

    PubMed

    Motghare, Kalyani A; Rathod, Ajit P; Wasewar, Kailas L; Labhsetwar, Nitin K

    2016-01-01

    Biomass is available in many varieties, consisting of crops as well as its residues from agriculture, forestry, and the agro-industry. These different biomass find their way as freely available fuel in rural areas but are also responsible for air pollution. Emissions from such solid fuel combustion to indoor, regional and global air pollution largely depend on fuel types, combustion device, fuel properties, fuel moisture, amount of air supply for combustion and also on climatic conditions. In both economic and environment point of view, gasification constitutes an attractive alternative for the use of biomass as a fuel, than the combustion process. A large number of studies have been reported on a variety of biomass and agriculture residues for their possible use as renewable fuels. Considering the area specific agriculture residues and biomass availability and related transportation cost, it is important to explore various local biomass for their suitability as a fuel. Maharashtra (India) is the mainstay for the agriculture and therefore, produces a significant amount of waste biomass. The aim of the present research work is to analyze different local biomass wastes for their proximate analysis and calorific value to assess their potential as fuel. The biomass explored include cotton waste, leaf, soybean waste, wheat straw, rice straw, coconut coir, forest residues, etc. mainly due to their abundance. The calorific value and the proximate analysis of the different components of the biomass helped in assessing its potential for utilization in different industries. It is observed that ash content of these biomass species is quite low, while the volatile matter content is high as compared to Indian Coal. This may be appropriate for briquetting and thus can be used as a domestic fuel in biomass based gasifier cook stoves. Utilizing these biomass species as fuel in improved cook-stove and domestic gasifier cook-stoves would be a perspective step in the rural energy and

  6. Development of an extruder-feeder biomass direct liquefaction process

    SciTech Connect

    White, D.H.; Wolf, D. . Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt% wood flour in wood oil derived vacuum bottoms at pressures up to 3000 psi. The extruder-feeder has been integrated with a unique reactor by the University to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a high pressure reactor in the biomass liquefaction process. An experimental facility was constructed and following shakedown operations, wood crude oil was produced by mid-1985. By July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3000 psi and temperatures from 350{degree}C to 430{degree}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt% residual oxygen were produced. 38 refs., 82 figs., 26 tabs.

  7. Development of an extruder-feeder biomass direct liquefaction process

    SciTech Connect

    White, D.H.; Wolf, D. . Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt % wood flour in wood oil derived vacuum bottoms at pressures up to 3,000 psi. By comparison, conventional pumping systems are capable of pumping slurries containing only 10--20 wt % wood flour in wood oil under similar conditions. The extruder-feeder has been integrated with a unique reactor to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a 3,000 psi pressure reactor in the biomass liquefaction process. An experimental facility was constructed during 1983--84. Following shakedown operations, wood crude oil was produced by mid-1985. During the period January 1985 through July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3,000 psi and temperatures from 350{degrees}C to 430{degrees}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt % residual oxygen were produced. 43 refs., 81 figs., 52 tabs.

  8. Conditioning biomass for microbial growth

    DOEpatents

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  9. Biomass resources for alcohol fuels

    NASA Astrophysics Data System (ADS)

    MacDowell, J. E.

    The production of alcohol fuel from biomass represents a fast and practical means of adding to the dwindling petroleum supply. The biomass feed-stocks which will feed the alcohol distilleries must be carefully selected. Using food chain biomass crops for conversion to alcohol will cause a reduction in the amount of food available and increase the cost of food and alcohol feedstocks. The food chains should not be drastically interrupted, and agricultural economic balances should not be altered. Various alternatives to alcohol production are presented, which lie within the confines of selected biomass feedstocks and will not interrupt normal agricultural activities. A corn processing and distillation process is shown graphically as an example; the biomass to alcohol conversion potential of feedstocks is given, and the potential cropland for conversion in the U.S.A. is shown as a percentage of the nation's total land area.

  10. [Effects of land use type on the distribution of organic carbon in different sized soil particles effects of land use type on the distribution of organic carbon in different sized soil particles and its relationships to herb biomass in hilly red soil region of South China].

    PubMed

    Li, Zhong-Wu; Guo, Wang; Wang, Xiao-Yan; Shen, Wei-Ping; Zhang, Xue; Chen, Xiao-Lin; Zhang, Yue-Nan

    2012-04-01

    The changes in organic carbon content in different sized soil particles under different land use patterns partly reflect the variation of soil carbon, being of significance in revealing the process of soil organic carbon cycle. Based on the long-term monitoring of soil erosion, and by the methods of soil particle size fractionation, this paper studied the effects of different land use types (wasteland, pinewood land, and grassland) on the distribution of organic carbon content in different sized soil particles and its relationships to the herb biomass. Land use type and slope position had obvious effects on the organic carbon content in different sized soil particles, and the organic carbon content was in the order of grassland > pinewood land > wasteland. The proportion of the organic carbon in different sized soil particles was mainly depended on the land use type, and had little relationships with slope position. According to the analysis of the ratio of particle-associated organic carbon to mineral-associated organic carbon (POC/MOC), the soil organic carbon in grassland was easily to be mineralized, whereas that in wasteland and pinewood land was relatively stable. On the slopes mainly in hilly red soil region, the soil organic carbon in sand fraction had great effects on herb biomass. PMID:22803447

  11. [Effects of land use type on the distribution of organic carbon in different sized soil particles effects of land use type on the distribution of organic carbon in different sized soil particles and its relationships to herb biomass in hilly red soil region of South China].

    PubMed

    Li, Zhong-Wu; Guo, Wang; Wang, Xiao-Yan; Shen, Wei-Ping; Zhang, Xue; Chen, Xiao-Lin; Zhang, Yue-Nan

    2012-04-01

    The changes in organic carbon content in different sized soil particles under different land use patterns partly reflect the variation of soil carbon, being of significance in revealing the process of soil organic carbon cycle. Based on the long-term monitoring of soil erosion, and by the methods of soil particle size fractionation, this paper studied the effects of different land use types (wasteland, pinewood land, and grassland) on the distribution of organic carbon content in different sized soil particles and its relationships to the herb biomass. Land use type and slope position had obvious effects on the organic carbon content in different sized soil particles, and the organic carbon content was in the order of grassland > pinewood land > wasteland. The proportion of the organic carbon in different sized soil particles was mainly depended on the land use type, and had little relationships with slope position. According to the analysis of the ratio of particle-associated organic carbon to mineral-associated organic carbon (POC/MOC), the soil organic carbon in grassland was easily to be mineralized, whereas that in wasteland and pinewood land was relatively stable. On the slopes mainly in hilly red soil region, the soil organic carbon in sand fraction had great effects on herb biomass.

  12. Addressing neurological disorders with neuromodulation.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2011-07-01

    Neurological disorders are becoming increasingly common in developed countries as a result of the aging population. In spite of medications, these disorders can result in progressive loss of function as well as chronic physical, cognitive, and emotional disability that ultimately places enormous emotional and economic on the patient, caretakers, and the society in general. Neuromodulation is emerging as a therapeutic option in these patients. Neuromodulation is a field, which involves implantable devices that allow for the reversible adjustable application of electrical, chemical, or biological agents to the central or peripheral nervous system with the objective of altering its functioning with the objective of achieving a therapeutic or clinically beneficial effect. It is a rapidly evolving field that brings together many different specialties in the fields of medicine, materials science, computer science and technology, biomedical, and neural engineering as well as the surgical or interventional specialties. It has multiple current and emerging indications, and an enormous potential for growth. The main challenges before it are in the need for effective collaboration between engineers, basic scientists, and clinicians to develop innovations that address specific problems resulting in new devices and clinical applications. PMID:21193369

  13. Addressing neurological disorders with neuromodulation.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2011-07-01

    Neurological disorders are becoming increasingly common in developed countries as a result of the aging population. In spite of medications, these disorders can result in progressive loss of function as well as chronic physical, cognitive, and emotional disability that ultimately places enormous emotional and economic on the patient, caretakers, and the society in general. Neuromodulation is emerging as a therapeutic option in these patients. Neuromodulation is a field, which involves implantable devices that allow for the reversible adjustable application of electrical, chemical, or biological agents to the central or peripheral nervous system with the objective of altering its functioning with the objective of achieving a therapeutic or clinically beneficial effect. It is a rapidly evolving field that brings together many different specialties in the fields of medicine, materials science, computer science and technology, biomedical, and neural engineering as well as the surgical or interventional specialties. It has multiple current and emerging indications, and an enormous potential for growth. The main challenges before it are in the need for effective collaboration between engineers, basic scientists, and clinicians to develop innovations that address specific problems resulting in new devices and clinical applications.

  14. Gender: addressing a critical focus.

    PubMed

    Thornton, L; Wegner, M N

    1995-01-01

    The definition of gender was addressed at the Fourth World Conference on Women (Beijing, China). After extensive debate, the definition developed by the UN Population Fund in 1995 was adopted: "a set of qualities and behaviors expected from a female or male by society." The sustainability of family planning (FP) programs depends on acknowledgment of the role gender plays in contraceptive decision-making and use. For example, programs must consider the fact that women in many cultures do not make FP decisions without the consent of their spouse. AVSC is examining providers' gender-based ideas about clients and the effects of these views on the quality of reproductive health services. Questions such as how service providers can encourage joint responsibility for contraception without requiring spousal consent or how they can make men feel comfortable about using a male method in a society where FP is considered a woman's issue are being discussed. Also relevant is how service providers can discuss sexual matters openly with female clients in cultures that do not allow women to enjoy their sexuality. Another concern is the potential for physical violence to a client as a result of the provision of FP services. PMID:12294397

  15. Library outreach: addressing Utah's "Digital Divide".

    PubMed

    McCloskey, K M

    2000-10-01

    A "Digital Divide" in information and technological literacy exists in Utah between small hospitals and clinics in rural areas and the larger health care institutions in the major urban area of the state. The goals of the outreach program of the Spencer S. Eccles Health Sciences Library at the University of Utah address solutions to this disparity in partnership with the National Network of Libraries of Medicine-- Midcontinental Region, the Utah Department of Health, and the Utah Area Health Education Centers. In a circuit-rider approach, an outreach librarian offers classes and demonstrations throughout the state that teach information-access skills to health professionals. Provision of traditional library services to unaffiliated health professionals is integrated into the library's daily workload as a component of the outreach program. The paper describes the history, methodology, administration, funding, impact, and results of the program.

  16. Remediation tradeoffs addressed with simulated annealing optimization

    SciTech Connect

    Rogers, L. L., LLNL

    1998-02-01

    Escalation of groundwater remediation costs has encouraged both advances in optimization techniques to balance remediation objectives and economics and development of innovative technologies to expedite source region clean-ups. We present an optimization application building on a pump-and-treat model, yet assuming a prior removal of different portions of the source area to address the evolving management issue of more aggressive source remediation. Separate economic estimates of in-situ thermal remediation are combined with the economic estimates of the subsequent optimal pump-and-treat remediation to observe tradeoff relationships of cost vs. highest remaining contamination levels (hot spot). The simulated annealing algorithm calls the flow and transport model to evaluate the success of a proposed remediation scenario at a U.S.A. Superfund site contaminated with volatile organic compounds (VOCs).

  17. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect

    Sweeten, John; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B; Stewart, B A

    2012-05-02

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco—the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1

  18. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect

    John M. Sweeten, Kalyan Annamalai Brent Auvermann Saqib Mukhtar Sergio C. Capareda Cady Engler Wyatte Harman J.N. Reddy, Robert DeOtte David B. Parker Dr. B.A. Stewart

    2012-05-03

    The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1

  19. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect

    Sweeten, John M; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C.; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B.; Stewart, B. A.

    2012-05-03

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco -- the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1

  20. Addressing inconsistencies in black carbon literature

    NASA Astrophysics Data System (ADS)

    Shonkoff, S. B.; Chafe, Z.; Smith, K. R.

    2010-12-01

    The literature describing black carbon (BC) emissions, and their effect on Earth’s climate, is growing rapidly. Unfortunately, inconsistencies in definitions; data collection and characterization; system boundaries; and time horizons have led to confusion about the relative importance of BC compared to other climate-active pollutant (CAPs). We discuss three sources of confusion: 1) Currently available BC inventories are not directly comparable to those used by the IPCC to track the greenhouse gases (GHGs) considered in the Kyoto Protocol (CO2, CH4, N2O). In particular, BC inventories often include all emissions: natural and anthropogenic in origin, controllable and non-controllable. IPCC inventories include only anthropogenic emissions. This BC accounting is appropriate for atmospheric science deliberations, but risks being interpreted as an overstatement against official Kyoto GHG inventories in a policy or control context. The IPCC convention of using 1750 as the starting year for emission inventories further complicates matters: significant BC emissions were emitted previous to that date by both human and natural sources. Though none of the pre-1750 BC emissions remain in the atmosphere today, their legacy presents challenges in assigning historical responsibility for associated global warming among sectors and regional populations. 2) Inconsistencies exist in the specific emissions sources considered in atmospheric models used to predict net BC forcing often lead to widely varying climate forcing estimates. For example, while some analyses consider only fossil fuel 1, others include both open biomass burning and fossil fuel combustion 2, and yet others include sources beyond biomass and fossil fuel burning 3. 3) Inconsistencies exist in how analyses incorporate the relationship between BC emissions and the associated cooling aerosols and processes, such as organic carbon (OC), and aerosol indirect effects (AIE). Unlike Kyoto GHGs, BC is rarely emitted in pure

  1. Assessing aboveground tropical forest biomass using Google Earth canopy images.

    PubMed

    Ploton, Pierre; Pélissier, Raphaël; Proisy, Christophe; Flavenot, Théo; Barbier, Nicolas; Rai, S N; Couteron, Pierre

    2012-04-01

    Reducing Emissions from Deforestation and Forest Degradation (REDD) in efforts to combat climate change requires participating countries to periodically assess their forest resources on a national scale. Such a process is particularly challenging in the tropics because of technical difficulties related to large aboveground forest biomass stocks, restricted availability of affordable, appropriate remote-sensing images, and a lack of accurate forest inventory data. In this paper, we apply the Fourier-based FOTO method of canopy texture analysis to Google Earth's very-high-resolution images of the wet evergreen forests in the Western Ghats of India in order to (1) assess the predictive power of the method on aboveground biomass of tropical forests, (2) test the merits of free Google Earth images relative to their native commercial IKONOS counterparts and (3) highlight further research needs for affordable, accurate regional aboveground biomass estimations. We used the FOTO method to ordinate Fourier spectra of 1436 square canopy images (125 x 125 m) with respect to a canopy grain texture gradient (i.e., a combination of size distribution and spatial pattern of tree crowns), benchmarked against virtual canopy scenes simulated from a set of known forest structure parameters and a 3-D light interception model. We then used 15 1-ha ground plots to demonstrate that both texture gradients provided by Google Earth and IKONOS images strongly correlated with field-observed stand structure parameters such as the density of large trees, total basal area, and aboveground biomass estimated from a regional allometric model. Our results highlight the great potential of the FOTO method applied to Google Earth data for biomass retrieval because the texture-biomass relationship is only subject to 15% relative error, on average, and does not show obvious saturation trends at large biomass values. We also provide the first reliable map of tropical forest aboveground biomass predicted

  2. Treatment of biomass to obtain fermentable sugars

    DOEpatents

    Dunson, Jr., James B.; Tucker, Melvin; Elander, Richard; Hennessey, Susan M.

    2011-04-26

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  3. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    SciTech Connect

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  4. Comparison of Biomass Burning Smoke Plume Models

    NASA Astrophysics Data System (ADS)

    Carlson, L. J.; Mason, S. A.; Trentmann, J.; Winterrath, T.; Christian, T. J.; Yokelson, R. J.; Andreae, M. O.; Hobbs, P. V.

    2003-12-01

    Biomass burning is known to inject considerable quantities of trace gases into the atmosphere. Recent laboratory, field, and modeling studies have shown that significant atmospheric transformations occur within the vicinity of fire events before these emissions are released into the regional atmosphere. Understanding the local-scale transformations is an important parameter for inclusion into larger, global tropospheric models. An inter-model comparison was carried out between two independently developed zero-dimensional, gas-phase tropospheric models used to describe the photochemical evolution of young biomass burning smoke plumes. One of these models was developed and operated at the Max Planck Institute in Mainz, Germany; the second was constructed at the University of Montana- Missoula and is currently run at SUNY Fredonia. Identical initial parameters used in both models were taken from field measurements of biomass burning events under very different fire conditions (African savanna and Alaskan forest/shrub/bog mixture). The Fredonia model predicts slightly different chemistry than the Mainz model, which results in higher radical concentrations and lower PAN production when the same initial conditions are applied. Differences in the simulated results may be attributed to subtle differences in the calculation of photolytic rate constants and the modeled tropospheric chemistry. We survey the differences in model construction and the outcomes.

  5. Plasma Treatments and Biomass Gasification

    NASA Astrophysics Data System (ADS)

    Luche, J.; Falcoz, Q.; Bastien, T.; Leninger, J. P.; Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J. M.; Lédé, J.

    2012-02-01

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  6. BSCL Use Plan: Solving Biomass Recalcitrance

    SciTech Connect

    Himmel, M.; Vinzant, T.; Bower, S.; Jechura, J.

    2005-08-01

    Technical report describing NREL's new Biomass Surface Characterization Laboratory (BSCL). The BSCL was constructed to provide the most modern commercial surface characterization equipment for studying biomass surfaces.

  7. Putting urban biomass on the map: contrasting case studies from three climactic zones

    NASA Astrophysics Data System (ADS)

    Raciti, S. M.; Hutyra, L.; Rao, P.; McHale, M. R.

    2012-12-01

    There is evidence that urban vegetation can provide important ecosystem services, however, existing maps of vegetation biomass tend to exclude developed land uses or report them as having little or no biomass. We used field and remote sensing data from the Boston, MA, Seattle, WA, and Phoenix Arizona metropolitan areas to 1) assess the potential for predicting urban biomass from remote sensing data, 2) explore the influence of land use and climate on urban biomass, 3) generate new biomass maps that explicitly include urban land uses, and 4) compare these biomass maps to existing products. For each metropolitan area, vegetation biomass was estimated for field plots using tree/shrub species, diameter at breast height (DBH) or ground level (DGL), and allometric equations. These field data were paired with geospatial data to assess the potential for creating vegetation biomass maps for each metropolitan area. The geospatial data included land use, land cover, impervious surface fraction, population density, and two remotely-sensed vegetation indices (Normalized Difference Vegetation Index [NDVI] and Enhanced Vegetation Index [EVI]). Preliminary findings suggest that the ability to predict biomass from remote sensing data varies with land use, climate, and dominant vegetation type. Existing vegetation biomass maps may considerably underestimate biomass, particularly in regions with extensive urban land cover. Urban areas are rapidly expanding and future development patterns will have significant impacts on terrestrial carbon stocks, anthropogenic emissions, and the ecosystem services provided by remnant and regrowing vegetation.

  8. Methods and apparatus for catalytic hydrothermal gasification of biomass

    DOEpatents

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  9. GASIFICATION BASED BIOMASS CO-FIRING - PHASE I

    SciTech Connect

    Babul Patel; Kevin McQuigg; Robert F. Toerne

    2001-12-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.

  10. Catalytic gasification of biomass

    NASA Astrophysics Data System (ADS)

    Robertus, R. J.; Mudge, L. K.; Sealock, L. J., Jr.; Mitchell, D. H.; Weber, S. L.

    1981-12-01

    Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. This concept is to use catalysts in a fluidized bed reactor which is heated indirectly. The objective is to determine the technical and economic feasibility of the concept. Technically the concept has been demonstrated on a 50 lb per hr scale. Potential advantages over conventional processes include: no oxygen plant is needed, little tar is produced so gas and water treatment are simplified, and yields and efficiencies are greater than obtained by conventional gasification. Economic studies for a plant processing 2000 T/per day dry wood show that the cost of methanol from wood by catalytic gasification is competitive with the current price of methanol. Similar studies show the cost of methane from wood is competitive with projected future costs of synthetic natural gas. When the plant capacity is decreased to 200 T per day dry wood, neither product is very attractive in today's market.

  11. Delano Biomass Power Plant

    SciTech Connect

    Middleton, M.; Hendershaw, W.K.; Corbin, H.R.; Taylor, T.A.

    1995-12-31

    The Delano Biomass Power Plant utilizes orchard prunings, urban wood waste, almond shells, and cotton stalks to fuel a boiler for steam generation. The steam is condensed in a steam turbine/generator to produce 31.8 MW of power. The electrical power generated (27 MW net) is then sold to Southern California Edison Co. for distribution. By incorporating a cooling tower, demineralizer, brine concentration tower, and evaporation ponds this system is able to achieve zero discharge. Steam at 97{degrees}F is condensed with cooling water. The cooling water is recirculated through an evaporator tower. Due to the temperature of the water entering the tower (83{degrees}F), evaporation occurs leaving behind concentrated salts. A blowdown is used to remove these salts from the tower. Losses from evaporation or leaks require make up to the tower. Wastewater from various processes in the plant are passed to a brine concentration tower. This concentrate is then taken to the evaporation ponds. Concentrated blowdown of small volumes (approximately 2-4 gpm) from the brine tower is disposed of in evaporation ponds.

  12. The estimation of microbial biomass.

    PubMed

    Harris, C M; Kell, D B

    1985-01-01

    Methods that have been used to estimate the content, and in some cases the nature, of the microbial biomass in a sample are reviewed. The methods may be categorised in terms of their principle (physical, chemical, biological or mathematical/computational), their speed (real-time or otherwise) and the amount of automation/expense involved. For sparse populations, where the output signal is to be enhanced by growth of the organisms, physical, chemical and biological approaches may be of equal merit, whilst in systems, such as laboratory and industrial fermentations, in which the microbial biomass content is high, physical methods (alone) can permit the real-time estimation of microbial biomass.

  13. Impact Assessment of Biomass Burning on Air Quality in Southeast and East Asia During BASE-ASIA

    NASA Technical Reports Server (NTRS)

    Huang, Kan; Fu, Joshua S.; Hsu, N. Christina; Gao, Yang; Dong, Xinyi; Tsay, Si-Chee; Lam, Yun Fat

    2013-01-01

    A synergy of numerical simulation, ground-based measurement and satellite observation was applied to evaluate the impact of biomass burning originating from Southeast Asia (SE Asia) within the framework of NASA's 2006 Biomass burning Aerosols in Southeast Asia: Smoke Impact Assessment (BASE-ASIA). Biomass burning emissions in the spring of 2006 peaked in MarcheApril when most intense biomass burning occurred in Myanmar, northern Thailand, Laos, and parts of Vietnam and Cambodia. Model performances were reasonably validated by comparing to both satellite and ground-based observations despite overestimation or underestimation occurring in specific regions due to high uncertainties of biomass burning emission. Chemical tracers of particulate K(+), OC concentrations, and OC/EC ratios showed distinct regional characteristics, suggesting biomass burning and local emission dominated the aerosol chemistry. CMAQ modeled aerosol chemical components were underestimated at most circumstances and the converted AOD values from CMAQ were biased low at about a factor of 2, probably due to the underestimation of biomass emissions. Scenario simulation indicated that the impact of biomass burning to the downwind regions spread over a large area via the Asian spring monsoon, which included Southern China, South China Sea, and Taiwan Strait. Comparison of AERONET aerosol optical properties with simulation at multi-sites clearly demonstrated the biomass burning impact via longrange transport. In the source region, the contribution from biomass burning to AOD was estimated to be over 56%. While in the downwind regions, the contribution was still significant within the range of 26%-62%.

  14. Washington State biomass data book

    SciTech Connect

    Deshaye, J.A.; Kerstetter, J.D.

    1991-07-01

    This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

  15. Plant biomass degradation by fungi.

    PubMed

    Mäkelä, Miia R; Donofrio, Nicole; de Vries, Ronald P

    2014-11-01

    Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the topic is highly relevant in the field of plant pathogenic fungi as they degrade plant biomass to either gain access to the plant or as carbon source, resulting in significant crop losses. Finally, fungi are the main degraders of plant biomass in nature and as such have an essential role in the global carbon cycle and ecology in general. In this review we provide a global view on the development of this research topic in saprobic ascomycetes and basidiomycetes and in plant pathogenic fungi and link this to the other papers of this special issue on plant biomass degradation by fungi. PMID:25192611

  16. Plant biomass degradation by fungi.

    PubMed

    Mäkelä, Miia R; Donofrio, Nicole; de Vries, Ronald P

    2014-11-01

    Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the topic is highly relevant in the field of plant pathogenic fungi as they degrade plant biomass to either gain access to the plant or as carbon source, resulting in significant crop losses. Finally, fungi are the main degraders of plant biomass in nature and as such have an essential role in the global carbon cycle and ecology in general. In this review we provide a global view on the development of this research topic in saprobic ascomycetes and basidiomycetes and in plant pathogenic fungi and link this to the other papers of this special issue on plant biomass degradation by fungi.

  17. Long-term biomass research

    SciTech Connect

    Not Available

    1981-03-01

    Some of DOE's long term R and D programs for biomass are summarized in this article. These include research efforts in the fields of anaerobic digestion, energy farming, short rotation cultivation and aquatic farming. (DMC)

  18. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect

    Kalyan Annamalai, John M. Sweeten, Brent W. Auvermann, Saqib Mukhtar, Sergio Caperada Cady R. Engler, Wyatte Harman Reddy JN Robert Deotte

    2012-05-03

    The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1

  19. Evaluation of SPOT imagery for the estimation of grassland biomass

    NASA Astrophysics Data System (ADS)

    Dusseux, P.; Hubert-Moy, L.; Corpetti, T.; Vertès, F.

    2015-06-01

    In many regions, a decrease in grasslands and change in their management, which are associated with agricultural intensification, have been observed in the last half-century. Such changes in agricultural practices have caused negative environmental effects that include water pollution, soil degradation and biodiversity loss. Moreover, climate-driven changes in grassland productivity could have serious consequences for the profitability of agriculture. The aim of this study was to assess the ability of remotely sensed data with high spatial resolution to estimate grassland biomass in agricultural areas. A vegetation index, namely the Normalized Difference Vegetation Index (NDVI), and two biophysical variables, the Leaf Area Index (LAI) and the fraction of Vegetation Cover (fCOVER) were computed using five SPOT images acquired during the growing season. In parallel, ground-based information on grassland growth was collected to calculate biomass values. The analysis of the relationship between the variables derived from the remotely sensed data and the biomass observed in the field shows that LAI outperforms NDVI and fCOVER to estimate biomass (R2 values of 0.68 against 0.30 and 0.50, respectively). The squared Pearson correlation coefficient between observed and estimated biomass using LAI derived from SPOT images reached 0.73. Biomass maps generated from remotely sensed data were then used to estimate grass reserves at the farm scale in the perspective of operational monitoring and forecasting.

  20. A Cross-Sectional Study of Household Biomass Fuel Use among a Periurban Population in Malawi

    PubMed Central

    Piddock, Katy C.; Gordon, Stephen B.; Ngwira, Andrew; Msukwa, Malango; Nadeau, Gilbert; Davis, Kourtney J.; Nyirenda, Moffat J.; Mortimer, Kevin

    2016-01-01

    Rationale The Global Burden of Disease Study suggests almost 3.5 million people die as a consequence of household air pollution every year. Respiratory diseases including chronic obstructive pulmonary disease and pneumonia in children are strongly associated with exposure to household air pollution. Smoke from burning biomass fuels for cooking, heating, and lighting is the main contributor to high household air pollution levels in low-income countries like Malawi. A greater understanding of biomass fuel use in Malawi should enable us to address household air pollution–associated communicable and noncommunicable diseases more effectively. Objectives To conduct a cross-sectional analysis of biomass fuel use and population demographics among adults in Blantyre, Malawi. Methods We used global positioning system–enabled personal digital assistants to collect data on location, age, sex, marital status, education, occupation, and fuel use. We describe these data and explore associations between demographics and reported fuel type. Measurements and Main Results A total of 16,079 adults participated (nine households refused); median age was 30 years, there was a similar distribution of men and women, 60% were married, and 62% received secondary school education. The most commonly reported occupation for men and women was “salaried employment” (40.7%) and “petty trader and marketing” (23.5%), respectively. Charcoal (81.5% of households), wood (36.5%), and electricity (29.1%) were the main fuels used at home. Only 3.9% of households used electricity exclusively. Lower educational and occupational attainment was associated with greater use of wood. Conclusions This large cross-sectional study has identified extensive use of biomass fuels in a typical sub-Saharan Africa periurban population in which women and people of lower socioeconomic status are disproportionately affected. Biomass fuel use is likely to be a major driver of existing communicable respiratory

  1. Biomass energy systems program summary

    NASA Astrophysics Data System (ADS)

    1980-07-01

    Research and development in appropriate conversion technologies is reported. The technologies include direct combustion, biochemical conversion, and thermochemical conversion techniques. Biomass sources were reviewed. Estimates indicate that the conversion of unused agricultural residues, forestry residues, and noncommercial timber growth can provide 6 to 10% of the national energy needs. The use of biomass energy conversion in fuel production, chemical production, residential space heating, and electricity supplies is discussed.

  2. Bimetallic catalysts for upgrading of biomass to fuels and chemicals.

    PubMed

    Alonso, David Martin; Wettstein, Stephanie G; Dumesic, James A

    2012-12-21

    Research interest in biomass conversion to fuels and chemicals has increased significantly in the last decade as the necessity for a renewable source of carbon has become more evident. Accordingly, many different reactions and processes to convert biomass into high-value products and fuels have been proposed in the literature. Special attention has been given to the conversion of lignocellulosic biomass, which does not compete with food sources and is widely available as a low cost feedstock. In this review, we start with a brief introduction on lignocellulose and the different chemical structures of its components: cellulose, hemicellulose, and lignin. These three components allow for the production of different chemicals after fractionation. After a brief overview of the main reactions involved in biomass conversion, we focus on those where bimetallic catalysts are playing an important role. Although the reactions are similar for cellulose and hemicellulose, which contain C(6) and C(5) sugars, respectively, different products are obtained, and therefore, they have been reviewed separately. The third major fraction of lignocellulose that we address is lignin, which has significant challenges to overcome, as its structure makes catalytic processing more challenging. Bimetallic catalysts offer the possibility of enabling lignocellulosic processing to become a larger part of the biofuels and renewable chemical industry. This review summarizes recent results published in the literature for biomass upgrading reactions using bimetallic catalysts. PMID:22872312

  3. Temporal and spatial variation in switchgrass biomass composition and theoretical ethanol yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on temporal and spatial variation in switchgrass (Panicum virgatum L.) biomass composition as it affects ethanol yield (L Mg-1) at a biorefinery and ethanol production (L ha-1) at the field scale has previously not been available. Switchgrass biomass samples were collected from a region...

  4. 77 FR 10718 - Request for Proposals: 2012 Hazardous Fuels Woody Biomass Utilization Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ..., including holidays. ] Correction In the Federal Register of February 6, 2012, in FR DOC 2012-2545 on page... Forest Service Request for Proposals: 2012 Hazardous Fuels Woody Biomass Utilization Grant Program AGENCY... regulations, contact your appropriate Forest Service Regional Biomass Coordinator as listed in the...

  5. The potential for biomass to mitigate greenhouse gas emissions in the Northeastern US

    SciTech Connect

    Bernow, S.S.; Gurney, K.; Prince, G.; Cyr, M.

    1992-04-01

    This study, for the Northeast Regional Biomass Program (NRBP) of the Coalition of Northeast Governors (CONEG), evaluates the potential for local, state and regional biomass policies to contribute to an overall energy/biomass strategy for the reduction of greenhouse gas releases in the Northeastern United States. Biomass is a conditionally renewable resource that can play a dual role: by reducing emissions of greenhouse gases in meeting our energy needs; and by removing carbon from the atmosphere and sequestering it in standing biomass stocks and long-lived products. In this study we examine the contribution of biomass to the energy system in the Northeast and to the region's net releases of carbon dioxide and methane, and project these releases over three decades, given a continuation of current trends and policies. We then compare this Reference Case with three alternative scenarios, assuming successively more aggressive efforts to reduce greenhouse gas emissions through strategic implementation of energy efficiency and biomass resources. Finally, we identify and examine policy options for expanding the role of biomass in the region's energy and greenhouse gas mitigation strategies.

  6. Cover crop biomass production and water use in the central great plains under varying water availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...

  7. Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-08-22

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  8. Potential for biomass electricity in four Asian countries

    SciTech Connect

    Kinoshita, C.M.; Turn, S.Q.; Tantlinger, J.; Kaya, M.

    1997-12-31

    Of all forms of renewable energy, biomass offers the best near-term opportunity for supplying a significant portion of the world`s need for electric power. Biomass is especially competitive when fuel supply costs are partially defrayed as production activities associated with the processing of another product, e.g., sugar, rice, or vegetable oil. Not only do such processing situations provide cost savings, they also generate very large supplies of fuel and therefore can contribute significantly to the local energy mix. Access to ample supplies of competitively-priced biomass feedstocks is only one of several factors needed to encourage the use of biomass for power generation; equally important is a healthy market for electricity, i.e., need for large blocks of additional power and sufficient strength in the economy to attract investment in new capacity. Worldwide, the Asia-Pacific region is projected to have the greatest need for new generating capacity in the next decade and shows the highest rate of economic growth, making it an attractive market for biomass power. Also critical to the expansion of bioenergy is the adoption of positive, stable policies on energy production, distribution, and sale, that encourage the generation and use of electricity from biomass. The aforementioned three factors--adequate biomass supplies, increasing demand for electricity, and supportive policies--are examined for four Asian countries, the Philippines, Thailand, Malaysia, and Indonesia. Information presented for each of the four countries include the types and amounts of bioresidues and their associated electric power generation potential; present and future supplies and demand for electricity; and existing or planned government and utility policies that could impact the generation and use of biomass power.

  9. Impact of biomass burning on the atmosphere

    SciTech Connect

    Dignon, J.

    1993-03-01

    Fire has played an important part in biogeochemical cycling throughout most of the history of our planet. Ice core studies have been very beneficial in paleoclimate studies and constraining the budgets of biogeochemical cycles through the past 160,000 years of the Vostok ice core. Although to date there has been no way of determining cause and effect, concentration of greenhouse gases directly correlates with temperature in ice core analyses. Recent ice core studies on Greenland have shown that significant climate change can be very rapid on the order of a decade. This chapter addresses the coupled evolution of our planet`s atmospheric composition and biomass burning. Special attention is paid to the chemical and climatic impacts of biomass burning on the atmosphere throughout the last century, specifically looking at the cycles of carbon, nitrogen, and sulfur. Information from ice core measurements may be useful in understanding the history of fire and its historic affect on the composition of the atmosphere and climate.

  10. Carbonic Acid Retreatment of Biomass

    SciTech Connect

    Baylor university

    2003-06-01

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. (1) Solidify the theoretical understanding of the binary CO{sub 2}/H{sub 2}O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. (2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. (3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. (4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. (5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for

  11. Carbonic Acid Pretreatment of Biomass

    SciTech Connect

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic

  12. Assessment of Biomass Pelletization Options for Greensburg, Kansas

    SciTech Connect

    Haase, S.

    2010-05-01

    This report provides an overview of a technical report on an assessment NREL conducted in Greensburg, Kansas, to identify potential opportunities to develop a biomass pelletization or briquetting plant in the region. See NREL/TP-7A2-45843 for the Executive Summary of this report.

  13. Biomass conversion processes for energy and fuels

    NASA Astrophysics Data System (ADS)

    Sofer, S. S.; Zaborsky, O. R.

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  14. Hot Corrosion of Nickel-Base Alloys in Biomass-Derived Fuel Simulated Atmosphere

    SciTech Connect

    Leyens, C.; Pint, B.A.; Wright, I.G.

    1999-02-28

    Biomass fuels are considered to be a promising renewable source of energy. However, impurities present in the fuel may cause corrosion problems with the materials used in the hot sections of gas turbines and only limited data are available so far. As part of the Advanced Turbine Systems Program initiated by the U.S. Department of Energy, the present study provides initial data on the hot corrosion resistance of different nickel-base alloys against sodium sulfate-induced corrosion as a baseline, and against salt compositions simulating biomass-derived fuel deposits. Single crystal nickel-superalloy Rene N5, a cast NiCrAlY alloy, a NiCoCrAlY alloy representing industrially used overlay compositions, and a model {beta}NiAl+Hf alloy were tested in 1h thermal cycles at 950 C with different salt coatings deposited onto the surfaces. Whereas the NiCoCrAlY alloy exhibited reasonable resistance against pure sodium sulfate deposits, the NiCrAiY alloy and Rene N5 were attacked severely. Although considered to be an ideal alumina former in air and oxygen at higher temperatures, {beta}NiAl+Hf also suffered from rapid corrosion attack at 950 C when coated with sodium sulfate. The higher level of potassium present in biomass fuels compared with conventional fuels was addressed by testing a NiCoCrAlY alloy coated with salts of different K/Na atomic ratios. Starting at zero Na, the corrosion rate increased considerably when sodium was added to potassium sulfate. In an intermediate region the corrosion rate was initially insensitive to the K/Na ratio but accelerated when very Na-rich compositions were deposited. The key driver for corrosion of the NiCoCrAlY alloy was sodium sulfate rather than potassium sulfate, and no simple additive or synergistic effect of combining sodium and potassium was found.

  15. CCCC Chair's Address: Representing Ourselves, 2008

    ERIC Educational Resources Information Center

    Glenn, Cheryl

    2008-01-01

    This article presents the text of the author's address at the fifty-ninth annual convention of the Conference on College Composition and Communication (CCCC) in March 2008. In her address, the author picks up strands of previous Chairs' addresses and weaves them through the fabric of her remarks. What she hopes will give sheen to the fabric is her…

  16. 32 CFR 516.7 - Mailing addresses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Mailing addresses. 516.7 Section 516.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS LITIGATION General § 516.7 Mailing addresses. Mailing addresses for organizations referenced...

  17. 47 CFR 13.10 - Licensee address.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Licensee address. 13.10 Section 13.10 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL RADIO OPERATORS General § 13.10 Licensee address. In accordance with § 1.923 of this chapter all applications must specify an address where...

  18. 75 FR 49813 - Change of Address

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... COMMISSION 11 CFR Parts 9405, 9407, 9409, 9410, 9420, and 9428 Change of Address AGENCY: United States... Assistance Commission (EAC) is amending its regulations to reflect a change of address for its headquarters. This technical amendment is a nomenclature change that updates and corrects the address for...

  19. 77 FR 48429 - Commission Address Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... HEALTH REVIEW COMMISSION 29 CFR Parts 2700, 2701, 2702, 2704, 2705, 2706 Commission Address Change AGENCY... to inform the public of the address change. DATES: This final rule will take effect on August 27... because the amendments are of a minor and administrative nature dealing with only a change in address....

  20. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  1. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  2. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  3. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  4. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  5. Is current biochar soil study addressing global soil constraints for sustainable agriculture?

    NASA Astrophysics Data System (ADS)

    Pan, Genxing; Zhang, Dengxiao; Yan, Ming; Niu, Yaru; Liu, Xiaoyu; van Zwieten, Lukas; Chen, De; Bian, Rongjun; Cheng, Kun; Li, Lianqing; Joseph, Stephen; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Crowley, David; Filley, Timothy

    2016-04-01

    Global soil degradation has been increasingly threatened sustainability of world agriculture. Use of biochar from bio-wastes has been proposed as a global option for its great potential in tackling soil degradation and mitigating climate change in agriculture. For last 10 years, there have been greatly increasing interests in application of charred biomass, more recently termed biochar, as a soil amendment for addressing soil constraints for sustainable agriculture. Biochar soil studies could deliver reliable information for appropriate application of biochar to soils where for sustainable agriculture has been challenged. Here we review the literature of 798 publications reporting biochar soil studies by August, 2015 to address potential gaps in understanding of biochar's role in agriculture. We have found some substantial biases and gaps inherent in the current biochar studies. 1) The majority of published studies were from developed regions where the soils are less constrained and were much more frequent in laboratory and glasshouse pot experiments than field studies under realistic agriculture. 2) The published biochar soil studies have used more often small kiln or lab prepared biochar than commercial scale biochars, more often wood and municipal waste derived biochars than crop straw biochars. Overall, the lack of long-term well designed field studies using biochar produced in commercial processes may have limited our current understanding of biochar's potential to enhance global crop production and climate change mitigation. We have also recommended a global alliance between longer-term research experiments and biochar production facilities to foster the uptake of this important technology at a global scale. Keywords: biochar, soil study, literature review, research gap, global perspective, quantitative assessment, sustainable agriculture

  6. Pyrolytic sugars from cellulosic biomass

    NASA Astrophysics Data System (ADS)

    Kuzhiyil, Najeeb

    Sugars are the feedstocks for many promising advanced cellulosic biofuels. Traditional sugars derived from starch and sugar crops are limited in their availability. In principle, more plentiful supply of sugars can be obtained from depolymerization of cellulose, the most abundant form of biomass in the world. Breaking the glycosidic bonds between the pyranose rings in the cellulose chain to liberate glucose has usually been pursued by enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily levoglucosan, an anhydrosugar that can be hydrolyzed to glucose. However, naturally occurring alkali and alkaline earth metals (AAEM) in biomass are strongly catalytic toward ring-breaking reactions that favor formation of light oxygenates over anhydrosugars. Removing the AAEM by washing was shown to be effective in increasing the yield of anhydrosugars; but this process involves removal of large amount of water from biomass that renders it energy intensive and thereby impractical. In this work passivation of the AAEM (making them less active or inactive) using mineral acid infusion was explored that will increase the yield of anhydrosugars from fast pyrolysis of biomass. Mineral acid infusion was tried by previous researchers, but the possibility of chemical reactions between infused acid and AAEM in the biomass appears to have been overlooked, possibly because metal cations might be expected to already be substantially complexed to chlorine or other strong anions that are found in biomass. Likewise, it appears that previous researchers assumed that as long as AAEM cations were in the biomass, they would be catalytically active regardless of the nature of their complexion with anions. On the contrary, we hypothesized that AAEM can be converted to inactive or less active salts using mineral acids. Various biomass feedstocks were infused with mineral (hydrochloric, nitric, sulfuric and

  7. The Spatial Distribution of Forest Biomass in the Brazilian Amazon: A Comparison of Estimates

    NASA Technical Reports Server (NTRS)

    Houghton, R. A.; Lawrence, J. L.; Hackler, J. L.; Brown, S.

    2001-01-01

    The amount of carbon released to the atmosphere as a result of deforestation is determined, in part, by the amount of carbon held in the biomass of the forests converted to other uses. Uncertainty in forest biomass is responsible for much of the uncertainty in current estimates of the flux of carbon from land-use change. We compared several estimates of forest biomass for the Brazilian Amazon, based on spatial interpolations of direct measurements, relationships to climatic variables, and remote sensing data. We asked three questions. First, do the methods yield similar estimates? Second, do they yield similar spatial patterns of distribution of biomass? And, third, what factors need most attention if we are to predict more accurately the distribution of forest biomass over large areas? Amazonian forests (including dead and below-ground biomass) vary by more than a factor of two, from a low of 39 PgC to a high of 93 PgC. Furthermore, the estimates disagree as to the regions of high and low biomass. The lack of agreement among estimates confirms the need for reliable determination of aboveground biomass over large areas. Potential methods include direct measurement of biomass through forest inventories with improved allometric regression equations, dynamic modeling of forest recovery following observed stand-replacing disturbances (the approach used in this research), and estimation of aboveground biomass from airborne or satellite-based instruments sensitive to the vertical structure plant canopies.

  8. Managed Migration: The Caribbean Approach to Addressing Nursing Services Capacity

    PubMed Central

    Salmon, Marla E; Yan, Jean; Hewitt, Hermi; Guisinger, Victoria

    2007-01-01

    Objective To (1) provide a contextual analysis of the Caribbean region with respect to forces shaping the current and emerging nursing workforce picture in the region; (2) discuss country-specific case(s) within the Caribbean; and (3) describe the Managed Migration Program as a potential framework for addressing regional and global nurse migration issues. Principal Findings The Caribbean is in the midst of a crisis of shortages of nurses with an average vacancy rate of 42 percent. Low pay, poor career prospects, and lack of education opportunities are among the reasons nurses resign. Many of these nurses look outside the region for job opportunities in the United Kingdom, Canada, the United States, and other countries. Compounding the situation is the lack of resources to train nurses to fill the vacancies. The Managed Migration Program of the Caribbean is a multilateral, cross-sector, multi-interventional, long-term strategy for developing and maintaining an adequate supply of nurses for the region. Conclusions The Managed Migration Program of the Caribbean has made progress in establishing regional support for addressing the nursing shortage crisis and developing a number of interesting initiatives such as training for export and temporary migration. Recommendations to move the Managed Migration Program of the Caribbean forward focus on advocacy, integration of the program into regional policy decisions, and integration of the program with regional health programming. PMID:17489919

  9. First Biomass Conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 2

    SciTech Connect

    Not Available

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this second volume cover Transportation Fuels, and Chemicals and Products. Transportation Fuels topics include: Biodiesel, Pyrolytic Liquids, Ethanol, Methanol and Ethers, and Commercialization. The Chemicals and Products section includes specific topics in: Research, Technology Transfer, and Commercial Systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  10. Landscape ecological planning: Integrating land use and wildlife conservation for biomass crops

    SciTech Connect

    Schiller, A.

    1995-12-31

    What do a mussel shoat, a zoo, and a biomass plantation have in common? Each can benefit from ecology-based landscape planning. This paper provides examples of landscape ecological planning from some diverse projects the author has worked on, and discusses how processes employed and lessons learned from these projects are being used to help answer questions about the effects of biomass plantings (hardwood tree crops and native grasses) on wildlife habitat. Biomass environmental research is being designed to assess how plantings of different acreage, composition and landscape context affect wildlife habitat value, and is addressing the cumulative effect on wildlife habitat of establishing multiple biomass plantations across the landscape. Through landscape ecological planning, answers gleaned from research can also help guide biomass planting site selection and harvest strategies to improve habitat for native wildlife species within the context of economically viable plantation management - thereby integrating the needs of people with those of the environment.

  11. First Biomass Conference of the Americas: Energy, Environment, Agriculture, and Industry, volume 2

    NASA Astrophysics Data System (ADS)

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: resource base, power production, transportation fuels, chemicals and products, environmental issues, commercializing biomass projects, biomass energy system studies, and biomass in latin america. The papers in this second volume cover transportation fuels, and chemicals and products. Transportation fuels topics include: biodiesel, pyrolytic liquids, ethanol, methanol and ethers, and commercialization. The chemicals and products section includes specific topics in: research, technology transfer, and commercial systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. Remotely-sensed indicators of N-related biomass allocation in Schoenoplectus acutus

    USGS Publications Warehouse

    O’Connell, Jessica L.; Byrd, Kristin B.; Kelly, Maggi

    2014-01-01

    Coastal marshes depend on belowground biomass of roots and rhizomes to contribute to peat and soil organic carbon, accrete soil and alleviate flooding as sea level rises. For nutrient-limited plants, eutrophication has either reduced or stimulated belowground biomass depending on plant biomass allocation response to fertilization. Within a freshwater wetland impoundment receiving minimal sediments, we used experimental plots to explore growth models for a common freshwater macrophyte, Schoenoplectus acutus. We used N-addition and control plots (4 each) to test whether remotely sensed vegetation indices could predict leaf N concentration, root:shoot ratios and belowground biomass of S. acutus. Following 5 months of summer growth, we harvested whole plants, measured leaf N and total plant biomass of all above and belowground vegetation. Prior to harvest, we simulated measurement of plant spectral reflectance over 164 hyperspectral Hyperion satellite bands (350–2500 nm) with a portable spectroradiometer. N-addition did not alter whole plant, but reduced belowground biomass 36% and increased aboveground biomass 71%. We correlated leaf N concentration with known N-related spectral regions using all possible normalized difference (ND), simple band ratio (SR) and first order derivative ND (FDN) and SR (FDS) vegetation indices. FDN1235, 549 was most strongly correlated with leaf N concentration and also was related to belowground biomass, the first demonstration of spectral indices and belowground biomass relationships. While S. acutus exhibited balanced growth (reduced root:shoot ratio with respect to nutrient addition), our methods also might relate N-enrichment to biomass point estimates for plants with isometric root growth. For isometric growth, foliar N indices will scale equivalently with above and belowground biomass. Leaf N vegetation indices should aid in scaling-up field estimates of biomass and assist regional monitoring.

  13. Remotely-Sensed Indicators of N-Related Biomass Allocation in Schoenoplectus acutus

    PubMed Central

    O’Connell, Jessica L.; Byrd, Kristin B.; Kelly, Maggi

    2014-01-01

    Coastal marshes depend on belowground biomass of roots and rhizomes to contribute to peat and soil organic carbon, accrete soil and alleviate flooding as sea level rises. For nutrient-limited plants, eutrophication has either reduced or stimulated belowground biomass depending on plant biomass allocation response to fertilization. Within a freshwater wetland impoundment receiving minimal sediments, we used experimental plots to explore growth models for a common freshwater macrophyte, Schoenoplectus acutus. We used N-addition and control plots (4 each) to test whether remotely sensed vegetation indices could predict leaf N concentration, root:shoot ratios and belowground biomass of S. acutus. Following 5 months of summer growth, we harvested whole plants, measured leaf N and total plant biomass of all above and belowground vegetation. Prior to harvest, we simulated measurement of plant spectral reflectance over 164 hyperspectral Hyperion satellite bands (350–2500 nm) with a portable spectroradiometer. N-addition did not alter whole plant, but reduced belowground biomass 36% and increased aboveground biomass 71%. We correlated leaf N concentration with known N-related spectral regions using all possible normalized difference (ND), simple band ratio (SR) and first order derivative ND (FDN) and SR (FDS) vegetation indices. FDN1235, 549 was most strongly correlated with leaf N concentration and also was related to belowground biomass, the first demonstration of spectral indices and belowground biomass relationships. While S. acutus exhibited balanced growth (reduced root:shoot ratio with respect to nutrient addition), our methods also might relate N-enrichment to biomass point estimates for plants with isometric root growth. For isometric growth, foliar N indices will scale equivalently with above and belowground biomass. Leaf N vegetation indices should aid in scaling-up field estimates of biomass and assist regional monitoring. PMID:24614037

  14. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia.

    PubMed

    Bhardwaj, P; Naja, M; Kumar, R; Chandola, H C

    2016-03-01

    The seasonal, interannual, and long-term variations in biomass burning activity and related emissions are not well studied over South Asia. In this regard, active fire location retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), the retrievals of aerosol optical depth (AOD) from MODIS Terra, and tropospheric column NO2 from Ozone Monitoring Instrument (OMI) are used to understand the effects of biomass burning on the tropospheric pollution loadings over South Asia during 2003-2013. Biomass burning emission estimates from Global Fire Emission Database (GFED) and Global Fire Assimilation System (GFAS) are also used to quantify uncertainties and regional discrepancies in the emissions of carbon monoxide (CO), nitrogen oxide (NOx), and black carbon (BC) due to biomass burning in South Asia. In the Asian continent, the frequency of fire activity is highest over Southeast Asia, followed by South Asia and East Asia. The biomass burning activity in South Asia shows a distinct seasonal cycle that peaks during February-May with some differences among four (north, central, northeast, and south) regions in India. The annual biomass burning activity in north, central, and south regions shows an increasing tendency, particularly after 2008, while a decrease is seen in northeast region during 2003-2013. The increase in fire counts over the north and central regions contributes 24 % of the net enhancement in fire counts over South Asia. MODIS AOD and OMI tropospheric column NO2 retrievals are classified into high and low fire activity periods and show that biomass burning leads to significant enhancement in tropospheric pollution loading over both the cropland and forest regions. The enhancement is much higher (110-176 %) over the forest region compared to the cropland (34-62 %) region. Further efforts are required to understand the implications of biomass burning on the regional air quality and climate of South Asia.

  15. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia.

    PubMed

    Bhardwaj, P; Naja, M; Kumar, R; Chandola, H C

    2016-03-01

    The seasonal, interannual, and long-term variations in biomass burning activity and related emissions are not well studied over South Asia. In this regard, active fire location retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), the retrievals of aerosol optical depth (AOD) from MODIS Terra, and tropospheric column NO2 from Ozone Monitoring Instrument (OMI) are used to understand the effects of biomass burning on the tropospheric pollution loadings over South Asia during 2003-2013. Biomass burning emission estimates from Global Fire Emission Database (GFED) and Global Fire Assimilation System (GFAS) are also used to quantify uncertainties and regional discrepancies in the emissions of carbon monoxide (CO), nitrogen oxide (NOx), and black carbon (BC) due to biomass burning in South Asia. In the Asian continent, the frequency of fire activity is highest over Southeast Asia, followed by South Asia and East Asia. The biomass burning activity in South Asia shows a distinct seasonal cycle that peaks during February-May with some differences among four (north, central, northeast, and south) regions in India. The annual biomass burning activity in north, central, and south regions shows an increasing tendency, particularly after 2008, while a decrease is seen in northeast region during 2003-2013. The increase in fire counts over the north and central regions contributes 24 % of the net enhancement in fire counts over South Asia. MODIS AOD and OMI tropospheric column NO2 retrievals are classified into high and low fire activity periods and show that biomass burning leads to significant enhancement in tropospheric pollution loading over both the cropland and forest regions. The enhancement is much higher (110-176 %) over the forest region compared to the cropland (34-62 %) region. Further efforts are required to understand the implications of biomass burning on the regional air quality and climate of South Asia. PMID:26503008

  16. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  17. High-biomass forests of the Pacific Northwest: who manages them and how much is protected?

    PubMed

    Krankina, Olga N; DellaSala, Dominick A; Leonard, Jessica; Yatskov, Mikhail

    2014-07-01

    To examine ownership and protection status of forests with high-biomass stores (>200 Mg/ha) in the Pacific Northwest (PNW) region of the United States, we used the latest versions of publicly available datasets. Overlay, aggregation, and GIS-based computation of forest area in broad biomass classes in the PNW showed that the National Forests contained the largest area of high-biomass forests (48.4 % of regional total), but the area of high-biomass forest on private lands was important as well (22.8 %). Between 2000 and 2008, the loss of high-biomass forests to fire on the National Forests was 7.6 % (236,000 ha), while the loss of high-biomass forest to logging on private lands (364,000 ha) exceeded the losses to fire across all ownerships. Many remaining high-biomass forest stands are vulnerable to future harvest as only 20 % are strictly protected from logging, while 26 % are not protected at all. The level of protection for high-biomass forests varies by state, for example, 31 % of all high-biomass federal forests in Washington are in high-protection status compared to only 9 % in Oregon. Across the conterminous US, high-biomass forest covers <3 % of all forest land and the PNW region holds 56.8 % of this area or 5.87 million ha. Forests with high-biomass stores are important to document and monitor as they are scarce, often threatened by harvest and development, and their disturbance including timber harvest results in net C losses to the atmosphere that can take a new generation of trees many decades or centuries to offset.

  18. High-Biomass Forests of the Pacific Northwest: Who Manages Them and How Much is Protected?

    NASA Astrophysics Data System (ADS)

    Krankina, Olga N.; DellaSala, Dominick A.; Leonard, Jessica; Yatskov, Mikhail

    2014-07-01

    To examine ownership and protection status of forests with high-biomass stores (>200 Mg/ha) in the Pacific Northwest (PNW) region of the United States, we used the latest versions of publicly available datasets. Overlay, aggregation, and GIS-based computation of forest area in broad biomass classes in the PNW showed that the National Forests contained the largest area of high-biomass forests (48.4 % of regional total), but the area of high-biomass forest on private lands was important as well (22.8 %). Between 2000 and 2008, the loss of high-biomass forests to fire on the National Forests was 7.6 % (236,000 ha), while the loss of high-biomass forest to logging on private lands (364,000 ha) exceeded the losses to fire across all ownerships. Many remaining high-biomass forest stands are vulnerable to future harvest as only 20 % are strictly protected from logging, while 26 % are not protected at all. The level of protection for high-biomass forests varies by state, for example, 31 % of all high-biomass federal forests in Washington are in high-protection status compared to only 9 % in Oregon. Across the conterminous US, high-biomass forest covers <3 % of all forest land and the PNW region holds 56.8 % of this area or 5.87 million ha. Forests with high-biomass stores are important to document and monitor as they are scarce, often threatened by harvest and development, and their disturbance including timber harvest results in net C losses to the atmosphere that can take a new generation of trees many decades or centuries to offset.

  19. Biomass Biorefinery for the production of Polymers and Fuels

    SciTech Connect

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  20. Biomass conversion to mixed alcohols

    SciTech Connect

    Holtzapple, M.T.; Loescher, M.; Ross, M.

    1996-10-01

    This paper discusses the MixAlco Process which converts a wide variety of biomass materials (e.g. municipal solid waste, sewage sludge, agricultural residues) to mixed alcohols. First, the biomass is treated with lime to enhance its digestibility. Then, a mixed culture of acid-forming microorganisms converts the lime-treated biomass to volatile fatty acids (VFA) such as acetic, propionic, and butyric acids. To maintain fermentor pH, a neutralizing agent (e.g. calcium carbonate or lime) is added, so the fermentation actually produces VFA salts such as calcium acetate, propionate, and butyrate. The VFA salts are recovered and thermally converted to ketones (e.g. acetone, methylethyl ketone, diethyl ketone) which are subsequently hydrogenated to mixed alcohols (e.g. isopropanol, isobutanol, isopentanol). Processing costs are estimated at $0.72/gallon of mixed alcohols making it potentially attractive for transportation fuels.