Science.gov

Sample records for address scientific uncertainties

  1. Assessment of Uncertainty-Infused Scientific Argumentation

    ERIC Educational Resources Information Center

    Lee, Hee-Sun; Liu, Ou Lydia; Pallant, Amy; Roohr, Katrina Crotts; Pryputniewicz, Sarah; Buck, Zoë E.

    2014-01-01

    Though addressing sources of uncertainty is an important part of doing science, it has largely been neglected in assessing students' scientific argumentation. In this study, we initially defined a scientific argumentation construct in four structural elements consisting of claim, justification, uncertainty qualifier, and uncertainty…

  2. Optimal regeneration planning for old-growth forest: addressing scientific uncertainty in endangered species recovery through adaptive management

    USGS Publications Warehouse

    Moore, C.T.; Conroy, M.J.

    2006-01-01

    Stochastic and structural uncertainties about forest dynamics present challenges in the management of ephemeral habitat conditions for endangered forest species. Maintaining critical foraging and breeding habitat for the endangered red-cockaded woodpecker (Picoides borealis) requires an uninterrupted supply of old-growth forest. We constructed and optimized a dynamic forest growth model for the Piedmont National Wildlife Refuge (Georgia, USA) with the objective of perpetuating a maximum stream of old-growth forest habitat. Our model accommodates stochastic disturbances and hardwood succession rates, and uncertainty about model structure. We produced a regeneration policy that was indexed by current forest state and by current weight of evidence among alternative model forms. We used adaptive stochastic dynamic programming, which anticipates that model probabilities, as well as forest states, may change through time, with consequent evolution of the optimal decision for any given forest state. In light of considerable uncertainty about forest dynamics, we analyzed a set of competing models incorporating extreme, but plausible, parameter values. Under any of these models, forest silviculture practices currently recommended for the creation of woodpecker habitat are suboptimal. We endorse fully adaptive approaches to the management of endangered species habitats in which predictive modeling, monitoring, and assessment are tightly linked.

  3. Communicating scientific uncertainty

    PubMed Central

    Fischhoff, Baruch; Davis, Alex L.

    2014-01-01

    All science has uncertainty. Unless that uncertainty is communicated effectively, decision makers may put too much or too little faith in it. The information that needs to be communicated depends on the decisions that people face. Are they (i) looking for a signal (e.g., whether to evacuate before a hurricane), (ii) choosing among fixed options (e.g., which medical treatment is best), or (iii) learning to create options (e.g., how to regulate nanotechnology)? We examine these three classes of decisions in terms of how to characterize, assess, and convey the uncertainties relevant to each. We then offer a protocol for summarizing the many possible sources of uncertainty in standard terms, designed to impose a minimal burden on scientists, while gradually educating those whose decisions depend on their work. Its goals are better decisions, better science, and better support for science. PMID:25225390

  4. Communicating scientific uncertainty.

    PubMed

    Fischhoff, Baruch; Davis, Alex L

    2014-09-16

    All science has uncertainty. Unless that uncertainty is communicated effectively, decision makers may put too much or too little faith in it. The information that needs to be communicated depends on the decisions that people face. Are they (i) looking for a signal (e.g., whether to evacuate before a hurricane), (ii) choosing among fixed options (e.g., which medical treatment is best), or (iii) learning to create options (e.g., how to regulate nanotechnology)? We examine these three classes of decisions in terms of how to characterize, assess, and convey the uncertainties relevant to each. We then offer a protocol for summarizing the many possible sources of uncertainty in standard terms, designed to impose a minimal burden on scientists, while gradually educating those whose decisions depend on their work. Its goals are better decisions, better science, and better support for science.

  5. Addressing uncertainty in adaptation planning for agriculture.

    PubMed

    Vermeulen, Sonja J; Challinor, Andrew J; Thornton, Philip K; Campbell, Bruce M; Eriyagama, Nishadi; Vervoort, Joost M; Kinyangi, James; Jarvis, Andy; Läderach, Peter; Ramirez-Villegas, Julian; Nicklin, Kathryn J; Hawkins, Ed; Smith, Daniel R

    2013-05-21

    We present a framework for prioritizing adaptation approaches at a range of timeframes. The framework is illustrated by four case studies from developing countries, each with associated characterization of uncertainty. Two cases on near-term adaptation planning in Sri Lanka and on stakeholder scenario exercises in East Africa show how the relative utility of capacity vs. impact approaches to adaptation planning differ with level of uncertainty and associated lead time. An additional two cases demonstrate that it is possible to identify uncertainties that are relevant to decision making in specific timeframes and circumstances. The case on coffee in Latin America identifies altitudinal thresholds at which incremental vs. transformative adaptation pathways are robust options. The final case uses three crop-climate simulation studies to demonstrate how uncertainty can be characterized at different time horizons to discriminate where robust adaptation options are possible. We find that impact approaches, which use predictive models, are increasingly useful over longer lead times and at higher levels of greenhouse gas emissions. We also find that extreme events are important in determining predictability across a broad range of timescales. The results demonstrate the potential for robust knowledge and actions in the face of uncertainty.

  6. Addressing uncertainty in adaptation planning for agriculture

    PubMed Central

    Vermeulen, Sonja J.; Challinor, Andrew J.; Thornton, Philip K.; Campbell, Bruce M.; Eriyagama, Nishadi; Vervoort, Joost M.; Kinyangi, James; Jarvis, Andy; Läderach, Peter; Ramirez-Villegas, Julian; Nicklin, Kathryn J.; Hawkins, Ed; Smith, Daniel R.

    2013-01-01

    We present a framework for prioritizing adaptation approaches at a range of timeframes. The framework is illustrated by four case studies from developing countries, each with associated characterization of uncertainty. Two cases on near-term adaptation planning in Sri Lanka and on stakeholder scenario exercises in East Africa show how the relative utility of capacity vs. impact approaches to adaptation planning differ with level of uncertainty and associated lead time. An additional two cases demonstrate that it is possible to identify uncertainties that are relevant to decision making in specific timeframes and circumstances. The case on coffee in Latin America identifies altitudinal thresholds at which incremental vs. transformative adaptation pathways are robust options. The final case uses three crop–climate simulation studies to demonstrate how uncertainty can be characterized at different time horizons to discriminate where robust adaptation options are possible. We find that impact approaches, which use predictive models, are increasingly useful over longer lead times and at higher levels of greenhouse gas emissions. We also find that extreme events are important in determining predictability across a broad range of timescales. The results demonstrate the potential for robust knowledge and actions in the face of uncertainty. PMID:23674681

  7. Addressing submarine geohazards through scientific drilling

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  8. Addressing submarine geohazards through scientific drilling

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  9. Presidential address: Experimenting with the scientific past.

    PubMed

    Radick, Gregory

    2016-06-01

    When it comes to knowledge about the scientific pasts that might have been - the so-called 'counterfactual' history of science - historians can either debate its possibility or get on with the job. Taking the latter course means re-engaging with some of the most general questions about science. It can also lead to fresh insights into why particular episodes unfolded as they did and not otherwise. Drawing on recent research into the controversy over Mendelism in the early twentieth century, this address reports and reflects on a novel teaching experiment conducted in order to find out what biology and its students might be like now had the controversy gone differently. The results suggest a number of new options: for the collection of evidence about the counterfactual scientific past, for the development of collaborations between historians of science and science educators, for the cultivation of more productive relationships between scientists and their forebears, and for heightened self-awareness about the curiously counterfactual business of being historical. PMID:27353945

  10. Addressing uncertainty in rock properties through geostatistical simulation

    SciTech Connect

    McKenna, S.A.; Rautman, A.; Cromer, M.V.; Zelinski, W.P.

    1996-09-01

    Fracture and matrix properties in a sequence of unsaturated, welded tuffs at Yucca Mountain, Nevada, are modeled in two-dimensional cross-sections through geostatistical simulation. In the absence of large amounts of sample data, an n interpretive, deterministic, stratigraphic model is coupled with a gaussian simulation algorithm to constrain realizations of both matrix porosity and fracture frequency. Use of the deterministic, stratigraphic model imposes scientific judgment, in the form of a conceptual geologic model, onto the property realizations. Linear coregionalization and a regression relationship between matrix porosity and matrix hydraulic conductivity are used to generate realizations of matrix hydraulic conductivity. Fracture-frequency simulations conditioned on the stratigraphic model represent one class of fractures (cooling fractures) in the conceptual model of the geology. A second class of fractures (tectonic fractures) is conceptualized as fractures that cut across strata vertically and includes discrete features such as fault zones. Indicator geostatistical simulation provides locations of this second class of fractures. The indicator realizations are combined with the realizations of fracture spacing to create realizations of fracture frequency that are a combination of both classes of fractures. Evaluations of the resulting realizations include comparing vertical profiles of rock properties within the model to those observed in boreholes and checking intra-unit property distributions against collected data. Geostatistical simulation provides an efficient means of addressing spatial uncertainty in dual continuum rock properties.

  11. Addressing contrasting cognitive models in scientific collaboration

    NASA Astrophysics Data System (ADS)

    Diviacco, P.

    2012-04-01

    If the social aspects of scientific communities and their internal dynamics is starting to be recognized and acknowledged in the everyday lives of scientists, it is rather difficult for them to find tools that could support their activities consistently with this perspective. Issues span from gathering researchers to mutual awareness, from information sharing to building meaning, with the last one being particularly critical in research fields as the geo-sciences, that deal with the reconstruction of unique, often non-reproducible, and contingent processes. Reasoning here is, in fact, mainly abductive, allowing multiple and concurrent explanations for the same phenomenon to coexist. Scientists bias one hypothesis over another not only on strictly logical but also on sociological motivations. Following a vision, scientists tend to evolve and isolate themselves from other scientists creating communities characterized by different cognitive models, so that after some time these become incompatible and scientists stop understanding each other. We address these problems as a communication issue so that the classic distinction into three levels (syntactic, semantic and pragmatic) can be used. At the syntactic level, we highlight non-technical obstacles that condition interoperability and data availability and transparency. At the semantic level, possible incompatibilities of cognitive models are particularly evident, so that using ontologies, cross-domain reconciliation should be applied. This is a very difficult task to perform since the projection of knowledge by scientists, in the designated community, is political and thus can create a lot of tension. The strategy we propose to overcome these issues pertains to pragmatics, in the sense that it is intended to acknowledge the cultural and personal factors each partner brings into the collaboration and is based on the idea that meaning should remain a flexible and contingent representation of possibly divergent views

  12. Scientific uncertainty and its relevance to science education

    NASA Astrophysics Data System (ADS)

    Ruggeri, Nancy Lee

    Uncertainty is inherent to scientific methods and practices, yet is it rarely explicitly discussed in science classrooms. Ironically, science is often equated with certainty in these contexts. Uncertainties that arise in science deserve special attention, as they are increasingly a part of public discussions and are susceptible to manipulation. Clarifying what is meant by scientific uncertainty would include identifying sources of uncertainty in scientific practice, and would help provide an instructional framework for understanding how scientists use methods, data, and models to justify claims about the natural world. This research introduces both a general typology of scientific uncertainty informed by a review of literature from a variety of perspectives, and two additional typologies that emerged from qualitative studies examining student essays about scientific uncertainty in two disciplinary contexts: biological evolution and global climate change. These typologies aim to provide leverage for curricular discussions about scientific knowledge and practices, and to help instructors interested in integrating scientific uncertainty into teaching these subjects. In particular, a focus on uncertainties in data and models can illustrate their integral relationship and can spark critical discussions about methods used to collect empirical data and the models used to explain them and make predictions. This research builds a case for integrating scientific uncertainty into science teaching and emphasizing its importance for understanding the practice of science within particular disciplinary contexts.

  13. Anthropogenic climate change: Scientific uncertainties and moral dilemmas

    NASA Astrophysics Data System (ADS)

    Hillerbrand, Rafaela; Ghil, Michael

    2008-08-01

    This paper considers the role of scientific expertise and moral reasoning in the decision making process involved in climate-change issues. It points to an unresolved moral dilemma that lies at the heart of this decision making, namely how to balance duties towards future generations against duties towards our contemporaries. At present, the prevailing moral and political discourses shy away from addressing this dilemma and evade responsibility by falsely drawing normative conclusions from the predictions of climate models alone. We argue that such moral dilemmas are best addressed in the framework of Expected Utility Theory. A crucial issue is to adequately incorporate into this framework the uncertainties associated with the predicted consequences of climate change on the well-being of future generations. The uncertainties that need to be considered include those usually associated with climate modeling and prediction, but also moral and general epistemic ones. This paper suggests a way to correctly incorporate all the relevant uncertainties into the decision making process.

  14. Adaptively Addressing Uncertainty in Estuarine and Near Coastal Restoration Projects

    SciTech Connect

    Thom, Ronald M.; Williams, Greg D.; Borde, Amy B.; Southard, John A.; Sargeant, Susan L.; Woodruff, Dana L.; Laufle, Jeffrey C.; Glasoe, Stuart

    2005-03-01

    Restoration projects have an uncertain outcome because of a lack of information about current site conditions, historical disturbance levels, effects of landscape alterations on site development, unpredictable trajectories or patterns of ecosystem structural development, and many other factors. A poor understanding of the factors that control the development and dynamics of a system, such as hydrology, salinity, wave energies, can also lead to an unintended outcome. Finally, lack of experience in restoring certain types of systems (e.g., rare or very fragile habitats) or systems in highly modified situations (e.g., highly urbanized estuaries) makes project outcomes uncertain. Because of these uncertainties, project costs can rise dramatically in an attempt to come closer to project goals. All of the potential sources of error can be addressed to a certain degree through adaptive management. The first step is admitting that these uncertainties can exist, and addressing as many of the uncertainties with planning and directed research prior to implementing the project. The second step is to evaluate uncertainties through hypothesis-driven experiments during project implementation. The third step is to use the monitoring program to evaluate and adjust the project as needed to improve the probability of the project to reach is goal. The fourth and final step is to use the information gained in the project to improve future projects. A framework that includes a clear goal statement, a conceptual model, and an evaluation framework can help in this adaptive restoration process. Projects and programs vary in their application of adaptive management in restoration, and it is very difficult to be highly prescriptive in applying adaptive management to projects that necessarily vary widely in scope, goal, ecosystem characteristics, and uncertainties. Very large ecosystem restoration programs in the Mississippi River delta (Coastal Wetlands Planning, Protection, and Restoration

  15. Scientific Uncertainty and Its Relevance to Science Education

    ERIC Educational Resources Information Center

    Ruggeri, Nancy Lee

    2011-01-01

    Uncertainty is inherent to scientific methods and practices, yet is it rarely explicitly discussed in science classrooms. Ironically, science is often equated with "certainty" in these contexts. Uncertainties that arise in science deserve special attention, as they are increasingly a part of public discussions and are susceptible to manipulation.…

  16. `Scientific uncertainty` scuttles new acid rain standard

    SciTech Connect

    Renner, R.

    1995-10-01

    An EPA report to Congress due this month will report on the controversial question of whether the Clean Air Act Amendments of 1990 (CAAA) adequately protect sensitive areas of the United States from acid rain, and recommends against establishing a new `acid deposition standard` to protect sensitive areas of the United States from acid rain. Rebecca Renner reports on the scientific issues underlying that decision and the efforts of one state to overturn it. The report to Congress, required by the CAAA, asked the Agency to report on the feasibility of setting an acid deposition standard to protect sensitive areas. EPA missed the original 1993 deadline and is under court order to issue the final report by October 15. The draft report identifies the lakes and streams of the Appalachian mountains as sensitive resources that receive damaging concentrations of acidic deposition. Three areas where sensitive water resources have been well studied were selected as providing the best available data for modeling case studies: the Adirondacks; the mid-Appalachian region, including parts of Pennsylvania. West Virginia, Maryland, and Virginia; and the Southern Blue Ridge in Tennessee, North Carolina, and Georgia. Results are discussed. 6 refs.

  17. Addressing Unconscious Bias: Steps toward an Inclusive Scientific Culture

    NASA Astrophysics Data System (ADS)

    Stewart, Abigail

    2011-01-01

    In this talk I will outline the nature of unconscious bias, as it operates to exclude or marginalize some participants in the scientific community. I will show how bias results from non-conscious expectations about certain groups of people, including scientists and astronomers. I will outline scientific research in psychology, sociology and economics that has identified the impact these expectations have on interpersonal judgments that are at the heart of assessment of individuals' qualifications. This research helps us understand not only how bias operates within a single instance of evaluation, but how evaluation bias can accumulate over a career if not checked, creating an appearance of confirmation of biased expectations. Some research has focused on how best to interrupt and mitigate unconscious bias, and many institutions--including the University of Michigan--have identified strategic interventions at key points of institutional decision-making (particularly hiring, annual review, and promotion) that can make a difference. The NSF ADVANCE Institutional Transformation program encouraged institutions to draw on the social science literature to create experimental approaches to addressing unconscious bias. I will outline four approaches to intervention that have arisen through the ADVANCE program: (1) systematic education that increases awareness among decisionmakers of how evaluation bias operates; (2) development of practices that mitigate the operation of bias even when it is out of conscious awareness; (3) creation of institutional policies that routinize and sanction these practices; and (4) holding leaders accountable for these implementation of these new practices and policies. Although I will focus on ways to address unconscious bias within scientific institutions (colleges and universities, laboratories and research centers, etc.), I will close by considering how scientific organizations can address unconscious bias and contribute to creating an

  18. Risk newsboy: approach for addressing uncertainty in developing action levels and cleanup limits

    SciTech Connect

    Cooke, Roger; MacDonell, Margaret

    2007-07-01

    Site cleanup decisions involve developing action levels and residual limits for key contaminants, to assure health protection during the cleanup period and into the long term. Uncertainty is inherent in the toxicity information used to define these levels, based on incomplete scientific knowledge regarding dose-response relationships across various hazards and exposures at environmentally relevant levels. This problem can be addressed by applying principles used to manage uncertainty in operations research, as illustrated by the newsboy dilemma. Each day a newsboy must balance the risk of buying more papers than he can sell against the risk of not buying enough. Setting action levels and cleanup limits involves a similar concept of balancing and distributing risks and benefits in the face of uncertainty. The newsboy approach can be applied to develop health-based target concentrations for both radiological and chemical contaminants, with stakeholder input being crucial to assessing 'regret' levels. Associated tools include structured expert judgment elicitation to quantify uncertainty in the dose-response relationship, and mathematical techniques such as probabilistic inversion and iterative proportional fitting. (authors)

  19. Addressing Conceptual Model Uncertainty in the Evaluation of Model Prediction Errors

    NASA Astrophysics Data System (ADS)

    Carrera, J.; Pool, M.

    2014-12-01

    Model predictions are uncertain because of errors in model parameters, future forcing terms, and model concepts. The latter remain the largest and most difficult to assess source of uncertainty in long term model predictions. We first review existing methods to evaluate conceptual model uncertainty. We argue that they are highly sensitive to the ingenuity of the modeler, in the sense that they rely on the modeler's ability to propose alternative model concepts. Worse, we find that the standard practice of stochastic methods leads to poor, potentially biased and often too optimistic, estimation of actual model errors. This is bad news because stochastic methods are purported to properly represent uncertainty. We contend that the problem does not lie on the stochastic approach itself, but on the way it is applied. Specifically, stochastic inversion methodologies, which demand quantitative information, tend to ignore geological understanding, which is conceptually rich. We illustrate some of these problems with the application to Mar del Plata aquifer, where extensive data are available for nearly a century. Geologically based models, where spatial variability is handled through zonation, yield calibration fits similar to geostatiscally based models, but much better predictions. In fact, the appearance of the stochastic T fields is similar to the geologically based models only in areas with high density of data. We take this finding to illustrate the ability of stochastic models to accommodate many data, but also, ironically, their inability to address conceptual model uncertainty. In fact, stochastic model realizations tend to be too close to the "most likely" one (i.e., they do not really realize the full conceptualuncertainty). The second part of the presentation is devoted to argue that acknowledging model uncertainty may lead to qualitatively different decisions than just working with "most likely" model predictions. Therefore, efforts should concentrate on

  20. Addressing Uncertainty in Fecal Indicator Bacteria Dark Inactivation Rates

    EPA Science Inventory

    Fecal contamination is a leading cause of surface water quality degradation. Roughly 20% of all total maximum daily load assessments approved by the United States Environmental Protection Agency since 1995, for example, address water bodies with unacceptably high fecal indicator...

  1. Risks, scientific uncertainty and the approach of applying precautionary principle.

    PubMed

    Lo, Chang-fa

    2009-03-01

    The paper intends to clarify the nature and aspects of risks and scientific uncertainty and also to elaborate the approach of application of precautionary principle for the purpose of handling the risk arising from scientific uncertainty. It explains the relations between risks and the application of precautionary principle at international and domestic levels. In the situations where an international treaty has admitted the precautionary principle and in the situation where there is no international treaty admitting the precautionary principle or enumerating the conditions to take measures, the precautionary principle has a role to play. The paper proposes a decision making tool, containing questions to be asked, to help policymakers to apply the principle. It also proposes a "weighing and balancing" procedure to help them decide the contents of the measure to cope with the potential risk and to avoid excessive measures.

  2. 42 CFR 82.19 - How will NIOSH address uncertainty about dose levels?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... calculating probability of causation estimates at 42 CFR 81. In this way, claimants will receive the benefit... 42 Public Health 1 2012-10-01 2012-10-01 false How will NIOSH address uncertainty about dose... § 82.19 How will NIOSH address uncertainty about dose levels? The estimate of each annual dose will...

  3. 42 CFR 82.19 - How will NIOSH address uncertainty about dose levels?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... calculating probability of causation estimates at 42 CFR 81. In this way, claimants will receive the benefit... 42 Public Health 1 2013-10-01 2013-10-01 false How will NIOSH address uncertainty about dose... § 82.19 How will NIOSH address uncertainty about dose levels? The estimate of each annual dose will...

  4. 42 CFR 82.19 - How will NIOSH address uncertainty about dose levels?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... calculating probability of causation estimates at 42 CFR 81. In this way, claimants will receive the benefit... 42 Public Health 1 2011-10-01 2011-10-01 false How will NIOSH address uncertainty about dose... § 82.19 How will NIOSH address uncertainty about dose levels? The estimate of each annual dose will...

  5. 42 CFR 82.19 - How will NIOSH address uncertainty about dose levels?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... calculating probability of causation estimates at 42 CFR 81. In this way, claimants will receive the benefit... 42 Public Health 1 2014-10-01 2014-10-01 false How will NIOSH address uncertainty about dose... § 82.19 How will NIOSH address uncertainty about dose levels? The estimate of each annual dose will...

  6. Addressing the Uncertainty in Prescribing High Flows for River Restoration

    NASA Astrophysics Data System (ADS)

    Downs, P. W.; Sklar, L.; Braudrick, C. A.

    2002-12-01

    Flow prescriptions for environmental benefit in regulated rivers are commonly focused on the provision of minimum flow depths to achieve fish passage and holding habitat objectives. Assessment of these flows can be achieved readily and with reasonable confidence by using low-flow hydrological records and channel morphology data in combination with one dimensional hydraulic modeling. More recently, as understanding has increased of the critical role played by high flows in maintaining a wide range of habitats for instream and riparian flora and fauna, attention has turned to prescribing high flows to invoke the geomorphic processes that maintain suitable habitat niches. Prediction of the effects of these flows may require high-flow discharge and sediment transport data, high resolution topographic data, hydraulic and sediment transport modeling (often in two or three spatial dimensions), knowledge of the watershed historical context, and an understanding of the thresholds for channel morphological change. Not surprisingly, the associated level of uncertainty in this analysis increases tremendously. High flows are defined by a combination of magnitude, frequency, timing and duration parameters and their impact varies according to antecedent events. High flow bedload sediment transport records are rare, sediment transport equations are reliable usually to only an order of magnitude, practical applications of two and three-dimensional sediment transport models are in their infancy, the watershed historical record may be patchy with the link between cause and effect difficult to ascertain, and thresholds of channel morphological change are poorly understood. As the first step in reducing uncertainty, it is essential to state precisely the ecological target objectives of prescribed high flows, and to link these objectives to the hydraulic and geomorphic thresholds to be achieved or exceeded. Such thresholds provide the basis for a systematic classification of high flows

  7. Addressing sources of uncertainty in a global terrestrial carbon model

    NASA Astrophysics Data System (ADS)

    Exbrayat, J.; Pitman, A. J.; Zhang, Q.; Abramowitz, G.; Wang, Y.

    2013-12-01

    Several sources of uncertainty exist in the parameterization of the land carbon cycle in current Earth System Models (ESMs). For example, recently implemented interactions between the carbon (C), nitrogen (N) and phosphorus (P) cycles lead to diverse changes in land-atmosphere C fluxes simulated by different models. Further, although soil organic matter decomposition is commonly parameterized as a first-order decay process, the formulation of the microbial response to changes in soil moisture and soil temperature varies tremendously between models. Here, we examine the sensitivity of historical land-atmosphere C fluxes simulated by an ESM to these two major sources of uncertainty. We implement three soil moisture (SMRF) and three soil temperature (STRF) respiration functions in the CABLE-CASA-CNP land biogeochemical component of the coarse resolution CSIRO Mk3L climate model. Simulations are undertaken using three degrees of biogeochemical nutrient limitation: C-only, C and N, and C and N and P. We first bring all 27 possible combinations of a SMRF with a STRF and a biogeochemical mode to a steady-state in their biogeochemical pools. Then, transient historical (1850-2005) simulations are driven by prescribed atmospheric CO2 concentrations used in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Similarly to some previously published results, representing N and P limitation on primary production reduces the global land carbon sink while some regions become net C sources over the historical period (1850-2005). However, the uncertainty due to the SMRFs and STRFs does not decrease relative to the inter-annual variability in net uptake when N and P limitations are added. Differences in the SMRFs and STRFs and their effect on the soil C balance can also change the sign of some regional sinks. We show that this response is mostly driven by the pool size achieved at the end of the spin-up procedure. Further, there exists a six-fold range in the level

  8. Assessing and Addressing Students' Scientific Literacy Needs in Physical Geology

    NASA Astrophysics Data System (ADS)

    Campbell-Stone, E. A.; Myers, J. D.

    2005-12-01

    Exacting excellence equally from university students around the globe can be accomplished by providing all students with necessary background tools to achieve mastery of their courses, even if those tools are not part of normal content. As instructors we hope to see our students grasp the substance of our courses, make mental connections between course material and practical applications, and use this knowledge to make informed decisions as citizens. Yet many educators have found that students enter university-level introductory courses in mathematics, science and engineering without adequate academic preparation. As part of a FIPSE-funded project at the University of Wyoming, the instructors of the Physical Geology course have taken a new approach to tackling the problem of lack of scientific/mathematic skills in incoming students. Instead of assuming that students should already know or will learn these skills on their own, they assess students' needs and provide them the opportunity to master scientific literacies as they learn geologic content. In the introductory geology course, instructors identified two categories of literacies, or basic skills that are necessary for academic success and citizen participation. Fundamental literacies include performing simple quantitative calculations, making qualitative assessments, and reading and analyzing tables and graphs. Technical literacies are those specific to understanding geology, and comprise the ability to read maps, visualize changes through time, and conceptualize in three dimensions. Because these skills are most easily taught in lab, the in-house lab manual was rewritten to be both literacy- and content-based. Early labs include simple exercises addressing literacies in the context of geological science, and each subsequent lab repeats exposure to literacies, but at increasing levels of difficulty. Resources available to assist students with literacy mastery include individual instruction, a detailed

  9. The nitrogen cycle, scientific uncertainty and policy relevant science.

    PubMed

    Norse, David

    2005-12-01

    Much of the research on the nitrogen cycle aims to improving scientific understanding but is not focused specifically on removing or reducing the scientific uncertainties that constrain policy makers in the formulation of appropriate responses to old or emerging environmental problems. Policy makers, for example, commonly find it difficult to assess the spatial or temporal importance of the various risks to human and ecosystem health that stem from man's interference with the natural N cycle. This paper will justify this conclusion by reference to the findings of a recent study on non-point pollution from crop production in China. The findings concern the perceived risks of groundwater nitrate to human health; uncertainties about critical NOx levels and their interactions with other pollutants; various other dimensions of man's impact on the N cycle. The paper will go on to suggest a more systematic process or pathway by which scientists can select and design their research in a manner that could give more effective support to policy makers. PMID:16512203

  10. The nitrogen cycle, scientific uncertainty and policy relevant science.

    PubMed

    Norse, David

    2005-09-01

    Much of the research on the nitrogen cycle aims to improving scientific understanding but is not focused specifically on removing or reducing the scientific uncertainties that constrain policy makers in the formulation of appropriate responses to old or emerging environmental problems. Policy makers, for example, commonly find it difficult to assess the spatial or temporal importance of the various risks to human and ecosystem health that stem from man's interference with the natural N cycle. This paper will justify this conclusion by reference to the findings of a recent study on non-point pollution from crop production in China. The findings concern the perceived risks of groundwater nitrate to human health; uncertainties about critical NO(x) levels and their interactions with other pollutants; various other dimensions of man's impact on the N cycle. The paper will go on to suggest a more systematic process or pathway by which scientists can select and design their research in a manner that could give more effective support to policy makers. PMID:20549436

  11. The nitrogen cycle, scientific uncertainty and policy relevant science.

    PubMed

    Norse, David

    2005-09-01

    Much of the research on the nitrogen cycle aims to improving scientific understanding but is not focused specifically on removing or reducing the scientific uncertainties that constrain policy makers in the formulation of appropriate responses to old or emerging environmental problems. Policy makers, for example, commonly find it difficult to assess the spatial or temporal importance of the various risks to human and ecosystem health that stem from man's interference with the natural N cycle. This paper will justify this conclusion by reference to the findings of a recent study on non-point pollution from crop production in China. The findings concern the perceived risks of groundwater nitrate to human health; uncertainties about critical NO(x) levels and their interactions with other pollutants; various other dimensions of man's impact on the N cycle. The paper will go on to suggest a more systematic process or pathway by which scientists can select and design their research in a manner that could give more effective support to policy makers.

  12. The nitrogen cycle, scientific uncertainty and policy relevant science.

    PubMed

    Norse, David

    2005-12-01

    Much of the research on the nitrogen cycle aims to improving scientific understanding but is not focused specifically on removing or reducing the scientific uncertainties that constrain policy makers in the formulation of appropriate responses to old or emerging environmental problems. Policy makers, for example, commonly find it difficult to assess the spatial or temporal importance of the various risks to human and ecosystem health that stem from man's interference with the natural N cycle. This paper will justify this conclusion by reference to the findings of a recent study on non-point pollution from crop production in China. The findings concern the perceived risks of groundwater nitrate to human health; uncertainties about critical NOx levels and their interactions with other pollutants; various other dimensions of man's impact on the N cycle. The paper will go on to suggest a more systematic process or pathway by which scientists can select and design their research in a manner that could give more effective support to policy makers.

  13. Research approaches to address uncertainties in the risk assessment of arsenic in drinking water

    SciTech Connect

    Hughes, Michael F. Kenyon, Elaina M.; Kitchin, Kirk T.

    2007-08-01

    Inorganic arsenic (iAs), an environmental drinking water contaminant, is a human toxicant and carcinogen. The public health community has developed recommendations and regulations that limit human exposure to iAs in drinking water. Although there is a vast amount of information available to regulators on the exposure, disposition and the health-related effects of iAs, there is still critical information about the toxicology of this metalloid that is needed. This necessary information includes identification of the chemical species of arsenic that is (are) the active toxicant(s), the mode(s) of action for its various toxicities and information on potentially susceptible populations. Because of these unknown factors, the risk assessment of iAs still incorporates default assumptions, leading to uncertainties in the overall assessment. The characteristics of a scientifically defensible risk assessment for iAs are that it must: (1) quantitatively link exposure and target tissue dose of active metabolites to key events in the mode of action for major health effects and (2) identify sources of variation in susceptibility to arsenic-induced health effects and quantitatively evaluate their impact wherever possible. Integration of research to address these goals will better protect the health of iAs-exposed populations.

  14. Addressing STEM Retention through a Scientific Thought and Methods Course

    ERIC Educational Resources Information Center

    Koenig, Kathleen; Schen, Melissa; Edwards, Michael; Bao, Lei

    2012-01-01

    Retention of majors in science, technology, engineering, and mathematics (STEM) is a national problem that continues to be the focus of bridging and first-year experience programs. This article presents an innovative course, Scientific Thought and Methods, that targets students with low math placement scores. These students are not eligible for…

  15. Teaching Scientific Measurement and Uncertainty in Elementary School

    ERIC Educational Resources Information Center

    Munier, Valérie; Merle, Hélène; Brehelin, Danie

    2013-01-01

    The concept of measurement is fundamental in science. In order to be meaningful, the value of a measurement must be given with a certain level of uncertainty. In this paper we try to identify and develop the reasoning of young French pupils about measurement variability. In France, official instructions for elementary school thus argue for having…

  16. Painting the world REDD: addressing scientific barriers to monitoring emissions from tropical forests

    NASA Astrophysics Data System (ADS)

    Asner, Gregory P.

    2011-06-01

    project scale to program readiness is a big step for all involved, and many are finding that it is not easy. Current barriers to national monitoring of forest carbon stocks and emissions range from technical to scientific, and from institutional to operational. In fact, a recent analysis suggested that about 3% of tropical countries currently have the capacity to monitor and report on changes in forest cover and carbon stocks (Herold 2009). But until now, the scientific and policy-development communities have had little quantitative information on exactly which aspects of national-scale monitoring are most uncertain, and how that uncertainty will affect REDD+ performance reporting. A new and remarkable study by Pelletier, Ramankutty and Potvin (2011) uses an integrated, spatially-explicit modeling technique to explore and quantify sources of uncertainty in carbon emissions mapping throughout the Republic of Panama. Their findings are sobering: deforestation rates would need to be reduced by a full 50% in Panama in order to be detectable above the statistical uncertainty caused by several current major monitoring problems. The number one uncertainty, accounting for a sum total of about 77% of the error, rests in the spatial variation of aboveground carbon stocks in primary forests, secondary forests and on fallow land. The poor quality of and insufficient time interval between land-cover maps account for the remainder of the overall uncertainty. These findings are a show-stopper for REDD+ under prevailing science and technology conditions. The Pelletier et al study highlights the pressing need to improve the accuracy of forest carbon and land cover mapping assessments in order for REDD+ to become viable, but how can the uncertainties be overcome? First, with REDD+ nations required to report their emissions, and with verification organizations wanting to check on the reported numbers, there is a clear need for shared measurement and monitoring approaches. One of the major

  17. Articulating uncertainty as part of scientific argumentation during model-based exoplanet detection tasks

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Sun; Pallant, Amy; Pryputniewicz, Sarah

    2015-08-01

    Teaching scientific argumentation has emerged as an important goal for K-12 science education. In scientific argumentation, students are actively involved in coordinating evidence with theory based on their understanding of the scientific content and thinking critically about the strengths and weaknesses of the cited evidence in the context of the investigation. We developed a one-week-long online curriculum module called "Is there life in space?" where students conduct a series of four model-based tasks to learn how scientists detect extrasolar planets through the “wobble” and transit methods. The simulation model allows students to manipulate various parameters of an imaginary star and planet system such as planet size, orbit size, planet-orbiting-plane angle, and sensitivity of telescope equipment, and to adjust the display settings for graphs illustrating the relative velocity and light intensity of the star. Students can use model-based evidence to formulate an argument on whether particular signals in the graphs guarantee the presence of a planet. Students' argumentation is facilitated by the four-part prompts consisting of multiple-choice claim, open-ended explanation, Likert-scale uncertainty rating, and open-ended uncertainty rationale. We analyzed 1,013 scientific arguments formulated by 302 high school student groups taught by 7 teachers. We coded these arguments in terms of the accuracy of their claim, the sophistication of explanation connecting evidence to the established knowledge base, the uncertainty rating, and the scientific validity of uncertainty. We found that (1) only 18% of the students' uncertainty rationale involved critical reflection on limitations inherent in data and concepts, (2) 35% of students' uncertainty rationale reflected their assessment of personal ability and knowledge, rather than scientific sources of uncertainty related to the evidence, and (3) the nature of task such as the use of noisy data or the framing of

  18. Scientific Uncertainty in News Coverage of Cancer Research: Effects of Hedging on Scientists' and Journalists' Credibility

    ERIC Educational Resources Information Center

    Jensen, Jakob D.

    2008-01-01

    News reports of scientific research are rarely hedged; in other words, the reports do not contain caveats, limitations, or other indicators of scientific uncertainty. Some have suggested that hedging may influence news consumers' perceptions of scientists' and journalists' credibility (perceptions that may be related to support for scientific…

  19. Towards a common oil spill risk assessment framework – Adapting ISO 31000 and addressing uncertainties.

    PubMed

    Sepp Neves, Antonio Augusto; Pinardi, Nadia; Martins, Flavio; Janeiro, Joao; Samaras, Achilleas; Zodiatis, George; De Dominicis, Michela

    2015-08-15

    Oil spills are a transnational problem, and establishing a common standard methodology for Oil Spill Risk Assessments (OSRAs) is thus paramount in order to protect marine environments and coastal communities. In this study we firstly identified the strengths and weaknesses of the OSRAs carried out in various parts of the globe. We then searched for a generic and recognized standard, i.e. ISO 31000, in order to design a method to perform OSRAs in a scientific and standard way. The new framework was tested for the Lebanon oil spill that occurred in 2006 employing ensemble oil spill modeling to quantify the risks and uncertainties due to unknown spill characteristics. The application of the framework generated valuable visual instruments for the transparent communication of the risks, replacing the use of risk tolerance levels, and thus highlighting the priority areas to protect in case of an oil spill.

  20. Measuring the perceived uncertainty of scientific evidence and its relationship to engagement with science.

    PubMed

    Retzbach, Joachim; Otto, Lukas; Maier, Michaela

    2016-08-01

    Many scholars have argued for the need to communicate openly not only scientific successes to the public but also limitations, such as the tentativeness of research findings, in order to enhance public trust and engagement. Yet, it has not been quantitatively assessed how the perception of scientific uncertainties relates to engagement with science on an individual level. In this article, we report the development and testing of a new questionnaire in English and German measuring the perceived uncertainty of scientific evidence. Results indicate that the scale is reliable and valid in both language versions and that its two subscales are differentially related to measures of engagement: Science-friendly attitudes were positively related only to 'subjectively' perceived uncertainty, whereas interest in science as well as behavioural engagement actions and intentions were largely uncorrelated. We conclude that perceiving scientific knowledge to be uncertain is only weakly, but positively related to engagement with science.

  1. Adopting Open Source Software to Address Software Risks during the Scientific Data Life Cycle

    NASA Astrophysics Data System (ADS)

    Vinay, S.; Downs, R. R.

    2012-12-01

    Software enables the creation, management, storage, distribution, discovery, and use of scientific data throughout the data lifecycle. However, the capabilities offered by software also present risks for the stewardship of scientific data, since future access to digital data is dependent on the use of software. From operating systems to applications for analyzing data, the dependence of data on software presents challenges for the stewardship of scientific data. Adopting open source software provides opportunities to address some of the proprietary risks of data dependence on software. For example, in some cases, open source software can be deployed to avoid licensing restrictions for using, modifying, and transferring proprietary software. The availability of the source code of open source software also enables the inclusion of modifications, which may be contributed by various community members who are addressing similar issues. Likewise, an active community that is maintaining open source software can be a valuable source of help, providing an opportunity to collaborate to address common issues facing adopters. As part of the effort to meet the challenges of software dependence for scientific data stewardship, risks from software dependence have been identified that exist during various times of the data lifecycle. The identification of these risks should enable the development of plans for mitigating software dependencies, where applicable, using open source software, and to improve understanding of software dependency risks for scientific data and how they can be reduced during the data life cycle.

  2. Science Teachers' Use of Mass Media to Address Socio-Scientific and Sustainability Issues

    NASA Astrophysics Data System (ADS)

    Klosterman, Michelle L.; Sadler, Troy D.; Brown, Julie

    2012-01-01

    The currency, relevancy and changing nature of science makes it a natural topic of focus for mass media outlets. Science teachers and students can capitalize on this wealth of scientific information to explore socio-scientific and sustainability issues; however, without a lens on how those media are created and how representations of science are constructed through media, the use of mass media in the science classroom may be risky. Limited research has explored how science teachers naturally use mass media to explore scientific issues in the classroom or how mass media is used to address potential overlaps between socio-scientific-issue based instruction and education for sustainability. This naturalistic study investigated the reported and actual classroom uses of mass media by secondary science teachers' to explore socio-scientific and sustainability issues as well as the extent to which their instructional approaches did or did not overlap with frameworks for SSI-based instruction, education for sustainability, and media literacy education. The results of this study suggest that secondary science teachers use mass media to explore socio-scientific and sustainability issues, but their use of frameworks aligned with SSI-based, education for sustainability, and media literacy education was limited. This paper provides suggestions for how we, as science educators and researchers, can advance a teaching and learning agenda for encouraging instruction that more fully utilizes the potential of mass media to explore socio-scientific issues in line with perspectives from education for sustainability.

  3. Educated Guesses and Other Ways to Address the Pharmacological Uncertainty of Designer Drugs

    PubMed Central

    Berning, Moritz

    2016-01-01

    This study examines how experimentation with designer drugs is mediated by the Internet. We selected a popular drug forum that presents reports on self-experimentation with little or even completely unexplored designer drugs to examine: (1) how participants report their “trying out” of new compounds and (2) how participants reduce the pharmacological uncertainty associated with using these substances. Our methods included passive observation online, engaging more actively with the online community using an avatar, and off-line interviews with key interlocutors to validate our online findings. This article reflects on how forum participants experiment with designer drugs, their trust in suppliers and the testimonials of others, the use of ethno-scientific techniques that involve numerical weighing, “allergy dosing,” and the use of standardized trip reports. We suggest that these techniques contribute to a sense of control in the face of the possible toxicity of unknown or little-known designer drugs. The online reporting of effects allows users to experience not only the thrill of a new kind of high but also connection with others in the self-experimenting drug community. PMID:27721526

  4. The Scientific Basis of Uncertainty Factors Used in Setting Occupational Exposure Limits.

    PubMed

    Dankovic, D A; Naumann, B D; Maier, A; Dourson, M L; Levy, L S

    2015-01-01

    The uncertainty factor concept is integrated into health risk assessments for all aspects of public health practice, including by most organizations that derive occupational exposure limits. The use of uncertainty factors is predicated on the assumption that a sufficient reduction in exposure from those at the boundary for the onset of adverse effects will yield a safe exposure level for at least the great majority of the exposed population, including vulnerable subgroups. There are differences in the application of the uncertainty factor approach among groups that conduct occupational assessments; however, there are common areas of uncertainty which are considered by all or nearly all occupational exposure limit-setting organizations. Five key uncertainties that are often examined include interspecies variability in response when extrapolating from animal studies to humans, response variability in humans, uncertainty in estimating a no-effect level from a dose where effects were observed, extrapolation from shorter duration studies to a full life-time exposure, and other insufficiencies in the overall health effects database indicating that the most sensitive adverse effect may not have been evaluated. In addition, a modifying factor is used by some organizations to account for other remaining uncertainties-typically related to exposure scenarios or accounting for the interplay among the five areas noted above. Consideration of uncertainties in occupational exposure limit derivation is a systematic process whereby the factors applied are not arbitrary, although they are mathematically imprecise. As the scientific basis for uncertainty factor application has improved, default uncertainty factors are now used only in the absence of chemical-specific data, and the trend is to replace them with chemical-specific adjustment factors whenever possible. The increased application of scientific data in the development of uncertainty factors for individual chemicals also has

  5. The Scientific Basis of Uncertainty Factors Used in Setting Occupational Exposure Limits.

    PubMed

    Dankovic, D A; Naumann, B D; Maier, A; Dourson, M L; Levy, L S

    2015-01-01

    The uncertainty factor concept is integrated into health risk assessments for all aspects of public health practice, including by most organizations that derive occupational exposure limits. The use of uncertainty factors is predicated on the assumption that a sufficient reduction in exposure from those at the boundary for the onset of adverse effects will yield a safe exposure level for at least the great majority of the exposed population, including vulnerable subgroups. There are differences in the application of the uncertainty factor approach among groups that conduct occupational assessments; however, there are common areas of uncertainty which are considered by all or nearly all occupational exposure limit-setting organizations. Five key uncertainties that are often examined include interspecies variability in response when extrapolating from animal studies to humans, response variability in humans, uncertainty in estimating a no-effect level from a dose where effects were observed, extrapolation from shorter duration studies to a full life-time exposure, and other insufficiencies in the overall health effects database indicating that the most sensitive adverse effect may not have been evaluated. In addition, a modifying factor is used by some organizations to account for other remaining uncertainties-typically related to exposure scenarios or accounting for the interplay among the five areas noted above. Consideration of uncertainties in occupational exposure limit derivation is a systematic process whereby the factors applied are not arbitrary, although they are mathematically imprecise. As the scientific basis for uncertainty factor application has improved, default uncertainty factors are now used only in the absence of chemical-specific data, and the trend is to replace them with chemical-specific adjustment factors whenever possible. The increased application of scientific data in the development of uncertainty factors for individual chemicals also has

  6. SCIENTIFIC UNCERTAINTIES IN ATMOSPHERIC MERCURY MODELS II: SENSITIVITY ANALYSIS IN THE CONUS DOMAIN

    EPA Science Inventory

    In this study, we present the response of model results to different scientific treatments in an effort to quantify the uncertainties caused by the incomplete understanding of mercury science and by model assumptions in atmospheric mercury models. Two sets of sensitivity simulati...

  7. Painting the world REDD: addressing scientific barriers to monitoring emissions from tropical forests

    NASA Astrophysics Data System (ADS)

    Asner, Gregory P.

    2011-06-01

    project scale to program readiness is a big step for all involved, and many are finding that it is not easy. Current barriers to national monitoring of forest carbon stocks and emissions range from technical to scientific, and from institutional to operational. In fact, a recent analysis suggested that about 3% of tropical countries currently have the capacity to monitor and report on changes in forest cover and carbon stocks (Herold 2009). But until now, the scientific and policy-development communities have had little quantitative information on exactly which aspects of national-scale monitoring are most uncertain, and how that uncertainty will affect REDD+ performance reporting. A new and remarkable study by Pelletier, Ramankutty and Potvin (2011) uses an integrated, spatially-explicit modeling technique to explore and quantify sources of uncertainty in carbon emissions mapping throughout the Republic of Panama. Their findings are sobering: deforestation rates would need to be reduced by a full 50% in Panama in order to be detectable above the statistical uncertainty caused by several current major monitoring problems. The number one uncertainty, accounting for a sum total of about 77% of the error, rests in the spatial variation of aboveground carbon stocks in primary forests, secondary forests and on fallow land. The poor quality of and insufficient time interval between land-cover maps account for the remainder of the overall uncertainty. These findings are a show-stopper for REDD+ under prevailing science and technology conditions. The Pelletier et al study highlights the pressing need to improve the accuracy of forest carbon and land cover mapping assessments in order for REDD+ to become viable, but how can the uncertainties be overcome? First, with REDD+ nations required to report their emissions, and with verification organizations wanting to check on the reported numbers, there is a clear need for shared measurement and monitoring approaches. One of the major

  8. The Scientific Basis of Uncertainty Factors Used in Setting Occupational Exposure Limits

    PubMed Central

    Dankovic, D. A.; Naumann, B. D.; Maier, A.; Dourson, M. L.; Levy, L. S.

    2015-01-01

    The uncertainty factor concept is integrated into health risk assessments for all aspects of public health practice, including by most organizations that derive occupational exposure limits. The use of uncertainty factors is predicated on the assumption that a sufficient reduction in exposure from those at the boundary for the onset of adverse effects will yield a safe exposure level for at least the great majority of the exposed population, including vulnerable subgroups. There are differences in the application of the uncertainty factor approach among groups that conduct occupational assessments; however, there are common areas of uncertainty which are considered by all or nearly all occupational exposure limit-setting organizations. Five key uncertainties that are often examined include interspecies variability in response when extrapolating from animal studies to humans, response variability in humans, uncertainty in estimating a no-effect level from a dose where effects were observed, extrapolation from shorter duration studies to a full life-time exposure, and other insufficiencies in the overall health effects database indicating that the most sensitive adverse effect may not have been evaluated. In addition, a modifying factor is used by some organizations to account for other remaining uncertainties—typically related to exposure scenarios or accounting for the interplay among the five areas noted above. Consideration of uncertainties in occupational exposure limit derivation is a systematic process whereby the factors applied are not arbitrary, although they are mathematically imprecise. As the scientific basis for uncertainty factor application has improved, default uncertainty factors are now used only in the absence of chemical-specific data, and the trend is to replace them with chemical-specific adjustment factors whenever possible. The increased application of scientific data in the development of uncertainty factors for individual chemicals also

  9. It’s about time: How do sky surveys manage uncertainty about scientific needs many years into the future

    NASA Astrophysics Data System (ADS)

    Darch, Peter T.; Sands, Ashley E.

    2016-06-01

    Sky surveys, such as the Sloan Digital Sky Survey (SDSS) and the Large Synoptic Survey Telescope (LSST), generate data on an unprecedented scale. While many scientific projects span a few years from conception to completion, sky surveys are typically on the scale of decades. This paper focuses on critical challenges arising from long timescales, and how sky surveys address these challenges.We present findings from a study of LSST, comprising interviews (n=58) and observation. Conceived in the 1990s, the LSST Corporation was formed in 2003, and construction began in 2014. LSST will commence data collection operations in 2022 for ten years.One challenge arising from this long timescale is uncertainty about future needs of the astronomers who will use these data many years hence. Sources of uncertainty include scientific questions to be posed, astronomical phenomena to be studied, and tools and practices these astronomers will have at their disposal. These uncertainties are magnified by the rapid technological and scientific developments anticipated between now and the start of LSST operations.LSST is implementing a range of strategies to address these challenges. Some strategies involve delaying resolution of uncertainty, placing this resolution in the hands of future data users. Other strategies aim to reduce uncertainty by shaping astronomers’ data analysis practices so that these practices will integrate well with LSST once operations begin.One approach that exemplifies both types of strategy is the decision to make LSST data management software open source, even now as it is being developed. This policy will enable future data users to adapt this software to evolving needs. In addition, LSST intends for astronomers to start using this software well in advance of 2022, thereby embedding LSST software and data analysis approaches in the practices of astronomers.These findings strengthen arguments for making the software supporting sky surveys available as open

  10. An integrated approach for addressing uncertainty in the delineation of groundwater management areas.

    PubMed

    Sousa, Marcelo R; Frind, Emil O; Rudolph, David L

    2013-05-01

    Uncertainty is a pervasive but often poorly understood factor in the delineation of wellhead protection areas (WHPAs), which can discourage water managers and practitioners from relying on model results. To make uncertainty more understandable and thereby remove a barrier to the acceptance of models in the WHPA context, we present a simple approach for dealing with uncertainty. The approach considers two spatial scales for representing uncertainty: local and global. At the local scale, uncertainties are assumed to be due to heterogeneities, and a capture zone is expressed in terms of a capture probability plume. At the global scale, uncertainties are expressed through scenario analysis, using a limited number of physically realistic scenarios. The two scales are integrated by using the precautionary principle to merge the individual capture probability plumes corresponding to the different scenarios. The approach applies to both wellhead protection and the mitigation of contaminated aquifers, or in general, to groundwater management areas. An example relates to the WHPA for a supply well located in a complex glacial aquifer system in southwestern Ontario, where we focus on uncertainty due to the spatial distributions of recharge. While different recharge scenarios calibrate equally well to the same data, they result in different capture probability plumes. Using the precautionary approach, the different plumes are merged into two types of maps delineating groundwater management areas for either wellhead protection or aquifer mitigation. The study shows that calibrations may be non-unique, and that finding a "best" model on the basis of the calibration fit may not be possible.

  11. Application of fuzzy system theory in addressing the presence of uncertainties

    SciTech Connect

    Yusmye, A. Y. N.; Goh, B. Y.; Adnan, N. F.; Ariffin, A. K.

    2015-02-03

    In this paper, the combinations of fuzzy system theory with the finite element methods are present and discuss to deal with the uncertainties. The present of uncertainties is needed to avoid for prevent the failure of the material in engineering. There are three types of uncertainties, which are stochastic, epistemic and error uncertainties. In this paper, the epistemic uncertainties have been considered. For the epistemic uncertainty, it exists as a result of incomplete information and lack of knowledge or data. Fuzzy system theory is a non-probabilistic method, and this method is most appropriate to interpret the uncertainty compared to statistical approach when the deal with the lack of data. Fuzzy system theory contains a number of processes started from converting the crisp input to fuzzy input through fuzzification process and followed by the main process known as mapping process. The term mapping here means that the logical relationship between two or more entities. In this study, the fuzzy inputs are numerically integrated based on extension principle method. In the final stage, the defuzzification process is implemented. Defuzzification is an important process to allow the conversion of the fuzzy output to crisp outputs. Several illustrative examples are given and from the simulation, the result showed that propose the method produces more conservative results comparing with the conventional finite element method.

  12. Scientific information and uncertainty: challenges for the use of science in policymaking.

    PubMed

    Ascher, William

    2004-07-01

    Science can reinforce the healthy aspects of the politics of the policy process, to identify and further the public interest by discrediting policy options serving only special interests and helping to select among "science-confident" and "hedging" options. To do so, scientists must learn how to manage and communicate the degree of uncertainty in scientific understanding and prediction, lest uncertainty be manipulated to discredit science or to justify inaction. For natural resource and environmental policy, the institutional interests of government agencies, as well as private interests, pose challenges of suppression, over-simplification, or distortion of scientific information. Scientists can combat these maneuvers, but must also look inward to ensure that their own special interests do not undermine the usefulness of science.

  13. Addressing Uncertainty in Contaminant Transport in Groundwater Using the Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Dwivedi, D.; Mohanty, B. P.

    2011-12-01

    Nitrate in groundwater shows significant uncertainty which arises from sparse data and interaction among multiple geophysical factors such as source availability (land use), thickness and composition of the vadose zone, types of aquifers (confined or unconfined), aquifer heterogeneity (geological and alluvial), precipitation characteristics, etc. This work presents the fusion of the ensemble Kalman filter (EnKF) with the numerical groundwater flow model MODFLOW and the solute transport model MT3DMS. The EnKF is a sequential data assimilation approach, which is applied to quantify and reduce the uncertainty of groundwater flow and solute transport models. We conducted numerical simulation experiments for the period January 1990 to December 2005 with MODFLOW and MT3DMS models for variably saturated groundwater flow in various aquifers across Texas. The EnKF was used to update the model parameters, hydraulic conductivity, hydraulic head and solute concentration. Results indicate that the EnKF method notably improves the estimation of the hydraulic conductivity distribution and solute transport prediction by assimilating piezometric head measurements with a known nitrate initial condition. A better estimation of hydraulic conductivity and assimilation of continuous measurements of solute concentrations resulted in reduced uncertainty in MODFLOW and MT3DMS models. It was found that the observation locations and locations in spatial proximity were appropriately corrected by the EnKF. The knowledge of nitrate plume evolution provided an insight into model structure, parameters, and sources of uncertainty.

  14. Life-cycle greenhouse gas assessment of Nigerian liquefied natural gas addressing uncertainty.

    PubMed

    Safaei, Amir; Freire, Fausto; Henggeler Antunes, Carlos

    2015-03-17

    Natural gas (NG) has been regarded as a bridge fuel toward renewable sources and is expected to play a greater role in future global energy mix; however, a high degree of uncertainty exists concerning upstream (well-to-tank, WtT) greenhouse gas (GHG) emissions of NG. In this study, a life-cycle (LC) model is built to assess uncertainty in WtT GHG emissions of liquefied NG (LNG) supplied to Europe by Nigeria. The 90% prediction interval of GHG intensity of Nigerian LNG was found to range between 14.9 and 19.3 g CO2 eq/MJ, with a mean value of 16.8 g CO2 eq/MJ. This intensity was estimated considering no venting practice in Nigerian fields. The mean estimation can shift up to 25 g CO2 eq when considering a scenario with a higher rate of venting emissions. A sensitivity analysis of the time horizon to calculate GHG intensity was also performed showing that higher GHG intensity and uncertainty are obtained for shorter time horizons, due to the higher impact factor of methane. The uncertainty calculated for Nigerian LNG, specifically regarding the gap of data for methane emissions, recommends initiatives to measure and report emissions and further LC studies to identify hotspots to reduce the GHG intensity of LNG chains. PMID:25621534

  15. Life-cycle greenhouse gas assessment of Nigerian liquefied natural gas addressing uncertainty.

    PubMed

    Safaei, Amir; Freire, Fausto; Henggeler Antunes, Carlos

    2015-03-17

    Natural gas (NG) has been regarded as a bridge fuel toward renewable sources and is expected to play a greater role in future global energy mix; however, a high degree of uncertainty exists concerning upstream (well-to-tank, WtT) greenhouse gas (GHG) emissions of NG. In this study, a life-cycle (LC) model is built to assess uncertainty in WtT GHG emissions of liquefied NG (LNG) supplied to Europe by Nigeria. The 90% prediction interval of GHG intensity of Nigerian LNG was found to range between 14.9 and 19.3 g CO2 eq/MJ, with a mean value of 16.8 g CO2 eq/MJ. This intensity was estimated considering no venting practice in Nigerian fields. The mean estimation can shift up to 25 g CO2 eq when considering a scenario with a higher rate of venting emissions. A sensitivity analysis of the time horizon to calculate GHG intensity was also performed showing that higher GHG intensity and uncertainty are obtained for shorter time horizons, due to the higher impact factor of methane. The uncertainty calculated for Nigerian LNG, specifically regarding the gap of data for methane emissions, recommends initiatives to measure and report emissions and further LC studies to identify hotspots to reduce the GHG intensity of LNG chains.

  16. Individual Uncertainty and the Uncertainty of Science: The Impact of Perceived Conflict and General Self-Efficacy on the Perception of Tentativeness and Credibility of Scientific Information.

    PubMed

    Flemming, Danny; Feinkohl, Insa; Cress, Ulrike; Kimmerle, Joachim

    2015-01-01

    We examined in two empirical studies how situational and personal aspects of uncertainty influence laypeople's understanding of the uncertainty of scientific information, with focus on the detection of tentativeness and perception of scientific credibility. In the first study (N = 48), we investigated the impact of a perceived conflict due to contradicting information as a situational, text-inherent aspect of uncertainty. The aim of the second study (N = 61) was to explore the role of general self-efficacy as an intra-personal uncertainty factor. In Study 1, participants read one of two versions of an introductory text in a between-group design. This text provided them with an overview about the neurosurgical procedure of deep brain stimulation (DBS). The text expressed a positive attitude toward DBS in one experimental condition or focused on the negative aspects of this method in the other condition. Then participants in both conditions read the same text that dealt with a study about DBS as experimental treatment in a small sample of patients with major depression. Perceived conflict between the two texts was found to increase the perception of tentativeness and to decrease the perception of scientific credibility, implicating that text-inherent aspects have significant effects on critical appraisal. The results of Study 2 demonstrated that participants with higher general self-efficacy detected the tentativeness to a lesser degree and assumed a higher level of scientific credibility, indicating a more naïve understanding of scientific information. This appears to be contradictory to large parts of previous findings that showed positive effects of high self-efficacy on learning. Both studies showed that perceived tentativeness and perceived scientific credibility of medical information contradicted each other. We conclude that there is a need for supporting laypeople in understanding the uncertainty of scientific information and that scientific writers should

  17. Individual Uncertainty and the Uncertainty of Science: The Impact of Perceived Conflict and General Self-Efficacy on the Perception of Tentativeness and Credibility of Scientific Information

    PubMed Central

    Flemming, Danny; Feinkohl, Insa; Cress, Ulrike; Kimmerle, Joachim

    2015-01-01

    We examined in two empirical studies how situational and personal aspects of uncertainty influence laypeople’s understanding of the uncertainty of scientific information, with focus on the detection of tentativeness and perception of scientific credibility. In the first study (N = 48), we investigated the impact of a perceived conflict due to contradicting information as a situational, text-inherent aspect of uncertainty. The aim of the second study (N = 61) was to explore the role of general self-efficacy as an intra-personal uncertainty factor. In Study 1, participants read one of two versions of an introductory text in a between-group design. This text provided them with an overview about the neurosurgical procedure of deep brain stimulation (DBS). The text expressed a positive attitude toward DBS in one experimental condition or focused on the negative aspects of this method in the other condition. Then participants in both conditions read the same text that dealt with a study about DBS as experimental treatment in a small sample of patients with major depression. Perceived conflict between the two texts was found to increase the perception of tentativeness and to decrease the perception of scientific credibility, implicating that text-inherent aspects have significant effects on critical appraisal. The results of Study 2 demonstrated that participants with higher general self-efficacy detected the tentativeness to a lesser degree and assumed a higher level of scientific credibility, indicating a more naïve understanding of scientific information. This appears to be contradictory to large parts of previous findings that showed positive effects of high self-efficacy on learning. Both studies showed that perceived tentativeness and perceived scientific credibility of medical information contradicted each other. We conclude that there is a need for supporting laypeople in understanding the uncertainty of scientific information and that scientific writers should

  18. The future of human embryonic stem cell research: addressing ethical conflict with responsible scientific research.

    PubMed

    Gilbert, David M

    2004-05-01

    Embryonic stem (ES) cells have almost unlimited regenerative capacity and can potentially generate any body tissue. Hence they hold great promise for the cure of degenerative human diseases. But their derivation and the potential for misuse have raised a number of ethical issues. These ethical issues threaten to paralyze pubic funding for ES cell research, leaving experimentation in the hands of the private sector and precluding the public's ability to monitor practices, research alternatives, and effectively address the very ethical issues that are cause for concern in the first place. With new technology being inevitable, and the potential for abuse high, government must stay involved if the public is to play a role in shaping the direction of research. In this essay, I will define levels of ethical conflict that can be delineated by the anticipated advances in technology. From the urgent need to derive new ES cell lines with existing technology, to the most far-reaching goal of deriving genetically identical tissues from an adult patients cells, technology-specific ethical dilemmas can be defined and addressed. This staged approach provides a solid ethical framework for moving forward with ES cell research. Moreover, by anticipating the moral conflicts to come, one can predict the types of scientific advances that could overcome these conflicts, and appropriately direct federal funding toward these goals to offset potentially less responsible research directives that will inevitably go forward via private or foreign funding.

  19. Addressing the unique safety and design concerns for operating tower-based scientific field campaigns.

    NASA Astrophysics Data System (ADS)

    Steele, A. C.

    2006-12-01

    Scientific field campaigns often require specialized technical infrastructure for data collection. NASA's LBA- ECO Science Team needed a network of towers, up to 65 meters in height, to be constructed in the Amazon forest to serve as platforms for instrumentation used to estimate carbon dioxide and trace gas fluxes between the forest and the atmosphere. The design, construction, and operation of these scientific towers represented unique challenges to the construction crews, the logistics support staff, and the scientists due to operational requirements beyond tower site norms. These included selection of safe sites at remote locations within a dense forest; building towers without damaging the natural environment; locating diesel generators so that exhaust would not contaminate the measurement area; performing maintenance on continuously energized towers so as not to interrupt data collection; training inexperienced climbers needing safe access to towers; and addressing unique safety concerns (e.g. venomous animal response, chainsaw safety, off road driving). To meet the challenges of the complex field site, a comprehensive safety and site operation model was designed to ensure that NASA field safety standards were met, even under extreme conditions in the remote forests of the Amazon. The model includes all phases of field site safety and operation, including site design, construction, operational practices and policies, and personnel safety training. This operational model was employed over eight years, supporting a team of nearly 400 scientists, making several thousand site visits, without loss of life or major injury. The presentation will explore these concerns and present a model for comprehensive safety plans for NASA field missions.

  20. Frames of scientific evidence: How journalists represent the (un)certainty of molecular medicine in science television programs.

    PubMed

    Ruhrmann, Georg; Guenther, Lars; Kessler, Sabrina Heike; Milde, Jutta

    2015-08-01

    For laypeople, media coverage of science on television is a gateway to scientific issues. Defining scientific evidence is central to the field of science, but there are still questions if news coverage of science represents scientific research findings as certain or uncertain. The framing approach is a suitable framework to classify different media representations; it is applied here to investigate the frames of scientific evidence in film clips (n=207) taken from science television programs. Molecular medicine is the domain of interest for this analysis, due to its high proportion of uncertain and conflicting research findings and risks. The results indicate that television clips vary in their coverage of scientific evidence of molecular medicine. Four frames were found: Scientific Uncertainty and Controversy, Scientifically Certain Data, Everyday Medical Risks, and Conflicting Scientific Evidence. They differ in their way of framing scientific evidence and risks of molecular medicine.

  1. Adapting to climate change despite scientific uncertainty: A case study of coastal protection from sea-level rise in Kiribati

    NASA Astrophysics Data System (ADS)

    Donner, S. D.

    2013-12-01

    Climate change adaptation is an increasing focus of international aid. At recent meetings of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), the developed world agreed to rapidly increase international assistance to help developing countries, like the low-lying island nation of Kiribati, respond to the impacts of climate change. These emerging adaptation efforts must proceed despite the large and partially irreducible scientific uncertainty about the magnitude of those future climate impacts. In this study, we use the example of efforts to adapt to sea-level rise in Kiribati to document the challenges facing such internationally-funded climate change adaptation projects given the scientific uncertainty about climate impacts. Drawing on field and document research, we describe the scientific uncertainty about projected sea-level rise in Tarawa, the capital of Kiribati, how that uncertainty can create trade-offs between adaptation measures, and the social, political and economic context in which adaptation decisions must be made. The analysis shows there is no 'silver bullet' adaptation strategy in countries like Kiribati, given the long-term scientific uncertainty about sea-level rise and the environment of climate change aid. The existence of irreducible scientific uncertainty does not preclude effective climate change adaptation, but instead requires adaptation programs that embrace multiple strategies and planning horizons, and continually build on and re-adjust previous investments. This work highlights the importance of sustained international climate change financing, as proposed in UNFCCC negotiations.

  2. Mars 2001 Mission: Addressing Scientific Questions Regarding the Characteristics and Origin of Local Bedrock and Soil

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Arvidson, R. E.; Weitz, C. M.; Marshall, J.; Squyres, S. W.; Christensen, P. R.; Meloy, T.; Smith, P.

    1999-01-01

    The Mars Surveyor Program 2001 Mission will carry instruments on the orbiter, lander and rover that will support synergistic observations and experiments to address important scientific questions regarding the local bedrock and soils. The martian surface is covered in varying degrees by fine materials less than a few mms in size. Viking and Pathfinder images of the surface indicate that soils at those sites are composed of fine particles. Wheel tracks from the Sojourner rover suggest that soil deposits are composed of particles <40 mm. Viking images show that dunes are common in many areas on Mars and new MOC images indicate that dunes occur nearly everywhere. Dunes on Mars are thought to be composed of 250-500 microns particles based upon Viking IRTM data and Mars wind tunnel experiments. If martian dunes are composed of sand particles > 100 microns and soils are dominated by <10 micron particles, then where are the intermediate grain sizes? Have they been wom away through prolonged transport over the eons? Were they never generated to begin with? Or are they simply less easy to identify because do they not form distinctive geomorphic features such as dunes or uniform mantles that tend to assume superposition in the soil structure?

  3. Uncertainty

    USGS Publications Warehouse

    Hunt, Randall J.

    2012-01-01

    Management decisions will often be directly informed by model predictions. However, we now know there can be no expectation of a single ‘true’ model; thus, model results are uncertain. Understandable reporting of underlying uncertainty provides necessary context to decision-makers, as model results are used for management decisions. This, in turn, forms a mechanism by which groundwater models inform a risk-management framework because uncertainty around a prediction provides the basis for estimating the probability or likelihood of some event occurring. Given that the consequences of management decisions vary, it follows that the extent of and resources devoted to an uncertainty analysis may depend on the consequences. For events with low impact, a qualitative, limited uncertainty analysis may be sufficient for informing a decision. For events with a high impact, on the other hand, the risks might be better assessed and associated decisions made using a more robust and comprehensive uncertainty analysis. The purpose of this chapter is to provide guidance on uncertainty analysis through discussion of concepts and approaches, which can vary from heuristic (i.e. the modeller’s assessment of prediction uncertainty based on trial and error and experience) to a comprehensive, sophisticated, statistics-based uncertainty analysis. Most of the material presented here is taken from Doherty et al. (2010) if not otherwise cited. Although the treatment here is necessarily brief, the reader can find citations for the source material and additional references within this chapter.

  4. Addressing the Dynamics of Science in Curricular Reform for Scientific Literacy: The Case of Genomics

    ERIC Educational Resources Information Center

    van Eijck, Michiel

    2010-01-01

    Science education reform must anticipate the scientific literacy required by the next generation of citizens. Particularly, this counts for rapidly emerging and evolving scientific disciplines such as genomics. Taking this discipline as a case, such anticipation is becoming increasingly problematic in today's knowledge societies in which the…

  5. Science Teachers' Use of Mass Media to Address Socio-Scientific and Sustainability Issues

    ERIC Educational Resources Information Center

    Klosterman, Michelle L.; Sadler, Troy D.; Brown, Julie

    2012-01-01

    The currency, relevancy and changing nature of science makes it a natural topic of focus for mass media outlets. Science teachers and students can capitalize on this wealth of scientific information to explore socio-scientific and sustainability issues; however, without a lens on how those media are created and how representations of science are…

  6. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  7. Novel developments in benthic modelling to address scientific and policy challenges

    NASA Astrophysics Data System (ADS)

    Lessin, Gennadi; Artioli, Yuri; Bruggeman, Jorn; Aldridge, John; Blackford, Jerry

    2016-04-01

    Understanding the role of benthic systems in supporting, regulating and providing marine ecosystem services requires better understanding of their functioning and their response and resilience to stressors. Novel observational methods for the investigation of dynamics of benthic-pelagic coupling in shelf seas are being developed and new data is being collected. Therefore there is an increasing demand for robust representation of benthic processes in marine biogeochemical and ecosystem models, which would improve our understanding of whole systems and benthic-pelagic coupling, rather than act as mere closure terms for pelagic models. However, for several decades development of benthic models has lagged behind their pelagic counterparts. To address contemporary scientific, policy and societal challenges, the biogeochemical and ecological model ERSEM (European Regional Seas Ecosystem Model), including its benthic sub-model, was recently recoded in a scalable and modular format adopting the approach of FABM (Framework for Aquatic Biogeochemical Models). Within the Shelf Sea Biogeochemistry research programme, a series of additional processes have been included, such as a sedimentary carbonate system, a resuspendable fluff layer, and the simulation of advective sediments. It was shown that the inclusion of these processes changes the dynamics of benthic-pelagic fluxes as well as modifying the benthic food web. Comparison of model results with in-situ data demonstrated a general improvement of model performance and highlighted the importance of the benthic system in overall ecosystem dynamics. As an example, our simulations have shown that inclusion of a resuspendable fluff layer facilitates regeneration of inorganic nutrients in the water column due to degradation of resuspended organic material by pelagic bacteria. Moreover, the composition of fluff was found to be important for trophic interactions, and therefore indirectly affects benthic community composition. Where

  8. A Concept Space Approach to Addressing the Vocabulary Problem in Scientific Information Retrieval: An Experiment on the Worm Community System.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Ng, Tobun D.; Martinez, Joanne; Schatz, Bruce R.

    1997-01-01

    Presents an algorithmic approach to addressing the vocabulary problem in scientific information retrieval and information sharing, using the molecular biology domain as an example. A cognitive study and a follow-up document retrieval study were conducted using first a conjoined fly-worm thesaurus and then an actual worm database and the conjoined…

  9. Addressing Stability Robustness, Period Uncertainties, and Startup of Multiple-Period Repetitive Control for Spacecraft Jitter Mitigation

    NASA Astrophysics Data System (ADS)

    Ahn, Edwin S.

    Repetitive Control (RC) is a relatively new form of control that seeks to converge to zero tracking error when executing a periodic command, or when executing a constant command in the presence of a periodic disturbance. The design makes use of knowledge of the period of the disturbance or command, and makes use of the error observed in the previous period to update the command in the present period. The usual RC approaches address one period, and this means that potentially they can simultaneously address DC or constant error, the fundamental frequency for that period, and all harmonics up to Nyquist frequency. Spacecraft often have multiple sources of periodic excitation. Slight imbalance in reaction wheels used for attitude control creates three disturbance periods. A special RC structure was developed to allow one to address multiple unrelated periods which is referred to as Multiple-Period Repetitive Control (MPRC). MPRC in practice faces three main challenges for hardware implementation. One is instability due to model errors or parasitic high frequency modes, the second is degradation of the final error level due to period uncertainties or fluctuations, and the third is bad transients due to issues in startup. Regarding these three challenges, the thesis develops a series of methods to enhance the performance of MPRC or to assist in analyzing its performance for mitigating optical jitter induced by mechanical vibration within the structure of a spacecraft testbed. Experimental analysis of MPRC shows contrasting advantages over existing adaptive control algorithms, such as Filtered-X LMS, Adaptive Model Predictive Control, and Adaptive Basis Method, for mitigating jitter within the transmitting beam of Laser Communication (LaserCom) satellites.

  10. Progression in Ethical Reasoning When Addressing Socio-Scientific Issues in Biotechnology

    ERIC Educational Resources Information Center

    Berne, Birgitta

    2014-01-01

    This article reports on the outcomes of an intervention in a Swedish school in which the author, a teacher-researcher, sought to develop students' (14-15 years old) ethical reasoning in science through the use of peer discussions about socio-scientific issues. Prior to the student discussions various prompts were used to highlight different…

  11. Uncertainty as knowledge

    PubMed Central

    Lewandowsky, Stephan; Ballard, Timothy; Pancost, Richard D.

    2015-01-01

    This issue of Philosophical Transactions examines the relationship between scientific uncertainty about climate change and knowledge. Uncertainty is an inherent feature of the climate system. Considerable effort has therefore been devoted to understanding how to effectively respond to a changing, yet uncertain climate. Politicians and the public often appeal to uncertainty as an argument to delay mitigative action. We argue that the appropriate response to uncertainty is exactly the opposite: uncertainty provides an impetus to be concerned about climate change, because greater uncertainty increases the risks associated with climate change. We therefore suggest that uncertainty can be a source of actionable knowledge. We survey the papers in this issue, which address the relationship between uncertainty and knowledge from physical, economic and social perspectives. We also summarize the pervasive psychological effects of uncertainty, some of which may militate against a meaningful response to climate change, and we provide pointers to how those difficulties may be ameliorated. PMID:26460108

  12. Dealing with uncertainty: integrating local and scientific knowledge of the climate and weather.

    PubMed

    Kniveton, Dominic; Visman, Emma; Tall, Arame; Diop, Mariane; Ewbank, Richard; Njoroge, Ezekiel; Pearson, Lucy

    2015-01-01

    While climate science has made great progress in the projection of weather and climate information, its uptake by local communities remains largely elusive. This paper describes two innovative approaches that strengthen understanding between the providers and users of weather and climate information and support-appropriate application: (1) knowledge timelines, which compare different sources and levels of certainty in community and scientific weather and climate information; and (2) participatory downscaling, which supports users to translate national and regional information into a range of outcomes at the local level. Results from piloting these approaches among flood-prone communities in Senegal and drought-prone farmers in Kenya highlight the importance of co-producing 'user-useful' climate information. Recognising that disaster risk management actions draw on a wide range of knowledge sources, climate information that can effectively support community-based decision-making needs to be integrated with local knowledge systems and based on an appreciation of the inherent uncertainty of weather and climate information.

  13. Encouraging Uncertainty in the "Scientific Method": Promoting Understanding in the Processes of Science with Preservice Teachers

    ERIC Educational Resources Information Center

    Melville, Wayne; Bartley, Anthony; Fazio, Xavier

    2012-01-01

    Teachers' feelings of uncertainty are an overlooked, though crucial, condition necessary for the promotion of educational change. This article investigates the feelings of uncertainty that preservice teachers have toward the conduct of science as inquiry and the extent to which methods courses can confront and embrace those uncertainties. Our work…

  14. Scientific problems addressed by the Spektr-UV space project (world space Observatory—Ultraviolet)

    NASA Astrophysics Data System (ADS)

    Boyarchuk, A. A.; Shustov, B. M.; Savanov, I. S.; Sachkov, M. E.; Bisikalo, D. V.; Mashonkina, L. I.; Wiebe, D. Z.; Shematovich, V. I.; Shchekinov, Yu. A.; Ryabchikova, T. A.; Chugai, N. N.; Ivanov, P. B.; Voshchinnikov, N. V.; Gomez de Castro, A. I.; Lamzin, S. A.; Piskunov, N.; Ayres, T.; Strassmeier, K. G.; Jeffrey, S.; Zwintz, S. K.; Shulyak, D.; Gérard, J.-C.; Hubert, B.; Fossati, L.; Lammer, H.; Werner, K.; Zhilkin, A. G.; Kaigorodov, P. V.; Sichevskii, S. G.; Ustamuich, S.; Kanev, E. N.; Kil'pio, E. Yu.

    2016-01-01

    The article presents a review of scientific problems and methods of ultraviolet astronomy, focusing on perspective scientific problems (directions) whose solution requires UV space observatories. These include reionization and the history of star formation in the Universe, searches for dark baryonic matter, physical and chemical processes in the interstellar medium and protoplanetary disks, the physics of accretion and outflows in astrophysical objects, from Active Galactic Nuclei to close binary stars, stellar activity (for both low-mass and high-mass stars), and processes occurring in the atmospheres of both planets in the solar system and exoplanets. Technological progress in UV astronomy achieved in recent years is also considered. The well advanced, international, Russian-led Spektr-UV (World Space Observatory—Ultraviolet) project is described in more detail. This project is directed at creating a major space observatory operational in the ultraviolet (115-310 nm). This observatory will provide an effective, and possibly the only, powerful means of observing in this spectral range over the next ten years, and will be an powerful tool for resolving many topical scientific problems.

  15. The optimisation approach of ALARA in nuclear practice: an early application of the precautionary principle. Scientific uncertainty versus legal uncertainty.

    PubMed

    Lierman, S; Veuchelen, L

    2005-01-01

    The late health effects of exposure to low doses of ionising radiation are subject to scientific controversy: one view finds threats of high cancer incidence exaggerated, while the other view thinks the effects are underestimated. Both views have good scientific arguments in favour of them. Since the nuclear field, both industry and medicine have had to deal with this controversy for many decades. One can argue that the optimisation approach to keep the effective doses as low as reasonably achievable, taking economic and social factors into account (ALARA), is a precautionary approach. However, because of these stochastic effects, no scientific proof can be provided. This paper explores how ALARA and the Precautionary Principle are influential in the legal field and in particular in tort law, because liability should be a strong incentive for safer behaviour. This so-called "deterrence effect" of liability seems to evaporate in today's technical and highly complex society, in particular when dealing with the late health effects of low doses of ionising radiation. Two main issues will be dealt with in the paper: 1. How are the health risks attributable to "low doses" of radiation regulated in nuclear law and what lessons can be learned from the field of radiation protection? 2. What does ALARA have to inform the discussion of the Precautionary Principle and vice-versa, in particular, as far as legal sanctions and liability are concerned? It will be shown that the Precautionary Principle has not yet been sufficiently implemented into nuclear law.

  16. Keynote address: the scientific basis of the present and future practice of clinical radiotherapy

    SciTech Connect

    Fletcher, G.H.

    1983-07-01

    At mid-century radiotherapy was more an art than a science, but is presently based on radiobiological parameters and cell kinetics. This close interaction between basic scientific principles and clinical practice has been made possible because one can correlate quantitatively doses of irradiation with observed responses. First, a short historical review will be made because it gives a perspective for the understanding both of progress made and prevailing misconceptions. The important radiobiological parameters and cell kinetics will then be discussed in some detail to demonstrate that they should be thoroughly understood in their relationship to radiotherapy. The overall treatment planning must be based on the clinical applications of the main radiobiological parameters. The combined treatment with surgery, either pre- or postoperatively, and multiple daily fractionations will be used as examples. The teaching of radiobiology should be considerably expanded, not only for its own scientific merit but also to show how it applies to clinical situations. This should be reflected in the expansion of the board examination.

  17. Progression in Ethical Reasoning When Addressing Socio-scientific Issues in Biotechnology

    NASA Astrophysics Data System (ADS)

    Berne, Birgitta

    2014-11-01

    This article reports on the outcomes of an intervention in a Swedish school in which the author, a teacher-researcher, sought to develop students' (14-15 years old) ethical reasoning in science through the use of peer discussions about socio-scientific issues. Prior to the student discussions various prompts were used to highlight different aspects of the issues. In addition, students were given time to search for further information themselves. Analysis of students' written arguments, from the beginning of the intervention and afterwards, suggests that many students seem to be moving away from their use of everyday language towards using scientific concepts in their arguments. In addition, they moved from considering cloning and 'designer babies' solely in terms of the present to considering them in terms of the future. Furthermore, the students started to approach the issues in additional ways using not only consequentialism but also the approaches of virtue ethics, and rights and duties. Students' progression in ethical reasoning could be related to the characteristics of the interactions in peer discussions as students who critically and constructively argued with each other's ideas, and challenged each other's claims, made progress in more aspects of ethical reasoning than students merely using cumulative talk. As such, the work provides valuable indications for the importance of introducing peer discussions and debates about SSIs in connection to biotechnology into the teaching of science in schools.

  18. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    SciTech Connect

    Vierow, Karen; Aldemir, Tunc

    2009-09-10

    The project entitled, “Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors”, was conducted as a DOE NERI project collaboration between Texas A&M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  19. Eliciting climate experts' knowledge to address model uncertainties in regional climate projections: a case study of Guanacaste, Northwest Costa Rica

    NASA Astrophysics Data System (ADS)

    Grossmann, I.; Steyn, D. G.

    2014-12-01

    Global general circulation models typically cannot provide the detailed and accurate regional climate information required by stakeholders for climate adaptation efforts, given their limited capacity to resolve the regional topography and changes in local sea surface temperature, wind and circulation patterns. The study region in Northwest Costa Rica has a tropical wet-dry climate with a double-peak wet season. During the dry season the central Costa Rican mountains prevent tropical Atlantic moisture from reaching the region. Most of the annual precipitation is received following the northward migration of the ITCZ in May that allows the region to benefit from moist southwesterly flow from the tropical Pacific. The wet season begins with a short period of "early rains" and is interrupted by the mid-summer drought associated with the intensification and westward expansion of the North Atlantic subtropical high in late June. Model projections for the 21st century indicate a lengthening and intensification of the mid-summer drought and a weakening of the early rains on which current crop cultivation practices rely. We developed an expert elicitation to systematically address uncertainties in the available model projections of changes in the seasonal precipitation pattern. Our approach extends an elicitation approach developed previously at Carnegie Mellon University. Experts in the climate of the study region or Central American climate were asked to assess the mechanisms driving precipitation during each part of the season, uncertainties regarding these mechanisms, expected changes in each mechanism in a warming climate, and the capacity of current models to reproduce these processes. To avoid overconfidence bias, a step-by-step procedure was followed to estimate changes in the timing and intensity of precipitation during each part of the season. The questions drew upon interviews conducted with the regions stakeholders to assess their climate information needs. This

  20. Addressing Emerging Risks: Scientific and Regulatory Challenges Associated with Environmentally Persistent Free Radicals.

    PubMed

    Dugas, Tammy R; Lomnicki, Slawomir; Cormier, Stephania A; Dellinger, Barry; Reams, Margaret

    2016-06-08

    Airborne fine and ultrafine particulate matter (PM) are often generated through widely-used thermal processes such as the combustion of fuels or the thermal decomposition of waste. Residents near Superfund sites are exposed to PM through the inhalation of windblown dust, ingestion of soil and sediments, and inhalation of emissions from the on-site thermal treatment of contaminated soils. Epidemiological evidence supports a link between exposure to airborne PM and an increased risk of cardiovascular and pulmonary diseases. It is well-known that during combustion processes, incomplete combustion can lead to the production of organic pollutants that can adsorb to the surface of PM. Recent studies have demonstrated that their interaction with metal centers can lead to the generation of a surface stabilized metal-radical complex capable of redox cycling to produce ROS. Moreover, these free radicals can persist in the environment, hence their designation as Environmentally Persistent Free Radicals (EPFR). EPFR has been demonstrated in both ambient air PM2.5 (diameter < 2.5 µm) and in PM from a variety of combustion sources. Thus, low-temperature, thermal treatment of soils can potentially increase the concentration of EPFR in areas in and around Superfund sites. In this review, we will outline the evidence to date supporting EPFR formation and its environmental significance. Furthermore, we will address the lack of methodologies for specifically addressing its risk assessment and challenges associated with regulating this new, emerging contaminant.

  1. An Analysis Framework Addressing the Scale and Legibility of Large Scientific Data Sets

    SciTech Connect

    Childs, Hank R.

    2006-01-01

    Much of the previous work in the large data visualization area has solely focused on handling the scale of the data. This task is clearly a great challenge and necessary, but it is not sufficient. Applying standard visualization techniques to large scale data sets often creates complicated pictures where meaningful trends are lost. A second challenge, then, is to also provide algorithms that simplify what an analyst must understand, using either visual or quantitative means. This challenge can be summarized as improving the legibility or reducing the complexity of massive data sets. Fully meeting both of these challenges is the work of many, many PhD dissertations. In this dissertation, we describe some new techniques to address both the scale and legibility challenges, in hope of contributing to the larger solution. In addition to our assumption of simultaneously addressing both scale and legibility, we add an additional requirement that the solutions considered fit well within an interoperable framework for diverse algorithms, because a large suite of algorithms is often necessary to fully understand complex data sets. For scale, we present a general architecture for handling large data, as well as details of a contract-based system for integrating advanced optimizations into a data flow network design. We also describe techniques for volume rendering and performing comparisons at the extreme scale. For legibility, we present several techniques. Most noteworthy are equivalence class functions, a technique to drive visualizations using statistical methods, and line-scan based techniques for characterizing shape.

  2. Addressing Emerging Risks: Scientific and Regulatory Challenges Associated with Environmentally Persistent Free Radicals

    PubMed Central

    Dugas, Tammy R.; Lomnicki, Slawomir; Cormier, Stephania A.; Dellinger, Barry; Reams, Margaret

    2016-01-01

    Airborne fine and ultrafine particulate matter (PM) are often generated through widely-used thermal processes such as the combustion of fuels or the thermal decomposition of waste. Residents near Superfund sites are exposed to PM through the inhalation of windblown dust, ingestion of soil and sediments, and inhalation of emissions from the on-site thermal treatment of contaminated soils. Epidemiological evidence supports a link between exposure to airborne PM and an increased risk of cardiovascular and pulmonary diseases. It is well-known that during combustion processes, incomplete combustion can lead to the production of organic pollutants that can adsorb to the surface of PM. Recent studies have demonstrated that their interaction with metal centers can lead to the generation of a surface stabilized metal-radical complex capable of redox cycling to produce ROS. Moreover, these free radicals can persist in the environment, hence their designation as Environmentally Persistent Free Radicals (EPFR). EPFR has been demonstrated in both ambient air PM2.5 (diameter < 2.5 µm) and in PM from a variety of combustion sources. Thus, low-temperature, thermal treatment of soils can potentially increase the concentration of EPFR in areas in and around Superfund sites. In this review, we will outline the evidence to date supporting EPFR formation and its environmental significance. Furthermore, we will address the lack of methodologies for specifically addressing its risk assessment and challenges associated with regulating this new, emerging contaminant. PMID:27338429

  3. Addressing Emerging Risks: Scientific and Regulatory Challenges Associated with Environmentally Persistent Free Radicals.

    PubMed

    Dugas, Tammy R; Lomnicki, Slawomir; Cormier, Stephania A; Dellinger, Barry; Reams, Margaret

    2016-01-01

    Airborne fine and ultrafine particulate matter (PM) are often generated through widely-used thermal processes such as the combustion of fuels or the thermal decomposition of waste. Residents near Superfund sites are exposed to PM through the inhalation of windblown dust, ingestion of soil and sediments, and inhalation of emissions from the on-site thermal treatment of contaminated soils. Epidemiological evidence supports a link between exposure to airborne PM and an increased risk of cardiovascular and pulmonary diseases. It is well-known that during combustion processes, incomplete combustion can lead to the production of organic pollutants that can adsorb to the surface of PM. Recent studies have demonstrated that their interaction with metal centers can lead to the generation of a surface stabilized metal-radical complex capable of redox cycling to produce ROS. Moreover, these free radicals can persist in the environment, hence their designation as Environmentally Persistent Free Radicals (EPFR). EPFR has been demonstrated in both ambient air PM2.5 (diameter < 2.5 µm) and in PM from a variety of combustion sources. Thus, low-temperature, thermal treatment of soils can potentially increase the concentration of EPFR in areas in and around Superfund sites. In this review, we will outline the evidence to date supporting EPFR formation and its environmental significance. Furthermore, we will address the lack of methodologies for specifically addressing its risk assessment and challenges associated with regulating this new, emerging contaminant. PMID:27338429

  4. Using Next Generation Science Standards (NGSS) Practices to Address Scientific Misunderstandings Around Complex Environmental Issues

    NASA Astrophysics Data System (ADS)

    Turrin, M.; Kenna, T. C.

    2014-12-01

    The new NGSS provide an important opportunity for scientists to develop curriculum that links the practice of science to research-based data in order to improve understanding in areas of science that are both complex and confusing. Our curriculum focuses in particular on the fate and transport of anthropogenic radionuclides. Radioactivity, both naturally occurring and anthropogenic, is highly debated and largely misunderstood, and for large sections of the population is a source of scientific misunderstanding. Developed as part of the international GEOTRACES project which focuses on identifying ocean processes and quantifying fluxes that control the distributions of selected trace elements and isotopes in the ocean, and on establishing the sensitivity of these distributions to changing environmental conditions, the curriculum topic fits nicely into the applied focus of NGSS with both environmental and topical relevance. Our curriculum design focuses on small group discussion driven by questions, yet unlike more traditional curriculum pieces these are not questions posed to the students, rather they are questions posed by the students to facilitate their deeper understanding. Our curriculum design challenges the traditional question/answer memorization approach to instruction as we strive to develop an educational approach that supports the practice of science as well as the NGSS Cross Cutting Concepts and the Science & Engineering Practices. Our goal is for students to develop a methodology they can employ when faced with a complex scientific issue. Through background readings and team discussions they identify what type of information is important for them to know and where to find a reliable source for that information. Framing their discovery around key questions such as "What type of radioactive decay are we dealing with?", "What is the potential half-life of the isotope?", and "What are the pathways of transport of radioactivity?" allows students to evaluate a

  5. Building non-traditional collaborations to innovatively address climate-related scientific and management needs

    NASA Astrophysics Data System (ADS)

    Bamzai, A.; Mcpherson, R. A.

    2014-12-01

    The South Central Climate Science Center (SC-CSC) is one of eight regional centers formed by the U.S. Department of the Interior in order to provide decision makers with the science, tools, and information they need to address the impacts of climate variability and change on their areas of responsibility. The SC-CSC is operated through the U.S. Geological Survey, in partnership with a consortium led by the University of Oklahoma that also includes Texas Tech University, Oklahoma State University, Louisiana State University, the Chickasaw Nation, the Choctaw Nation of Oklahoma, and NOAA's Geophysical Fluid Dynamics Lab (GFDL). The SC-CSC is distinct from all other CSCs in that we have strategically included non-traditional collaborators directly within our governing consortium. The SC-CSC is the only CSC to include any Tribal nations amongst our consortium (the Chickasaw Nation and the Choctaw Nation of Oklahoma) and to employ a full-time tribal liaison. As a result and in partnership with Tribes, we are able to identify the unique challenges that the almost 70 federally recognized Tribes within our region face. We also can develop culturally sensitive research projects or outreach efforts that bridge western science and traditional knowledge to address their needs. In addition, the SC-CSC is the only CSC to include another federal institution (GFDL) amongst our consortium membership. GFDL is a world-leader in climate modeling and model interpretation. Partnering GFDL's expertise in the evaluation of climate models and downscaling methods with the SC-CSC's stakeholder-driven approach allows for the generation and dissemination of guidance documents and training to accompany the high quality datasets already in development. This presentation will highlight the success stories and co-benefits of the SC-CSC's collaborations with Tribal nations and with GFDL, as well as include information on how other partners can connect to our ongoing efforts.

  6. The Uncertainty of Coastal Water Colour Products of S3: Implications for Scientific Applications and Monitoring

    NASA Astrophysics Data System (ADS)

    Doerffer, Roland; Brockmann, Carsten; Krasemann, Hajo; Muller, Dagmar

    2015-12-01

    This paper presents neural network based procedures to identify reflectance spectra, which are out of scope of the retrieval algorithm, and to determine uncertainties of OLCI products of optically complex coastal waters. It discusses the limited information content of reflectance spectra and presents examples how to improve the utilisation of these products by indicating their limitations and uncertainties for different types of waters.

  7. Implementation of Scientific Community Laboratories and Their Effect on Student Conceptual Learning, Attitudes, and Understanding of Uncertainty

    NASA Astrophysics Data System (ADS)

    Lark, Adam

    Scientific Community Laboratories, developed by The University of Maryland, have shown initial promise as laboratories meant to emulate the practice of doing physics. These laboratories have been re-created by incorporating their design elements with the University of Toledo course structure and resources. The laboratories have been titled the Scientific Learning Community (SLC) Laboratories. A comparative study between these SLC laboratories and the University of Toledo physics department's traditional laboratories was executed during the fall 2012 semester on first semester calculus-based physics students. Three tests were executed as pre-test and post-tests to capture the change in students' concept knowledge, attitudes, and understanding of uncertainty. The Force Concept Inventory (FCI) was used to evaluate students' conceptual changes through the semester and average normalized gains were compared between both traditional and SLC laboratories. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) was conducted to elucidate students' change in attitudes through the course of each laboratory. Finally, interviews regarding data analysis and uncertainty were transcribed and coded to track changes in the way students understand uncertainty and data analysis in experimental physics after their participation in both laboratory type. Students in the SLC laboratories showed a notable an increase conceptual knowledge and attitudes when compared to traditional laboratories. SLC students' understanding of uncertainty showed most improvement, diverging completely from students in the traditional laboratories, who declined throughout the semester.

  8. How can present and future satellite missions support scientific studies that address ocean acidification?

    USGS Publications Warehouse

    Salisbury, Joseph; Vandemark, Douglas; Jonsson, Bror; Balch, William; Chakraborty, Sumit; Lohrenz, Steven; Chapron, Bertrand; Hales, Burke; Mannino, Antonio; Mathis, Jeremy T.; Reul, Nicolas; Signorini, Sergio; Wanninkhof, Rik; Yates, Kimberly K.

    2016-01-01

    Space-based observations offer unique capabilities for studying spatial and temporal dynamics of the upper ocean inorganic carbon cycle and, in turn, supporting research tied to ocean acidification (OA). Satellite sensors measuring sea surface temperature, color, salinity, wind, waves, currents, and sea level enable a fuller understanding of a range of physical, chemical, and biological phenomena that drive regional OA dynamics as well as the potentially varied impacts of carbon cycle change on a broad range of ecosystems. Here, we update and expand on previous work that addresses the benefits of space-based assets for OA and carbonate system studies. Carbonate chemistry and the key processes controlling surface ocean OA variability are reviewed. Synthesis of present satellite data streams and their utility in this arena are discussed, as are opportunities on the horizon for using new satellite sensors with increased spectral, temporal, and/or spatial resolution. We outline applications that include the ability to track the biochemically dynamic nature of water masses, to map coral reefs at higher resolution, to discern functional phytoplankton groups and their relationships to acid perturbations, and to track processes that contribute to acid variation near the land-ocean interface.

  9. Trends in scientific activity addressing transmissible spongiform encephalopathies: a bibliometric study covering the period 1973–2002

    PubMed Central

    Sanz-Casado, Elías; Ramírez-de Santa Pau, Margarita; Suárez-Balseiro, Carlos A; Iribarren-Maestro, Isabel; de Pedro-Cuesta, Jesús

    2006-01-01

    Background The purpose of this study is to analyse the trends in scientific research on transmissible spongiform encephalopathies by applying bibliometric tools to the scientific literature published between 1973 and 2002. Methods The data for the study were obtained from Medline database, in order to determine the volume of scientific output in the above period, the countries involved, the type of document and the trends in the subject matters addressed. The period 1973–2002 was divided in three sub-periods. Results We observed a significant growth in scientific production. The percentage of increase is 871.7 from 1973 to 2002. This is more evident since 1991 and particularly in the 1996–2001 period. The countries found to have the highest output were the United States, the United Kingdom, Japan, France and Germany. The evolution in the subject matters was almost constant in the three sub-periods in which the study was divided. In the first and second sub-periods, the subject matters of greatest interest were more general, i.e Nervous system or Nervous system diseases, Creutzfeldt-Jakob disease, Scrapie, and Chemicals and Drugs, but in the last sub-period, some changes were observed because the Prion-related matters had the greatest presence. Collaboration among authors is small from 1973 to 1992, but increases notably in the third sub-period, and also the number of authors and clusters formed. Some of the authors, like Gajdusek or Prusiner, appear in the whole period. Conclusion The study reveals a very high increase in scientific production. It is related also with the beginnings of research on bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease, with the establishment of progressive collaboration relationships and a reflection of public health concerns about this problem. PMID:17026743

  10. Crossing Science-Policy-Societal Boundaries to Reduce Scientific and Institutional Uncertainty in Small-Scale Fisheries

    NASA Astrophysics Data System (ADS)

    Sutton, Abigail M.; Rudd, Murray A.

    2016-10-01

    The governance of small-scale fisheries (SSF) is challenging due to the uncertainty, complexity, and interconnectedness of social, political, ecological, and economical processes. Conventional SSF management has focused on a centralized and top-down approach. A major criticism of conventional management is the over-reliance on `expert science' to guide decision-making and poor consideration of fishers' contextually rich knowledge. That is thought to exacerbate the already low governance potential of SSF. Integrating scientific knowledge with fishers' knowledge is increasingly popular and is often assumed to help reduce levels of biophysical and institutional uncertainties. Many projects aimed at encouraging knowledge integration have, however, been unsuccessful. Our objective in this research was to assess factors that influence knowledge integration and the uptake of integrated knowledge into policy-making. We report results from 54 semi-structured interviews with SSF researchers and practitioners from around the globe. Our analysis is framed in terms of scientific credibility, societal legitimacy, and policy saliency, and we discuss cases that have been partially or fully successful in reducing uncertainty via push-and-pull-oriented boundary crossing initiatives. Our findings suggest that two important factors affect the science-policy-societal boundary: a lack of consensus among stakeholders about what constitutes credible knowledge and institutional uncertainty resulting from shifting policies and leadership change. A lack of training for scientific leaders and an apparent `shelf-life' for community organizations highlight the importance of ongoing institutional support for knowledge integration projects. Institutional support may be enhanced through such investments, such as capacity building and specialized platforms for knowledge integration.

  11. Crossing Science-Policy-Societal Boundaries to Reduce Scientific and Institutional Uncertainty in Small-Scale Fisheries.

    PubMed

    Sutton, Abigail M; Rudd, Murray A

    2016-10-01

    The governance of small-scale fisheries (SSF) is challenging due to the uncertainty, complexity, and interconnectedness of social, political, ecological, and economical processes. Conventional SSF management has focused on a centralized and top-down approach. A major criticism of conventional management is the over-reliance on 'expert science' to guide decision-making and poor consideration of fishers' contextually rich knowledge. That is thought to exacerbate the already low governance potential of SSF. Integrating scientific knowledge with fishers' knowledge is increasingly popular and is often assumed to help reduce levels of biophysical and institutional uncertainties. Many projects aimed at encouraging knowledge integration have, however, been unsuccessful. Our objective in this research was to assess factors that influence knowledge integration and the uptake of integrated knowledge into policy-making. We report results from 54 semi-structured interviews with SSF researchers and practitioners from around the globe. Our analysis is framed in terms of scientific credibility, societal legitimacy, and policy saliency, and we discuss cases that have been partially or fully successful in reducing uncertainty via push-and-pull-oriented boundary crossing initiatives. Our findings suggest that two important factors affect the science-policy-societal boundary: a lack of consensus among stakeholders about what constitutes credible knowledge and institutional uncertainty resulting from shifting policies and leadership change. A lack of training for scientific leaders and an apparent 'shelf-life' for community organizations highlight the importance of ongoing institutional support for knowledge integration projects. Institutional support may be enhanced through such investments, such as capacity building and specialized platforms for knowledge integration.

  12. Crossing Science-Policy-Societal Boundaries to Reduce Scientific and Institutional Uncertainty in Small-Scale Fisheries.

    PubMed

    Sutton, Abigail M; Rudd, Murray A

    2016-10-01

    The governance of small-scale fisheries (SSF) is challenging due to the uncertainty, complexity, and interconnectedness of social, political, ecological, and economical processes. Conventional SSF management has focused on a centralized and top-down approach. A major criticism of conventional management is the over-reliance on 'expert science' to guide decision-making and poor consideration of fishers' contextually rich knowledge. That is thought to exacerbate the already low governance potential of SSF. Integrating scientific knowledge with fishers' knowledge is increasingly popular and is often assumed to help reduce levels of biophysical and institutional uncertainties. Many projects aimed at encouraging knowledge integration have, however, been unsuccessful. Our objective in this research was to assess factors that influence knowledge integration and the uptake of integrated knowledge into policy-making. We report results from 54 semi-structured interviews with SSF researchers and practitioners from around the globe. Our analysis is framed in terms of scientific credibility, societal legitimacy, and policy saliency, and we discuss cases that have been partially or fully successful in reducing uncertainty via push-and-pull-oriented boundary crossing initiatives. Our findings suggest that two important factors affect the science-policy-societal boundary: a lack of consensus among stakeholders about what constitutes credible knowledge and institutional uncertainty resulting from shifting policies and leadership change. A lack of training for scientific leaders and an apparent 'shelf-life' for community organizations highlight the importance of ongoing institutional support for knowledge integration projects. Institutional support may be enhanced through such investments, such as capacity building and specialized platforms for knowledge integration. PMID:27389712

  13. Human health and endocrine disruption: a simple multicriteria framework for the qualitative assessment of end point specific risks in a context of scientific uncertainty.

    PubMed

    Martin, Olwenn V; Lester, John N; Voulvoulis, Nikolaos; Boobis, Alan R

    2007-08-01

    Endocrine disruption remains one of the most controversial contemporary environmental issues. While the desired level of protection is ultimately a societal choice, endocrine toxicity could result in a wide spectrum of adverse health effects. Although the application of the causal framework of weight-of-evidence approaches to complex toxicological issues has incited much interest, no international criteria or guidance have yet been developed. In this context, the evidence on end point-specific risks to human health contained in the International Program on Chemical Safety Global assessment of the State-of-Science on Endocrine Disruptors report was updated and assessed qualitatively using three simple criteria relevant to the practical application of the precautionary principle (PP): incidence trends, association, and consequence. The current degree of knowledge was then ranked according to ignorance, uncertainty, and risk. The main sources of scientific uncertainty in relation to incidence trends were associated with the evolution of diagnostic criteria or diagnostic tests, while genetic susceptibility is often proposed as an explanation for the wide geographic variations in the incidence of some diseases. Such genetic polymorphisms are also offered as a potential explanation for some of the inconsistent findings or lack of clear dose-response gradients described under the association criterion. The methodology yielded a relative paucity of data addressing directly the impact for adverse human health effect from both individual and public health perspectives. Results are discussed within the context of the application of the PP. Within a participatory context, this simple framework could provide a useful decision-making tool to both communicate scientific uncertainty to the wider public and manage uncertain risks.

  14. MEETING IN TUCSON: MODEL EVALUATION SCIENCE TO MEET TODAY'S QUALITY ASSURANCE REQUIREMENTS FOR REGULATORY USE: ADDRESSING UNCERTAINTY, SENSITIVITY, AND PARAMETERIZATION

    EPA Science Inventory

    The EPA/ORD National Exposure Research Lab's (NERL) UA/SA/PE research program addresses both tactical and strategic needs in direct support of ORD's client base. The design represents an integrated approach in achieving the highest levels of quality assurance in environmental dec...

  15. MODEL EVALUATION SCIENCE TO MEET TODAY'S QUALITY ASSURANCE REQUIREMENTS FOR REGULATORY USE: ADDRESSING UNCERTAINTY, SENSITIVITY, AND PARAMETERIZATION

    EPA Science Inventory

    The EPA/ORD National Exposure Research Lab's (NERL) UA/SA/PE research program addresses both tactical and strategic needs in direct support of ORD's client base. The design represents an integrated approach in achieving the highest levels of quality assurance in environmental de...

  16. The Role of Health Education in Addressing Uncertainty about Health and Cell Phone Use--A Commentary

    ERIC Educational Resources Information Center

    Ratnapradipa, Dhitinut; Dundulis, William P., Jr.; Ritzel, Dale O.; Haseeb, Abdul

    2012-01-01

    Although the fundamental principles of health education remain unchanged, the practice of health education continues to evolve in response to the rapidly changing lifestyles and technological advances. Emerging health risks are often associated with these lifestyle changes. The purpose of this article is to address the role of health educators…

  17. Science, law, and politics in FDA's genetically engineered foods policy: scientific concerns and uncertainties.

    PubMed

    Pelletier, David L

    2005-06-01

    The Food and Drug Administration's (FDA's) 1992 policy statement granted genetically engineered foods presumptive GRAS (generally recognized as safe) status. Since then, divergent views have been expressed concerning the scientific support for this policy. This paper examines four sources to better understand the basis for these claims: 1) internal FDA correspondence; 2) reports from the National Academy of Sciences; 3) research funded by US Department of Agriculture from 1981 to 2002; and 4) FDA's proposed rules issued in 2001. These sources reveal that little research has been conducted on unintended compositional changes from genetic engineering. Profiling techniques now make this feasible, but the new debate centers on the functional meaning of compositional changes.

  18. Effectiveness and Tradeoffs between Portfolios of Adaptation Strategies Addressing Future Climate and Socioeconomic Uncertainties in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Tansey, M. K.; Van Lienden, B.; Das, T.; Munevar, A.; Young, C. A.; Flores-Lopez, F.; Huntington, J. L.

    2013-12-01

    The Central Valley of California is one of the major agricultural areas in the United States. The Central Valley Project (CVP) is operated by the Bureau of Reclamation to serve multiple purposes including generating approximately 4.3 million gigawatt hours of hydropower and providing, on average, 5 million acre-feet of water per year to irrigate approximately 3 million acres of land in the Sacramento, San Joaquin, and Tulare Lake basins, 600,000 acre-feet per year of water for urban users, and 800,000 acre-feet of annual supplies for environmental purposes. The development of effective adaptation and mitigation strategies requires assessing multiple risks including potential climate changes as well as uncertainties in future socioeconomic conditions. In this study, a scenario-based analytical approach was employed by combining three potential 21st century socioeconomic futures with six representative climate and sea level change projections developed using a transient hybrid delta ensemble method from an archive of 112 bias corrected spatially downscaled CMIP3 global climate model simulations to form 18 future socioeconomic-climate scenarios. To better simulate the effects of climate changes on agricultural water demands, analyses of historical agricultural meteorological station records were employed to develop estimates of future changes in solar radiation and atmospheric humidity from the GCM simulated temperature and precipitation. Projected changes in atmospheric carbon dioxide were computed directly by weighting SRES emissions scenarios included in each representative climate projection. These results were used as inputs to a calibrated crop water use, growth and yield model to simulate the effects of climate changes on the evapotranspiration and yields of major crops grown in the Central Valley. Existing hydrologic, reservoir operations, water quality, hydropower, greenhouse gas (GHG) emissions and both urban and agricultural economic models were integrated

  19. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes.

    PubMed

    Naujokaitis-Lewis, Ilona; Curtis, Janelle M R

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along

  20. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes.

    PubMed

    Naujokaitis-Lewis, Ilona; Curtis, Janelle M R

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along

  1. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes

    PubMed Central

    Curtis, Janelle M.R.

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along

  2. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications [rapid communication

    NASA Astrophysics Data System (ADS)

    Lifton, Nathaniel A.; Bieber, John W.; Clem, John M.; Duldig, Marc L.; Evenson, Paul; Humble, John E.; Pyle, Roger

    2005-10-01

    Solar modulation affects the secondary cosmic rays responsible for in situ cosmogenic nuclide (CN) production the most at the high geomagnetic latitudes to which CN production rates are traditionally referenced. While this has long been recognized (e.g., D. Lal, B. Peters, Cosmic ray produced radioactivity on the Earth, in: K. Sitte (Ed.), Handbuch Der Physik XLVI/2, Springer-Verlag, Berlin, 1967, pp. 551-612 and D. Lal, Theoretically expected variations in the terrestrial cosmic ray production rates of isotopes, in: G.C. Castagnoli (Ed.), Proceedings of the Enrico Fermi International School of Physics 95, Italian Physical Society, Varenna 1988, pp. 216-233), these variations can lead to potentially significant scaling model uncertainties that have not been addressed in detail. These uncertainties include the long-term (millennial-scale) average solar modulation level to which secondary cosmic rays should be referenced, and short-term fluctuations in cosmic ray intensity measurements used to derive published secondary cosmic ray scaling models. We have developed new scaling models for spallogenic nucleons, slow-muon capture and fast-muon interactions that specifically address these uncertainties. Our spallogenic nucleon scaling model, which includes data from portions of 5 solar cycles, explicitly incorporates a measure of solar modulation ( S), and our fast- and slow-muon scaling models (based on more limited data) account for solar modulation effects through increased uncertainties. These models improve on previously published models by better sampling the observed variability in measured cosmic ray intensities as a function of geomagnetic latitude, altitude, and solar activity. Furthermore, placing the spallogenic nucleon data in a consistent time-space framework allows for a more realistic assessment of uncertainties in our model than in earlier ones. We demonstrate here that our models reasonably account for the effects of solar modulation on measured

  3. Toward Scientific Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Kleb, Bil

    2007-01-01

    Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.

  4. Procedures for addressing uncertainty and variability in exposure to characterize potential health risk from trichloroethylene contaminated groundwater at Beale Air Force Base in California

    SciTech Connect

    Bogen, K T; Daniels, J I; Hall, L C

    1999-09-01

    This study was designed to accomplish two objectives. The first was to provide to the US Air Force and the regulatory community quantitative procedures that they might want to consider using for addressing uncertainty and variability in exposure to better characterize potential health risk. Such methods could be used at sites where populations may now or in the future be faced with using groundwater contaminated with low concentrations of the chemical trichloroethylene (TCE). The second was to illustrate and explain the application of these procedures with respect to available data for TCE in ground water beneath an inactive landfill site that is undergoing remediation at Beale Air Force Base in California. The results from this illustration provide more detail than the more traditional conservative deterministic, screening-level calculations of risk, also computed for purposes of comparison. Application of the procedures described in this report can lead to more reasonable and equitable risk-acceptability criteria for potentially exposed populations at specific sites.

  5. Procedures for addressing uncertainty and variability in exposure to characterize potential health risk from trichloroethylene contaminated ground water at Beale Air Force Base in California

    SciTech Connect

    Daniels, J I; Bogen, K T; Hall, L C

    1999-10-05

    Conservative deterministic, screening-level calculations of exposure and risk commonly are used in quantitative assessments of potential human-health consequences from contaminants in environmental media. However, these calculations generally are based on multiple upper-bound point estimates of input parameters, particularly for exposure attributes, and can therefore produce results for decision makers that actually overstate the need for costly remediation. Alternatively, a more informative and quantitative characterization of health risk can be obtained by quantifying uncertainty and variability in exposure. This process is illustrated in this report for a hypothetical population at a specific site at Beale Air Force Base in California, where there is trichloroethylene (TCE) contaminated ground water and a potential for future residential use. When uncertainty and variability in exposure were addressed jointly for this case, the 95th-percentile upper-bound value of individual excess lifetime cancer risk was a factor approaching 10 lower than the most conservative deterministic estimate. Additionally, the probability of more than zero additional cases of cancer can be estimated, and in this case it is less than 0.5 for a hypothetical future residential population of up to 26,900 individuals present for any 7.6-y interval of a 70-y time period. Clearly, the results from application of this probabilistic approach can provide reasonable and equitable risk-acceptability criteria for a contaminated site.

  6. Methods for Addressing Uncertainty and Variability to Characterize Potential Health Risk from Trichloroethylene-Contaminated Ground Water at Beale Air Force Base in California:Integration of Uncertainty and Variability in Pharmacokinetics and Dose-Response

    SciTech Connect

    Bogen, K T

    2001-05-24

    Traditional estimates of health risk are typically inflated, particularly if cancer is the dominant endpoint and there is fundamental uncertainty as to mechanism(s) of action. Risk is more realistically characterized if it accounts for joint uncertainty and interindividual variability within a systematic probabilistic framework to integrate the joint effects on risk of distributed parameters of all (linear as well as nonlinear) risk-extrapolation models involved. Such a framework was used to characterize risks to potential future residents posed by trichloroethylene (TCE) in ground water at an inactive landfill site on Beale Air Force Base in California. Variability and uncertainty were addressed in exposure-route-specific estimates of applied dose, in pharmacokinetically based estimates of route-specific metabolized fractions of absorbed TCE, and in corresponding biologically effective doses estimated under a genotoxic/linear (MA{sub G}) vs. a cytotoxic/nonlinear (MA{sub c}) mechanistic assumption for TCE-induced cancer. Increased risk conditional on effective dose was estimated under MA{sub G} based on seven rodent-bioassay data sets, and under MA{sub c} based on mouse hepatotoxicity data. Mean and upper-bound estimates of combined risk calculated by the unified approach were <10{sup -6} and 10{sup -4}, respectively, while corresponding estimates based on traditional deterministic methods were >10{sup -5} and 10{sup -4}, respectively. It was estimated that no TCE-related harm is likely to occur due to any plausible residential exposure scenario involving the site. The systematic probabilistic framework illustrated is particularly suited to characterizing risks that involve uncertain and/or diverse mechanisms of action.

  7. Methods for Addressing Uncertainty and Variability to Characterize Potential Health Risk From Trichloroethylene-Contaminated Ground Water Beale Air Force Base in California: Integration of Uncertainty and Variability in Pharmacokinetics and Dose-Response

    SciTech Connect

    Bogen, K.T.

    1999-09-29

    Traditional estimates of health risk are typically inflated, particularly if cancer is the dominant endpoint and there is fundamental uncertainty as to mechanism(s) of action. Risk is more realistically characterized if it accounts for joint uncertainty and interindividual variability after applying a unified probabilistic approach to the distributed parameters of all (linear as well as nonlinear) risk-extrapolation models involved. Such an approach was applied to characterize risks to potential future residents posed by trichloroethylene (TCE) in ground water at an inactive landfill site on Beale Air Force Base in California. Variability and uncertainty were addressed in exposure-route-specific estimates of applied dose, in pharmacokinetically based estimates of route-specific metabolized fractions of absorbed TCE, and in corresponding biologically effective doses estimated under a genotoxic/linear (MA{sub g}) vs. a cytotoxic/nonlinear (MA{sub c}) mechanistic assumption for TCE-induced cancer. Increased risk conditional on effective dose was estimated under MA{sub G} based on seven rodent-bioassay data sets, and under MA, based on mouse hepatotoxicity data. Mean and upper-bound estimates of combined risk calculated by the unified approach were <10{sup -6} and <10{sup -4}, respectively, while corresponding estimates based on traditional deterministic methods were >10{sup -5} and >10{sup -4}, respectively. It was estimated that no TCE-related harm is likely occur due any plausible residential exposure scenario involving the site. The unified approach illustrated is particularly suited to characterizing risks that involve uncertain and/or diverse mechanisms of action.

  8. Addressing the impact of environmental uncertainty in plankton model calibration with a dedicated software system: the Marine Model Optimization Testbed (MarMOT)

    NASA Astrophysics Data System (ADS)

    Hemmings, J. C. P.; Challenor, P. G.

    2011-08-01

    A wide variety of different marine plankton system models have been coupled with ocean circulation models, with the aim of understanding and predicting aspects of environmental change. However, an ability to make reliable inferences about real-world processes from the model behaviour demands a quantitative understanding of model error that remains elusive. Assessment of coupled model output is inhibited by relatively limited observing system coverage of biogeochemical components. Any direct assessment of the plankton model is further inhibited by uncertainty in the physical state. Furthermore, comparative evaluation of plankton models on the basis of their design is inhibited by the sensitivity of their dynamics to many adjustable parameters. The Marine Model Optimization Testbed is a new software tool designed for rigorous analysis of plankton models in a multi-site 1-D framework, in particular to address uncertainty issues in model assessment. A flexible user interface ensures its suitability to more general inter-comparison, sensitivity and uncertainty analyses, including model comparison at the level of individual processes, and to state estimation for specific locations. The principal features of MarMOT are described and its application to model calibration is demonstrated by way of a set of twin experiments, in which synthetic observations are assimilated in an attempt to recover the true parameter values of a known system. The experimental aim is to investigate the effect of different misfit weighting schemes on parameter recovery in the presence of error in the plankton model's environmental input data. Simulated errors are derived from statistical characterizations of the mixed layer depth, the horizontal flux divergences of the biogeochemical tracers and the initial state. Plausible patterns of uncertainty in these data are shown to produce strong temporal and spatial variability in the expected simulation error over an annual cycle, indicating

  9. Addressing the impact of environmental uncertainty in plankton model calibration with a dedicated software system: the Marine Model Optimization Testbed (MarMOT 1.1 alpha)

    NASA Astrophysics Data System (ADS)

    Hemmings, J. C. P.; Challenor, P. G.

    2012-04-01

    A wide variety of different plankton system models have been coupled with ocean circulation models, with the aim of understanding and predicting aspects of environmental change. However, an ability to make reliable inferences about real-world processes from the model behaviour demands a quantitative understanding of model error that remains elusive. Assessment of coupled model output is inhibited by relatively limited observing system coverage of biogeochemical components. Any direct assessment of the plankton model is further inhibited by uncertainty in the physical state. Furthermore, comparative evaluation of plankton models on the basis of their design is inhibited by the sensitivity of their dynamics to many adjustable parameters. Parameter uncertainty has been widely addressed by calibrating models at data-rich ocean sites. However, relatively little attention has been given to quantifying uncertainty in the physical fields required by the plankton models at these sites, and tendencies in the biogeochemical properties due to the effects of horizontal processes are often neglected. Here we use model twin experiments, in which synthetic data are assimilated to estimate a system's known "true" parameters, to investigate the impact of error in a plankton model's environmental input data. The experiments are supported by a new software tool, the Marine Model Optimization Testbed, designed for rigorous analysis of plankton models in a multi-site 1-D framework. Simulated errors are derived from statistical characterizations of the mixed layer depth, the horizontal flux divergence tendencies of the biogeochemical tracers and the initial state. Plausible patterns of uncertainty in these data are shown to produce strong temporal and spatial variability in the expected simulation error variance over an annual cycle, indicating variation in the significance attributable to individual model-data differences. An inverse scheme using ensemble-based estimates of the

  10. Science and Theatre Education: A Cross-disciplinary Approach of Scientific Ideas Addressed to Student Teachers of Early Childhood Education

    NASA Astrophysics Data System (ADS)

    Tselfes, Vasilis; Paroussi, Antigoni

    2009-09-01

    There is, in Greece, an ongoing attempt to breach the boundaries established between the different teaching-learning subjects of compulsory education. In this context, we are interested in exploring to what degree the teaching and learning of ideas from the sciences’ “internal life” (Hacking, in: Pickering (ed) Science as practice and culture, 1992) benefits from creatively coming into contact with theatrical education as part of the corresponding curriculum subject. To this end, 57 students of the Early Childhood Education Department of the University of Athens were called to study extracts from Galileo’s Dialogue Concerning the Two Chief World Systems, Ptolemaic and Copernican, to focus on a subject that the Dialogue’s “interlocutors” forcefully disagree about and to theatrically represent (using shadow theatre techniques) what they considered as being the central idea of this clash of opinions. The results indicate that this attempt leads to a satisfactory understanding of ideas relating to the content and methodology of the natural sciences. At the same time, theatrical education avails itself of the representation of scientific ideas and avoids the clichés and hackneyed techniques that the (often) simplistic choices available in the educational context of early childhood education tend towards. The basic reasons for both facets of this success are: (a) Genuine scientific texts force the students to approach them with seriousness, and all the more so if these recount the manner in which scientific ideas are produced and are embedded in the historical and social context of the age that created them; (b) The theatrical framework, which essentially guides the students’ activities, allows (if not obliges) them to approach scientific issues creatively; in other words, it allows them to create something related to science and recognize it as theirs; and, (c) Both the narrative texts describing processes of “science making” (Bruner, J Sci Educ

  11. Addressing the pasture anomaly: how uncertainty in historical pasture data leads to divergence of atmospheric CO2 in Earth System Models

    NASA Astrophysics Data System (ADS)

    Chini, L. P.; Hurtt, G. C.; Klein Goldewijk, K.; Frolking, S.; Shevliakova, E.; Thornton, P. E.; Fisk, J. P.

    2012-12-01

    The characterization of land-use changes and activities within Earth System Models (ESMs) has evolved over the years, from inclusion of net emissions only, to dynamic maps of land-use activity. As part of the land-use harmonization (LUH) project for the 5th IPCC Assessment Report (AR5), new historical reconstructions of land-use change were developed for use in ESMs; these were formulated in terms of gridded maps of land-use activities and land-use transitions including agricultural expansion and abandonment, wood harvest, and shifting cultivation. In addition, due to the uncertainties involved in historical land-use reconstructions, the LUH data was evaluated in over 1600 different reconstructions. Here, we build upon the LUH approach and convert the LUH method into an optimization problem that allows model parameters to be varied in a systematic way to quantitatively meet a desired set of model constraints. We use these methods to address the "pasture anomaly" - an anomalous sudden increase in pasture-related emissions that occurs around 1950-1960 and which causes the simulated atmospheric CO2 in ESMs to diverge from the observed record (prior to that period, ESMs using the LUH data products are typically very successful at reproducing observed atmospheric CO2). First, we apply our optimization method while attempting to preserve as much LUH data as possible and simultaneously removing the pasture anomaly from the land-use emissions time-series. Next, we broaden the method and allow key model inputs to vary within realistic bounds (corresponding to specific ways in which the pasture reconstruction is uncertain). The result is a set of alternative land-use histories that quantify the manifold of possible solutions to the pasture anomaly problem. The most realistic reconstructions within this set can be employed by ESMs as a practical solution to closing the gap between historical atmospheric CO2 records and ESM predictions.

  12. Scientific uncertainty as a moderator of the relationship between descriptive norm and intentions to engage in cancer risk-reducing behaviors.

    PubMed

    Kim, Hye Kyung; Kim, Sooyeon; Niederdeppe, Jeff

    2015-04-01

    This study examined motivational factors underlying six behaviors with varying levels of scientific uncertainty with regard to their effectiveness in reducing cancer risk. Making use of considerable within-subjects variation, the authors examined the moderating role of the degree of scientific uncertainty about the effectiveness of cancer risk-reducing behaviors in shaping relationships between constructs in the Integrative Model of Behavioral Prediction (Fishbein & Yzer, 2003 ). Using cross-sectional data (n = 601), the descriptive norm-intention relationship was stronger for scientifically uncertain behaviors such as avoiding BPA plastics and using a hands-free mobile phone headset than for established behaviors (e.g., avoiding smoking, fruit and vegetable intake, exercise, and applying sunscreen). This pattern was partially explained by the mediating role of injunctive norms between descriptive norm and intentions, as predicted by the extended Theory of Normative Social Behavior (Rimal, 2008 ). For behaviors more clearly established as an effective means to reduce the risk of cancer, self-efficacy was significantly more predictive of intentions to perform such behaviors. The authors discuss practical implications of these findings and theoretical insights into better understanding the role of normative components in the adaptation of risk-reduction behaviors. PMID:25730742

  13. Balancing consumer protection and scientific integrity in the face of uncertainty: the example of gluten-free foods.

    PubMed

    McCabe, Margaret Sova

    2010-01-01

    In 2009, gluten-free foods were not only "hot" in the marketplace, several countries, including the United States, continued efforts to define gluten-free and appropriate labeling parameters. The regulatory process illuminates how difficult regulations based on safe scientific thresholds can be for regulators, manufacturers and consumers. This article analyzes the gluten-free regulatory landscape, challenges to defining a safe gluten threshold, and how consumers might need more label information beyond the term "gluten-free." The article includes an overview of international gluten-free regulations, the Food and Drug Administration (FDA) rulemaking process, and issues for consumers.

  14. Identification and evaluation of scientific uncertainties related to fish and aquatic resources in the Colorado River, Grand Canyon - summary and interpretation of an expert-elicitation questionnaire

    USGS Publications Warehouse

    Kennedy, Theodore A.

    2013-01-01

    Identifying areas of scientific uncertainty is a critical step in the adaptive management process (Walters, 1986; Runge, Converse, and Lyons, 2011). To identify key areas of scientific uncertainty regarding biologic resources of importance to the Glen Canyon Dam Adaptive Management Program, the Grand Canyon Monitoring and Research Center (GCMRC) convened Knowledge Assessment Workshops in May and July 2005. One of the products of these workshops was a set of strategic science questions that highlighted key areas of scientific uncertainty. These questions were intended to frame and guide the research and monitoring activities conducted by the GCMRC in subsequent years. Questions were developed collaboratively by scientists and managers. The questions were not all of equal importance or merit—some questions were large scale and others were small scale. Nevertheless, these questions were adopted and have guided the research and monitoring efforts conducted by the GCMRC since 2005. A new round of Knowledge Assessment Workshops was convened by the GCMRC in June and October 2011 and January 2012 to determine whether the research and monitoring activities conducted since 2005 had successfully answered some of the strategic science questions. Oral presentations by scientists highlighting research findings were a centerpiece of all three of the 2011–12 workshops. Each presenter was also asked to provide an answer to the strategic science questions that were specific to the presenter’s research area. One limitation of this approach is that these answers represented the views of the handful of scientists who developed the presentations, and, as such, they did not incorporate other perspectives. Thus, the answers provided by presenters at the Knowledge Assessment Workshops may not have accurately captured the sentiments of the broader group of scientists involved in research and monitoring of the Colorado River in Glen and Grand Canyons. Yet a fundamental ingredient of

  15. Statistics of Scientific Procedures on Living Animals 2013: Experimentation continues to rise--the reliance on genetically-altered animals must be addressed.

    PubMed

    Hudson-Shore, Michelle

    2014-09-01

    The 2013 Statistics of Scientific Procedures on Living Animals reveal that the level of animal experimentation in Great Britain continues to rise, with 4.12 million procedures being conducted. The figures indicate that this is almost exclusively a result of the breeding and use of genetically-altered (GA) animals (i.e. genetically-modified animals, plus those with harmful genetic defects). The breeding of GA animals increased to over half (51%) of all the procedures, and GA animals were involved in 61% of all the procedures. Indeed, if these animals were removed from the statistics, the number of procedures would actually have declined by 4%. It is argued that the Coalition Government has failed to address this issue, and, as a consequence, will not be able to deliver its pledge to reduce animal use in science. Recent publications supporting the need to reassess the dominance of genetic alteration are also discussed, as well as the need to move away from the use of dogs as the default second species in safety testing. The general trends in the species used, and the numbers and types of procedures, are also reviewed. Finally, forthcoming changes to the statistics are discussed.

  16. Uncertainty Assessment: What Good Does it Do? (Invited)

    NASA Astrophysics Data System (ADS)

    Oreskes, N.; Lewandowsky, S.

    2013-12-01

    The scientific community has devoted considerable time and energy to understanding, quantifying and articulating the uncertainties related to anthropogenic climate change. However, informed decision-making and good public policy arguably rely far more on a central core of understanding of matters that are scientifically well established than on detailed understanding and articulation of all relevant uncertainties. Advocates of vaccination, for example, stress its overall efficacy in preventing morbidity and mortality--not the uncertainties over how long the protective effects last. Advocates for colonoscopy for cancer screening stress its capacity to detect polyps before they become cancerous, with relatively little attention paid to the fact that many, if not most, polyps, would not become cancerous even if left unremoved. So why has the climate science community spent so much time focused on uncertainty? One reason, of course, is that articulation of uncertainty is a normal and appropriate part of scientific work. However, we argue that there is another reason that involves the pressure that the scientific community has experienced from individuals and groups promoting doubt about anthropogenic climate change. Specifically, doubt-mongering groups focus public attention on scientific uncertainty as a means to undermine scientific claims, equating uncertainty with untruth. Scientists inadvertently validate these arguments by agreeing that much of the science is uncertain, and thus seemingly implying that our knowledge is insecure. The problem goes further, as the scientific community attempts to articulate more clearly, and reduce, those uncertainties, thus, seemingly further agreeing that the knowledge base is insufficient to warrant public and governmental action. We refer to this effect as 'seepage,' as the effects of doubt-mongering seep into the scientific community and the scientific agenda, despite the fact that addressing these concerns does little to alter

  17. Development of a physiologically-based pharmacokinetic model of 2-phenoxyethanol and its metabolite phenoxyacetic acid in rats and humans to address toxicokinetic uncertainty in risk assessment.

    PubMed

    Troutman, John A; Rick, David L; Stuard, Sharon B; Fisher, Jeffrey; Bartels, Michael J

    2015-11-01

    2-Phenoxyethanol (PhE) has been shown to induce hepatotoxicity, renal toxicity, and hemolysis at dosages ≥ 400 mg/kg/day in subchronic and chronic studies in multiple species. To reduce uncertainty associated with interspecies extrapolations and to evaluate the margin of exposure (MOE) for use of PhE in cosmetics and baby products, a physiologically-based pharmacokinetic (PBPK) model of PhE and its metabolite 2-phenoxyacetic acid (PhAA) was developed. The PBPK model incorporated key kinetic processes describing the absorption, distribution, metabolism and excretion of PhE and PhAA following oral and dermal exposures. Simulations of repeat dose rat studies facilitated the selection of systemic AUC as the appropriate dose metric for evaluating internal exposures to PhE and PhAA in rats and humans. Use of the PBPK model resulted in refinement of the total default UF for extrapolation of the animal data to humans from 100 to 25. Based on very conservative assumptions for product composition and aggregate product use, model-predicted exposures to PhE and PhAA resulting from adult and infant exposures to cosmetic products are significantly below the internal dose of PhE observed at the NOAEL dose in rats. Calculated MOEs for all exposure scenarios were above the PBPK-refined UF of 25.

  18. Uncertainty and global climate change research

    SciTech Connect

    Tonn, B.E.; Weiher, R.

    1994-06-01

    The Workshop on Uncertainty and Global Climate Change Research March 22--23, 1994, in Knoxville, Tennessee. This report summarizes the results and recommendations of the workshop. The purpose of the workshop was to examine in-depth the concept of uncertainty. From an analytical point of view, uncertainty is a central feature of global climate science, economics and decision making. The magnitude and complexity of uncertainty surrounding global climate change has made it quite difficult to answer even the most simple and important of questions-whether potentially costly action is required now to ameliorate adverse consequences of global climate change or whether delay is warranted to gain better information to reduce uncertainties. A major conclusion of the workshop is that multidisciplinary integrated assessments using decision analytic techniques as a foundation is key to addressing global change policy concerns. First, uncertainty must be dealt with explicitly and rigorously since it is and will continue to be a key feature of analysis and recommendations on policy questions for years to come. Second, key policy questions and variables need to be explicitly identified, prioritized, and their uncertainty characterized to guide the entire scientific, modeling, and policy analysis process. Multidisciplinary integrated assessment techniques and value of information methodologies are best suited for this task. In terms of timeliness and relevance of developing and applying decision analytic techniques, the global change research and policy communities are moving rapidly toward integrated approaches to research design and policy analysis.

  19. Opening address

    NASA Astrophysics Data System (ADS)

    Castagnoli, C.

    1994-01-01

    Ladies and Gentlemen My cordial thanks to you for participating in our workshop and to all those who have sponsored it. When in 1957 I attended the International Congress on Fundamental Constants held in Turin on the occasion of the first centenary of the death of Amedeo Avogadro, I did not expect that about thirty-five years later a small but representative number of distinguished scientists would meet here again, to discuss how to go beyond the sixth decimal figure of the Avogadro constant. At that time, the uncertainty of the value of this constant was linked to the fourth decimal figure, as reported in the book by DuMond and Cohen. The progress made in the meantime is universally acknowledged to be due to the discovery of x-ray interferometry. We are honoured that one of the two founding fathers, Prof. Ulrich Bonse, is here with us, but we regret that the other, Prof. Michael Hart, is not present. After Bonse and Hart's discovery, the x-ray crystal density method triggered, as in a chain reaction, the investigation of two other quantities related to the Avogadro constant—density and molar mass. Scientists became, so to speak, resonant and since then have directed their efforts, just to mention a few examples, to producing near-perfect silicon spheres and determining their density, to calibrating, with increasing accuracy, mass spectrometers, and to studying the degree of homogeneity of silicon specimens. Obviously, I do not need to explain to you why the Avogadro constant is important. I wish, however, to underline that it is not only because of its position among fundamental constants, as we all know very well its direct links with the fine structure constant, the Boltzmann and Faraday constants, the h/e ratio, but also because when a new value of NA is obtained, the whole structure of the fundamental constants is shaken to a lesser or greater extent. Let me also remind you that the second part of the title of this workshop concerns the silicon

  20. Opening Address

    NASA Astrophysics Data System (ADS)

    Yamada, T.

    2014-12-01

    related fields such as nuclear astrophysics, hypernuclear physics, hadron physics, and condensate matter physics so on. In fact, in this workshop, we also discuss the clustering aspects in the related fields. Thus, I expect in this workshop we can grasp the present status of the nuclear cluster physics and demonstrate its perspective in near future. This workshop is sponsored by several institutes and organizations. In particular, I would express our thanks for financial supports to Research Center for Nuclear Physics (RCNP), Osaka University, Center for Nuclear Study (CNS), University of Tokyo, Joint Institute for Computational Fundamental Science (JICFuS), and RIKEN Nishina Center for Accelerator- Based Science. They are cohosting this workshop. I would like also to appreciate my University, Kanto Gakuin University, who offers this nice place for one week and helps us to hold this workshop smoothly and conveniently. Today, the president of my University, Prof. Kuku, is here to present a welcome address. Thank you very much. Finally, with many of the participants leading this field both in theory and in experiment, we wish this workshop offers an opportunity to simulate communications not only during the workshop but also in the future. In addition, we hope you enjoy exploring city of Yokohama and the area around, as well as scientific discussions. Thank you very much for your attention.

  1. Climate change risk perception and communication: addressing a critical moment?

    PubMed

    Pidgeon, Nick

    2012-06-01

    Climate change is an increasingly salient issue for societies and policy-makers worldwide. It now raises fundamental interdisciplinary issues of risk and uncertainty analysis and communication. The growing scientific consensus over the anthropogenic causes of climate change appears to sit at odds with the increasing use of risk discourses in policy: for example, to aid in climate adaptation decision making. All of this points to a need for a fundamental revision of our conceptualization of what it is to do climate risk communication. This Special Collection comprises seven papers stimulated by a workshop on "Climate Risk Perceptions and Communication" held at Cumberland Lodge Windsor in 2010. Topics addressed include climate uncertainties, images and the media, communication and public engagement, uncertainty transfer in climate communication, the role of emotions, localization of hazard impacts, and longitudinal analyses of climate perceptions. Climate change risk perceptions and communication work is critical for future climate policy and decisions.

  2. Scientific millenarianism

    SciTech Connect

    Weinberg, A.M.

    1997-12-01

    Today, for the first time, scientific concerns are seriously being addressed that span future times--hundreds, even thousands, or more years in the future. One is witnessing what the author calls scientific millenarianism. Are such concerns for the distant future exercises in futility, or are they real issues that, to the everlasting gratitude of future generations, this generation has identified, warned about and even suggested how to cope with in the distant future? Can the four potential catastrophes--bolide impact, CO{sub 2} warming, radioactive wastes and thermonuclear war--be avoided by technical fixes, institutional responses, religion, or by doing nothing? These are the questions addressed in this paper.

  3. Addressing Concerns.

    ERIC Educational Resources Information Center

    Cronin, Greg; Helmig, Mary; Kaplan, Bill; Kosch, Sharon

    2002-01-01

    Four camp directors discuss how the September 11 tragedy and current world events will affect their camps. They describe how they are addressing safety concerns, working with parents, cooperating with outside agencies, hiring and screening international staff, and revising emergency plans. Camps must continue to offer community and support to…

  4. Scientific Issues Addressed by the Kepler Mission

    NASA Technical Reports Server (NTRS)

    Bourcki, W. J.; Koch, D. G.; Lissauer, J. J.; Jenkins, J. M.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    The Kepler Mission uses a wide field-of-view telescope to photometrically monitor 100,000 main-sequence stars for evidence of planetary transits. Because of the large number of stars monitored and because the mission is designed with a precision (0.002%) sufficient to readily recognize Earth-size planets transiting solar-like stars, several hundred Earth-size planets should be found. Based on the the Dopper velocity observations that find 2% of the main-sequence stars have Jupiter-size planets in short-period orbits, the Kepler mission is also expected to detect about 2000 giant planets. Several questions about the association of planet types and stellar characteristics can be investigated. For example; Are small planets found when Jupiter-mass planets are also present in inner orbits? What is the frequency of small planets compared to Jupiter-mass planets? What is the frequency and distribution of planets intermediate in size and mass to that of Earth and Jupiter? What correlations exist between planet size, distribution, and frequency with the characteristics of the stars they orbit? A comparison between model predictions and observation should be a useful step in evolving better models of planetary system formation and help put the formation of our Solar System in perspective.

  5. Addressing healthcare.

    PubMed

    Daly, Rich

    2013-02-11

    Though President Barack Obama has rarely made healthcare references in his State of the Union addresses, health policy experts are hoping he changes that strategy this year. "The question is: Will he say anything? You would hope that he would, given that that was the major issue he started his presidency with," says Dr. James Weinstein, left, of the Dartmouth-Hitchcock health system. PMID:23487896

  6. Uncertainty in Measured Data and Model Predictions: Essential Components for Mobilizing Environmental Data and Modeling

    NASA Astrophysics Data System (ADS)

    Harmel, D.

    2014-12-01

    In spite of pleas for uncertainty analysis - such as Beven's (2006) "Should it not be required that every paper in both field and modeling studies attempt to evaluate the uncertainty in the results?" - the uncertainty associated with hydrology and water quality data is rarely quantified and rarely considered in model evaluation. This oversight, justified in the past by mainly tenuous philosophical concerns, diminishes the value of measured data and ignores the environmental and socio-economic benefits of improved decisions and policies based on data with estimated uncertainty. This oversight extends to researchers, who typically fail to estimate uncertainty in measured discharge and water quality data because of additional effort required, lack of adequate scientific understanding on the subject, and fear of negative perception if data with "high" uncertainty are reported; however, the benefits are certain. Furthermore, researchers have a responsibility for scientific integrity in reporting what is known and what is unknown, including the quality of measured data. In response we produced an uncertainty estimation framework and the first cumulative uncertainty estimates for measured water quality data (Harmel et al., 2006). From that framework, DUET-H/WQ was developed (Harmel et al., 2009). Application to several real-world data sets indicated that substantial uncertainty can be contributed by each data collection procedural category and that uncertainties typically occur in order discharge < sediment < dissolved N and P < total N and P. Similarly, modelers address certain aspects of model uncertainty but ignore others, such as the impact of uncertainty in discharge and water quality data. Thus, we developed methods to incorporate prediction uncertainty as well as calibration/validation data uncertainty into model goodness-of-fit evaluation (Harmel and Smith, 2007; Harmel et al., 2010). These enhance model evaluation by: appropriately sharing burden with "data

  7. Measurement uncertainty.

    PubMed

    Bartley, David; Lidén, Göran

    2008-08-01

    The reporting of measurement uncertainty has recently undergone a major harmonization whereby characteristics of a measurement method obtained during establishment and application are combined componentwise. For example, the sometimes-pesky systematic error is included. A bias component of uncertainty can be often easily established as the uncertainty in the bias. However, beyond simply arriving at a value for uncertainty, meaning to this uncertainty if needed can sometimes be developed in terms of prediction confidence in uncertainty-based intervals covering what is to be measured. To this end, a link between concepts of accuracy and uncertainty is established through a simple yet accurate approximation to a random variable known as the non-central Student's t-distribution. Without a measureless and perpetual uncertainty, the drama of human life would be destroyed. Winston Churchill.

  8. 50 CFR 600.315 - National Standard 2-Scientific Information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Scientific information products should describe data collection methods, report sources of uncertainty or... decisions. (vi) Verification and validation. Methods used to produce scientific information should be... credibility of scientific information and scientific methods meet the standards of the scientific...

  9. 50 CFR 600.315 - National Standard 2-Scientific Information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Scientific information products should describe data collection methods, report sources of uncertainty or... decisions. (vi) Verification and validation. Methods used to produce scientific information should be... credibility of scientific information and scientific methods meet the standards of the scientific...

  10. Welcome address

    NASA Astrophysics Data System (ADS)

    Yasuoka, Hiroshi

    2003-07-01

    Mr Chairman, Ladies and Gentlemen. It is a great honour to have the opportunity to say a few words before starting this symposium. First of all, on behalf of all members of the Advanced Science Research Center of the Japan Atomic Energy Research Institute, I would like to express our great pleasure in welcoming all of you and in hosting the Third International Symposium on Advanced Science Research. The Advanced Science Research Center was established in 1993. Since then one of the most important functions assigned to this centre has been to promote and initiate basic research activities in atomic energy and related fields, in collaboration with scientists throughout our country as well as abroad. In view of the rapidly advancing frontiers of science and technology, and the increasing importance of international collaboration, I strongly felt that our centre should play a leading role in promoting scientific activities in a worldwide form. This is not only a give-and-take information exchange with the outside world but also we intend to promote harmony between different scientific cultures through the establishment of new programmes at our centre. As one action for the global promotion of our research activities, we have decided to host a series of international symposia on advances in various topics in fields of our interest. This we call the ‘Advance series of symposia’. The first such symposium was held on the subject of ‘neutron scattering research’ and the second, held in November 2001, on ‘heavy element research’, with great success. The present symposium is the third of this series. The size and format of each symposium will be chosen flexibly considering the nature of its topic. However, in all cases, in addition to promoting exchange of expert insights, we would like to encourage particularly young scientists to present papers in each symposium on their new results from the frontiers of science and technology, and to help them to get an

  11. État des connaissances et incertitudes sur le changement climatique induit par les activités humainesScientific basis and uncertainties of human induced climate change

    NASA Astrophysics Data System (ADS)

    Duplessy, Jean-Claude

    2001-12-01

    During the 20th century, the mean temperature of the air at the ground level has increased by 0.6±0.2 °C and the warmest air temperatures occurred after 1980. These were significantly warmer than those of the last millennium. Simultaneously, rain and drought, cold and heat wave frequencies have changed, mountain glaciers retreated and the sea-level increased by ˜10 cm. This warming was at least in part induced by human activities and will continue during the next decades. Its amplitude will depend on the rate of greenhouse gas and sulphate aerosols emissions, i.e. on energetic scenarios. Pending scientific uncertainties include cloud variations and interactions between the physical parts of the climate system and the biogeochemical cycles and the biosphere.

  12. Inaugural address

    NASA Astrophysics Data System (ADS)

    Joshi, P. S.

    2014-03-01

    From jets to cosmos to cosmic censorship P S Joshi Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India E-mail: psj@tifr.res.in 1. Introduction At the outset, I should like to acknowledge that part of the title above, which tries to capture the main flavour of this meeting, and has been borrowed from one of the plenary talks at the conference. When we set out to make the programme for the conference, we thought of beginning with observations on the Universe, but then we certainly wanted to go further and address deeper questions, which were at the very foundations of our inquiry, and understanding on the nature and structure of the Universe. I believe, we succeeded to a good extent, and it is all here for you in the form of these Conference Proceedings, which have been aptly titled as 'Vishwa Mimansa', which could be possibly translated as 'Analysis of the Universe'! It is my great pleasure and privilege to welcome you all to the ICGC-2011 meeting at Goa. The International Conference on Gravitation and Cosmology (ICGC) series of meetings are being organized by the Indian Association for General Relativity and Gravitation (IAGRG), and the first such meeting was planned and conducted in Goa in 1987, with subsequent meetings taking place at a duration of about four years at various locations in India. So, it was thought appropriate to return to Goa to celebrate the 25 years of the ICGC meetings. The recollections from that first meeting have been recorded elsewhere here in these Proceedings. The research and teaching on gravitation and cosmology was initiated quite early in India, by V V Narlikar at the Banares Hindu University, and by N R Sen in Kolkata in the 1930s. In course of time, this activity grew and gained momentum, and in early 1969, at the felicitation held for the 60 years of V V Narlikar at a conference in Ahmedabad, P C Vaidya proposed the formation of the IAGRG society, with V V Narlikar being the first President. This

  13. Linear Programming Problems for Generalized Uncertainty

    ERIC Educational Resources Information Center

    Thipwiwatpotjana, Phantipa

    2010-01-01

    Uncertainty occurs when there is more than one realization that can represent an information. This dissertation concerns merely discrete realizations of an uncertainty. Different interpretations of an uncertainty and their relationships are addressed when the uncertainty is not a probability of each realization. A well known model that can handle…

  14. Convocation address.

    PubMed

    Ghatowar, P S

    1993-07-01

    The Union Deputy Minister of Health and Family Welfare in India addressed the 35th convocation of the International Institute for Population Sciences in Bombay in 1993. Officials in developing countries have been concerned about population growth for more than 30 years and have instituted policies to reduce population growth. In the 1960s, population growth in developing countries was around 2.5%, but today it is about 2%. Despite this decline, the world will have 1 billion more individuals by the year 2001. 95% of these new people will be born in developing countries. India's population size is so great that India does not have the time to wait for development to reduce population growth. Population needs to be viewed as an integrated part of overall development, since it is linked to poverty, illiteracy, environmental damage, gender issues, and reproductive health. Despite a large population size, India has made some important advancements in health and family planning. For example, India has reduced population growth (to 2.14% annually between 1981-1991), infant mortality, and its birth rate. It has increased the contraceptive use rate and life expectancy. Its southern states have been more successful at achieving demographic goals than have the northern states. India needs to implement efforts to improve living conditions, to change attitudes and perceptions about small families and contraception, and to promote family planning acceptance earlier among young couples. Improvement of living conditions is especially important in India, since almost 33% of the people live in poverty. India needs to invest in nutrition, health, and education. The mass media and nongovernmental organizations need to create population awareness and demand for family planning services. Improvement in women's status accelerates fertility decline, as has happened in Kerala State. The government needs to facilitate generation of jobs. Community participation is needed for India to achieve

  15. Are models, uncertainty, and dispute resolution compatible?

    NASA Astrophysics Data System (ADS)

    Anderson, J. D.; Wilson, J. L.

    2013-12-01

    Models and their uncertainty often move from an objective use in planning and decision making into the regulatory environment, then sometimes on to dispute resolution through litigation or other legal forums. Through this last transition whatever objectivity the models and uncertainty assessment may have once possessed becomes biased (or more biased) as each party chooses to exaggerate either the goodness of a model, or its worthlessness, depending on which view is in its best interest. If worthlessness is desired, then what was uncertain becomes unknown, or even unknowable. If goodness is desired, then precision and accuracy are often exaggerated and uncertainty, if it is explicitly recognized, encompasses only some parameters or conceptual issues, ignores others, and may minimize the uncertainty that it accounts for. In dispute resolution, how well is the adversarial process able to deal with these biases? The challenge is that they are often cloaked in computer graphics and animations that appear to lend realism to what could be mostly fancy, or even a manufactured outcome. While junk science can be challenged through appropriate motions in federal court, and in most state courts, it not unusual for biased or even incorrect modeling results, or conclusions based on incorrect results, to be permitted to be presented at trial. Courts allow opinions that are based on a "reasonable degree of scientific certainty," but when that 'certainty' is grossly exaggerated by an expert, one way or the other, how well do the courts determine that someone has stepped over the line? Trials are based on the adversary system of justice, so opposing and often irreconcilable views are commonly allowed, leaving it to the judge or jury to sort out the truth. Can advances in scientific theory and engineering practice, related to both modeling and uncertainty, help address this situation and better ensure that juries and judges see more objective modeling results, or at least see

  16. Some Aspects of uncertainty in computational fluid dynamics results

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.

    1991-01-01

    Uncertainties are inherent in computational fluid dynamics (CFD). These uncertainties need to be systematically addressed and managed. Sources of these uncertainty analysis are discussed. Some recommendations are made for quantification of CFD uncertainties. A practical method of uncertainty analysis is based on sensitivity analysis. When CFD is used to design fluid dynamic systems, sensitivity-uncertainty analysis is essential.

  17. Opening Address

    NASA Astrophysics Data System (ADS)

    Crovini, L.

    1994-01-01

    Ladies and Gentlemen To quote Mr Jean Terrien: "Physics must be one step ahead of metrology". A long-serving Director of the BIPM, he said these words when visiting the IMGC in 1970 as a member of the scientific board of our Institute. At that time it was still an open question whether the IMGC should start research work on the absolute measurement of silicon lattice spacing. Mr Terrien underlined the revolutionary character of x-ray interferometry and, eventually, he caused the balance needle to lean towards the ... right direction. Mr Terrien correctly foresaw that, like Michelson's interferometer of 1880, x-ray interferometry could have a prominent place in today's science and technology. And while, in the first case, after more than a century we can see instruments based on electromagnetic wave interaction within every one's reach in laboratories and, sometimes, in workshops, in the second case, twenty-five years since the first development of an x-ray interferometer we can witness its role in nanometrology. Today and tomorrow we meet to discuss how to go beyond the sixth decimal place in the value of the Avogadro constant. We are aware that the quest for this achievement requires the cooperation of scientists with complementary capabilities. I am sure that the present workshop is a very good opportunity to present and discuss results and to improve and extend existing cooperation. The new adjustment of fundamental constants envisaged by the CODATA Task Group is redoubling scientists' efforts to produce competitive values of NA. The results of the measurements of the silicon lattice spacing in terms of an optical wavelength, which were available for the 1986 adjustment, combined with the determination of silicon molar volume, demonstrate how such an NA determination produces a consistent set of other constants and opens the way to a possible redefinition of the kilogram. We shall see in these two days how far we have progressed along this road. For us at the

  18. Welcome Address

    NASA Astrophysics Data System (ADS)

    Kiku, H.

    2014-12-01

    Ladies and Gentlemen, It is an honor for me to present my welcome address in the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3), as the president of Kanto Gakuin University. Particularly to those from abroad more than 17 countries, I am very grateful for your participation after long long trips from your home to Yokohama. On the behalf of the Kanto Gakuin University, we certainly welcome your visit to our university and stay in Yokohama. First I would like to introduce Kanto Gakuin University briefly. Kanto Gakuin University, which is called KGU, traces its roots back to the Yokohama Baptist Seminary founded in 1884 in Yamate, Yokohama. The seminary's founder was Albert Arnold Bennett, alumnus of Brown University, who came to Japan from the United States to establish a theological seminary for cultivating and training Japanese missionaries. Now KGU is a major member of the Kanto Gakuin School Corporation, which is composed of two kindergartens, two primary schools, two junior high schools, two senior high schools as well as KGU. In this university, we have eight faculties with graduate school including Humanities, Economics, Law, Sciences and Engineering, Architecture and Environmental Design, Human and Environmental Studies, Nursing, and Law School. Over eleven thousands students are currently learning in our university. By the way, my major is the geotechnical engineering, and I belong to the faculty of Sciences and Engineering in my university. Prof. T. Yamada, here, is my colleague in the same faculty. I know that the nuclear physics is one of the most active academic fields in the world. In fact, about half of the participants, namely, more than 50 scientists, come from abroad in this conference. Moreover, I know that the nuclear physics is related to not only the other fundamental physics such as the elementary particle physics and astrophysics but also chemistry, medical sciences, medical cares, and radiation metrology

  19. Measurement Uncertainty

    NASA Astrophysics Data System (ADS)

    Koch, Michael

    Measurement uncertainty is one of the key issues in quality assurance. It became increasingly important for analytical chemistry laboratories with the accreditation to ISO/IEC 17025. The uncertainty of a measurement is the most important criterion for the decision whether a measurement result is fit for purpose. It also delivers help for the decision whether a specification limit is exceeded or not. Estimation of measurement uncertainty often is not trivial. Several strategies have been developed for this purpose that will shortly be described in this chapter. In addition the different possibilities to take into account the uncertainty in compliance assessment are explained.

  20. Uncertainty and equipoise: at interplay between epistemology, decision making and ethics.

    PubMed

    Djulbegovic, Benjamin

    2011-10-01

    In recent years, various authors have proposed that the concept of equipoise be abandoned because it conflates the practice of clinical care with clinical research. At the same time, the equipoise opponents acknowledge the necessity of clinical research if there are unresolved uncertainties about the effects of proposed healthcare interventions. As equipoise represents just 1 measure of uncertainty, proposals to abandon equipoise while maintaining a requirement for addressing uncertainties are contradictory and ultimately not valid. As acknowledgment and articulation of uncertainties represent key scientific and moral requirements for human experimentation, the concept of equipoise remains the most useful framework to link the theory of human experimentation with the theory of rational choice. In this article, I show how uncertainty (equipoise) is at the intersection between epistemology, decision making and ethics of clinical research. In particular, I show how our formulation of responses to uncertainties of hoped-for benefits and unknown harms of testing is a function of the way humans cognitively process information. This approach is based on the view that considerations of ethics and rationality cannot be separated. I analyze the response to uncertainties as it relates to the dual-processing theory, which postulates that rational approach to (clinical research) decision making depends both on analytical, deliberative processes embodied in scientific method (system II), and good human intuition (system I). Ultimately, our choices can only become wiser if we understand a close and intertwined relationship between irreducible uncertainty, inevitable errors and unavoidable injustice.

  1. Dasymetric Modeling and Uncertainty

    PubMed Central

    Nagle, Nicholas N.; Buttenfield, Barbara P.; Leyk, Stefan; Speilman, Seth

    2014-01-01

    Dasymetric models increase the spatial resolution of population data by incorporating related ancillary data layers. The role of uncertainty in dasymetric modeling has not been fully addressed as of yet. Uncertainty is usually present because most population data are themselves uncertain, and/or the geographic processes that connect population and the ancillary data layers are not precisely known. A new dasymetric methodology - the Penalized Maximum Entropy Dasymetric Model (P-MEDM) - is presented that enables these sources of uncertainty to be represented and modeled. The P-MEDM propagates uncertainty through the model and yields fine-resolution population estimates with associated measures of uncertainty. This methodology contains a number of other benefits of theoretical and practical interest. In dasymetric modeling, researchers often struggle with identifying a relationship between population and ancillary data layers. The PEDM model simplifies this step by unifying how ancillary data are included. The P-MEDM also allows a rich array of data to be included, with disparate spatial resolutions, attribute resolutions, and uncertainties. While the P-MEDM does not necessarily produce more precise estimates than do existing approaches, it does help to unify how data enter the dasymetric model, it increases the types of data that may be used, and it allows geographers to characterize the quality of their dasymetric estimates. We present an application of the P-MEDM that includes household-level survey data combined with higher spatial resolution data such as from census tracts, block groups, and land cover classifications. PMID:25067846

  2. History Forum Addresses Creation/Evolution Controversy.

    ERIC Educational Resources Information Center

    Schweinsberg, John

    1997-01-01

    A series of programs entitled Creationism and Evolution: The History of a Controversy was presented at the University of Alabama in Huntsville. The controversy was addressed from an historical and sociological, rather than a scientific perspective. Speakers addressed the evolution of scientific creationism, ancient texts versus sedimentary rocks…

  3. Teaching Uncertainties

    ERIC Educational Resources Information Center

    Duerdoth, Ian

    2009-01-01

    The subject of uncertainties (sometimes called errors) is traditionally taught (to first-year science undergraduates) towards the end of a course on statistics that defines probability as the limit of many trials, and discusses probability distribution functions and the Gaussian distribution. We show how to introduce students to the concepts of…

  4. Uncertainty in Air Quality Modeling.

    NASA Astrophysics Data System (ADS)

    Fox, Douglas G.

    1984-01-01

    Under the direction of the AMS Steering Committee for the EPA Cooperative Agreement on Air Quality Modeling, a small group of scientists convened to consider the question of uncertainty in air quality modeling. Because the group was particularly concerned with the regulatory use of models, its discussion focused on modeling tall stack, point source emissions.The group agreed that air quality model results should be viewed as containing both reducible error and inherent uncertainty. Reducible error results from improper or inadequate meteorological and air quality data inputs, and from inadequacies in the models. Inherent uncertainty results from the basic stochastic nature of the turbulent atmospheric motions that are responsible for transport and diffusion of released materials. Modelers should acknowledge that all their predictions to date contain some associated uncertainty and strive also to quantify uncertainty.How can the uncertainty be quantified? There was no consensus from the group as to precisely how uncertainty should be calculated. One subgroup, which addressed statistical procedures, suggested that uncertainty information could be obtained from comparisons of observations and predictions. Following recommendations from a previous AMS workshop on performance evaluation (Fox. 1981), the subgroup suggested construction of probability distribution functions from the differences between observations and predictions. Further, they recommended that relatively new computer-intensive statistical procedures be considered to improve the quality of uncertainty estimates for the extreme value statistics of interest in regulatory applications.A second subgroup, which addressed the basic nature of uncertainty in a stochastic system, also recommended that uncertainty be quantified by consideration of the differences between observations and predictions. They suggested that the average of the difference squared was appropriate to isolate the inherent uncertainty that

  5. Network planning under uncertainties

    NASA Astrophysics Data System (ADS)

    Ho, Kwok Shing; Cheung, Kwok Wai

    2008-11-01

    One of the main focuses for network planning is on the optimization of network resources required to build a network under certain traffic demand projection. Traditionally, the inputs to this type of network planning problems are treated as deterministic. In reality, the varying traffic requirements and fluctuations in network resources can cause uncertainties in the decision models. The failure to include the uncertainties in the network design process can severely affect the feasibility and economics of the network. Therefore, it is essential to find a solution that can be insensitive to the uncertain conditions during the network planning process. As early as in the 1960's, a network planning problem with varying traffic requirements over time had been studied. Up to now, this kind of network planning problems is still being active researched, especially for the VPN network design. Another kind of network planning problems under uncertainties that has been studied actively in the past decade addresses the fluctuations in network resources. One such hotly pursued research topic is survivable network planning. It considers the design of a network under uncertainties brought by the fluctuations in topology to meet the requirement that the network remains intact up to a certain number of faults occurring anywhere in the network. Recently, the authors proposed a new planning methodology called Generalized Survivable Network that tackles the network design problem under both varying traffic requirements and fluctuations of topology. Although all the above network planning problems handle various kinds of uncertainties, it is hard to find a generic framework under more general uncertainty conditions that allows a more systematic way to solve the problems. With a unified framework, the seemingly diverse models and algorithms can be intimately related and possibly more insights and improvements can be brought out for solving the problem. This motivates us to seek a

  6. Uncertainty analysis

    SciTech Connect

    Thomas, R.E.

    1982-03-01

    An evaluation is made of the suitability of analytical and statistical sampling methods for making uncertainty analyses. The adjoint method is found to be well-suited for obtaining sensitivity coefficients for computer programs involving large numbers of equations and input parameters. For this purpose the Latin Hypercube Sampling method is found to be inferior to conventional experimental designs. The Latin hypercube method can be used to estimate output probability density functions, but requires supplementary rank transformations followed by stepwise regression to obtain uncertainty information on individual input parameters. A simple Cork and Bottle problem is used to illustrate the efficiency of the adjoint method relative to certain statistical sampling methods. For linear models of the form Ax=b it is shown that a complete adjoint sensitivity analysis can be made without formulating and solving the adjoint problem. This can be done either by using a special type of statistical sampling or by reformulating the primal problem and using suitable linear programming software.

  7. A General Uncertainty Quantification Methodology for Cloud Microphysical Property Retrievals

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Xie, S.; Chen, X.; Zhao, C.

    2014-12-01

    The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program provides long-term (~20 years) ground-based cloud remote sensing observations. However, there are large uncertainties in the retrieval products of cloud microphysical properties based on the active and/or passive remote-sensing measurements. To address this uncertainty issue, a DOE Atmospheric System Research scientific focus study, Quantification of Uncertainties in Cloud Retrievals (QUICR), has been formed. In addition to an overview of recent progress of QUICR, we will demonstrate the capacity of an observation-based general uncertainty quantification (UQ) methodology via the ARM Climate Research Facility baseline cloud microphysical properties (MICROBASE) product. This UQ method utilizes the Karhunen-Loéve expansion (KLE) and Central Limit Theorems (CLT) to quantify the retrieval uncertainties from observations and algorithm parameters. The input perturbations are imposed on major modes to take into account the cross correlations between input data, which greatly reduces the dimension of random variables (up to a factor of 50) and quantifies vertically resolved full probability distribution functions of retrieved quantities. Moreover, this KLE/CLT approach has the capability of attributing the uncertainties in the retrieval output to individual uncertainty source and thus sheds light on improving the retrieval algorithm and observations. We will present the results of a case study for the ice water content at the Southern Great Plains during an intensive observing period on March 9, 2000. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Uncertainty quantification in reacting flow modeling.

    SciTech Connect

    Le MaÒitre, Olivier P.; Reagan, Matthew T.; Knio, Omar M.; Ghanem, Roger Georges; Najm, Habib N.

    2003-10-01

    Uncertainty quantification (UQ) in the computational modeling of physical systems is important for scientific investigation, engineering design, and model validation. In this work we develop techniques for UQ based on spectral and pseudo-spectral polynomial chaos (PC) expansions, and we apply these constructions in computations of reacting flow. We develop and compare both intrusive and non-intrusive spectral PC techniques. In the intrusive construction, the deterministic model equations are reformulated using Galerkin projection into a set of equations for the time evolution of the field variable PC expansion mode strengths. The mode strengths relate specific parametric uncertainties to their effects on model outputs. The non-intrusive construction uses sampling of many realizations of the original deterministic model, and projects the resulting statistics onto the PC modes, arriving at the PC expansions of the model outputs. We investigate and discuss the strengths and weaknesses of each approach, and identify their utility under different conditions. We also outline areas where ongoing and future research are needed to address challenges with both approaches.

  9. Is Current Hydrogeologic Research Addressing Long-TermPredictions?

    SciTech Connect

    Tsang, Chin-Fu

    2004-09-10

    Hydrogeology is a field closely related to the needs of society. Many problems of current national and local interest require predictions of hydrogeological system behavior, and, in a number of important cases, the period of prediction is tens to hundreds of thousands of years. It is argued that the demand for such long-term hydrogeological predictions casts a new light on the future needs of hydrogeological research. Key scientific issues are no longer concerned only with simple processes or narrowly focused modeling or testing methods, but also with assessment of prediction uncertainties and confidence, couplings among multiple physico-chemical processes occurring simultaneously at a site, and the interplay between site characterization and predictive modeling. These considerations also have significant implications for hydrogeological education. With this view, it is asserted that hydrogeological directions and education need to be reexamined and possibly refocused to address specific needs for long-term predictions.

  10. Scientific Communication.

    ERIC Educational Resources Information Center

    Abelson, Philip H.

    1980-01-01

    The value of communication in the preservation of scientific knowledge is described as it relates to the specialized scientific journals. The discipline of peer review is described as the major factor in keeping the scientific enterprise relatively honest. (SA)

  11. The ends of uncertainty: Air quality science and planning in Central California

    SciTech Connect

    Fine, James

    2003-09-01

    Air quality planning in Central California is complicated and controversial despite millions of dollars invested to improve scientific understanding. This research describes and critiques the use of photochemical air quality simulation modeling studies in planning to attain standards for ground-level ozone in the San Francisco Bay Area and the San Joaquin Valley during the 1990's. Data are gathered through documents and interviews with planners, modelers, and policy-makers at public agencies and with representatives from the regulated and environmental communities. Interactions amongst organizations are diagramed to identify significant nodes of interaction. Dominant policy coalitions are described through narratives distinguished by their uses of and responses to uncertainty, their exposures to risks, and their responses to the principles of conservatism, civil duty, and caution. Policy narratives are delineated using aggregated respondent statements to describe and understand advocacy coalitions. I found that models impacted the planning process significantly, but were used not purely for their scientific capabilities. Modeling results provided justification for decisions based on other constraints and political considerations. Uncertainties were utilized opportunistically by stakeholders instead of managed explicitly. Ultimately, the process supported the partisan views of those in control of the modeling. Based on these findings, as well as a review of model uncertainty analysis capabilities, I recommend modifying the planning process to allow for the development and incorporation of uncertainty information, while addressing the need for inclusive and meaningful public participation. By documenting an actual air quality planning process these findings provide insights about the potential for using new scientific information and understanding to achieve environmental goals, most notably the analysis of uncertainties in modeling applications. Concurrently, needed

  12. Capturing the uncertainty in adversary attack simulations.

    SciTech Connect

    Darby, John L.; Brooks, Traci N.; Berry, Robert Bruce

    2008-09-01

    This work provides a comprehensive uncertainty technique to evaluate uncertainty, resulting in a more realistic evaluation of PI, thereby requiring fewer resources to address scenarios and allowing resources to be used across more scenarios. For a given set of dversary resources, two types of uncertainty are associated with PI for a scenario: (1) aleatory (random) uncertainty for detection probabilities and time delays and (2) epistemic (state of knowledge) uncertainty for the adversary resources applied during an attack. Adversary esources consist of attributes (such as equipment and training) and knowledge about the security system; to date, most evaluations have assumed an adversary with very high resources, adding to the conservatism in the evaluation of PI. The aleatory uncertainty in PI is ddressed by assigning probability distributions to detection probabilities and time delays. A numerical sampling technique is used to evaluate PI, addressing the repeated variable dependence in the equation for PI.

  13. Visual Semiotics & Uncertainty Visualization: An Empirical Study.

    PubMed

    MacEachren, A M; Roth, R E; O'Brien, J; Li, B; Swingley, D; Gahegan, M

    2012-12-01

    This paper presents two linked empirical studies focused on uncertainty visualization. The experiments are framed from two conceptual perspectives. First, a typology of uncertainty is used to delineate kinds of uncertainty matched with space, time, and attribute components of data. Second, concepts from visual semiotics are applied to characterize the kind of visual signification that is appropriate for representing those different categories of uncertainty. This framework guided the two experiments reported here. The first addresses representation intuitiveness, considering both visual variables and iconicity of representation. The second addresses relative performance of the most intuitive abstract and iconic representations of uncertainty on a map reading task. Combined results suggest initial guidelines for representing uncertainty and discussion focuses on practical applicability of results.

  14. Clarifying types of uncertainty: when are models accurate, and uncertainties small?

    PubMed

    Cox, Louis Anthony Tony

    2011-10-01

    Professor Aven has recently noted the importance of clarifying the meaning of terms such as "scientific uncertainty" for use in risk management and policy decisions, such as when to trigger application of the precautionary principle. This comment examines some fundamental conceptual challenges for efforts to define "accurate" models and "small" input uncertainties by showing that increasing uncertainty in model inputs may reduce uncertainty in model outputs; that even correct models with "small" input uncertainties need not yield accurate or useful predictions for quantities of interest in risk management (such as the duration of an epidemic); and that accurate predictive models need not be accurate causal models.

  15. Characterizing Uncertainty for Regional Climate Change Mitigation and Adaptation Decisions

    SciTech Connect

    Unwin, Stephen D.; Moss, Richard H.; Rice, Jennie S.; Scott, Michael J.

    2011-09-30

    This white paper describes the results of new research to develop an uncertainty characterization process to help address the challenges of regional climate change mitigation and adaptation decisions.

  16. Wildfire Decision Making Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Thompson, M.

    2013-12-01

    Decisions relating to wildfire management are subject to multiple sources of uncertainty, and are made by a broad range of individuals, across a multitude of environmental and socioeconomic contexts. In this presentation I will review progress towards identification and characterization of uncertainties and how this information can support wildfire decision-making. First, I will review a typology of uncertainties common to wildfire management, highlighting some of the more salient sources of uncertainty and how they present challenges to assessing wildfire risk. This discussion will cover the expanding role of burn probability modeling, approaches for characterizing fire effects, and the role of multi-criteria decision analysis, and will provide illustrative examples of integrated wildfire risk assessment across a variety of planning scales. Second, I will describe a related uncertainty typology that focuses on the human dimensions of wildfire management, specifically addressing how social, psychological, and institutional factors may impair cost-effective risk mitigation. This discussion will encompass decision processes before, during, and after fire events, with a specific focus on active management of complex wildfire incidents. An improved ability to characterize uncertainties faced in wildfire management could lead to improved delivery of decision support, targeted communication strategies, and ultimately to improved wildfire management outcomes.

  17. A Probabilistic Approach for Analysis of Modeling Uncertainties in Quantification of Trading Ratios in Nonpoint to Point Source Nutrient Trading Programs

    NASA Astrophysics Data System (ADS)

    Tasdighi, A.; Arabi, M.

    2015-12-01

    Quantifying the nonpoint source pollutant loads and assessing the water quality benefits of conservation practices (BMPs) are prone to different types of uncertainties which have to be taken into account when developing nutrient trading programs. Although various types of modeling uncertainties (parameter, input and structure) have been examined in the literature more or less, the impact of modeling uncertainties on evaluation of BMPs has not been addressed sufficiently. Currently, "trading ratios" are used within nutrient trading programs to account for variability of nonpoint source loads. However, we were not able to find any case of some rigorous scientific approach to account for any type of uncertainties in trading ratios. In this study, Bayesian inferences were applied to incorporate input, parameter and structural uncertainties using a statistically valid likelihood function. IPEAT (Integrated Parameter Estimation and Uncertainty Analysis Tool), a framework developed for simultaneous evaluation of parameterization, input data, model structure, and observation data uncertainty and their contribution to predictive uncertainty was used to quantify the uncertainties in effectiveness of agricultural BMPs while propagating different sources of uncertainty. SWAT was used as the simulation model. SWAT parameterization was done for three different model structures (SCS CN I, SCS CN II and G&A methods) using a Bayesian based Markov Chain Monte Carlo (MCMC) method named Differential Evolution Adaptive Metropolis (DREAM). For each model structure, the Integrated Bayesian Uncertainty Estimator (IBUNE) was employed to generate latent variables from input data. Bayesian Model Averaging (BMA) was then used to combine the models and Expectation-Maximization (EM) optimization technique was used to estimate the BMA weights. Using this framework, the impact of different sources of uncertainty on nutrient loads from nonpoint sources and subsequently effectiveness of BMPs in

  18. Modeling uncertainty: quicksand for water temperature modeling

    USGS Publications Warehouse

    Bartholow, John M.

    2003-01-01

    Uncertainty has been a hot topic relative to science generally, and modeling specifically. Modeling uncertainty comes in various forms: measured data, limited model domain, model parameter estimation, model structure, sensitivity to inputs, modelers themselves, and users of the results. This paper will address important components of uncertainty in modeling water temperatures, and discuss several areas that need attention as the modeling community grapples with how to incorporate uncertainty into modeling without getting stuck in the quicksand that prevents constructive contributions to policy making. The material, and in particular the reference, are meant to supplement the presentation given at this conference.

  19. Picturing Data With Uncertainty

    NASA Technical Reports Server (NTRS)

    Kao, David; Love, Alison; Dungan, Jennifer L.; Pang, Alex

    2004-01-01

    NASA is in the business of creating maps for scientific purposes to represent important biophysical or geophysical quantities over space and time. For example, maps of surface temperature over the globe tell scientists where and when the Earth is heating up; regional maps of the greenness of vegetation tell scientists where and when plants are photosynthesizing. There is always uncertainty associated with each value in any such map due to various factors. When uncertainty is fully modeled, instead of a single value at each map location, there is a distribution expressing a set of possible outcomes at each location. We consider such distribution data as multi-valued data since it consists of a collection of values about a single variable. Thus, a multi-valued data represents both the map and its uncertainty. We have been working on ways to visualize spatial multi-valued data sets effectively for fields with regularly spaced units or grid cells such as those in NASA's Earth science applications. A new way to display distributions at multiple grid locations is to project the distributions from an individual row, column or other user-selectable straight transect from the 2D domain. First at each grid cell in a given slice (row, column or transect), we compute a smooth density estimate from the underlying data. Such a density estimate for the probability density function (PDF) is generally more useful than a histogram, which is a classic density estimate. Then, the collection of PDFs along a given slice are presented vertically above the slice and form a wall. To minimize occlusion of intersecting slices, the corresponding walls are positioned at the far edges of the boundary. The PDF wall depicts the shapes of the distributions very dearly since peaks represent the modes (or bumps) in the PDFs. We've defined roughness as the number of peaks in the distribution. Roughness is another useful summary information for multimodal distributions. The uncertainty of the multi

  20. Exploring uncertainty in the Earth Sciences - the potential field perspective

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Blakely, R. J.

    2013-12-01

    Interpretation of gravity and magnetic anomalies is mathematically non-unique because multiple theoretical solutions are possible. The mathematical label of 'non-uniqueness' can lead to the erroneous impression that no single interpretation is better in a geologic sense than any other. The purpose of this talk is to present a practical perspective on the theoretical non-uniqueness of potential field interpretation in geology. There are multiple ways to approach and constrain potential field studies to produce significant, robust, and definitive results. For example, a smooth, bell-shaped gravity profile, in theory, could be caused by an infinite set of physical density bodies, ranging from a deep, compact, circular source to a shallow, smoothly varying, inverted bell-shaped source. In practice, however, we can use independent geologic or geophysical information to limit the range of possible source densities and rule out many of the theoretical solutions. We can further reduce the theoretical uncertainty by careful attention to subtle anomaly details. For example, short-wavelength anomalies are a well-known and theoretically established characteristic of shallow geologic sources. The 'non-uniqueness' of potential field studies is closely related to the more general topic of scientific uncertainty in the Earth sciences and beyond. Nearly all results in the Earth sciences are subject to significant uncertainty because problems are generally addressed with incomplete and imprecise data. The increasing need to combine results from multiple disciplines into integrated solutions in order to address complex global issues requires special attention to the appreciation and communication of uncertainty in geologic interpretation.

  1. Communicating Uncertainties on Climate Change

    NASA Astrophysics Data System (ADS)

    Planton, S.

    2009-09-01

    The term of uncertainty in common language is confusing since it is related in one of its most usual sense to what cannot be known in advance or what is subject to doubt. Its definition in mathematics is unambiguous but not widely shared. It is thus difficult to communicate on this notion through media to a wide public. From its scientific basis to the impact assessment, climate change issue is subject to a large number of sources of uncertainties. In this case, the definition of the term is close to its mathematical sense, but the diversity of disciplines involved in the analysis process implies a great diversity of approaches of the notion. Faced to this diversity of approaches, the issue of communicating uncertainties on climate change is thus a great challenge. It is also complicated by the diversity of the targets of the communication on climate change, from stakeholders and policy makers to a wide public. We will present the process chosen by the IPCC in order to communicate uncertainties in its assessment reports taking the example of the guidance note to lead authors of the fourth assessment report. Concerning the communication of uncertainties to a wide public, we will give some examples aiming at illustrating how to avoid the above-mentioned ambiguity when dealing with this kind of communication.

  2. Estimating uncertainties in complex joint inverse problems

    NASA Astrophysics Data System (ADS)

    Afonso, Juan Carlos

    2016-04-01

    Sources of uncertainty affecting geophysical inversions can be classified either as reflective (i.e. the practitioner is aware of her/his ignorance) or non-reflective (i.e. the practitioner does not know that she/he does not know!). Although we should be always conscious of the latter, the former are the ones that, in principle, can be estimated either empirically (by making measurements or collecting data) or subjectively (based on the experience of the researchers). For complex parameter estimation problems in geophysics, subjective estimation of uncertainty is the most common type. In this context, probabilistic (aka Bayesian) methods are commonly claimed to offer a natural and realistic platform from which to estimate model uncertainties. This is because in the Bayesian approach, errors (whatever their nature) can be naturally included as part of the global statistical model, the solution of which represents the actual solution to the inverse problem. However, although we agree that probabilistic inversion methods are the most powerful tool for uncertainty estimation, the common claim that they produce "realistic" or "representative" uncertainties is not always justified. Typically, ALL UNCERTAINTY ESTIMATES ARE MODEL DEPENDENT, and therefore, besides a thorough characterization of experimental uncertainties, particular care must be paid to the uncertainty arising from model errors and input uncertainties. We recall here two quotes by G. Box and M. Gunzburger, respectively, of special significance for inversion practitioners and for this session: "…all models are wrong, but some are useful" and "computational results are believed by no one, except the person who wrote the code". In this presentation I will discuss and present examples of some problems associated with the estimation and quantification of uncertainties in complex multi-observable probabilistic inversions, and how to address them. Although the emphasis will be on sources of uncertainty related

  3. ICYESS 2013: Understanding and Interpreting Uncertainty

    NASA Astrophysics Data System (ADS)

    Rauser, F.; Niederdrenk, L.; Schemann, V.; Schmidt, A.; Suesser, D.; Sonntag, S.

    2013-12-01

    We will report the outcomes and highlights of the Interdisciplinary Conference of Young Earth System Scientists (ICYESS) on Understanding and Interpreting Uncertainty in September 2013, Hamburg, Germany. This conference is aimed at early career scientists (Masters to Postdocs) from a large variety of scientific disciplines and backgrounds (natural, social and political sciences) and will enable 3 days of discussions on a variety of uncertainty-related aspects: 1) How do we deal with implicit and explicit uncertainty in our daily scientific work? What is uncertain for us, and for which reasons? 2) How can we communicate these uncertainties to other disciplines? E.g., is uncertainty in cloud parameterization and respectively equilibrium climate sensitivity a concept that is understood equally well in natural and social sciences that deal with Earth System questions? Or vice versa, is, e.g., normative uncertainty as in choosing a discount rate relevant for natural scientists? How can those uncertainties be reconciled? 3) How can science communicate this uncertainty to the public? Is it useful at all? How are the different possible measures of uncertainty understood in different realms of public discourse? Basically, we want to learn from all disciplines that work together in the broad Earth System Science community how to understand and interpret uncertainty - and then transfer this understanding to the problem of how to communicate with the public, or its different layers / agents. ICYESS is structured in a way that participation is only possible via presentation, so every participant will give their own professional input into how the respective disciplines deal with uncertainty. Additionally, a large focus is put onto communication techniques; there are no 'standard presentations' in ICYESS. Keynote lectures by renowned scientists and discussions will lead to a deeper interdisciplinary understanding of what we do not really know, and how to deal with it. Many

  4. Scientific Misconduct.

    PubMed

    Gross, Charles

    2016-01-01

    Scientific misconduct has been defined as fabrication, falsification, and plagiarism. Scientific misconduct has occurred throughout the history of science. The US government began to take systematic interest in such misconduct in the 1980s. Since then, a number of studies have examined how frequently individual scientists have observed scientific misconduct or were involved in it. Although the studies vary considerably in their methodology and in the nature and size of their samples, in most studies at least 10% of the scientists sampled reported having observed scientific misconduct. In addition to studies of the incidence of scientific misconduct, this review considers the recent increase in paper retractions, the role of social media in scientific ethics, several instructional examples of egregious scientific misconduct, and potential methods to reduce research misconduct. PMID:26273897

  5. Scientific Misconduct.

    PubMed

    Gross, Charles

    2016-01-01

    Scientific misconduct has been defined as fabrication, falsification, and plagiarism. Scientific misconduct has occurred throughout the history of science. The US government began to take systematic interest in such misconduct in the 1980s. Since then, a number of studies have examined how frequently individual scientists have observed scientific misconduct or were involved in it. Although the studies vary considerably in their methodology and in the nature and size of their samples, in most studies at least 10% of the scientists sampled reported having observed scientific misconduct. In addition to studies of the incidence of scientific misconduct, this review considers the recent increase in paper retractions, the role of social media in scientific ethics, several instructional examples of egregious scientific misconduct, and potential methods to reduce research misconduct.

  6. Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

    SciTech Connect

    Chatterjee, Samrat; Halappanavar, Mahantesh; Tipireddy, Ramakrishna; Oster, Matthew R.; Saha, Sudip

    2015-04-15

    Representation and propagation of uncertainty in cyber attacker payoffs is a key aspect of security games. Past research has primarily focused on representing the defender’s beliefs about attacker payoffs as point utility estimates. More recently, within the physical security domain, attacker payoff uncertainties have been represented as Uniform and Gaussian probability distributions, and intervals. Within cyber-settings, continuous probability distributions may still be appropriate for addressing statistical (aleatory) uncertainties where the defender may assume that the attacker’s payoffs differ over time. However, systematic (epistemic) uncertainties may exist, where the defender may not have sufficient knowledge or there is insufficient information about the attacker’s payoff generation mechanism. Such epistemic uncertainties are more suitably represented as probability boxes with intervals. In this study, we explore the mathematical treatment of such mixed payoff uncertainties.

  7. Communication and Uncertainty Management.

    ERIC Educational Resources Information Center

    Brashers, Dale E.

    2001-01-01

    Suggests the fundamental challenge for refining theories of communication and uncertainty is to abandon the assumption that uncertainty will produce anxiety. Outlines and extends a theory of uncertainty management and reviews current theory and research. Concludes that people want to reduce uncertainty because it is threatening, but uncertainty…

  8. Variable addressability imaging systems

    NASA Astrophysics Data System (ADS)

    Kubala, Kenneth Scott

    The use of variable addressability for creating an optimum human-machine interface is investigated. Current wide field optical systems present more information to the human visual system than it has the capacity to perceive. The axial resolution, and/or the field of view can be increased by minimizing the difference between what the eye can perceive and what the system presents. The variable addressability function was developed through the use of a human factors experiment that characterized the position of the eye during the simulated use of a binocular system. Applying the variable addressability function to a conventional optical design required the development of a new metric for evaluating the expected performance of the variable addressability system. The new metric couples psycho-visual data and traditional optical data in order to specify the required performance of the variable addressability system. A non-linear mapping of the pixels is required in order to have the system work most efficiently with the human visual system, while also compensating for eye motion. The non-linear mapping function, which is the backbone of the variable addressability technique, can be created using optical distortion. The lens and system design is demonstrated in two different spectral bands. One of the designs was fabricated, tested, and assembled into a prototype. Through a second human factors study aimed at measuring performance, the variable addressability prototype was directly compared to a uniform addressability prototype, quantifying the difference in performance for the two prototypes. The human factors results showed that the variable addressability prototype provided better resolution 13% of the time throughout the experiment, but was 15% slower in use than the uniform addressability prototype.

  9. Analysis of Infiltration Uncertainty

    SciTech Connect

    R. McCurley

    2003-10-27

    The primary objectives of this uncertainty analysis are: (1) to develop and justify a set of uncertain parameters along with associated distributions; and (2) to use the developed uncertain parameter distributions and the results from selected analog site calculations done in ''Simulation of Net Infiltration for Modern and Potential Future Climates'' (USGS 2001 [160355]) to obtain the net infiltration weighting factors for the glacial transition climate. These weighting factors are applied to unsaturated zone (UZ) flow fields in Total System Performance Assessment (TSPA), as outlined in the ''Total System Performance Assessment-License Application Methods and Approach'' (BSC 2002 [160146], Section 3.1) as a method for the treatment of uncertainty. This report is a scientific analysis because no new and mathematical physical models are developed herein, and it is based on the use of the models developed in or for ''Simulation of Net Infiltration for Modern and Potential Future Climates'' (USGS 2001 [160355]). Any use of the term model refers to those developed in the infiltration numerical model report. TSPA License Application (LA) has included three distinct climate regimes in the comprehensive repository performance analysis for Yucca Mountain: present-day, monsoon, and glacial transition. Each climate regime was characterized using three infiltration-rate maps, including a lower- and upper-bound and a mean value (equal to the average of the two boundary values). For each of these maps, which were obtained based on analog site climate data, a spatially averaged value was also calculated by the USGS. For a more detailed discussion of these infiltration-rate maps, see ''Simulation of Net Infiltration for Modern and Potential Future Climates'' (USGS 2001 [160355]). For this Scientific Analysis Report, spatially averaged values were calculated for the lower-bound, mean, and upper-bound climate analogs only for the glacial transition climate regime, within the

  10. Cutting it both ways and eating it too: Embracing the uncertainty cake

    NASA Astrophysics Data System (ADS)

    Risbey, J.; Lewandowsky, S.

    2012-12-01

    Uncertainties are an inevitable component of climatology. A full embrace of uncertainty would show that the problem and consequences could be much worse than generally perceived, yet uncertainties are generally downplayed. The climate contrarian community downplays uncertainty by restricting attention to uncertainties pointing to the low consequence tail. The climate mainstream addresses some uncertainties, but does not have sufficient tools to address high consequence uncertainty issues or regional details of climate change projections. The failure to grasp these less quantifiable aspects of climate change uncertainty biases perceptions of consequences towards more moderate outcomes and diminishes the sense of agency to reduce emissions.

  11. Numerical Uncertainty Quantification for Radiation Analysis Tools

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke; Blattnig, Steve; Clowdsley, Martha

    2007-01-01

    Recently a new emphasis has been placed on engineering applications of space radiation analyses and thus a systematic effort of Verification, Validation and Uncertainty Quantification (VV&UQ) of the tools commonly used for radiation analysis for vehicle design and mission planning has begun. There are two sources of uncertainty in geometric discretization addressed in this paper that need to be quantified in order to understand the total uncertainty in estimating space radiation exposures. One source of uncertainty is in ray tracing, as the number of rays increase the associated uncertainty decreases, but the computational expense increases. Thus, a cost benefit analysis optimizing computational time versus uncertainty is needed and is addressed in this paper. The second source of uncertainty results from the interpolation over the dose vs. depth curves that is needed to determine the radiation exposure. The question, then, is what is the number of thicknesses that is needed to get an accurate result. So convergence testing is performed to quantify the uncertainty associated with interpolating over different shield thickness spatial grids.

  12. Application of uncertainty analysis to cooling tower thermal performance tests

    SciTech Connect

    Yost, J.G.; Wheeler, D.E.

    1986-01-01

    The purpose of this paper is to provide an overview of uncertainty analyses. The following topics are addressed: l. A review and summary of the basic constituents of an uncertainty analysis with definitions and discussion of basic terms; 2. A discussion of the benefits and uses of uncertainty analysis; and 3. Example uncertainty analyses with emphasis on the problems, limitations, and site-specific complications.

  13. Addressivity in cogenerative dialogues

    NASA Astrophysics Data System (ADS)

    Hsu, Pei-Ling

    2014-03-01

    Ashraf Shady's paper provides a first-hand reflection on how a foreign teacher used cogens as culturally adaptive pedagogy to address cultural misalignments with students. In this paper, Shady drew on several cogen sessions to showcase his journey of using different forms of cogens with his students. To improve the quality of cogens, one strategy he used was to adjust the number of participants in cogens. As a result, some cogens worked and others did not. During the course of reading his paper, I was impressed by his creative and flexible use of cogens and at the same time was intrigued by the question of why some cogens work and not others. In searching for an answer, I found that Mikhail Bakhtin's dialogism, especially the concept of addressivity, provides a comprehensive framework to address this question. In this commentary, I reanalyze the cogen episodes described in Shady's paper in the light of dialogism. My analysis suggests that addressivity plays an important role in mediating the success of cogens. Cogens with high addressivity function as internally persuasive discourse that allows diverse consciousnesses to coexist and so likely affords productive dialogues. The implications of addressivity in teaching and learning are further discussed.

  14. AMCA Presidential Address

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The American Mosquito Control Association and mosquito control will be discussed. The American Mosquito Control Association in a non-profit scientific organization dedicated to promoting the highest standard in professional mosquito control. It is comprised of more than 1500 members representing st...

  15. Pandemic influenza: certain uncertainties

    PubMed Central

    Morens, David M.; Taubenberger, Jeffery K.

    2011-01-01

    SUMMARY For at least five centuries, major epidemics and pandemics of influenza have occurred unexpectedly and at irregular intervals. Despite the modern notion that pandemic influenza is a distinct phenomenon obeying such constant (if incompletely understood) rules such as dramatic genetic change, cyclicity, “wave” patterning, virus replacement, and predictable epidemic behavior, much evidence suggests the opposite. Although there is much that we know about pandemic influenza, there appears to be much more that we do not know. Pandemics arise as a result of various genetic mechanisms, have no predictable patterns of mortality among different age groups, and vary greatly in how and when they arise and recur. Some are followed by new pandemics, whereas others fade gradually or abruptly into long-term endemicity. Human influenza pandemics have been caused by viruses that evolved singly or in co-circulation with other pandemic virus descendants and often have involved significant transmission between, or establishment of, viral reservoirs within other animal hosts. In recent decades, pandemic influenza has continued to produce numerous unanticipated events that expose fundamental gaps in scientific knowledge. Influenza pandemics appear to be not a single phenomenon but a heterogeneous collection of viral evolutionary events whose similarities are overshadowed by important differences, the determinants of which remain poorly understood. These uncertainties make it difficult to predict influenza pandemics and, therefore, to adequately plan to prevent them. PMID:21706672

  16. Earthquake Loss Estimation Uncertainties

    NASA Astrophysics Data System (ADS)

    Frolova, Nina; Bonnin, Jean; Larionov, Valery; Ugarov, Aleksander

    2013-04-01

    The paper addresses the reliability issues of strong earthquakes loss assessment following strong earthquakes with worldwide Systems' application in emergency mode. Timely and correct action just after an event can result in significant benefits in saving lives. In this case the information about possible damage and expected number of casualties is very critical for taking decision about search, rescue operations and offering humanitarian assistance. Such rough information may be provided by, first of all, global systems, in emergency mode. The experience of earthquakes disasters in different earthquake-prone countries shows that the officials who are in charge of emergency response at national and international levels are often lacking prompt and reliable information on the disaster scope. Uncertainties on the parameters used in the estimation process are numerous and large: knowledge about physical phenomena and uncertainties on the parameters used to describe them; global adequacy of modeling techniques to the actual physical phenomena; actual distribution of population at risk at the very time of the shaking (with respect to immediate threat: buildings or the like); knowledge about the source of shaking, etc. Needless to be a sharp specialist to understand, for example, that the way a given building responds to a given shaking obeys mechanical laws which are poorly known (if not out of the reach of engineers for a large portion of the building stock); if a carefully engineered modern building is approximately predictable, this is far not the case for older buildings which make up the bulk of inhabited buildings. The way population, inside the buildings at the time of shaking, is affected by the physical damage caused to the buildings is not precisely known, by far. The paper analyzes the influence of uncertainties in strong event parameters determination by Alert Seismological Surveys, of simulation models used at all stages from, estimating shaking intensity

  17. MOMENTS OF UNCERTAINTY: ETHICAL CONSIDERATIONS AND EMERGING CONTAMINANTS

    PubMed Central

    Cordner, Alissa; Brown, Phil

    2013-01-01

    Science on emerging environmental health threats involves numerous ethical concerns related to scientific uncertainty about conducting, interpreting, communicating, and acting upon research findings, but the connections between ethical decision making and scientific uncertainty are under-studied in sociology. Under conditions of scientific uncertainty, researcher conduct is not fully prescribed by formal ethical codes of conduct, increasing the importance of ethical reflection by researchers, conflicts over research conduct, and reliance on informal ethical standards. This paper draws on in-depth interviews with scientists, regulators, activists, industry representatives, and fire safety experts to explore ethical considerations of moments of uncertainty using a case study of flame retardants, chemicals widely used in consumer products with potential negative health and environmental impacts. We focus on the uncertainty that arises in measuring people’s exposure to these chemicals through testing of their personal environments or bodies. We identify four sources of ethical concerns relevant to scientific uncertainty: 1) choosing research questions or methods, 2) interpreting scientific results, 3) communicating results to multiple publics, and 4) applying results for policy-making. This research offers lessons about professional conduct under conditions of uncertainty, ethical research practice, democratization of scientific knowledge, and science’s impact on policy. PMID:24249964

  18. Climate change adaptation under uncertainty in the developing world: A case study of sea level rise in Kiribati

    NASA Astrophysics Data System (ADS)

    Donner, S. D.; Webber, S.

    2011-12-01

    Climate change is expected to have the greatest impact in parts of the developing world. At the 2010 meeting of U.N. Framework Convention on Climate Change in Cancun, industrialized countries agreed in principle to provide US$100 billion per year by 2020 to assist the developing world respond to climate change. This "Green Climate Fund" is a critical step towards addressing the challenge of climate change. However, the policy and discourse on supporting adaptation in the developing world remains highly idealized. For example, the efficacy of "no regrets" adaptation efforts or "mainstreaming" adaptation into decision-making are rarely evaluated in the real world. In this presentation, I will discuss the gap between adaptation theory and practice using a multi-year case study of the cultural, social and scientific obstacles to adapting to sea level rise in the Pacific atoll nation of Kiribati. Our field research reveals how scientific and institutional uncertainty can limit international efforts to fund adaptation and lead to spiraling costs. Scientific uncertainty about hyper-local impacts of sea level rise, though irreducible, can at times limit decision-making about adaptation measures, contrary to the notion that "good" decision-making practices can incorporate scientific uncertainty. Efforts to improve institutional capacity must be done carefully, or they risk inadvertently slowing the implementation of adaptation measures and increasing the likelihood of "mal"-adaptation.

  19. An Ontology for Uncertainty in Climate Change Projections

    NASA Astrophysics Data System (ADS)

    King, A. W.

    2011-12-01

    Paraphrasing Albert Einstein's aphorism about scientific quantification: not all uncertainty that counts can be counted, and not all uncertainty that can be counted counts. The meaning of the term "uncertainty" in climate change science and assessment is itself uncertain. Different disciplines and perspectives bring different nuances if not meanings of the term to the conversation. For many scientists, uncertainty is somehow associated with statistical dispersion and standard error. For many users of climate change information, uncertainty is more related to their confidence, or lack thereof, in climate models. These "uncertainties" may be related, but they are not identical, and there is considerable room for confusion and misunderstanding. A knowledge framework, a system of concepts and vocabulary, for communicating uncertainty can add structure to the characterization and quantification of uncertainty and aid communication among scientists and users. I have developed an ontology for uncertainty in climate change projections derived largely from the report of the W3C Uncertainty Reasoning for the World Wide Web Incubator Group (URW3-XG) dealing with the problem of uncertainty representation and reasoning on the World Wide Web. I have adapted this ontology for uncertainty about information to uncertainty about climate change. Elements of the ontology apply with little or no translation to the information of climate change projections, with climate change almost a use case. Other elements can be translated into language used in climate-change discussions; translating aleatory uncertainty in the UncertaintyNature class as irreducible uncertainty is an example. I have added classes for source of uncertainty (UncertaintySource) (different model physics, for example) and metrics of uncertainty (UncertaintyMetric), at least, in the case of the latter, for those instances of uncertainty that can be quantified (i.e., counted). The statistical standard deviation isa member

  20. Quantification of uncertainties for application in detonation simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Miao; Ma, Zhibo

    2016-06-01

    Numerical simulation has become an important means in designing detonation systems, and the quantification of its uncertainty is also necessary to reliability certification. As to quantifying the uncertainty, it is the most important to analyze how the uncertainties occur and develop, and how the simulations develop from benchmark models to new models. Based on the practical needs of engineering and the technology of verification & validation, a framework of QU(quantification of uncertainty) is brought forward in the case that simulation is used on detonation system for scientific prediction. An example is offered to describe the general idea of quantification of simulation uncertainties.

  1. Assessing uncertainty in stormwater quality modelling.

    PubMed

    Wijesiri, Buddhi; Egodawatta, Prasanna; McGree, James; Goonetilleke, Ashantha

    2016-10-15

    Designing effective stormwater pollution mitigation strategies is a challenge in urban stormwater management. This is primarily due to the limited reliability of catchment scale stormwater quality modelling tools. As such, assessing the uncertainty associated with the information generated by stormwater quality models is important for informed decision making. Quantitative assessment of build-up and wash-off process uncertainty, which arises from the variability associated with these processes, is a major concern as typical uncertainty assessment approaches do not adequately account for process uncertainty. The research study undertaken found that the variability of build-up and wash-off processes for different particle size ranges leads to processes uncertainty. After variability and resulting process uncertainties are accurately characterised, they can be incorporated into catchment stormwater quality predictions. Accounting of process uncertainty influences the uncertainty limits associated with predicted stormwater quality. The impact of build-up process uncertainty on stormwater quality predictions is greater than that of wash-off process uncertainty. Accordingly, decision making should facilitate the designing of mitigation strategies which specifically addresses variations in load and composition of pollutants accumulated during dry weather periods. Moreover, the study outcomes found that the influence of process uncertainty is different for stormwater quality predictions corresponding to storm events with different intensity, duration and runoff volume generated. These storm events were also found to be significantly different in terms of the Runoff-Catchment Area ratio. As such, the selection of storm events in the context of designing stormwater pollution mitigation strategies needs to take into consideration not only the storm event characteristics, but also the influence of process uncertainty on stormwater quality predictions.

  2. Assessing uncertainty in stormwater quality modelling.

    PubMed

    Wijesiri, Buddhi; Egodawatta, Prasanna; McGree, James; Goonetilleke, Ashantha

    2016-10-15

    Designing effective stormwater pollution mitigation strategies is a challenge in urban stormwater management. This is primarily due to the limited reliability of catchment scale stormwater quality modelling tools. As such, assessing the uncertainty associated with the information generated by stormwater quality models is important for informed decision making. Quantitative assessment of build-up and wash-off process uncertainty, which arises from the variability associated with these processes, is a major concern as typical uncertainty assessment approaches do not adequately account for process uncertainty. The research study undertaken found that the variability of build-up and wash-off processes for different particle size ranges leads to processes uncertainty. After variability and resulting process uncertainties are accurately characterised, they can be incorporated into catchment stormwater quality predictions. Accounting of process uncertainty influences the uncertainty limits associated with predicted stormwater quality. The impact of build-up process uncertainty on stormwater quality predictions is greater than that of wash-off process uncertainty. Accordingly, decision making should facilitate the designing of mitigation strategies which specifically addresses variations in load and composition of pollutants accumulated during dry weather periods. Moreover, the study outcomes found that the influence of process uncertainty is different for stormwater quality predictions corresponding to storm events with different intensity, duration and runoff volume generated. These storm events were also found to be significantly different in terms of the Runoff-Catchment Area ratio. As such, the selection of storm events in the context of designing stormwater pollution mitigation strategies needs to take into consideration not only the storm event characteristics, but also the influence of process uncertainty on stormwater quality predictions. PMID:27423532

  3. Fission Spectrum Related Uncertainties

    SciTech Connect

    G. Aliberti; I. Kodeli; G. Palmiotti; M. Salvatores

    2007-10-01

    The paper presents a preliminary uncertainty analysis related to potential uncertainties on the fission spectrum data. Consistent results are shown for a reference fast reactor design configuration and for experimental thermal configurations. However the results obtained indicate the need for further analysis, in particular in terms of fission spectrum uncertainty data assessment.

  4. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  5. Experimental uncertainty estimation and statistics for data having interval uncertainty.

    SciTech Connect

    Kreinovich, Vladik (Applied Biomathematics, Setauket, New York); Oberkampf, William Louis (Applied Biomathematics, Setauket, New York); Ginzburg, Lev (Applied Biomathematics, Setauket, New York); Ferson, Scott (Applied Biomathematics, Setauket, New York); Hajagos, Janos (Applied Biomathematics, Setauket, New York)

    2007-05-01

    This report addresses the characterization of measurements that include epistemic uncertainties in the form of intervals. It reviews the application of basic descriptive statistics to data sets which contain intervals rather than exclusively point estimates. It describes algorithms to compute various means, the median and other percentiles, variance, interquartile range, moments, confidence limits, and other important statistics and summarizes the computability of these statistics as a function of sample size and characteristics of the intervals in the data (degree of overlap, size and regularity of widths, etc.). It also reviews the prospects for analyzing such data sets with the methods of inferential statistics such as outlier detection and regressions. The report explores the tradeoff between measurement precision and sample size in statistical results that are sensitive to both. It also argues that an approach based on interval statistics could be a reasonable alternative to current standard methods for evaluating, expressing and propagating measurement uncertainties.

  6. Trust in scientific publishing.

    PubMed

    Hummels, H; Roosendaal, H E

    2001-11-01

    Trust is an important phenomenon to reduce organizational complexity and uncertainty. In the literature many types of trust are distinguished. An important framework to understand the variety and development of trust in organisations is provided by Zucker. She distinguishes three types of trust: process-based trust, institutional-based trust, characteristic-based trust. In this article we will add a fourth type: values-based trust. Similarly, it is customary in scientific communication to distinguish four main communication functions: registration, archiving, certification, awareness. These types of trust and communication functions offer somewhat similar classification schemes. In this paper we will elaborate on these classification schemes with the aim to analyse possible similarities or even mapping. Such similarities will allow drawing conclusions on the development of trust in a (virtual) organisation in general and the process of scientific communication as a special kind of a (virtual) organisation in particular.

  7. Scientific Misconduct.

    ERIC Educational Resources Information Center

    Goodstein, David

    2002-01-01

    Explores scientific fraud, asserting that while few scientists actually falsify results, the field has become so competitive that many are misbehaving in other ways; an example would be unreasonable criticism by anonymous peer reviewers. (EV)

  8. The Scientific Competitiveness of Nations

    PubMed Central

    Cimini, Giulio; Gabrielli, Andrea; Sylos Labini, Francesco

    2014-01-01

    We use citation data of scientific articles produced by individual nations in different scientific domains to determine the structure and efficiency of national research systems. We characterize the scientific fitness of each nation—that is, the competitiveness of its research system—and the complexity of each scientific domain by means of a non-linear iterative algorithm able to assess quantitatively the advantage of scientific diversification. We find that technological leading nations, beyond having the largest production of scientific papers and the largest number of citations, do not specialize in a few scientific domains. Rather, they diversify as much as possible their research system. On the other side, less developed nations are competitive only in scientific domains where also many other nations are present. Diversification thus represents the key element that correlates with scientific and technological competitiveness. A remarkable implication of this structure of the scientific competition is that the scientific domains playing the role of “markers” of national scientific competitiveness are those not necessarily of high technological requirements, but rather addressing the most “sophisticated” needs of the society. PMID:25493626

  9. Addressing Social Issues.

    ERIC Educational Resources Information Center

    Schoebel, Susan

    1991-01-01

    Maintains that advertising can help people become more aware of social responsibilities. Describes a successful nationwide newspaper advertising competition for college students in which ads address social issues such as literacy, drugs, teen suicide, and teen pregnancy. Notes how the ads have helped grassroots programs throughout the United…

  10. Addressing Sexual Harassment

    ERIC Educational Resources Information Center

    Young, Ellie L.; Ashbaker, Betty Y.

    2008-01-01

    This article discusses ways on how to address the problem of sexual harassment in schools. Sexual harassment--simply defined as any unwanted and unwelcome sexual behavior--is a sensitive topic. Merely providing students, parents, and staff members with information about the school's sexual harassment policy is insufficient; schools must take…

  11. Carbon Sequestration: Enhanced Evaluation of Uncertainty

    NASA Astrophysics Data System (ADS)

    McNeish, J. A.; Wang, Y.; Dewars, T.; Hadgu, T.; Jove Colon, C. F.; Sun, A.

    2010-12-01

    Carbon capture and sequestration (CCS) is an option to mitigate impacts of atmospheric carbon emission. Initial studies indicate that for long-term geologic storage of carbon to be effective, the leakage rates must be less than 0.1 - 0.01%/yr. Recent efforts have been made to apply the existing probabilistic performance assessment (PA) methodology developed for deep nuclear waste geologic repositories to evaluate the effectiveness of subsurface carbon storage. However, to address the most pressing management, regulatory, and scientific concerns with subsurface carbon storage (CS), the existing PA methodology and tools must be enhanced and upgraded. For example, in the evaluation of a nuclear waste repository, a PA model is essentially a forward model that samples input parameters and runs multiple realizations to estimate future consequences and determine important parameters driving the system performance. In the CS evaluation, however, a PA model must be able to run both forward and inverse calculations to support real-time site monitoring as an integral part of the design and operational phases. The monitoring data must be continually fused into the PA model through model inversion and parameter estimation. Model calculations will in turn guide the design of optimal monitoring and carbon-injection strategies (e.g., in terms of monitoring techniques, locations, and time intervals). This study formulates the advanced PA concept for CS systems and establishes a prototype PA framework for the concept. The new PA framework includes a built-in optimization capability for model parameterization and monitoring system design. The capabilities of this framework will be demonstrated with a hypothetical CS system. The work lays the foundation for the development of a new generation of PA tools for effective management of CS activities. The work supports energy security and climate change/adaptation by furthering the capability to effectively manage proposed carbon capture

  12. Rethinking Uncertainty: What Does the Public Need to Know?

    NASA Astrophysics Data System (ADS)

    Oreskes, N.

    2012-12-01

    The late Steven Schneider is often quoted as addressing the double-bind of science communication: that to be a good scientist one has to be cautious and acknowledge uncertainty, but to reach the media and the public one has to be bold, incautious, and even a bit dramatic. Here, I focus on a related but different double-bind: the double bind of responding to doubt. In our recent book, Merchants of Doubt, Erik M. Conway and I showed how doubt-mongers exploited scientific uncertainty as a political strategy to confuse the public and delay action on a range of environmental issues from the harms of tobacco to the reality of anthropogenic climate change. This strategy is effective because it appeals to lay people, journalists,' and even fellow scientists' sense of fair play—that it is right to hear "both sides" of an issue. Scientists are then caught in a double-bind: refusing to respond seems smug and elitist, but responding scientifically seems to confirm that there is in fact a scientific debate. Doubt-mongering is also hard to counter because our knowledge is, in fact, uncertain, so when we communicate in conventional scientific ways, acknowledging the uncertainties and limits in our understanding, we may end up reinforcing the uncertainty framework. The difficulty is exacerbated by the natural tendency of scientists to focus on novel and original results, rather than matters that are well established, lest we be accused of lacking originality or of taking credit for other's work. The net result is the impression among lay people that our knowledge is very likely to change and therefore a weak basis for making public policy decision. History of science, however, suggests a different picture: we know that a good deal of scientific knowledge has proved temporally robust and has provided a firm basis for effective public policy. Action on earlier environmental issues such as DDT and acid rain, guided by scientific knowledge, has worked to limit environmental damage

  13. Uncertainty and cognitive control.

    PubMed

    Mushtaq, Faisal; Bland, Amy R; Schaefer, Alexandre

    2011-01-01

    A growing trend of neuroimaging, behavioral, and computational research has investigated the topic of outcome uncertainty in decision-making. Although evidence to date indicates that humans are very effective in learning to adapt to uncertain situations, the nature of the specific cognitive processes involved in the adaptation to uncertainty are still a matter of debate. In this article, we reviewed evidence suggesting that cognitive control processes are at the heart of uncertainty in decision-making contexts. Available evidence suggests that: (1) There is a strong conceptual overlap between the constructs of uncertainty and cognitive control; (2) There is a remarkable overlap between the neural networks associated with uncertainty and the brain networks subserving cognitive control; (3) The perception and estimation of uncertainty might play a key role in monitoring processes and the evaluation of the "need for control"; (4) Potential interactions between uncertainty and cognitive control might play a significant role in several affective disorders.

  14. Holographic content addressable storage

    NASA Astrophysics Data System (ADS)

    Chao, Tien-Hsin; Lu, Thomas; Reyes, George

    2015-03-01

    We have developed a Holographic Content Addressable Storage (HCAS) architecture. The HCAS systems consists of a DMD (Digital Micromirror Array) as the input Spatial Light Modulator (SLM), a CMOS (Complementary Metal-oxide Semiconductor) sensor as the output photodetector and a photorefractive crystal as the recording media. The HCAS system is capable of performing optical correlation of an input image/feature against massive reference data set stored in the holographic memory. Detailed system analysis will be reported in this paper.

  15. Chemical Principles Revisited: Perspectives on the Uncertainty Principle and Quantum Reality.

    ERIC Educational Resources Information Center

    Bartell, Lawrence S.

    1985-01-01

    Explicates an approach that not only makes the uncertainty seem more useful to introductory students but also helps convey the real meaning of the term "uncertainty." General topic areas addressed include probability amplitudes, rationale behind the uncertainty principle, applications of uncertainty relations, and quantum processes. (JN)

  16. Methods for Assessing Uncertainties in Climate Change, Impacts and Responses (Invited)

    NASA Astrophysics Data System (ADS)

    Manning, M. R.; Swart, R.

    2009-12-01

    Assessing the scientific uncertainties or confidence levels for the many different aspects of climate change is particularly important because of the seriousness of potential impacts and the magnitude of economic and political responses that are needed to mitigate climate change effectively. This has made the treatment of uncertainty and confidence a key feature in the assessments carried out by the Intergovernmental Panel on Climate Change (IPCC). Because climate change is very much a cross-disciplinary area of science, adequately dealing with uncertainties requires recognition of their wide range and different perspectives on assessing and communicating those uncertainties. The structural differences that exist across disciplines are often embedded deeply in the corresponding literature that is used as the basis for an IPCC assessment. The assessment of climate change science by the IPCC has from its outset tried to report the levels of confidence and uncertainty in the degree of understanding in both the underlying multi-disciplinary science and in projections for future climate. The growing recognition of the seriousness of this led to the formation of a detailed approach for consistent treatment of uncertainties in the IPCC’s Third Assessment Report (TAR) [Moss and Schneider, 2000]. However, in completing the TAR there remained some systematic differences between the disciplines raising concerns about the level of consistency. So further consideration of a systematic approach to uncertainties was undertaken for the Fourth Assessment Report (AR4). The basis for the approach used in the AR4 was developed at an expert meeting of scientists representing many different disciplines. This led to the introduction of a broader way of addressing uncertainties in the AR4 [Manning et al., 2004] which was further refined by lengthy discussions among many IPCC Lead Authors, for over a year, resulting in a short summary of a standard approach to be followed for that

  17. Uncertainty propagation in an ecosystem nutrient budget.

    PubMed

    Lehrter, John C; Cebrian, Just

    2010-03-01

    New aspects and advancements in classical uncertainty propagation methods were used to develop a nutrient budget with associated uncertainty for a northern Gulf of Mexico coastal embayment. Uncertainty was calculated for budget terms by propagating the standard error and degrees of freedom. New aspects include the combined use of Monte Carlo simulations with classical error propagation methods, uncertainty analyses for GIS computations, and uncertainty propagation involving literature and subjective estimates of terms used in the budget calculations. The methods employed are broadly applicable to the mathematical operations employed in ecological studies involving step-by-step calculations, scaling procedures, and calculations of variables from direct measurements and/or literature estimates. Propagation of the standard error and the degrees of freedom allowed for calculation of the uncertainty intervals around every term in the budget. For scientists and environmental managers, the methods developed herein provide a relatively simple framework to propagate and assess the contributions of uncertainty in directly measured and literature estimated variables to calculated variables. Application of these methods to environmental data used in scientific reporting and environmental management will improve the interpretation of data and simplify the estimation of risk associated with decisions based on ecological studies.

  18. Addressing polarisation in science.

    PubMed

    Earp, Brian D

    2015-09-01

    Ploug and Holm argue that polarisation in scientific communities can generate conflicts of interest for individual researchers. Their proposed solution to this problem is that authors should self-report whether they are polarised on conflict of interest disclosure forms. I argue that this is unlikely to work. This is because any author with the self-awareness and integrity to identify herself as polarised would be unlikely to conduct polarised research to begin with. Instead, I suggest that it is the role of (associate-level) editors of journals to detect and report on polarisation. One consequence of this view is that they need to be sufficiently familiar with the field of research they are evaluating to know whether polarisation is at stake.

  19. Bioreactors Addressing Diabetes Mellitus

    PubMed Central

    Minteer, Danielle M.; Gerlach, Jorg C.

    2014-01-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies. PMID:25160666

  20. Bioreactors addressing diabetes mellitus.

    PubMed

    Minteer, Danielle M; Gerlach, Jorg C; Marra, Kacey G

    2014-11-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies.

  1. Content addressable memory project

    NASA Technical Reports Server (NTRS)

    Hall, J. Storrs; Levy, Saul; Smith, Donald E.; Miyake, Keith M.

    1992-01-01

    A parameterized version of the tree processor was designed and tested (by simulation). The leaf processor design is 90 percent complete. We expect to complete and test a combination of tree and leaf cell designs in the next period. Work is proceeding on algorithms for the computer aided manufacturing (CAM), and once the design is complete we will begin simulating algorithms for large problems. The following topics are covered: (1) the practical implementation of content addressable memory; (2) design of a LEAF cell for the Rutgers CAM architecture; (3) a circuit design tool user's manual; and (4) design and analysis of efficient hierarchical interconnection networks.

  2. Uncertainty, conflict and consent: revisiting the futility debate in neurotrauma.

    PubMed

    Honeybul, Stephen; Gillett, Grant R; Ho, Kwok M

    2016-07-01

    The concept of futility has been debated for many years, and a precise definition remains elusive. This is not entirely unsurprising given the increasingly complex and evolving nature of modern medicine. Progressively more complex decisions are required when considering increasingly sophisticated diagnostic and therapeutic interventions. Allocating resources appropriately amongst a population whose expectations continue to increase raises a number of ethical issues not least of which are the difficulties encountered when consideration is being given to withholding "life-preserving" treatment. In this discussion we have used decompressive craniectomy for severe traumatic brain injury as a clinical example with which to frame an approach to the concept. We have defined those issues that initially lead us to consider futility and thereafter actually provoke a significant discussion. We contend that these issues are uncertainty, conflict and consent. We then examine recent scientific advances in outcome prediction that may address some of the uncertainty and perhaps help achieve consensus amongst stakeholders. Whilst we do not anticipate that this re-framing of the idea of futility is applicable to all medical situations, the approach to specify patient-centred benefit may assist those making such decisions when patients are incompetent to participate. PMID:27143027

  3. [Ethics, empiricism and uncertainty].

    PubMed

    Porz, R; Zimmermann, H; Exadaktylos, A K

    2011-01-01

    Accidents can lead to difficult boundary situations. Such situations often take place in the emergency units. The medical team thus often and inevitably faces professional uncertainty in their decision-making. It is essential to communicate these uncertainties within the medical team, instead of downplaying or overriding existential hurdles in decision-making. Acknowledging uncertainties might lead to alert and prudent decisions. Thus uncertainty can have ethical value in treatment or withdrawal of treatment. It does not need to be covered in evidence-based arguments, especially as some singular situations of individual tragedies cannot be grasped in terms of evidence-based medicine.

  4. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty

  5. THE ROLE OF RISK ASSESSMENT IN ADDRESSING HAZARDOUS WASTE ISSUES

    EPA Science Inventory

    Risk assessment plays many important roles in addressing hazardous waste issues. In addition to providing a scientific framework and common health metric to evaluate risks. Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or "Superfund") risk assessm...

  6. Speaking Scientific

    ERIC Educational Resources Information Center

    Mason, Peter

    1971-01-01

    Suggests changes for science curricula which will improve the understanding...of the scientific language in which the ideas of science and technology are expressed," including increasing the students' facility with numbers, and in the future, an interdisciplinary course demonstrating the approach of physical, biological and behavioral scientists,…

  7. Classification and moral evaluation of uncertainties in engineering modeling.

    PubMed

    Murphy, Colleen; Gardoni, Paolo; Harris, Charles E

    2011-09-01

    Engineers must deal with risks and uncertainties as a part of their professional work and, in particular, uncertainties are inherent to engineering models. Models play a central role in engineering. Models often represent an abstract and idealized version of the mathematical properties of a target. Using models, engineers can investigate and acquire understanding of how an object or phenomenon will perform under specified conditions. This paper defines the different stages of the modeling process in engineering, classifies the various sources of uncertainty that arise in each stage, and discusses the categories into which these uncertainties fall. The paper then considers the way uncertainty and modeling are approached in science and the criteria for evaluating scientific hypotheses, in order to highlight the very different criteria appropriate for the development of models and the treatment of the inherent uncertainties in engineering. Finally, the paper puts forward nine guidelines for the treatment of uncertainty in engineering modeling.

  8. Addressing Environmental Health Inequalities

    PubMed Central

    Gouveia, Nelson

    2016-01-01

    Environmental health inequalities refer to health hazards disproportionately or unfairly distributed among the most vulnerable social groups, which are generally the most discriminated, poor populations and minorities affected by environmental risks. Although it has been known for a long time that health and disease are socially determined, only recently has this idea been incorporated into the conceptual and practical framework for the formulation of policies and strategies regarding health. In this Special Issue of the International Journal of Environmental Research and Public Health (IJERPH), “Addressing Environmental Health Inequalities—Proceedings from the ISEE Conference 2015”, we incorporate nine papers that were presented at the 27th Conference of the International Society for Environmental Epidemiology (ISEE), held in Sao Paulo, Brazil, in 2015. This small collection of articles provides a brief overview of the different aspects of this topic. Addressing environmental health inequalities is important for the transformation of our reality and for changing the actual development model towards more just, democratic, and sustainable societies driven by another form of relationship between nature, economy, science, and politics. PMID:27618906

  9. Addressing Environmental Health Inequalities.

    PubMed

    Gouveia, Nelson

    2016-01-01

    Environmental health inequalities refer to health hazards disproportionately or unfairly distributed among the most vulnerable social groups, which are generally the most discriminated, poor populations and minorities affected by environmental risks. Although it has been known for a long time that health and disease are socially determined, only recently has this idea been incorporated into the conceptual and practical framework for the formulation of policies and strategies regarding health. In this Special Issue of the International Journal of Environmental Research and Public Health (IJERPH), "Addressing Environmental Health Inequalities-Proceedings from the ISEE Conference 2015", we incorporate nine papers that were presented at the 27th Conference of the International Society for Environmental Epidemiology (ISEE), held in Sao Paulo, Brazil, in 2015. This small collection of articles provides a brief overview of the different aspects of this topic. Addressing environmental health inequalities is important for the transformation of our reality and for changing the actual development model towards more just, democratic, and sustainable societies driven by another form of relationship between nature, economy, science, and politics. PMID:27618906

  10. A review of uncertainty research in impact assessment

    SciTech Connect

    Leung, Wanda; Noble, Bram; Gunn, Jill; Jaeger, Jochen A.G.

    2015-01-15

    This paper examines uncertainty research in Impact Assessment (IA) and the focus of attention of the IA scholarly literature. We do so by first exploring ‘outside’ the IA literature, identifying three main themes of uncertainty research, and then apply these themes to examine the focus of scholarly research on uncertainty ‘inside’ IA. Based on a search of the database Scopus, we identified 134 journal papers published between 1970 and 2013 that address uncertainty in IA, 75% of which were published since 2005. We found that 90% of IA research addressing uncertainty focused on uncertainty in the practice of IA, including uncertainty in impact predictions, models and managing environmental impacts. Notwithstanding early guidance on uncertainty treatment in IA from the 1980s, we found no common, underlying conceptual framework that was guiding research on uncertainty in IA practice. Considerably less attention, only 9% of papers, focused on uncertainty communication, disclosure and decision-making under uncertain conditions, the majority of which focused on the need to disclose uncertainties as opposed to providing guidance on how to do so and effectively use that information to inform decisions. Finally, research focused on theory building for explaining human behavior with respect to uncertainty avoidance constituted only 1% of the IA published literature. We suggest the need for further conceptual framework development for researchers focused on identifying and addressing uncertainty in IA practice; the need for guidance on how best to communicate uncertainties in practice, versus criticizing practitioners for not doing so; research that explores how best to interpret and use disclosures about uncertainty when making decisions about project approvals, and the implications of doing so; and academic theory building and exploring the utility of existing theories to better understand and explain uncertainty avoidance behavior in IA. - Highlights: • We

  11. Scientific Software Component Technology

    SciTech Connect

    Kohn, S.; Dykman, N.; Kumfert, G.; Smolinski, B.

    2000-02-16

    We are developing new software component technology for high-performance parallel scientific computing to address issues of complexity, re-use, and interoperability for laboratory software. Component technology enables cross-project code re-use, reduces software development costs, and provides additional simulation capabilities for massively parallel laboratory application codes. The success of our approach will be measured by its impact on DOE mathematical and scientific software efforts. Thus, we are collaborating closely with library developers and application scientists in the Common Component Architecture forum, the Equation Solver Interface forum, and other DOE mathematical software groups to gather requirements, write and adopt a variety of design specifications, and develop demonstration projects to validate our approach. Numerical simulation is essential to the science mission at the laboratory. However, it is becoming increasingly difficult to manage the complexity of modern simulation software. Computational scientists develop complex, three-dimensional, massively parallel, full-physics simulations that require the integration of diverse software packages written by outside development teams. Currently, the integration of a new software package, such as a new linear solver library, can require several months of effort. Current industry component technologies such as CORBA, JavaBeans, and COM have all been used successfully in the business domain to reduce software development costs and increase software quality. However, these existing industry component infrastructures will not scale to support massively parallel applications in science and engineering. In particular, they do not address issues related to high-performance parallel computing on ASCI-class machines, such as fast in-process connections between components, language interoperability for scientific languages such as Fortran, parallel data redistribution between components, and massively

  12. Balancing Certainty and Uncertainty in Clinical Practice

    ERIC Educational Resources Information Center

    Kamhi, Alan G.

    2011-01-01

    Purpose: In this epilogue, I respond to each of the five commentaries, discussing in some depth a central issue raised in each commentary. In the final section, I discuss how my thinking about certainty and uncertainty in clinical practice has evolved since I wrote the initial article. Method: Topics addressed include the similarities/differences…

  13. Tolerance and UQ4SIM: Nimble Uncertainty Documentation and Analysis Software

    NASA Technical Reports Server (NTRS)

    Kleb, Bil

    2008-01-01

    Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and variabilities is a necessary first step toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. The basic premise of uncertainty markup is to craft a tolerance and tagging mini-language that offers a natural, unobtrusive presentation and does not depend on parsing each type of input file format. Each file is marked up with tolerances and optionally, associated tags that serve to label the parameters and their uncertainties. The evolution of such a language, often called a Domain Specific Language or DSL, is given in [1], but in final form it parallels tolerances specified on an engineering drawing, e.g., 1 +/- 0.5, 5 +/- 10%, 2 +/- 10 where % signifies percent and o signifies order of magnitude. Tags, necessary for error propagation, can be added by placing a quotation-mark-delimited tag after the tolerance, e.g., 0.7 +/- 20% 'T_effective'. In addition, tolerances might have different underlying distributions, e.g., Uniform, Normal, or Triangular, or the tolerances may merely be intervals due to lack of knowledge (uncertainty). Finally, to address pragmatic considerations such as older models that require specific number-field formats, C-style format specifiers can be appended to the tolerance like so, 1.35 +/- 10U_3.2f. As an example of use, consider figure 1, where a chemical reaction input file is has been marked up to include tolerances and tags per table 1. Not only does the technique provide a natural method of specifying tolerances, but it also servers as in situ documentation of model uncertainties. This tolerance language comes with a utility to strip the tolerances (and tags), to provide a path to the nominal model parameter file. And, as shown in [1

  14. Because Doubt Is A Sure Thing: Incorporating Uncertainty Characterization Into Climate Change Decision-Making

    NASA Astrophysics Data System (ADS)

    Moss, R.; Rice, J.; Scott, M. J.; Unwin, S.; Whitney, P.

    2012-12-01

    This presentation describes the results of new research to develop a stakeholder-driven uncertainty characterization (UC) process to help address the challenges of regional climate change mitigation and adaptation decisions. Integrated regional Earth system models are a promising approach for modeling how climate change may affect natural resources, infrastructure, and socioeconomic conditions at regional scales, and how different adaptation and mitigation strategies may interact. However, the inherent complexity, long run-times, and large numbers of uncertainties in coupled regional human-environment systems render standard, model-driven approaches for uncertainty characterization infeasible. This new research focuses on characterizing stakeholder decision support needs as part of an overall process to identify the key uncertainties relevant for the application in question. The stakeholder-driven process reduces the dimensionality of the uncertainty modeling challenge while providing robust insights for science and decision-making. This research is being carried out as part of the integrated Regional Earth System Model (iRESM) initiative, a new scientific framework developed at Pacific Northwest National Laboratory to evaluate the interactions between human and environmental systems and mitigation and adaptation decisions at regional scales. The framework provides a flexible architecture for model couplings between a regional Earth system model, a regional integrated assessment model, and highly spatially resolved models of crop productivity, building energy demands, electricity infrastructure operation and expansion, and water supply and management. In an example of applying the stakeholder-driven UC process, the presentation first identifies stakeholder decision criteria for a particular regional mitigation or adaptation question. These criteria are used in conjunction with the flexible architecture to determine the relevant component models for coupling and the

  15. Demonstrating the value of medicines: evolution of value equation and stakeholder perception of uncertainties.

    PubMed

    Narayanan, Siva

    2016-01-01

    It is important to evaluate how the value of medicine is assessed, as it may have important implications for health technology and reimbursement assessments. The value equation could comprise 'incremental benefit/outcome' (relative results of care in terms of patient health, comparing the innovation to best available alternative(s)) in the numerator and 'cost' (relative costs involved in the full cycle of care (or a defined period) for the patient's medical condition, incorporating the relevant cost-offsets due to displacement of best available alternative(s)) in the denominator. This 'relative value' combined with the overall net budget impact (of including the drug in the formulary or reimbursed drug list) at the concerned population level in the given institution/region/country may better inform the usefulness of the new therapeutic option to the healthcare system. As product value messages are created, anticipating external stakeholder questions and information needs, including addressing three main categories of 'uncertainties', namely the scientific uncertainties, usage uncertainties, and financial uncertainties, could facilitate demonstration of optimal product value and help informed decision-making to benefit all stakeholders involved in the process. PMID:27489585

  16. Icarus`s discovery: Acting on global climate change in the face of uncertainty

    SciTech Connect

    Brooks, D.G.; Maracas, K.B.; Hayslip, R.M.

    1994-12-31

    The mythological character Icarus had the misfortune of learning the consequences of his decision to fly too near the sun at the same time he employed his decision. Although Daedalus tried to reduce the uncertainties of his son`s decision by warning Icarus of the possible outcome, Icarus had no empirical knowledge of what would actually happen until his waxen wings melted and he fell to the sea. Like Icarus, man has no empirical knowledge or conclusive evidence today of the possible effects of global climate change. And though the consequences of policy decisions toward global climate change may not be as catastrophic as falling into the sea, the social and economic impacts of those decisions will be substantial. There are broad uncertainties related to the scientific and ecological aspects of global climate change. But clearly the ``politics`` of global climate change issues are moving at a faster rate than the science. There is a public outcry for action now, in the face of uncertainty. This paper profiles a case study of a southwestern utility`s use of multi-attribute preference theory to reduce uncertainties and analyze its options for addressing global climate change issues.

  17. Uncertainty quantification approaches for advanced reactor analyses.

    SciTech Connect

    Briggs, L. L.; Nuclear Engineering Division

    2009-03-24

    The original approach to nuclear reactor design or safety analyses was to make very conservative modeling assumptions so as to ensure meeting the required safety margins. Traditional regulation, as established by the U. S. Nuclear Regulatory Commission required conservatisms which have subsequently been shown to be excessive. The commission has therefore moved away from excessively conservative evaluations and has determined best-estimate calculations to be an acceptable alternative to conservative models, provided the best-estimate results are accompanied by an uncertainty evaluation which can demonstrate that, when a set of analysis cases which statistically account for uncertainties of all types are generated, there is a 95% probability that at least 95% of the cases meet the safety margins. To date, nearly all published work addressing uncertainty evaluations of nuclear power plant calculations has focused on light water reactors and on large-break loss-of-coolant accident (LBLOCA) analyses. However, there is nothing in the uncertainty evaluation methodologies that is limited to a specific type of reactor or to specific types of plant scenarios. These same methodologies can be equally well applied to analyses for high-temperature gas-cooled reactors and to liquid metal reactors, and they can be applied to steady-state calculations, operational transients, or severe accident scenarios. This report reviews and compares both statistical and deterministic uncertainty evaluation approaches. Recommendations are given for selection of an uncertainty methodology and for considerations to be factored into the process of evaluating uncertainties for advanced reactor best-estimate analyses.

  18. Climate change, uncertainty, and natural resource management

    USGS Publications Warehouse

    Nichols, J.D.; Koneff, M.D.; Heglund, P.J.; Knutson, M.G.; Seamans, M.E.; Lyons, J.E.; Morton, J.M.; Jones, M.T.; Boomer, G.S.; Williams, B.K.

    2011-01-01

    Climate change and its associated uncertainties are of concern to natural resource managers. Although aspects of climate change may be novel (e.g., system change and nonstationarity), natural resource managers have long dealt with uncertainties and have developed corresponding approaches to decision-making. Adaptive resource management is an application of structured decision-making for recurrent decision problems with uncertainty, focusing on management objectives, and the reduction of uncertainty over time. We identified 4 types of uncertainty that characterize problems in natural resource management. We examined ways in which climate change is expected to exacerbate these uncertainties, as well as potential approaches to dealing with them. As a case study, we examined North American waterfowl harvest management and considered problems anticipated to result from climate change and potential solutions. Despite challenges expected to accompany the use of adaptive resource management to address problems associated with climate change, we conclude that adaptive resource management approaches will be the methods of choice for managers trying to deal with the uncertainties of climate change. ?? 2010 The Wildlife Society.

  19. Aeroservoelastic Uncertainty Model Identification from Flight Data

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    2001-01-01

    Uncertainty modeling is a critical element in the estimation of robust stability margins for stability boundary prediction and robust flight control system development. There has been a serious deficiency to date in aeroservoelastic data analysis with attention to uncertainty modeling. Uncertainty can be estimated from flight data using both parametric and nonparametric identification techniques. The model validation problem addressed in this paper is to identify aeroservoelastic models with associated uncertainty structures from a limited amount of controlled excitation inputs over an extensive flight envelope. The challenge to this problem is to update analytical models from flight data estimates while also deriving non-conservative uncertainty descriptions consistent with the flight data. Multisine control surface command inputs and control system feedbacks are used as signals in a wavelet-based modal parameter estimation procedure for model updates. Transfer function estimates are incorporated in a robust minimax estimation scheme to get input-output parameters and error bounds consistent with the data and model structure. Uncertainty estimates derived from the data in this manner provide an appropriate and relevant representation for model development and robust stability analysis. This model-plus-uncertainty identification procedure is applied to aeroservoelastic flight data from the NASA Dryden Flight Research Center F-18 Systems Research Aircraft.

  20. Content addressable memory project

    NASA Technical Reports Server (NTRS)

    Hall, Josh; Levy, Saul; Smith, D.; Wei, S.; Miyake, K.; Murdocca, M.

    1991-01-01

    The progress on the Rutgers CAM (Content Addressable Memory) Project is described. The overall design of the system is completed at the architectural level and described. The machine is composed of two kinds of cells: (1) the CAM cells which include both memory and processor, and support local processing within each cell; and (2) the tree cells, which have smaller instruction set, and provide global processing over the CAM cells. A parameterized design of the basic CAM cell is completed. Progress was made on the final specification of the CPS. The machine architecture was driven by the design of algorithms whose requirements are reflected in the resulted instruction set(s). A few of these algorithms are described.

  1. Bax: Addressed to kill.

    PubMed

    Renault, Thibaud T; Manon, Stéphen

    2011-09-01

    The pro-apoptototic protein Bax (Bcl-2 Associated protein X) plays a central role in the mitochondria-dependent apoptotic pathway. In healthy mammalian cells, Bax is essentially cytosolic and inactive. Following a death signal, the protein is translocated to the outer mitochondrial membrane, where it promotes a permeabilization that favors the release of different apoptogenic factors, such as cytochrome c. The regulation of Bax translocation is associated to conformational changes that are under the control of different factors. The evidences showing the involvement of different Bax domains in its mitochondrial localization are presented. The interactions between Bax and its different partners are described in relation to their ability to promote (or prevent) Bax conformational changes leading to mitochondrial addressing and to the acquisition of the capacity to permeabilize the outer mitochondrial membrane. PMID:21641962

  2. Deterministic uncertainty analysis

    SciTech Connect

    Worley, B.A.

    1987-01-01

    Uncertainties of computer results are of primary interest in applications such as high-level waste (HLW) repository performance assessment in which experimental validation is not possible or practical. This work presents an alternate deterministic approach for calculating uncertainties that has the potential to significantly reduce the number of computer runs required for conventional statistical analysis. 7 refs., 1 fig.

  3. Scientific Claims versus Scientific Knowledge.

    ERIC Educational Resources Information Center

    Ramsey, John

    1991-01-01

    Provides activities that help students to understand the importance of the scientific method. The activities include the science of fusion and cold fusion; a group activity that analyzes and interprets the events surrounding cold fusion; and an application research project concerning a current science issue. (ZWH)

  4. Economic uncertainty and econophysics

    NASA Astrophysics Data System (ADS)

    Schinckus, Christophe

    2009-10-01

    The objective of this paper is to provide a methodological link between econophysics and economics. I will study a key notion of both fields: uncertainty and the ways of thinking about it developed by the two disciplines. After having presented the main economic theories of uncertainty (provided by Knight, Keynes and Hayek), I show how this notion is paradoxically excluded from the economic field. In economics, uncertainty is totally reduced by an a priori Gaussian framework-in contrast to econophysics, which does not use a priori models because it works directly on data. Uncertainty is then not shaped by a specific model, and is partially and temporally reduced as models improve. This way of thinking about uncertainty has echoes in the economic literature. By presenting econophysics as a Knightian method, and a complementary approach to a Hayekian framework, this paper shows that econophysics can be methodologically justified from an economic point of view.

  5. Physical Uncertainty Bounds (PUB)

    SciTech Connect

    Vaughan, Diane Elizabeth; Preston, Dean L.

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  6. Intolerance of Uncertainty

    PubMed Central

    Beier, Meghan L.

    2015-01-01

    Multiple sclerosis (MS) is a chronic and progressive neurologic condition that, by its nature, carries uncertainty as a hallmark characteristic. Although all patients face uncertainty, there is variability in how individuals cope with its presence. In other populations, the concept of “intolerance of uncertainty” has been conceptualized to explain this variability such that individuals who have difficulty tolerating the possibility of future occurrences may engage in thoughts or behaviors by which they attempt to exert control over that possibility or lessen the uncertainty but may, as a result, experience worse outcomes, particularly in terms of psychological well-being. This topical review introduces MS-focused researchers, clinicians, and patients to intolerance of uncertainty, integrates the concept with what is already understood about coping with MS, and suggests future steps for conceptual, assessment, and treatment-focused research that may benefit from integrating intolerance of uncertainty as a central feature. PMID:26300700

  7. Quantifying uncertainty from material inhomogeneity.

    SciTech Connect

    Battaile, Corbett Chandler; Emery, John M.; Brewer, Luke N.; Boyce, Brad Lee

    2009-09-01

    Most engineering materials are inherently inhomogeneous in their processing, internal structure, properties, and performance. Their properties are therefore statistical rather than deterministic. These inhomogeneities manifest across multiple length and time scales, leading to variabilities, i.e. statistical distributions, that are necessary to accurately describe each stage in the process-structure-properties hierarchy, and are ultimately the primary source of uncertainty in performance of the material and component. When localized events are responsible for component failure, or when component dimensions are on the order of microstructural features, this uncertainty is particularly important. For ultra-high reliability applications, the uncertainty is compounded by a lack of data describing the extremely rare events. Hands-on testing alone cannot supply sufficient data for this purpose. To date, there is no robust or coherent method to quantify this uncertainty so that it can be used in a predictive manner at the component length scale. The research presented in this report begins to address this lack of capability through a systematic study of the effects of microstructure on the strain concentration at a hole. To achieve the strain concentration, small circular holes (approximately 100 {micro}m in diameter) were machined into brass tensile specimens using a femto-second laser. The brass was annealed at 450 C, 600 C, and 800 C to produce three hole-to-grain size ratios of approximately 7, 1, and 1/7. Electron backscatter diffraction experiments were used to guide the construction of digital microstructures for finite element simulations of uniaxial tension. Digital image correlation experiments were used to qualitatively validate the numerical simulations. The simulations were performed iteratively to generate statistics describing the distribution of plastic strain at the hole in varying microstructural environments. In both the experiments and simulations, the

  8. Adapting to Uncertainty: Comparing Methodological Approaches to Climate Adaptation and Mitigation Policy

    NASA Astrophysics Data System (ADS)

    Huda, J.; Kauneckis, D. L.

    2013-12-01

    Climate change adaptation represents a number of unique policy-making challenges. Foremost among these is dealing with the range of future climate impacts to a wide scope of inter-related natural systems, their interaction with social and economic systems, and uncertainty resulting from the variety of downscaled climate model scenarios and climate science projections. These cascades of uncertainty have led to a number of new approaches as well as a reexamination of traditional methods for evaluating risk and uncertainty in policy-making. Policy makers are required to make decisions and formulate policy irrespective of the level of uncertainty involved and while a debate continues regarding the level of scientific certainty required in order to make a decision, incremental change in the climate policy continues at multiple governance levels. This project conducts a comparative analysis of the range of methodological approaches that are evolving to address uncertainty in climate change policy. It defines 'methodologies' to include a variety of quantitative and qualitative approaches involving both top-down and bottom-up policy processes that attempt to enable policymakers to synthesize climate information into the policy process. The analysis examines methodological approaches to decision-making in climate policy based on criteria such as sources of policy choice information, sectors to which the methodology has been applied, sources from which climate projections were derived, quantitative and qualitative methods used to deal with uncertainty, and the benefits and limitations of each. A typology is developed to better categorize the variety of approaches and methods, examine the scope of policy activities they are best suited for, and highlight areas for future research and development.

  9. PIV uncertainty propagation

    NASA Astrophysics Data System (ADS)

    Sciacchitano, Andrea; Wieneke, Bernhard

    2016-08-01

    This paper discusses the propagation of the instantaneous uncertainty of PIV measurements to statistical and instantaneous quantities of interest derived from the velocity field. The expression of the uncertainty of vorticity, velocity divergence, mean value and Reynolds stresses is derived. It is shown that the uncertainty of vorticity and velocity divergence requires the knowledge of the spatial correlation between the error of the x and y particle image displacement, which depends upon the measurement spatial resolution. The uncertainty of statistical quantities is often dominated by the random uncertainty due to the finite sample size and decreases with the square root of the effective number of independent samples. Monte Carlo simulations are conducted to assess the accuracy of the uncertainty propagation formulae. Furthermore, three experimental assessments are carried out. In the first experiment, a turntable is used to simulate a rigid rotation flow field. The estimated uncertainty of the vorticity is compared with the actual vorticity error root-mean-square, with differences between the two quantities within 5-10% for different interrogation window sizes and overlap factors. A turbulent jet flow is investigated in the second experimental assessment. The reference velocity, which is used to compute the reference value of the instantaneous flow properties of interest, is obtained with an auxiliary PIV system, which features a higher dynamic range than the measurement system. Finally, the uncertainty quantification of statistical quantities is assessed via PIV measurements in a cavity flow. The comparison between estimated uncertainty and actual error demonstrates the accuracy of the proposed uncertainty propagation methodology.

  10. Uncertainty in hydrological signatures for gauged and ungauged catchments

    NASA Astrophysics Data System (ADS)

    Westerberg, Ida K.; Wagener, Thorsten; Coxon, Gemma; McMillan, Hilary K.; Castellarin, Attilio; Montanari, Alberto; Freer, Jim

    2016-03-01

    Reliable information about hydrological behavior is needed for water-resource management and scientific investigations. Hydrological signatures quantify catchment behavior as index values, and can be predicted for ungauged catchments using a regionalization procedure. The prediction reliability is affected by data uncertainties for the gauged catchments used in prediction and by uncertainties in the regionalization procedure. We quantified signature uncertainty stemming from discharge data uncertainty for 43 UK catchments and propagated these uncertainties in signature regionalization, while accounting for regionalization uncertainty with a weighted-pooling-group approach. Discharge uncertainty was estimated using Monte Carlo sampling of multiple feasible rating curves. For each sampled rating curve, a discharge time series was calculated and used in deriving the gauged signature uncertainty distribution. We found that the gauged uncertainty varied with signature type, local measurement conditions and catchment behavior, with the highest uncertainties (median relative uncertainty ±30-40% across all catchments) for signatures measuring high- and low-flow magnitude and dynamics. Our regionalization method allowed assessing the role and relative magnitudes of the gauged and regionalized uncertainty sources in shaping the signature uncertainty distributions predicted for catchments treated as ungauged. We found that (1) if the gauged uncertainties were neglected there was a clear risk of overconditioning the regionalization inference, e.g., by attributing catchment differences resulting from gauged uncertainty to differences in catchment behavior, and (2) uncertainty in the regionalization results was lower for signatures measuring flow distribution (e.g., mean flow) than flow dynamics (e.g., autocorrelation), and for average flows (and then high flows) compared to low flows.

  11. Assessing what to address in science communication.

    PubMed

    Bruine de Bruin, Wändi; Bostrom, Ann

    2013-08-20

    As members of a democratic society, individuals face complex decisions about whether to support climate change mitigation, vaccinations, genetically modified food, nanotechnology, geoengineering, and so on. To inform people's decisions and public debate, scientific experts at government agencies, nongovernmental organizations, and other organizations aim to provide understandable and scientifically accurate communication materials. Such communications aim to improve people's understanding of the decision-relevant issues, and if needed, promote behavior change. Unfortunately, existing communications sometimes fail when scientific experts lack information about what people need to know to make more informed decisions or what wording people use to describe relevant concepts. We provide an introduction for scientific experts about how to use mental models research with intended audience members to inform their communication efforts. Specifically, we describe how to conduct interviews to characterize people's decision-relevant beliefs or mental models of the topic under consideration, identify gaps and misconceptions in their knowledge, and reveal their preferred wording. We also describe methods for designing follow-up surveys with larger samples to examine the prevalence of beliefs as well as the relationships of beliefs with behaviors. Finally, we discuss how findings from these interviews and surveys can be used to design communications that effectively address gaps and misconceptions in people's mental models in wording that they understand. We present applications to different scientific domains, showing that this approach leads to communications that improve recipients' understanding and ability to make informed decisions.

  12. Assessing what to address in science communication

    PubMed Central

    Bruine de Bruin, Wändi; Bostrom, Ann

    2013-01-01

    As members of a democratic society, individuals face complex decisions about whether to support climate change mitigation, vaccinations, genetically modified food, nanotechnology, geoengineering, and so on. To inform people’s decisions and public debate, scientific experts at government agencies, nongovernmental organizations, and other organizations aim to provide understandable and scientifically accurate communication materials. Such communications aim to improve people’s understanding of the decision-relevant issues, and if needed, promote behavior change. Unfortunately, existing communications sometimes fail when scientific experts lack information about what people need to know to make more informed decisions or what wording people use to describe relevant concepts. We provide an introduction for scientific experts about how to use mental models research with intended audience members to inform their communication efforts. Specifically, we describe how to conduct interviews to characterize people’s decision-relevant beliefs or mental models of the topic under consideration, identify gaps and misconceptions in their knowledge, and reveal their preferred wording. We also describe methods for designing follow-up surveys with larger samples to examine the prevalence of beliefs as well as the relationships of beliefs with behaviors. Finally, we discuss how findings from these interviews and surveys can be used to design communications that effectively address gaps and misconceptions in people’s mental models in wording that they understand. We present applications to different scientific domains, showing that this approach leads to communications that improve recipients’ understanding and ability to make informed decisions. PMID:23942122

  13. Assessing what to address in science communication.

    PubMed

    Bruine de Bruin, Wändi; Bostrom, Ann

    2013-08-20

    As members of a democratic society, individuals face complex decisions about whether to support climate change mitigation, vaccinations, genetically modified food, nanotechnology, geoengineering, and so on. To inform people's decisions and public debate, scientific experts at government agencies, nongovernmental organizations, and other organizations aim to provide understandable and scientifically accurate communication materials. Such communications aim to improve people's understanding of the decision-relevant issues, and if needed, promote behavior change. Unfortunately, existing communications sometimes fail when scientific experts lack information about what people need to know to make more informed decisions or what wording people use to describe relevant concepts. We provide an introduction for scientific experts about how to use mental models research with intended audience members to inform their communication efforts. Specifically, we describe how to conduct interviews to characterize people's decision-relevant beliefs or mental models of the topic under consideration, identify gaps and misconceptions in their knowledge, and reveal their preferred wording. We also describe methods for designing follow-up surveys with larger samples to examine the prevalence of beliefs as well as the relationships of beliefs with behaviors. Finally, we discuss how findings from these interviews and surveys can be used to design communications that effectively address gaps and misconceptions in people's mental models in wording that they understand. We present applications to different scientific domains, showing that this approach leads to communications that improve recipients' understanding and ability to make informed decisions. PMID:23942122

  14. [Keynote address: Climate change

    SciTech Connect

    Forrister, D.

    1994-12-31

    Broadly speaking, the climate issue is moving from talk to action both in the United States and internationally. While few nations have adopted strict controls or stiff new taxes, a number of them are developing action plans that are making clear their intention to ramp up activity between now and the year 2000... and beyond. There are sensible, economically efficient strategies to be undertaken in the near term that offer the possibility, in many countries, to avoid more draconian measures. These strategies are by-and-large the same measures that the National Academy of Sciences recommended in a 1991 report called, Policy Implications of Greenhouse Warming. The author thinks the Academy`s most important policy contribution was how it recommended the nations act in the face of uncertain science and high risks--that cost effective measures are adopted as cheap insurance... just as nations insure against other high risk, low certainty possibilities, like catastrophic health insurance, auto insurance, and fire insurance. This insurance theme is still right. First, the author addresses how the international climate change negotiations are beginning to produce insurance measures. Next, the author will discuss some of the key issues to watch in those negotiations that relate to longer-term insurance. And finally, the author will report on progress in the United States on the climate insurance plan--The President`s Climate Action Plan.

  15. Integrating uncertainties for climate change mitigation

    NASA Astrophysics Data System (ADS)

    Rogelj, Joeri; McCollum, David; Reisinger, Andy; Meinshausen, Malte; Riahi, Keywan

    2013-04-01

    The target of keeping global average temperature increase to below 2°C has emerged in the international climate debate more than a decade ago. In response, the scientific community has tried to estimate the costs of reaching such a target through modelling and scenario analysis. Producing such estimates remains a challenge, particularly because of relatively well-known, but ill-quantified uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on one side, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other side, has worked on achieving an increasingly better understanding of the geophysical response of the Earth system to emissions of greenhouse gases (GHG). This geophysical response remains a key uncertainty for the cost of mitigation scenarios but has only been integrated with assessments of other uncertainties in a rudimentary manner, i.e., for equilibrium conditions. To bridge this gap between the two research communities, we generate distributions of the costs associated with limiting transient global temperature increase to below specific temperature limits, taking into account uncertainties in multiple dimensions: geophysical, technological, social and political. In other words, uncertainties resulting from our incomplete knowledge about how the climate system precisely reacts to GHG emissions (geophysical uncertainties), about how society will develop (social uncertainties and choices), which technologies will be available (technological uncertainty and choices), when we choose to start acting globally on climate change (political choices), and how much money we are or are not willing to spend to achieve climate change mitigation. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by

  16. Scientific Component Technology Initiative

    SciTech Connect

    Kohn, S; Bosl, B; Dahlgren, T; Kumfert, G; Smith, S

    2003-02-07

    The laboratory has invested a significant amount of resources towards the development of high-performance scientific simulation software, including numerical libraries, visualization, steering, software frameworks, and physics packages. Unfortunately, because this software was not designed for interoperability and re-use, it is often difficult to share these sophisticated software packages among applications due to differences in implementation language, programming style, or calling interfaces. This LDRD Strategic Initiative investigated and developed software component technology for high-performance parallel scientific computing to address problems of complexity, re-use, and interoperability for laboratory software. Component technology is an extension of scripting and object-oriented software development techniques that specifically focuses on the needs of software interoperability. Component approaches based on CORBA, COM, and Java technologies are widely used in industry; however, they do not support massively parallel applications in science and engineering. Our research focused on the unique requirements of scientific computing on ASCI-class machines, such as fast in-process connections among components, language interoperability for scientific languages, and data distribution support for massively parallel SPMD components.

  17. Scientific Workflows in Astronomy

    NASA Astrophysics Data System (ADS)

    Schaaff, A.; Verdes-Montenegro, L.; Ruiz, J. E.; Santander-Vela, J.

    2012-09-01

    We will soon be facing a new generation of facilities and archives dealing with huge amounts of data (ALMA, LSST, Pan-Starrs, LOFAR, SKA pathfinders,…) where scientific workflows will play an important role in the working methodology of astronomers. While the traditional pipelines tend to produce exploitable products, scientific workflows are aimed at producing scientific insight. Virtual Observatory standards provide the tools to design reproducible scientific workflows. A detailed analysis about the state of the art of workflows involves languages, design tools, execution engines, use cases, etc. A major topic is also the preservation of the workflows and the capability to replay a workflow several years after its design and implementation. Discussions on these topics are being held recently in IVOA forums and are part of the work that is being done in the Wf4Ever project. The purpose of the BoF was to present to the community the work in progress at the IVOA, collect ideas and identify needs not yet addressed.

  18. PHIGS PLUS for scientific graphics

    SciTech Connect

    Crawfis, R.A.

    1991-01-14

    This paper gives a brief overview of the use of computer graphics standards in the scientific community. It particularly details how how PHIGS PLUS meets the needs of users at the Lawrence Livermore National Laboratory. Although standards for computer graphics have improved substantially over the past decade, their acceptance in the scientific community has been slow. As the use and diversity of computers has increased, the scientific graphics libraries have not been able to keep pace with the additional capabilities these new machines offer. Therefore, several organizations have or are now working on converting their scientific libraries to reset upon a portable standard. This paper will address why is transition has been so slow and offer suggestions for future standards work to enhance scientific visualization. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  19. Final Scientific EFNUDAT Workshop

    ScienceCinema

    None

    2016-07-12

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluationCross section measurementsExperimental techniquesUncertainties and covariancesFission propertiesCurrent and future facilities  International Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco CalvianiSamuel AndriamonjeEric BerthoumieuxCarlos GuerreroRoberto LositoVasilis Vlachoudis Workshop Assistant: Géraldine Jean

  20. Final Scientific EFNUDAT Workshop

    SciTech Connect

    2010-11-09

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluationCross section measurementsExperimental techniquesUncertainties and covariancesFission propertiesCurrent and future facilities  International Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco CalvianiSamuel AndriamonjeEric BerthoumieuxCarlos GuerreroRoberto LositoVasilis Vlachoudis Workshop Assistant: Géraldine Jean

  1. Optimal Universal Uncertainty Relations

    PubMed Central

    Li, Tao; Xiao, Yunlong; Ma, Teng; Fei, Shao-Ming; Jing, Naihuan; Li-Jost, Xianqing; Wang, Zhi-Xi

    2016-01-01

    We study universal uncertainty relations and present a method called joint probability distribution diagram to improve the majorization bounds constructed independently in [Phys. Rev. Lett. 111, 230401 (2013)] and [J. Phys. A. 46, 272002 (2013)]. The results give rise to state independent uncertainty relations satisfied by any nonnegative Schur-concave functions. On the other hand, a remarkable recent result of entropic uncertainty relation is the direct-sum majorization relation. In this paper, we illustrate our bounds by showing how they provide a complement to that in [Phys. Rev. A. 89, 052115 (2014)]. PMID:27775010

  2. Confronting Uncertainty in Wildlife Management: Performance of Grizzly Bear Management

    PubMed Central

    Artelle, Kyle A.; Anderson, Sean C.; Cooper, Andrew B.; Paquet, Paul C.; Reynolds, John D.; Darimont, Chris T.

    2013-01-01

    Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos horribilis) in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management performance. Outcome uncertainty alone – discrepancy between expected and realized mortality levels – led to excess mortality in 19% of cases (population-years) examined. Accounting for uncertainty around estimated biological parameters (i.e., biological uncertainty) revealed that excess mortality might have occurred in up to 70% of cases. We offer a general method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of 25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively. Application of our transparent and generalizable framework to this or other systems could improve management performance in the presence of uncertainty. PMID:24223134

  3. Confronting uncertainty in wildlife management: performance of grizzly bear management.

    PubMed

    Artelle, Kyle A; Anderson, Sean C; Cooper, Andrew B; Paquet, Paul C; Reynolds, John D; Darimont, Chris T

    2013-01-01

    Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos horribilis) in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management performance. Outcome uncertainty alone--discrepancy between expected and realized mortality levels--led to excess mortality in 19% of cases (population-years) examined. Accounting for uncertainty around estimated biological parameters (i.e., biological uncertainty) revealed that excess mortality might have occurred in up to 70% of cases. We offer a general method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of 25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively. Application of our transparent and generalizable framework to this or other systems could improve management performance in the presence of uncertainty.

  4. Confronting uncertainty in wildlife management: performance of grizzly bear management.

    PubMed

    Artelle, Kyle A; Anderson, Sean C; Cooper, Andrew B; Paquet, Paul C; Reynolds, John D; Darimont, Chris T

    2013-01-01

    Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos horribilis) in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management performance. Outcome uncertainty alone--discrepancy between expected and realized mortality levels--led to excess mortality in 19% of cases (population-years) examined. Accounting for uncertainty around estimated biological parameters (i.e., biological uncertainty) revealed that excess mortality might have occurred in up to 70% of cases. We offer a general method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of 25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively. Application of our transparent and generalizable framework to this or other systems could improve management performance in the presence of uncertainty. PMID:24223134

  5. Assessing MODIS Macrophysical Cloud Property Uncertainties

    NASA Astrophysics Data System (ADS)

    Maddux, B. C.; Ackerman, S. A.; Frey, R.; Holz, R.

    2013-12-01

    Cloud, being multifarious and ephemeral, is difficult to observe and quantify in a systematic way. Even basic terminology used to describe cloud observations is fraught with ambiguity in the scientific literature. Any observational technique, method, or platform will contain inherent and unavoidable measurement uncertainties. Quantifying these uncertainties in cloud observations is a complex task that requires an understanding of all aspects of the measurement. We will use cloud observations obtained from the Moderate Resolution Imaging Spectroradiameter(MODIS) to obtain metrics of the uncertainty of its cloud observations. Our uncertainty analyses will contain two main components, 1) an attempt to create a bias or uncertainty with respect to active measurements from CALIPSO and 2) a relative uncertainty within the MODIS cloud climatologies themselves. Our method will link uncertainty to the physical observation and its environmental/scene characteristics. Our aim is to create statistical uncertainties that are based on the cloud observational values, satellite view geometry, surface type, etc, for cloud amount and cloud top pressure. The MODIS instruments on the NASA Terra and Aqua satellites provide observations over a broad spectral range (36 bands between 0.415 and 14.235 micron) and high spatial resolution (250 m for two bands, 500 m for five bands, 1000 m for 29 bands), which the MODIS cloud mask algorithm (MOD35) utilizes to provide clear/cloud determinations over a wide array of surface types, solar illuminations and view geometries. For this study we use the standard MODIS products, MOD03, MOD06 and MOD35, all of which were obtained from the NASA Level 1 and Atmosphere Archive and Distribution System.

  6. Managing the Future: Public Policy, Scientific Uncertainty, and Global Warming.

    ERIC Educational Resources Information Center

    Jamieson, Dale

    Due to the injection of carbon dioxide and various other gasses into the atmosphere, the world of the 21st century may well have a climate that is beyond the parameters of human existence. Physical science produces information regarding the physical effects of increasing concentrations of "greenhouse" gasses. Once this information is developed, it…

  7. Cascading rainfall uncertainties into 2D inundation impact models

    NASA Astrophysics Data System (ADS)

    Souvignet, Maxime; de Almeida, Gustavo; Champion, Adrian; Garcia Pintado, Javier; Neal, Jeff; Freer, Jim; Cloke, Hannah; Odoni, Nick; Coxon, Gemma; Bates, Paul; Mason, David

    2013-04-01

    Existing precipitation products show differences in their spatial and temporal distribution and several studies have presented how these differences influence the ability to predict hydrological responses. However, an atmospheric-hydrologic-hydraulic uncertainty cascade is seldom explored and how, importantly, input uncertainties propagate through this cascade is still poorly understood. Such a project requires a combination of modelling capabilities, runoff generation predictions based on those rainfall forecasts, and hydraulic flood wave propagation based on the runoff predictions. Accounting for uncertainty in each component is important in decision making for issuing flood warnings, monitoring or planning. We suggest a better understanding of uncertainties in inundation impact modelling must consider these differences in rainfall products. This will improve our understanding of the input uncertainties on our predictive capability. In this paper, we propose to address this issue by i) exploring the effects of errors in rainfall on inundation predictive capacity within an uncertainty framework, i.e. testing inundation uncertainty against different comparable meteorological conditions (i.e. using different rainfall products). Our method cascades rainfall uncertainties into a lumped hydrologic model (FUSE) within the GLUE uncertainty framework. The resultant prediction uncertainties in discharge provide uncertain boundary conditions, which are cascaded into a simplified shallow water 2D hydraulic model (LISFLOOD-FP). Rainfall data captured by three different measurement techniques - rain gauges, gridded data and numerical weather predictions (NWP) models are used to assess the combined input data and model parameter uncertainty. The study is performed in the Severn catchment over the period between June and July 2007, where a series of rainfall events causing record floods in the study area). Changes in flood area extent are compared and the uncertainty envelope is

  8. The cascade of uncertainty in modeling the impacts of climate change on Europe's forests

    NASA Astrophysics Data System (ADS)

    Reyer, Christopher; Lasch-Born, Petra; Suckow, Felicitas; Gutsch, Martin

    2015-04-01

    Projecting the impacts of global change on forest ecosystems is a cornerstone for designing sustainable forest management strategies and paramount for assessing the potential of Europe's forest to contribute to the EU bioeconomy. Research on climate change impacts on forests relies to a large extent on model applications along a model chain from Integrated Assessment Models to General and Regional Circulation Models that provide important driving variables for forest models. Or to decision support systems that synthesize findings of more detailed forest models to inform forest managers. At each step in the model chain, model-specific uncertainties about, amongst others, parameter values, input data or model structure accumulate, leading to a cascade of uncertainty. For example, climate change impacts on forests strongly depend on the in- or exclusion of CO2-effects or on the use of an ensemble of climate models rather than relying on one particular climate model. In the past, these uncertainties have not or only partly been considered in studies of climate change impacts on forests. This has left managers and decision-makers in doubt of how robust the projected impacts on forest ecosystems are. We deal with this cascade of uncertainty in a structured way and the objective of this presentation is to assess how different types of uncertainties affect projections of the effects of climate change on forest ecosystems. To address this objective we synthesized a large body of scientific literature on modeled productivity changes and the effects of extreme events on plant processes. Furthermore, we apply the process-based forest growth model 4C to forest stands all over Europe and assess how different climate models, emission scenarios and assumptions about the parameters and structure of 4C affect the uncertainty of the model projections. We show that there are consistent regional changes in forest productivity such as an increase in NPP in cold and wet regions while

  9. Addressing psychiatric comorbidity.

    PubMed

    Woody, G E; McLellan, A T; O'Brien, C P; Luborsky, L

    1991-01-01

    Research studies indicate that addressing psychiatric comorbidity can improve treatment for selected groups of substance-abusing patients. However, the chances for implementing the necessary techniques on a large scale are compromised by the absence of professional input and guidance within programs. This is especially true in public programs, which treat some of the most disadvantaged, disturbed, and socially destructive individuals in the entire mental health system. One starting point for upgrading the level of knowledge and training of staff members who work in this large treatment system could be to develop a better and more authoritative information dissemination network. Such a system exists in medicine; physicians are expected to read appropriate journals and to guide their treatment decisions using the data contained in the journals. Standards of practice and methods for modifying current practice are within the tradition of reading new facts, studying old ones, and comparing treatment outcome under different conditions with what is actually being done. No such general system of information-gathering or -sharing exists, particularly in public treatment programs. One of the most flagrant examples of this "educational shortfall" can be found among those methadone programs that adamantly insist on prescribing no more than 30 to 35 mg/day for all patients, in spite of the overwhelming evidence that these dose levels generally are inadequate. In some cases, program directors are unaware of studies that have shown the relationship between dose and outcome. In other cases, they are aware of the studies but do not modify their practices accordingly. This example of inadequate dosing is offered as an example of one situation that could be improved by adherence to a system of authoritative and systematic information dissemination. Many issues in substance abuse treatment do not lend themselves to information dissemination as readily as that of methadone dosing

  10. Evaluating prediction uncertainty

    SciTech Connect

    McKay, M.D.

    1995-03-01

    The probability distribution of a model prediction is presented as a proper basis for evaluating the uncertainty in a model prediction that arises from uncertainty in input values. Determination of important model inputs and subsets of inputs is made through comparison of the prediction distribution with conditional prediction probability distributions. Replicated Latin hypercube sampling and variance ratios are used in estimation of the distributions and in construction of importance indicators. The assumption of a linear relation between model output and inputs is not necessary for the indicators to be effective. A sequential methodology which includes an independent validation step is applied in two analysis applications to select subsets of input variables which are the dominant causes of uncertainty in the model predictions. Comparison with results from methods which assume linearity shows how those methods may fail. Finally, suggestions for treating structural uncertainty for submodels are presented.

  11. Uncertainty Propagation with Fast Monte Carlo Techniques

    NASA Astrophysics Data System (ADS)

    Rochman, D.; van der Marck, S. C.; Koning, A. J.; Sjöstrand, H.; Zwermann, W.

    2014-04-01

    Two new and faster Monte Carlo methods for the propagation of nuclear data uncertainties in Monte Carlo nuclear simulations are presented (the "Fast TMC" and "Fast GRS" methods). They are addressing the main drawback of the original Total Monte Carlo method (TMC), namely the necessary large time multiplication factor compared to a single calculation. With these new methods, Monte Carlo simulations can now be accompanied with uncertainty propagation (other than statistical), with small additional calculation time. The new methods are presented and compared with the TMC methods for criticality benchmarks.

  12. Conundrums with uncertainty factors.

    PubMed

    Cooke, Roger

    2010-03-01

    The practice of uncertainty factors as applied to noncancer endpoints in the IRIS database harkens back to traditional safety factors. In the era before risk quantification, these were used to build in a "margin of safety." As risk quantification takes hold, the safety factor methods yield to quantitative risk calculations to guarantee safety. Many authors believe that uncertainty factors can be given a probabilistic interpretation as ratios of response rates, and that the reference values computed according to the IRIS methodology can thus be converted to random variables whose distributions can be computed with Monte Carlo methods, based on the distributions of the uncertainty factors. Recent proposals from the National Research Council echo this view. Based on probabilistic arguments, several authors claim that the current practice of uncertainty factors is overprotective. When interpreted probabilistically, uncertainty factors entail very strong assumptions on the underlying response rates. For example, the factor for extrapolating from animal to human is the same whether the dosage is chronic or subchronic. Together with independence assumptions, these assumptions entail that the covariance matrix of the logged response rates is singular. In other words, the accumulated assumptions entail a log-linear dependence between the response rates. This in turn means that any uncertainty analysis based on these assumptions is ill-conditioned; it effectively computes uncertainty conditional on a set of zero probability. The practice of uncertainty factors is due for a thorough review. Two directions are briefly sketched, one based on standard regression models, and one based on nonparametric continuous Bayesian belief nets. PMID:20030767

  13. Uncertainty in QSAR predictions.

    PubMed

    Sahlin, Ullrika

    2013-03-01

    It is relevant to consider uncertainty in individual predictions when quantitative structure-activity (or property) relationships (QSARs) are used to support decisions of high societal concern. Successful communication of uncertainty in the integration of QSARs in chemical safety assessment under the EU Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) system can be facilitated by a common understanding of how to define, characterise, assess and evaluate uncertainty in QSAR predictions. A QSAR prediction is, compared to experimental estimates, subject to added uncertainty that comes from the use of a model instead of empirically-based estimates. A framework is provided to aid the distinction between different types of uncertainty in a QSAR prediction: quantitative, i.e. for regressions related to the error in a prediction and characterised by a predictive distribution; and qualitative, by expressing our confidence in the model for predicting a particular compound based on a quantitative measure of predictive reliability. It is possible to assess a quantitative (i.e. probabilistic) predictive distribution, given the supervised learning algorithm, the underlying QSAR data, a probability model for uncertainty and a statistical principle for inference. The integration of QSARs into risk assessment may be facilitated by the inclusion of the assessment of predictive error and predictive reliability into the "unambiguous algorithm", as outlined in the second OECD principle.

  14. Science, Uncertainty, and Adaptive Management in Large River Restoration Programs: Trinity River example

    NASA Astrophysics Data System (ADS)

    McBain, S.

    2002-12-01

    Following construction of Trinity and Lewiston dams on the upper Trinity River in 1964, dam induced changes to streamflows and sediment regime had severely simplified channel morphology and aquatic habitat downstream of the dams. This habitat change, combined with blocked access to over 100 miles of salmon and steelhead habitat upstream of the dams, caused salmon and steelhead populations to quickly plummet. An instream flow study was initiated in 1984 to address the flow needs to restore the fishery, and this study relied on the Physical Habitat Simulation (PHABSIM) Model to quantify instream flow needs. In 1992, geomorphic and riparian studies were integrated into the instream flow study, with the overall study completed in 1999 (USFWS 1999). This 13-year process continued through three presidential administrations, several agency managers, and many turnovers of the agency technical staff responsible for conducting the study. This process culminated in 1996-1998 when a group of scientists were convened to integrate all the studies and data to produce the final instream flow study document. This 13-year, non-linear process, resulted in many uncertainties that could not be resolved in the short amount of time allowed for completing the instream flow study document. Shortly after completion of the instream flow study document, the Secretary of Interior issued a Record of Decision to implement the recommendations contained in the instream flow study document. The uncertainties encountered as the instream flow study report was prepared were highlighted in the report, and the Record of Decision initiated an Adaptive Environmental Assessment and Management program to address these existing uncertainties and improve future river management. There have been many lessons learned going through this process, and the presentation will summarize: 1)The progression of science used to develop the instream flow study report; 2)How the scientists preparing the report addressed

  15. Exploring Cloud Computing for Large-scale Scientific Applications

    SciTech Connect

    Lin, Guang; Han, Binh; Yin, Jian; Gorton, Ian

    2013-06-27

    This paper explores cloud computing for large-scale data-intensive scientific applications. Cloud computing is attractive because it provides hardware and software resources on-demand, which relieves the burden of acquiring and maintaining a huge amount of resources that may be used only once by a scientific application. However, unlike typical commercial applications that often just requires a moderate amount of ordinary resources, large-scale scientific applications often need to process enormous amount of data in the terabyte or even petabyte range and require special high performance hardware with low latency connections to complete computation in a reasonable amount of time. To address these challenges, we build an infrastructure that can dynamically select high performance computing hardware across institutions and dynamically adapt the computation to the selected resources to achieve high performance. We have also demonstrated the effectiveness of our infrastructure by building a system biology application and an uncertainty quantification application for carbon sequestration, which can efficiently utilize data and computation resources across several institutions.

  16. Uncertainty of Pyrometers in a Casting Facility

    SciTech Connect

    Mee, D.K.; Elkins, J.E.; Fleenor, R.M.; Morrision, J.M.; Sherrill, M.W.; Seiber, L.E.

    2001-12-07

    This work has established uncertainty limits for the EUO filament pyrometers, digital pyrometers, two-color automatic pyrometers, and the standards used to certify these instruments (Table 1). If symmetrical limits are used, filament pyrometers calibrated in Production have certification uncertainties of not more than {+-}20.5 C traceable to NIST over the certification period. Uncertainties of these pyrometers were roughly {+-}14.7 C before introduction of the working standard that allowed certification in the field. Digital pyrometers addressed in this report have symmetrical uncertainties of not more than {+-}12.7 C or {+-}18.1 C when certified on a Y-12 Standards Laboratory strip lamp or in a production area tube furnace, respectively. Uncertainty estimates for automatic two-color pyrometers certified in Production are {+-}16.7 C. Additional uncertainty and bias are introduced when measuring production melt temperatures. A -19.4 C bias was measured in a large 1987 data set which is believed to be caused primarily by use of Pyrex{trademark} windows (not present in current configuration) and window fogging. Large variability (2{sigma} = 28.6 C) exists in the first 10 m of the hold period. This variability is attributed to emissivity variation across the melt and reflection from hot surfaces. For runs with hold periods extending to 20 m, the uncertainty approaches the calibration uncertainty of the pyrometers. When certifying pyrometers on a strip lamp at the Y-12 Standards Laboratory, it is important to limit ambient temperature variation (23{+-}4 C), to order calibration points from high to low temperatures, to allow 6 m for the lamp to reach thermal equilibrium (12 m for certifications below 1200 C) to minimize pyrometer bias, and to calibrate the pyrometer if error exceeds vendor specifications. A procedure has been written to assure conformance.

  17. Scientific Reporting: Raising the Standards

    ERIC Educational Resources Information Center

    McLeroy, Kenneth R.; Garney, Whitney; Mayo-Wilson, Evan; Grant, Sean

    2016-01-01

    This article is based on a presentation that was made at the 2014 annual meeting of the editorial board of "Health Education & Behavior." The article addresses critical issues related to standards of scientific reporting in journals, including concerns about external and internal validity and reporting bias. It reviews current…

  18. Classification images with uncertainty

    PubMed Central

    Tjan, Bosco S.; Nandy, Anirvan S.

    2009-01-01

    Classification image and other similar noise-driven linear methods have found increasingly wider applications in revealing psychophysical receptive field structures or perceptual templates. These techniques are relatively easy to deploy, and the results are simple to interpret. However, being a linear technique, the utility of the classification-image method is believed to be limited. Uncertainty about the target stimuli on the part of an observer will result in a classification image that is the superposition of all possible templates for all the possible signals. In the context of a well-established uncertainty model, which pools the outputs of a large set of linear frontends with a max operator, we show analytically, in simulations, and with human experiments that the effect of intrinsic uncertainty can be limited or even eliminated by presenting a signal at a relatively high contrast in a classification-image experiment. We further argue that the subimages from different stimulus-response categories should not be combined, as is conventionally done. We show that when the signal contrast is high, the subimages from the error trials contain a clear high-contrast image that is negatively correlated with the perceptual template associated with the presented signal, relatively unaffected by uncertainty. The subimages also contain a “haze” that is of a much lower contrast and is positively correlated with the superposition of all the templates associated with the erroneous response. In the case of spatial uncertainty, we show that the spatial extent of the uncertainty can be estimated from the classification subimages. We link intrinsic uncertainty to invariance and suggest that this signal-clamped classification-image method will find general applications in uncovering the underlying representations of high-level neural and psychophysical mechanisms. PMID:16889477

  19. Classification images with uncertainty.

    PubMed

    Tjan, Bosco S; Nandy, Anirvan S

    2006-04-04

    Classification image and other similar noise-driven linear methods have found increasingly wider applications in revealing psychophysical receptive field structures or perceptual templates. These techniques are relatively easy to deploy, and the results are simple to interpret. However, being a linear technique, the utility of the classification-image method is believed to be limited. Uncertainty about the target stimuli on the part of an observer will result in a classification image that is the superposition of all possible templates for all the possible signals. In the context of a well-established uncertainty model, which pools the outputs of a large set of linear frontends with a max operator, we show analytically, in simulations, and with human experiments that the effect of intrinsic uncertainty can be limited or even eliminated by presenting a signal at a relatively high contrast in a classification-image experiment. We further argue that the subimages from different stimulus-response categories should not be combined, as is conventionally done. We show that when the signal contrast is high, the subimages from the error trials contain a clear high-contrast image that is negatively correlated with the perceptual template associated with the presented signal, relatively unaffected by uncertainty. The subimages also contain a "haze" that is of a much lower contrast and is positively correlated with the superposition of all the templates associated with the erroneous response. In the case of spatial uncertainty, we show that the spatial extent of the uncertainty can be estimated from the classification subimages. We link intrinsic uncertainty to invariance and suggest that this signal-clamped classification-image method will find general applications in uncovering the underlying representations of high-level neural and psychophysical mechanisms.

  20. 32 CFR Appendix B to Part 286 - Addressing FOIA Requests

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Departments, the Combatant Commands, the Inspector General, the Defense Agencies, and the DoD Field Activities... Component to address their requests. If there is uncertainty as to the ownership of the record desired, the... the Army. Army records may be requested from those Army officials who are listed in 32 CFR 518....

  1. 32 CFR Appendix B to Part 286 - Addressing FOIA Requests

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Departments, the Combatant Commands, the Inspector General, the Defense Agencies, and the DoD Field Activities... Component to address their requests. If there is uncertainty as to the ownership of the record desired, the... the Army. Army records may be requested from those Army officials who are listed in 32 CFR 518....

  2. 32 CFR Appendix B to Part 286 - Addressing FOIA Requests

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Departments, the Combatant Commands, the Inspector General, the Defense Agencies, and the DoD Field Activities... Component to address their requests. If there is uncertainty as to the ownership of the record desired, the... the Army. Army records may be requested from those Army officials who are listed in 32 CFR 518....

  3. The Journalism of Uncertainty.

    ERIC Educational Resources Information Center

    Patterson, Joye

    1979-01-01

    Science journalism is in a period of change from its prior position of reporting the pronouncements of scientists to one of challenging the conclusions of scientists and using multiple sources to comment on scientific discovery. It is necessary that educational institutions anticipate the need for competent scientific journalists. (RE)

  4. Visualization of Uncertainty

    NASA Astrophysics Data System (ADS)

    Jones, P. W.; Strelitz, R. A.

    2012-12-01

    The output of a simulation is best comprehended through the agency and methods of visualization, but a vital component of good science is knowledge of uncertainty. While great strides have been made in the quantification of uncertainty, especially in simulation, there is still a notable gap: there is no widely accepted means of simultaneously viewing the data and the associated uncertainty in one pane. Visualization saturates the screen, using the full range of color, shadow, opacity and tricks of perspective to display even a single variable. There is no room in the visualization expert's repertoire left for uncertainty. We present a method of visualizing uncertainty without sacrificing the clarity and power of the underlying visualization that works as well in 3-D and time-varying visualizations as it does in 2-D. At its heart, it relies on a principal tenet of continuum mechanics, replacing the notion of value at a point with a more diffuse notion of density as a measure of content in a region. First, the uncertainties calculated or tabulated at each point are transformed into a piecewise continuous field of uncertainty density . We next compute a weighted Voronoi tessellation of a user specified N convex polygonal/polyhedral cells such that each cell contains the same amount of uncertainty as defined by . The problem thus devolves into minimizing . Computation of such a spatial decomposition is O(N*N ), and can be computed iteratively making it possible to update easily over time as well as faster. The polygonal mesh does not interfere with the visualization of the data and can be easily toggled on or off. In this representation, a small cell implies a great concentration of uncertainty, and conversely. The content weighted polygons are identical to the cartogram familiar to the information visualization community in the depiction of things voting results per stat. Furthermore, one can dispense with the mesh or edges entirely to be replaced by symbols or glyphs

  5. Interpreting uncertainty terms.

    PubMed

    Holtgraves, Thomas

    2014-08-01

    Uncertainty terms (e.g., some, possible, good, etc.) are words that do not have a fixed referent and hence are relatively ambiguous. A model is proposed that specifies how, from the hearer's perspective, recognition of facework as a potential motive for the use of an uncertainty term results in a calibration of the intended meaning of that term. Four experiments are reported that examine the impact of face threat, and the variables that affect it (e.g., power), on the manner in which a variety of uncertainty terms (probability terms, quantifiers, frequency terms, etc.) are interpreted. Overall, the results demonstrate that increased face threat in a situation will result in a more negative interpretation of an utterance containing an uncertainty term. That the interpretation of so many different types of uncertainty terms is affected in the same way suggests the operation of a fundamental principle of language use, one with important implications for the communication of risk, subjective experience, and so on.

  6. Uncertainty in quantum mechanics: faith or fantasy?

    PubMed

    Penrose, Roger

    2011-12-13

    The word 'uncertainty', in the context of quantum mechanics, usually evokes an impression of an essential unknowability of what might actually be going on at the quantum level of activity, as is made explicit in Heisenberg's uncertainty principle, and in the fact that the theory normally provides only probabilities for the results of quantum measurement. These issues limit our ultimate understanding of the behaviour of things, if we take quantum mechanics to represent an absolute truth. But they do not cause us to put that very 'truth' into question. This article addresses the issue of quantum 'uncertainty' from a different perspective, raising the question of whether this term might be applied to the theory itself, despite its unrefuted huge success over an enormously diverse range of observed phenomena. There are, indeed, seeming internal contradictions in the theory that lead us to infer that a total faith in it at all levels of scale leads us to almost fantastical implications.

  7. Model development and data uncertainty integration

    SciTech Connect

    Swinhoe, Martyn Thomas

    2015-12-02

    The effect of data uncertainties is discussed, with the epithermal neutron multiplicity counter as an illustrative example. Simulation using MCNP6, cross section perturbations and correlations are addressed, along with the effect of the 240Pu spontaneous fission neutron spectrum, the effect of P(ν) for 240Pu spontaneous fission, and the effect of spontaneous fission and (α,n) intensity. The effect of nuclear data is the product of the initial uncertainty and the sensitivity -- both need to be estimated. In conclusion, a multi-parameter variation method has been demonstrated, the most significant parameters are the basic emission rates of spontaneous fission and (α,n) processes, and uncertainties and important data depend on the analysis technique chosen.

  8. Evolution of Scientific and Technical Information Distribution.

    ERIC Educational Resources Information Center

    Esler, Sandra L.; Nelson, Michael L.

    1998-01-01

    This study examines 11 digital libraries focusing on the distribution of scientific and technical information (STI) publications. Study addresses deficiencies in the current model of STI exchange by suggesting methods for expanding the scope and target of digital libraries. (PEN)

  9. Measurement uncertainty relations

    SciTech Connect

    Busch, Paul; Lahti, Pekka; Werner, Reinhard F.

    2014-04-15

    Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here we prove such relations for the case of two canonically conjugate observables like position and momentum, and establish a close connection with the more familiar preparation uncertainty relations constraining the sharpness of the distributions of the two observables in the same state. Both sets of relations are generalized to means of order α rather than the usual quadratic means, and we show that the optimal constants are the same for preparation and for measurement uncertainty. The constants are determined numerically and compared with some bounds in the literature. In both cases, the near-saturation of the inequalities entails that the state (resp. observable) is uniformly close to a minimizing one.

  10. Serenity in political uncertainty.

    PubMed

    Doumit, Rita; Afifi, Rema A; Devon, Holli A

    2015-01-01

    College students are often faced with academic and personal stressors that threaten their well-being. Added to that may be political and environmental stressors such as acts of violence on the streets, interruptions in schooling, car bombings, targeted religious intimidations, financial hardship, and uncertainty of obtaining a job after graduation. Research on how college students adapt to the latter stressors is limited. The aims of this study were (1) to investigate the associations between stress, uncertainty, resilience, social support, withdrawal coping, and well-being for Lebanese youth during their first year of college and (2) to determine whether these variables predicted well-being. A sample of 293 first-year students enrolled in a private university in Lebanon completed a self-reported questionnaire in the classroom setting. The mean age of sample participants was 18.1 years, with nearly an equal percentage of males and females (53.2% vs 46.8%), who lived with their family (92.5%), and whose family reported high income levels (68.4%). Multiple regression analyses revealed that best determinants of well-being are resilience, uncertainty, social support, and gender that accounted for 54.1% of the variance. Despite living in an environment of frequent violence and political uncertainty, Lebanese youth in this study have a strong sense of well-being and are able to go on with their lives. This research adds to our understanding on how adolescents can adapt to stressors of frequent violence and political uncertainty. Further research is recommended to understand the mechanisms through which young people cope with political uncertainty and violence. PMID:25658930

  11. Serenity in political uncertainty.

    PubMed

    Doumit, Rita; Afifi, Rema A; Devon, Holli A

    2015-01-01

    College students are often faced with academic and personal stressors that threaten their well-being. Added to that may be political and environmental stressors such as acts of violence on the streets, interruptions in schooling, car bombings, targeted religious intimidations, financial hardship, and uncertainty of obtaining a job after graduation. Research on how college students adapt to the latter stressors is limited. The aims of this study were (1) to investigate the associations between stress, uncertainty, resilience, social support, withdrawal coping, and well-being for Lebanese youth during their first year of college and (2) to determine whether these variables predicted well-being. A sample of 293 first-year students enrolled in a private university in Lebanon completed a self-reported questionnaire in the classroom setting. The mean age of sample participants was 18.1 years, with nearly an equal percentage of males and females (53.2% vs 46.8%), who lived with their family (92.5%), and whose family reported high income levels (68.4%). Multiple regression analyses revealed that best determinants of well-being are resilience, uncertainty, social support, and gender that accounted for 54.1% of the variance. Despite living in an environment of frequent violence and political uncertainty, Lebanese youth in this study have a strong sense of well-being and are able to go on with their lives. This research adds to our understanding on how adolescents can adapt to stressors of frequent violence and political uncertainty. Further research is recommended to understand the mechanisms through which young people cope with political uncertainty and violence.

  12. Uncertainty and calibration analysis

    SciTech Connect

    Coutts, D.A.

    1991-03-01

    All measurements contain some deviation from the true value which is being measured. In the common vernacular this deviation between the true value and the measured value is called an inaccuracy, an error, or a mistake. Since all measurements contain errors, it is necessary to accept that there is a limit to how accurate a measurement can be. The undertainty interval combined with the confidence level, is one measure of the accuracy for a measurement or value. Without a statement of uncertainty (or a similar parameter) it is not possible to evaluate if the accuracy of the measurement, or data, is appropriate. The preparation of technical reports, calibration evaluations, and design calculations should consider the accuracy of measurements and data being used. There are many methods to accomplish this. This report provides a consistent method for the handling of measurement tolerances, calibration evaluations and uncertainty calculations. The SRS Quality Assurance (QA) Program requires that the uncertainty of technical data and instrument calibrations be acknowledged and estimated. The QA Program makes some specific technical requirements related to the subject but does not provide a philosophy or method on how uncertainty should be estimated. This report was prepared to provide a technical basis to support the calculation of uncertainties and the calibration of measurement and test equipment for any activity within the Experimental Thermal-Hydraulics (ETH) Group. The methods proposed in this report provide a graded approach for estimating the uncertainty of measurements, data, and calibrations. The method is based on the national consensus standard, ANSI/ASME PTC 19.1.

  13. Improving student learning by addressing misconceptions

    NASA Astrophysics Data System (ADS)

    Engelmann, Carol A.; Huntoon, Jacqueline E.

    2011-12-01

    Students—and often those who teach them—come to class with preconceptions and misconceptions that hinder their learning. For instance, many K-12 students and teachers believe groundwater exists in the ground in actual rivers or lakes, but in fact, groundwater is found in permeable rock layers called aquifers. Such misconceptions need to be addressed before students can learn scientific concepts correctly. While other science disciplines have been addressing preconceptions and misconceptions for many years, the geoscience community has only recently begun to concentrate on the impact these have on students' learning. Valuable research is being done that illuminates how geologic thinking evolves from the "novice" to "expert" level. The expert is defined as an individual with deep understanding of Earth science concepts. As research progresses, geoscientists are realizing that correcting preconceptions and misconceptions can move teachers and students closer to the "expert" level [Libarkin, 2005].

  14. Weighted Uncertainty Relations

    PubMed Central

    Xiao, Yunlong; Jing, Naihuan; Li-Jost, Xianqing; Fei, Shao-Ming

    2016-01-01

    Recently, Maccone and Pati have given two stronger uncertainty relations based on the sum of variances and one of them is nontrivial when the quantum state is not an eigenstate of the sum of the observables. We derive a family of weighted uncertainty relations to provide an optimal lower bound for all situations and remove the restriction on the quantum state. Generalization to multi-observable cases is also given and an optimal lower bound for the weighted sum of the variances is obtained in general quantum situation. PMID:26984295

  15. The legacy of uncertainty

    NASA Technical Reports Server (NTRS)

    Brown, Laurie M.

    1993-01-01

    An historical account is given of the circumstances whereby the uncertainty relations were introduced into physics by Heisenberg. The criticisms of QED on measurement-theoretical grounds by Landau and Peierls are then discussed, as well as the response to them by Bohr and Rosenfeld. Finally, some examples are given of how the new freedom to advance radical proposals, in part the result of the revolution brought about by 'uncertainty,' was implemented in dealing with the new phenomena encountered in elementary particle physics in the 1930's.

  16. Demonstrating the value of medicines: evolution of value equation and stakeholder perception of uncertainties

    PubMed Central

    Narayanan, Siva

    2016-01-01

    It is important to evaluate how the value of medicine is assessed, as it may have important implications for health technology and reimbursement assessments. The value equation could comprise ‘incremental benefit/outcome’ (relative results of care in terms of patient health, comparing the innovation to best available alternative(s)) in the numerator and ‘cost’ (relative costs involved in the full cycle of care (or a defined period) for the patient's medical condition, incorporating the relevant cost-offsets due to displacement of best available alternative(s)) in the denominator. This ‘relative value’ combined with the overall net budget impact (of including the drug in the formulary or reimbursed drug list) at the concerned population level in the given institution/region/country may better inform the usefulness of the new therapeutic option to the healthcare system. As product value messages are created, anticipating external stakeholder questions and information needs, including addressing three main categories of ‘uncertainties’, namely the scientific uncertainties, usage uncertainties, and financial uncertainties, could facilitate demonstration of optimal product value and help informed decision-making to benefit all stakeholders involved in the process. PMID:27489585

  17. Quantitative risk assessment for the induction of allergic contact dermatitis: uncertainty factors for mucosal exposures.

    PubMed

    Farage, Miranda A; Bjerke, Donald L; Mahony, Catherine; Blackburn, Karen L; Gerberick, G Frank

    2003-09-01

    The quantitative risk assessment (QRA) paradigm has been extended to evaluating the risk of induction of allergic contact dermatitis from consumer products. Sensitization QRA compares product-related, topical exposures to a safe benchmark, the sensitization reference dose. The latter is based on an experimentally or clinically determined 'no observable adverse effect level' (NOAEL) and further refined by incorporating 'sensitization uncertainty factors' (SUFs) that address variables not adequately reflected in the data from which the threshold NOAEL was derived. A critical area of uncertainty for the risk assessment of oral care or feminine hygiene products is the extrapolation from skin to mucosal exposures. Most sensitization data are derived from skin contact, but the permeability of vulvovaginal and oral mucosae is greater than that of keratinized skin. Consequently, the QRA for some personal products that are exposed to mucosal tissue may require the use of more conservative SUFs. This article reviews the scientific basis for SUFs applied to topical exposure to vulvovaginal and oral mucosae. We propose a 20-fold range in the default uncertainty factor used in the contact sensitization QRA when extrapolating from data derived from the skin to situations involving exposure to non-keratinized mucosal tissue.

  18. ENHANCED UNCERTAINTY ANALYSIS FOR SRS COMPOSITE ANALYSIS

    SciTech Connect

    Smith, F.; Phifer, M.

    2011-06-30

    sand and clay), (b) Dose Parameters (34 parameters), (c) Material Properties (20 parameters), (d) Surface Water Flows (6 parameters), and (e) Vadose and Aquifer Flow (4 parameters). Results provided an assessment of which group of parameters is most significant in the dose uncertainty. It was found that K{sub d} and the vadose/aquifer flow parameters, both of which impact transport timing, had the greatest impact on dose uncertainty. Dose parameters had an intermediate level of impact while material properties and surface water flows had little impact on dose uncertainty. Results of the importance analysis are discussed further in Section 7 of this report. The objectives of this work were to address comments received during the CA review on the uncertainty analysis and to demonstrate an improved methodology for CA uncertainty calculations as part of CA maintenance. This report partially addresses the LFRG Review Team issue of producing an enhanced CA sensitivity and uncertainty analysis. This is described in Table 1-1 which provides specific responses to pertinent CA maintenance items extracted from Section 11 of the SRS CA (2009). As noted above, the original uncertainty analysis looked at each POA separately and only included the effects from at most five sources giving the highest peak doses at each POA. Only 17 of the 152 CA sources were used in the original uncertainty analysis and the simulation time was reduced from 10,000 to 2,000 years. A major constraint on the original uncertainty analysis was the limitation of only being able to use at most four distributed processes. This work expanded the analysis to 10,000 years using 39 of the CA sources, included cumulative dose effects at downstream POAs, with more realizations (1,000) and finer time steps. This was accomplished by using the GoldSim DP-Plus module and the 36 processors available on a new windows cluster. The last part of the work looked at the contribution to overall uncertainty from the main

  19. UNEDF: Advanced Scientific Computing Collaboration Transforms the Low-Energy Nuclear Many-Body Problem

    NASA Astrophysics Data System (ADS)

    Nam, H.; Stoitsov, M.; Nazarewicz, W.; Bulgac, A.; Hagen, G.; Kortelainen, M.; Maris, P.; Pei, J. C.; Roche, K. J.; Schunck, N.; Thompson, I.; Vary, J. P.; Wild, S. M.

    2012-12-01

    The demands of cutting-edge science are driving the need for larger and faster computing resources. With the rapidly growing scale of computing systems and the prospect of technologically disruptive architectures to meet these needs, scientists face the challenge of effectively using complex computational resources to advance scientific discovery. Multi-disciplinary collaborating networks of researchers with diverse scientific backgrounds are needed to address these complex challenges. The UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quantified uncertainties. This paper describes UNEDF and identifies attributes that classify it as a successful computational collaboration. We illustrate significant milestones accomplished by UNEDF through integrative solutions using the most reliable theoretical approaches, most advanced algorithms, and leadership-class computational resources.

  20. UNEDF: Advanced Scientific Computing Collaboration Transforms the Low-Energy Nuclear Many-Body Problem

    SciTech Connect

    Nam, H.; Stoitsov, M.; Nazarewicz, W.; Bulgac, A.; Hagen, G.; Kortelainen, M.; Maris, P.; Pei, J. C.; Roche, K. J.; Schunck, N.; Thompson, I.; Vary, J. P.; Wild, S. M.

    2012-12-20

    The demands of cutting-edge science are driving the need for larger and faster computing resources. With the rapidly growing scale of computing systems and the prospect of technologically disruptive architectures to meet these needs, scientists face the challenge of effectively using complex computational resources to advance scientific discovery. Multi-disciplinary collaborating networks of researchers with diverse scientific backgrounds are needed to address these complex challenges. The UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quantified uncertainties. This paper describes UNEDF and identifies attributes that classify it as a successful computational collaboration. Finally, we illustrate significant milestones accomplished by UNEDF through integrative solutions using the most reliable theoretical approaches, most advanced algorithms, and leadership-class computational resources.

  1. [Transgenic products. A scientific-production evaluation of possible food (in)security].

    PubMed

    Camara, Maria Clara Coelho; Marinho, Carmem L C; Guilam, Maria Cristina Rodrigues; Nodari, Rubens Onofre

    2009-01-01

    Based on a bibliographic review, the article identifies and offers a critical analysis of scientific production by the public health field in Brazil on genetically modified organisms and food (in)security. Of the 716 articles found on the portals of the Scientific Electronic Library Online (SciELO) and the Coordinating Agency for the Development of Higher Education (Capes), only 8 address the food security of transgenic products, primarily in terms of risk exposure and the uncertainties about how these products impact health and the environment. The main conclusion involves the fact that the eight analyzed articles do not speak to the question of the security but rather the insecurity of genetically modified foods.

  2. Uncertainty and sampling issues in tank characterization

    SciTech Connect

    Liebetrau, A.M.; Pulsipher, B.A.; Kashporenko, D.M.

    1997-06-01

    A defensible characterization strategy must recognize that uncertainties are inherent in any measurement or estimate of interest and must employ statistical methods for quantifying and managing those uncertainties. Estimates of risk and therefore key decisions must incorporate knowledge about uncertainty. This report focuses statistical methods that should be employed to ensure confident decision making and appropriate management of uncertainty. Sampling is a major source of uncertainty that deserves special consideration in the tank characterization strategy. The question of whether sampling will ever provide the reliable information needed to resolve safety issues is explored. The issue of sample representativeness must be resolved before sample information is reliable. Representativeness is a relative term but can be defined in terms of bias and precision. Currently, precision can be quantified and managed through an effective sampling and statistical analysis program. Quantifying bias is more difficult and is not being addressed under the current sampling strategies. Bias could be bounded by (1) employing new sampling methods that can obtain samples from other areas in the tanks, (2) putting in new risers on some worst case tanks and comparing the results from existing risers with new risers, or (3) sampling tanks through risers under which no disturbance or activity has previously occurred. With some bound on bias and estimates of precision, various sampling strategies could be determined and shown to be either cost-effective or infeasible.

  3. An overview of the interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB): advancing the scientific understanding of freshwater harmful algal blooms.

    PubMed

    Hudnell, H Kenneth; Dortch, Quay; Zenick, Harold

    2008-01-01

    There is growing evidence that the spatial and temporal incidence of harmful algal blooms is increasing, posing potential risks to human health and ecosystem sustainability. Currently there are no US Federal guidelines, Water Quality Criteria and Standards, or regulations concerning the management of harmful algal blooms. Algal blooms in freshwater are predominantly cyanobacteria, some of which produce highly potent cyanotoxins. The US Congress mandated a Scientific Assessment of Freshwater Harmful Algal Blooms in the 2004 reauthorization of the Harmful Algal Blooms and Hypoxia Research and Control Act. To further the scientific understanding of freshwater harmful algal blooms, the US Environmental Protection Agency (EPA) established an interagency committee to organize the Interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB). A theoretical framework to define scientific issues and a systems approach to implement the assessment and management of cyanobacterial harmful algal blooms were developed as organizing themes for the symposium. Seven major topic areas and 23 subtopics were addressed in Workgroups and platform sessions during the symposium. The primary charge given to platform presenters was to describe the state of the science in the subtopic areas, whereas the Workgroups were charged with identifying research that could be accomplished in the short- and long-term to reduce scientific uncertainties. The proceedings of the symposium, published in this monograph, are intended to inform policy determinations and the mandated Scientific Assessment by describing the scientific knowledge and areas of uncertainty concerning freshwater harmful algal blooms.

  4. Scientific Word Processing for Personal Computers.

    ERIC Educational Resources Information Center

    Canham, Geoffrey W. Rayner

    1987-01-01

    Discusses some of the variables teachers should consider when selecting scientific word processing software. Briefly describes some of the attributes of 17 software packages that were developed to accommodate scientific formulae and chemical structures. Provides the names and addresses of the respective software producers. (TW)

  5. Asymptotic entropic uncertainty relations

    NASA Astrophysics Data System (ADS)

    Adamczak, Radosław; Latała, Rafał; Puchała, Zbigniew; Życzkowski, Karol

    2016-03-01

    We analyze entropic uncertainty relations for two orthogonal measurements on a N-dimensional Hilbert space, performed in two generic bases. It is assumed that the unitary matrix U relating both bases is distributed according to the Haar measure on the unitary group. We provide lower bounds on the average Shannon entropy of probability distributions related to both measurements. The bounds are stronger than those obtained with use of the entropic uncertainty relation by Maassen and Uffink, and they are optimal up to additive constants. We also analyze the case of a large number of measurements and obtain strong entropic uncertainty relations, which hold with high probability with respect to the random choice of bases. The lower bounds we obtain are optimal up to additive constants and allow us to prove a conjecture by Wehner and Winter on the asymptotic behavior of constants in entropic uncertainty relations as the dimension tends to infinity. As a tool we develop estimates on the maximum operator norm of a submatrix of a fixed size of a random unitary matrix distributed according to the Haar measure, which are of independent interest.

  6. Uncertainties in repository modeling

    SciTech Connect

    Wilson, J.R.

    1996-12-31

    The distant future is ver difficult to predict. Unfortunately, our regulators are being enchouraged to extend ther regulatory period form the standard 10,000 years to 1 million years. Such overconfidence is not justified due to uncertainties in dating, calibration, and modeling.

  7. Reciprocity and uncertainty.

    PubMed

    Bereby-Meyer, Yoella

    2012-02-01

    Guala points to a discrepancy between strong negative reciprocity observed in the lab and the way cooperation is sustained "in the wild." This commentary suggests that in lab experiments, strong negative reciprocity is limited when uncertainty exists regarding the players' actions and the intentions. Thus, costly punishment is indeed a limited mechanism for sustaining cooperation in an uncertain environment.

  8. Uncertainty in Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.

    2003-01-01

    An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.

  9. Reciprocity and uncertainty.

    PubMed

    Bereby-Meyer, Yoella

    2012-02-01

    Guala points to a discrepancy between strong negative reciprocity observed in the lab and the way cooperation is sustained "in the wild." This commentary suggests that in lab experiments, strong negative reciprocity is limited when uncertainty exists regarding the players' actions and the intentions. Thus, costly punishment is indeed a limited mechanism for sustaining cooperation in an uncertain environment. PMID:22289307

  10. An uncertainty inventory demonstration - a primary step in uncertainty quantification

    SciTech Connect

    Langenbrunner, James R.; Booker, Jane M; Hemez, Francois M; Salazar, Issac F; Ross, Timothy J

    2009-01-01

    Tools, methods, and theories for assessing and quantifying uncertainties vary by application. Uncertainty quantification tasks have unique desiderata and circumstances. To realistically assess uncertainty requires the engineer/scientist to specify mathematical models, the physical phenomena of interest, and the theory or framework for assessments. For example, Probabilistic Risk Assessment (PRA) specifically identifies uncertainties using probability theory, and therefore, PRA's lack formal procedures for quantifying uncertainties that are not probabilistic. The Phenomena Identification and Ranking Technique (PIRT) proceeds by ranking phenomena using scoring criteria that results in linguistic descriptors, such as importance ranked with words, 'High/Medium/Low.' The use of words allows PIRT to be flexible, but the analysis may then be difficult to combine with other uncertainty theories. We propose that a necessary step for the development of a procedure or protocol for uncertainty quantification (UQ) is the application of an Uncertainty Inventory. An Uncertainty Inventory should be considered and performed in the earliest stages of UQ.

  11. Uncertainties in risk assessment at USDOE facilities

    SciTech Connect

    Hamilton, L.D.; Holtzman, S.; Meinhold, A.F.; Morris, S.C.; Rowe, M.D.

    1994-01-01

    The United States Department of Energy (USDOE) has embarked on an ambitious program to remediate environmental contamination at its facilities. Decisions concerning cleanup goals, choices among cleanup technologies, and funding prioritization should be largely risk-based. Risk assessments will be used more extensively by the USDOE in the future. USDOE needs to develop and refine risk assessment methods and fund research to reduce major sources of uncertainty in risk assessments at USDOE facilities. The terms{open_quote} risk assessment{close_quote} and{open_quote} risk management{close_quote} are frequently confused. The National Research Council (1983) and the United States Environmental Protection Agency (USEPA, 1991a) described risk assessment as a scientific process that contributes to risk management. Risk assessment is the process of collecting, analyzing and integrating data and information to identify hazards, assess exposures and dose responses, and characterize risks. Risk characterization must include a clear presentation of {open_quotes}... the most significant data and uncertainties...{close_quotes} in an assessment. Significant data and uncertainties are {open_quotes}...those that define and explain the main risk conclusions{close_quotes}. Risk management integrates risk assessment information with other considerations, such as risk perceptions, socioeconomic and political factors, and statutes, to make and justify decisions. Risk assessments, as scientific processes, should be made independently of the other aspects of risk management (USEPA, 1991a), but current methods for assessing health risks are based on conservative regulatory principles, causing unnecessary public concern and misallocation of funds for remediation.

  12. Strategy under uncertainty.

    PubMed

    Courtney, H; Kirkland, J; Viguerie, P

    1997-01-01

    At the heart of the traditional approach to strategy lies the assumption that by applying a set of powerful analytic tools, executives can predict the future of any business accurately enough to allow them to choose a clear strategic direction. But what happens when the environment is so uncertain that no amount of analysis will allow us to predict the future? What makes for a good strategy in highly uncertain business environments? The authors, consultants at McKinsey & Company, argue that uncertainty requires a new way of thinking about strategy. All too often, they say, executives take a binary view: either they underestimate uncertainty to come up with the forecasts required by their companies' planning or capital-budging processes, or they overestimate it, abandon all analysis, and go with their gut instinct. The authors outline a new approach that begins by making a crucial distinction among four discrete levels of uncertainty that any company might face. They then explain how a set of generic strategies--shaping the market, adapting to it, or reserving the right to play at a later time--can be used in each of the four levels. And they illustrate how these strategies can be implemented through a combination of three basic types of actions: big bets, options, and no-regrets moves. The framework can help managers determine which analytic tools can inform decision making under uncertainty--and which cannot. At a broader level, it offers executives a discipline for thinking rigorously and systematically about uncertainty and its implications for strategy.

  13. Uncertainty law in ambient modal identification-Part I: Theory

    NASA Astrophysics Data System (ADS)

    Au, Siu-Kui

    2014-10-01

    Ambient vibration test has gained increasing popularity in practice as it provides an economical means for modal identification without artificial loading. Since the signal-to-noise ratio cannot be directly controlled, the uncertainty associated with the identified modal parameters is a primary concern. From a scientific point of view, it is of interest to know on what factors the uncertainty depends and what the relationship is. For planning or specification purposes, it is desirable to have an assessment of the test configuration required to achieve a specified accuracy in the modal parameters. For example, what is the minimum data duration to achieve a 30% coefficient of variation (c.o.v.) in the damping ratio? To address these questions, this work investigates the leading order behavior of the ‘posterior uncertainties’ (i.e., given data) of the modal parameters in a Bayesian identification framework. In the context of well-separated modes, small damping and sufficient data, it is shown rigorously that, among other results, the posterior c.o.v. of the natural frequency and damping ratio are asymptotically equal to ( and 1/(2, respectively; where ζ is the damping ratio; Nc is the data length as a multiple of the natural period; Bf and Bζ are data length factors that depend only on the bandwidth utilized for identification, for which explicit expressions have been derived. As the Bayesian approach allows full use of information contained in the data, the results are fundamental characteristics of the ambient modal identification problem. This paper develops the main theory. The companion paper investigates the implication of the results and verification with field test data.

  14. Dealing with uncertainties in environmental burden of disease assessment

    PubMed Central

    2009-01-01

    Disability Adjusted Life Years (DALYs) combine the number of people affected by disease or mortality in a population and the duration and severity of their condition into one number. The environmental burden of disease is the number of DALYs that can be attributed to environmental factors. Environmental burden of disease estimates enable policy makers to evaluate, compare and prioritize dissimilar environmental health problems or interventions. These estimates often have various uncertainties and assumptions which are not always made explicit. Besides statistical uncertainty in input data and parameters – which is commonly addressed – a variety of other types of uncertainties may substantially influence the results of the assessment. We have reviewed how different types of uncertainties affect environmental burden of disease assessments, and we give suggestions as to how researchers could address these uncertainties. We propose the use of an uncertainty typology to identify and characterize uncertainties. Finally, we argue that uncertainties need to be identified, assessed, reported and interpreted in order for assessment results to adequately support decision making. PMID:19400963

  15. The National Academy of Sciences offers a new framework for addressing global warming issues.

    PubMed

    Barnard, R C; Morgan, D L

    2000-02-01

    The recent landmark report by the National Academy of Sciences reviewed the science on which the Kyoto Protocol was based. NAS concluded that the policy choices and the mandatory reductions in greenhouse gases by the developed nations were based on incomplete science with significant uncertainties. In view of these uncertainties the NAS report developed a comprehensive strategic 10-year research program to address the basic issue of whether human activity that results in environmental changes is responsible for climate changes. The report provides a new framework for consideration of global warming issues. The UN International Panel on Climate Change (the UN science advisor) in its 1997 report to the Kyoto parties pointed out the confusing difference between scientific usage of the term "climate change" that distinguishes human from natural causes of change and the official usage that combines natural and human causes of changes in climate. The conclusion of the UN panel on human causes is equivocal. The 1999 report of the U.S. Global Science Research Committee also reached an equivocal conclusion on human causes and announced a 10-year research program to be developed in consultation with NAS. The precautionary measures provided in the 1992 UN Framework Convention differ from the ill-defined "precautionary principle" based on fear of uncertainty, and are consistent with the objectives of the NAS proposed research program. These developments together with the third report of the UN Intergovernmental Science Panel on developments in climate science due in 2001 merit consideration by the convention of the parties under the Kyoto Protocol. PMID:10715229

  16. The National Academy of Sciences offers a new framework for addressing global warming issues.

    PubMed

    Barnard, R C; Morgan, D L

    2000-02-01

    The recent landmark report by the National Academy of Sciences reviewed the science on which the Kyoto Protocol was based. NAS concluded that the policy choices and the mandatory reductions in greenhouse gases by the developed nations were based on incomplete science with significant uncertainties. In view of these uncertainties the NAS report developed a comprehensive strategic 10-year research program to address the basic issue of whether human activity that results in environmental changes is responsible for climate changes. The report provides a new framework for consideration of global warming issues. The UN International Panel on Climate Change (the UN science advisor) in its 1997 report to the Kyoto parties pointed out the confusing difference between scientific usage of the term "climate change" that distinguishes human from natural causes of change and the official usage that combines natural and human causes of changes in climate. The conclusion of the UN panel on human causes is equivocal. The 1999 report of the U.S. Global Science Research Committee also reached an equivocal conclusion on human causes and announced a 10-year research program to be developed in consultation with NAS. The precautionary measures provided in the 1992 UN Framework Convention differ from the ill-defined "precautionary principle" based on fear of uncertainty, and are consistent with the objectives of the NAS proposed research program. These developments together with the third report of the UN Intergovernmental Science Panel on developments in climate science due in 2001 merit consideration by the convention of the parties under the Kyoto Protocol.

  17. 2015 ASHG Awards and Addresses

    PubMed Central

    2016-01-01

    Each year at the annual meeting of The American Society of Human Genetics (ASHG), addresses are given in honor of The Society and a number of award winners. A summary of each of these is given below. On the following pages, we have printed the presidential address and the addresses for the William Allan Award, the Curt Stern Award, and the Victor A. McKusick Leadership Award. Webcasts of these addresses, as well as those of many other presentations, can be found at http://www.ashg.org.

  18. Probabilistic numerics and uncertainty in computations

    PubMed Central

    Hennig, Philipp; Osborne, Michael A.; Girolami, Mark

    2015-01-01

    We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations. PMID:26346321

  19. Uncertainty As a Trigger for a Paradigm Change in Science Communication

    NASA Astrophysics Data System (ADS)

    Schneider, S.

    2014-12-01

    Over the last decade, the need to communicate uncertainty increased. Climate sciences and environmental sciences have faced massive propaganda campaigns by global industry and astroturf organizations. These organizations use the deep societal mistrust in uncertainty to point out alleged unethical and intentional delusion of decision makers and the public by scientists and their consultatory function. Scientists, who openly communicate uncertainty of climate model calculations, earthquake occurrence frequencies, or possible side effects of genetic manipulated semen have to face massive campaigns against their research, and sometimes against their person and live as well. Hence, new strategies to communicate uncertainty have to face the societal roots of the misunderstanding of the concept of uncertainty itself. Evolutionary biology has shown, that human mind is well suited for practical decision making by its sensory structures. Therefore, many of the irrational concepts about uncertainty are mitigated if data is presented in formats the brain is adapted to understand. At the end, the impact of uncertainty to the decision-making process is finally dominantly driven by preconceptions about terms such as uncertainty, vagueness or probabilities. Parallel to the increasing role of scientific uncertainty in strategic communication, science communicators for example at the Research and Development Program GEOTECHNOLOGIEN developed a number of techniques to master the challenge of putting uncertainty in the focus. By raising the awareness of scientific uncertainty as a driving force for scientific development and evolution, the public perspective on uncertainty is changing. While first steps to implement this process are under way, the value of uncertainty still is underestimated in the public and in politics. Therefore, science communicators are in need for new and innovative ways to talk about scientific uncertainty.

  20. Cloud Feedbacks on Climate: A Challenging Scientific Problem

    SciTech Connect

    Norris, Joel

    2010-05-10

    One reason it has been difficult to develop suitable social and economic policies to address global climate change is that projected global warming during the coming century has a large uncertainty range. The primary physical cause of this large uncertainty range is lack of understanding of the magnitude and even sign of cloud feedbacks on the climate system. If Earth's cloudiness responded to global warming by reflecting more solar radiation back to space or allowing more terrestrial radiation to be emitted to space, this would mitigate the warming produced by increased anthropogenic greenhouse gases. Contrastingly, a cloud response that reduced solar reflection or terrestrial emission would exacerbate anthropogenic greenhouse warming. It is likely that a mixture of responses will occur depending on cloud type and meteorological regime, and at present, we do not know what the net effect will be. This presentation will explain why cloud feedbacks have been a challenging scientific problem from the perspective of theory, modeling, and observations. Recent research results on observed multidecadal cloud-atmosphere-ocean variability over the Pacific Ocean will also be shown, along with suggestions for future research.

  1. Cloud Feedbacks on Climate: A Challenging Scientific Problem

    SciTech Connect

    Norris, Joe

    2010-05-12

    One reason it has been difficult to develop suitable social and economic policies to address global climate change is that projected global warming during the coming century has a large uncertainty range. The primary physical cause of this large uncertainty range is lack of understanding of the magnitude and even sign of cloud feedbacks on the climate system. If Earth's cloudiness responded to global warming by reflecting more solar radiation back to space or allowing more terrestrial radiation to be emitted to space, this would mitigate the warming produced by increased anthropogenic greenhouse gases. Contrastingly, a cloud response that reduced solar reflection or terrestrial emission would exacerbate anthropogenic greenhouse warming. It is likely that a mixture of responses will occur depending on cloud type and meteorological regime, and at present, we do not know what the net effect will be. This presentation will explain why cloud feedbacks have been a challenging scientific problem from the perspective of theory, modeling, and observations. Recent research results on observed multidecadal cloud-atmosphere-ocean variability over the Pacific Ocean will also be shown, along with suggestions for future research.

  2. Cloud Feedbacks on Climate: A Challenging Scientific Problem

    ScienceCinema

    Norris, Joe [Scripps Institution of Oceanography, University of California, San Diego, California, USA

    2016-07-12

    One reason it has been difficult to develop suitable social and economic policies to address global climate change is that projected global warming during the coming century has a large uncertainty range. The primary physical cause of this large uncertainty range is lack of understanding of the magnitude and even sign of cloud feedbacks on the climate system. If Earth's cloudiness responded to global warming by reflecting more solar radiation back to space or allowing more terrestrial radiation to be emitted to space, this would mitigate the warming produced by increased anthropogenic greenhouse gases. Contrastingly, a cloud response that reduced solar reflection or terrestrial emission would exacerbate anthropogenic greenhouse warming. It is likely that a mixture of responses will occur depending on cloud type and meteorological regime, and at present, we do not know what the net effect will be. This presentation will explain why cloud feedbacks have been a challenging scientific problem from the perspective of theory, modeling, and observations. Recent research results on observed multidecadal cloud-atmosphere-ocean variability over the Pacific Ocean will also be shown, along with suggestions for future research.

  3. Measurement uncertainty for multiple measurands: characterization and comparison of uncertainty matrices

    NASA Astrophysics Data System (ADS)

    Hässelbarth, Werner; Bremser, Wolfram

    2007-04-01

    The 'uncertainty matrix', i.e. the variance/covariance matrix associated with a set of values obtained by measurement of multiple measurands, is discussed as the multivariate analogue of the standard uncertainty (or rather the variance) of a value obtained for a single measurand. The main topics are the characterization and comparison of uncertainty matrices with respect to the level of uncertainty of derived quantities and the level of correlation effects on the uncertainty of derived quantities. Examples include a comprehensive application study on the normalization of natural gas composition data. Supplementary technical material such as basic properties of uncertainty matrices and mathematical proofs are included in an appendix. Note. The topic of this paper will be addressed in an addendum to the GUM, 'Models with any number of output quantities', currently prepared by the Working Group 1 of the Joint Committee for Guides in Metrology of the BIPM and other international organizations (JCGM/WG1, see [2]). So far there is no public draft available, and the authors do not have any information about the contents.

  4. On the Directional Dependence and Null Space Freedom in Uncertainty Bound Identification

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Giesy, D. P.

    1997-01-01

    In previous work, the determination of uncertainty models via minimum norm model validation is based on a single set of input and output measurement data. Since uncertainty bounds at each frequency is directionally dependent for multivariable systems, this will lead to optimistic uncertainty levels. In addition, the design freedom in the uncertainty model has not been utilized to further reduce uncertainty levels. The above issues are addressed by formulating a min- max problem. An analytical solution to the min-max problem is given to within a generalized eigenvalue problem, thus avoiding a direct numerical approach. This result will lead to less conservative and more realistic uncertainty models for use in robust control.

  5. Majorization entropic uncertainty relations

    NASA Astrophysics Data System (ADS)

    Puchała, Zbigniew; Rudnicki, Łukasz; Życzkowski, Karol

    2013-07-01

    Entropic uncertainty relations in a finite-dimensional Hilbert space are investigated. Making use of the majorization technique we derive explicit lower bounds for the sum of Rényi entropies describing probability distributions associated with a given pure state expanded in eigenbases of two observables. Obtained bounds are expressed in terms of the largest singular values of submatrices of the unitary rotation matrix. Numerical simulations show that for a generic unitary matrix of size N = 5, our bound is stronger than the well-known result of Maassen and Uffink (MU) with a probability larger than 98%. We also show that the bounds investigated are invariant under the dephasing and permutation operations. Finally, we derive a classical analogue of the MU uncertainty relation, which is formulated for stochastic transition matrices. Dedicated to Iwo Białynicki-Birula on the occasion of his 80th birthday.

  6. Uncertainties in transpiration estimates.

    PubMed

    Coenders-Gerrits, A M J; van der Ent, R J; Bogaard, T A; Wang-Erlandsson, L; Hrachowitz, M; Savenije, H H G

    2014-02-13

    arising from S. Jasechko et al. Nature 496, 347-350 (2013)10.1038/nature11983How best to assess the respective importance of plant transpiration over evaporation from open waters, soils and short-term storage such as tree canopies and understories (interception) has long been debated. On the basis of data from lake catchments, Jasechko et al. conclude that transpiration accounts for 80-90% of total land evaporation globally (Fig. 1a). However, another choice of input data, together with more conservative accounting of the related uncertainties, reduces and widens the transpiration ratio estimation to 35-80%. Hence, climate models do not necessarily conflict with observations, but more measurements on the catchment scale are needed to reduce the uncertainty range. There is a Reply to this Brief Communications Arising by Jasechko, S. et al. Nature 506, http://dx.doi.org/10.1038/nature12926 (2014).

  7. Radar stage uncertainty

    USGS Publications Warehouse

    Fulford, J.M.; Davies, W.J.

    2005-01-01

    The U.S. Geological Survey is investigating the performance of radars used for stage (or water-level) measurement. This paper presents a comparison of estimated uncertainties and data for radar water-level measurements with float, bubbler, and wire weight water-level measurements. The radar sensor was also temperature-tested in a laboratory. The uncertainty estimates indicate that radar measurements are more accurate than uncorrected pressure sensors at higher water stages, but are less accurate than pressure sensors at low stages. Field data at two sites indicate that radar sensors may have a small negative bias. Comparison of field radar measurements with wire weight measurements found that the radar tends to measure slightly lower values as stage increases. Copyright ASCE 2005.

  8. Uncertainties in climate stabilization

    SciTech Connect

    Wigley, T. M.; Clarke, Leon E.; Edmonds, James A.; Jacoby, H. D.; Paltsev, S.; Pitcher, Hugh M.; Reilly, J. M.; Richels, Richard G.; Sarofim, M. C.; Smith, Steven J.

    2009-11-01

    We explore the atmospheric composition, temperature and sea level implications of new reference and cost-optimized stabilization emissions scenarios produced using three different Integrated Assessment (IA) models for U.S. Climate Change Science Program (CCSP) Synthesis and Assessment Product 2.1a. We also consider an extension of one of these sets of scenarios out to 2300. Stabilization is defined in terms of radiative forcing targets for the sum of gases potentially controlled under the Kyoto Protocol. For the most stringent stabilization case (“Level 1” with CO2 concentration stabilizing at about 450 ppm), peak CO2 emissions occur close to today, implying a need for immediate CO2 emissions abatement if we wish to stabilize at this level. In the extended reference case, CO2 stabilizes at 1000 ppm in 2200 – but even to achieve this target requires large and rapid CO2 emissions reductions over the 22nd century. Future temperature changes for the Level 1 stabilization case show considerable uncertainty even when a common set of climate model parameters is used (a result of different assumptions for non-Kyoto gases). Uncertainties are about a factor of three when climate sensitivity uncertainties are accounted for. We estimate the probability that warming from pre-industrial times will be less than 2oC to be about 50%. For one of the IA models, warming in the Level 1 case is greater out to 2050 than in the reference case, due to the effect of decreasing SO2 emissions that occur as a side effect of the policy-driven reduction in CO2 emissions. Sea level rise uncertainties for the Level 1 case are very large, with increases ranging from 12 to 100 cm over 2000 to 2300.

  9. Nature of Science, Scientific Inquiry, and Socio-Scientific Issues Arising from Genetics: A Pathway to Developing a Scientifically Literate Citizenry

    ERIC Educational Resources Information Center

    Lederman, Norman G.; Antink, Allison; Bartos, Stephen

    2014-01-01

    The primary focus of this article is to illustrate how teachers can use contemporary socio-scientific issues to teach students about nature of scientific knowledge as well as address the science subject matter embedded in the issues. The article provides an initial discussion about the various aspects of nature of scientific knowledge that are…

  10. Uncertainty in mapping urban air quality using crowdsourcing techniques

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Castell, Nuria; Lahoz, William; Bartonova, Alena

    2016-04-01

    Small and low-cost sensors measuring various air pollutants have become available in recent years owing to advances in sensor technology. Such sensors have significant potential for improving high-resolution mapping of air quality in the urban environment as they can be deployed in comparatively large numbers and therefore are able to provide information at unprecedented spatial detail. However, such sensor devices are subject to significant and currently little understood uncertainties that affect their usability. Not only do these devices exhibit random errors and biases of occasionally substantial magnitudes, but these errors may also shift over time. In addition, there often tends to be significant inter-sensor variability even when supposedly identical sensors from the same manufacturer are used. We need to quantify accurately these uncertainties to make proper use of the information they provide. Furthermore, when making use of the data and producing derived products such as maps, the measurement uncertainties that propagate throughout the analysis need to be clearly communicated to the scientific and non-scientific users of the map products. Based on recent experiences within the EU-funded projects CITI-SENSE and hackAIR we discuss the uncertainties along the entire processing chain when using crowdsourcing techniques for mapping urban air quality. Starting with the uncertainties exhibited by the sensors themselves, we present ways of quantifying the error characteristics of a network of low-cost microsensors and show suitable statistical metrics for summarizing them. Subsequently, we briefly present a data-fusion-based method for mapping air quality in the urban environment and illustrate how we propagate the uncertainties of the individual sensors throughout the mapping system, resulting in detailed maps that document the pixel-level uncertainty for each concentration field. Finally, we present methods for communicating the resulting spatial uncertainty

  11. Uncertainty quantified trait predictions

    NASA Astrophysics Data System (ADS)

    Fazayeli, Farideh; Kattge, Jens; Banerjee, Arindam; Schrodt, Franziska; Reich, Peter

    2015-04-01

    Functional traits of organisms are key to understanding and predicting biodiversity and ecological change, which motivates continuous collection of traits and their integration into global databases. Such composite trait matrices are inherently sparse, severely limiting their usefulness for further analyses. On the other hand, traits are characterized by the phylogenetic trait signal, trait-trait correlations and environmental constraints, all of which provide information that could be used to statistically fill gaps. We propose the application of probabilistic models which, for the first time, utilize all three characteristics to fill gaps in trait databases and predict trait values at larger spatial scales. For this purpose we introduce BHPMF, a hierarchical Bayesian extension of Probabilistic Matrix Factorization (PMF). PMF is a machine learning technique which exploits the correlation structure of sparse matrices to impute missing entries. BHPMF additionally utilizes the taxonomic hierarchy for trait prediction. Implemented in the context of a Gibbs Sampler MCMC approach BHPMF provides uncertainty estimates for each trait prediction. We present comprehensive experimental results on the problem of plant trait prediction using the largest database of plant traits, where BHPMF shows strong empirical performance in uncertainty quantified trait prediction, outperforming the state-of-the-art based on point estimates. Further, we show that BHPMF is more accurate when it is confident, whereas the error is high when the uncertainty is high.

  12. Calibration Under Uncertainty.

    SciTech Connect

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  13. The Species Delimitation Uncertainty Principle

    PubMed Central

    Adams, Byron J.

    2001-01-01

    If, as Einstein said, "it is the theory which decides what we can observe," then "the species problem" could be solved by simply improving our theoretical definition of what a species is. However, because delimiting species entails predicting the historical fate of evolutionary lineages, species appear to behave according to the Heisenberg Uncertainty Principle, which states that the most philosophically satisfying definitions of species are the least operational, and as species concepts are modified to become more operational they tend to lose their philosophical integrity. Can species be delimited operationally without losing their philosophical rigor? To mitigate the contingent properties of species that tend to make them difficult for us to delimit, I advocate a set of operations that takes into account the prospective nature of delimiting species. Given the fundamental role of species in studies of evolution and biodiversity, I also suggest that species delimitation proceed within the context of explicit hypothesis testing, like other scientific endeavors. The real challenge is not so much the inherent fallibility of predicting the future but rather adequately sampling and interpreting the evidence available to us in the present. PMID:19265874

  14. Uncertainty and error in computational simulations

    SciTech Connect

    Oberkampf, W.L.; Diegert, K.V.; Alvin, K.F.; Rutherford, B.M.

    1997-10-01

    The present paper addresses the question: ``What are the general classes of uncertainty and error sources in complex, computational simulations?`` This is the first step of a two step process to develop a general methodology for quantitatively estimating the global modeling and simulation uncertainty in computational modeling and simulation. The second step is to develop a general mathematical procedure for representing, combining and propagating all of the individual sources through the simulation. The authors develop a comprehensive view of the general phases of modeling and simulation. The phases proposed are: conceptual modeling of the physical system, mathematical modeling of the system, discretization of the mathematical model, computer programming of the discrete model, numerical solution of the model, and interpretation of the results. This new view is built upon combining phases recognized in the disciplines of operations research and numerical solution methods for partial differential equations. The characteristics and activities of each of these phases is discussed in general, but examples are given for the fields of computational fluid dynamics and heat transfer. They argue that a clear distinction should be made between uncertainty and error that can arise in each of these phases. The present definitions for uncertainty and error are inadequate and. therefore, they propose comprehensive definitions for these terms. Specific classes of uncertainty and error sources are then defined that can occur in each phase of modeling and simulation. The numerical sources of error considered apply regardless of whether the discretization procedure is based on finite elements, finite volumes, or finite differences. To better explain the broad types of sources of uncertainty and error, and the utility of their categorization, they discuss a coupled-physics example simulation.

  15. Multi-scenario modelling of uncertainty in stochastic chemical systems

    SciTech Connect

    Evans, R. David; Ricardez-Sandoval, Luis A.

    2014-09-15

    Uncertainty analysis has not been well studied at the molecular scale, despite extensive knowledge of uncertainty in macroscale systems. The ability to predict the effect of uncertainty allows for robust control of small scale systems such as nanoreactors, surface reactions, and gene toggle switches. However, it is difficult to model uncertainty in such chemical systems as they are stochastic in nature, and require a large computational cost. To address this issue, a new model of uncertainty propagation in stochastic chemical systems, based on the Chemical Master Equation, is proposed in the present study. The uncertain solution is approximated by a composite state comprised of the averaged effect of samples from the uncertain parameter distributions. This model is then used to study the effect of uncertainty on an isomerization system and a two gene regulation network called a repressilator. The results of this model show that uncertainty in stochastic systems is dependent on both the uncertain distribution, and the system under investigation. -- Highlights: •A method to model uncertainty on stochastic systems was developed. •The method is based on the Chemical Master Equation. •Uncertainty in an isomerization reaction and a gene regulation network was modelled. •Effects were significant and dependent on the uncertain input and reaction system. •The model was computationally more efficient than Kinetic Monte Carlo.

  16. Characterizing spatial uncertainty when integrating social data in conservation planning.

    PubMed

    Lechner, A M; Raymond, C M; Adams, V M; Polyakov, M; Gordon, A; Rhodes, J R; Mills, M; Stein, A; Ives, C D; Lefroy, E C

    2014-12-01

    Recent conservation planning studies have presented approaches for integrating spatially referenced social (SRS) data with a view to improving the feasibility of conservation action. We reviewed the growing conservation literature on SRS data, focusing on elicited or stated preferences derived through social survey methods such as choice experiments and public participation geographic information systems. Elicited SRS data includes the spatial distribution of willingness to sell, willingness to pay, willingness to act, and assessments of social and cultural values. We developed a typology for assessing elicited SRS data uncertainty which describes how social survey uncertainty propagates when projected spatially and the importance of accounting for spatial uncertainty such as scale effects and data quality. These uncertainties will propagate when elicited SRS data is integrated with biophysical data for conservation planning and may have important consequences for assessing the feasibility of conservation actions. To explore this issue further, we conducted a systematic review of the elicited SRS data literature. We found that social survey uncertainty was commonly tested for, but that these uncertainties were ignored when projected spatially. Based on these results we developed a framework which will help researchers and practitioners estimate social survey uncertainty and use these quantitative estimates to systematically address uncertainty within an analysis. This is important when using SRS data in conservation applications because decisions need to be made irrespective of data quality and well characterized uncertainty can be incorporated into decision theoretic approaches.

  17. Innovative Legal Approaches to Address Obesity

    PubMed Central

    Pomeranz, Jennifer L; Teret, Stephen P; Sugarman, Stephen D; Rutkow, Lainie; Brownell, Kelly D

    2009-01-01

    Context: The law is a powerful public health tool with considerable potential to address the obesity issue. Scientific advances, gaps in the current regulatory environment, and new ways of conceptualizing rights and responsibilities offer a foundation for legal innovation. Methods: This article connects developments in public health and nutrition with legal advances to define promising avenues for preventing obesity through the application of the law. Findings: Two sets of approaches are defined: (1) direct application of the law to factors known to contribute to obesity and (2) original and innovative legal solutions that address the weak regulatory stance of government and the ineffectiveness of existing policies used to control obesity. Specific legal strategies are discussed for limiting children's food marketing, confronting the potential addictive properties of food, compelling industry speech, increasing government speech, regulating conduct, using tort litigation, applying nuisance law as a litigation strategy, and considering performance-based regulation as an alternative to typical regulatory actions. Finally, preemption is an overriding issue and can play both a facilitative and a hindering role in obesity policy. Conclusions: Legal solutions are immediately available to the government to address obesity and should be considered at the federal, state, and local levels. New and innovative legal solutions represent opportunities to take the law in creative directions and to link legal, nutrition, and public health communities in constructive ways. PMID:19298420

  18. Reducing, Maintaining, or Escalating Uncertainty? The Development and Validation of Four Uncertainty Preference Scales Related to Cancer Information Seeking and Avoidance.

    PubMed

    Carcioppolo, Nick; Yang, Fan; Yang, Qinghua

    2016-09-01

    Uncertainty is a central characteristic of many aspects of cancer prevention, screening, diagnosis, and treatment. Brashers's (2001) uncertainty management theory details the multifaceted nature of uncertainty and describes situations in which uncertainty can both positively and negatively affect health outcomes. The current study extends theory on uncertainty management by developing four scale measures of uncertainty preferences in the context of cancer. Two national surveys were conducted to validate the scales and assess convergent and concurrent validity. Results support the factor structure of each measure and provide general support across multiple validity assessments. These scales can advance research on uncertainty and cancer communication by providing researchers with measures that address multiple aspects of uncertainty management. PMID:27450905

  19. Hendra in the news: public policy meets public morality in times of zoonotic uncertainty.

    PubMed

    Degeling, Chris; Kerridge, Ian

    2013-04-01

    Public discourses have influence on policymaking for emerging health issues. Media representations of unfolding events, scientific uncertainty, and real and perceived risks shape public acceptance of health policy and therefore policy outcomes. To characterize and track views in popular circulation on the causes, consequences and appropriate policy responses to the emergence of Hendra virus as a zoonotic risk, this study examines coverage of this issue in Australian mass media for the period 2007-2011. Results demonstrate the predominant explanation for the emergence of Hendra became the encroachment of flying fox populations on human settlement. Depictions of scientific uncertainty as to whom and what was at risk from Hendra virus promoted the view that flying foxes were a direct risk to human health. Descriptions of the best strategy to address Hendra have become polarized between recognized health authorities advocating individualized behaviour changes to limit risk exposure; versus populist calls for flying fox control and eradication. Less than a quarter of news reports describe the ecological determinants of emerging infectious disease or upstream policy solutions. Because flying foxes rather than horses were increasingly represented as the proximal source of human infection, existing policies of flying fox protection became equated with government inaction; the plight of those affected by flying foxes representative of a moral failure. These findings illustrate the potential for health communications for emerging infectious disease risks to become entangled in other political agendas, with implications for the public's likelihood of supporting public policy and risk management strategies that require behavioural change or seek to address the ecological drivers of incidence.

  20. Hendra in the news: public policy meets public morality in times of zoonotic uncertainty.

    PubMed

    Degeling, Chris; Kerridge, Ian

    2013-04-01

    Public discourses have influence on policymaking for emerging health issues. Media representations of unfolding events, scientific uncertainty, and real and perceived risks shape public acceptance of health policy and therefore policy outcomes. To characterize and track views in popular circulation on the causes, consequences and appropriate policy responses to the emergence of Hendra virus as a zoonotic risk, this study examines coverage of this issue in Australian mass media for the period 2007-2011. Results demonstrate the predominant explanation for the emergence of Hendra became the encroachment of flying fox populations on human settlement. Depictions of scientific uncertainty as to whom and what was at risk from Hendra virus promoted the view that flying foxes were a direct risk to human health. Descriptions of the best strategy to address Hendra have become polarized between recognized health authorities advocating individualized behaviour changes to limit risk exposure; versus populist calls for flying fox control and eradication. Less than a quarter of news reports describe the ecological determinants of emerging infectious disease or upstream policy solutions. Because flying foxes rather than horses were increasingly represented as the proximal source of human infection, existing policies of flying fox protection became equated with government inaction; the plight of those affected by flying foxes representative of a moral failure. These findings illustrate the potential for health communications for emerging infectious disease risks to become entangled in other political agendas, with implications for the public's likelihood of supporting public policy and risk management strategies that require behavioural change or seek to address the ecological drivers of incidence. PMID:23294874

  1. Tutorial examples for uncertainty quantification methods.

    SciTech Connect

    De Bord, Sarah

    2015-08-01

    This report details the work accomplished during my 2015 SULI summer internship at Sandia National Laboratories in Livermore, CA. During this internship, I worked on multiple tasks with the common goal of making uncertainty quantification (UQ) methods more accessible to the general scientific community. As part of my work, I created a comprehensive numerical integration example to incorporate into the user manual of a UQ software package. Further, I developed examples involving heat transfer through a window to incorporate into tutorial lectures that serve as an introduction to UQ methods.

  2. "So a Frackademic and an Environmentalist Walk into an Error Bar...": Communicating Uncertainty Amidst Controversy

    NASA Astrophysics Data System (ADS)

    Kroepsch, A.

    2013-12-01

    above. In striving to separate 'signal' from 'noise' in the public discourse, we have experimented with literary devices (metaphor and narrative), pedagogical tools (the 'what we know, what we don't know, and what we hope to learn' format), journalistic practices (the humanizing profile), and, perhaps most importantly, disarming delivery techniques (humor). In describing these methods, and their effectiveness at addressing scientific uncertainty, the author will be sure to acknowledge the uncertainties inherent therein.

  3. Integrating Scientific Inquiry into an Undergraduate Applied Remote Sensing Course

    NASA Astrophysics Data System (ADS)

    Sivanpillai, R.

    2015-12-01

    Inquiry-based learning (IBL) methods require students to engage in learning activities instead of focusing on learning concepts and facts. Working with the instructor, students have to formulate their research questions, collect and analyze data, and arrive at conclusions. In other words, the focus is shifted from preparing for exams to learning to apply the concepts introduced in the classroom. This experience could result in better understanding of the scientific concepts but instructors have to devote more time for designing and implementing IBL methods in their classroom. At the University of Wyoming, an applied remote sensing course has been taught since 2008. Students enrolled in this course are required to complete a project that is designed around IBL methods. Students do not receive detailed instructions for completing their project, but are trained to develop their own research questions, design an experiment, review literature, and collect, analyze and interpret their data. Additionally they learn about uncertainties and strategies for addressing them at various stages of their project. This presentation will describe the work involved in designing, implementing and mentoring students to successfully complete the course requirements and learn scientific research methods. Lessons learned from this course could provide insights to other instructors interested in implementing IBL or other active learning methods in their classroom.

  4. The propagation of uncertainty for humidity calculations

    NASA Astrophysics Data System (ADS)

    Lovell-Smith, J.

    2009-12-01

    This paper addresses the international humidity community's need for standardization of methods for propagation of uncertainty associated with humidity generators and for handling uncertainty associated with the reference water vapour-pressure and enhancement-factor equations. The paper outlines uncertainty calculations for the mixing ratio, dew-point temperature and relative humidity output from humidity generators, and in particular considers controlling equations for a theoretical hybrid humidity generator combining single-pressure (1-P), two-pressure (2-P) and two-flow (2-F) principles. Also considered is the case where the humidity generator is used as a stable source with traceability derived from a reference hygrometer, i.e. a dew-point meter, a relative humidity meter or a wet-bulb psychrometer. Most humidity generators in use at national metrology institutes can be considered to be special cases of those considered here and sensitivity coefficients for particular types may be extracted. The ability to account for correlations between input variables and between different instances of the evaluation of the reference equations is discussed. The uncertainty calculation examples presented here are representative of most humidity calculations.

  5. Asymmetric Uncertainty Expression for High Gradient Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T

    2012-01-01

    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

  6. New Programming Environments for Uncertainty Analysis

    NASA Astrophysics Data System (ADS)

    Hill, M. C.; Poeter, E. P.; Banta, E. R.; Christensen, S.; Cooley, R. L.; Ely, D. M.; Babendreier, J.; Leavesley, G.; Tonkin, M.; Julich, R.

    2005-12-01

    We live in a world of faster computers, better GUI's and visualization technology, increasing international cooperation made possible by new digital infrastructure, new agreements between US federal agencies (such as ISCMEM), new European Union programs (such as Harmoniqua), and greater collaboration between US university scientists through CUAHSI. These changes provide new resources for tackling the difficult job of quantifying how well our models perform. This talk introduces new programming environments that take advantage of these new developments and will change the paradigm of how we develop methods for uncertainty evaluation. For example, the programming environments provided by COSU API, JUPITER API, and Sensitivity/Optimization Toolbox provide enormous opportunities for faster and more meaningful evaluation of uncertainties. Instead of waiting years for ideas and theories to be compared in the complex circumstances of interest to resource managers, these new programming environments will expedite the process. In the new paradigm, unproductive ideas and theories will be revealed more quickly, productive ideas and theories will more quickly be used to address our increasingly difficult water resources problems. As examples, two ideas in JUPITER API applications are presented: uncertainty correction factors that account for system complexities not represented in models, and PPR and OPR statistics used to identify new data needed to reduce prediction uncertainty.

  7. Professionalism, scientific freedom and dissent: individual and institutional roles and responsibilities in geoethics

    NASA Astrophysics Data System (ADS)

    Bilham, Nic

    2015-04-01

    Debate and dissent are at the heart of scientific endeavour. A diversity of perspectives, alternative interpretations of evidence and the robust defence of competing theories and models drive the advancement of scientific knowledge. Just as importantly, legitimate dissent and diversity of views should not be covered up when offering scientific advice to policy-makers and providing evidence to inform public debate - indeed, they should be valued. We should offer what Andy Stirling has termed 'plural and conditional' scientific advice, not just for the sake of democratic legitimacy, but because it supports better informed and more effective policy-making. 'Monocultures' of scientific advice may have a superficial appeal to policy-makers, but they devalue the contribution of scientists, undermine the resilience of regulatory structures, are often misleading, and can lead to catastrophic policy failure. Furthermore, many of the great societal challenges now facing us require interdisciplinary approaches, across the natural sciences and more widely still, which bring to the fore the need for humility, recognition that we do not have all the answers, and mutual respect for the views of others. In contentious areas such as climate change, extraction of shale gas and radioactive waste disposal, however, such open dialogue may make researchers and practitioners vulnerable to advocates and campaigners who cherry-pick the evidence, misinterpret it, or seek to present scientific uncertainty and debate as mere ignorance. Nor are scientists themselves always above such unethical tactics. The apparent authority conferred on unscrupulous 'campaigning scientists' by their academic and professional credentials may make it all but impossible to distinguish them from those who legitimately make the case for a minority scientific view (and may be marginalised by the mainstream of their discipline in doing so). There is a risk that real scientific debate may be thwarted. Individual

  8. On different types of uncertainties in the context of the precautionary principle.

    PubMed

    Aven, Terje

    2011-10-01

    Few policies for risk management have created more controversy than the precautionary principle. A main problem is the extreme number of different definitions and interpretations. Almost all definitions of the precautionary principle identify "scientific uncertainties" as the trigger or criterion for its invocation; however, the meaning of this concept is not clear. For applying the precautionary principle it is not sufficient that the threats or hazards are uncertain. A stronger requirement is needed. This article provides an in-depth analysis of this issue. We question how the scientific uncertainties are linked to the interpretation of the probability concept, expected values, the results from probabilistic risk assessments, the common distinction between aleatory uncertainties and epistemic uncertainties, and the problem of establishing an accurate prediction model (cause-effect relationship). A new classification structure is suggested to define what scientific uncertainties mean.

  9. Addressing adolescent pregnancy with legislation.

    PubMed

    Montgomery, Tiffany M; Folken, Lori; Seitz, Melody A

    2014-01-01

    Adolescent pregnancy is a concern among many women's health practitioners. While it is practical and appropriate to work to prevent adolescent pregnancy by educating adolescents in health care clinics, schools and adolescent-friendly community-based organizations, suggesting and supporting legislative efforts to reduce adolescent pregnancy can help address the issue on an even larger scale. This article aims to help nurses better understand current legislation that addresses adolescent pregnancy, and to encourage support of future adolescent pregnancy prevention legislation. PMID:25145716

  10. Addressing adolescent pregnancy with legislation.

    PubMed

    Montgomery, Tiffany M; Folken, Lori; Seitz, Melody A

    2014-01-01

    Adolescent pregnancy is a concern among many women's health practitioners. While it is practical and appropriate to work to prevent adolescent pregnancy by educating adolescents in health care clinics, schools and adolescent-friendly community-based organizations, suggesting and supporting legislative efforts to reduce adolescent pregnancy can help address the issue on an even larger scale. This article aims to help nurses better understand current legislation that addresses adolescent pregnancy, and to encourage support of future adolescent pregnancy prevention legislation.

  11. In Our Mind's Eye? A Commentary on Kenneth Boulding's Address.

    ERIC Educational Resources Information Center

    Pahl, Ronald H.

    1992-01-01

    Comments on Kenneth Boulding's address to the 1991 Social Science Education Consortium Conference. Compares Boulding's approach to knowledge to the scientific community's correction of errors. Suggests that social studies might do better for the future by focusing on multicultural understanding with the realization that all people share many of…

  12. Nuclear Data Uncertainty Propagation in Depletion Calculations Using Cross Section Uncertainties in One-group or Multi-group

    SciTech Connect

    Díez, C.J.; Cabellos, O.; Martínez, J.S.

    2015-01-15

    Several approaches have been developed in last decades to tackle nuclear data uncertainty propagation problems of burn-up calculations. One approach proposed was the Hybrid Method, where uncertainties in nuclear data are propagated only on the depletion part of a burn-up problem. Because only depletion is addressed, only one-group cross sections are necessary, and hence, their collapsed one-group uncertainties. This approach has been applied successfully in several advanced reactor systems like EFIT (ADS-like reactor) or ESFR (Sodium fast reactor) to assess uncertainties on the isotopic composition. However, a comparison with using multi-group energy structures was not carried out, and has to be performed in order to analyse the limitations of using one-group uncertainties.

  13. Collective uncertainty entanglement test.

    PubMed

    Rudnicki, Łukasz; Horodecki, Paweł; Zyczkowski, Karol

    2011-10-01

    For a given pure state of a composite quantum system we analyze the product of its projections onto a set of locally orthogonal separable pure states. We derive a bound for this product analogous to the entropic uncertainty relations. For bipartite systems the bound is saturated for maximally entangled states and it allows us to construct a family of entanglement measures, we shall call collectibility. As these quantities are experimentally accessible, the approach advocated contributes to the task of experimental quantification of quantum entanglement, while for a three-qubit system it is capable to identify the genuine three-party entanglement.

  14. Collective Uncertainty Entanglement Test

    NASA Astrophysics Data System (ADS)

    Rudnicki, Łukasz; Horodecki, Paweł; Życzkowski, Karol

    2011-10-01

    For a given pure state of a composite quantum system we analyze the product of its projections onto a set of locally orthogonal separable pure states. We derive a bound for this product analogous to the entropic uncertainty relations. For bipartite systems the bound is saturated for maximally entangled states and it allows us to construct a family of entanglement measures, we shall call collectibility. As these quantities are experimentally accessible, the approach advocated contributes to the task of experimental quantification of quantum entanglement, while for a three-qubit system it is capable to identify the genuine three-party entanglement.

  15. Schwarzschild mass uncertainty

    NASA Astrophysics Data System (ADS)

    Davidson, Aharon; Yellin, Ben

    2014-02-01

    Applying Dirac's procedure to -dependent constrained systems, we derive a reduced total Hamiltonian, resembling an upside down harmonic oscillator, which generates the Schwarzschild solution in the mini super-spacetime. Associated with the now -dependent Schrodinger equation is a tower of localized Guth-Pi-Barton wave packets, orthonormal and non-singular, admitting equally spaced average-`energy' levels. Our approach is characterized by a universal quantum mechanical uncertainty structure which enters the game already at the flat spacetime level, and accompanies the massive Schwarzschild sector for any arbitrary mean mass. The average black hole horizon surface area is linearly quantized.

  16. Fundamental "Uncertainty" in Science

    NASA Astrophysics Data System (ADS)

    Reichl, Linda E.

    The conference on "Uncertainty and Surprise" was concerned with our fundamental inability to predict future events. How can we restructure organizations to effectively function in an uncertain environment? One concern is that many large complex organizations are built on mechanical models, but mechanical models cannot always respond well to "surprises." An underlying assumption a bout mechanical models is that, if we give them enough information about the world, they will know the future accurately enough that there will be few or no surprises. The assumption is that the future is basically predictable and deterministic.

  17. Satellite altitude determination uncertainties

    NASA Technical Reports Server (NTRS)

    Siry, J. W.

    1972-01-01

    Satellite altitude determination uncertainties will be discussed from the standpoint of the GEOS-C satellite, from the longer range viewpoint afforded by the Geopause concept. Data are focused on methods for short-arc tracking which are essentially geometric in nature. One uses combinations of lasers and collocated cameras. The other method relies only on lasers, using three or more to obtain the position fix. Two typical locales are looked at, the Caribbean area, and a region associated with tracking sites at Goddard, Bermuda and Canada which encompasses a portion of the Gulf Stream in which meanders develop.

  18. Addressing the Puzzle of Race

    ERIC Educational Resources Information Center

    Coleman, Samuel

    2011-01-01

    Although racial discrimination poses a devastating instrument of oppression, social work texts lack a clear and consistent definition of "race". The solution lies in according race the status of an "actor version" concept, while exploring the origins and variations of race ideas using "scientific observer version" explanations. This distinction…

  19. The Crossroads between Biology and Mathematics: The Scientific Method as the Basics of Scientific Literacy

    ERIC Educational Resources Information Center

    Karsai, Istvan; Kampis, George

    2010-01-01

    Biology is changing and becoming more quantitative. Research is creating new challenges that need to be addressed in education as well. New educational initiatives focus on combining laboratory procedures with mathematical skills, yet it seems that most curricula center on a single relationship between scientific knowledge and scientific method:…

  20. PREDON Scientific Data Preservation 2014

    NASA Astrophysics Data System (ADS)

    Diaconu, C.; Kraml, S.; Surace, C.; Chateigner, D.; Libourel, T.; Laurent, A.; Lin, Y.; Schaming, M.; Benbernou, S.; Lebbah, M.; Boucon, D.; Cérin, C.; Azzag, H.; Mouron, P.; Nief, J.-Y.; Coutin, S.; Beckmann, V.

    Scientific data collected with modern sensors or dedicated detectors exceed very often the perimeter of the initial scientific design. These data are obtained more and more frequently with large material and human efforts. A large class of scientific experiments are in fact unique because of their large scale, with very small chances to be repeated and to superseded by new experiments in the same domain: for instance high energy physics and astrophysics experiments involve multi-annual developments and a simple duplication of efforts in order to reproduce old data is simply not affordable. Other scientific experiments are in fact unique by nature: earth science, medical sciences etc. since the collected data is "time-stamped" and thereby non-reproducible by new experiments or observations. In addition, scientific data collection increased dramatically in the recent years, participating to the so-called "data deluge" and inviting for common reflection in the context of "big data" investigations. The new knowledge obtained using these data should be preserved long term such that the access and the re-use are made possible and lead to an enhancement of the initial investment. Data observatories, based on open access policies and coupled with multi-disciplinary techniques for indexing and mining may lead to truly new paradigms in science. It is therefore of outmost importance to pursue a coherent and vigorous approach to preserve the scientific data at long term. The preservation remains nevertheless a challenge due to the complexity of the data structure, the fragility of the custom-made software environments as well as the lack of rigorous approaches in workflows and algorithms. To address this challenge, the PREDON project has been initiated in France in 2012 within the MASTODONS program: a Big Data scientific challenge, initiated and supported by the Interdisciplinary Mission of the National Centre for Scientific Research (CNRS). PREDON is a study group formed by

  1. A structured analysis of uncertainty surrounding modeled impacts of groundwater-extraction rules

    NASA Astrophysics Data System (ADS)

    Guillaume, Joseph H. A.; Qureshi, M. Ejaz; Jakeman, Anthony J.

    2012-08-01

    Integrating economic and groundwater models for groundwater-management can help improve understanding of trade-offs involved between conflicting socioeconomic and biophysical objectives. However, there is significant uncertainty in most strategic decision-making situations, including in the models constructed to represent them. If not addressed, this uncertainty may be used to challenge the legitimacy of the models and decisions made using them. In this context, a preliminary uncertainty analysis was conducted of a dynamic coupled economic-groundwater model aimed at assessing groundwater extraction rules. The analysis demonstrates how a variety of uncertainties in such a model can be addressed. A number of methods are used including propagation of scenarios and bounds on parameters, multiple models, block bootstrap time-series sampling and robust linear regression for model calibration. These methods are described within the context of a theoretical uncertainty management framework, using a set of fundamental uncertainty management tasks and an uncertainty typology.

  2. A review of the generalized uncertainty principle.

    PubMed

    Tawfik, Abdel Nasser; Diab, Abdel Magied

    2015-12-01

    Based on string theory, black hole physics, doubly special relativity and some 'thought' experiments, minimal distance and/or maximum momentum are proposed. As alternatives to the generalized uncertainty principle (GUP), the modified dispersion relation, the space noncommutativity, the Lorentz invariance violation, and the quantum-gravity-induced birefringence effects are summarized. The origin of minimal measurable quantities and the different GUP approaches are reviewed and the corresponding observations are analysed. Bounds on the GUP parameter are discussed and implemented in the understanding of recent PLANCK observations of cosmic inflation. The higher-order GUP approaches predict minimal length uncertainty with and without maximum momenta. Possible arguments against the GUP are discussed; for instance, the concern about its compatibility with the equivalence principles, the universality of gravitational redshift and the free fall and law of reciprocal action are addressed. PMID:26512022

  3. Theoretical uncertainties in proton lifetime estimates

    NASA Astrophysics Data System (ADS)

    Kolešová, Helena; Malinský, Michal; Mede, Timon

    2016-06-01

    We recapitulate the primary sources of theoretical uncertainties in proton lifetime estimates in renormalizable, four-dimensional & non-supersymmetric grand unifications that represent the most conservative framework in which this question may be addressed at the perturbative level. We point out that many of these uncertainties are so severe and often even irreducible that there are only very few scenarios in which an NLO approach, as crucial as it is for a real testability of any specific model, is actually sensible. Among these, the most promising seems to be the minimal renormalizable SO(10) GUT whose high-energy gauge symmetry is spontaneously broken by the adjoint and the five-index antisymmetric irreducible representations.

  4. A review of the generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Nasser Tawfik, Abdel; Magied Diab, Abdel

    2015-12-01

    Based on string theory, black hole physics, doubly special relativity and some ‘thought’ experiments, minimal distance and/or maximum momentum are proposed. As alternatives to the generalized uncertainty principle (GUP), the modified dispersion relation, the space noncommutativity, the Lorentz invariance violation, and the quantum-gravity-induced birefringence effects are summarized. The origin of minimal measurable quantities and the different GUP approaches are reviewed and the corresponding observations are analysed. Bounds on the GUP parameter are discussed and implemented in the understanding of recent PLANCK observations of cosmic inflation. The higher-order GUP approaches predict minimal length uncertainty with and without maximum momenta. Possible arguments against the GUP are discussed; for instance, the concern about its compatibility with the equivalence principles, the universality of gravitational redshift and the free fall and law of reciprocal action are addressed.

  5. A review of the generalized uncertainty principle.

    PubMed

    Tawfik, Abdel Nasser; Diab, Abdel Magied

    2015-12-01

    Based on string theory, black hole physics, doubly special relativity and some 'thought' experiments, minimal distance and/or maximum momentum are proposed. As alternatives to the generalized uncertainty principle (GUP), the modified dispersion relation, the space noncommutativity, the Lorentz invariance violation, and the quantum-gravity-induced birefringence effects are summarized. The origin of minimal measurable quantities and the different GUP approaches are reviewed and the corresponding observations are analysed. Bounds on the GUP parameter are discussed and implemented in the understanding of recent PLANCK observations of cosmic inflation. The higher-order GUP approaches predict minimal length uncertainty with and without maximum momenta. Possible arguments against the GUP are discussed; for instance, the concern about its compatibility with the equivalence principles, the universality of gravitational redshift and the free fall and law of reciprocal action are addressed.

  6. Identification of severe accident uncertainties

    SciTech Connect

    Rivard, J.B.; Behr, V.L.; Easterling, R.G.; Griesmeyer, J.M.; Haskin, F.E.; Hatch, S.W.; Kolaczkowski, A.M.; Lipinski, R.J.; Sherman, M.P.; Taig, A.R.

    1984-09-01

    Understanding of severe accidents in light-water reactors is currently beset with uncertainty. Because the uncertainties that are present limit the capability to analyze the progression and possible consequences of such accidents, they restrict the technical basis for regulatory actions by the US Nuclear Regulatory Commission (NRC). It is thus necessary to attempt to identify the sources and quantify the influence of these uncertainties. As a part of ongoing NRC severe-accident programs at Sandia National Laboratories, a working group was formed to pool relevant knowledge and experience in assessing the uncertainties attending present (1983) knowledge of severe accidents. This initial report of the Severe Accident Uncertainty Analysis (SAUNA) working group has as its main goal the identification of a consolidated list of uncertainties that affect in-plant processes and systems. Many uncertainties have been identified. A set of key uncertainties summarizes many of the identified uncertainties. Quantification of the influence of these uncertainties, a necessary second step, is not attempted in the present report, although attempts are made qualitatively to demonstrate the relevance of the identified uncertainties.

  7. Dealing with uncertainty arising out of probabilistic risk assessment

    SciTech Connect

    Solomon, K.A.; Kastenberg, W.E.; Nelson, P.F.

    1984-03-01

    In addressing the area of safety goal implementation, the question of uncertainty arises. This report suggests that the Nuclear Regulatory Commission (NRC) should examine how other regulatory organizations have addressed the issue. Several examples are given from the chemical industry, and comparisons are made to nuclear power risks. Recommendations are made as to various considerations that the NRC should require in probabilistic risk assessments in order to properly treat uncertainties in the implementation of the safety goal policy. 40 references, 7 figures, 5 tables.

  8. 48 CFR 435.010 - Scientific and technical reports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 435.010 Scientific and technical reports... all scientific and technical reports to the National Technical Information Service at the address... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Scientific and...

  9. 48 CFR 435.010 - Scientific and technical reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 435.010 Scientific and technical reports... all scientific and technical reports to the National Technical Information Service at the address... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Scientific and...

  10. Investment, regulation, and uncertainty

    PubMed Central

    Smyth, Stuart J; McDonald, Jillian; Falck-Zepeda, Jose

    2014-01-01

    As with any technological innovation, time refines the technology, improving upon the original version of the innovative product. The initial GM crops had single traits for either herbicide tolerance or insect resistance. Current varieties have both of these traits stacked together and in many cases other abiotic and biotic traits have also been stacked. This innovation requires investment. While this is relatively straight forward, certain conditions need to exist such that investments can be facilitated. The principle requirement for investment is that regulatory frameworks render consistent and timely decisions. If the certainty of regulatory outcomes weakens, the potential for changes in investment patterns increases.   This article provides a summary background to the leading plant breeding technologies that are either currently being used to develop new crop varieties or are in the pipeline to be applied to plant breeding within the next few years. Challenges for existing regulatory systems are highlighted. Utilizing an option value approach from investment literature, an assessment of uncertainty regarding the regulatory approval for these varying techniques is undertaken. This research highlights which technology development options have the greatest degree of uncertainty and hence, which ones might be expected to see an investment decline. PMID:24499745

  11. The maintenance of uncertainty

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    Introduction Preliminaries State-space dynamics Linearized dynamics of infinitesimal uncertainties Instantaneous infinitesimal dynamics Finite-time evolution of infinitesimal uncertainties Lyapunov exponents and predictability The Baker's apprentice map Infinitesimals and predictability Dimensions The Grassberger-Procaccia algorithm Towards a better estimate from Takens' estimators Space-time-separation diagrams Intrinsic limits to the analysis of geometry Takens' theorem The method of delays Noise Prediction, prophecy, and pontification Introduction Simulations, models and physics Ground rules Data-based models: dynamic reconstructions Analogue prediction Local prediction Global prediction Accountable forecasts of chaotic systems Evaluating ensemble forecasts The annulus Prophecies Aids for more reliable nonlinear analysis Significant results: surrogate data, synthetic data and self-deception Surrogate data and the bootstrap Surrogate predictors: Is my model any good? Hints for the evaluation of new techniques Avoiding simple straw men Feasibility tests for the identification of chaos On detecting "tiny" data sets Building models consistent with the observations Cost functions ι-shadowing: Is my model any good? (reprise) Casting infinitely long shadows (out-of-sample) Distinguishing model error and system sensitivity Forecast error and model sensitivity Accountability Residual predictability Deterministic or stochastic dynamics? Using ensembles to distinguish the expectation from the expected Numerical Weather Prediction Probabilistic prediction with a deterministic model The analysis Constructing and interpreting ensembles The outlook(s) for today Conclusion Summary

  12. Uncertainty in adaptive capacity

    NASA Astrophysics Data System (ADS)

    Adger, W. Neil; Vincent, Katharine

    2005-03-01

    The capacity to adapt is a critical element of the process of adaptation: it is the vector of resources that represent the asset base from which adaptation actions can be made. Adaptive capacity can in theory be identified and measured at various scales, from the individual to the nation. The assessment of uncertainty within such measures comes from the contested knowledge domain and theories surrounding the nature of the determinants of adaptive capacity and the human action of adaptation. While generic adaptive capacity at the national level, for example, is often postulated as being dependent on health, governance and political rights, and literacy, and economic well-being, the determinants of these variables at national levels are not widely understood. We outline the nature of this uncertainty for the major elements of adaptive capacity and illustrate these issues with the example of a social vulnerability index for countries in Africa. To cite this article: W.N. Adger, K. Vincent, C. R. Geoscience 337 (2005).

  13. Antarctic Photochemistry: Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.; McConnell, Joseph R.

    1999-01-01

    Understanding the photochemistry of the Antarctic region is important for several reasons. Analysis of ice cores provides historical information on several species such as hydrogen peroxide and sulfur-bearing compounds. The former can potentially provide information on the history of oxidants in the troposphere and the latter may shed light on DMS-climate relationships. Extracting such information requires that we be able to model the photochemistry of the Antarctic troposphere and relate atmospheric concentrations to deposition rates and sequestration in the polar ice. This paper deals with one aspect of the uncertainty inherent in photochemical models of the high latitude troposphere: that arising from imprecision in the kinetic data used in the calculations. Such uncertainties in Antarctic models tend to be larger than those in models of mid to low latitude clean air. One reason is the lower temperatures which result in increased imprecision in kinetic data, assumed to be best characterized at 298K. Another is the inclusion of a DMS oxidation scheme in the present model. Many of the rates in this scheme are less precisely known than are rates in the standard chemistry used in many stratospheric and tropospheric models.

  14. Uncertainty in Wildfire Behavior

    NASA Astrophysics Data System (ADS)

    Finney, M.; Cohen, J. D.

    2013-12-01

    The challenge of predicting or modeling fire behavior is well recognized by scientists and managers who attempt predictions of fire spread rate or growth. At the scale of the spreading fire, the uncertainty in winds, moisture, fuel structure, and fire location make accurate predictions difficult, and the non-linear response of fire spread to these conditions means that average behavior is poorly represented by average environmental parameters. Even more difficult are estimations of threshold behaviors (e.g. spread/no-spread, crown fire initiation, ember generation and spotting) because the fire responds as a step-function to small changes in one or more environmental variables, translating to dynamical feedbacks and unpredictability. Recent research shows that ignition of fuel particles, itself a threshold phenomenon, depends on flame contact which is absolutely not steady or uniform. Recent studies of flame structure in both spreading and stationary fires reveals that much of the non-steadiness of the flames as they contact fuel particles results from buoyant instabilities that produce quasi-periodic flame structures. With fuel particle ignition produced by time-varying heating and short-range flame contact, future improvements in fire behavior modeling will likely require statistical approaches to deal with the uncertainty at all scales, including the level of heat transfer, the fuel arrangement, and weather.

  15. Probabilistic Mass Growth Uncertainties

    NASA Technical Reports Server (NTRS)

    Plumer, Eric; Elliott, Darren

    2013-01-01

    Mass has been widely used as a variable input parameter for Cost Estimating Relationships (CER) for space systems. As these space systems progress from early concept studies and drawing boards to the launch pad, their masses tend to grow substantially, hence adversely affecting a primary input to most modeling CERs. Modeling and predicting mass uncertainty, based on historical and analogous data, is therefore critical and is an integral part of modeling cost risk. This paper presents the results of a NASA on-going effort to publish mass growth datasheet for adjusting single-point Technical Baseline Estimates (TBE) of masses of space instruments as well as spacecraft, for both earth orbiting and deep space missions at various stages of a project's lifecycle. This paper will also discusses the long term strategy of NASA Headquarters in publishing similar results, using a variety of cost driving metrics, on an annual basis. This paper provides quantitative results that show decreasing mass growth uncertainties as mass estimate maturity increases. This paper's analysis is based on historical data obtained from the NASA Cost Analysis Data Requirements (CADRe) database.

  16. Communicating uncertainties in assessments of future sea level rise

    NASA Astrophysics Data System (ADS)

    Wikman-Svahn, P.

    2013-12-01

    How uncertainty should be managed and communicated in policy-relevant scientific assessments is directly connected to the role of science and the responsibility of scientists. These fundamentally philosophical issues influence how scientific assessments are made and how scientific findings are communicated to policymakers. It is therefore of high importance to discuss implicit assumptions and value judgments that are made in policy-relevant scientific assessments. The present paper examines these issues for the case of scientific assessments of future sea level rise. The magnitude of future sea level rise is very uncertain, mainly due to poor scientific understanding of all physical mechanisms affecting the great ice sheets of Greenland and Antarctica, which together hold enough land-based ice to raise sea levels more than 60 meters if completely melted. There has been much confusion from policymakers on how different assessments of future sea levels should be interpreted. Much of this confusion is probably due to how uncertainties are characterized and communicated in these assessments. The present paper draws on the recent philosophical debate on the so-called "value-free ideal of science" - the view that science should not be based on social and ethical values. Issues related to how uncertainty is handled in scientific assessments are central to this debate. This literature has much focused on how uncertainty in data, parameters or models implies that choices have to be made, which can have social consequences. However, less emphasis has been on how uncertainty is characterized when communicating the findings of a study, which is the focus of the present paper. The paper argues that there is a tension between on the one hand the value-free ideal of science and on the other hand usefulness for practical applications in society. This means that even if the value-free ideal could be upheld in theory, by carefully constructing and hedging statements characterizing

  17. Opportunities and challenges of using technology to address health disparities.

    PubMed

    Rivers, Brian M; Bernhardt, Jay M; Fleisher, Linda; Green, Bernard Lee

    2014-03-01

    During a panel presentation at the American Association for Cancer Research Cancer Health Disparities Conference titled 'Opportunities and challenges of using technology to address health disparities', the latest scientific advances in the application and utilization of mobile technology and/or mobile-health (mHealth) interventions to address cancer health disparities were discussed. The session included: an examination of overall population trends in the uptake of technology and the potential of addressing health disparities through such media; an exploration of the conceptual issues and challenges in the construction of mHealth interventions to address disparate and underserved populations; and a presentation of pilot study findings on the acceptability and feasibility of using mHealth interventions to address prostate cancer disparities among African-American men.

  18. USGS Science: Addressing Our Nation's Challenges

    USGS Publications Warehouse

    Larson, Tania M.

    2009-01-01

    With 6.6 billion people already living on Earth, and that number increasing every day, human influence on our planet is ever more apparent. Changes to the natural world combined with increasing human demands threaten our health and safety, our national security, our economy, and our quality of life. As a planet and a Nation, we face unprecedented challenges: loss of critical and unique ecosystems, the effects of climate change, increasing demand for limited energy and mineral resources, increasing vulnerability to natural hazards, the effects of emerging diseases on wildlife and human health, and growing needs for clean water. The time to respond to these challenges is now, but policymakers and decisionmakers face difficult choices. With competing priorities to balance, and potentially serious - perhaps irreversible - consequences at stake, our leaders need reliable scientific information to guide their decisions. As the Nation's earth and natural science agency, the USGS monitors and conducts scientific research on natural hazards and resources and how these elements and human activities influence our environment. Because the challenges we face are complex, the science needed to better understand and deal with these challenges must reflect the complex interplay among natural and human systems. With world-class expertise in biology, geology, geography, hydrology, geospatial information, and remote sensing, the USGS is uniquely capable of conducting the comprehensive scientific research needed to better understand the interdependent interactions of Earth's systems. Every day, the USGS helps decisionmakers to minimize loss of life and property, manage our natural resources, and protect and enhance our quality of life. This brochure provides examples of the challenges we face and how USGS science helps decisionmakers to address these challenges.

  19. Fast control latency uncertainty elimination for the BESIII ETOF upgrade

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Cao, Ping; Liu, Shu-bin; An, Qi

    2016-09-01

    A new fanning topology is proposed to precisely fan out fast control signals in the Beijing Spectrometer (BESIII) end-cap time-of-flight (ETOF) electronics. However, uncertainty in transfer latency is introduced by the new fanning channel, which will degrade the precision of fast control. In this paper, latency uncertainty elimination for the BESIII ETOF upgrade is introduced. The latency uncertainty is determined by a Time-Digital-Converter (TDC) embedded in a Field-Programmable Gate Array (FPGA) and is eliminated by re-capturing at synchronous and determinate time. Compared with the existing method of Barrel-cap TOF (BTOF), it has advantages of flexible structure, easy calibration and good adaptability. Field tests on the BESIII ETOF system show that this method effectively eliminates transfer latency uncertainty. Supported by CAS Maintenance Project for Major Scientific and Technological Infrastructure (IHEP-SW-953/2013)

  20. Characterizing Uncertainty in Epidemiological Studies for use in Human Health Risk Assessment

    EPA Science Inventory

    Characterization of scientific uncertainty can provide risk assessments with a level of confidence regarding decisions, whichallows for evaluation of the degree that uncertainty plays in the analysis of consequences of specific policies.To the best of our knowledge, there are no ...

  1. Uncertainty of measurements of spectral solar UV irradiance

    NASA Astrophysics Data System (ADS)

    Bernhard, G.; Seckmeyer, G.

    Most investigations on the nature and effects of solar ultraviolet (UV) radiation at the Earth's surface require measurements of high accuracy combined with well-defined procedures to assess their quality. Here we present a general evaluation of all relevant errors and uncertainties associated with measurements of spectral global irradiance in the UV. The uncertainties are quantified in terms of dependence of the characteristics of the spectroradiometer, the uncertainty of calibration standards, the solar zenith angle, and atmospheric conditions. The methodologies and equations presented can be applied to most spectroradiometers currently employed for UV research. The sources of error addressed include radiometric calibration, cosine error, spectral resolution, wavelength misalignment, stability, noise, stray light, and timing errors. The practical application of the method is demonstrated by setting up a complete uncertainty table for the mobile spectroradiometer of the Fraunhofer Institute for Atmospheric Environmental Research (IFU). This instrument has successfully participated in several international intercomparisons of UV spectroradiometers. The expanded uncertainty (coverage factor k=2) for measurements of global spectral irradiance conducted with this instrument varies between 6.3% in the UVA and 12.7% at 300 nm and 60° solar zenith angle. The expanded uncertainties in erythemally and DNA weighted irradiances are 6.1% and 6.6%, respectively. These expanded uncertainties are comparable to uncertainties at the 2σ level in conventional statistics. A substantial reduction of these uncertainties would require smaller uncertainties in the irradiance standards used to calibrate the instrument. Though uncertainties caused by wavelength misalignment and noise become prominent in the shortwave UVB, which is the most important spectral range for UV trend detection, the results indicate that the accuracy of the IFU radiometer is sufficient to detect long-term trends

  2. Exploration of Uncertainty in Glacier Modelling

    NASA Technical Reports Server (NTRS)

    Thompson, David E.

    1999-01-01

    There are procedures and methods for verification of coding algebra and for validations of models and calculations that are in use in the aerospace computational fluid dynamics (CFD) community. These methods would be efficacious if used by the glacier dynamics modelling community. This paper is a presentation of some of those methods, and how they might be applied to uncertainty management supporting code verification and model validation for glacier dynamics. The similarities and differences between their use in CFD analysis and the proposed application of these methods to glacier modelling are discussed. After establishing sources of uncertainty and methods for code verification, the paper looks at a representative sampling of verification and validation efforts that are underway in the glacier modelling community, and establishes a context for these within overall solution quality assessment. Finally, an information architecture and interactive interface is introduced and advocated. This Integrated Cryospheric Exploration (ICE) Environment is proposed for exploring and managing sources of uncertainty in glacier modelling codes and methods, and for supporting scientific numerical exploration and verification. The details and functionality of this Environment are described based on modifications of a system already developed for CFD modelling and analysis.

  3. Addressing problems of employee performance.

    PubMed

    McConnell, Charles R

    2011-01-01

    Employee performance problems are essentially of 2 kinds: those that are motivational in origin and those resulting from skill deficiencies. Both kinds of problems are the province of the department manager. Performance problems differ from problems of conduct in that traditional disciplinary processes ordinarily do not apply. Rather, performance problems are addressed through educational and remedial processes. The manager has a basic responsibility in ensuring that everything reasonable is done to help each employee succeed. There are a number of steps the manager can take to address employee performance problems.

  4. Uncertainty relation in Schwarzschild spacetime

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Zhang, Yao-Zhong; Gould, Mark D.; Fan, Heng

    2015-04-01

    We explore the entropic uncertainty relation in the curved background outside a Schwarzschild black hole, and find that Hawking radiation introduces a nontrivial modification on the uncertainty bound for particular observer, therefore it could be witnessed by proper uncertainty game experimentally. We first investigate an uncertainty game between a free falling observer and his static partner holding a quantum memory initially entangled with the quantum system to be measured. Due to the information loss from Hawking decoherence, we find an inevitable increase of the uncertainty on the outcome of measurements in the view of static observer, which is dependent on the mass of the black hole, the distance of observer from event horizon, and the mode frequency of quantum memory. To illustrate the generality of this paradigm, we relate the entropic uncertainty bound with other uncertainty probe, e.g., time-energy uncertainty. In an alternative game between two static players, we show that quantum information of qubit can be transferred to quantum memory through a bath of fluctuating quantum fields outside the black hole. For a particular choice of initial state, we show that the Hawking decoherence cannot counteract entanglement generation after the dynamical evolution of system, which triggers an effectively reduced uncertainty bound that violates the intrinsic limit -log2 ⁡ c. Numerically estimation for a proper choice of initial state shows that our result is comparable with possible real experiments. Finally, a discussion on the black hole firewall paradox in the context of entropic uncertainty relation is given.

  5. A genetic uncertainty problem.

    PubMed

    Tautz, D

    2000-11-01

    The existence of genes that, when knocked out, result in no obvious phenotype has puzzled biologists for many years. The phenomenon is often ascribed to redundancy in regulatory networks, caused by duplicated genes. However, a recent systematic analysis of data from the yeast genome projects does not support a link between gene duplications and redundancies. An alternative explanation suggests that genes might also evolve by very weak selection, which would mean that their true function cannot be studied in normal laboratory experiments. This problem is comparable to Heisenberg's uncertainty relationship in physics. It is possible to formulate an analogous relationship for biology, which, at its extreme, predicts that the understanding of the full function of a gene might require experiments on an evolutionary scale, involving the entire effective population size of a given species.

  6. Uncertainty as Certaint

    NASA Astrophysics Data System (ADS)

    Petzinger, Tom

    I am trying to make money in the biotech industry from complexity science. And I am doing it with inspiration that I picked up on the edge of Appalachia spending time with June Holley and ACEnet when I was a Wall Street Journal reporter. I took some of those ideas to Pittsburgh, in biotechnology, in a completely private setting with an economic development focus, but also with a mission t o return profit to private capital. And we are doing that. I submit as a hypothesis, something we are figuring out in the post- industrial era, that business evolves. It is not the definition of business, but business critically involves the design of systems in which uncertainty is treated as a certainty. That is what I have seen and what I have tried to put into practice.

  7. Living with uncertainty

    SciTech Connect

    Rau, N.; Fong, C.C.; Grigg, C.H.; Silverstein, B.

    1994-11-01

    In the electric utility industry, only one thing can be guaranteed with absolute certainty: one lives and works with many unknowns. Thus, the industry has embraced probability methods to varying degrees over the last 25 years. These techniques aid decision makers in planning, operations, and maintenance by quantifying uncertainty. Examples include power system reliability, production costing simulation, and assessment of environmental factors. A series of brainstorming sessions was conducted by the Application of Probability Methods (APM) Subcommittee of the IEEE Power Engineering Society to identify research and development needs and to ask the question, ''where should we go from here '' The subcommittee examined areas of need in data development, applications, and methods for decision making. The purpose of this article is to share the thoughts of APM members with a broader audience to the findings and to invite comments and participation.

  8. Risk communication: Uncertainties and the numbers game

    SciTech Connect

    Ortigara, M.

    1995-08-30

    The science of risk assessment seeks to characterize the potential risk in situations that may pose hazards to human health or the environment. However, the conclusions reached by the scientists and engineers are not an end in themselves - they are passed on to the involved companies, government agencies, legislators, and the public. All interested parties must then decide what to do with the information. Risk communication is a type of technical communication that involves some unique challenges. This paper first defines the relationships between risk assessment, risk management, and risk communication and then explores two issues in risk communication: addressing uncertainty and putting risk number into perspective.

  9. Uncertainties in container failure time predictions

    SciTech Connect

    Williford, R.E.

    1990-01-01

    Stochastic variations in the local chemical environment of a geologic waste repository can cause corresponding variations in container corrosion rates and failure times, and thus in radionuclide release rates. This paper addresses how well the future variations in repository chemistries must be known in order to predict container failure times that are bounded by a finite time period within the repository lifetime. Preliminary results indicate that a 5000 year scatter in predicted container failure times requires that repository chemistries be known to within {plus minus}10% over the repository lifetime. These are small uncertainties compared to current estimates. 9 refs., 3 figs.

  10. Generalized uncertainty relations

    NASA Astrophysics Data System (ADS)

    Akten, Burcu Elif

    1999-12-01

    The Heisenberg uncertainty relation has been put into a stronger form by Schrödinger and Robertson. This inequality is also canonically invariant. We ask if there are other independent inequalities for higher orders. The aim is to find a systematic way for writing these inequalities. After an overview of the Heisenberg and Schrödinger-Robertson inequalities and their minimal states in Chapter 1, we start by constructing the higher order invariants in Chapter 2. We construct some of the simpler invariants by direct calculation, which suggests a schematic way of representing all invariants. Diagrams describing invariants help us see their structure and their symmetries immediately and various simplifications in their calculations are obtained as a result. With these new tools, a more systematic approach to construct and classify invariants using group theory is introduced next. In Chapter 4, various methods of obtaining higher order inequalities are discussed and compared. First, the original approach of HUR is applied to the next order and a new inequality is obtained by working in a specific frame where the expectation value tensor is in its simplest form. However, this method can not be used for higher orders as the significant simplifications of a specific frame is no longer available. The second method consists of working with a state vector written as a sum of the eigenvectors of the operator (qp)s and has a Gaussian distribution about the state which makes s=0 . Finally, we try to obtain a general inequality for a whole class of invariants by writing the state vector as a sum of harmonic oscillator eigenstates. In Chapter 4, realistic measurements of the canonical variables are discussed in relation to the uncertainty relations. Finally, in Chapter 5, squeezed state generation by an optical parametric oscillator is described as an explicit demonstration of the HUR for the electromagnetic field. A similar approach is developed for testing higher order

  11. Addressing Phonological Questions with Ultrasound

    ERIC Educational Resources Information Center

    Davidson, Lisa

    2005-01-01

    Ultrasound can be used to address unresolved questions in phonological theory. To date, some studies have shown that results from ultrasound imaging can shed light on how differences in phonological elements are implemented. Phenomena that have been investigated include transitional schwa, vowel coalescence, and transparent vowels. A study of…

  12. Every Other Day. Keynote Address.

    ERIC Educational Resources Information Center

    Tiller, Tom

    Schools need to be reoriented and restructured so that what is taught and learned, and the way in which it is taught and learned, are better integrated with young people's real-world experiences. Many indicators suggest that the meaningful aspects of school have been lost in the encounter with modern times. The title of this address--"Every Other…

  13. State of the Lab Address

    SciTech Connect

    King, Alex

    2010-01-01

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  14. State of the Lab Address

    ScienceCinema

    King, Alex

    2016-07-12

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  15. Addressing Risks to Advance Mental Health Research

    PubMed Central

    Iltis, Ana S.; Misra, Sahana; Dunn, Laura B.; Brown, Gregory K.; Campbell, Amy; Earll, Sarah A.; Glowinski, Anne; Hadley, Whitney B.; Pies, Ronald; DuBois, James M.

    2015-01-01

    Objective Risk communication and management are essential to the ethical conduct of research, yet addressing risks may be time consuming for investigators and institutional review boards (IRBs) may reject study designs that appear too risky. This can discourage needed research, particularly in higher risk protocols or those enrolling potentially vulnerable individuals, such as those with some level of suicidality. Improved mechanisms for addressing research risks may facilitate much needed psychiatric research. This article provides mental health researchers with practical approaches to: 1) identify and define various intrinsic research risks; 2) communicate these risks to others (e.g., potential participants, regulatory bodies, society); 3) manage these risks during the course of a study; and 4) justify the risks. Methods As part of a National Institute of Mental Health (NIMH)-funded scientific meeting series, a public conference and a closed-session expert panel meeting were held on managing and disclosing risks in mental health clinical trials. The expert panel reviewed the literature with a focus on empirical studies and developed recommendations for best practices and further research on managing and disclosing risks in mental health clinical trials. IRB review was not required because there were no human subjects. The NIMH played no role in developing or reviewing the manuscript. Results Challenges, current data, practical strategies, and topics for future research are addressed for each of four key areas pertaining to management and disclosure of risks in clinical trials: identifying and defining risks, communicating risks, managing risks during studies, and justifying research risks. Conclusions Empirical data on risk communication, managing risks, and the benefits of research can support the ethical conduct of mental health research and may help investigators better conceptualize and confront risks and to gain IRB approval. PMID:24173618

  16. Addressing Extremes within the WCRP - GEWEX Framework

    NASA Astrophysics Data System (ADS)

    van Oevelen, P. J.; Stewart, R.; Detemmerman, V.

    2008-12-01

    For large international coordination programs such as the Global Energy and Water Cycle Experiment (GEWEX) as part of the World Climate Research Programme (WCRP) it is difficult to strike a good balance between enabling as much international involvement as is possible and desirable and the achievability of the objectives. WCRP has decided that "Extremes Research" is one of several areas where it would like to see its efforts strengthened and scientific research pushed forward. The foci that are being selected should be phrased such that they are practical and achievable within a time span of 1 to 3 years. Preferably these foci build upon the expertise from cross WCRP activities and are not restricted to single core project activities. In this presentation an overview will be given of the various activities within GEWEX that are related to extremes and which ones would be most ideal to be addressed as WCRP foci from a GEWEX perspective. The rationale and context of extreme research will be presented as well links to other national and international programs. "Extremes Research" as a topic is attractive since it has a high societal relevance and impact. However, numerous definitions of extremes exist and they are being used in widely varying contexts making it not always clear of what exactly is being addressed. This presentation will give an outlook on what can be expected research wise in the near future based upon the outcomes of the Extremes Workshop organised last June in Vancouver in the context of the Coordinated Energy and water cycle Observations Project (CEOP) as part of GEWEX. In particular it will be shown how these activities, which will only address certain types of extremes, can be linked to adaptation and mitigation efforts taking place in other organisations and by national and international bodies.

  17. Latin hypercube sampling as a tool in uncertainty analysis of computer models

    SciTech Connect

    McKay, M.D.

    1992-09-01

    This paper addresses several aspects of the analysis of uncertainty in the output of computer models arising from uncertainty in inputs (parameters). Uncertainty of this type, which is separate and distinct from the randomness of a stochastic model, most often arises when input values are guesstimates, or when they are estimated from data, or when the input parameters do not actually correspond to observable quantities, e.g., in lumped-parameter models. Uncertainty in the output is quantified in its probability distribution, which results from treating the inputs as random variables. The assessment of which inputs are important with respect to uncertainty is done relative to the probability distribution of the output.

  18. Nature of Science, Scientific Inquiry, and Socio-Scientific Issues Arising from Genetics: A Pathway to Developing a Scientifically Literate Citizenry

    NASA Astrophysics Data System (ADS)

    Lederman, Norman G.; Antink, Allison; Bartos, Stephen

    2012-06-01

    The primary focus of this article is to illustrate how teachers can use contemporary socio-scientific issues to teach students about nature of scientific knowledge as well as address the science subject matter embedded in the issues. The article provides an initial discussion about the various aspects of nature of scientific knowledge that are addressed. It is important to remember that the aspects of nature of scientific knowledge are not considered to be a comprehensive list, but rather a set of important ideas for adolescent students to learn about scientific knowledge. These ideas have been advocated as important for secondary students by numerous reform documents internationally. Then, several examples are used to illustrate how genetically based socio-scientific issues can be used by teachers to improve students' understandings of the discussed aspects of nature of scientific knowledge.

  19. Parameter uncertainty for ASP models

    SciTech Connect

    Knudsen, J.K.; Smith, C.L.

    1995-10-01

    The steps involved to incorporate parameter uncertainty into the Nuclear Regulatory Commission (NRC) accident sequence precursor (ASP) models is covered in this paper. Three different uncertainty distributions (i.e., lognormal, beta, gamma) were evaluated to Determine the most appropriate distribution. From the evaluation, it was Determined that the lognormal distribution will be used for the ASP models uncertainty parameters. Selection of the uncertainty parameters for the basic events is also discussed. This paper covers the process of determining uncertainty parameters for the supercomponent basic events (i.e., basic events that are comprised of more than one component which can have more than one failure mode) that are utilized in the ASP models. Once this is completed, the ASP model is ready to be utilized to propagate parameter uncertainty for event assessments.

  20. Realising the Uncertainty Enabled Model Web

    NASA Astrophysics Data System (ADS)

    Cornford, D.; Bastin, L.; Pebesma, E. J.; Williams, M.; Stasch, C.; Jones, R.; Gerharz, L.

    2012-12-01

    The FP7 funded UncertWeb project aims to create the "uncertainty enabled model web". The central concept here is that geospatial models and data resources are exposed via standard web service interfaces, such as the Open Geospatial Consortium (OGC) suite of encodings and interface standards, allowing the creation of complex workflows combining both data and models. The focus of UncertWeb is on the issue of managing uncertainty in such workflows, and providing the standards, architecture, tools and software support necessary to realise the "uncertainty enabled model web". In this paper we summarise the developments in the first two years of UncertWeb, illustrating several key points with examples taken from the use case requirements that motivate the project. Firstly we address the issue of encoding specifications. We explain the usage of UncertML 2.0, a flexible encoding for representing uncertainty based on a probabilistic approach. This is designed to be used within existing standards such as Observations and Measurements (O&M) and data quality elements of ISO19115 / 19139 (geographic information metadata and encoding specifications) as well as more broadly outside the OGC domain. We show profiles of O&M that have been developed within UncertWeb and how UncertML 2.0 is used within these. We also show encodings based on NetCDF and discuss possible future directions for encodings in JSON. We then discuss the issues of workflow construction, considering discovery of resources (both data and models). We discuss why a brokering approach to service composition is necessary in a world where the web service interfaces remain relatively heterogeneous, including many non-OGC approaches, in particular the more mainstream SOAP and WSDL approaches. We discuss the trade-offs between delegating uncertainty management functions to the service interfaces themselves and integrating the functions in the workflow management system. We describe two utility services to address

  1. Impact of discharge data uncertainty on nutrient load uncertainty

    NASA Astrophysics Data System (ADS)

    Westerberg, Ida; Gustavsson, Hanna; Sonesten, Lars

    2016-04-01

    Uncertainty in the rating-curve model of the stage-discharge relationship leads to uncertainty in discharge time series. These uncertainties in turn affect many other analyses based on discharge data, such as nutrient load estimations. It is important to understand how large the impact of discharge data uncertainty is on such analyses, since they are often used as the basis to take important environmental management decisions. In the Baltic Sea basin, nutrient load estimates from river mouths are a central information basis for managing and reducing eutrophication in the Baltic Sea. In this study we investigated rating curve uncertainty and its propagation to discharge data uncertainty and thereafter to uncertainty in the load of phosphorous and nitrogen for twelve Swedish river mouths. We estimated rating curve uncertainty using the Voting Point method, which accounts for random and epistemic errors in the stage-discharge relation and allows drawing multiple rating-curve realisations consistent with the total uncertainty. We sampled 40,000 rating curves, and for each sampled curve we calculated a discharge time series from 15-minute water level data for the period 2005-2014. Each discharge time series was then aggregated to daily scale and used to calculate the load of phosphorous and nitrogen from linearly interpolated monthly water samples, following the currently used methodology for load estimation. Finally the yearly load estimates were calculated and we thus obtained distributions with 40,000 load realisations per year - one for each rating curve. We analysed how the rating curve uncertainty propagated to the discharge time series at different temporal resolutions, and its impact on the yearly load estimates. Two shorter periods of daily water quality sampling around the spring flood peak allowed a comparison of load uncertainty magnitudes resulting from discharge data with those resulting from the monthly water quality sampling.

  2. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    USGS Publications Warehouse

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  3. Uncertainty in Regional Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Digar, Antara

    concentrations (oxides of nitrogen) have been used to adjust probabilistic estimates of pollutant sensitivities based on the performance of simulations in reliably reproducing ambient measurements. Various observational metrics have been explored for better scientific understanding of how sensitivity estimates vary with measurement constraints. Future work could extend these methods to incorporate additional modeling uncertainties and alternate observational metrics, and explore the responsiveness of future air quality to project trends in emissions and climate change.

  4. Uncertainty analysis of thermoreflectance measurements

    NASA Astrophysics Data System (ADS)

    Yang, Jia; Ziade, Elbara; Schmidt, Aaron J.

    2016-01-01

    We derive a generally applicable formula to calculate the precision of multi-parameter measurements that apply least squares algorithms. This formula, which accounts for experimental noise and uncertainty in the controlled model parameters, is then used to analyze the uncertainty of thermal property measurements with pump-probe thermoreflectance techniques. We compare the uncertainty of time domain thermoreflectance and frequency domain thermoreflectance (FDTR) when measuring bulk materials and thin films, considering simultaneous measurements of various combinations of thermal properties, including thermal conductivity, heat capacity, and thermal boundary conductance. We validate the uncertainty analysis using Monte Carlo simulations on data from FDTR measurements of an 80 nm gold film on fused silica.

  5. Uncertainty analysis of thermoreflectance measurements.

    PubMed

    Yang, Jia; Ziade, Elbara; Schmidt, Aaron J

    2016-01-01

    We derive a generally applicable formula to calculate the precision of multi-parameter measurements that apply least squares algorithms. This formula, which accounts for experimental noise and uncertainty in the controlled model parameters, is then used to analyze the uncertainty of thermal property measurements with pump-probe thermoreflectance techniques. We compare the uncertainty of time domain thermoreflectance and frequency domain thermoreflectance (FDTR) when measuring bulk materials and thin films, considering simultaneous measurements of various combinations of thermal properties, including thermal conductivity, heat capacity, and thermal boundary conductance. We validate the uncertainty analysis using Monte Carlo simulations on data from FDTR measurements of an 80 nm gold film on fused silica.

  6. Simplified propagation of standard uncertainties

    SciTech Connect

    Shull, A.H.

    1997-06-09

    An essential part of any measurement control program is adequate knowledge of the uncertainties of the measurement system standards. Only with an estimate of the standards` uncertainties can one determine if the standard is adequate for its intended use or can one calculate the total uncertainty of the measurement process. Purchased standards usually have estimates of uncertainty on their certificates. However, when standards are prepared and characterized by a laboratory, variance propagation is required to estimate the uncertainty of the standard. Traditional variance propagation typically involves tedious use of partial derivatives, unfriendly software and the availability of statistical expertise. As a result, the uncertainty of prepared standards is often not determined or determined incorrectly. For situations meeting stated assumptions, easier shortcut methods of estimation are now available which eliminate the need for partial derivatives and require only a spreadsheet or calculator. A system of simplifying the calculations by dividing into subgroups of absolute and relative uncertainties is utilized. These methods also incorporate the International Standards Organization (ISO) concepts for combining systematic and random uncertainties as published in their Guide to the Expression of Measurement Uncertainty. Details of the simplified methods and examples of their use are included in the paper.

  7. The scientific value of 4D visualizations

    NASA Astrophysics Data System (ADS)

    Minster, J.; Olsen, K.; Day, S.; Moore, R.; Jordan, T. H.; Maechling, P.; Chourasia, A.

    2006-12-01

    Significant scientific insights derive from viewing measured, or calculated three-dimensional, time-dependent -- that is four-dimensional-- fields. This issue cuts across all disciplines of Earth Sciences. Addressing it calls for close collaborations between "domain" scientists and "IT" visualization specialists. Techniques to display such 4D fields in a intuitive way are a major challenge, especially when the relevant variables to be displayed are not scalars but tensors. This talk will illustrate some attempts to deal with this challenge, using seismic wave fields as specific objects to display. We will highlight how 4D displays can help address very difficult issues of significant scientific import.

  8. Effectively addressing addiction requires changing the language of addiction.

    PubMed

    Richter, Linda; Foster, Susan E

    2014-02-01

    Public knowledge and attitudes about addiction are largely inconsistent with scientific evidence. The gap between the facts and public and professional perceptions is due in part to the language used to describe the disease and those who have it. A key step in modifying public attitudes and improving how health professionals and policymakers address addiction is to better align the language of addiction with the scientific evidence. Unless we clarify the language, those with the disease will continue to experience the stigma associated with it and attempts to deliver comprehensive and effective evidence-based prevention, treatment, and disease management will be profoundly compromised. PMID:24226552

  9. Keynote Address: Science Since the Medicean Stars and the Beagle

    NASA Astrophysics Data System (ADS)

    Partridge, B.; Hillenbrand, L. A.; Grinspoon, D.

    2010-08-01

    In 2009, the world celebrates both the International Year of Astronomy (IYA), commemorating the 400th anniversary of Galileo's first observations of the heavens with his telescope, and the 200th anniversary of the birth of Charles Darwin and the 150th anniversary of the publication of his Origin of Species, a key impetus for the 2009 Year of Science. In this keynote address, the three presenters (distinguished scientists themselves) will reflect on how these recent centuries of astronomical and scientific discovery have changed our perspectives about the universe, the natural world, and ourselves—and underpin our education and public outreach efforts to help ensure continued scientific advance in the future.

  10. Load Balancing Scientific Applications

    SciTech Connect

    Pearce, Olga Tkachyshyn

    2014-12-01

    The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one at the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.

  11. I Am Sure There May Be a Planet There: Student Articulation of Uncertainty in Argumentation Tasks

    ERIC Educational Resources Information Center

    Buck, Zoë E.; Lee, Hee-Sun; Flores, Joanna

    2014-01-01

    We investigated how students articulate uncertainty when they are engaged in structured scientific argumentation tasks where they generate, examine, and interpret data to determine the existence of exoplanets. In this study, 302 high school students completed 4 structured scientific arguments that followed a series of computer-model-based…

  12. Addressing the vaccine confidence gap.

    PubMed

    Larson, Heidi J; Cooper, Louis Z; Eskola, Juhani; Katz, Samuel L; Ratzan, Scott

    2011-08-01

    Vaccines--often lauded as one of the greatest public health interventions--are losing public confidence. Some vaccine experts have referred to this decline in confidence as a crisis. We discuss some of the characteristics of the changing global environment that are contributing to increased public questioning of vaccines, and outline some of the specific determinants of public trust. Public decision making related to vaccine acceptance is neither driven by scientific nor economic evidence alone, but is also driven by a mix of psychological, sociocultural, and political factors, all of which need to be understood and taken into account by policy and other decision makers. Public trust in vaccines is highly variable and building trust depends on understanding perceptions of vaccines and vaccine risks, historical experiences, religious or political affiliations, and socioeconomic status. Although provision of accurate, scientifically based evidence on the risk-benefit ratios of vaccines is crucial, it is not enough to redress the gap between current levels of public confidence in vaccines and levels of trust needed to ensure adequate and sustained vaccine coverage. We call for more research not just on individual determinants of public trust, but on what mix of factors are most likely to sustain public trust. The vaccine community demands rigorous evidence on vaccine efficacy and safety and technical and operational feasibility when introducing a new vaccine, but has been negligent in demanding equally rigorous research to understand the psychological, social, and political factors that affect public trust in vaccines. PMID:21664679

  13. Addressing the vaccine confidence gap.

    PubMed

    Larson, Heidi J; Cooper, Louis Z; Eskola, Juhani; Katz, Samuel L; Ratzan, Scott

    2011-08-01

    Vaccines--often lauded as one of the greatest public health interventions--are losing public confidence. Some vaccine experts have referred to this decline in confidence as a crisis. We discuss some of the characteristics of the changing global environment that are contributing to increased public questioning of vaccines, and outline some of the specific determinants of public trust. Public decision making related to vaccine acceptance is neither driven by scientific nor economic evidence alone, but is also driven by a mix of psychological, sociocultural, and political factors, all of which need to be understood and taken into account by policy and other decision makers. Public trust in vaccines is highly variable and building trust depends on understanding perceptions of vaccines and vaccine risks, historical experiences, religious or political affiliations, and socioeconomic status. Although provision of accurate, scientifically based evidence on the risk-benefit ratios of vaccines is crucial, it is not enough to redress the gap between current levels of public confidence in vaccines and levels of trust needed to ensure adequate and sustained vaccine coverage. We call for more research not just on individual determinants of public trust, but on what mix of factors are most likely to sustain public trust. The vaccine community demands rigorous evidence on vaccine efficacy and safety and technical and operational feasibility when introducing a new vaccine, but has been negligent in demanding equally rigorous research to understand the psychological, social, and political factors that affect public trust in vaccines.

  14. Analysis and Reduction of Complex Networks Under Uncertainty

    SciTech Connect

    Knio, Omar M

    2014-04-09

    This is a collaborative proposal that aims at developing new methods for the analysis and reduction of complex multiscale networks under uncertainty. The approach is based on combining methods of computational singular perturbation (CSP) and probabilistic uncertainty quantification. In deterministic settings, CSP yields asymptotic approximations of reduced-dimensionality “slow manifolds” on which a multiscale dynamical system evolves. Introducing uncertainty raises fundamentally new issues, particularly concerning its impact on the topology of slow manifolds, and means to represent and quantify associated variability. To address these challenges, this project uses polynomial chaos (PC) methods to reformulate uncertain network models, and to analyze them using CSP in probabilistic terms. Specific objectives include (1) developing effective algorithms that can be used to illuminate fundamental and unexplored connections among model reduction, multiscale behavior, and uncertainty, and (2) demonstrating the performance of these algorithms through applications to model problems.

  15. Methods for exploring uncertainty in groundwater management predictions

    USGS Publications Warehouse

    Guillaume, Joseph H. A.; Hunt, Randall J.; Comunian, Alessandro; Fu, Baihua; Blakers, Rachel S; Jakeman, Anthony J; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew

    2016-01-01

    Models of groundwater systems help to integrate knowledge about the natural and human system covering different spatial and temporal scales, often from multiple disciplines, in order to address a range of issues of concern to various stakeholders. A model is simply a tool to express what we think we know. Uncertainty, due to lack of knowledge or natural variability, means that there are always alternative models that may need to be considered. This chapter provides an overview of uncertainty in models and in the definition of a problem to model, highlights approaches to communicating and using predictions of uncertain outcomes and summarises commonly used methods to explore uncertainty in groundwater management predictions. It is intended to raise awareness of how alternative models and hence uncertainty can be explored in order to facilitate the integration of these techniques with groundwater management.

  16. Probabilistic Accident Consequence Uncertainty - A Joint CEC/USNRC Study

    SciTech Connect

    Gregory, Julie J.; Harper, Frederick T.

    1999-07-28

    The joint USNRC/CEC consequence uncertainty study was chartered after the development of two new probabilistic accident consequence codes, MACCS in the U.S. and COSYMA in Europe. Both the USNRC and CEC had a vested interest in expanding the knowledge base of the uncertainty associated with consequence modeling, and teamed up to co-sponsor a consequence uncertainty study. The information acquired from the study was expected to provide understanding of the strengths and weaknesses of current models as well as a basis for direction of future research. This paper looks at the elicitation process implemented in the joint study and discusses some of the uncertainty distributions provided by eight panels of experts from the U.S. and Europe that were convened to provide responses to the elicitation. The phenomenological areas addressed by the expert panels include atmospheric dispersion and deposition, deposited material and external doses, food chain, early health effects, late health effects and internal dosimetry.

  17. Evaluating Health Risks from Inhaled Polychlorinated Biphenyls: Research Needs for Addressing Uncertainty

    EPA Science Inventory

    Indoor air polychlorinated biphenyl (PCB) concentrations in some U.S. schools are one or more orders of magnitude higher than background levels. In response to this, efforts have been made to assess the potential health risk posed by inhaled PCBs. These efforts are hindered by un...

  18. A framework for modeling anthropogenic impacts on waterbird habitats: addressing future uncertainty in conservation planning

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph P.; Young, Charles A.; Purkey, David R.

    2015-01-01

    The amount and quality of natural resources available for terrestrial and aquatic wildlife habitats are expected to decrease throughout the world in areas that are intensively managed for urban and agricultural uses. Changes in climate and management of increasingly limited water supplies may further impact water resources essential for sustaining habitats. In this report, we document adapting a Water Evaluation and Planning (WEAP) system model for the Central Valley of California. We demonstrate using this adapted model (WEAP-CVwh) to evaluate impacts produced from plausible future scenarios on agricultural and wetland habitats used by waterbirds and other wildlife. Processed output from WEAP-CVwh indicated varying levels of impact caused by projected climate, urbanization, and water supply management in scenarios used to exemplify this approach. Among scenarios, the NCAR-CCSM3 A2 climate projection had a greater impact than the CNRM-CM3 B1 climate projection, whereas expansive urbanization had a greater impact than strategic urbanization, on annual availability of waterbird habitat. Scenarios including extensive rice-idling or substantial instream flow requirements on important water supply sources produced large impacts on annual availability of waterbird habitat. In the year corresponding with the greatest habitat reduction for each scenario, the scenario including instream flow requirements resulted in the greatest decrease in habitats throughout all months of the wintering period relative to other scenarios. This approach provides a new and useful tool for habitat conservation planning in the Central Valley and a model to guide similar research investigations aiming to inform conservation, management, and restoration of important wildlife habitats.

  19. Using Robust Decision Making to Address Climate Change Uncertainties in Water Quality Management

    EPA Science Inventory

    Results of robust decision making simulations show that both climate and land use change will need to be taken into account in order to implement BMP strategies that are more likely to meet the goals for the Patuxent river for both Phosphorus and Nitrogen.

  20. 42 CFR 82.19 - How will NIOSH address uncertainty about dose levels?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Dose Reconstruction Process... calculating probability of causation estimates at 42 CFR 81. In this way, claimants will receive the...

  1. A review of uncertainty visualization within the IPCC reports

    NASA Astrophysics Data System (ADS)

    Nocke, Thomas; Reusser, Dominik; Wrobel, Markus

    2015-04-01

    Results derived from climate model simulations confront non-expert users with a variety of uncertainties. This gives rise to the challenge that the scientific information must be communicated such that it can be easily understood, however, the complexity of the science behind is still incorporated. With respect to the assessment reports of the IPCC, the situation is even more complicated, because heterogeneous sources and multiple types of uncertainties need to be compiled together. Within this work, we systematically (1) analyzed the visual representation of uncertainties in the IPCC AR4 and AR5 reports, and (2) executed a questionnaire to evaluate how different user groups such as decision-makers and teachers understand these uncertainty visualizations. Within the first step, we classified visual uncertainty metaphors for spatial, temporal and abstract representations. As a result, we clearly identified a high complexity of the IPCC visualizations compared to standard presentation graphics, sometimes even integrating two or more uncertainty classes / measures together with the "certain" (mean) information. Further we identified complex written uncertainty explanations within image captions even within the "summary reports for policy makers". In the second step, based on these observations, we designed a questionnaire to investigate how non-climate experts understand these visual representations of uncertainties, how visual uncertainty coding might hinder the perception of the "non-uncertain" data, and if alternatives for certain IPCC visualizations exist. Within the talk/poster, we will present first results from this questionnaire. Summarizing, we identified a clear trend towards complex images within the latest IPCC reports, with a tendency to incorporate as much as possible information into the visual representations, resulting in proprietary, non-standard graphic representations that are not necessarily easy to comprehend on one glimpse. We conclude that

  2. Nanomedicine: Governing uncertainties

    NASA Astrophysics Data System (ADS)

    Trisolino, Antonella

    Nanomedicine is a promising and revolutionary field to improve medical diagnoses and therapies leading to a higher quality of life for everybody. Huge benefits are expected from nanomedicine applications such as in diagnostic and therapeutic field. However, nanomedicine poses several issues on risks to the human health. This thesis aims to defense a perspective of risk governance that sustains scientific knowledge process by developing guidelines and providing the minimum safety standards acceptable to protect the human health. Although nanomedicine is in an early stage of its discovery, some cautious measures are required to provide regulatory mechanisms able to response to the unique set of challenges associated to nanomedicine. Nanotechnology offers an unique opportunity to intensify a major interplay between different disciplines such as science and law. This multidisciplinary approach can positively contributes to find reliable regulatory choices and responsive normative tools in dealing with challenges of novel technologies.

  3. Scientific Assistant Virtual Laboratory (SAVL)

    NASA Astrophysics Data System (ADS)

    Alaghband, Gita; Fardi, Hamid; Gnabasik, David

    2007-03-01

    The Scientific Assistant Virtual Laboratory (SAVL) is a scientific discovery environment, an interactive simulated virtual laboratory, for learning physics and mathematics. The purpose of this computer-assisted intervention is to improve middle and high school student interest, insight and scores in physics and mathematics. SAVL develops scientific and mathematical imagination in a visual, symbolic, and experimental simulation environment. It directly addresses the issues of scientific and technological competency by providing critical thinking training through integrated modules. This on-going research provides a virtual laboratory environment in which the student directs the building of the experiment rather than observing a packaged simulation. SAVL: * Engages the persistent interest of young minds in physics and math by visually linking simulation objects and events with mathematical relations. * Teaches integrated concepts by the hands-on exploration and focused visualization of classic physics experiments within software. * Systematically and uniformly assesses and scores students by their ability to answer their own questions within the context of a Master Question Network. We will demonstrate how the Master Question Network uses polymorphic interfaces and C# lambda expressions to manage simulation objects.

  4. Going public: good scientific conduct.

    PubMed

    Meyer, Gitte; Sandøe, Peter

    2012-06-01

    The paper addresses issues of scientific conduct regarding relations between science and the media, relations between scientists and journalists, and attitudes towards the public at large. In the large and increasing body of literature on scientific conduct and misconduct, these issues seem underexposed as ethical challenges. Consequently, individual scientists here tend to be left alone with problems and dilemmas, with no guidance for good conduct. Ideas are presented about how to make up for this omission. Using a practical, ethical approach, the paper attempts to identify ways scientists might deal with ethical public relations issues, guided by a norm or maxim of openness. Drawing on and rethinking the CUDOS codification of the scientific ethos, as it was worked out by Robert K. Merton in 1942, we propose that this, which is echoed in current codifications of norms for good scientific conduct, contains a tacit maxim of openness which may naturally be extended to cover the public relations of science. Discussing openness as access, accountability, transparency and receptiveness, the argumentation concentrates on the possible prevention of misconduct with respect to, on the one hand, sins of omission-withholding important information from the public-and, on the other hand, abuses of the authority of science in order to gain publicity. Statements from interviews with scientists are used to illustrate how scientists might view the relevance of the issues raised.

  5. A solution (data architecture) for handling time-series data - sensor data (4D), its visualisation and the questions around uncertainty of this data

    NASA Astrophysics Data System (ADS)

    Nayembil, Martin; Barkwith, Andrew

    2016-04-01

    Geo-environmental research is increasingly in the age of data-driven research. It has become necessary to collect, store, integrate and visualise more subsurface data for environmental research. The information required to facilitate data-driven research is often characterised by its variability, volume, complexity and frequency. This has necessitated the development of suitable data workflows, hybrid data architectures, and multiple visualisation solutions to provide the proper context to scientists and to enable their understanding of the different trends that the data displays for their many scientific interpolations. However this data, predominantly time-series (4D) acquired through sensors and being mostly telemetered, poses significant challenges/questions in quantifying the uncertainty of the data. To validate the research answers including the data methodologies, the following open questions around uncertainty will need addressing, i.e. uncertainty generated from: • the instruments used for data capture; • the transfer process of the data often from remote locations through telemetry; • the data processing techniques used for harmonising and integration from multiple sensor outlets; • the approximations applied to visualize such data from various conversion factors to include units standardisation The main question remains: How do we deal with the issues around uncertainty when it comes to the large and variable amounts of time-series data we collect, harmonise and visualise for the data-driven geo-environmental research that we undertake today?

  6. Approaches for describing and communicating overall uncertainty in toxicity characterizations: U.S. Environmental Protection Agency's Integrated Risk Information System (IRIS) as a case study.

    PubMed

    Beck, Nancy B; Becker, Richard A; Erraguntla, Neeraja; Farland, William H; Grant, Roberta L; Gray, George; Kirman, Christopher; LaKind, Judy S; Jeffrey Lewis, R; Nance, Patricia; Pottenger, Lynn H; Santos, Susan L; Shirley, Stephanie; Simon, Ted; Dourson, Michael L

    2016-01-01

    Single point estimates of human health hazard/toxicity values such as a reference dose (RfD) are generally used in chemical hazard and risk assessment programs for assessing potential risks associated with site- or use-specific exposures. The resulting point estimates are often used by risk managers for regulatory decision-making, including standard setting, determination of emission controls, and mitigation of exposures to chemical substances. Risk managers, as well as stakeholders (interested and affected parties), often have limited information regarding assumptions and uncertainty factors in numerical estimates of both hazards and risks. Further, the use of different approaches for addressing uncertainty, which vary in transparency, can lead to a lack of confidence in the scientific underpinning of regulatory decision-making. The overarching goal of this paper, which was developed from an invited participant workshop, is to offer five approaches for presenting toxicity values in a transparent manner in order to improve the understanding, consideration, and informed use of uncertainty by risk assessors, risk managers, and stakeholders. The five approaches for improving the presentation and communication of uncertainty are described using U.S. Environmental Protection Agency's (EPA's) Integrated Risk Information System (IRIS) as a case study. These approaches will ensure transparency in the documentation, development, and use of toxicity values at EPA, the Agency for Toxic Substances and Disease Registry (ATSDR), and other similar assessment programs in the public and private sector. Further empirical testing will help to inform the approaches that will work best for specific audiences and situations.

  7. TRITIUM UNCERTAINTY ANALYSIS FOR SURFACE WATER SAMPLES AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Atkinson, R.

    2012-07-31

    Radiochemical analyses of surface water samples, in the framework of Environmental Monitoring, have associated uncertainties for the radioisotopic results reported. These uncertainty analyses pertain to the tritium results from surface water samples collected at five locations on the Savannah River near the U.S. Department of Energy's Savannah River Site (SRS). Uncertainties can result from the field-sampling routine, can be incurred during transport due to the physical properties of the sample, from equipment limitations, and from the measurement instrumentation used. The uncertainty reported by the SRS in their Annual Site Environmental Report currently considers only the counting uncertainty in the measurements, which is the standard reporting protocol for radioanalytical chemistry results. The focus of this work is to provide an overview of all uncertainty components associated with SRS tritium measurements, estimate the total uncertainty according to ISO 17025, and to propose additional experiments to verify some of the estimated uncertainties. The main uncertainty components discovered and investigated in this paper are tritium absorption or desorption in the sample container, HTO/H{sub 2}O isotopic effect during distillation, pipette volume, and tritium standard uncertainty. The goal is to quantify these uncertainties and to establish a combined uncertainty in order to increase the scientific depth of the SRS Annual Site Environmental Report.

  8. The Study of Address Tree Coding Based on the Maximum Matching Algorithm in Courier Business

    NASA Astrophysics Data System (ADS)

    Zhou, Shumin; Tang, Bin; Li, Wen

    As an important component of EMS monitoring system, address is different from user name with great uncertainty because there are many ways to represent it. Therefore, address standardization is a difficult task. Address tree coding has been trying to resolve that issue for many years. Zip code, as its most widely used algorithm, can only subdivide the address down to a designated post office, not the recipients' address. This problem needs artificial identification method to be accurately delivered. This paper puts forward a new encoding algorithm of the address tree - the maximum matching algorithm to solve the problem. This algorithm combines the characteristics of the address tree and the best matching theory, and brings in the associated layers of tree nodes to improve the matching efficiency. Taking the variability of address into account, the thesaurus of address tree should be updated timely by increasing new nodes automatically through intelligent tools.

  9. Mama Software Features: Uncertainty Testing

    SciTech Connect

    Ruggiero, Christy E.; Porter, Reid B.

    2014-05-30

    This document reviews how the uncertainty in the calculations is being determined with test image data. The results of this testing give an ‘initial uncertainty’ number than can be used to estimate the ‘back end’ uncertainty in digital image quantification in images. Statisticians are refining these numbers as part of a UQ effort.

  10. Housing Uncertainty and Childhood Impatience

    ERIC Educational Resources Information Center

    Anil, Bulent; Jordan, Jeffrey L.; Zahirovic-Herbert, Velma

    2011-01-01

    The study demonstrates a direct link between housing uncertainty and children's time preferences, or patience. We show that students who face housing uncertainties through mortgage foreclosures and eviction learn impatient behavior and are therefore at greater risk of making poor intertemporal choices such as dropping out of school. We find that…

  11. Quantification of Emission Factor Uncertainty

    EPA Science Inventory

    Emissions factors are important for estimating and characterizing emissions from sources of air pollution. There is no quantitative indication of uncertainty for these emission factors, most factors do not have an adequate data set to compute uncertainty, and it is very difficult...

  12. Uncertainty in Integrated Assessment Scenarios

    SciTech Connect

    Mort Webster

    2005-10-17

    The determination of climate policy is a decision under uncertainty. The uncertainty in future climate change impacts is large, as is the uncertainty in the costs of potential policies. Rational and economically efficient policy choices will therefore seek to balance the expected marginal costs with the expected marginal benefits. This approach requires that the risks of future climate change be assessed. The decision process need not be formal or quantitative for descriptions of the risks to be useful. Whatever the decision procedure, a useful starting point is to have as accurate a description of climate risks as possible. Given the goal of describing uncertainty in future climate change, we need to characterize the uncertainty in the main causes of uncertainty in climate impacts. One of the major drivers of uncertainty in future climate change is the uncertainty in future emissions, both of greenhouse gases and other radiatively important species such as sulfur dioxide. In turn, the drivers of uncertainty in emissions are uncertainties in the determinants of the rate of economic growth and in the technologies of production and how those technologies will change over time. This project uses historical experience and observations from a large number of countries to construct statistical descriptions of variability and correlation in labor productivity growth and in AEEI. The observed variability then provides a basis for constructing probability distributions for these drivers. The variance of uncertainty in growth rates can be further modified by expert judgment if it is believed that future variability will differ from the past. But often, expert judgment is more readily applied to projected median or expected paths through time. Analysis of past variance and covariance provides initial assumptions about future uncertainty for quantities that are less intuitive and difficult for experts to estimate, and these variances can be normalized and then applied to mean

  13. Reformulating the Quantum Uncertainty Relation.

    PubMed

    Li, Jun-Li; Qiao, Cong-Feng

    2015-01-01

    Uncertainty principle is one of the cornerstones of quantum theory. In the literature, there are two types of uncertainty relations, the operator form concerning the variances of physical observables and the entropy form related to entropic quantities. Both these forms are inequalities involving pairwise observables, and are found to be nontrivial to incorporate multiple observables. In this work we introduce a new form of uncertainty relation which may give out complete trade-off relations for variances of observables in pure and mixed quantum systems. Unlike the prevailing uncertainty relations, which are either quantum state dependent or not directly measurable, our bounds for variances of observables are quantum state independent and immune from the "triviality" problem of having zero expectation values. Furthermore, the new uncertainty relation may provide a geometric explanation for the reason why there are limitations on the simultaneous determination of different observables in N-dimensional Hilbert space. PMID:26234197

  14. Reformulating the Quantum Uncertainty Relation

    NASA Astrophysics Data System (ADS)

    Li, Jun-Li; Qiao, Cong-Feng

    2015-08-01

    Uncertainty principle is one of the cornerstones of quantum theory. In the literature, there are two types of uncertainty relations, the operator form concerning the variances of physical observables and the entropy form related to entropic quantities. Both these forms are inequalities involving pairwise observables, and are found to be nontrivial to incorporate multiple observables. In this work we introduce a new form of uncertainty relation which may give out complete trade-off relations for variances of observables in pure and mixed quantum systems. Unlike the prevailing uncertainty relations, which are either quantum state dependent or not directly measurable, our bounds for variances of observables are quantum state independent and immune from the “triviality” problem of having zero expectation values. Furthermore, the new uncertainty relation may provide a geometric explanation for the reason why there are limitations on the simultaneous determination of different observables in N-dimensional Hilbert space.

  15. Reformulating the Quantum Uncertainty Relation.

    PubMed

    Li, Jun-Li; Qiao, Cong-Feng

    2015-08-03

    Uncertainty principle is one of the cornerstones of quantum theory. In the literature, there are two types of uncertainty relations, the operator form concerning the variances of physical observables and the entropy form related to entropic quantities. Both these forms are inequalities involving pairwise observables, and are found to be nontrivial to incorporate multiple observables. In this work we introduce a new form of uncertainty relation which may give out complete trade-off relations for variances of observables in pure and mixed quantum systems. Unlike the prevailing uncertainty relations, which are either quantum state dependent or not directly measurable, our bounds for variances of observables are quantum state independent and immune from the "triviality" problem of having zero expectation values. Furthermore, the new uncertainty relation may provide a geometric explanation for the reason why there are limitations on the simultaneous determination of different observables in N-dimensional Hilbert space.

  16. Investments in energy technological change under uncertainty

    NASA Astrophysics Data System (ADS)

    Shittu, Ekundayo

    2009-12-01

    This dissertation addresses the crucial problem of how environmental policy uncertainty influences investments in energy technological change. The rising level of carbon emissions due to increasing global energy consumption calls for policy shift. In order to stem the negative consequences on the climate, policymakers are concerned with carving an optimal regulation that will encourage technology investments. However, decision makers are facing uncertainties surrounding future environmental policy. The first part considers the treatment of technological change in theoretical models. This part has two purposes: (1) to show--through illustrative examples--that technological change can lead to quite different, and surprising, impacts on the marginal costs of pollution abatement. We demonstrate an intriguing and uncommon result that technological change can increase the marginal costs of pollution abatement over some range of abatement; (2) to show the impact, on policy, of this uncommon observation. We find that under the assumption of technical change that can increase the marginal cost of pollution abatement over some range, the ranking of policy instruments is affected. The second part builds on the first by considering the impact of uncertainty in the carbon tax on investments in a portfolio of technologies. We determine the response of energy R&D investments as the carbon tax increases both in terms of overall and technology-specific investments. We determine the impact of risk in the carbon tax on the portfolio. We find that the response of the optimal investment in a portfolio of technologies to an increasing carbon tax depends on the relative costs of the programs and the elasticity of substitution between fossil and non-fossil energy inputs. In the third part, we zoom-in on the portfolio model above to consider how uncertainty in the magnitude and timing of a carbon tax influences investments. Under a two-stage continuous-time optimal control model, we

  17. Addressing Passive Smoking in Children

    PubMed Central

    Hutchinson, Sasha G.; Kuijlaars, Jennifer S.; Mesters, Ilse; Muris, Jean W. M.; van Schayck, Constant P.; Dompeling, Edward; Feron, Frans J. M.

    2014-01-01

    Background A significant number of parents are unaware or unconvinced of the health consequences of passive smoking (PS) in children. Physicians could increase parental awareness by giving personal advice. Aim To evaluate the current practices of three Dutch health professions (paediatricians, youth health care physicians, and family physicians) regarding parental counselling for passive smoking (PS) in children. Methods All physicians (n = 720) representing the three health professions in Limburg, the Netherlands, received an invitation to complete a self-administered electronic questionnaire including questions on their: sex, work experience, personal smoking habits, counselling practices and education regarding PS in children. Results The response rate was 34%. One tenth (11%) of the responding physicians always addressed PS in children, 32% often, 54% occasionally and 4% reported to never attend to it. The three health professions appeared comparable regarding their frequency of parental counselling for PS in children. Addressing PS was more likely when children had respiratory problems. Lack of time was the most frequently mentioned barrier, being very and somewhat applicable for respectively 14% and 43% of the physicians. One fourth of the responders had received postgraduate education about PS. Additionally, 49% of the responders who did not have any education about PS were interested in receiving it. Conclusions Physicians working in the paediatric field in Limburg, the Netherlands, could more frequently address PS in children with parents. Lack of time appeared to be the most mentioned barrier and physicians were more likely to counsel parents for PS in children with respiratory complaints/diseases. Finally, a need for more education on parental counselling for PS was expressed. PMID:24809443

  18. Addressing inequities in healthy eating.

    PubMed

    Friel, Sharon; Hattersley, Libby; Ford, Laura; O'Rourke, Kerryn

    2015-09-01

    What, when, where and how much people eat is influenced by a complex mix of factors at societal, community and individual levels. These influences operate both directly through the food system and indirectly through political, economic, social and cultural pathways that cause social stratification and influence the quality of conditions in which people live their lives. These factors are the social determinants of inequities in healthy eating. This paper provides an overview of the current evidence base for addressing these determinants and for the promotion of equity in healthy eating. PMID:26420812

  19. Identifying and Addressing Vaccine Hesitancy

    PubMed Central

    Kestenbaum, Lori A.; Feemster, Kristen A.

    2015-01-01

    In the 20th century, the introduction of multiple vaccines significantly reduced childhood morbidity, mortality, and disease outbreaks. Despite, and perhaps because of, their public health impact, an increasing number of parents and patients are choosing to delay or refuse vaccines. These individuals are described as vaccine hesitant. This phenomenon has developed due to the confluence of multiple social, cultural, political and personal factors. As immunization programs continue to expand, understanding and addressing vaccine hesitancy will be crucial to their successful implementation. This review explores the history of vaccine hesitancy, its causes, and suggested approaches for reducing hesitancy and strengthening vaccine acceptance. PMID:25875982

  20. Nanoscale content-addressable memory

    NASA Technical Reports Server (NTRS)

    Davis, Bryan (Inventor); Principe, Jose C. (Inventor); Fortes, Jose (Inventor)

    2009-01-01

    A combined content addressable memory device and memory interface is provided. The combined device and interface includes one or more one molecular wire crossbar memories having spaced-apart key nanowires, spaced-apart value nanowires adjacent to the key nanowires, and configurable switches between the key nanowires and the value nanowires. The combination further includes a key microwire-nanowire grid (key MNG) electrically connected to the spaced-apart key nanowires, and a value microwire-nanowire grid (value MNG) electrically connected to the spaced-apart value nanowires. A key or value MNGs selects multiple nanowires for a given key or value.

  1. Addressing the workforce pipeline challenge

    SciTech Connect

    Leonard Bond; Kevin Kostelnik; Richard Holman

    2006-11-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

  2. WWW: The Scientific Method

    ERIC Educational Resources Information Center

    Blystone, Robert V.; Blodgett, Kevin

    2006-01-01

    The scientific method is the principal methodology by which biological knowledge is gained and disseminated. As fundamental as the scientific method may be, its historical development is poorly understood, its definition is variable, and its deployment is uneven. Scientific progress may occur without the strictures imposed by the formal…

  3. Redefining the "Scientific Method".

    ERIC Educational Resources Information Center

    Spiece, Kelly R.; Colosi, Joseph

    2000-01-01

    Surveys 15 introductory biology textbooks for their presentation of the scientific method. Teaching the scientific method involves more than simplified steps and subjectivity--human politics, cultural influences, and chance are all a part of science. Presents an activity for students to experience the scientific method. (Contains 34 references.)…

  4. Scientific Reporting: Raising the Standards.

    PubMed

    McLeroy, Kenneth R; Garney, Whitney; Mayo-Wilson, Evan; Grant, Sean

    2016-10-01

    This article is based on a presentation that was made at the 2014 annual meeting of the editorial board of Health Education & Behavior. The article addresses critical issues related to standards of scientific reporting in journals, including concerns about external and internal validity and reporting bias. It reviews current reporting guidelines, effects of adopting guidelines, and offers suggestions for improving reporting. The evidence about the effects of guideline adoption and implementation is briefly reviewed. Recommendations for adoption and implementation of appropriate guidelines, including considerations for journals, are provided. PMID:27624441

  5. Uncertainty and risk in wildland fire management: a review.

    PubMed

    Thompson, Matthew P; Calkin, Dave E

    2011-08-01

    Wildland fire management is subject to manifold sources of uncertainty. Beyond the unpredictability of wildfire behavior, uncertainty stems from inaccurate/missing data, limited resource value measures to guide prioritization across fires and resources at risk, and an incomplete scientific understanding of ecological response to fire, of fire behavior response to treatments, and of spatiotemporal dynamics involving disturbance regimes and climate change. This work attempts to systematically align sources of uncertainty with the most appropriate decision support methodologies, in order to facilitate cost-effective, risk-based wildfire planning efforts. We review the state of wildfire risk assessment and management, with a specific focus on uncertainties challenging implementation of integrated risk assessments that consider a suite of human and ecological values. Recent advances in wildfire simulation and geospatial mapping of highly valued resources have enabled robust risk-based analyses to inform planning across a variety of scales, although improvements are needed in fire behavior and ignition occurrence models. A key remaining challenge is a better characterization of non-market resources at risk, both in terms of their response to fire and how society values those resources. Our findings echo earlier literature identifying wildfire effects analysis and value uncertainty as the primary challenges to integrated wildfire risk assessment and wildfire management. We stress the importance of identifying and characterizing uncertainties in order to better quantify and manage them. Leveraging the most appropriate decision support tools can facilitate wildfire risk assessment and ideally improve decision-making. PMID:21489684

  6. Uncertainty and risk in wildland fire management: a review.

    PubMed

    Thompson, Matthew P; Calkin, Dave E

    2011-08-01

    Wildland fire management is subject to manifold sources of uncertainty. Beyond the unpredictability of wildfire behavior, uncertainty stems from inaccurate/missing data, limited resource value measures to guide prioritization across fires and resources at risk, and an incomplete scientific understanding of ecological response to fire, of fire behavior response to treatments, and of spatiotemporal dynamics involving disturbance regimes and climate change. This work attempts to systematically align sources of uncertainty with the most appropriate decision support methodologies, in order to facilitate cost-effective, risk-based wildfire planning efforts. We review the state of wildfire risk assessment and management, with a specific focus on uncertainties challenging implementation of integrated risk assessments that consider a suite of human and ecological values. Recent advances in wildfire simulation and geospatial mapping of highly valued resources have enabled robust risk-based analyses to inform planning across a variety of scales, although improvements are needed in fire behavior and ignition occurrence models. A key remaining challenge is a better characterization of non-market resources at risk, both in terms of their response to fire and how society values those resources. Our findings echo earlier literature identifying wildfire effects analysis and value uncertainty as the primary challenges to integrated wildfire risk assessment and wildfire management. We stress the importance of identifying and characterizing uncertainties in order to better quantify and manage them. Leveraging the most appropriate decision support tools can facilitate wildfire risk assessment and ideally improve decision-making.

  7. An Iterative Uncertainty Assessment Technique for Environmental Modeling

    SciTech Connect

    Engel, David W.; Liebetrau, Albert M.; Jarman, Kenneth D.; Ferryman, Thomas A.; Scheibe, Timothy D.; Didier, Brett T.

    2004-06-28

    The reliability of and confidence in predictions from model simulations are crucial--these predictions can significantly affect risk assessment decisions. For example, the fate of contaminants at the U.S. Department of Energy's Hanford Site has critical impacts on long-term waste management strategies. In the uncertainty estimation efforts for the Hanford Site-Wide Groundwater Modeling program, computational issues severely constrain both the number of uncertain parameters that can be considered and the degree of realism that can be included in the models. Substantial improvements in the overall efficiency of uncertainty analysis are needed to fully explore and quantify significant sources of uncertainty. We have combined state-of-the-art statistical and mathematical techniques in a unique iterative, limited sampling approach to efficiently quantify both local and global prediction uncertainties resulting from model input uncertainties. The approach is designed for application to widely diverse problems across multiple scientific domains. Results are presented for both an analytical model where the response surface is ''known'' and a simplified contaminant fate transport and groundwater flow model. The results show that our iterative method for approximating a response surface (for subsequent calculation of uncertainty estimates) of specified precision requires less computing time than traditional approaches based upon noniterative sampling methods.

  8. Soliciting scientific information and beliefs in predictive modeling and adaptive management

    NASA Astrophysics Data System (ADS)

    Glynn, P. D.; Voinov, A. A.; Shapiro, C. D.

    2015-12-01

    Post-normal science requires public engagement and adaptive corrections in addressing issues with high complexity and uncertainty. An adaptive management framework is presented for the improved management of natural resources and environments through a public participation process. The framework solicits the gathering and transformation and/or modeling of scientific information but also explicitly solicits the expression of participant beliefs. Beliefs and information are compared, explicitly discussed for alignments or misalignments, and ultimately melded back together as a "knowledge" basis for making decisions. An effort is made to recognize the human or participant biases that may affect the information base and the potential decisions. In a separate step, an attempt is made to recognize and predict the potential "winners" and "losers" (perceived or real) of any decision or action. These "winners" and "losers" include present human communities with different spatial, demographic or socio-economic characteristics as well as more dispersed or more diffusely characterized regional or global communities. "Winners" and "losers" may also include future human communities as well as communities of other biotic species. As in any adaptive management framework, assessment of predictions, iterative follow-through and adaptation of policies or actions is essential, and commonly very difficult or impossible to achieve. Recognizing beforehand the limits of adaptive management is essential. More generally, knowledge of the behavioral and economic sciences and of ethics and sociology will be key to a successful implementation of this adaptive management framework. Knowledge of biogeophysical processes will also be essential, but by definition of the issues being addressed, will always be incomplete and highly uncertain. The human dimensions of the issues addressed and the participatory processes used carry their own complexities and uncertainties. Some ideas and principles are

  9. Two essays on uncertainty

    SciTech Connect

    Jefferis, R.H. Jr.

    1986-01-01

    The first essay examines the extent to which the speculative storage of a commodity may serve as insurance against the effects of the shortfalls in supply. It addresses the issue of whether the profit maximizing speculative storage effects allocations that are Pareto efficient. Results indicate that under a wide variety of circumstances the storage decision of individual speculators, based on price signals received from competitive markets, results in allocations that are not even constrained Pareto efficient. The second essay is concerned with natural gas prices. The organization of the natural gas market differs significantly from the paradigm of exchange in a sequence of spot markets. An elaborate system of long term contracts governs the production and transportation of the commodity. The contracts have become a subject of interest because of the effect that they exert on the price of natural gas and because of widespread abrogation of contracts in the gas industry.

  10. Detectability and Interpretational Uncertainties: Considerations in Gauging the Impacts of Land Disturbance on Streamflow

    EPA Science Inventory

    Hydrologic impacts of land disturbance and management can be confounded by rainfall variability. As a consequence, attempts to gauge and quantify these effects through streamflow monitoring are typically subject to uncertainties. This paper addresses the quantification and deline...

  11. Estimating the magnitude of prediction uncertainties for field-scale P loss models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Models are often used to predict phosphorus (P) loss from agricultural fields. While it is commonly recognized that model predictions are inherently uncertain, few studies have addressed prediction uncertainties using P loss models. In this study, an uncertainty analysis for the Annual P Loss Estima...

  12. Sensitivity and uncertainty analysis for the annual P loss estimator (APLE) model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Models are often used to predict phosphorus (P) loss from agricultural fields. While it is commonly recognized that there are inherent uncertainties with model predictions, limited studies have addressed model prediction uncertainty. In this study we assess the effect of model input error on predict...

  13. Parameter uncertainty analysis for the annual phosphorus loss estimator (APLE) model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical abstract: Models are often used to predict phosphorus (P) loss from agricultural fields. While it is commonly recognized that model predictions are inherently uncertain, few studies have addressed prediction uncertainties using P loss models. In this study, we conduct an uncertainty analys...

  14. From stratospheric ozone to climate change: historical perspective on precaution and scientific responsibility.

    PubMed

    Mégie, Gérard

    2006-10-01

    The issue of the impact of human activities on the stratospheric ozone layer emerged in the early 1970s. But international regulations to mitigate the most serious effects were not adopted until the mid-1980s. This case holds lessons for addressing more complex environmental problems. Concepts that should inform discussion include 'latency,' 'counter-factual scenario based on the Precautionary Principle,' 'inter-generational burden sharing,' and 'estimating global costs under factual and counter-factual regulatory scenarios.' Stringent regulations were adopted when large scientific uncertainty existed, and the environmental problem would have been prevented or more rapidly mitigated, at relatively modest incremental price, but for a time delay before more rigorous Precautionary measures were implemented. Will history repeat itself in the case of climate change?

  15. Sources of Uncertainty in Climate Change Projections of Precipitation

    NASA Astrophysics Data System (ADS)

    Gutmann, Ethan; Clark, Martyn; Eidhammer, Trude; Ikeda, Kyoko; Deser, Clara; Brekke, Levi; Arnold, Jeffrey; Rasmussen, Roy

    2016-04-01

    Predicting the likely changes in precipitation due to anthropogenic climate influences is one of the most important problems in earth science today. This problem is complicated by the enormous uncertainty in current predictions. Until all such sources of uncertainty are adequately addressed and quantified, we can not know what changes may be predictable, and which masked by the internal variability of the climate system itself. Here we assess multiple sources of uncertainty including those due to internal variability, climate model selection, emissions scenario, regional climate model physics, and statistical downscaling methods. This work focuses on the Colorado Rocky Mountains because these mountains serve as the water towers for much of the western United States, but the results are more broadly applicable, and results will be presented covering the Columbia River Basin and the California Sierra Nevadas as well. Internal variability is assessed using 30 members of the CESM Large Ensemble. Uncertainty due to the choice of climate models is assessed using 100 climate projections from the CMIP5 archive, including multiple emissions scenarios. Uncertainty due to regional climate model physics is assessed using a limited set of high-resolution Weather Research and Forecasting (WRF) model simulations in comparison to a larger multi-physics ensemble using the Intermediate Complexity Atmospheric Research (ICAR) model. Finally, statistical downscaling uncertainty is assessed using multiple statistical downscaling models. In near-term projections (25-35 years) internal variability is the largest source of uncertainty; however, over longer time scales (70-80 years) other sources of uncertainty become more important, with the importance of different sources of uncertainty varying depending on the metric assessed.

  16. Quantifying Uncertainty in Velocity Models using Bayesian Methods

    NASA Astrophysics Data System (ADS)

    Hobbs, R.; Caiado, C.; Majdański, M.

    2008-12-01

    Quanitifying uncertainty in models derived from observed data is a major issue. Public and political understanding of uncertainty is poor and for industry inadequate assessment of risk costs money. In this talk we will examine the geological structure of the subsurface, however our principal exploration tool, controlled source seismology, gives its data in time. Inversion tools exist to map these data into a depth model but a full exploration of the uncertainty of the model is rarely done because robust strategies do not exist for large non-linear complex systems. There are two principal sources of uncertainty: the first comes from the input data which is noisy and bandlimited; the second, and more sinister, is from the model parameterisation and forward algorithms themselves, which approximate to the physics to make the problem tractable. To address these issues we propose a Bayesian approach. One philosophy is to estimate the uncertainty in a possible model derived using standard inversion tools. During the inversion stage we can use our geological prejudice to derive an acceptable model. Then we use a local random walk using the Metropolis- Hastings algorithm to explore the model space immediately around a possible solution. For models with a limited number of parameters we can use the forward modeling step from the inversion code. However as the number of parameters increase and/or the cost of the forward modeling step becomes significant, we need to use fast emulators to act as proxies so a sufficient number of iterations can be performed on which to base our statistical measures of uncertainty. In this presentation we show examples of uncertainty estimation using both pre- and post-critical seismic data. In particular, we will demonstrate uncertainty introduced by the approximation of the physics by using a tomographic inversion of bandlimited data and show that uncertainty increases as the central frequency of the data decreases. This is consistent with the

  17. Uncertainties of Mayak urine data

    SciTech Connect

    Miller, Guthrie; Vostrotin, Vadim; Vvdensky, Vladimir

    2008-01-01

    For internal dose calculations for the Mayak worker epidemiological study, quantitative estimates of uncertainty of the urine measurements are necessary. Some of the data consist of measurements of 24h urine excretion on successive days (e.g. 3 or 4 days). In a recent publication, dose calculations were done where the uncertainty of the urine measurements was estimated starting from the statistical standard deviation of these replicate mesurements. This approach is straightforward and accurate when the number of replicate measurements is large, however, a Monte Carlo study showed it to be problematic for the actual number of replicate measurements (median from 3 to 4). Also, it is sometimes important to characterize the uncertainty of a single urine measurement. Therefore this alternate method has been developed. A method of parameterizing the uncertainty of Mayak urine bioassay measmements is described. The Poisson lognormal model is assumed and data from 63 cases (1099 urine measurements in all) are used to empirically determine the lognormal normalization uncertainty, given the measurement uncertainties obtained from count quantities. The natural logarithm of the geometric standard deviation of the normalization uncertainty is found to be in the range 0.31 to 0.35 including a measurement component estimated to be 0.2.

  18. New challenges on uncertainty propagation assessment of flood risk analysis

    NASA Astrophysics Data System (ADS)

    Martins, Luciano; Aroca-Jiménez, Estefanía; Bodoque, José M.; Díez-Herrero, Andrés

    2016-04-01

    Natural hazards, such as floods, cause considerable damage to the human life, material and functional assets every year and around the World. Risk assessment procedures has associated a set of uncertainties, mainly of two types: natural, derived from stochastic character inherent in the flood process dynamics; and epistemic, that are associated with lack of knowledge or the bad procedures employed in the study of these processes. There are abundant scientific and technical literature on uncertainties estimation in each step of flood risk analysis (e.g. rainfall estimates, hydraulic modelling variables); but very few experience on the propagation of the uncertainties along the flood risk assessment. Therefore, epistemic uncertainties are the main goal of this work, in particular,understand the extension of the propagation of uncertainties throughout the process, starting with inundability studies until risk analysis, and how far does vary a proper analysis of the risk of flooding. These methodologies, such as Polynomial Chaos Theory (PCT), Method of Moments or Monte Carlo, are used to evaluate different sources of error, such as data records (precipitation gauges, flow gauges...), hydrologic and hydraulic modelling (inundation estimation), socio-demographic data (damage estimation) to evaluate the uncertainties propagation (UP) considered in design flood risk estimation both, in numerical and cartographic expression. In order to consider the total uncertainty and understand what factors are contributed most to the final uncertainty, we used the method of Polynomial Chaos Theory (PCT). It represents an interesting way to handle to inclusion of uncertainty in the modelling and simulation process. PCT allows for the development of a probabilistic model of the system in a deterministic setting. This is done by using random variables and polynomials to handle the effects of uncertainty. Method application results have a better robustness than traditional analysis

  19. Estimation of Measurement Uncertainties for the DGT Passive Sampler Used for Determination of Copper in Water.

    PubMed

    Knutsson, Jesper; Rauch, Sebastien; Morrison, Gregory M

    2014-01-01

    Diffusion-based passive samplers are increasingly used for water quality monitoring. While the overall method robustness and reproducibility for passive samplers in water are widely reported, there has been a lack of a detailed description of uncertainty sources. In this paper an uncertainty budget for the determination of fully labile Cu in water using a DGT passive sampler is presented. Uncertainty from the estimation of effective cross-sectional diffusion area and the instrumental determination of accumulated mass of analyte are the most significant sources of uncertainty, while uncertainties from contamination and the estimation of diffusion coefficient are negligible. The results presented highlight issues with passive samplers which are important to address if overall method uncertainty is to be reduced and effective strategies to reduce overall method uncertainty are presented.

  20. Uncertainties Quantification and Propagation of Multiple Correlated Variables with Limited Samples

    NASA Astrophysics Data System (ADS)

    Zhanpeng, Shen; Xueqian, Chen; Xinen, Liu; Chaoping, Zang

    2016-09-01

    In order to estimate the reliability of an engineering structure based on limited test data, it is distinctly important to address both the epistemic uncertainty from lacking in samples and correlations between input uncertain variables. Both the probability boxes theory and copula function theory are utilized in proposed method to represent uncertainty and correlation of input variables respectively. Moreover, the uncertainty of response of interest is obtained by uncertainty propagation of correlated input variables. Nested sampling technique is adopted here to insure the propagation is always feasible and the response's uncertainty is characterized by a probability box. Finally, a numerical example illustrates the validity and effectiveness of our method. The results indicate that the epistemic uncertainty cannot be conveniently ignored when available samples are very limited and correlations among input variables may significantly affect the uncertainty of responses.

  1. Credible Computations: Standard and Uncertainty

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.; VanDalsem, William (Technical Monitor)

    1995-01-01

    The discipline of computational fluid dynamics (CFD) is at a crossroad. Most of the significant advances related to computational methods have taken place. The emphasis is now shifting from methods to results. Significant efforts are made in applying CFD to solve design problems. The value of CFD results in design depends on the credibility of computed results for the intended use. The process of establishing credibility requires a standard so that there is a consistency and uniformity in this process and in the interpretation of its outcome. The key element for establishing the credibility is the quantification of uncertainty. This paper presents salient features of a proposed standard and a procedure for determining the uncertainty. A customer of CFD products - computer codes and computed results - expects the following: A computer code in terms of its logic, numerics, and fluid dynamics and the results generated by this code are in compliance with specified requirements. This expectation is fulfilling by verification and validation of these requirements. The verification process assesses whether the problem is solved correctly and the validation process determines whether the right problem is solved. Standards for these processes are recommended. There is always some uncertainty, even if one uses validated models and verified computed results. The value of this uncertainty is important in the design process. This value is obtained by conducting a sensitivity-uncertainty analysis. Sensitivity analysis is generally defined as the procedure for determining the sensitivities of output parameters to input parameters. This analysis is a necessary step in the uncertainty analysis, and the results of this analysis highlight which computed quantities and integrated quantities in computations need to be determined accurately and which quantities do not require such attention. Uncertainty analysis is generally defined as the analysis of the effect of the uncertainties

  2. Addressing viral resistance through vaccines

    PubMed Central

    Laughlin, Catherine; Schleif, Amanda; Heilman, Carole A

    2015-01-01

    Antimicrobial resistance is a serious healthcare concern affecting millions of people around the world. Antiviral resistance has been viewed as a lesser threat than antibiotic resistance, but it is important to consider approaches to address this growing issue. While vaccination is a logical strategy, and has been shown to be successful many times over, next generation viral vaccines with a specific goal of curbing antiviral resistance will need to clear several hurdles including vaccine design, evaluation and implementation. This article suggests that a new model of vaccination may need to be considered: rather than focusing on public health, this model would primarily target sectors of the population who are at high risk for complications from certain infections. PMID:26604979

  3. Changing concepts: the presidential address.

    PubMed

    Weed, J C

    1974-09-01

    A discussion of conceptual change in areas related to fertility and medicine is presented in an address by the president of the American Fertility Society. Advances in technological research and medicine, particularly in steroids and reporductive physiology, have been the most readily acceptable changes. Cesarean section and surgical sterilization have also become increasingly accepted. Newer developments such as sperm banks, artificial insemination, and ovum transfer have created profound ethical, moral, and medical issued in human engineering research and evolutionary theory. The legalization of abortion has brought moral, ethical, and legal problems for many members of the medical profession. It is urged that the Society promote education of the people in reproductive function, sexual activity, and parental obligation while being acutely aware of the problems in influencing or altering human reproduction.

  4. Addressing Failures in Exascale Computing

    SciTech Connect

    Snir, Marc; Wisniewski, Robert; Abraham, Jacob; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, J.; Bose, Pradip; Cappello, Franck; Carlson, Bill; Chien, Andrew; Coteus, Paul; DeBardeleben, Nathan; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Fazzari, Saverio; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Rob; Stearley, Jon; Van Hensbergen, Eric

    2014-01-01

    We present here a report produced by a workshop on Addressing failures in exascale computing' held in Park City, Utah, 4-11 August 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system, discuss existing knowledge on resilience across the various hardware and software layers of an exascale system, and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia, and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  5. Addressing failures in exascale computing

    SciTech Connect

    Snir, Marc; Wisniewski, Robert W.; Abraham, Jacob A.; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, Jim; Bose, Pradip; Cappello, Franck; Carlson, William; Chien, Andrew A.; Coteus, Paul; Debardeleben, Nathan A.; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Saverio, Fazzari; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Robert; Stearly, Jon; Van Hensbergen, Eric

    2014-05-01

    We present here a report produced by a workshop on “Addressing Failures in Exascale Computing” held in Park City, Utah, August 4–11, 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system; discuss existing knowledge on resilience across the various hardware and software layers of an exascale system; and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia; and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  6. Light addressable photoelectrochemical cyanide sensor

    SciTech Connect

    Licht, S.; Myung, N.; Sun, Y.

    1996-03-15

    A sensor is demonstrated that is capable of spatial discrimination of cyanide with use of only a single stationary sensing element. Different spatial regions of the sensing element are light activated to reveal the solution cyanide concentration only at the point of illumination. In this light addressable photoelectrochemical (LAP) sensor the sensing element consists of an n-CdSe electrode immersed in solution, with the open-circuit potential determined under illumination. In alkaline ferro-ferri-cyanide solution, the open-circuit photopotential is highly responsive to cyanide, with a linear response of (120 mV) log [KCN]. LAP detection with a spatial resolution of {+-}1 mm for cyanide detection is demonstrated. The response is almost linear for 0.001-0.100 m cyanide with a resolution of 5 mV. 38 refs., 7 figs., 1 tab.

  7. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    SciTech Connect

    Li, J.; McNelis, D.; Yim, M.S.

    2013-07-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.

  8. Scientific review of great basin wildfire issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The University Nevada Reno, College of Agriculture and Resource Concepts Inc., co-sponsored a Great Basin Wildfire Forum in September 2007 to address a “Scientific Review of the Ecological and Management History of Great Basin Natural Resources and Recommendations to Achieve Ecosystem Restoration”. ...

  9. Scientific Review of Great Basin Wildfire Issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The University Nevada Reno, College of Agriculture and Resource Concepts Inc., co-sponsored a Great Basin Wildfire Forum in September 2007 to address a “Scientific Review of the Ecological and Management History of Great Basin Natural Resources and Recommendations to Achieve Ecosystem Restoration”. ...

  10. Developmental Change in Notetaking during Scientific Inquiry

    ERIC Educational Resources Information Center

    Garcia-Mila, Merce; Andersen, Christopher

    2007-01-01

    This paper addresses the development in children's and adults' awareness of the benefits of writing through the analysis of change in notetaking while engaged in scientific inquiry over 10 weeks. Participants were given a notebook that they could choose to use. Our results indicate consistent differences between the performance of adults versus…

  11. Mythical thinking, scientific discourses and research dissemination.

    PubMed

    Hroar Klempe, Sven

    2011-06-01

    This article focuses on some principles for understanding. By taking Anna Mikulak's article "Mismatches between 'scientific' and 'non-scientific' ways of knowing and their contributions to public understanding of science" (IPBS 2011) as a point of departure, the idea of demarcation criteria for scientific and non-scientific discourses is addressed. Yet this is juxtaposed with mythical thinking, which is supposed to be the most salient trait of non-scientific discourses. The author demonstrates how the most widespread demarcation criterion, the criterion of verification, is self-contradictory, not only when it comes to logic, but also in the achievement of isolating natural sciences from other forms of knowledge. According to Aristotle induction is a rhetorical device and as far as scientific statements are based on inductive inferences, they are relying on humanities, which rhetoric is a part of. Yet induction also has an empirical component by being based on sense-impressions, which is not a part of the rhetoric, but the psychology. Also the myths are understood in a rhetorical (Lévi-Strauss) and a psychological (Cassirer) perspective. Thus it is argued that both scientific and non-scientific discourses can be mythical.

  12. LDRD Final Report: Capabilities for Uncertainty in Predictive Science.

    SciTech Connect

    Phipps, Eric Todd; Eldred, Michael S; Salinger, Andrew G.; Webster, Clayton G.

    2008-10-01

    Predictive simulation of systems comprised of numerous interconnected, tightly coupled com-ponents promises to help solve many problems of scientific and national interest. Howeverpredictive simulation of such systems is extremely challenging due to the coupling of adiverse set of physical and biological length and time scales. This report investigates un-certainty quantification methods for such systems that attempt to exploit their structure togain computational efficiency. The traditional layering of uncertainty quantification aroundnonlinear solution processes is inverted to allow for heterogeneous uncertainty quantificationmethods to be applied to each component in a coupled system. Moreover this approachallows stochastic dimension reduction techniques to be applied at each coupling interface.The mathematical feasibility of these ideas is investigated in this report, and mathematicalformulations for the resulting stochastically coupled nonlinear systems are developed.3

  13. The effects of uncertainty on the analysis of atmospheric deposition

    SciTech Connect

    Bloyd, C.N. ); Small, M.J.; Henrion, M.; Rubin, E.S. )

    1988-01-01

    Research efforts on the problem of acid ran are directed at improving current scientific understanding in critical areas, including sources of precursor emissions, the transport and transformation of pollutants in the atmosphere, the deposition of acidic species, and the chemical and biological effects of acid deposition on aquatic systems, materials, forests, crops and human health. The general goal of these research efforts is to characterize the current situation and to develop analytical models which can be used to predict the response of various systems to changes in critical parameters. This paper describes a framework which enables one to characterize uncertainty at each major stage of the modeling process. Following a general presentation of the modeling framework, a description is given of the methods chosen to characterize uncertainty for each major step. Analysis is then performed to illustrate the effects of uncertainty on future lake acidification in the Adirondacks Park area of upstate New York.

  14. On the formulation of a minimal uncertainty model for robust control with structured uncertainty

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Chang, B.-C.; Fischl, Robert

    1991-01-01

    In the design and analysis of robust control systems for uncertain plants, representing the system transfer matrix in the form of what has come to be termed an M-delta model has become widely accepted and applied in the robust control literature. The M represents a transfer function matrix M(s) of the nominal closed loop system, and the delta represents an uncertainty matrix acting on M(s). The nominal closed loop system M(s) results from closing the feedback control system, K(s), around a nominal plant interconnection structure P(s). The uncertainty can arise from various sources, such as structured uncertainty from parameter variations or multiple unsaturated uncertainties from unmodeled dynamics and other neglected phenomena. In general, delta is a block diagonal matrix, but for real parameter variations delta is a diagonal matrix of real elements. Conceptually, the M-delta structure can always be formed for any linear interconnection of inputs, outputs, transfer functions, parameter variations, and perturbations. However, very little of the currently available literature addresses computational methods for obtaining this structure, and none of this literature addresses a general methodology for obtaining a minimal M-delta model for a wide class of uncertainty, where the term minimal refers to the dimension of the delta matrix. Since having a minimally dimensioned delta matrix would improve the efficiency of structured singular value (or multivariable stability margin) computations, a method of obtaining a minimal M-delta would be useful. Hence, a method of obtaining the interconnection system P(s) is required. A generalized procedure for obtaining a minimal P-delta structure for systems with real parameter variations is presented. Using this model, the minimal M-delta model can then be easily obtained by closing the feedback loop. The procedure involves representing the system in a cascade-form state-space realization, determining the minimal uncertainty matrix

  15. Uncertainty and precaution in environmental management.

    PubMed

    Krayer von Krauss, M; van Asselt, M B A; Henze, M; Ravetz, J; Beck, M B

    2005-01-01

    In this paper, two different visions of the relationship between science and policy are contrasted with one another: the "modern" vision and the "precautionary" vision. Conditions which must apply in order to invoke the Precautionary Principle are presented, as are some of the main challenges posed by the principle. The following central question remains: If scientific certainty cannot be provided, what may then justify regulatory interventions, and what degree of intervention is justifiable? The notion of "quality of information" is explored, and it is emphasized that there can be no absolute definition of good or bad quality. Collective judgments of quality are only possible through deliberation on the characteristics of the information, and on the relevance of the information to the policy context. Reference to a relative criterion therefore seems inevitable and legal complexities are to be expected. Uncertainty is presented as a multidimensional concept, reaching far beyond the conventional statistical interpretation of the concept. Of critical importance is the development of methods for assessing qualitative categories of uncertainty. Model quality assessment should observe the following rationale: identify a model that is suited to the purpose, yet bears some reasonable resemblance to the "real" phenomena. In this context, "purpose" relates to the policy and societal contexts in which the assessment results are to be used. It is therefore increasingly agreed that judgment of the quality of assessments necessarily involves the participation of non-modellers and non-scientists. A challenging final question is: How to use uncertainty information in policy contexts? More research is required in order to answer this question.

  16. Complexity and Uncertainty in Soil Nitrogen Modeling

    NASA Astrophysics Data System (ADS)

    Ajami, N. K.; Gu, C.

    2009-12-01

    Model uncertainty is rarely considered in the field of biogeochemical modeling. The standard biogeochemical modeling approach is to proceed based on one selected model with the “right” complexity level based on data availability. However other plausible models can result in dissimilar answer to the scientific question in hand using the same set of data. Relying on a single model can lead to underestimation of uncertainty associated with the results and therefore lead to unreliable conclusions. Multi-model ensemble strategy is a means to exploit the diversity of skillful predictions from different models with multiple levels of complexity. The aim of this study is two fold, first to explore the impact of a model’s complexity level on the accuracy of the end results and second to introduce a probabilistic multi-model strategy in the context of a process-based biogeochemical model. We developed three different versions of a biogeochemical model, TOUGHREACT-N, with various complexity levels. Each one of these models was calibrated against the observed data from a tomato field in Western Sacramento County, California, and considered two different weighting sets on the objective function. This way we created a set of six ensemble members. The Bayesian Model Averaging (BMA) approach was then used to combine these ensemble members by the likelihood that an individual model is correct given the observations. The results clearly indicate the need to consider a multi-model ensemble strategy over a single model selection in biogeochemical modeling.

  17. Communicating Uncertainties for Microwave-Based ESDRs

    NASA Astrophysics Data System (ADS)

    Wentz, F. J.; Mears, C. A.; Smith, D. K.

    2011-12-01

    Currently as part of NASA's MEaSUREs program, there is a 25-year archive of consistently-processed and carefully inter-calibrated Earth Science Data Records (ESDR) consisting of geophysical products derived from satellite microwave radiometers. These products include ocean surface temperature and wind speed, total atmospheric water vapor and cloud water, surface rain rate, and deep-layer averages of atmospheric temperature. The product retrievals are based on a radiative transfer model (RTM) for the surface and intervening atmosphere. Thus, the accuracy of the retrieved products depends both on the accuracy of the RTM, the accuracy of the measured brightness temperatures that serve as inputs to the retrieval algorithm, and on the accuracy of any ancillary data used to adjust for unmeasured geophysical conditions. In addition, for gridded products that are averages over time or space, sampling error can become important. It is important not only to calculate the uncertainties associated with the ESDRs but also to effectively communicate these uncertainties to the Users in a way that is helpful for their particular set of applications. This is a challenging task that will require a multi-faceted approach consisting of (1) error bars assigned to each retrieval, (2) detailed interactive validation reports, and (3) peer-reviewed scientific papers on long-term trends. All of this information needs to be linked to the ESDR's in a manner that facilitates integration into the User's applications. Our talk will discuss the progress we are making in implementing these approaches.

  18. WELCOME ADDRESS: Welcome Address for the 60th Yamada Conference

    NASA Astrophysics Data System (ADS)

    Fukuyama, Hidetoshi

    2006-12-01

    discussions in the conference rooms but also through pleasant chatting on the lobby floor or even at the banquet table, which may give rise to other important international collaborative projects in the near future. Finally, we would like to express our sincere thanks to Professor Mitsuhiro Motokawa and the members of the organizing committee who have made every effort to bring in such a successful performance of the Conference. I hope all of you would enjoy the Conference and relax sometime staying in this interesting scientific city of Sendai. Thank you. Hidetoshi Fukuyama On behalf of Director General, Professor Yasusada Yamada Yamada Science Foundation

  19. Monitoring, causality, and uncertainty in a stratospheric context

    NASA Astrophysics Data System (ADS)

    Barrie Pittock, A.

    1980-03-01

    Our increasingly complex understanding of stratospheric chemistry and transport processes leaves us with various theoretical possibilities of appreciable and perhaps serious environmental impact due to human activities. These possibilities raise policy questions in which the economic and other costs of regulating human activities must be weighed against the possible consequences of no such regulation. The natural variability of the atmosphere, the physical and other limitations on our global sampling and monitoring abilities, and the difficulties in establishing causal connections leave us in a state of uncertainty as to the reality and magnitude of at least some of these theoretical environmental impacts. Policy-makers must make decisions in the face of these uncertainties. The proper role of scientists as such in narrowing and quantifying the uncertainties is discussed, with particular regard to the evidence that cultural and other biases often affect individual scientists' conclusions. Conscious efforts are needed to minimize bias, quantify uncertainties, and speed up the process of scientific consensus-building. A careful distinction should be drawn between scientifically determined probabilities, and cost-benefit analyses which necessarily involve value judgments.

  20. Visualizing uncertainty about the future.

    PubMed

    Spiegelhalter, David; Pearson, Mike; Short, Ian

    2011-09-01

    We are all faced with uncertainty about the future, but we can get the measure of some uncertainties in terms of probabilities. Probabilities are notoriously difficult to communicate effectively to lay audiences, and in this review we examine current practice for communicating uncertainties visually, using examples drawn from sport, weather, climate, health, economics, and politics. Despite the burgeoning interest in infographics, there is limited experimental evidence on how different types of visualizations are processed and understood, although the effectiveness of some graphics clearly depends on the relative numeracy of an audience. Fortunately, it is increasingly easy to present data in the form of interactive visualizations and in multiple types of representation that can be adjusted to user needs and capabilities. Nonetheless, communicating deeper uncertainties resulting from incomplete or disputed knowledge--or from essential indeterminacy about the future--remains a challenge.

  1. Uncertainty analysis of thermoreflectance measurements.

    PubMed

    Yang, Jia; Ziade, Elbara; Schmidt, Aaron J

    2016-01-01

    We derive a generally applicable formula to calculate the precision of multi-parameter measurements that apply least squares algorithms. This formula, which accounts for experimental noise and uncertainty in the controlled model parameters, is then used to analyze the uncertainty of thermal property measurements with pump-probe thermoreflectance techniques. We compare the uncertainty of time domain thermoreflectance and frequency domain thermoreflectance (FDTR) when measuring bulk materials and thin films, considering simultaneous measurements of various combinations of thermal properties, including thermal conductivity, heat capacity, and thermal boundary conductance. We validate the uncertainty analysis using Monte Carlo simulations on data from FDTR measurements of an 80 nm gold film on fused silica. PMID:26827342

  2. Estimations of uncertainties of frequencies

    NASA Astrophysics Data System (ADS)

    Eyer, Laurent; Nicoletti, Jean-Marc; Morgenthaler, Stephan

    2015-08-01

    Diverse variable phenomena in the Universe are periodic. Astonishingly many of the periodic signals present in stars have timescales coinciding with human ones (from minutes to years). The periods of signals often have to be deduced from time series which are irregularly sampled and sparse, furthermore correlations between the brightness measurements and their estimated uncertainties are common.The uncertainty on the frequency estimation is reviewed. We explore the astronomical and statistical literature, in both cases of regular and irregular samplings. The frequency uncertainty is depending on signal to noise ratio, the frequency, the observational timespan. The shape of the light curve should also intervene, since sharp features such as exoplanet transits, stellar eclipses, raising branches of pulsation stars give stringent constraints.We propose several procedures (parametric and nonparametric) to estimate the uncertainty on the frequency which are subsequently tested against simulated data to assess their performances.

  3. Climate Projections and Uncertainty Communication.

    PubMed

    Joslyn, Susan L; LeClerc, Jared E

    2016-01-01

    Lingering skepticism about climate change might be due in part to the way climate projections are perceived by members of the public. Variability between scientists' estimates might give the impression that scientists disagree about the fact of climate change rather than about details concerning the extent or timing. Providing uncertainty estimates might clarify that the variability is due in part to quantifiable uncertainty inherent in the prediction process, thereby increasing people's trust in climate projections. This hypothesis was tested in two experiments. Results suggest that including uncertainty estimates along with climate projections leads to an increase in participants' trust in the information. Analyses explored the roles of time, place, demographic differences (e.g., age, gender, education level, political party affiliation), and initial belief in climate change. Implications are discussed in terms of the potential benefit of adding uncertainty estimates to public climate projections.

  4. Climate Projections and Uncertainty Communication.

    PubMed

    Joslyn, Susan L; LeClerc, Jared E

    2016-01-01

    Lingering skepticism about climate change might be due in part to the way climate projections are perceived by members of the public. Variability between scientists' estimates might give the impression that scientists disagree about the fact of climate change rather than about details concerning the extent or timing. Providing uncertainty estimates might clarify that the variability is due in part to quantifiable uncertainty inherent in the prediction process, thereby increasing people's trust in climate projections. This hypothesis was tested in two experiments. Results suggest that including uncertainty estimates along with climate projections leads to an increase in participants' trust in the information. Analyses explored the roles of time, place, demographic differences (e.g., age, gender, education level, political party affiliation), and initial belief in climate change. Implications are discussed in terms of the potential benefit of adding uncertainty estimates to public climate projections. PMID:26695995

  5. Uncertainty-induced quantum nonlocality

    NASA Astrophysics Data System (ADS)

    Wu, Shao-xiong; Zhang, Jun; Yu, Chang-shui; Song, He-shan

    2014-01-01

    Based on the skew information, we present a quantity, uncertainty-induced quantum nonlocality (UIN) to measure the quantum correlation. It can be considered as the updated version of the original measurement-induced nonlocality (MIN) preserving the good computability but eliminating the non-contractivity problem. For 2×d-dimensional state, it is shown that UIN can be given by a closed form. In addition, we also investigate the maximal uncertainty-induced nonlocality.

  6. Dynamical Realism and Uncertainty Propagation

    NASA Astrophysics Data System (ADS)

    Park, Inkwan

    In recent years, Space Situational Awareness (SSA) has become increasingly important as the number of tracked Resident Space Objects (RSOs) continues their growth. One of the most significant technical discussions in SSA is how to propagate state uncertainty in a consistent way with the highly nonlinear dynamical environment. In order to keep pace with this situation, various methods have been proposed to propagate uncertainty accurately by capturing the nonlinearity of the dynamical system. We notice that all of the methods commonly focus on a way to describe the dynamical system as precisely as possible based on a mathematical perspective. This study proposes a new perspective based on understanding dynamics of the evolution of uncertainty itself. We expect that profound insights of the dynamical system could present the possibility to develop a new method for accurate uncertainty propagation. These approaches are naturally concluded in goals of the study. At first, we investigate the most dominant factors in the evolution of uncertainty to realize the dynamical system more rigorously. Second, we aim at developing the new method based on the first investigation enabling orbit uncertainty propagation efficiently while maintaining accuracy. We eliminate the short-period variations from the dynamical system, called a simplified dynamical system (SDS), to investigate the most dominant factors. In order to achieve this goal, the Lie transformation method is introduced since this transformation can define the solutions for each variation separately. From the first investigation, we conclude that the secular variations, including the long-period variations, are dominant for the propagation of uncertainty, i.e., short-period variations are negligible. Then, we develop the new method by combining the SDS and the higher-order nonlinear expansion method, called state transition tensors (STTs). The new method retains advantages of the SDS and the STTs and propagates

  7. Natural Uncertainty Measure for Forecasting Floods in Ungauged Basins

    NASA Astrophysics Data System (ADS)

    Mantilla, Ricardo; Krajewski, Witold F.; Gupta, Vijay K.; Ayalew, Tibebu B.

    2015-04-01

    Recent data analysis have shown that peak flows for individual Rainfall-Runoff (RF-RO) events exhibit power law scaling with respect to drainage area, but the scaling slopes and intercepts change from one event to the next. We test this feature in the 32,400 km2 Iowa River basin, and give supporting evidence for our hypothesis that scaling slope and intercept incorporates all the pertinent physical processes that produce floods. These developments serve as the foundations for the key question that is addressed here: How to define uncertainty bounds for flood prediction for each event? We theoretically introduce the concept of Natural Uncertainty Measure for peak discharge (NUMPD) and test it using data from the Iowa River basin. We conjecture that NUMPD puts a limit to predictive uncertainty using measurements and modeling. In other words, the best any amount of data collection combined with any model can do is to come close to predicting NUMPD, but it cannot match or reduce it any further. For the applications of flood predictions, the concepts of Type-I and Type-II uncertainties in flood prediction are explained. We demonstrate Type-I uncertainty using the concept of NUMPD. Our results offer a context for Type-II uncertainty. Our results make a unique contribution to International Association of Hydrologic Sciences (IAHS) decade-long initiative on Predictions in Unaguged Basins (PUB) (2003-2012).

  8. Considering rating curve uncertainty in water level predictions

    NASA Astrophysics Data System (ADS)

    Sikorska, A. E.; Scheidegger, A.; Banasik, K.; Rieckermann, J.

    2013-11-01

    Streamflow cannot be measured directly and is typically derived with a rating curve model. Unfortunately, this causes uncertainties in the streamflow data and also influences the calibration of rainfall-runoff models if they are conditioned on such data. However, it is currently unknown to what extent these uncertainties propagate to rainfall-runoff predictions. This study therefore presents a quantitative approach to rigorously consider the impact of the rating curve on the prediction uncertainty of water levels. The uncertainty analysis is performed within a formal Bayesian framework and the contributions of rating curve versus rainfall-runoff model parameters to the total predictive uncertainty are addressed. A major benefit of the approach is its independence from the applied rainfall-runoff model and rating curve. In addition, it only requires already existing hydrometric data. The approach was successfully demonstrated on a small catchment in Poland, where a dedicated monitoring campaign was performed in 2011. The results of our case study indicate that the uncertainty in calibration data derived by the rating curve method may be of the same relevance as rainfall-runoff model parameters themselves. A conceptual limitation of the approach presented is that it is limited to water level predictions. Nevertheless, regarding flood level predictions, the Bayesian framework seems very promising because it (i) enables the modeler to incorporate informal knowledge from easily accessible information and (ii) better assesses the individual error contributions. Especially the latter is important to improve the predictive capability of hydrological models.

  9. Considering rating curve uncertainty in water level predictions

    NASA Astrophysics Data System (ADS)

    Sikorska, A. E.; Scheidegger, A.; Banasik, K.; Rieckermann, J.

    2013-03-01

    Streamflow cannot be measured directly and is typically derived with a rating curve model. Unfortunately, this causes uncertainties in the streamflow data and also influences the calibration of rainfall-runoff models if they are conditioned on such data. However, it is currently unknown to what extent these uncertainties propagate to rainfall-runoff predictions. This study therefore presents a quantitative approach to rigorously consider the impact of the rating curve on the prediction uncertainty of water levels. The uncertainty analysis is performed within a formal Bayesian framework and the contributions of rating curve versus rainfall-runoff model parameters to the total predictive uncertainty are addressed. A major benefit of the approach is its independence from the applied rainfall-runoff model and rating curve. In addition, it only requires already existing hydrometric data. The approach was successfully tested on a small urbanized basin in Poland, where a dedicated monitoring campaign was performed in 2011. The results of our case study indicate that the uncertainty in calibration data derived by the rating curve method may be of the same relevance as rainfall-runoff model parameters themselves. A conceptual limitation of the approach presented is that it is limited to water level predictions. Nevertheless, regarding flood level predictions, the Bayesian framework seems very promising because it (i) enables the modeler to incorporate informal knowledge from easily accessible information and (ii) better assesses the individual error contributions. Especially the latter is important to improve the predictive capability of hydrological models.

  10. Communicating Climate Uncertainties: Challenges and Opportunities Related to Spatial Scales, Extreme Events, and the Warming 'Hiatus'

    NASA Astrophysics Data System (ADS)

    Casola, J. H.; Huber, D.

    2013-12-01

    Many media, academic, government, and advocacy organizations have achieved sophistication in developing effective messages based on scientific information, and can quickly translate salient aspects of emerging climate research and evolving observations. However, there are several ways in which valid messages can be misconstrued by decision makers, leading them to inaccurate conclusions about the risks associated with climate impacts. Three cases will be discussed: 1) Issues of spatial scale in interpreting climate observations: Local climate observations may contradict summary statements about the effects of climate change on larger regional or global spatial scales. Effectively addressing these differences often requires communicators to understand local and regional climate drivers, and the distinction between a 'signal' associated with climate change and local climate 'noise.' Hydrological statistics in Missouri and California are shown to illustrate this case. 2) Issues of complexity related to extreme events: Climate change is typically invoked following a wide range of damaging meteorological events (e.g., heat waves, landfalling hurricanes, tornadoes), regardless of the strength of the relationship between anthropogenic climate change and the frequency or severity of that type of event. Examples are drawn from media coverage of several recent events, contrasting useful and potentially confusing word choices and frames. 3) Issues revolving around climate sensitivity: The so-called 'pause' or 'hiatus' in global warming has reverberated strongly through political and business discussions of climate change. Addressing the recent slowdown in warming yields an important opportunity to raise climate literacy in these communities. Attempts to use recent observations as a wedge between climate 'believers' and 'deniers' is likely to be counterproductive. Examples are drawn from Congressional testimony and media stories. All three cases illustrate ways that decision

  11. Uncertainty of empirical correlation equations

    NASA Astrophysics Data System (ADS)

    Feistel, R.; Lovell-Smith, J. W.; Saunders, P.; Seitz, S.

    2016-08-01

    The International Association for the Properties of Water and Steam (IAPWS) has published a set of empirical reference equations of state, forming the basis of the 2010 Thermodynamic Equation of Seawater (TEOS-10), from which all thermodynamic properties of seawater, ice, and humid air can be derived in a thermodynamically consistent manner. For each of the equations of state, the parameters have been found by simultaneously fitting equations for a range of different derived quantities using large sets of measurements of these quantities. In some cases, uncertainties in these fitted equations have been assigned based on the uncertainties of the measurement results. However, because uncertainties in the parameter values have not been determined, it is not possible to estimate the uncertainty in many of the useful quantities that can be calculated using the parameters. In this paper we demonstrate how the method of generalised least squares (GLS), in which the covariance of the input data is propagated into the values calculated by the fitted equation, and in particular into the covariance matrix of the fitted parameters, can be applied to one of the TEOS-10 equations of state, namely IAPWS-95 for fluid pure water. Using the calculated parameter covariance matrix, we provide some preliminary estimates of the uncertainties in derived quantities, namely the second and third virial coefficients for water. We recommend further investigation of the GLS method for use as a standard method for calculating and propagating the uncertainties of values computed from empirical equations.

  12. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2014-01-01

    This paper presents the formulation of an uncertainty quantification challenge problem consisting of five subproblems. These problems focus on key aspects of uncertainty characterization, sensitivity analysis, uncertainty propagation, extreme-case analysis, and robust design.

  13. Scientific integrity memorandum

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-03-01

    U.S. President Barack Obama signed a presidential memorandum on 9 March to help restore scientific integrity in government decision making. The memorandum directs the White House Office of Science and Technology Policy to develop a strategy within 120 days that ensures that "the selection of scientists and technology professionals for science and technology positions in the executive branch is based on those individuals' scientific and technological knowledge, credentials, and experience; agencies make available to the public the scientific or technological findings or conclusions considered or relied upon in policy decisions; agencies use scientific and technological information that has been subject to well-established scientific processes such as peer review; and agencies have appropriate rules and procedures to ensure the integrity of the scientific process within the agency, including whistleblower protection."

  14. Addressing neurological disorders with neuromodulation.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2011-07-01

    Neurological disorders are becoming increasingly common in developed countries as a result of the aging population. In spite of medications, these disorders can result in progressive loss of function as well as chronic physical, cognitive, and emotional disability that ultimately places enormous emotional and economic on the patient, caretakers, and the society in general. Neuromodulation is emerging as a therapeutic option in these patients. Neuromodulation is a field, which involves implantable devices that allow for the reversible adjustable application of electrical, chemical, or biological agents to the central or peripheral nervous system with the objective of altering its functioning with the objective of achieving a therapeutic or clinically beneficial effect. It is a rapidly evolving field that brings together many different specialties in the fields of medicine, materials science, computer science and technology, biomedical, and neural engineering as well as the surgical or interventional specialties. It has multiple current and emerging indications, and an enormous potential for growth. The main challenges before it are in the need for effective collaboration between engineers, basic scientists, and clinicians to develop innovations that address specific problems resulting in new devices and clinical applications. PMID:21193369

  15. A region addresses patient safety.

    PubMed

    Feinstein, Karen Wolk; Grunden, Naida; Harrison, Edward I

    2002-06-01

    The Pittsburgh Regional Healthcare Initiative (PRHI) is a coalition of 35 hospitals, 4 major insurers, more than 30 major and small-business health care purchasers, dozens of corporate and civic leaders, organized labor, and partnerships with state and federal government all working together to deliver perfect patient care throughout Southwestern Pennsylvania. PRHI believes that in pursuing perfection, many of the challenges facing today's health care delivery system (eg, waste and error in the delivery of care, rising costs, frustration and shortage among clinicians and workers, financial distress, overcapacity, and lack of access to care) will be addressed. PRHI has identified patient safety (nosocomial infections and medication errors) and 5 clinical areas (obstetrics, orthopedic surgery, cardiac surgery, depression, and diabetes) as ideal starting points. In each of these areas of work, PRHI partners have assembled multifacility/multidisciplinary groups charged with defining perfection, establishing region-wide reporting systems, and devising and implementing recommended improvement strategies and interventions. Many design and conceptual elements of the PRHI strategy are adapted from the Toyota Production System and its Pittsburgh derivative, the Alcoa Business System. PRHI is in the proof-of-concept phase of development. PMID:12032502

  16. Addressing neurological disorders with neuromodulation.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2011-07-01

    Neurological disorders are becoming increasingly common in developed countries as a result of the aging population. In spite of medications, these disorders can result in progressive loss of function as well as chronic physical, cognitive, and emotional disability that ultimately places enormous emotional and economic on the patient, caretakers, and the society in general. Neuromodulation is emerging as a therapeutic option in these patients. Neuromodulation is a field, which involves implantable devices that allow for the reversible adjustable application of electrical, chemical, or biological agents to the central or peripheral nervous system with the objective of altering its functioning with the objective of achieving a therapeutic or clinically beneficial effect. It is a rapidly evolving field that brings together many different specialties in the fields of medicine, materials science, computer science and technology, biomedical, and neural engineering as well as the surgical or interventional specialties. It has multiple current and emerging indications, and an enormous potential for growth. The main challenges before it are in the need for effective collaboration between engineers, basic scientists, and clinicians to develop innovations that address specific problems resulting in new devices and clinical applications.

  17. Gender: addressing a critical focus.

    PubMed

    Thornton, L; Wegner, M N

    1995-01-01

    The definition of gender was addressed at the Fourth World Conference on Women (Beijing, China). After extensive debate, the definition developed by the UN Population Fund in 1995 was adopted: "a set of qualities and behaviors expected from a female or male by society." The sustainability of family planning (FP) programs depends on acknowledgment of the role gender plays in contraceptive decision-making and use. For example, programs must consider the fact that women in many cultures do not make FP decisions without the consent of their spouse. AVSC is examining providers' gender-based ideas about clients and the effects of these views on the quality of reproductive health services. Questions such as how service providers can encourage joint responsibility for contraception without requiring spousal consent or how they can make men feel comfortable about using a male method in a society where FP is considered a woman's issue are being discussed. Also relevant is how service providers can discuss sexual matters openly with female clients in cultures that do not allow women to enjoy their sexuality. Another concern is the potential for physical violence to a client as a result of the provision of FP services. PMID:12294397

  18. Life and Scientific Work of Peter Guthrie Tait

    NASA Astrophysics Data System (ADS)

    Gilston Knott, Cargill

    2015-04-01

    Preface; 1. Memoir - Peter Guthrie Tait; 2. Experimental work; 3. Mathematical work; 4. Quaternions; 5. Thomson and Tait, 'Tand T', or Thomson and Tait's natural philosophy; 6. Other books; 7. Addresses, reviews, and correspondence; 8. Popular scientific articles; Bibliography; Index.

  19. A Scientific Approach to Teaching about Evolution and Special Creation.

    ERIC Educational Resources Information Center

    Lawson, Anton E.

    1999-01-01

    Presents a lesson that addresses the scientific aspects of the evolution versus special creation controversy by having students gather evidence from the fossil record and analyze that evidence using critical-thinking skills. Contains 13 references. (WRM)

  20. 77 FR 22805 - Scientific Integrity: Statement of Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ..., and implementation of labor laws that address conditions of employment, benefits and compensation... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Scientific Integrity: Statement of Policy AGENCY: Office of the Secretary, Labor. ACTION: Soliciting...

  1. Scientific Journalism in Armenia

    NASA Astrophysics Data System (ADS)

    Farmanyan, S. V.; Mickaelian, A. M.

    2015-07-01

    In the present study, the problems of scientific journalism and activities of Armenian science journalists are presented. Scientific journalism in the world, forms of its activities, Armenian Astronomical Society (ArAS) press-releases and their subjects, ArAS website "Mass Media News" section, annual and monthly calendars of astronomical events, and "Astghagitak" online journal are described. Most interesting astronomical subjects involved in scientific journalism, reasons for non-satisfactory science outreach and possible solutions are discussed.

  2. Uncertainty assessment tool for climate change impact indicators

    NASA Astrophysics Data System (ADS)

    Otto, Juliane; Keup-Thiel, Elke; Jacob, Daniela; Rechid, Diana; Lückenkötter, Johannes; Juckes, Martin

    2015-04-01

    A major difficulty in the study of climate change impact indicators is dealing with the numerous sources of uncertainties of climate and non-climate data . Its assessment, however, is needed to communicate to users the degree of certainty of climate change impact indicators. This communication of uncertainty is an important component of the FP7 project "Climate Information Portal for Copernicus" (CLIPC). CLIPC is developing a portal to provide a central point of access for authoritative scientific information on climate change. In this project the Climate Service Center 2.0 is in charge of the development of a tool to assess the uncertainty of climate change impact indicators. The calculation of climate change impact indicators will include climate data from satellite and in-situ observations, climate models and re-analyses, and non-climate data. There is a lack of a systematic classification of uncertainties arising from the whole range of climate change impact indicators. We develop a framework that intends to clarify the potential sources of uncertainty of a given indicator and provides - if possible - solutions how to quantify the uncertainties. To structure the sources of uncertainties of climate change impact indicators, we first classify uncertainties along a 'cascade of uncertainty' (Reyer 2013). Our cascade consists of three levels which correspond to the CLIPC meta-classification of impact indicators: Tier-1 indicators are intended to give information on the climate system. Tier-2 indicators attempt to quantify the impacts of climate change on biophysical systems (i.e. flood risks). Tier-3 indicators primarily aim at providing information on the socio-economic systems affected by climate change. At each level, the potential sources of uncertainty of the input data sets and its processing will be discussed. Reference: Reyer, C. (2013): The cascade of uncertainty in modeling forest ecosystem responses to environmental change and the challenge of sustainable

  3. Structural model uncertainty in stochastic simulation

    SciTech Connect

    McKay, M.D.; Morrison, J.D.

    1997-09-01

    Prediction uncertainty in stochastic simulation models can be described by a hierarchy of components: stochastic variability at the lowest level, input and parameter uncertainty at a higher level, and structural model uncertainty at the top. It is argued that a usual paradigm for analysis of input uncertainty is not suitable for application to structural model uncertainty. An approach more likely to produce an acceptable methodology for analyzing structural model uncertainty is one that uses characteristics specific to the particular family of models.

  4. Assessing the total uncertainty on average sediment export measurements

    NASA Astrophysics Data System (ADS)

    Vanmaercke, Matthias

    2015-04-01

    Sediment export measurements from rivers are usually subjected to large uncertainties. Although many case studies have focussed on specific aspects influencing these uncertainties (e.g. the sampling procedure, laboratory analyses, sampling frequency, load calculation method, duration of the measuring method), very few studies provide an integrated assessment of the total uncertainty resulting from these different sources of errors. Moreover, the findings of these studies are commonly difficult to apply, as they require specific details on the applied measuring method that are often unreported. As a result, the overall uncertainty on reported average sediment export measurements remains difficult to assess. This study aims to address this gap. Based on Monte Carlo simulations on a large dataset of daily sediment export measurements (> 100 catchments and > 2000 catchment-years of observations), the most dominant sources of uncertainties are explored. Results show that uncertainties on average sediment-export values (over multiple years) are mainly controlled by the sampling frequency and the duration of the measuring period. Measuring errors on individual sediment concentration or runoff discharge samples have an overall smaller influence. Depending on the sampling strategy used (e.g. uniform or flow-proportional), also the load calculation procedure can cause significant biases in the obtained results. A simple method is proposed that allows estimating the total uncertainty on sediment export values, based on commonly reported information (e.g. the catchment area, measuring period, number of samples taken, load calculation procedure used). An application of this method shows that total uncertainties on annual sediment export measurements can easily exceed 200%. It is shown that this has important consequences for the calibration and validation of sediment export models.

  5. OPENING ADDRESS: Heterostructures in Semiconductors

    NASA Astrophysics Data System (ADS)

    Grimmeiss, Hermann G.

    1996-01-01

    Good morning, Gentlemen! On behalf of the Nobel Foundation, I should like to welcome you to the Nobel Symposium on "Heterostructures in Semiconductors". It gives me great pleasure to see so many colleagues and old friends from all over the world in the audience and, in particular, to bid welcome to our Nobel laureates, Prof. Esaki and Prof. von Klitzing. In front of a different audience I would now commend the scientific and technological importance of heterostructures in semiconductors and emphatically emphasise that heterostructures, as an important contribution to microelectronics and, hence, information technology, have changed societies all over the world. I would also mention that information technology is one of the most important global key industries which covers a wide field of important areas each of which bears its own character. Ever since the invention of the transistor, we have witnessed a fantastic growth in semiconductor technology, leading to more complex functions and higher densities of devices. This development would hardly be possible without an increasing understanding of semiconductor materials and new concepts in material growth techniques which allow the fabrication of previously unknown semiconductor structures. But here and today I will not do it because it would mean to carry coals to Newcastle. I will therefore not remind you that heterostructures were already suggested and discussed in detail a long time before proper technologies were available for the fabrication of such structures. Now, heterostructures are a foundation in science and part of our everyday life. Though this is certainly true, it is nevertheless fair to say that not all properties of heterostructures are yet understood and that further technologies have to be developed before a still better understanding is obtained. The organisers therefore hope that this symposium will contribute not only to improving our understanding of heterostructures but also to opening new

  6. Cumulative uncertainty in measured streamflow and water quality data for small watersheds

    USGS Publications Warehouse

    Harmel, R.D.; Cooper, R.J.; Slade, R.M.; Haney, R.L.; Arnold, J.G.

    2006-01-01

    The scientific community has not established an adequate understanding of the uncertainty inherent in measured water quality data, which is introduced by four procedural categories: streamflow measurement, sample collection, sample preservation/storage, and laboratory analysis. Although previous research has produced valuable information on relative differences in procedures within these categories, little information is available that compares the procedural categories or presents the cumulative uncertainty in resulting water quality data. As a result, quality control emphasis is often misdirected, and data uncertainty is typically either ignored or accounted for with an arbitrary margin of safety. Faced with the need for scientifically defensible estimates of data uncertainty to support water resource management, the objectives of this research were to: (1) compile selected published information on uncertainty related to measured streamflow and water quality data for small watersheds, (2) use a root mean square error propagation method to compare the uncertainty introduced by each procedural category, and (3) use the error propagation method to determine the cumulative probable uncertainty in measured streamflow, sediment, and nutrient data. Best case, typical, and worst case "data quality" scenarios were examined. Averaged across all constituents, the calculated cumulative probable uncertainty (??%) contributed under typical scenarios ranged from 6% to 19% for streamflow measurement, from 4% to 48% for sample collection, from 2% to 16% for sample preservation/storage, and from 5% to 21% for laboratory analysis. Under typical conditions, errors in storm loads ranged from 8% to 104% for dissolved nutrients, from 8% to 110% for total N and P, and from 7% to 53% for TSS. Results indicated that uncertainty can increase substantially under poor measurement conditions and limited quality control effort. This research provides introductory scientific estimates of

  7. Communicating uncertainties in earth sciences in view of user needs

    NASA Astrophysics Data System (ADS)

    de Vries, Wim; Kros, Hans; Heuvelink, Gerard

    2014-05-01

    Uncertainties are inevitable in all results obtained in the earth sciences, regardless whether these are based on field observations, experimental research or predictive modelling. When informing decision and policy makers or stakeholders, it is important that these uncertainties are also communicated. In communicating results, it important to apply a "Progressive Disclosure of Information (PDI)" from non-technical information through more specialised information, according to the user needs. Generalized information is generally directed towards non-scientific audiences and intended for policy advice. Decision makers have to be aware of the implications of the uncertainty associated with results, so that they can account for it in their decisions. Detailed information on the uncertainties is generally intended for scientific audiences to give insight in underlying approaches and results. When communicating uncertainties, it is important to distinguish between scientific results that allow presentation in terms of probabilistic measures of uncertainty and more intrinsic uncertainties and errors that cannot be expressed in mathematical terms. Examples of earth science research that allow probabilistic measures of uncertainty, involving sophisticated statistical methods, are uncertainties in spatial and/or temporal variations in results of: • Observations, such as soil properties measured at sampling locations. In this case, the interpolation uncertainty, caused by a lack of data collected in space, can be quantified by e.g. kriging standard deviation maps or animations of conditional simulations. • Experimental measurements, comparing impacts of treatments at different sites and/or under different conditions. In this case, an indication of the average and range in measured responses to treatments can be obtained from a meta-analysis, summarizing experimental findings between replicates and across studies, sites, ecosystems, etc. • Model predictions due to

  8. Uncertainty Modeling of Pollutant Transport in Atmosphere and Aquatic Route Using Soft Computing

    SciTech Connect

    Datta, D.

    2010-10-26

    Hazardous radionuclides are released as pollutants in the atmospheric and aquatic environment (ATAQE) during the normal operation of nuclear power plants. Atmospheric and aquatic dispersion models are routinely used to assess the impact of release of radionuclide from any nuclear facility or hazardous chemicals from any chemical plant on the ATAQE. Effect of the exposure from the hazardous nuclides or chemicals is measured in terms of risk. Uncertainty modeling is an integral part of the risk assessment. The paper focuses the uncertainty modeling of the pollutant transport in atmospheric and aquatic environment using soft computing. Soft computing is addressed due to the lack of information on the parameters that represent the corresponding models. Soft-computing in this domain basically addresses the usage of fuzzy set theory to explore the uncertainty of the model parameters and such type of uncertainty is called as epistemic uncertainty. Each uncertain input parameters of the model is described by a triangular membership function.

  9. MO-E-BRE-01: Determination, Minimization and Communication of Uncertainties in Radiation Therapy

    SciTech Connect

    Van Dyk, J; Palta, J; Bortfeld, T; Mijnheer, B

    2014-06-15

    Medical Physicists have a general understanding of uncertainties in the radiation treatment process, both with respect to dosimetry and geometry. However, there is a desire to be more quantitative about uncertainty estimation. A recent International Atomic Energy Agency (IAEA) report (about to be published) recommends that we should be as “accurate as reasonably achievable, technical and biological factors being taken into account”. Thus, a single recommendation as a goal for accuracy in radiation therapy is an oversimplification. That report also suggests that individual clinics should determine their own level of uncertainties for their specific treatment protocols. The question is “how do we implement this in clinical practice”? AAPM Monograph 35 (2011 AAPM Summer School) addressed many specific aspects of uncertainties in each of the steps of a course of radiation treatment. The intent of this symposium is: (1) to review uncertainty considerations in the entire radiation treatment process including uncertainty determination for each step and uncertainty propagation for the total process, (2) to consider aspects of robust optimization which optimizes treatment plans while protecting them against uncertainties, and (3) to describe various methods of displaying uncertainties and communicating uncertainties to the relevant professionals. While the theoretical and research aspects will also be described, the emphasis will be on the practical considerations for the medical physicist in clinical practice. Learning Objectives: To review uncertainty determination in the overall radiation treatment process. To consider uncertainty modeling and uncertainty propagation. To highlight the basic ideas and clinical potential of robust optimization procedures to generate optimal treatment plans that are not severely affected by uncertainties. To describe methods of uncertainty communication and display.

  10. Reducing long-term reservoir performance uncertainty

    SciTech Connect

    Lippmann, M.J.

    1988-04-01

    Reservoir performance is one of the key issues that have to be addressed before going ahead with the development of a geothermal field. In order to select the type and size of the power plant and design other surface installations, it is necessary to know the characteristics of the production wells and of the produced fluids, and to predict the changes over a 10--30 year period. This is not a straightforward task, as in most cases the calculations have to be made on the basis of data collected before significant fluid volumes have been extracted from the reservoir. The paper describes the methodology used in predicting the long-term performance of hydrothermal systems, as well as DOE/GTD-sponsored research aimed at reducing the uncertainties associated with these predictions. 27 refs., 1 fig.

  11. Decisions on new product development under uncertainties

    NASA Astrophysics Data System (ADS)

    Huang, Yeu-Shiang; Liu, Li-Chen; Ho, Jyh-Wen

    2015-04-01

    In an intensively competitive market, developing a new product has become a valuable strategy for companies to establish their market positions and enhance their competitive advantages. Therefore, it is essential to effectively manage the process of new product development (NPD). However, since various problems may arise in NPD projects, managers should set up some milestones and subsequently construct evaluative mechanisms to assess their feasibility. This paper employed the approach of Bayesian decision analysis to deal with the two crucial uncertainties for NPD, which are the future market share and the responses of competitors. The proposed decision process can provide a systematic analytical procedure to determine whether an NPD project should be continued or not under the consideration of whether effective usage is being made of the organisational resources. Accordingly, the proposed decision model can assist the managers in effectively addressing the NPD issue under the competitive market.

  12. Operationalising uncertainty in data and models for integrated water resources management.

    PubMed

    Blind, M W; Refsgaard, J C

    2007-01-01

    Key sources of uncertainty of importance for water resources management are (1) uncertainty in data; (2) uncertainty related to hydrological models (parameter values, model technique, model structure); and (3) uncertainty related to the context and the framing of the decision-making process. The European funded project 'Harmonised techniques and representative river basin data for assessment and use of uncertainty information in integrated water management (HarmoniRiB)' has resulted in a range of tools and methods to assess such uncertainties, focusing on items (1) and (2). The project also engaged in a number of discussions surrounding uncertainty and risk assessment in support of decision-making in water management. Based on the project's results and experiences, and on the subsequent discussions a number of conclusions can be drawn on the future needs for successful adoption of uncertainty analysis in decision support. These conclusions range from additional scientific research on specific uncertainties, dedicated guidelines for operational use to capacity building at all levels. The purpose of this paper is to elaborate on these conclusions and anchoring them in the broad objective of making uncertainty and risk assessment an essential and natural part in future decision-making processes.

  13. Visualizing uncertainty in biological expression data

    NASA Astrophysics Data System (ADS)

    Holzhüter, Clemens; Lex, Alexander; Schmalstieg, Dieter; Schulz, Hans-Jörg; Schumann, Heidrun; Streit, Marc

    2012-01-01

    Expression analysis of ~omics data using microarrays has become a standard procedure in the life sciences. However, microarrays are subject to technical limitations and errors, which render the data gathered likely to be uncertain. While a number of approaches exist to target this uncertainty statistically, it is hardly ever even shown when the data is visualized using for example clustered heatmaps. Yet, this is highly useful when trying not to omit data that is "good enough" for an analysis, which otherwise would be discarded as too unreliable by established conservative thresholds. Our approach addresses this shortcoming by first identifying the margin above the error threshold of uncertain, yet possibly still useful data. It then displays this uncertain data in the context of the valid data by enhancing a clustered heatmap. We employ different visual representations for the different kinds of uncertainty involved. Finally, it lets the user interactively adjust the thresholds, giving visual feedback in the heatmap representation, so that an informed choice on which thresholds to use can be made instead of applying the usual rule-of-thumb cut-offs. We exemplify the usefulness of our concept by giving details for a concrete use case from our partners at the Medical University of Graz, thereby demonstrating our implementation of the general approach.

  14. Scheduling Future Water Supply Investments Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Huskova, I.; Matrosov, E. S.; Harou, J. J.; Kasprzyk, J. R.; Reed, P. M.

    2014-12-01

    Uncertain hydrological impacts of climate change, population growth and institutional changes pose a major challenge to planning of water supply systems. Planners seek optimal portfolios of supply and demand management schemes but also when to activate assets whilst considering many system goals and plausible futures. Incorporation of scheduling into the planning under uncertainty problem strongly increases its complexity. We investigate some approaches to scheduling with many-objective heuristic search. We apply a multi-scenario many-objective scheduling approach to the Thames River basin water supply system planning problem in the UK. Decisions include which new supply and demand schemes to implement, at what capacity and when. The impact of different system uncertainties on scheme implementation schedules are explored, i.e. how the choice of future scenarios affects the search process and its outcomes. The activation of schemes is influenced by the occurrence of extreme hydrological events in the ensemble of plausible scenarios and other factors. The approach and results are compared with a previous study where only the portfolio problem is addressed (without scheduling).

  15. Uncertainty in Vs30-based site response

    USGS Publications Warehouse

    Thompson, Eric; Wald, David J.

    2016-01-01

    Methods that account for site response range in complexity from simple linear categorical adjustment factors to sophisticated nonlinear constitutive models. Seismic‐hazard analysis usually relies on ground‐motion prediction equations (GMPEs); within this framework site response is modeled statistically with simplified site parameters that include the time‐averaged shear‐wave velocity to 30 m (VS30) and basin depth parameters. Because VS30 is not known in most locations, it must be interpolated or inferred through secondary information such as geology or topography. In this article, we analyze a subset of stations for which VS30 has been measured to address effects of VS30 proxies on the uncertainty in the ground motions as modeled by GMPEs. The stations we analyze also include multiple recordings, which allow us to compute the repeatable site effects (or empirical amplification factors [EAFs]) from the ground motions. Although all methods exhibit similar bias, the proxy methods only reduce the ground‐motion standard deviations at long periods when compared to GMPEs without a site term, whereas measured VS30 values reduce the standard deviations at all periods. The standard deviation of the ground motions are much lower when the EAFs are used, indicating that future refinements of the site term in GMPEs have the potential to substantially reduce the overall uncertainty in the prediction of ground motions by GMPEs.

  16. Analogy and Intersubjectivity: Political Oratory, Scholarly Argument and Scientific Reports.

    ERIC Educational Resources Information Center

    Gross, Alan G.

    1983-01-01

    Focuses on the different ways political oratory, scholarly argument, and scientific reports use analogy. Specifically, analyzes intersubjective agreement in Franklin D. Roosevelt's First Inaugural address, the scholarly argument between Sir Karl Popper and Thomas S. Kuhn, and the scientific reports of various mathematicians and scientists. (PD)

  17. Scientific Opinion on Risk Assessment of Synthetic Biology.

    PubMed

    Epstein, Michelle M; Vermeire, Theo

    2016-08-01

    In 2013, three Scientific Committees of the European Commission (EC) drafted Scientific Opinions on synthetic biology that provide an operational definition and address risk assessment methodology, safety aspects, environmental risks, knowledge gaps, and research priorities. These Opinions contribute to the international discussions on the risk governance for synthetic biology developments. PMID:27234301

  18. Scientific Opinion on Risk Assessment of Synthetic Biology.

    PubMed

    Epstein, Michelle M; Vermeire, Theo

    2016-08-01

    In 2013, three Scientific Committees of the European Commission (EC) drafted Scientific Opinions on synthetic biology that provide an operational definition and address risk assessment methodology, safety aspects, environmental risks, knowledge gaps, and research priorities. These Opinions contribute to the international discussions on the risk governance for synthetic biology developments.

  19. RUMINATIONS ON NDA MEASUREMENT UNCERTAINTY COMPARED TO DA UNCERTAINTY

    SciTech Connect

    Salaymeh, S.; Ashley, W.; Jeffcoat, R.

    2010-06-17

    It is difficult to overestimate the importance that physical measurements performed with nondestructive assay instruments play throughout the nuclear fuel cycle. They underpin decision making in many areas and support: criticality safety, radiation protection, process control, safeguards, facility compliance, and waste measurements. No physical measurement is complete or indeed meaningful, without a defensible and appropriate accompanying statement of uncertainties and how they combine to define the confidence in the results. The uncertainty budget should also be broken down in sufficient detail suitable for subsequent uses to which the nondestructive assay (NDA) results will be applied. Creating an uncertainty budget and estimating the total measurement uncertainty can often be an involved process, especially for non routine situations. This is because data interpretation often involves complex algorithms and logic combined in a highly intertwined way. The methods often call on a multitude of input data subject to human oversight. These characteristics can be confusing and pose a barrier to developing and understanding between experts and data consumers. ASTM subcommittee C26-10 recognized this problem in the context of how to summarize and express precision and bias performance across the range of standards and guides it maintains. In order to create a unified approach consistent with modern practice and embracing the continuous improvement philosophy a consensus arose to prepare a procedure covering the estimation and reporting of uncertainties in non destructive assay of nuclear materials. This paper outlines the needs analysis, objectives and on-going development efforts. In addition to emphasizing some of the unique challenges and opportunities facing the NDA community we hope this article will encourage dialog and sharing of best practice and furthermore motivate developers to revisit the treatment of measurement uncertainty.

  20. Methodology for qualitative uncertainty assessment of climate impact indicators

    NASA Astrophysics Data System (ADS)

    Otto, Juliane; Keup-Thiel, Elke; Rechid, Diana; Hänsler, Andreas; Pfeifer, Susanne; Roth, Ellinor; Jacob, Daniela

    2016-04-01

    The FP7 project "Climate Information Portal for Copernicus" (CLIPC) is developing an integrated platform of climate data services to provide a single point of access for authoritative scientific information on climate change and climate change impacts. In this project, the Climate Service Center Germany (GERICS) has been in charge of the development of a methodology on how to assess the uncertainties related to climate impact indicators. Existing climate data portals mainly treat the uncertainties in two ways: Either they provide generic guidance and/or express with statistical measures the quantifiable fraction of the uncertainty. However, none of the climate data portals give the users a qualitative guidance how confident they can be in the validity of the displayed data. The need for such guidance was identified in CLIPC user consultations. Therefore, we aim to provide an uncertainty assessment that provides the users with climate impact indicator-specific guidance on the degree to which they can trust the outcome. We will present an approach that provides information on the importance of different sources of uncertainties associated with a specific climate impact indicator and how these sources affect the overall 'degree of confidence' of this respective indicator. To meet users requirements in the effective communication of uncertainties, their feedback has been involved during the development process of the methodology. Assessing and visualising the quantitative component of uncertainty is part of the qualitative guidance. As visual analysis method, we apply the Climate Signal Maps (Pfeifer et al. 2015), which highlight only those areas with robust climate change signals. Here, robustness is defined as a combination of model agreement and the significance of the individual model projections. Reference Pfeifer, S., Bülow, K., Gobiet, A., Hänsler, A., Mudelsee, M., Otto, J., Rechid, D., Teichmann, C. and Jacob, D.: Robustness of Ensemble Climate Projections