Science.gov

Sample records for address species interactions

  1. Designing "Interaction": How Do Interaction Design Students Address Interaction?

    ERIC Educational Resources Information Center

    Karlgren, Klas; Ramberg, Robert; Artman, Henrik

    2016-01-01

    Interaction design is usually described as being concerned with interactions with and through artifacts but independent of a specific implementation. Design work has been characterized as a conversation between the designer and the situation and this conversation poses a particular challenge for interaction design as interactions can be elusive…

  2. Species interactions and plant polyploidy.

    PubMed

    Segraves, Kari A; Anneberg, Thomas J

    2016-07-01

    Polyploidy is a common mode of speciation that can have far-reaching consequences for plant ecology and evolution. Because polyploidy can induce an array of phenotypic changes, there can be cascading effects on interactions with other species. These interactions, in turn, can have reciprocal effects on polyploid plants, potentially impacting their establishment and persistence. Although there is a wealth of information on the genetic and phenotypic effects of polyploidy, the study of species interactions in polyploid plants remains a comparatively young field. Here we reviewed the available evidence for how polyploidy may impact many types of species interactions that range from mutualism to antagonism. Specifically, we focused on three main questions: (1) Does polyploidy directly cause the formation of novel interactions not experienced by diploids, or does it create an opportunity for natural selection to then form novel interactions? (2) Does polyploidy cause consistent, predictable changes in species interactions vs. the evolution of idiosyncratic differences? (3) Does polyploidy lead to greater evolvability in species interactions? From the scarce evidence available, we found that novel interactions are rare but that polyploidy can induce changes in pollinator, herbivore, and pathogen interactions. Although further tests are needed, it is likely that selection following whole-genome duplication is important in all types of species interaction and that there are circumstances in which polyploidy can enhance the evolvability of interactions with other species. PMID:27370313

  3. Gendered Address Terms in Reproach Sequences in Classroom Interaction

    ERIC Educational Resources Information Center

    Tainio, Liisa

    2011-01-01

    This article uses a conversation analytic framework to explore reproaches in classroom interaction. The data used is naturally occurring Finnish classroom interaction (students aged 13-15). The analysis focuses on reproaches that are used in order to silence students and in which gendered address terms are included. In the data occurrences, the…

  4. Addressing potential local adaptation in species distribution models: implications for conservation under climate change

    USGS Publications Warehouse

    Hällfors, Maria Helena; Liao, Jishan; Dzurisin, Jason D. K.; Grundel, Ralph; Hyvärinen, Marko; Towle, Kevin; Wu, Grace C.; Hellmann, Jessica J.

    2016-01-01

    Species distribution models (SDMs) have been criticized for involving assumptions that ignore or categorize many ecologically relevant factors such as dispersal ability and biotic interactions. Another potential source of model error is the assumption that species are ecologically uniform in their climatic tolerances across their range. Typically, SDMs to treat a species as a single entity, although populations of many species differ due to local adaptation or other genetic differentiation. Not taking local adaptation into account, may lead to incorrect range prediction and therefore misplaced conservation efforts. A constraint is that we often do not know the degree to which populations are locally adapted, however. Lacking experimental evidence, we still can evaluate niche differentiation within a species' range to promote better conservation decisions. We explore possible conservation implications of making type I or type II errors in this context. For each of two species, we construct three separate MaxEnt models, one considering the species as a single population and two of disjunct populations. PCA analyses and response curves indicate different climate characteristics in the current environments of the populations. Model projections into future climates indicate minimal overlap between areas predicted to be climatically suitable by the whole species versus population-based models. We present a workflow for addressing uncertainty surrounding local adaptation in SDM application and illustrate the value of conducting population-based models to compare with whole-species models. These comparisons might result in more cautious management actions when alternative range outcomes are considered.

  5. Addressing potential local adaptation in species distribution models: implications for conservation under climate change.

    PubMed

    Hällfors, Maria Helena; Liao, Jishan; Dzurisin, Jason; Grundel, Ralph; Hyvärinen, Marko; Towle, Kevin; Wu, Grace C; Hellmann, Jessica J

    2016-06-01

    Species distribution models (SDMs) have been criticized for involving assumptions that ignore or categorize many ecologically relevant factors such as dispersal ability and biotic interactions. Another potential source of model error is the assumption that species are ecologically uniform in their climatic tolerances across their range. Typically, SDMs treat a species as a single entity, although populations of many species differ due to local adaptation or other genetic differentiation. Not taking local adaptation into account may lead to incorrect range prediction and therefore misplaced conservation efforts. A constraint is that we often do not know the degree to which populations are locally adapted. Lacking experimental evidence, we still can evaluate niche differentiation within a species' range to promote better conservation decisions. We explore possible conservation implications of making type I or type II errors in this context. For each of two species, we construct three separate Max-Ent models, one considering the species as a single population and two of disjunct populations. Principal component analyses and response curves indicate different climate characteristics in the current environments of the populations. Model projections into future climates indicate minimal overlap between areas predicted to be climatically suitable by the whole species vs. population-based models. We present a workflow for addressing uncertainty surrounding local adaptation in SDM application and illustrate the value of conducting population-based models to compare with whole-species models. These comparisons might result in more cautious management actions when alternative range outcomes are considered.

  6. Addressing potential local adaptation in species distribution models: implications for conservation under climate change.

    PubMed

    Hällfors, Maria Helena; Liao, Jishan; Dzurisin, Jason; Grundel, Ralph; Hyvärinen, Marko; Towle, Kevin; Wu, Grace C; Hellmann, Jessica J

    2016-06-01

    Species distribution models (SDMs) have been criticized for involving assumptions that ignore or categorize many ecologically relevant factors such as dispersal ability and biotic interactions. Another potential source of model error is the assumption that species are ecologically uniform in their climatic tolerances across their range. Typically, SDMs treat a species as a single entity, although populations of many species differ due to local adaptation or other genetic differentiation. Not taking local adaptation into account may lead to incorrect range prediction and therefore misplaced conservation efforts. A constraint is that we often do not know the degree to which populations are locally adapted. Lacking experimental evidence, we still can evaluate niche differentiation within a species' range to promote better conservation decisions. We explore possible conservation implications of making type I or type II errors in this context. For each of two species, we construct three separate Max-Ent models, one considering the species as a single population and two of disjunct populations. Principal component analyses and response curves indicate different climate characteristics in the current environments of the populations. Model projections into future climates indicate minimal overlap between areas predicted to be climatically suitable by the whole species vs. population-based models. We present a workflow for addressing uncertainty surrounding local adaptation in SDM application and illustrate the value of conducting population-based models to compare with whole-species models. These comparisons might result in more cautious management actions when alternative range outcomes are considered. PMID:27509755

  7. Estimating Effects of Species Interactions on Populations of Endangered Species.

    PubMed

    Roth, Tobias; Bühler, Christoph; Amrhein, Valentin

    2016-04-01

    Global change causes community composition to change considerably through time, with ever-new combinations of interacting species. To study the consequences of newly established species interactions, one available source of data could be observational surveys from biodiversity monitoring. However, approaches using observational data would need to account for niche differences between species and for imperfect detection of individuals. To estimate population sizes of interacting species, we extended N-mixture models that were developed to estimate true population sizes in single species. Simulations revealed that our model is able to disentangle direct effects of dominant on subordinate species from indirect effects of dominant species on detection probability of subordinate species. For illustration, we applied our model to data from a Swiss amphibian monitoring program and showed that sizes of expanding water frog populations were negatively related to population sizes of endangered yellow-bellied toads and common midwife toads and partly of natterjack toads. Unlike other studies that analyzed presence and absence of species, our model suggests that the spread of water frogs in Central Europe is one of the reasons for the decline of endangered toad species. Thus, studying population impacts of dominant species on population sizes of endangered species using data from biodiversity monitoring programs should help to inform conservation policy and to decide whether competing species should be subject to population management. PMID:27028074

  8. Estimating Effects of Species Interactions on Populations of Endangered Species.

    PubMed

    Roth, Tobias; Bühler, Christoph; Amrhein, Valentin

    2016-04-01

    Global change causes community composition to change considerably through time, with ever-new combinations of interacting species. To study the consequences of newly established species interactions, one available source of data could be observational surveys from biodiversity monitoring. However, approaches using observational data would need to account for niche differences between species and for imperfect detection of individuals. To estimate population sizes of interacting species, we extended N-mixture models that were developed to estimate true population sizes in single species. Simulations revealed that our model is able to disentangle direct effects of dominant on subordinate species from indirect effects of dominant species on detection probability of subordinate species. For illustration, we applied our model to data from a Swiss amphibian monitoring program and showed that sizes of expanding water frog populations were negatively related to population sizes of endangered yellow-bellied toads and common midwife toads and partly of natterjack toads. Unlike other studies that analyzed presence and absence of species, our model suggests that the spread of water frogs in Central Europe is one of the reasons for the decline of endangered toad species. Thus, studying population impacts of dominant species on population sizes of endangered species using data from biodiversity monitoring programs should help to inform conservation policy and to decide whether competing species should be subject to population management.

  9. The dissimilarity of species interaction networks.

    PubMed

    Poisot, Timothée; Canard, Elsa; Mouillot, David; Mouquet, Nicolas; Gravel, Dominique

    2012-12-01

    In a context of global changes, and amidst the perpetual modification of community structure undergone by most natural ecosystems, it is more important than ever to understand how species interactions vary through space and time. The integration of biogeography and network theory will yield important results and further our understanding of species interactions. It has, however, been hampered so far by the difficulty to quantify variation among interaction networks. Here, we propose a general framework to study the dissimilarity of species interaction networks over time, space or environments, allowing both the use of quantitative and qualitative data. We decompose network dissimilarity into interactions and species turnover components, so that it is immediately comparable to common measures of β-diversity. We emphasise that scaling up β-diversity of community composition to the β-diversity of interactions requires only a small methodological step, which we foresee will help empiricists adopt this method. We illustrate the framework with a large dataset of hosts and parasites interactions and highlight other possible usages. We discuss a research agenda towards a biogeographical theory of species interactions. PMID:22994257

  10. How to Predict Molecular Interactions between Species?

    PubMed Central

    Schulze, Sylvie; Schleicher, Jana; Guthke, Reinhard; Linde, Jörg

    2016-01-01

    Organisms constantly interact with other species through physical contact which leads to changes on the molecular level, for example the transcriptome. These changes can be monitored for all genes, with the help of high-throughput experiments such as RNA-seq or microarrays. The adaptation of the gene expression to environmental changes within cells is mediated through complex gene regulatory networks. Often, our knowledge of these networks is incomplete. Network inference predicts gene regulatory interactions based on transcriptome data. An emerging application of high-throughput transcriptome studies are dual transcriptomics experiments. Here, the transcriptome of two or more interacting species is measured simultaneously. Based on a dual RNA-seq data set of murine dendritic cells infected with the fungal pathogen Candida albicans, the software tool NetGenerator was applied to predict an inter-species gene regulatory network. To promote further investigations of molecular inter-species interactions, we recently discussed dual RNA-seq experiments for host-pathogen interactions and extended the applied tool NetGenerator (Schulze et al., 2015). The updated version of NetGenerator makes use of measurement variances in the algorithmic procedure and accepts gene expression time series data with missing values. Additionally, we tested multiple modeling scenarios regarding the stimuli functions of the gene regulatory network. Here, we summarize the work by Schulze et al. (2015) and put it into a broader context. We review various studies making use of the dual transcriptomics approach to investigate the molecular basis of interacting species. Besides the application to host-pathogen interactions, dual transcriptomics data are also utilized to study mutualistic and commensalistic interactions. Furthermore, we give a short introduction into additional approaches for the prediction of gene regulatory networks and discuss their application to dual transcriptomics data. We

  11. Eco-evolutionary feedbacks drive species interactions

    PubMed Central

    Andrade-Domínguez, Andrés; Salazar, Emmanuel; del Carmen Vargas-Lagunas, María; Kolter, Roberto; Encarnación, Sergio

    2014-01-01

    In the biosphere, many species live in close proximity and can thus interact in many different ways. Such interactions are dynamic and fall along a continuum between antagonism and cooperation. Because interspecies interactions are the key to understanding biological communities, it is important to know how species interactions arise and evolve. Here, we show that the feedback between ecological and evolutionary processes has a fundamental role in the emergence and dynamics of species interaction. Using a two-species artificial community, we demonstrate that ecological processes and rapid evolution interact to influence the dynamics of the symbiosis between a eukaryote (Saccharomyces cerevisiae) and a bacterium (Rhizobium etli). The simplicity of our experimental design enables an explicit statement of causality. The niche-constructing activities of the fungus were the key ecological process: it allowed the establishment of a commensal relationship that switched to ammensalism and provided the selective conditions necessary for the adaptive evolution of the bacteria. In this latter state, the bacterial population radiates into more than five genotypes that vary with respect to nutrient transport, metabolic strategies and global regulation. Evolutionary diversification of the bacterial populations has strong effects on the community; the nature of interaction subsequently switches from ammensalism to antagonism where bacteria promote yeast extinction. Our results demonstrate the importance of the evolution-to-ecology pathway in the persistence of interactions and the stability of communities. Thus, eco-evolutionary dynamics have the potential to transform the structure and functioning of ecosystems. Our results suggest that these dynamics should be considered to improve our understanding of beneficial and detrimental host–microbe interactions. PMID:24304674

  12. Yakima River Species Interactions Studies Annual Report, FY 1990.

    SciTech Connect

    Hindman, James N.

    1991-02-01

    Studies of species interactions were implemented to address concerns about the possible effects of supplementation (with anadromous species) on resident fish populations in the upper Yakima River basin. The current study objectives include collection of baseline information on the fish populations in the upper Yakima River and associated tributaries. As part of this baseline phase, spawning surveys of the upper Yakima River and thirteen selected tributaries between Roza and Keechelus dams were initiated during the spring of 1990. This report summarizes the results of field activities conducted from December, 1989 to June, 1990.

  13. Species interactions differ in their genetic robustness

    DOE PAGES

    Chubiz, Lon M.; Granger, Brian R.; Segre, Daniel; Harcombe, William R.

    2015-04-14

    Conflict and cooperation between bacterial species drive the composition and function of microbial communities. Stability of these emergent properties will be influenced by the degree to which species' interactions are robust to genetic perturbations. We use genome-scale metabolic modeling to computationally analyze the impact of genetic changes when Escherichia coli and Salmonella enterica compete, or cooperate. We systematically knocked out in silico each reaction in the metabolic network of E. coli to construct all 2583 mutant stoichiometric models. Then, using a recently developed multi-scale computational framework, we simulated the growth of each mutant E. coli in the presence of S.more » enterica. The type of interaction between species was set by modulating the initial metabolites present in the environment. We found that the community was most robust to genetic perturbations when the organisms were cooperating. Species ratios were more stable in the cooperative community, and community biomass had equal variance in the two contexts. Additionally, the number of mutations that have a substantial effect is lower when the species cooperate than when they are competing. In contrast, when mutations were added to the S. enterica network the system was more robust when the bacteria were competing. These results highlight the utility of connecting metabolic mechanisms and studies of ecological stability. Cooperation and conflict alter the connection between genetic changes and properties that emerge at higher levels of biological organization.« less

  14. The niche, biogeography and species interactions

    PubMed Central

    Wiens, John J.

    2011-01-01

    In this paper, I review the relevance of the niche to biogeography, and what biogeography may tell us about the niche. The niche is defined as the combination of abiotic and biotic conditions where a species can persist. I argue that most biogeographic patterns are created by niche differences over space, and that even ‘geographic barriers’ must have an ecological basis. However, we know little about specific ecological factors underlying most biogeographic patterns. Some evidence supports the importance of abiotic factors, whereas few examples exist of large-scale patterns created by biotic interactions. I also show how incorporating biogeography may offer new perspectives on resource-related niches and species interactions. Several examples demonstrate that even after a major evolutionary radiation within a region, the region can still be invaded by ecologically similar species from another clade, countering the long-standing idea that communities and regions are generally ‘saturated’ with species. I also describe the somewhat paradoxical situation where competition seems to limit trait evolution in a group, but does not prevent co-occurrence of species with similar values for that trait (called here the ‘competition–divergence–co-occurrence conundrum’). In general, the interface of biogeography and ecology could be a major area for research in both fields. PMID:21768150

  15. Changes in interacting species with disturbance

    NASA Astrophysics Data System (ADS)

    Cole, Glen F.

    1987-03-01

    Human-influenced changes in the diversity and abundance of native wildlife in a southern boreal forest area, which became a national park in 1975, are used to develop working hypotheses for predicting and subsequently measuring the effects of disturbance or restoration programs on groups of interacting species. Changes from presettlement conditions began with early 1900 hunting, which eliminated woodland caribou ( Rangifer tarandus) and elk ( Cervus elaphus), and reduced moose ( Alces alces) to the low numbers which still persist. Increases in white-tailed deer ( Odocoileus virginianus), as these other cervid species became less abundant or absent, provided enough alternative food to sustain the system's carnivores until plant succession on previously burned or logged areas also caused deer to decline. With increased competition for reduced food, carnivore species also became less abundant or absent and overexploited some prey populations. The abilities of interacting species to maintain dynamically stable populations or persist varied with their different capacities to compensate for increased exploitation or competition. These relationships suggested a possible solution to the problem of predicting the stability of populations in disturbed systems. For the 1976 1985 period, a hypothesis that the increased protection of wildlife from exploitation in a national park would restore a more diverse, abundant, and productive fauna had to be rejected.

  16. Yakima River Species Interactions Studies, Annual Report 2000.

    SciTech Connect

    Pearsons, Todd N.

    2001-12-01

    Species interactions research and monitoring was initiated in 1989 to investigate ecological interactions among fish in response to proposed supplementation of salmon and steelhead in the upper Yakima River basin. This is the ninth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in the Yakima River basin. Data have been collected prior to supplementation to characterize the ecology and demographics of non-target taxa (NTT) and target taxon, and develop methods to monitor interactions and supplementation success. Major topics of this report are associated with the chronology of ecological interactions that occur throughout a supplementation program, implementing NTT monitoring prescriptions for detecting potential impacts of hatchery supplementation, hatchery fish interactions, and monitoring fish predation indices. This report is organized into four chapters, with a general introduction preceding the first chapter. This annual report summarizes data collected primarily by the Washington Department of Fish and Wildlife (WDFW) between January 1, 2000 and December 31, 2000 in the Yakima basin, however these data were compared to data from previous years to identify preliminary trends and patterns. Summaries of each of the chapters included in this report are described.

  17. Yakima River Species Interactions Studies, Annual Report 1994.

    SciTech Connect

    Pearsons, Todd N.

    1996-09-01

    Species interactions research was initiated in 1989 to investigate ecological interactions among fish in response to proposed supplementation of salmon and steelhead in the upper Yakima River basin. This is the fifth of a series of annual reports that address species interactions research and pre-facility monitoring of fishes in the upper Yakima River basin. Data have been collected prior to supplementation to characterize the rainbow trout and other fish populations such as steelhead and spring chinook salmon, predict the potential interactions that may occur as a result of supplementation, and develop methods to monitor interactions. Major topics of this report are associated with the life history of rainbow trout, interactions experimentation, and methods for sampling. This report is organized into two chapters followed by seven ''updates'' with a general introduction preceding the first chapter and a general discussion following the last update. An appendix follows the general discussion. This annual report summarizes data collected primarily by the Washington Department of Fish and Wildlife (WDFW) between January 1 and December 31, 1994 in the upper Yakima basin above Roza Dam, however these data were compared to data from previous years to identify preliminary trends and patterns. Major preliminary findings from each of the chapters included in this report are described.

  18. Species interactions differ in their genetic robustness

    SciTech Connect

    Chubiz, Lon M.; Granger, Brian R.; Segre, Daniel; Harcombe, William R.

    2015-04-14

    Conflict and cooperation between bacterial species drive the composition and function of microbial communities. Stability of these emergent properties will be influenced by the degree to which species' interactions are robust to genetic perturbations. We use genome-scale metabolic modeling to computationally analyze the impact of genetic changes when Escherichia coli and Salmonella enterica compete, or cooperate. We systematically knocked out in silico each reaction in the metabolic network of E. coli to construct all 2583 mutant stoichiometric models. Then, using a recently developed multi-scale computational framework, we simulated the growth of each mutant E. coli in the presence of S. enterica. The type of interaction between species was set by modulating the initial metabolites present in the environment. We found that the community was most robust to genetic perturbations when the organisms were cooperating. Species ratios were more stable in the cooperative community, and community biomass had equal variance in the two contexts. Additionally, the number of mutations that have a substantial effect is lower when the species cooperate than when they are competing. In contrast, when mutations were added to the S. enterica network the system was more robust when the bacteria were competing. These results highlight the utility of connecting metabolic mechanisms and studies of ecological stability. Cooperation and conflict alter the connection between genetic changes and properties that emerge at higher levels of biological organization.

  19. Climate change and species interactions: ways forward.

    PubMed

    Angert, Amy L; LaDeau, Shannon L; Ostfeld, Richard S

    2013-09-01

    With ongoing and rapid climate change, ecologists are being challenged to predict how individual species will change in abundance and distribution, how biotic communities will change in structure and function, and the consequences of these climate-induced changes for ecosystem functioning. It is now well documented that indirect effects of climate change on species abundances and distributions, via climatic effects on interspecific interactions, can outweigh and even reverse the direct effects of climate. However, a clear framework for incorporating species interactions into projections of biological change remains elusive. To move forward, we suggest three priorities for the research community: (1) utilize tractable study systems as case studies to illustrate possible outcomes, test processes highlighted by theory, and feed back into modeling efforts; (2) develop a robust analytical framework that allows for better cross-scale linkages; and (3) determine over what time scales and for which systems prediction of biological responses to climate change is a useful and feasible goal. We end with a list of research questions that can guide future research to help understand, and hopefully mitigate, the negative effects of climate change on biota and the ecosystem services they provide.

  20. Environmental variability uncovers disruptive effects of species' interactions on population dynamics

    PubMed Central

    Gudmundson, Sara; Eklöf, Anna; Wennergren, Uno

    2015-01-01

    How species respond to changes in environmental variability has been shown for single species, but the question remains whether these results are transferable to species when incorporated in ecological communities. Here, we address this issue by analysing the same species exposed to a range of environmental variabilities when (i) isolated or (ii) embedded in a food web. We find that all species in food webs exposed to temporally uncorrelated environments (white noise) show the same type of dynamics as isolated species, whereas species in food webs exposed to positively autocorrelated environments (red noise) can respond completely differently compared with isolated species. This is owing to species following their equilibrium densities in a positively autocorrelated environment that in turn enables species–species interactions to come into play. Our results give new insights into species' response to environmental variation. They especially highlight the importance of considering both species' interactions and environmental autocorrelation when studying population dynamics in a fluctuating environment. PMID:26224705

  1. Yakima River Species Interactions Studies, Annual Report 1999.

    SciTech Connect

    Pearsons, Todd N.

    2001-06-01

    Species interactions research and monitoring was initiated in 1989 to investigate ecological interactions among fish in response to proposed supplementation of salmon and steelhead in the upper Yakima River basin. This is the eighth of a series of progress reports that address species interactions research and pre-supplementation monitoring of fishes in the Yakima River basin. Data have been collected prior to supplementation to characterize the ecology and demographics of non-target taxa (NTT) and target taxon, and develop methods to monitor interactions and supplementation success. Major topics of this report are associated with implementing NTT monitoring prescriptions for detecting potential impacts of hatchery supplementation, hatchery fish interactions, and monitoring fish predation indices. This report is organized into four chapters, with a general introduction preceding the first chapter. This annual report summarizes data collected primarily by the Washington Department of Fish and Wildlife (WDFW) between January 1, 1998 and December 31, 1999 in the Yakima basin, however these data were compared to data from previous years to identify preliminary trends and patterns.

  2. Yakima River Species Interactions Studies, Annual Report 2001.

    SciTech Connect

    Pearsons, Todd N.

    2002-05-01

    Species interactions research and monitoring was initiated in 1989 to investigate ecological interactions among fish in response to proposed supplementation of salmon and steelhead in the upper Yakima River basin. This is the tenth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in the Yakima River basin. Data have been collected before and during supplementation to characterize the ecology and demographics of non-target taxa (NTT) and target taxon, and to monitor interactions and supplementation success. Major topics of this report are associated with implementing NTT monitoring prescriptions for detecting potential impacts of hatchery supplementation, and monitoring fish predation indices. This report is organized into two chapters, with a general introduction preceding the first chapter. This annual report summarizes data collected primarily by the Washington Department of Fish and Wildlife (WDFW) between January 1, 2001 and December 31, 2001 in the Yakima basin, however these data were compared to data from previous years to identify preliminary trends and patterns.

  3. Yakima River Species Interactions Studies, Annual Report 1998.

    SciTech Connect

    Pearsons, Todd N.

    1999-12-01

    Species interactions research and monitoring was initiated in 1989 to investigate ecological interactions among fish in response to proposed supplementation of salmon and steelhead in the upper Yakima River basin. This is the seventh of a series of progress reports that address species interactions research and pre-supplementation monitoring of fishes in the Yakima River basin. Data have been collected prior to supplementation to characterize the ecology and demographics of non-target taxa (NTT) and target taxon, and develop methods to monitor interactions and supplementation success. Major topics of this report are associated with monitoring potential impacts to support adaptive management of NTT and baseline monitoring of fish predation indices on spring chinook salmon smolts. This report is organized into three chapters, with a general introduction preceding the first chapter. This annual report summarizes data collected primarily by the Washington Department of Fish and Wildlife (WDFW) between January 1, 1998 and December 31, 1998 in the Yakima basin, however these data were compared to data from previous years to identify preliminary trends and patterns.

  4. The local introduction of strongly interacting species and the loss of geographic variation in species and species interactions.

    PubMed

    Benkman, Craig W; Siepielski, Adam M; Parchman, Thomas L

    2008-01-01

    Species introductions into nearby communities may seem innocuous, however, these introductions, like long-distance introductions (e.g. trans- and intercontinental), can cause extinctions and alter the evolutionary trajectories of remaining community members. These 'local introductions' can also more cryptically homogenize formerly distinct populations within a species. We focus on several characteristics and the potential consequences of local introductions. First, local introductions are commonly successful because the species being introduced is compatible with existing abiotic and biotic conditions; many nearby communities differ because of historical factors and the absence of certain species is simply the result of barriers to dispersal. Moreover, the species with which they interact most strongly (e.g. prey) may have, for example, lost defences making the establishment even more likely. The loss or absence of defences is especially likely when the absent species is a strongly interacting species, which we argue often includes mammals in terrestrial communities. Second, the effects of the introduction may be difficult to detect because the community is likely to converge onto nearby communities that naturally have the introduced species (hence the perceived innocuousness). This homogenization of formerly distinct populations eliminates the geographic diversity of species interactions and the geographic potential for speciation, and reduces regional species diversity. We illustrate these ideas by focusing on the introduction of tree squirrels into formerly squirrel-less forest patches. Such introductions have eliminated incipient species of crossbills (Loxia spp.) co-evolving in arms races with conifers and will likely have considerable impacts on community structure and ecosystem processes. PMID:18173508

  5. Reactive oxygen species, essential molecules, during plant-pathogen interactions.

    PubMed

    Camejo, Daymi; Guzmán-Cedeño, Ángel; Moreno, Alexander

    2016-06-01

    Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule.

  6. Bacterial Community Diversity Harboured by Interacting Species.

    PubMed

    Bili, Mikaël; Cortesero, Anne Marie; Mougel, Christophe; Gauthier, Jean Pierre; Ermel, Gwennola; Simon, Jean Christophe; Outreman, Yannick; Terrat, Sébastien; Mahéo, Frédérique; Poinsot, Denis

    2016-01-01

    All animals are infected by microbial partners that can be passengers or residents and influence many biological traits of their hosts. Even if important factors that structure the composition and abundance of microbial communities within and among host individuals have been recently described, such as diet, developmental stage or phylogeny, few studies have conducted cross-taxonomic comparisons, especially on host species related by trophic relationships. Here, we describe and compare the microbial communities associated with the cabbage root fly Delia radicum and its three major parasitoids: the two staphylinid beetles Aleochara bilineata and A. bipustulata and the hymenopteran parasitoid Trybliographa rapae. For each species, two populations from Western France were sampled and microbial communities were described through culture independent methods (454 pyrosequencing). Each sample harbored at least 59 to 261 different bacterial phylotypes but was strongly dominated by one or two. Microbial communities differed markedly in terms of composition and abundance, being mainly influenced by phylogenetic proximity but also geography to a minor extent. Surprisingly, despite their strong trophic interaction, parasitoids shared a very low proportion of microbial partners with their insect host. Three vertically transmitted symbionts from the genus Wolbachia, Rickettsia, and Spiroplasma were found in this study. Among them, Wolbachia and Spiroplasma were found in both the cabbage fly and at least one of its parasitoids, which could result from horizontal transfers through trophic interactions. Phylogenetic analysis showed that this hypothesis may explain some but not all cases. More work is needed to understand the dynamics of symbiotic associations within trophic network and the effect of these bacterial communities on the fitness of their hosts. PMID:27258532

  7. Bacterial Community Diversity Harboured by Interacting Species

    PubMed Central

    Bili, Mikaël; Cortesero, Anne Marie; Mougel, Christophe; Gauthier, Jean Pierre; Ermel, Gwennola; Simon, Jean Christophe; Outreman, Yannick; Terrat, Sébastien; Mahéo, Frédérique; Poinsot, Denis

    2016-01-01

    All animals are infected by microbial partners that can be passengers or residents and influence many biological traits of their hosts. Even if important factors that structure the composition and abundance of microbial communities within and among host individuals have been recently described, such as diet, developmental stage or phylogeny, few studies have conducted cross-taxonomic comparisons, especially on host species related by trophic relationships. Here, we describe and compare the microbial communities associated with the cabbage root fly Delia radicum and its three major parasitoids: the two staphylinid beetles Aleochara bilineata and A. bipustulata and the hymenopteran parasitoid Trybliographa rapae. For each species, two populations from Western France were sampled and microbial communities were described through culture independent methods (454 pyrosequencing). Each sample harbored at least 59 to 261 different bacterial phylotypes but was strongly dominated by one or two. Microbial communities differed markedly in terms of composition and abundance, being mainly influenced by phylogenetic proximity but also geography to a minor extent. Surprisingly, despite their strong trophic interaction, parasitoids shared a very low proportion of microbial partners with their insect host. Three vertically transmitted symbionts from the genus Wolbachia, Rickettsia, and Spiroplasma were found in this study. Among them, Wolbachia and Spiroplasma were found in both the cabbage fly and at least one of its parasitoids, which could result from horizontal transfers through trophic interactions. Phylogenetic analysis showed that this hypothesis may explain some but not all cases. More work is needed to understand the dynamics of symbiotic associations within trophic network and the effect of these bacterial communities on the fitness of their hosts. PMID:27258532

  8. Interactive actuation of multiple opto-thermocapillary flow-addressed bubble microrobots

    PubMed Central

    Hu, Wenqi; Fan, Qihui; Ohta, Aaron T

    2014-01-01

    Opto-thermocapillary flow-addressed bubble (OFB) microrobots are a potential tool for the efficient transportation of micro-objects. This microrobot system uses light patterns to generate thermal gradients within a liquid medium, creating thermocapillary forces that actuate the bubble microrobots. An interactive control system that includes scanning mirrors and a touchscreen interface was developed to address up to ten OFB microrobots. Using this system, the parallel and cooperative transportation of 20-μm-diameter polystyrene beads was demonstrated. PMID:25678988

  9. Sediment mediated species interactions in coastal waters

    NASA Astrophysics Data System (ADS)

    Reise, Karsten

    2002-10-01

    Self-structuring in marine sediment communities is achieved by the mobility of the organisms, the trophic web, and biogenic transformations of the habitat. The latter are: bioconstruction and bioturbations, sediment stabilisation and destabilisation, with facilitating and inhibiting effects. This cursory overview intends to show that in near-shore mud and sand, biogenic habitat transformations pervade all community interactions. Consequently these deserve as much attention in benthic ecosystem analyses as do trophic pathways. Abundant phototrophs and suspension feeders tend to accumulate sediment and organic matter. Underneath phototrophic mats, composite layers of anaerobic microorganisms abound. Benthic animals provide anchorage to tufts of algae, and these in turn provide shelter and food for mobile benthos. Rooted plants slow down hydrodynamics and generate complex habitats above the sediment surface but below a meshwork of roots may inhibit burrowing animals. Abundant suspension feeders stabilise sediments, and may build loose hummocks, multi-species epibenthic thickets or solid reefs, accommodating diverse epibenthic assemblages. Their raised and rough surfaces enhance turbulence. Below the sediment surface, tubes and burrows of sessile or discretely motile animals provide microoxic habitats for diverse assemblages of small organisms. At the surface, mucus of motile organisms increases sediment cohesion. Accumulated dead hardparts of the benthos support epibionts when at the surface but cause resistance to the burrowers below. Reworking and irrigation of the sediment by the infauna increases oxygenation, and particulate and solute fluxes with the overlying water. Mounds and pits generated by resident burrowers as well as by large visiting grazers and predators further diversify the benthos. All these bioengineered structures and processes generate dynamic and complex habitat-mediated interaction webs, affecting and meshed into the trophic web, which they may

  10. Yakima River Species Interactions Studies, Annual Report 2002.

    SciTech Connect

    Pearsons, Todd N.

    2003-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the eleventh of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin. This progress report summarizes data collected between January 1, 2002 and December 31, 2002. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding. Furthermore, the success of a supplementation program may be limited by strong ecological interactions such as predation or competition. Our work has adapted to new information needs as the YKFP has evolved. Initially, our work focused on interactions between anadromous steelhead and resident rainbow trout (for explanation see Pearsons et al. 1993), then interactions between spring chinook salmon and rainbow trout, and recently interactions between spring chinook salmon and highly valued nontarget taxa (NTT; e.g., bull trout); and interactions between strong interactor taxa (e.g., those that may strongly influence the abundance of spring chinook salmon; e.g., smallmouth bass) and spring chinook salmon. The change in emphasis to spring chinook salmon has largely been influenced by the shift in the target species planned for supplementation (Bonneville

  11. 76 FR 58813 - Guidance for Industry; Measures to Address the Risk for Contamination by Salmonella Species in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... INFORMATION: I. Background In the Federal Register of June 29, 2009 (74 FR 31038), FDA announced the... Contamination by Salmonella Species in Food Containing a Pistachio- Derived Product as an Ingredient... Address the Risk for Contamination by Salmonella Species in Food Containing a Pistachio-Derived Product...

  12. High-order species interactions shape ecosystem diversity.

    PubMed

    Bairey, Eyal; Kelsic, Eric D; Kishony, Roy

    2016-08-02

    Classical theory shows that large communities are destabilized by random interactions among species pairs, creating an upper bound on ecosystem diversity. However, species interactions often occur in high-order combinations, whereby the interaction between two species is modulated by one or more other species. Here, by simulating the dynamics of communities with random interactions, we find that the classical relationship between diversity and stability is inverted for high-order interactions. More specifically, while a community becomes more sensitive to pairwise interactions as its number of species increases, its sensitivity to three-way interactions remains unchanged, and its sensitivity to four-way interactions actually decreases. Therefore, while pairwise interactions lead to sensitivity to the addition of species, four-way interactions lead to sensitivity to species removal, and their combination creates both a lower and an upper bound on the number of species. These findings highlight the importance of high-order species interactions in determining the diversity of natural ecosystems.

  13. High-order species interactions shape ecosystem diversity

    PubMed Central

    Bairey, Eyal; Kelsic, Eric D.; Kishony, Roy

    2016-01-01

    Classical theory shows that large communities are destabilized by random interactions among species pairs, creating an upper bound on ecosystem diversity. However, species interactions often occur in high-order combinations, whereby the interaction between two species is modulated by one or more other species. Here, by simulating the dynamics of communities with random interactions, we find that the classical relationship between diversity and stability is inverted for high-order interactions. More specifically, while a community becomes more sensitive to pairwise interactions as its number of species increases, its sensitivity to three-way interactions remains unchanged, and its sensitivity to four-way interactions actually decreases. Therefore, while pairwise interactions lead to sensitivity to the addition of species, four-way interactions lead to sensitivity to species removal, and their combination creates both a lower and an upper bound on the number of species. These findings highlight the importance of high-order species interactions in determining the diversity of natural ecosystems. PMID:27481625

  14. Multiple peaks of species abundance distributions induced by sparse interactions.

    PubMed

    Obuchi, Tomoyuki; Kabashima, Yoshiyuki; Tokita, Kei

    2016-08-01

    We investigate the replicator dynamics with "sparse" symmetric interactions which represent specialist-specialist interactions in ecological communities. By considering a large self-interaction u, we conduct a perturbative expansion which manifests that the nature of the interactions has a direct impact on the species abundance distribution. The central results are all species coexistence in a realistic range of the model parameters and that a certain discrete nature of the interactions induces multiple peaks in the species abundance distribution, providing the possibility of theoretically explaining multiple peaks observed in various field studies. To get more quantitative information, we also construct a non-perturbative theory which becomes exact on tree-like networks if all the species coexist, providing exact critical values of u below which extinct species emerge. Numerical simulations in various different situations are conducted and they clarify the robustness of the presented mechanism of all species coexistence and multiple peaks in the species abundance distributions. PMID:27627322

  15. Multiple peaks of species abundance distributions induced by sparse interactions

    NASA Astrophysics Data System (ADS)

    Obuchi, Tomoyuki; Kabashima, Yoshiyuki; Tokita, Kei

    2016-08-01

    We investigate the replicator dynamics with "sparse" symmetric interactions which represent specialist-specialist interactions in ecological communities. By considering a large self-interaction u , we conduct a perturbative expansion which manifests that the nature of the interactions has a direct impact on the species abundance distribution. The central results are all species coexistence in a realistic range of the model parameters and that a certain discrete nature of the interactions induces multiple peaks in the species abundance distribution, providing the possibility of theoretically explaining multiple peaks observed in various field studies. To get more quantitative information, we also construct a non-perturbative theory which becomes exact on tree-like networks if all the species coexist, providing exact critical values of u below which extinct species emerge. Numerical simulations in various different situations are conducted and they clarify the robustness of the presented mechanism of all species coexistence and multiple peaks in the species abundance distributions.

  16. Coevolution and the Effects of Climate Change on Interacting Species

    PubMed Central

    Northfield, Tobin D.; Ives, Anthony R.

    2013-01-01

    Background Recent studies suggest that environmental changes may tip the balance between interacting species, leading to the extinction of one or more species. While it is recognized that evolution will play a role in determining how environmental changes directly affect species, the interactions among species force us to consider the coevolutionary responses of species to environmental changes. Methodology/Principle Findings We use simple models of competition, predation, and mutualism to organize and synthesize the ways coevolution modifies species interactions when climatic changes favor one species over another. In cases where species have conflicting interests (i.e., selection for increased interspecific interaction strength on one species is detrimental to the other), we show that coevolution reduces the effects of climate change, leading to smaller changes in abundances and reduced chances of extinction. Conversely, when species have nonconflicting interests (i.e., selection for increased interspecific interaction strength on one species benefits the other), coevolution increases the effects of climate change. Conclusions/Significance Coevolution sets up feedback loops that either dampen or amplify the effect of environmental change on species abundances depending on whether coevolution has conflicting or nonconflicting effects on species interactions. Thus, gaining a better understanding of the coevolutionary processes between interacting species is critical for understanding how communities respond to a changing climate. We suggest experimental methods to determine which types of coevolution (conflicting or nonconflicting) drive species interactions, which should lead to better understanding of the effects of coevolution on species adaptation. Conducting these experiments across environmental gradients will test our predictions of the effects of environmental change and coevolution on ecological communities. PMID:24167443

  17. Beyond Evolution: Addressing Broad Interactions Between Science and Religion in Science Teacher Education

    NASA Astrophysics Data System (ADS)

    Shane, Joseph W.; Binns, Ian C.; Meadows, Lee; Hermann, Ronald S.; Benus, Matthew J.

    2016-03-01

    Science and religion are two indisputably profound and durable cultural forces with a complex history of interaction. As ASTE members are aware, these interactions often manifest themselves in classrooms and in the surrounding communities. In this essay, we encourage science teacher educators to broaden their perspectives of science-religion interactions so that they may better assist pre- and in-service science teachers with addressing topics such as the age and origins of the universe and biological evolution in an appropriate manner. We first introduce some foundational scholarship into the historical interactions between science and religion as well as current efforts to maintain healthy dialogue between perspectives that are frequently characterized as innately in conflict with or mutually exclusive of one another. Given that biological evolution is the dominant science-religion issue of our day, in particular in the USA, we next summarize the origins and strategies of anti-evolution movements via the rise and persistence of Christian Fundamentalism. We then summarize survey and qualitative sociological research indicating disparities between academic scientists and the general public with regard to religious beliefs to help us further understand our students' worldviews and the challenges they often face in campus-to-classroom transitions. We conclude the essay by providing resources and practical suggestions, including legal considerations, to assist science teacher educators with their curriculum and outreach.

  18. HABITAT DISTRIBUTION MODELS FOR 37 VERTEBRATE SPECIES ADDRESSED BY THE MULTI-SPECIES HABITAT CONSERVATION PLAN OF CLARK COUNTY, NEVADA

    EPA Science Inventory

    Thirty-seven species identified in the Clark County Multi-Species Habitat Conservation Plan were

    previously modeled through the Southwest Regional Gap Analysis Project. Existing SWReGAP habitat

    models and modeling databases were used to facilitate the revision of mo...

  19. Species coexistence in a lattice-structured habitat: effects of species dispersal and interactions.

    PubMed

    Ying, Zhixia; Liao, Jinbao; Wang, Shichang; Lu, Hui; Liu, Yongjie; Ma, Liang; Li, Zhenqing

    2014-10-21

    Opinions differ on how the spatial distribution of species over space affects species coexistence. Here, we constructed both mean-field and pair approximation (PA) models to explore the effects of interspecific and intraspecific interactions and dispersal modes on species coexistence. We found that spatial structure resulting from species dispersal traits and neighboring interactions in PA model did not promote coexistence if two species had the same traits, though it might intensify the contact frequency of intraspecific competition. If two species adopt different dispersal modes, the spatial structure in PA would make the coexistence or founder control less likely since it alters the species effective birth rate. This suggests that the spatial distribution caused by neighboring interactions and local dispersal does not affect species coexistence unless it adequately alters the effective birth rate for two species. Besides, we modeled how the initial densities and patterns affected population dynamics and revealed how the final spatial pattern was generated.

  20. Genetic Interaction Scoring Procedure for Bacterial Species.

    PubMed

    Wagih, Omar; Parts, Leopold

    2015-01-01

    A genetic interaction occurs when the phenotype of an organism carrying two mutant genes differs from what should have been observed given their independent influence. Such unexpected outcome indicates a mechanistic connection between the perturbed genes, providing a key source of functional information about the cell. Large-scale screening for genetic interactions involves measuring phenotypes of single and double mutants, which for microorganisms is usually done by automated analysis of images of ordered colonies. Obtaining accurate colony sizes, and using them to identify genetic interactions from such screens remains a challenging and time-consuming task. Here, we outline steps to compute genetic interaction scores in E. coli by measuring colony sizes from plate images, performing normalisation, and quantifying the strength of the effect. PMID:26621468

  1. Mesoscopic interactions and species coexistence in evolutionary game dynamics of cyclic competitions.

    PubMed

    Cheng, Hongyan; Yao, Nan; Huang, Zi-Gang; Park, Junpyo; Do, Younghae; Lai, Ying-Cheng

    2014-12-15

    Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species.

  2. Mesoscopic Interactions and Species Coexistence in Evolutionary Game Dynamics of Cyclic Competitions

    NASA Astrophysics Data System (ADS)

    Cheng, Hongyan; Yao, Nan; Huang, Zi-Gang; Park, Junpyo; Do, Younghae; Lai, Ying-Cheng

    2014-12-01

    Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species.

  3. Mesoscopic Interactions and Species Coexistence in Evolutionary Game Dynamics of Cyclic Competitions

    PubMed Central

    Cheng, Hongyan; Yao, Nan; Huang, Zi-Gang; Park, Junpyo; Do, Younghae; Lai, Ying-Cheng

    2014-01-01

    Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species. PMID:25501627

  4. Eco-evolutionary experience in novel species interactions.

    PubMed

    Saul, Wolf-Christian; Jeschke, Jonathan M

    2015-03-01

    A better understanding of how ecological novelty influences interactions in new combinations of species is key for predicting interaction outcomes, and can help focus conservation and management efforts on preventing the introduction of novel organisms or species (including invasive species, GMOs, synthetic organisms, resurrected species and emerging pathogens) that seem particularly 'risky' for resident species. Here, we consider the implications of different degrees of eco-evolutionary experience of interacting resident and non-resident species, define four qualitative risk categories for estimating the probability of successful establishment and impact of novel species and discuss how the effects of novelty change over time. Focusing then on novel predator-prey interactions, we argue that novelty entails density-dependent advantages for non-resident species, with their largest effects often being at low prey densities. This is illustrated by a comparison of predator functional responses and prey predation risk curves between novel species and ecologically similar resident species, and raises important issues for the conservation of endangered resident prey species. PMID:25626585

  5. How can we exploit above–belowground interactions to assist in addressing the challenges of food security?

    PubMed Central

    Orrell, Peter; Bennett, Alison E.

    2013-01-01

    Can above–belowground interactions help address issues of food security? We address this question in this manuscript, and review the intersection of above–belowground interactions and food security. We propose that above–belowground interactions could address two strategies identified by Godfray etal. (2010): reducing the Yield Gap, and Increasing Production Limits. In particular, to minimize the difference between potential and realized production (The Yield Gap) above–belowground interactions could be manipulated to reduce losses to pests and increase crop growth (and therefore yields). To Increase Production Limits we propose two mechanisms: utilizing intercropping (which uses multiple aspects of above–belowground interactions) and breeding for traits that promote beneficial above–belowground interactions, as well as breeding mutualistic organisms to improve their provided benefit. As a result, if they are managed correctly, there is great potential for above–belowground interactions to contribute to food security. PMID:24198821

  6. How can we exploit above-belowground interactions to assist in addressing the challenges of food security?

    PubMed

    Orrell, Peter; Bennett, Alison E

    2013-10-30

    Can above-belowground interactions help address issues of food security? We address this question in this manuscript, and review the intersection of above-belowground interactions and food security. We propose that above-belowground interactions could address two strategies identified by Godfray etal. (2010): reducing the Yield Gap, and Increasing Production Limits. In particular, to minimize the difference between potential and realized production (The Yield Gap) above-belowground interactions could be manipulated to reduce losses to pests and increase crop growth (and therefore yields). To Increase Production Limits we propose two mechanisms: utilizing intercropping (which uses multiple aspects of above-belowground interactions) and breeding for traits that promote beneficial above-belowground interactions, as well as breeding mutualistic organisms to improve their provided benefit. As a result, if they are managed correctly, there is great potential for above-belowground interactions to contribute to food security.

  7. Adjustable Spin-Spin Interaction with 171Yb+ ions and Addressing of a Quantum Byte

    NASA Astrophysics Data System (ADS)

    Wunderlich, Christof

    2015-05-01

    Trapped atomic ions are a well-advanced physical system for investigating fundamental questions of quantum physics and for quantum information science and its applications. When contemplating the scalability of trapped ions for quantum information science one notes that the use of laser light for coherent operations gives rise to technical and also physical issues that can be remedied by replacing laser light by microwave (MW) and radio-frequency (RF) radiation employing suitably modified ion traps. Magnetic gradient induced coupling (MAGIC) makes it possible to coherently manipulate trapped ions using exclusively MW and RF radiation. After introducing the general concept of MAGIC, I shall report on recent experimental progress using 171Yb+ ions, confined in a suitable Paul trap, as effective spin-1/2 systems interacting via MAGIC. Entangling gates between non-neighbouring ions will be presented. The spin-spin coupling strength is variable and can be adjusted by variation of the secular trap frequency. In general, executing a quantum gate with a single qubit, or a subset of qubits, affects the quantum states of all other qubits. This reduced fidelity of the whole quantum register may preclude scalability. We demonstrate addressing of individual qubits within a quantum byte (eight qubits interacting via MAGIC) using MW radiation and measure the error induced in all non-addressed qubits (cross-talk) associated with the application of single-qubit gates. The measured cross-talk is on the order 10-5 and therefore below the threshold commonly agreed sufficient to efficiently realize fault-tolerant quantum computing. Furthermore, experimental results on continuous and pulsed dynamical decoupling (DD) for protecting quantum memories and quantum gates against decoherence will be briefly discussed. Finally, I report on using continuous DD to realize a broadband ultrasensitive single-atom magnetometer.

  8. Evolution of species interactions in a biofilm community.

    PubMed

    Hansen, Susse Kirkelund; Rainey, Paul B; Haagensen, Janus A J; Molin, Søren

    2007-02-01

    Biofilms are spatially structured communities of microbes whose function is dependent on a complex web of symbiotic interactions. Localized interactions within these assemblages are predicted to affect the coexistence of the component species, community structure and function, but there have been few explicit empirical analyses of the evolution of interactions. Here we show, with the use of a two-species community, that selection in a spatially structured environment leads to the evolution of an exploitative interaction. Simple mutations in the genome of one species caused it to adapt to the presence of the other, forming an intimate and specialized association. The derived community was more stable and more productive than the ancestral community. Our results show that evolution in a spatially structured environment can stabilize interactions between species, provoke marked changes in their symbiotic nature and affect community function.

  9. Conserved rules govern genetic interaction degree across species

    PubMed Central

    2012-01-01

    Background Synthetic genetic interactions have recently been mapped on a genome scale in the budding yeast Saccharomyces cerevisiae, providing a functional view of the central processes of eukaryotic life. Currently, comprehensive genetic interaction networks have not been determined for other species, and we therefore sought to model conserved aspects of genetic interaction networks in order to enable the transfer of knowledge between species. Results Using a combination of physiological and evolutionary properties of genes, we built models that successfully predicted the genetic interaction degree of S. cerevisiae genes. Importantly, a model trained on S. cerevisiae gene features and degree also accurately predicted interaction degree in the fission yeast Schizosaccharomyces pombe, suggesting that many of the predictive relationships discovered in S. cerevisiae also hold in this evolutionarily distant yeast. In both species, high single mutant fitness defect, protein disorder, pleiotropy, protein-protein interaction network degree, and low expression variation were significantly predictive of genetic interaction degree. A comparison of the predicted genetic interaction degrees of S. pombe genes to the degrees of S. cerevisiae orthologs revealed functional rewiring of specific biological processes that distinguish these two species. Finally, predicted differences in genetic interaction degree were independently supported by differences in co-expression relationships of the two species. Conclusions Our findings show that there are common relationships between gene properties and genetic interaction network topology in two evolutionarily distant species. This conservation allows use of the extensively mapped S. cerevisiae genetic interaction network as an orthology-independent reference to guide the study of more complex species. PMID:22747640

  10. Translocation strategies for multiple species depend on interspecific interaction type.

    PubMed

    Plein, Michaela; Bode, Michael; Moir, Melinda L; Vesk, Peter A

    2016-06-01

    Conservation translocations, anthropogenic movements of species to prevent their extinction, have increased substantially over the last few decades. Although multiple species are frequently moved to the same location, current translocation guidelines consider species in isolation. This practice ignores important interspecific interactions and thereby risks translocation failure. We model three different two-species systems to illustrate the inherent complexity of multispecies translocations and to assess the influence of different interaction types (consumer-resource, mutualism, and competition) on translocation strategies. We focus on how these different interaction types influence the optimal founder population sizes for successful translocations and the order in which the species are moved (simultaneous or sequential). Further, we assess the effect of interaction strength in simultaneous translocations and the time delay between translocations when moving two species sequentially. Our results show that translocation decisions need to reflect the type of interaction. While all translocations of interacting species require a minimum founder population size, which is demarked by an extinction boundary, consumer-resource translocations also have a maximum founder population limit. Above the minimum founder size, increasing the number of translocated individuals leads to a substantial increase in the extinction boundary of competitors and consumers, but not of mutualists. Competitive and consumer-resource systems benefit from sequential translocations, but the order of translocations does not change the outcomes for mutualistic interaction partners noticeably. Interspecific interactions are important processes that shape population dynamics and should therefore be incorporated into the quantitative planning of multispecies translocations. Our findings apply whenever interacting species are moved, for example, in reintroductions, conservation introductions, biological

  11. Translocation strategies for multiple species depend on interspecific interaction type.

    PubMed

    Plein, Michaela; Bode, Michael; Moir, Melinda L; Vesk, Peter A

    2016-06-01

    Conservation translocations, anthropogenic movements of species to prevent their extinction, have increased substantially over the last few decades. Although multiple species are frequently moved to the same location, current translocation guidelines consider species in isolation. This practice ignores important interspecific interactions and thereby risks translocation failure. We model three different two-species systems to illustrate the inherent complexity of multispecies translocations and to assess the influence of different interaction types (consumer-resource, mutualism, and competition) on translocation strategies. We focus on how these different interaction types influence the optimal founder population sizes for successful translocations and the order in which the species are moved (simultaneous or sequential). Further, we assess the effect of interaction strength in simultaneous translocations and the time delay between translocations when moving two species sequentially. Our results show that translocation decisions need to reflect the type of interaction. While all translocations of interacting species require a minimum founder population size, which is demarked by an extinction boundary, consumer-resource translocations also have a maximum founder population limit. Above the minimum founder size, increasing the number of translocated individuals leads to a substantial increase in the extinction boundary of competitors and consumers, but not of mutualists. Competitive and consumer-resource systems benefit from sequential translocations, but the order of translocations does not change the outcomes for mutualistic interaction partners noticeably. Interspecific interactions are important processes that shape population dynamics and should therefore be incorporated into the quantitative planning of multispecies translocations. Our findings apply whenever interacting species are moved, for example, in reintroductions, conservation introductions, biological

  12. Seasonal species interactions minimize the impact of species turnover on the likelihood of community persistence.

    PubMed

    Saavedra, Serguei; Rohr, Rudolf P; Fortuna, Miguel A; Selva, Nuria; Bascompte, Jordi

    2016-04-01

    Many of the observed species interactions embedded in ecological communities are not permanent, but are characterized by temporal changes that are observed along with abiotic and biotic variations. While work has been done describing and quantifying these changes, little is known about their consequences for species coexistence. Here, we investigate the extent to which changes of species composition impact the likelihood of persistence of the predator-prey community in the highly seasonal Białowieza Primeval Forest (northeast Poland), and the extent to which seasonal changes of species interactions (predator diet) modulate the expected impact. This likelihood is estimated extending recent developments on the study of structural stability in ecological communities. We find that the observed species turnover strongly varies the likelihood of community persistence between summer and winter. Importantly, we demonstrate that the observed seasonal interaction changes minimize the variation in the likelihood of persistence associated with species turnover across the year. We find that these community dynamics can be explained as the coupling of individual species to their environment by minimizing both the variation in persistence conditions and the interaction changes between seasons. Our results provide a homeostatic explanation for seasonal species interactions and suggest that monitoring the association of interactions changes with the level of variation in community dynamics can provide a good indicator of the response of species to environmental pressures. PMID:27220203

  13. Topological Signatures of Species Interactions in Metabolic Networks

    PubMed Central

    Feldman, Marcus W.

    2009-01-01

    Abstract The topology of metabolic networks can provide insight not only into the metabolic processes that occur within each species, but also into interactions between different species. Here, we introduce a novel pair-wise, topology-based measure of biosynthetic support, reflecting the extent to which the nutritional requirements of one species could be satisfied by the biosynthetic capacity of another. To evaluate the biosynthetic support for a given pair of species, we use a graph-based algorithm to identify the set of exogenously acquired compounds in the metabolic network of the first species, and calculate the fraction of this set that occurs in the metabolic network of the second species. Reconstructing the metabolic network of 569 bacterial species and several eukaryotes, and calculating the biosynthetic support score for all bacterial-eukaryotic pairs, we show that this measure indeed reflects host-parasite interactions and facilitates a successful prediction of such interactions on a large-scale. Integrating this method with phylogenetic analysis and calculating the biosynthetic support of ancestral species in the Firmicutes division (as well as other bacterial divisions) further reveals a large-scale evolutionary trend of biosynthetic capacity loss in parasites. The inference of ecological features from genomic-based data presented here lays the foundations for an exciting “reverse ecology” framework for studying the complex web of interactions characterizing various ecosystems. PMID:19178139

  14. Topological signatures of species interactions in metabolic networks.

    PubMed

    Borenstein, Elhanan; Feldman, Marcus W

    2009-02-01

    The topology of metabolic networks can provide insight not only into the metabolic processes that occur within each species, but also into interactions between different species. Here, we introduce a novel pair-wise, topology-based measure of biosynthetic support, reflecting the extent to which the nutritional requirements of one species could be satisfied by the biosynthetic capacity of another. To evaluate the biosynthetic support for a given pair of species, we use a graph-based algorithm to identify the set of exogenously acquired compounds in the metabolic network of the first species, and calculate the fraction of this set that occurs in the metabolic network of the second species. Reconstructing the metabolic network of 569 bacterial species and several eukaryotes, and calculating the biosynthetic support score for all bacterial-eukaryotic pairs, we show that this measure indeed reflects host-parasite interactions and facilitates a successful prediction of such interactions on a large-scale. Integrating this method with phylogenetic analysis and calculating the biosynthetic support of ancestral species in the Firmicutes division (as well as other bacterial divisions) further reveals a large-scale evolutionary trend of biosynthetic capacity loss in parasites. The inference of ecological features from genomic-based data presented here lays the foundations for an exciting "reverse ecology" framework for studying the complex web of interactions characterizing various ecosystems.

  15. The influence of interspecific interactions on species range expansion rates

    PubMed Central

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E. M. S.; Pagel, Jörn; Normand, Signe

    2014-01-01

    Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low

  16. The influence of interspecific interactions on species range expansion rates

    USGS Publications Warehouse

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E.M.S.; Pagel, Jörn; Normand, Signe

    2014-01-01

    Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low

  17. What Can Interaction Webs Tell Us About Species Roles?

    PubMed Central

    Sander, Elizabeth L.; Wootton, J. Timothy; Allesina, Stefano

    2015-01-01

    The group model is a useful tool to understand broad-scale patterns of interaction in a network, but it has previously been limited in use to food webs, which contain only predator-prey interactions. Natural populations interact with each other in a variety of ways and, although most published ecological networks only include information about a single interaction type (e.g., feeding, pollination), ecologists are beginning to consider networks which combine multiple interaction types. Here we extend the group model to signed directed networks such as ecological interaction webs. As a specific application of this method, we examine the effects of including or excluding specific interaction types on our understanding of species roles in ecological networks. We consider all three currently available interaction webs, two of which are extended plant-mutualist networks with herbivores and parasitoids added, and one of which is an extended intertidal food web with interactions of all possible sign structures (+/+, -/0, etc.). Species in the extended food web grouped similarly with all interactions, only trophic links, and only nontrophic links. However, removing mutualism or herbivory had a much larger effect in the extended plant-pollinator webs. Species removal even affected groups that were not directly connected to those that were removed, as we found by excluding a small number of parasitoids. These results suggest that including additional species in the network provides far more information than additional interactions for this aspect of network structure. Our methods provide a useful framework for simplifying networks to their essential structure, allowing us to identify generalities in network structure and better understand the roles species play in their communities. PMID:26197151

  18. What Can Interaction Webs Tell Us About Species Roles?

    PubMed

    Sander, Elizabeth L; Wootton, J Timothy; Allesina, Stefano

    2015-07-01

    The group model is a useful tool to understand broad-scale patterns of interaction in a network, but it has previously been limited in use to food webs, which contain only predator-prey interactions. Natural populations interact with each other in a variety of ways and, although most published ecological networks only include information about a single interaction type (e.g., feeding, pollination), ecologists are beginning to consider networks which combine multiple interaction types. Here we extend the group model to signed directed networks such as ecological interaction webs. As a specific application of this method, we examine the effects of including or excluding specific interaction types on our understanding of species roles in ecological networks. We consider all three currently available interaction webs, two of which are extended plant-mutualist networks with herbivores and parasitoids added, and one of which is an extended intertidal food web with interactions of all possible sign structures (+/+, -/0, etc.). Species in the extended food web grouped similarly with all interactions, only trophic links, and only nontrophic links. However, removing mutualism or herbivory had a much larger effect in the extended plant-pollinator webs. Species removal even affected groups that were not directly connected to those that were removed, as we found by excluding a small number of parasitoids. These results suggest that including additional species in the network provides far more information than additional interactions for this aspect of network structure. Our methods provide a useful framework for simplifying networks to their essential structure, allowing us to identify generalities in network structure and better understand the roles species play in their communities.

  19. Temporal changes in species interactions in simple aquatic bacterial communities

    PubMed Central

    2012-01-01

    Background Organisms modify their environment and in doing so change the quantity and possibly the quality of available resources. Due to the two-way relationship between organisms and their resource environment, and the complexity it brings to biological communities, measuring species interactions reliably in any biological system is a challenging task. As the resource environment changes, the intensity and even the sign of interactions may vary in time. We used Serratia marcescens and Novosphingobium capsulatum bacteria to study how the interaction between resource environment and organisms influence the growth of the bacterial species during circa 200 generations. We used a sterile-filtering method to measure how changes in resource environment are reflected in growth rates of the two species. Results Changes in the resource environment caused complex time and species composition-dependent effects on bacterial growth performance. Variation in the quality of the growth medium indicated existence of temporally fluctuating within-species facilitation and inhibition, and between-species asymmetric facilitation. Conclusions The interactions between the community members could not be fully predicted based only on the knowledge of the growth performance of each member in isolation. Growth dynamics in sterile-filtered samples of the conditioned growth medium can reveal both biologically meaningful changes in resource availability and temporally changing facilitative resource-mediated interactions between study species. This is the first study we are aware of where the filter-sterilization – growth assay method is applied to study the effect of long-term changes in the environment on species interactions. PMID:22984961

  20. Enhancing species distribution modeling by characterizing predator-prey interactions.

    PubMed

    Trainor, Anne M; Schmitz, Oswald J; Ivan, Jacob S; Shenk, Tanya M

    2014-01-01

    Niche theory is a well-established concept integrating a diverse array of environmental variables and multispecies interactions used to describe species geographic distribution. It is now customary to employ species distribution models (SDMs) that use environmental variables in conjunction with species location information to characterize species' niches and map their geographic ranges. The challenge remains, however, to account for the biotic interactions of species with other community members on which they depend. We show here how to connect species spatial distribution and their dependence with other species by modeling spatially explicit predator-prey interactions, which we call a trophic interaction distribution model (TIDM). To develop the principles, we capitalized on data from Canada lynx (Lynx canadensis) reintroduced into Colorado. Spatial location information for lynx obtained from telemetry was used in conjunction with environmental data to construct an SDM. The spatial locations of lynx-snowshoe hare encounters obtained from snow-tracking in conjunction with environmental data were used to construct a TIDM. The environmental conditions associated with lynx locations and lynx-hare encounters identified through both SDM and TIDM revealed an initial transient phase in habitat use that settled into a steady state. Nevertheless, despite the potential for the SDM to broadly encompass all lynx hunting and nonhunting spatial locations, the spatial extents of the SDM and TIDM differed; about 40% of important lynx-snowshoe hare locations identified in the TIDM were not identified in the lynx-only SDM. Our results encourage greater effort to quantify spatial locations of trophic interactions among species in a community and the associated environmental conditions when attempting to construct models aimed at projecting current and future species geographic distributions.

  1. Double Species Bose-Einstein Condensate with Tunable Interspecies Interactions

    SciTech Connect

    Thalhammer, G.; Barontini, G.; De Sarlo, L.; Catani, J.; Minardi, F.; Inguscio, M.

    2008-05-30

    We produce Bose-Einstein condensates of two different species, {sup 87}Rb and {sup 41}K, in an optical dipole trap in proximity of interspecies Feshbach resonances. We discover and characterize two Feshbach resonances, located around 35 and 79 G, by observing the three-body losses and the elastic cross section. The narrower resonance is exploited to create a double species condensate with tunable interactions. Our system opens the way to the exploration of double species Mott insulators and, more in general, of the quantum phase diagram of the two-species Bose-Hubbard model.

  2. Scale-dependent effects of habitat area on species interaction networks: invasive species alter relationships

    PubMed Central

    2012-01-01

    Background The positive relationship between habitat area and species number is considered a fundamental rule in ecology. This relationship predicts that the link number of species interactions increases with habitat area, and structure is related to habitat area. Biological invasions can affect species interactions and area relationships. However, how these relationships change at different spatial scales has remained unexplored. We analysed understory plant–pollinator networks in seven temperate forest sites at 20 spatial scales (radius 120–2020 m) to clarify scale-associated relationships between forest area and plant–pollinator networks. Results The pooled data described interactions between 18 plant (including an exotic) and 89 pollinator (including an exotic) species. The total number of species and the number of interaction links between plant and pollinator species were negatively correlated with forest area, with the highest correlation coefficient at radii of 1520 and 1620 m, respectively. These results are not concordant with the pattern predicted by species–area relationships. However, when associations with exotic species were excluded, the total number of species and the number of interaction links were positively correlated with forest area (the highest correlation coefficient at a radius of 820 m). The network structure, i.e., connectance and nestedness, was also related to forest area (the highest correlation coefficients at radii of 720–820 m), when associations with exotics were excluded. In the study area, the exotic plant species Alliaria petiolata, which has invaded relatively small forest patches surrounded by agricultural fields, may have supported more native pollinator species than initially expected. Therefore, this invasive plant may have altered the original relationships between forest area and plant–pollinator networks. Conclusions Our results demonstrate scale-dependent effects of forest area on the size and

  3. Modeling symbiosis by interactions through species carrying capacities

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Yukalova, E. P.; Sornette, D.

    2012-08-01

    We introduce a mathematical model of symbiosis between different species by taking into account the influence of each species on the carrying capacities of the others. The modeled entities can pertain to biological and ecological societies or to social, economic and financial societies. Our model includes three basic types: symbiosis with direct mutual interactions, symbiosis with asymmetric interactions, and symbiosis without direct interactions. In all cases, we provide a complete classification of all admissible dynamical regimes. The proposed model of symbiosis turned out to be very rich, as it exhibits four qualitatively different regimes: convergence to stationary states, unbounded exponential growth, finite-time singularity, and finite-time death or extinction of species.

  4. Where and When do Species Interactions Set Range Limits?

    PubMed

    Louthan, Allison M; Doak, Daniel F; Angert, Amy L

    2015-12-01

    A long-standing theory, originating with Darwin, suggests that abiotic forces set species range limits at high latitude, high elevation, and other abiotically 'stressful' areas, while species interactions set range limits in apparently more benign regions. This theory is of considerable importance for both basic and applied ecology, and while it is often assumed to be a ubiquitous pattern, it has not been clearly defined or broadly tested. We review tests of this idea and dissect how the strength of species interactions must vary across stress gradients to generate the predicted pattern. We conclude by suggesting approaches to better test this theory, which will deepen our understanding of the forces that determine species ranges and govern responses to climate change.

  5. Climate change can cause spatial mismatch of trophically interacting species.

    PubMed

    Schweiger, Oliver; Settele, Josef; Kudrna, Otakar; Klotz, Stefan; Kühn, Ingolf

    2008-12-01

    Climate change is one of the most influential drivers of biodiversity. Species-specific differences in the reaction to climate change can become particularly important when interacting species are considered. Current studies have evidenced temporal mismatching of interacting species at single points in space, and recently two investigations showed that species interactions are relevant for their future ranges. However, so far we are not aware that the ranges of interacting species may become substantially spatially mismatched. We developed separate ecological-niche models for a monophagous butterfly (Boloria titania) and its larval host plant (Polygonum bistorta) based on monthly interpolated climate data, land-cover classes, and soil data at a 10'-grid resolution. We show that all of three chosen global-change scenarios, which cover a broad range of potential developments in demography, socio-economics, and technology during the 21st century from moderate to intermediate to maximum change, will result in a pronounced spatial mismatch between future niche spaces of these species. The butterfly may expand considerably its future range (by 124-258%) if the host plant has unlimited dispersal, but it could lose 52-75% of its current range if the host plant is not able to fill its projected ecological niche space, and 79-88% if the butterfly also is assumed to be highly dispersal limited. These findings strongly suggest that climate change has the potential to disrupt trophic interactions because co-occurring species do not necessarily react in a similar manner to global change, having important consequences at ecological and evolutionary time scales.

  6. Occasional Addresses by Edward Teller at Conferences of Laser Interaction and Related Plasma Phenomena (LIRPP)

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Miley, George H.

    2016-10-01

    The following sections are included: * Futurology of High Intensity Lasers (LIRPP Vol. 3A) * Lecture in Connection with the Edward Teller Medal Award (LIRPP Vol. 10) * Photo of the First Recipients of the Edward Teller Medal in 1991 * Photos from the Edward Teller Medal Celebration in 1997 * Photo with Participants of the LIRPP No. 12 Conference, 1995 * Photo with Edward Teller Medalists at IFSA01, Kyoto, 2001 * Keynote Address: The Edward Teller Lecture (LIRPP Vol. 11) * Keynote Address: Dr. Edward Teller (LIRPP Vol. 12) * Teller Award Presentation and Keynote Address (LIRPP Vol. 13) * Laudations of Awardees 1991-1995 (LIRPP Vol. 13) * Laudations of Awardees 1999-2003

  7. Positive interactions, discontinuous transitions and species coexistence in plant communities.

    PubMed

    Díaz-Sierra, R; Zavala, M A; Rietkerk, M

    2010-03-01

    The population and community level consequences of positive interactions between plants remain poorly explored. In this study we incorporate positive resource-mediated interactions in classic resource competition theory and investigate the main consequences for plant population dynamics and species coexistence. We focus on plant communities for which water infiltration rates exhibit positive dependency on plant biomass and where plant responses can be improved by shading, particularly under water limiting conditions. We show that the effects of these two resource-mediated positive interactions are similar and additive. We predict that positive interactions shift the transition points between different species compositions along environmental gradients and that realized niche widths will expand or shrink. Furthermore, continuous transitions between different community compositions can become discontinuous and bistability or tristability can occur. Moreover, increased infiltration rates may give rise to a new potential coexistence mechanism that we call controlled facilitation. PMID:20005884

  8. Positive interactions, discontinuous transitions and species coexistence in plant communities.

    PubMed

    Díaz-Sierra, R; Zavala, M A; Rietkerk, M

    2010-03-01

    The population and community level consequences of positive interactions between plants remain poorly explored. In this study we incorporate positive resource-mediated interactions in classic resource competition theory and investigate the main consequences for plant population dynamics and species coexistence. We focus on plant communities for which water infiltration rates exhibit positive dependency on plant biomass and where plant responses can be improved by shading, particularly under water limiting conditions. We show that the effects of these two resource-mediated positive interactions are similar and additive. We predict that positive interactions shift the transition points between different species compositions along environmental gradients and that realized niche widths will expand or shrink. Furthermore, continuous transitions between different community compositions can become discontinuous and bistability or tristability can occur. Moreover, increased infiltration rates may give rise to a new potential coexistence mechanism that we call controlled facilitation.

  9. Sensory information and encounter rates of interacting species.

    PubMed

    Hein, Andrew M; McKinley, Scott A

    2013-01-01

    Most motile organisms use sensory cues when searching for resources, mates, or prey. The searcher measures sensory data and adjusts its search behavior based on those data. Yet, classical models of species encounter rates assume that searchers move independently of their targets. This assumption leads to the familiar mass action-like encounter rate kinetics typically used in modeling species interactions. Here we show that this common approach can mischaracterize encounter rate kinetics if searchers use sensory information to search actively for targets. We use the example of predator-prey interactions to illustrate that predators capable of long-distance directional sensing can encounter prey at a rate proportional to prey density to the [Formula: see text] power (where [Formula: see text] is the dimension of the environment) when prey density is low. Similar anomalous encounter rate functions emerge even when predators pursue prey using only noisy, directionless signals. Thus, in both the high-information extreme of long-distance directional sensing, and the low-information extreme of noisy non-directional sensing, encounter rate kinetics differ qualitatively from those derived by classic theory of species interactions. Using a standard model of predator-prey population dynamics, we show that the new encounter rate kinetics derived here can change the outcome of species interactions. Our results demonstrate how the use of sensory information can alter the rates and outcomes of physical interactions in biological systems.

  10. Species coexistence: macroevolutionary relationships and the contingency of historical interactions.

    PubMed

    Germain, Rachel M; Weir, Jason T; Gilbert, Benjamin

    2016-03-30

    Evolutionary biologists since Darwin have hypothesized that closely related species compete more intensely and are therefore less likely to coexist. However, recent theory posits that species diverge in two ways: either through the evolution of 'stabilizing differences' that promote coexistence by causing individuals to compete more strongly with conspecifics than individuals of other species, or through the evolution of 'fitness differences' that cause species to differ in competitive ability and lead to exclusion of the weaker competitor. We tested macroevolutionary patterns of divergence by competing pairs of annual plant species that differ in their phylogenetic relationships, and in whether they have historically occurred in the same region or different regions (sympatric versus allopatric occurrence). For sympatrically occurring species pairs, stabilizing differences rapidly increased with phylogenetic distance. However, fitness differences also increased with phylogenetic distance, resulting in coexistence outcomes that were unpredictable based on phylogenetic relationships. For allopatric species, stabilizing differences showed no trend with phylogenetic distance, whereas fitness differences increased, causing coexistence to become less likely among distant relatives. Our results illustrate the role of species' historical interactions in shaping how phylogenetic relationships structure competitive dynamics, and offer an explanation for the evolution of invasion potential of non-native species. PMID:27009226

  11. The nature of species interactions shifts profoundly between time periods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species interactions change through time, for example ontogenetically, successionally, and evolutionarily. They also change as environmental conditions change, both within years (seasonally) and between years (year effects). The former are relatively well-studied, but the latter have received less a...

  12. Fish introductions reveal the temperature dependence of species interactions

    PubMed Central

    Hein, Catherine L.; Öhlund, Gunnar; Englund, Göran

    2014-01-01

    A major area of current research is to understand how climate change will impact species interactions and ultimately biodiversity. A variety of environmental conditions are rapidly changing owing to climate warming, and these conditions often affect both the strength and outcome of species interactions. We used fish distributions and replicated fish introductions to investigate environmental conditions influencing the coexistence of two fishes in Swedish lakes: brown trout (Salmo trutta) and pike (Esox lucius). A logistic regression model of brown trout and pike coexistence showed that these species coexist in large lakes (more than 4.5 km2), but not in small, warm lakes (annual air temperature more than 0.9–1.5°C). We then explored how climate change will alter coexistence by substituting climate scenarios for 2091–2100 into our model. The model predicts that brown trout will be extirpated from approximately half of the lakes where they presently coexist with pike and from nearly all 9100 lakes where pike are predicted to invade. Context dependency was critical for understanding pike–brown trout interactions, and, given the widespread occurrence of context-dependent species interactions, this aspect will probably be critical for accurately predicting climate impacts on biodiversity. PMID:24307673

  13. Conservation Priorities when Species Interact: The Noah's Ark Metaphor Revisited

    PubMed Central

    Courtois, Pierre; Figuieres, Charles; Mulier, Chloé

    2014-01-01

    This note incorporates ecological interactions into the Noah's Ark problem. In doing so, we arrive at a general model for ranking in situ conservation projects accounting for species interrelations and provide an operational cost-effectiveness method for the selection of best preserving diversity projects under a limited budget constraint. PMID:25181514

  14. Interactional Concerns in Implementing Group Tasks: Addressing Silence, Dominance, and Off-Task Talk in an Academic Writing Class

    ERIC Educational Resources Information Center

    Sharma, Bal Krishna

    2015-01-01

    This study investigates the teacher role in mediating the task and the learner in an advanced academic writing class. Having identified three verbal (non-)participation patterns of students in collaborative tasks (silence, dominance, and off-task talk), I examine how these interactional concerns are understood and addressed by English as a second…

  15. Plasma Interaction at Io: Multi-species Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Sebek, O.; Travnicek, P. M.; Walker, R. J.; Hellinger, P.

    2015-12-01

    We present analysis of global 3-dimensional multi-species hybrid simulations of Io's interaction with Jovian magnetospheric plasma. In the multi-species simulations we assume five species, plasma torus is composed of O+, S+ and S++ ions and ions of SO+, SO2+ are created around Io by ionization of its neutral atmosphere. We consider several ionization processes, namely, charge exchange ionization and photoionization/electron impact ionization. We compare our results to data acquired in situ by the Galileo spacecraft. Our results are in a good qualitative agreement with the in situ magnetic field measurements for five Galileo's flybys around Io. The hybrid model enables to study ion kinetic effects, we investigate magnetic fluctuations triggered by growth of ion cyclotron and/or mirror instabilities of temperature anisotropic pick-up plasma. We also investigate structure of Alfvén wings under different conditions of the interaction.

  16. Yakima River Species Interactions Studies, Annual Report 1993.

    SciTech Connect

    Pearsons, Todd N.

    1994-12-01

    Species interactions research was initiated in 1989 to investigate ecological interactions among fish in response to proposed supplementation of salmon and steelhead in the upper Yakima River basin. Data have been collected prior to supplementation to characterize the rainbow trout population, predict the potential interactions that may occur as a result of supplementation, and develop methods to monitor interactions. Major topics of this report are associated with the life history of rainbow trout, interactions experimentation, and methods for sampling. This report is organized into nine chapters with a general introduction preceding the first chapter and a general discussion following the last chapter. This annual report summarizes data collected primarily by the Washington Department of Fish and Wildlife (WDFW) between January 1 and December 31, 1993 in the upper Yakima basin above Roza Dam, however these data were compared to data from previous years to identify preliminary trends and patterns. Major preliminary findings from each of the chapters included in this report are described.

  17. A cooperative system of two species with bidirectional interactions.

    PubMed

    Wang, Yuanshi; Wu, Hong

    2014-06-01

    Cooperation between species is often regarded to mean that the increase of each species promotes the growth of the other. The well-known cooperative model is the Lotka-Volterra equations (LVEs). In the LVEs, population densities of species increase infinitely as the cooperation is strong, which is called the divergence problem. Moreover, LVEs never exhibit an Allee effect in the case of obligate cooperation. In order to avoid these problems, several models have been established although most of them are rather complex. In this paper, we consider a cooperative system of two species with bidirectional interactions, in which each species also has negative feedback on the other. Population densities of the species will not increase infinitely because of the limited resource and negative feedback. Then, we focus on an extended lattice model of cooperation, which is deduced from reactions on lattice and has the same form as that of LVEs. In the case of obligate cooperation, the model predicts an Allee effect. Global dynamics of the system exhibit essential features of cooperation and basic mechanisms by which the cooperation can lead to coexistence/extinction of species. Intermediate cooperation is shown to be beneficial in cooperation under certain conditions, while extremely strong cooperation is demonstrated to lead to extinction of one/both species. Numerical simulations confirm and extend our results. PMID:24816998

  18. Beyond Evolution: Addressing Broad Interactions between Science and Religion in Science Teacher Education

    ERIC Educational Resources Information Center

    Shane, Joseph W.; Binns, Ian C.; Meadows, Lee; Hermann, Ronald S.; Benus, Matthew J.

    2016-01-01

    Science and religion are two indisputably profound and durable cultural forces with a complex history of interaction. As ASTE members are aware, these interactions often manifest themselves in classrooms and in the surrounding communities. In this essay, we encourage science teacher educators to broaden their perspectives of science-religion…

  19. Mutualism fails when climate response differs between interacting species.

    PubMed

    Warren, Robert J; Bradford, Mark A

    2014-02-01

    Successful species interactions require that both partners share a similar cue. For many species, spring warming acts as a shared signal to synchronize mutualist behaviors. Spring flowering plants and the ants that disperse their seeds respond to warming temperatures so that ants forage when plants drop seeds. However, where warm-adapted ants replace cold-adapted ants, changes in this timing might leave early seeds stranded without a disperser. We investigate plant seed dispersal south and north of a distinct boundary between warm- and cold-adapted ants to determine if changes in the ant species influence local plant dispersal. The warm-adapted ants forage much later than the cold-adapted ants, and so we first assess natural populations of early and late blooming plants. We then transplant these plants south and north of the ant boundary to test whether distinct ant climate requirements disrupt the ant-plant mutualism. Whereas the early blooming plant's inability to synchronize with the warm-adapted ant leaves its populations clumped and patchy and its seedlings clustered around the parents in natural populations, when transplanted into the range of the cold-adapted ant, effective seed dispersal recovers. In contrast, the mutualism persists for the later blooming plant regardless of location because it sets seed later in spring when both warm- and cold-adapted ant species forage, resulting in effective seed dispersal. These results indicate that the climate response of species interactions, not just the species themselves, is integral in understanding ecological responses to a changing climate. Data linking phenological synchrony and dispersal are rare, and these results suggest a viable mechanism by which a species' range is limited more by biotic than abiotic interactions - despite the general assumption that biotic influences are buried within larger climate drivers. These results show that biotic partner can be as fundamental a niche requirement as abiotic

  20. The Interacting-Reflecting Training Exercise: Addressing the Therapist's Inner Conversation in Family Therapy Training

    ERIC Educational Resources Information Center

    Rober, Peter

    2010-01-01

    In recent years several authors have made a beginning in describing therapeutic conversations from a dialogical perspective. Training and supervision, however, have not yet been addressed from a dialogical perspective. In this article, an experiential training exercise is described that is focused on the basic dialogical skills of the trainee:…

  1. Species interactions and the structure of complex communication networks.

    PubMed

    Tobias, Joseph A; Planqué, Robert; Cram, Dominic L; Seddon, Nathalie

    2014-01-21

    A universal challenge faced by animal species is the need to communicate effectively against a backdrop of heterospecific signals. It is often assumed that this need results in signal divergence to minimize interference among community members, yet previous support for this idea is mixed, and few studies have tested the opposing hypothesis that interactions among competing species promote widespread convergence in signaling regimes. Using a null model approach to analyze acoustic signaling in 307 species of Amazonian birds, we show that closely related lineages signal together in time and space and that acoustic signals given in temporal or spatial proximity are more similar in design than expected by chance. These results challenge the view that multispecies choruses are structured by temporal, spatial, or acoustic partitioning and instead suggest that social communication between competing species can fundamentally organize signaling assemblages, leading to the opposite pattern of clustering in signals and signaling behavior.

  2. Species specificity in avian sperm:perivitelline interaction.

    PubMed

    Stewart, Sarah G; Bausek, Nina; Wohlrab, Franz; Schneider, Wolfgang J; Janet Horrocks, A; Wishart, Graham J

    2004-04-01

    The interaction of chicken spermatozoa with the inner perivitelline layer from different avian species in vitro during a 5 min co-incubation was measured as the number of points of hydrolysis produced per unit area of inner perivitelline layer. The average degree of interaction, as a proportion of that between chicken spermatozoa and their homologous inner perivitelline layer, was: equal to or greater than 100% within Galliformes (chicken, turkey, quail, pheasant, peafowl and guineafowl); 44% within Anseriformes (goose, duck); and less than 30% in Passeriformes (Zebra Finch) and Columbiformes (collared-dove). The homologue of the putative chicken sperm-binding proteins, chicken ZP1 and ZP3, were identified by Western blotting with anti-chicken ZP1/ZP3 antibody in the perivitelline layers of all species. The functional cross-reactivity between chicken spermatozoa and heterologous inner perivitelline layer appeared to be linked to known phylogenetic distance between the species, although it was not related to the relative affinity of the different ZP3 homologues for anti-chicken ZP3. This work demonstrates that sperm interaction with the egg investment does not represent such a stringent species-specific barrier in birds as it does in mammals and marine invertebrates. This may be a factor in the frequency of hybrid production in birds.

  3. Species specificity in avian sperm:perivitelline interaction.

    PubMed

    Stewart, Sarah G; Bausek, Nina; Wohlrab, Franz; Schneider, Wolfgang J; Janet Horrocks, A; Wishart, Graham J

    2004-04-01

    The interaction of chicken spermatozoa with the inner perivitelline layer from different avian species in vitro during a 5 min co-incubation was measured as the number of points of hydrolysis produced per unit area of inner perivitelline layer. The average degree of interaction, as a proportion of that between chicken spermatozoa and their homologous inner perivitelline layer, was: equal to or greater than 100% within Galliformes (chicken, turkey, quail, pheasant, peafowl and guineafowl); 44% within Anseriformes (goose, duck); and less than 30% in Passeriformes (Zebra Finch) and Columbiformes (collared-dove). The homologue of the putative chicken sperm-binding proteins, chicken ZP1 and ZP3, were identified by Western blotting with anti-chicken ZP1/ZP3 antibody in the perivitelline layers of all species. The functional cross-reactivity between chicken spermatozoa and heterologous inner perivitelline layer appeared to be linked to known phylogenetic distance between the species, although it was not related to the relative affinity of the different ZP3 homologues for anti-chicken ZP3. This work demonstrates that sperm interaction with the egg investment does not represent such a stringent species-specific barrier in birds as it does in mammals and marine invertebrates. This may be a factor in the frequency of hybrid production in birds. PMID:15123173

  4. Extreme stresses, niches, and positive species interactions along stress gradients.

    PubMed

    He, Qiang; Bertness, Mark D

    2014-06-01

    Since proposed two decades ago, the stress-gradient hypothesis (SGH), suggesting that species interactions shift from competition to facilitation with stress, has been widely examined. Despite broad support across species and ecosystems, ecologists debate whether the SGH applies to extreme environments, arguing that species interactions switch to competition or collapse under extreme stress. We show that facilitation often expands distributions on species borders. SGH exceptions occur when weak stress gradients or stresses outside of species' niches are examined, multiple stresses co-occur canceling out their effects, temporally dependent effects are involved, or results are improperly analyzed. We suggest that ecologists resolve debates by standardizing key SGH terms, such as fundamental and realized niche, stress gradients vs. environmental gradients, by quantitatively defining extreme stress, and by critically evaluating the functionality of stress gradients. We also suggest that new research examine the breadth and relevance of the SGH. More rigor needs to be applied to SGH tests to identify actual exceptions rather than those due to failures to meet its underlying assumptions, so that the general principles of the SGH and its exceptions can be incorporated into ecological theory, conservation strategies, and environmental change predictions. PMID:25039207

  5. Extreme stresses, niches, and positive species interactions along stress gradients.

    PubMed

    He, Qiang; Bertness, Mark D

    2014-06-01

    Since proposed two decades ago, the stress-gradient hypothesis (SGH), suggesting that species interactions shift from competition to facilitation with stress, has been widely examined. Despite broad support across species and ecosystems, ecologists debate whether the SGH applies to extreme environments, arguing that species interactions switch to competition or collapse under extreme stress. We show that facilitation often expands distributions on species borders. SGH exceptions occur when weak stress gradients or stresses outside of species' niches are examined, multiple stresses co-occur canceling out their effects, temporally dependent effects are involved, or results are improperly analyzed. We suggest that ecologists resolve debates by standardizing key SGH terms, such as fundamental and realized niche, stress gradients vs. environmental gradients, by quantitatively defining extreme stress, and by critically evaluating the functionality of stress gradients. We also suggest that new research examine the breadth and relevance of the SGH. More rigor needs to be applied to SGH tests to identify actual exceptions rather than those due to failures to meet its underlying assumptions, so that the general principles of the SGH and its exceptions can be incorporated into ecological theory, conservation strategies, and environmental change predictions.

  6. Applying the collective impact approach to address non-native species: A case study of the Great Lakes Phragmites Collaborative

    USGS Publications Warehouse

    Braun, H. B.; Kowalski, Kurt P.; Hollins, K.

    2016-01-01

    To address the invasion of non-native Phragmites in the Great Lakes, researchers at the U.S. Geological Survey—Great Lakes Science Center partnered with the Great Lakes Commission in 2012 to establish the Great Lakes Phragmites Collaborative (GLPC). The GLPC is a regional-scale partnership established to improve collaboration among stakeholders and increase the effectiveness of non-native Phragmites management and research. Rather than forming a traditional partnership with a narrowly defined goal, the GLPC follows the principles of collective impact to engage stakeholders, guide progress, and align resources to address this complex, regional challenge. In this paper, the concept and tenets of collective impact are described, the GLPC is offered as a model for other natural resource-focused collective impact efforts, and steps for establishing collaboratives are presented. Capitalizing on the interactive collective impact approach, the GLPC is moving toward a broadly accepted common agenda around which agencies and individuals will be able to better align their actions and generate measureable progress in the regional campaign to protect healthy, diverse ecosystems from damage caused by non-native Phragmites.

  7. Construction of analytically solvable models for interacting species. [biological species competition

    NASA Technical Reports Server (NTRS)

    Rosen, G.

    1976-01-01

    The basic form of a model representation for systems of n interacting biological species is a set of essentially nonlinear autonomous ordinary differential equations. A generic canonical expression for the rate functions in the equations is reported which permits the analytical general solution to be obtained by elementary computation. It is shown that a general analytical solution is directly obtainable for models where the rate functions are prescribed by the generic canonical expression from the outset. Some illustrative examples are given which demonstrate that the generic canonical expression can be used to construct analytically solvable models for two interacting species with limit-cycle dynamics as well as for a three-species interdependence.

  8. Designing Online Interaction to Address Disciplinary Competencies: A Cross-Country Comparison of Faculty Perspectives

    ERIC Educational Resources Information Center

    Barberà, Elena; Layne, Ludmila; Gunawardena, Charlotte N.

    2014-01-01

    This study was conducted at colleges in three countries (United States, Venezuela, and Spain) and across three academic disciplines (engineering, education, and business), to examine how experienced faculty define competencies for their discipline, and design instructional interaction for online courses. A qualitative research design employing…

  9. Global shifts towards positive species interactions with increasing environmental stress.

    PubMed

    He, Qiang; Bertness, Mark D; Altieri, Andrew H

    2013-05-01

    The study of positive species interactions is a rapidly evolving field in ecology. Despite decades of research, controversy has emerged as to whether positive and negative interactions predictably shift with increasing environmental stress as hypothesised by the stress-gradient hypothesis (SGH). Here, we provide a synthesis of 727 tests of the SGH in plant communities across the globe to examine its generality across a variety of ecological factors. Our results show that plant interactions change with stress through an outright shift to facilitation (survival) or a reduction in competition (growth and reproduction). In a limited number of cases, plant interactions do not respond to stress, but they never shift towards competition with stress. These findings are consistent across stress types, plant growth forms, life histories, origins (invasive vs. native), climates, ecosystems and methodologies, though the magnitude of the shifts towards facilitation with stress is dependent on these factors. We suggest that future studies should employ standardised definitions and protocols to test the SGH, take a multi-factorial approach that considers variables such as plant traits in addition to stress, and apply the SGH to better understand how species and communities will respond to environmental change.

  10. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes.

    PubMed

    Naujokaitis-Lewis, Ilona; Curtis, Janelle M R

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along

  11. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes.

    PubMed

    Naujokaitis-Lewis, Ilona; Curtis, Janelle M R

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along

  12. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes

    PubMed Central

    Curtis, Janelle M.R.

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along

  13. Hydraulic lift and tolerance to salinity of semiarid species: consequences for species interactions.

    PubMed

    Armas, Cristina; Padilla, Francisco M; Pugnaire, Francisco I; Jackson, Robert B

    2010-01-01

    The different abilities of plant species to use ephemeral or permanent water sources strongly affect physiological performance and species coexistence in water-limited ecosystems. In addition to withstanding drought, plants in coastal habitats often have to withstand highly saline soils, an additional ecological stress. Here we tested whether observed competitive abilities and C-water relations of two interacting shrub species from an arid coastal system were more related to differences in root architecture or salinity tolerance. We explored water sources of interacting Juniperus phoenicea Guss. and Pistacia lentiscus L. plants by conducting physiology measurements, including water relations, CO2 exchange, photochemical efficiency, sap osmolality, and water and C isotopes. We also conducted parallel soil analyses that included electrical conductivity, humidity, and water isotopes. During drought, Pistacia shrubs relied primarily on permanent salty groundwater, while isolated Juniperus plants took up the scarce and relatively fresh water stored in upper soil layers. As drought progressed further, the physiological activity of Juniperus plants nearly stopped while Pistacia plants were only slightly affected. Juniperus plants growing with Pistacia had stem-water isotopes that matched Pistacia, unlike values for isolated Juniperus plants. This result suggests that Pistacia shrubs supplied water to nearby Juniperus plants through hydraulic lift. This lifted water, however, did not appear to benefit Juniperus plants, as their physiological performance with co-occurring Pistacia plants was poor, including lower water potentials and rates of photosynthesis than isolated plants. Juniperus was more salt sensitive than Pistacia, which withstood salinity levels similar to that of groundwater. Overall, the different abilities of the two species to use salty water appear to drive the outcome of their interaction, resulting in asymmetric competition where Juniperus is negatively

  14. Hydraulic lift and tolerance to salinity of semiarid species: consequences for species interactions.

    PubMed

    Armas, Cristina; Padilla, Francisco M; Pugnaire, Francisco I; Jackson, Robert B

    2010-01-01

    The different abilities of plant species to use ephemeral or permanent water sources strongly affect physiological performance and species coexistence in water-limited ecosystems. In addition to withstanding drought, plants in coastal habitats often have to withstand highly saline soils, an additional ecological stress. Here we tested whether observed competitive abilities and C-water relations of two interacting shrub species from an arid coastal system were more related to differences in root architecture or salinity tolerance. We explored water sources of interacting Juniperus phoenicea Guss. and Pistacia lentiscus L. plants by conducting physiology measurements, including water relations, CO2 exchange, photochemical efficiency, sap osmolality, and water and C isotopes. We also conducted parallel soil analyses that included electrical conductivity, humidity, and water isotopes. During drought, Pistacia shrubs relied primarily on permanent salty groundwater, while isolated Juniperus plants took up the scarce and relatively fresh water stored in upper soil layers. As drought progressed further, the physiological activity of Juniperus plants nearly stopped while Pistacia plants were only slightly affected. Juniperus plants growing with Pistacia had stem-water isotopes that matched Pistacia, unlike values for isolated Juniperus plants. This result suggests that Pistacia shrubs supplied water to nearby Juniperus plants through hydraulic lift. This lifted water, however, did not appear to benefit Juniperus plants, as their physiological performance with co-occurring Pistacia plants was poor, including lower water potentials and rates of photosynthesis than isolated plants. Juniperus was more salt sensitive than Pistacia, which withstood salinity levels similar to that of groundwater. Overall, the different abilities of the two species to use salty water appear to drive the outcome of their interaction, resulting in asymmetric competition where Juniperus is negatively

  15. Making a Bad Situation Worse: An Invasive Species Altering the Balance of Interactions between Local Species

    PubMed Central

    2016-01-01

    Biological invasions pose a significant threat to biodiversity, especially on oceanic islands. One of the primary explanations for the success of plant invaders is direct suppression of competitors. However, indirect interactions can also be important, although they are often overlooked in studies on biological invasion. The shrub Leucaena leucocephala is a widespread island invader with putative allelopathic effects on the germination and growth of other species. We quantified the impact of Leucaena on plant communities richness on an oceanic Brazilian island and, through nursery experiments, investigated the potential for allelopathic effects on the germination of Erythrina velutina, a native species that is often absent from stands of Leucaena. Additionally, in a manipulative field experiment, we examined the direct and indirect effects (mediated by the native species Capparis flexuosa) of the invader on the development of Erythrina. The species richness in invaded sites was lower than in uninvaded sites, and Capparis was the only native species that was frequently present in invaded sites. In the nursery experiments, we found no evidence that Leucaena affects the germination of Erythrina. In the field experiments, the odds of Erythrina germination were lower in the presence of Leucaena litter, but higher in the presence of Leucaena trees. However, the survival and growth of Erythrina were considerably inhibited by the presence of Leucaena trees. The isolated effect of native Capparis on the germination and growth of Erythrina varied from positive to neutral. However, when Capparis and Leucaena were both present, their combined negative effects on Erythrina were worse than the effect of Leucaena alone, which may be attributed to indirect effects. This study provides the first empirical evidence that the balance of the interactions between native species can shift from neutral/positive to negative in the presence of an exotic species. PMID:27010846

  16. Making a Bad Situation Worse: An Invasive Species Altering the Balance of Interactions between Local Species.

    PubMed

    Mello, Thayná Jeremias; Oliveira, Alexandre Adalardo de

    2016-01-01

    Biological invasions pose a significant threat to biodiversity, especially on oceanic islands. One of the primary explanations for the success of plant invaders is direct suppression of competitors. However, indirect interactions can also be important, although they are often overlooked in studies on biological invasion. The shrub Leucaena leucocephala is a widespread island invader with putative allelopathic effects on the germination and growth of other species. We quantified the impact of Leucaena on plant communities richness on an oceanic Brazilian island and, through nursery experiments, investigated the potential for allelopathic effects on the germination of Erythrina velutina, a native species that is often absent from stands of Leucaena. Additionally, in a manipulative field experiment, we examined the direct and indirect effects (mediated by the native species Capparis flexuosa) of the invader on the development of Erythrina. The species richness in invaded sites was lower than in uninvaded sites, and Capparis was the only native species that was frequently present in invaded sites. In the nursery experiments, we found no evidence that Leucaena affects the germination of Erythrina. In the field experiments, the odds of Erythrina germination were lower in the presence of Leucaena litter, but higher in the presence of Leucaena trees. However, the survival and growth of Erythrina were considerably inhibited by the presence of Leucaena trees. The isolated effect of native Capparis on the germination and growth of Erythrina varied from positive to neutral. However, when Capparis and Leucaena were both present, their combined negative effects on Erythrina were worse than the effect of Leucaena alone, which may be attributed to indirect effects. This study provides the first empirical evidence that the balance of the interactions between native species can shift from neutral/positive to negative in the presence of an exotic species. PMID:27010846

  17. Making a Bad Situation Worse: An Invasive Species Altering the Balance of Interactions between Local Species.

    PubMed

    Mello, Thayná Jeremias; Oliveira, Alexandre Adalardo de

    2016-01-01

    Biological invasions pose a significant threat to biodiversity, especially on oceanic islands. One of the primary explanations for the success of plant invaders is direct suppression of competitors. However, indirect interactions can also be important, although they are often overlooked in studies on biological invasion. The shrub Leucaena leucocephala is a widespread island invader with putative allelopathic effects on the germination and growth of other species. We quantified the impact of Leucaena on plant communities richness on an oceanic Brazilian island and, through nursery experiments, investigated the potential for allelopathic effects on the germination of Erythrina velutina, a native species that is often absent from stands of Leucaena. Additionally, in a manipulative field experiment, we examined the direct and indirect effects (mediated by the native species Capparis flexuosa) of the invader on the development of Erythrina. The species richness in invaded sites was lower than in uninvaded sites, and Capparis was the only native species that was frequently present in invaded sites. In the nursery experiments, we found no evidence that Leucaena affects the germination of Erythrina. In the field experiments, the odds of Erythrina germination were lower in the presence of Leucaena litter, but higher in the presence of Leucaena trees. However, the survival and growth of Erythrina were considerably inhibited by the presence of Leucaena trees. The isolated effect of native Capparis on the germination and growth of Erythrina varied from positive to neutral. However, when Capparis and Leucaena were both present, their combined negative effects on Erythrina were worse than the effect of Leucaena alone, which may be attributed to indirect effects. This study provides the first empirical evidence that the balance of the interactions between native species can shift from neutral/positive to negative in the presence of an exotic species.

  18. James Clerk Maxwell Prize Address: High Intensity Laser Propagation and Interactions

    NASA Astrophysics Data System (ADS)

    Sprangle, Phillip

    2013-10-01

    High intensity laser radiation sources cover a wide range of parameters, e.g., peak powers from tera to peta watts, pulse lengths from pico to femto seconds, repetition rates ranging from kilo to mega hertz and average powers of many tens of watts. This talk will cover, among other things, some of the unique physical processes which result when high intensity laser radiation interacts with gases and plasmas. One of the interesting topics to be discussed is the propagation of these laser pulses in a turbulent atmosphere which results in a multitude of coupled linear and nonlinear processes including filamentation and scintillation. Phase conjugation techniques to reduce the effects of atmospheric turbulence (scintillation) will be described. This talk will also discuss a range of potential applications of these high intensity lasers, including: electron acceleration in spatially periodic and tapered plasma channels, detection of radioactive material using electromagnetic signatures, atmospheric lasing of N2 molecules, as well as incoherent and coherent x-ray generation mechanisms. Research supported by NRL, ONR and UMD.

  19. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling

    PubMed Central

    Wisz, Mary Susanne; Pottier, Julien; Kissling, W Daniel; Pellissier, Loïc; Lenoir, Jonathan; Damgaard, Christian F; Dormann, Carsten F; Forchhammer, Mads C; Grytnes, John-Arvid; Guisan, Antoine; Heikkinen, Risto K; Høye, Toke T; Kühn, Ingolf; Luoto, Miska; Maiorano, Luigi; Nilsson, Marie-Charlotte; Normand, Signe; Öckinger, Erik; Schmidt, Niels M; Termansen, Mette; Timmermann, Allan; Wardle, David A; Aastrup, Peter; Svenning, Jens-Christian

    2013-01-01

    Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km2 to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally

  20. Species interactions-area relationships: biological invasions and network structure in relation to island area.

    PubMed

    Sugiura, Shinji

    2010-06-22

    The relationship between species number and island area is a fundamental rule in ecology. However, the extent to which interactions with exotic species and how the structure of species interactions is related to island area remain unexplored. Here, I document the relationship between island area and (i) interactions with exotic species and (ii) network structure of species interactions in the context of mutualistic interactions between ants and extrafloral nectary-bearing plants on the oceanic Ogasawara (Bonin) Islands, Japan. Pooled data contained 122 interactions among 19 plant (including five exotic) and 23 ant (including 20 exotic) species. Of the observed interactions, 82.8 per cent involved at least one exotic species, ranging from 68.2 to 86.4 per cent among islands. The number of links including exotic species increased in proportion to island area, although the number of links excluding exotic species did not. These results indicate that the number of interactions with exotic species increased in proportion to island area. Connectance, or the proportion of interactions actually observed among all possible interactions, decreased with island area. Nestedness, an asymmetry index in the species interaction network, also decreased with island area. Therefore, island area affects both the number of interactions with exotic species and the network structure.

  1. Yakima River Species Interactions Studies Annual Report FY 1992.

    SciTech Connect

    Pearsons, Todd N.

    1993-08-01

    The Yakima Species Interactions Study (YSIS) was begun in September of 1989 to investigate species interactions among fish in response to proposed supplementation of salmon and steelhead in the Yakima Basin. Supplementation is defined as ''the use of artificial propagation in the attempt to maintain or increase natural production while maintaining the long term fitness of the target population, and keeping the ecological and genetic impacts on non-target populations within specified biological limits'' (BPA summary report series, 1992). Target populations are the populations of fish that will be supplemented and non-target populations are all other populations of fish. One of the goals of the proposed Yakima Fisheries Project (YFP) is to test the strategy of supplementation in the Yakima Basin. In a review of published literature and unpublished projects about supplementation, Miller et al. (1990) concluded ''Adverse impacts to wild stocks have been shown or postulated for about every type of hatchery fish introduction where the intent was to rebuild runs''. In Steward and Bjornn's (1990) review of the published literature, they stated that ''Genetic and ecological effects, and changes in productivity of the native stocks that can result from supplementation remain largely unmeasured''. Uncertainties about the effects supplementation in the upper Yakima basin may have on wild fish was the impetus for the initiation of the present studies. The YSIS has three main goals which are to: evaluate risks of ecological interactions to target and non-target populations (resolve critical uncertainties), contribute to the development of an interactions monitoring plan, and provide information that may be used to increase the probability that natural production of anadromous salmonids may be successfully increased. Information obtained will be used as the YFP planning process proceeds (adaptive management). A monitoring plan is being developed which will incorporate data

  2. Can Species Interaction Provide New Insight into Biomineralization Processes?

    NASA Astrophysics Data System (ADS)

    Oppelt, A. L. H.; Rocha, C. S.

    2014-12-01

    With ongoing ocean acidification the changes in carbonate ion concentrations and consequent shoaling of the aragonite saturation horizon will be felt earlier in deep-sea ecosystems. Cold-water coral (CWC) colonies and their ecosystem dynamics thus offer a perfect opportunity for learning more about factors controlling deep-sea biomineralization. Our research aims to combine classical views of coral calcification with variability caused by species interaction in order to reveal impacts on skeletal formation in cold-water coral ecosystems. Symbiotic relationships, e.g. with polychaetes, offer great possibilities for studying the different intrinsic and extrinsic influences on biomineralization in CWCs. While the biological aspects of such interactions have been investigated to some extent, the processes of biomineralization which are involved in the aragonite precipitation are still largely unexplored. Our results from multi-proxy studies including high resolution mapping of different trace and minor element compositions highlight variations in growth rates, metabolic activity and precipitation patterns during calcification. The results will be discussed in light of nutrient availability, possible seasonality, and potential for pH reconstruction.

  3. Addressing key concepts in physical geography through interactive learning activities in an online geo-ICT environment

    NASA Astrophysics Data System (ADS)

    Verstraeten, Gert; Steegen, An; Martens, Lotte

    2016-04-01

    The increasing number of geospatial datasets and free online geo-ICT tools offers new opportunities for education in Earth Sciences. Geospatial technology indeed provides an environment through which interactive learning can be introduced in Earth Sciences curricula. However, the effectiveness of such e-learning approaches in terms of learning outcomes has rarely been addressed. Here, we present our experience with the implementation of digital interactive learning activities within an introductory Physical Geography course attended by 90 undergraduate students in Geography, Geology, Biology and Archaeology. Two traditional lectures were replaced by interactive sessions (each 2 h) in a flexible classroom where students had to work both in team and individually in order to explore some key concepts through the integrated use of geospatial data within Google EarthTM. A first interactive lesson dealt with the classification of river systems and aimed to examine the conditions under which rivers tend to meander or to develop a braided pattern. Students were required to collect properties of rivers (river channel pattern, channel slope, climate, discharge, lithology, vegetation, etc). All these data are available on a global scale and have been added as separate map layers in Google EarthTM. Each student collected data for at least two rivers and added this information to a Google Drive Spreadsheet accessible to the entire group. This resulted in a database of more than one hundred rivers spread over various environments worldwide. In a second phase small groups of students discussed the potential relationships between river channel pattern and its controlling factors. Afterwards, the findings of each discussion group were presented to the entire audience. The same set-up was followed in a second interactive session to explore spatial variations in ecosystem properties such as net primary production and soil carbon content. The qualitative evaluation of both interactive

  4. Node-by-node disassembly of a mutualistic interaction web driven by species introductions

    PubMed Central

    Rodriguez-Cabal, Mariano A.; Barrios-Garcia, M. Noelia; Amico, Guillermo C.; Aizen, Marcelo A.; Sanders, Nathan J.

    2013-01-01

    Interaction webs summarize the diverse interactions among species in communities. The addition or loss of particular species and the alteration of key interactions can lead to the disassembly of the entire interaction web, although the nontrophic effects of species loss on interaction webs are poorly understood. We took advantage of ongoing invasions by a suite of exotic species to examine their impact in terms of the disassembly of an interaction web in Patagonia, Argentina. We found that the reduction of one species (a host of a keystone mistletoe species) resulted in diverse indirect effects that led to the disassembly of an interaction web through the loss of the mistletoe, two key seed-dispersers (a marsupial and a bird), and a pollinator (hummingbird). Our results demonstrate that the gains and losses of species are both consequences and drivers of global change that can lead to underappreciated cascading coextinctions through the disruption of mutualisms. PMID:24067653

  5. Changing Names with Changed Address: Integrated Taxonomy and Species Delimitation in the Holarctic Colymbetes paykulli Group (Coleoptera: Dytiscidae).

    PubMed

    Drotz, Marcus K; Brodin, Tomas; Nilsson, Anders N

    2015-01-01

    Species delimitation of geographically isolated forms is a long-standing problem in less studied insect groups. Often taxonomic decisions are based directly on morphologic variation, and lack a discussion regarding sample size and the efficiency of migration barriers or dispersal/migration capacity of the studied species. These problems are here exemplified in a water beetle complex from the Bering Sea region that separates North America from Eurasia. Only a few sampled specimens occur from this particular area and they are mostly found in museum and private collections. Here we utilize the theory of integrated taxonomy to discuss the speciation of the Holarctic Colymbetes paykulli water beetle complex, which historically has included up to five species of which today only two are recognized. Three delimitation methods are used; landmark based morphometry of body shape, variation in reticulation patterns of the pronotum exo-skeleton and sequence variation of the partial mitochondrial gene Cyt b. Our conclusion is that the Palearctic and Nearctic populations of C. paykulli are given the status of separate species, based on the fact that all methods showed significant separation between populations. As a consequence the name of the Palearctic species is C. paykulli Erichson and the Nearctic species should be known as C. longulus LeConte. There is no clear support for delineation between Palearctic and Nearctic populations of C. dahuricus based on mtDNA. However, significant difference in size and reticulation patterns from the two regions is shown. The combined conclusion is that the C. dahuricus complex needs a more thorough investigation to fully disentangle its taxonomic status. Therefore it is here still regarded as a Holarctic species. This study highlights the importance to study several diagnosable characters that has the potential to discriminate evolutionary lineage during speciation. PMID:26619278

  6. Changing Names with Changed Address: Integrated Taxonomy and Species Delimitation in the Holarctic Colymbetes paykulli Group (Coleoptera: Dytiscidae)

    PubMed Central

    Drotz, Marcus K.; Brodin, Tomas; Nilsson, Anders N.

    2015-01-01

    Species delimitation of geographically isolated forms is a long-standing problem in less studied insect groups. Often taxonomic decisions are based directly on morphologic variation, and lack a discussion regarding sample size and the efficiency of migration barriers or dispersal/migration capacity of the studied species. These problems are here exemplified in a water beetle complex from the Bering Sea region that separates North America from Eurasia. Only a few sampled specimens occur from this particular area and they are mostly found in museum and private collections. Here we utilize the theory of integrated taxonomy to discuss the speciation of the Holarctic Colymbetes paykulli water beetle complex, which historically has included up to five species of which today only two are recognized. Three delimitation methods are used; landmark based morphometry of body shape, variation in reticulation patterns of the pronotum exo-skeleton and sequence variation of the partial mitochondrial gene Cyt b. Our conclusion is that the Palearctic and Nearctic populations of C. paykulli are given the status of separate species, based on the fact that all methods showed significant separation between populations. As a consequence the name of the Palearctic species is C. paykulli Erichson and the Nearctic species should be known as C. longulus LeConte. There is no clear support for delineation between Palearctic and Nearctic populations of C. dahuricus based on mtDNA. However, significant difference in size and reticulation patterns from the two regions is shown. The combined conclusion is that the C. dahuricus complex needs a more thorough investigation to fully disentangle its taxonomic status. Therefore it is here still regarded as a Holarctic species. This study highlights the importance to study several diagnosable characters that has the potential to discriminate evolutionary lineage during speciation. PMID:26619278

  7. Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS): A web-based tool for addressing the challenges of cross-species extrapolation of chemical toxicity

    EPA Science Inventory

    Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to simplify, streamline, and quantitat...

  8. Complexity of multitrophic interactions in a grassland ecosystem depends on plant species diversity.

    PubMed

    Rzanny, Michael; Voigt, Winfried

    2012-05-01

    1. We studied the theoretical prediction that a loss of plant species richness has a strong impact on community interactions among all trophic levels and tested whether decreased plant species diversity results in a less complex structure and reduced interactions in ecological networks. 2. Using plant species-specific biomass and arthropod abundance data from experimental grassland plots (Jena Experiment), we constructed multitrophic functional group interaction webs to compare communities based on 4 and 16 plant species. 427 insect and spider species were classified into 13 functional groups. These functional groups represent the nodes of ecological networks. Direct and indirect interactions among them were assessed using partial Mantel tests. Interaction web complexity was quantified using three measures of network structure: connectance, interaction diversity and interaction strength. 3. Compared with high plant diversity plots, interaction webs based on low plant diversity plots showed reduced complexity in terms of total connectance, interaction diversity and mean interaction strength. Plant diversity effects obviously cascade up the food web and modify interactions across all trophic levels. The strongest effects occurred in interactions between adjacent trophic levels (i.e. predominantly trophic interactions), while significant interactions among plant and carnivore functional groups, as well as horizontal interactions (i.e. interactions between functional groups of the same trophic level), showed rather inconsistent responses and were generally rarer. 4. Reduced interaction diversity has the potential to decrease and destabilize ecosystem processes. Therefore, we conclude that the loss of basal producer species leads to more simple structured, less and more loosely connected species assemblages, which in turn are very likely to decrease ecosystem functioning, community robustness and tolerance to disturbance. Our results suggest that the functioning

  9. Optimal regeneration planning for old-growth forest: addressing scientific uncertainty in endangered species recovery through adaptive management

    USGS Publications Warehouse

    Moore, C.T.; Conroy, M.J.

    2006-01-01

    Stochastic and structural uncertainties about forest dynamics present challenges in the management of ephemeral habitat conditions for endangered forest species. Maintaining critical foraging and breeding habitat for the endangered red-cockaded woodpecker (Picoides borealis) requires an uninterrupted supply of old-growth forest. We constructed and optimized a dynamic forest growth model for the Piedmont National Wildlife Refuge (Georgia, USA) with the objective of perpetuating a maximum stream of old-growth forest habitat. Our model accommodates stochastic disturbances and hardwood succession rates, and uncertainty about model structure. We produced a regeneration policy that was indexed by current forest state and by current weight of evidence among alternative model forms. We used adaptive stochastic dynamic programming, which anticipates that model probabilities, as well as forest states, may change through time, with consequent evolution of the optimal decision for any given forest state. In light of considerable uncertainty about forest dynamics, we analyzed a set of competing models incorporating extreme, but plausible, parameter values. Under any of these models, forest silviculture practices currently recommended for the creation of woodpecker habitat are suboptimal. We endorse fully adaptive approaches to the management of endangered species habitats in which predictive modeling, monitoring, and assessment are tightly linked.

  10. SPECIES INTERACTIONS BETWEEN ESTUARINE DETRITIVORES: INHIBITION OR FACILITATION?

    EPA Science Inventory

    Native Hawaiian estuarine detritivores; the prawn Macrobrachium grandimanus, and the neritid gastropod Neritina vespertina, were maintained in flow-through microcosms with conditioned leaves from two riparian tree species, Hau (Hibiscus tiliaceus) and guava (Psidium guajava). Th...

  11. Daily Temperature Fluctuations Alter Interactions between Closely Related Species of Marine Nematodes.

    PubMed

    De Meester, Nele; Dos Santos, Giovanni A P; Rigaux, Annelien; Valdes, Yirina; Derycke, Sofie; Moens, Tom

    2015-01-01

    In addition to an increase in mean temperature, climate change models predict decreasing amplitudes of daily temperature fluctuations. In temperate regions, where daily and seasonal fluctuations are prominent, such decreases in daily temperature fluctuations can have a pronounced effect on the fitness of species and on the outcome of species interactions. In this study, the effect of a temperature regime with daily fluctuations versus a constant temperature on the fitness and interspecific interactions of three cryptic species of the marine nematode species complex of Litoditis marina (Pm I, Pm III and Pm IV) were investigated. In a lab experiment, different combinations of species (monospecific treatment: Pm I and Pm IV and Pm III alone; two-species treatment: Pm I + Pm IV; three-species treatment: Pm I + Pm IV + Pm III) were subjected to two different temperature regimes: one constant and one fluctuating temperature. Our results showed that fluctuating temperature had minor or no effects on the population fitness of the three species in monocultures. In contrast, interspecific interactions clearly influenced the fitness of all three species, both positively and negatively. Temperature regime did have a substantial effect on the interactions between the species. In the two-species treatment, temperature regime altered the interaction from a sort of mutualism to commensalism. In addition, the strength of the interspecific interactions changed depending on the temperature regime in the three-species treatment. This experiment confirms that interactions between the species can change depending on the abiotic environment; these results show that it is important to incorporate the effect of fluctuations on interspecific interactions to predict the effect of climate change on biodiversity. PMID:26147103

  12. Daily Temperature Fluctuations Alter Interactions between Closely Related Species of Marine Nematodes

    PubMed Central

    De Meester, Nele; Dos Santos, Giovanni A. P.; Rigaux, Annelien; Valdes, Yirina; Derycke, Sofie; Moens, Tom

    2015-01-01

    In addition to an increase in mean temperature, climate change models predict decreasing amplitudes of daily temperature fluctuations. In temperate regions, where daily and seasonal fluctuations are prominent, such decreases in daily temperature fluctuations can have a pronounced effect on the fitness of species and on the outcome of species interactions. In this study, the effect of a temperature regime with daily fluctuations versus a constant temperature on the fitness and interspecific interactions of three cryptic species of the marine nematode species complex of Litoditis marina (Pm I, Pm III and Pm IV) were investigated. In a lab experiment, different combinations of species (monospecific treatment: Pm I and Pm IV and Pm III alone; two-species treatment: Pm I + Pm IV; three-species treatment: Pm I + Pm IV + Pm III) were subjected to two different temperature regimes: one constant and one fluctuating temperature. Our results showed that fluctuating temperature had minor or no effects on the population fitness of the three species in monocultures. In contrast, interspecific interactions clearly influenced the fitness of all three species, both positively and negatively. Temperature regime did have a substantial effect on the interactions between the species. In the two-species treatment, temperature regime altered the interaction from a sort of mutualism to commensalism. In addition, the strength of the interspecific interactions changed depending on the temperature regime in the three-species treatment. This experiment confirms that interactions between the species can change depending on the abiotic environment; these results show that it is important to incorporate the effect of fluctuations on interspecific interactions to predict the effect of climate change on biodiversity. PMID:26147103

  13. Addressing Potential Cumulative Impacts of Development on Threatened Species: The Case of the Endangered Black-Throated Finch.

    PubMed

    Vanderduys, Eric Peter; Reside, April E; Grice, Anthony; Rechetelo, Juliana

    2016-01-01

    Where threatened biodiversity is adversely affected by development, policies often state that "no net loss" should be the goal and biodiversity offsetting is one mechanism available to achieve this. However, developments are often approved on an ad hoc basis and cumulative impacts are not sufficiently examined. We demonstrate the potential for serious threat to an endangered subspecies when multiple developments are planned. We modelled the distribution of the black-throated finch (Poephila cincta cincta) using bioclimatic data and Queensland's Regional Ecosystem classification. We overlaid granted, extant extractive and exploratory mining tenures within the known and modelled ranges of black-throated finches to examine the level of incipient threat to this subspecies in central Queensland, Australia. Our models indicate that more than half of the remaining P. cincta cincta habitat is currently under extractive or exploratory tenure. Therefore, insufficient habitat exists to offset all potential development so "no net loss" is not possible. This has implications for future conservation of this and similarly distributed species and for resource development planning, especially the use of legislated offsets for biodiversity protection. PMID:26934622

  14. Addressing Potential Cumulative Impacts of Development on Threatened Species: The Case of the Endangered Black-Throated Finch

    PubMed Central

    Vanderduys, Eric Peter; Reside, April E.; Grice, Anthony; Rechetelo, Juliana

    2016-01-01

    Where threatened biodiversity is adversely affected by development, policies often state that "no net loss" should be the goal and biodiversity offsetting is one mechanism available to achieve this. However, developments are often approved on an ad hoc basis and cumulative impacts are not sufficiently examined. We demonstrate the potential for serious threat to an endangered subspecies when multiple developments are planned. We modelled the distribution of the black-throated finch (Poephila cincta cincta) using bioclimatic data and Queensland's Regional Ecosystem classification. We overlaid granted, extant extractive and exploratory mining tenures within the known and modelled ranges of black-throated finches to examine the level of incipient threat to this subspecies in central Queensland, Australia. Our models indicate that more than half of the remaining P. cincta cincta habitat is currently under extractive or exploratory tenure. Therefore, insufficient habitat exists to offset all potential development so "no net loss" is not possible. This has implications for future conservation of this and similarly distributed species and for resource development planning, especially the use of legislated offsets for biodiversity protection. PMID:26934622

  15. Addressing Potential Cumulative Impacts of Development on Threatened Species: The Case of the Endangered Black-Throated Finch.

    PubMed

    Vanderduys, Eric Peter; Reside, April E; Grice, Anthony; Rechetelo, Juliana

    2016-01-01

    Where threatened biodiversity is adversely affected by development, policies often state that "no net loss" should be the goal and biodiversity offsetting is one mechanism available to achieve this. However, developments are often approved on an ad hoc basis and cumulative impacts are not sufficiently examined. We demonstrate the potential for serious threat to an endangered subspecies when multiple developments are planned. We modelled the distribution of the black-throated finch (Poephila cincta cincta) using bioclimatic data and Queensland's Regional Ecosystem classification. We overlaid granted, extant extractive and exploratory mining tenures within the known and modelled ranges of black-throated finches to examine the level of incipient threat to this subspecies in central Queensland, Australia. Our models indicate that more than half of the remaining P. cincta cincta habitat is currently under extractive or exploratory tenure. Therefore, insufficient habitat exists to offset all potential development so "no net loss" is not possible. This has implications for future conservation of this and similarly distributed species and for resource development planning, especially the use of legislated offsets for biodiversity protection.

  16. Effects of Time Delay on Three Interacting Species System with Noise

    NASA Astrophysics Data System (ADS)

    Su, Yi-Jian; Mei, Dong-Cheng

    2008-09-01

    We study the effects of time delay in three interacting species system with noise. The time evolution and spatiotemporal pattern in the Lotka-Volterra model of three interacting species with noise and time delay were investigated by means of stochastic simulation. Our results indicate that: (i) Time delay induces the synchronously periodic oscillations of the three species densities; (ii) Time delay cause the spatiotemporal pattern to be concentrated.

  17. Resource-dependent attenuation of species interactions during bacterial succession

    PubMed Central

    Rivett, Damian W; Scheuerl, Thomas; Culbert, Christopher T; Mombrikotb, Shorok B; Johnstone, Emma; Barraclough, Timothy G; Bell, Thomas

    2016-01-01

    Bacterial communities are vital for many economically and ecologically important processes. The role of bacterial community composition in determining ecosystem functioning depends critically on interactions among bacterial taxa. Several studies have shown that, despite a predominance of negative interactions in communities, bacteria are able to display positive interactions given the appropriate evolutionary or ecological conditions. We were interested in how interspecific interactions develop over time in a naturalistic setting of low resource supply rates. We assembled aquatic bacterial communities in microcosms and assayed the productivity (respiration and growth) and substrate degradation while tracking community composition. The results demonstrated that while bacterial communities displayed strongly negative interactions during the early phase of colonisation and acclimatisation to novel biotic and abiotic factors, this antagonism declined over time towards a more neutral state. This was associated with a shift from use of labile substrates in early succession to use of recalcitrant substrates later in succession, confirming a crucial role of resource dynamics in linking interspecific interactions with ecosystem functioning. PMID:26894447

  18. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species' traits and environment

    PubMed Central

    Pyšek, Petr; Jarošík, Vojtěch; Hulme, Philip E; Pergl, Jan; Hejda, Martin; Schaffner, Urs; Vilà, Montserrat

    2012-01-01

    With the growing body of literature assessing the impact of invasive alien plants on resident species and ecosystems, a comprehensive assessment of the relationship between invasive species traits and environmental settings of invasion on the characteristics of impacts is needed. Based on 287 publications with 1551 individual cases that addressed the impact of 167 invasive plant species belonging to 49 families, we present the first global overview of frequencies of significant and non-significant ecological impacts and their directions on 15 outcomes related to the responses of resident populations, species, communities and ecosystems. Species and community outcomes tend to decline following invasions, especially those for plants, but the abundance and richness of the soil biota, as well as concentrations of soil nutrients and water, more often increase than decrease following invasion. Data mining tools revealed that invasive plants exert consistent significant impacts on some outcomes (survival of resident biota, activity of resident animals, resident community productivity, mineral and nutrient content in plant tissues, and fire frequency and intensity), whereas for outcomes at the community level, such as species richness, diversity and soil resources, the significance of impacts is determined by interactions between species traits and the biome invaded. The latter outcomes are most likely to be impacted by annual grasses, and by wind pollinated trees invading mediterranean or tropical biomes. One of the clearest signals in this analysis is that invasive plants are far more likely to cause significant impacts on resident plant and animal richness on islands rather than mainland. This study shows that there is no universal measure of impact and the pattern observed depends on the ecological measure examined. Although impact is strongly context dependent, some species traits, especially life form, stature and pollination syndrome, may provide a means to predict

  19. Adipose dysfunction, interaction of reactive oxygen species, and inflammation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This American Society for Nutrition sponsored symposium summary contains information about the symposium focus and the general content of speaker presentation. The focus of the symposium was to delineate the significance of obesity-associated reactive oxygen species (ROS), inflammation, and adipose ...

  20. Indirect interactions among tropical tree species through shared rodent seed predators: a novel mechanism of tree species coexistence.

    PubMed

    Garzon-Lopez, Carol X; Ballesteros-Mejia, Liliana; Ordoñez, Alejandro; Bohlman, Stephanie A; Olff, Han; Jansen, Patrick A

    2015-08-01

    The coexistence of numerous tree species in tropical forests is commonly explained by negative dependence of recruitment on the conspecific seed and tree density due to specialist natural enemies that attack seeds and seedlings ('Janzen-Connell' effects). Less known is whether guilds of shared seed predators can induce a negative dependence of recruitment on the density of different species of the same plant functional group. We studied 54 plots in tropical forest on Barro Colorado Island, Panama, with contrasting mature tree densities of three coexisting large seeded tree species with shared seed predators. Levels of seed predation were far better explained by incorporating seed densities of all three focal species than by conspecific seed density alone. Both positive and negative density dependencies were observed for different species combinations. Thus, indirect interactions via shared seed predators can either promote or reduce the coexistence of different plant functional groups in tropical forest.

  1. Host-Parasite Interactions in Some Fish Species

    PubMed Central

    Khan, R. A.

    2012-01-01

    Host-parasite interactions are complex, compounded by factors that are capable of shifting the balance in either direction. The host's age, behaviour, immunological status, and environmental change can affect the association that is beneficial to the host whereas evasion of the host's immune response favours the parasite. In fish, some infections that induce mortality are age and temperature dependent. Environmental change, especially habitat degradation by anthropogenic pollutants and oceanographic alterations induced by climatic, can influence parasitic-host interaction. The outcome of these associations will hinge on susceptibility and resistance. PMID:22900144

  2. Habitat interaction between two species of chipmunk in the Basin and Range Province of Nevada

    USGS Publications Warehouse

    Lowrey, Christopher; Longshore, Kathleen

    2013-01-01

    Interspecies interactions can affect how species are distributed, put constraints on habitat expansion, and reduce the fundamental niche of the affected species. Using logistic regression, we analyzed and compared 174 Tamias palmeri and 94 Tamias panamintinus within an isolated mountain range of the Basin and Range Province of southern Nevada. Tamias panamintinus was more likely to use pinyon/ponderosa/fir mixed forests than pinyon alone, compared to random sites. In the presence of T palmeri, however, interaction analyses indicated T. panamintinus was less likely to occupy the mixed forests and more likely near large rocks on southern aspects. This specie s-by-habitat interaction data suggest that T. palmeri excludes T panamintinus from areas of potentially suitable habitat. Climate change may adversely affect species of restricted distribution. Habitat isolation and species interactions in this region may thus increase survival risks as climate temperatures rise.

  3. Cultural Nuances, Assumptions, and the Butterfly Effect: Addressing the Unpredictability Caused by Unconscious Values Structures in Cross-Cultural Interactions

    ERIC Educational Resources Information Center

    Remer, Rory

    2007-01-01

    Cultural values, cross-cultural interaction patterns that are produced by dynamical (chaotic) systems, have a significant impact on interaction, particularly among and between people from different cultures. The butterfly effect, which states that small differences in initial conditions may have severe consequences for patterns in the long run,…

  4. Nominal Address and Rapport Management in Informal Interactions among University Students in Quito (Ecuador), Santiago (Chile) and Seville (Spain)

    ERIC Educational Resources Information Center

    Placencia, María Elena; Fuentes Rodríguez, Catalina; Palma-Fahey, María

    2015-01-01

    Nominal and pronominal address forms, which play a central role in the construction of interpersonal relations (cf. Bargiela et al. 2002; Clyne et al. 2009), have been the focus of attention in different linguistics subfields for several decades now. Less attention, however, has been paid to these forms from a variational pragmatics (Schneider and…

  5. Insights into the Interactions between Educational Messages: Looking across Multiple Organizations Addressing Water Issues in Maricopa County, Arizona

    ERIC Educational Resources Information Center

    Cutts, Bethany; Saltz, Charlene; Elser, Monica

    2008-01-01

    The public receives environmental information from a variety of sources. Evaluation of a single program or one organization's effort is incomplete. Through surveys and interviews, we evaluate the cumulative impact of outreach by 20 water-related organizations in Maricopa County, Arizona. Household water conservation is a topic addressed by 18…

  6. Species richness and interacting factors control invasibility of a marine community.

    PubMed

    Marraffini, M L; Geller, J B

    2015-08-01

    Anthropogenic vectors have moved marine species around the world leading to increased invasions and expanded species' ranges. The biotic resistance hypothesis of Elton (in The ecology of invasions by animals and plants, 1958) predicts that more diverse communities should have greater resistance to invasions, but experiments have been equivocal. We hypothesized that species richness interacts with other factors to determine experimental outcomes. We manipulated species richness, species composition (native and introduced) and availability of bare space in invertebrate assemblages in a marina in Monterey, CA. Increased species richness significantly interacted with both initial cover of native species and of all organisms to collectively decrease recruitment. Although native species decreased recruitment, introduced species had a similar effect, and we concluded that biotic resistance is conferred by total species richness. We suggest that contradictory conclusions in previous studies about the role of diversity in regulating invasions reflect uncontrolled variables in those experiments that modified the effect of species richness. Our results suggest that patches of low diversity and abundance may facilitate invasions, and that such patches, once colonized by non-indigenous species, can resist both native and non-indigenous species recruitment.

  7. Species richness and interacting factors control invasibility of a marine community

    PubMed Central

    Marraffini, M. L.; Geller, J. B.

    2015-01-01

    Anthropogenic vectors have moved marine species around the world leading to increased invasions and expanded species' ranges. The biotic resistance hypothesis of Elton (in The ecology of invasions by animals and plants, 1958) predicts that more diverse communities should have greater resistance to invasions, but experiments have been equivocal. We hypothesized that species richness interacts with other factors to determine experimental outcomes. We manipulated species richness, species composition (native and introduced) and availability of bare space in invertebrate assemblages in a marina in Monterey, CA. Increased species richness significantly interacted with both initial cover of native species and of all organisms to collectively decrease recruitment. Although native species decreased recruitment, introduced species had a similar effect, and we concluded that biotic resistance is conferred by total species richness. We suggest that contradictory conclusions in previous studies about the role of diversity in regulating invasions reflect uncontrolled variables in those experiments that modified the effect of species richness. Our results suggest that patches of low diversity and abundance may facilitate invasions, and that such patches, once colonized by non-indigenous species, can resist both native and non-indigenous species recruitment. PMID:26203005

  8. Interactions among Plant Species and Microorganisms in Salt Marsh Sediments

    PubMed Central

    Burke, David J.; Hamerlynck, Erik P.; Hahn, Dittmar

    2002-01-01

    The interactions among Spartina patens and sediment microbial populations and the interactions among Phragmites australis and sediment microbial populations were studied at monotypic sites in Piermont Marsh, a salt marsh of the Hudson River north of New York, N.Y., at key times during the growing season. Arbuscular mycorrhizal fungi (AMF) effectively colonized S. patens but not P. australis, and there were seasonal increases and decreases that coincided with plant growth and senescence (17 and 6% of the S. patens root length were colonized, respectively). In sediment samples from the Spartina site, the microbial community and specific bacterial populations were at least twice as large in terms of number and biomass as the microbial community and specific bacterial populations in sediment samples from the Phragmites site, and peak values occurred during reproduction. Members of the domain Bacteria, especially members of the α-, γ-, and δ-subdivisions of the Proteobacteria, were the most abundant organisms at both sites throughout the growing season. The populations were generally more dynamic in samples from the Spartina site than in samples from the Phragmites site. No differences between the two sites and no differences during the growing season were observed when restriction fragment length polymorphism analyses of nifH amplicons were performed in an attempt to detect shifts in the diversity of nitrogen-fixing bacteria. Differences were observed only in the patterns generated by PCR or reverse transcription-PCR for samples from the Spartina site, suggesting that there were differences in the overall and active populations of nitrogen-fixing bacteria. Regression analyses indicated that there was a positive interaction between members of the δ-subdivision of the Proteobacteria and root biomass but not between members of the δ-subdivision of the Proteobacteria and macroorganic matter at both sites. In samples from the Spartina site, there were indications that

  9. Interactive efforts to address DSM and IRP issues: Findings from the first year of a two-year study

    SciTech Connect

    Schweitzer, M.; English, M.; Altman, J.; Yourstone, E.

    1993-04-01

    This report presents findings from the first year of a two-year study of interactive efforts involving utilities and non-utility parties (NUPS) working together to prepare plans, develop Demand-Side Management (DSM) programs, or otherwise promote integrated planning and the use of cost-effective DSM measures. Of the ten cases covered in the current study, seven involved the collaborative approach to NUP involvement, which generally is marked by intensive utility-NUP interactions designed to reach consensus on a broad range of important issues; in collaboratives, outside consultants often are provided to enhance the technical capabilities of the NUPS. Another of the cases in this study involved a ``cooperative arrangement,`` whereby a utility and a NLT worked together in a focused short-term effort to develop a single DSM program. The intense interaction involved in this approach makes it very similar to a collaborative, except that both the scope and the duration of the effort were much more limited than in a normal collaborative. The ninth case concerned a task force run by state regulatory staff that was charged with the limited job of studying various cost-effectiveness tests available for assessing prospective DSM measures. All of these approaches (collaborative, cooperative arrangement, and task force) are types of interactive effort, as that term is used in this report. The final case concerned NUPs` attempts to encourage greater utility use of DSM in Florida but, to date, no interactive effort has been initiated there. Three main features of interactive efforts are described in this report: (1) the participants involved; (2) the context in which the efforts took place; and (3) key characteristics of the interactive process. This report also examines the outcomes achieved by the interactive efforts. These outcomes can be divided into two general categories: Product-related and participant-related.

  10. Interactive efforts to address DSM and IRP issues: Findings from the first year of a two-year study

    SciTech Connect

    Schweitzer, M. ); English, M.; Altman, J. . Energy, Environment and Resources Center); Yourstone, E. )

    1993-04-01

    This report presents findings from the first year of a two-year study of interactive efforts involving utilities and non-utility parties (NUPS) working together to prepare plans, develop Demand-Side Management (DSM) programs, or otherwise promote integrated planning and the use of cost-effective DSM measures. Of the ten cases covered in the current study, seven involved the collaborative approach to NUP involvement, which generally is marked by intensive utility-NUP interactions designed to reach consensus on a broad range of important issues; in collaboratives, outside consultants often are provided to enhance the technical capabilities of the NUPS. Another of the cases in this study involved a cooperative arrangement,'' whereby a utility and a NLT worked together in a focused short-term effort to develop a single DSM program. The intense interaction involved in this approach makes it very similar to a collaborative, except that both the scope and the duration of the effort were much more limited than in a normal collaborative. The ninth case concerned a task force run by state regulatory staff that was charged with the limited job of studying various cost-effectiveness tests available for assessing prospective DSM measures. All of these approaches (collaborative, cooperative arrangement, and task force) are types of interactive effort, as that term is used in this report. The final case concerned NUPs' attempts to encourage greater utility use of DSM in Florida but, to date, no interactive effort has been initiated there. Three main features of interactive efforts are described in this report: (1) the participants involved; (2) the context in which the efforts took place; and (3) key characteristics of the interactive process. This report also examines the outcomes achieved by the interactive efforts. These outcomes can be divided into two general categories: Product-related and participant-related.

  11. Species interactions in occurrence data for a community of tick-transmitted pathogens

    PubMed Central

    Estrada-Peña, Agustín; de la Fuente, José

    2016-01-01

    Interactions between tick species, their realized range of hosts, the pathogens they carry and transmit, and the geographic distribution of species in the Western Palearctic were determined based on evidence published between 1970–2014. These relationships were linked to remotely sensed features of temperature and vegetation and used to extract the network of interactions among the organisms. The resulting datasets focused on niche overlap among ticks and hosts, species interactions, and the fraction of the environmental niche in which tick-borne pathogens may circulate as a result of interactions and overlapping environmental traits. The resulting datasets provide a valuable resource for researchers interested in tick-borne pathogens, as they conciliate the abiotic and biotic sides of their niche, allowing exploration of the importance of each host species acting as a vertebrate reservoir in the circulation of tick-transmitted pathogens in the environmental niche. PMID:27479213

  12. Comparing photophysiology of seagrasses in the Pacific Northwest: potential implications for species interactions

    EPA Science Inventory

    Physiological tolerances are a primary control on species interactions mediated through production and growth. We examined how the physiology of native eelgrass (Zostera marina L.) and introduced Japanese eelgrass (Z. japonica Aschers. & Graeb) responded to temperature in or...

  13. Comparing photophysiology of seagrasses in the Pacific Northwest: potential implications for species interactions - July 28, 2014

    EPA Science Inventory

    Physiological tolerances are a primary control on species interactions mediated through production and growth. We examined how the physiology of native eelgrass (Zostera marina L.) and introduced Japanese eelgrass (Z. japonica Aschers. & Graeb) responded to temperature in ord...

  14. Nested species interactions promote feasibility over stability during the assembly of a pollinator community.

    PubMed

    Saavedra, Serguei; Rohr, Rudolf P; Olesen, Jens M; Bascompte, Jordi

    2016-02-01

    The foundational concepts behind the persistence of ecological communities have been based on two ecological properties: dynamical stability and feasibility. The former is typically regarded as the capacity of a community to return to an original equilibrium state after a perturbation in species abundances and is usually linked to the strength of interspecific interactions. The latter is the capacity to sustain positive abundances on all its constituent species and is linked to both interspecific interactions and species demographic characteristics. Over the last 40 years, theoretical research in ecology has emphasized the search for conditions leading to the dynamical stability of ecological communities, while the conditions leading to feasibility have been overlooked. However, thus far, we have no evidence of whether species interactions are more conditioned by the community's need to be stable or feasible. Here, we introduce novel quantitative methods and use empirical data to investigate the consequences of species interactions on the dynamical stability and feasibility of mutualistic communities. First, we demonstrate that the more nested the species interactions in a community are, the lower the mutualistic strength that the community can tolerate without losing dynamical stability. Second, we show that high feasibility in a community can be reached either with high mutualistic strength or with highly nested species interactions. Third, we find that during the assembly process of a seasonal pollinator community located at The Zackenberg Research Station (northeastern Greenland), a high feasibility is reached through the nested species interactions established between newcomer and resident species. Our findings imply that nested mutualistic communities promote feasibility over stability, which may suggest that the former can be key for community persistence. PMID:26941941

  15. Setting realistic recovery targets for two interacting endangered species, sea otter and northern abalone.

    PubMed

    Chadès, Iadine; Curtis, Janelle M R; Martin, Tara G

    2012-12-01

    Failure to account for interactions between endangered species may lead to unexpected population dynamics, inefficient management strategies, waste of scarce resources, and, at worst, increased extinction risk. The importance of species interactions is undisputed, yet recovery targets generally do not account for such interactions. This shortcoming is a consequence of species-centered legislation, but also of uncertainty surrounding the dynamics of species interactions and the complexity of modeling such interactions. The northern sea otter (Enhydra lutris kenyoni) and one of its preferred prey, northern abalone (Haliotis kamtschatkana), are endangered species for which recovery strategies have been developed without consideration of their strong predator-prey interactions. Using simulation-based optimization procedures from artificial intelligence, namely reinforcement learning and stochastic dynamic programming, we combined sea otter and northern abalone population models with functional-response models and examined how different management actions affect population dynamics and the likelihood of achieving recovery targets for each species through time. Recovery targets for these interacting species were difficult to achieve simultaneously in the absence of management. Although sea otters were predicted to recover, achieving abalone recovery targets failed even when threats to abalone such as predation and poaching were reduced. A management strategy entailing a 50% reduction in the poaching of northern abalone was a minimum requirement to reach short-term recovery goals for northern abalone when sea otters were present. Removing sea otters had a marginally positive effect on the abalone population but only when we assumed a functional response with strong predation pressure. Our optimization method could be applied more generally to any interacting threatened or invasive species for which there are multiple conservation objectives.

  16. On the evolutionary ecology of host-parasite interactions: addressing the question with regard to bumblebees and their parasites

    NASA Astrophysics Data System (ADS)

    Schmid-Hempel, Paul

    2001-05-01

    Over the last decade, there has been a major shift in the study of adaptive patterns and processes towards including the role of host-parasite interactions, informed by concepts from evolutionary ecology. As a consequence, a number of major questions have emerged. For example, how genetics affects host-parasite interactions, whether parasitism selects for offspring diversification, whether parasite virulence is an adaptive trait, and what constrains the use of the host's immune defences. Using bumblebees, Bombus spp, and their parasites as a model system, answers to some of these questions have been found, while at the same time the complexity of the interaction has led expectations away from simple theoretical models. In addition, the results have also led to the unexpected discovery of novel phenomena concerning, for instance, female mating strategies.

  17. Species interactions and chemical stress: combined effects of intraspecific and interspecific interactions and pyrene on Daphnia magna population dynamics.

    PubMed

    Viaene, Karel P J; De Laender, Frederik; Rico, Andreu; Van den Brink, Paul J; Di Guardo, Antonio; Morselli, Melissa; Janssen, Colin R

    2015-08-01

    Species interactions are often suggested as an important factor when assessing the effects of chemicals on higher levels of biological organization. Nevertheless, the contribution of intraspecific and interspecific interactions to chemical effects on populations is often overlooked. In the present study, Daphnia magna populations were initiated with different levels of intraspecific competition, interspecific competition, and predation and exposed to pyrene pulses. Generalized linear models were used to test which of these factors significantly explained population size and structure at different time points. Pyrene had a negative effect on total population densities, with effects being more pronounced on smaller D. magna individuals. Among all species interactions tested, predation had the largest negative effect on population densities. Predation and high initial intraspecific competition were shown to interact antagonistically with pyrene exposure. This was attributed to differences in population structure before pyrene exposure and pyrene-induced reductions in predation pressure by Chaoborus sp. larvae. The present study provides empirical evidence that species interactions within and between populations can alter the response of aquatic populations to chemical exposure. Therefore, such interactions are important factors to be considered in ecological risk assessments.

  18. Snapshots of Interactive Multimedia at Work Across the Curriculum in Deaf Education: Implications for Public Address Training

    ERIC Educational Resources Information Center

    Parton, Becky Sue

    2006-01-01

    A review of the literature yields many intriguing applications of interactive multimedia technology that can be seen through a series of "snapshots" describing current projects and initiatives for deaf education. The five main categories chosen to represent these activities are: instructional design, communication bridges, skill development…

  19. Editor's Highlight: Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS): A Web-Based Tool for Addressing the Challenges of Cross-Species Extrapolation of Chemical Toxicity.

    PubMed

    LaLone, Carlie A; Villeneuve, Daniel L; Lyons, David; Helgen, Henry W; Robinson, Serina L; Swintek, Joseph A; Saari, Travis W; Ankley, Gerald T

    2016-10-01

    Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS; https://seqapass.epa.gov/seqapass/) application was developed to simplify, streamline, and quantitatively assess protein sequence/structural similarity across taxonomic groups as a means to predict relative intrinsic susceptibility. The intent of the tool is to allow for evaluation of any potential protein target while remaining amenable to variable degrees of protein characterization, in the context of available information about the chemical/protein interaction and the molecular target itself. To accommodate this flexibility in the analysis, 3 levels of evaluation were developed. The first level of the SeqAPASS analysis compares primary amino acid sequences to a query sequence, calculating a metric for sequence similarity (including detection of orthologs); the second level evaluates sequence similarity within selected functional domains (eg, ligand-binding domain); and the third level of analysis compares individual amino acid residue positions of importance for protein conformation and/or interaction with the chemical upon binding. Each level of the SeqAPASS analysis provides additional evidence to apply toward rapid, screening-level assessments of probable cross species susceptibility. Such analyses can support prioritization of chemicals for further evaluation, selection of appropriate species for testing, extrapolation of empirical toxicity data, and/or assessment of the cross-species relevance of adverse outcome pathways. Three case studies are described herein to demonstrate application of the SeqAPASS tool: the first 2 focused on predictions of pollinator susceptibility to molt-accelerating compounds and neonicotinoid insecticides, and the third on evaluation of cross-species susceptibility to strobilurin fungicides. These analyses

  20. Editor's Highlight: Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS): A Web-Based Tool for Addressing the Challenges of Cross-Species Extrapolation of Chemical Toxicity.

    PubMed

    LaLone, Carlie A; Villeneuve, Daniel L; Lyons, David; Helgen, Henry W; Robinson, Serina L; Swintek, Joseph A; Saari, Travis W; Ankley, Gerald T

    2016-10-01

    Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS; https://seqapass.epa.gov/seqapass/) application was developed to simplify, streamline, and quantitatively assess protein sequence/structural similarity across taxonomic groups as a means to predict relative intrinsic susceptibility. The intent of the tool is to allow for evaluation of any potential protein target while remaining amenable to variable degrees of protein characterization, in the context of available information about the chemical/protein interaction and the molecular target itself. To accommodate this flexibility in the analysis, 3 levels of evaluation were developed. The first level of the SeqAPASS analysis compares primary amino acid sequences to a query sequence, calculating a metric for sequence similarity (including detection of orthologs); the second level evaluates sequence similarity within selected functional domains (eg, ligand-binding domain); and the third level of analysis compares individual amino acid residue positions of importance for protein conformation and/or interaction with the chemical upon binding. Each level of the SeqAPASS analysis provides additional evidence to apply toward rapid, screening-level assessments of probable cross species susceptibility. Such analyses can support prioritization of chemicals for further evaluation, selection of appropriate species for testing, extrapolation of empirical toxicity data, and/or assessment of the cross-species relevance of adverse outcome pathways. Three case studies are described herein to demonstrate application of the SeqAPASS tool: the first 2 focused on predictions of pollinator susceptibility to molt-accelerating compounds and neonicotinoid insecticides, and the third on evaluation of cross-species susceptibility to strobilurin fungicides. These analyses

  1. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function.

    PubMed

    Burkle, Laura A; Marlin, John C; Knight, Tiffany M

    2013-03-29

    Using historic data sets, we quantified the degree to which global change over 120 years disrupted plant-pollinator interactions in a temperate forest understory community in Illinois, USA. We found degradation of interaction network structure and function and extirpation of 50% of bee species. Network changes can be attributed to shifts in forb and bee phenologies resulting in temporal mismatches, nonrandom species extinctions, and loss of spatial co-occurrences between extant species in modified landscapes. Quantity and quality of pollination services have declined through time. The historic network showed flexibility in response to disturbance; however, our data suggest that networks will be less resilient to future changes.

  2. Phenological overlap of interacting species in a changing climate: an assessment of available approaches.

    PubMed

    Rafferty, Nicole E; Caradonna, Paul J; Burkle, Laura A; Iler, Amy M; Bronstein, Judith L

    2013-09-01

    Concern regarding the biological effects of climate change has led to a recent surge in research to understand the consequences of phenological change for species interactions. This rapidly expanding research program is centered on three lines of inquiry: (1) how the phenological overlap of interacting species is changing, (2) why the phenological overlap of interacting species is changing, and (3) how the phenological overlap of interacting species will change under future climate scenarios. We synthesize the widely disparate approaches currently being used to investigate these questions: (1) interpretation of long-term phenological data, (2) field observations, (3) experimental manipulations, (4) simulations and nonmechanistic models, and (5) mechanistic models. We present a conceptual framework for selecting approaches that are best matched to the question of interest. We weigh the merits and limitations of each approach, survey the recent literature from diverse systems to quantify their use, and characterize the types of interactions being studied by each of them. We highlight the value of combining approaches and the importance of long-term data for establishing a baseline of phenological synchrony. Future work that scales up from pairwise species interactions to communities and ecosystems, emphasizing the use of predictive approaches, will be particularly valuable for reaching a broader understanding of the complex effects of climate change on the phenological overlap of interacting species. It will also be important to study a broader range of interactions: to date, most of the research on climate-induced phenological shifts has focused on terrestrial pairwise resource-consumer interactions, especially those between plants and insects. PMID:24102003

  3. Phenological overlap of interacting species in a changing climate: an assessment of available approaches

    PubMed Central

    Rafferty, Nicole E; CaraDonna, Paul J; Burkle, Laura A; Iler, Amy M; Bronstein, Judith L

    2013-01-01

    Concern regarding the biological effects of climate change has led to a recent surge in research to understand the consequences of phenological change for species interactions. This rapidly expanding research program is centered on three lines of inquiry: (1) how the phenological overlap of interacting species is changing, (2) why the phenological overlap of interacting species is changing, and (3) how the phenological overlap of interacting species will change under future climate scenarios. We synthesize the widely disparate approaches currently being used to investigate these questions: (1) interpretation of long-term phenological data, (2) field observations, (3) experimental manipulations, (4) simulations and nonmechanistic models, and (5) mechanistic models. We present a conceptual framework for selecting approaches that are best matched to the question of interest. We weigh the merits and limitations of each approach, survey the recent literature from diverse systems to quantify their use, and characterize the types of interactions being studied by each of them. We highlight the value of combining approaches and the importance of long-term data for establishing a baseline of phenological synchrony. Future work that scales up from pairwise species interactions to communities and ecosystems, emphasizing the use of predictive approaches, will be particularly valuable for reaching a broader understanding of the complex effects of climate change on the phenological overlap of interacting species. It will also be important to study a broader range of interactions: to date, most of the research on climate-induced phenological shifts has focused on terrestrial pairwise resource–consumer interactions, especially those between plants and insects. PMID:24102003

  4. Host-parasite interactions: Marine bivalve molluscs and protozoan parasites, Perkinsus species.

    PubMed

    Soudant, Philippe; E Chu, Fu-Lin; Volety, Aswani

    2013-10-01

    This review assesses and examines the work conducted to date concerning host and parasite interactions between marine bivalve molluscs and protozoan parasites, belonging to Perkinsus species. The review focuses on two well-studied host-parasite interaction models: the two clam species, Ruditapes philippinarum and R. decussatus, and the parasite Perkinsus olseni, and the eastern oyster, Crassostrea virginica, and the parasite Perkinsus marinus. Cellular and humoral defense responses of the host in combating parasitic infection, the mechanisms (e.g., antioxidant enzymes, extracellular products) employed by the parasite in evading host defenses as well as the role of environmental factors in modulating the host-parasite interactions are described.

  5. Interactions between environment, species traits, and human uses describe patterns of plant invasions.

    PubMed

    Thuiller, Wilfried; Richardson, David M; Rouget, Mathieu; Procheş, Serban; Wilson, John R U

    2006-07-01

    Although invasive alien species (IAS) are a major threat to biodiversity, human health, and economy, our understanding of the factors controlling their distribution and abundance is limited. Here, we determine how environmental factors, land use, life-history traits of the invaders, residence time, origin, and human usage interact to shape the spatial pattern of invasive alien plant species in South Africa. Relationships between the environmental factors and the extrinsic and intrinsic attributes of species were investigated using RLQ analysis, a multivariate method for relating a species-attribute table to an environmental table by way of a species presence/absence table. We then clustered species according to their position on the RLQ axes, and tested these groups for phylogenetic independence. The first three axes of the RLQ explained 99% of the variation and were strongly related to the species attributes. The clustering showed that, after accounting for environmental factors, the spatial pattern of IAS in South Africa was driven by human uses, life forms, and reproductive traits. The seven clusters of species strongly reflected geographical distribution, but also intrinsic species attributes and patterns of human use. Two of the clusters, centered on the genera Acacia and Opuntia, were phylogenetically non-independent. The remaining clusters comprised species of diverse taxonomic affinities, but sharing traits facilitating invasion in particular habitats. This information is useful for assessing the extent to which the potential spread of recent introductions can be predicted by considering the interaction of their biological attributes, region of origin, and human use.

  6. Positive interactions expand habitat use and the realized niches of sympatric species.

    PubMed

    Crotty, Sinead M; Bertness, Mark D

    2015-10-01

    Niche theory, the oldest, most established community assembly model, predicts that in sympatry, the realized niche will contract due to negative interspecific interactions, but fails to recognize the effects of positive interactions on community assembly. The stress gradient hypothesis predicts that positive interactions expand realized niches in stressful habitats. We tested the predictions of the stress gradient hypothesis in a cobble beach model system across both physical and biological stress gradients. We transplanted seven common littoral species within, adjacent to, and below Spartina alterniflora cordgrass stands in control, cage control, predator exclusion cage, shade, and shaded predator exclusion cage treatments to test the hypothesis that cordgrass expands intertidal organism habitats. On cobble beaches, cordgrass ameliorates physical and predation stresses, expanding the distribution and realized niches of species to habitats in which they cannot live without facilitation, suggesting that niche theory and species distribution models should be amended to accommodate the role of positive interactions in community assembly. PMID:26649378

  7. Species interactions within a fouling diatom community: roles of nutrients, initial inoculum and competitive strategies.

    PubMed

    Mitbavkar, Smita; Anil, Arga Chandrashekar

    2007-01-01

    Diatoms constitute an important component of the fouling community. Although a lot of work has dealt with the fouling diatom community structure, work on the species interactions within the community is still meagre. In this regard, a study was carried out by transferring natural diatom biofilms into controlled conditions in order to understand the roles of nutrients, initial cell inoculum and seasonal variation in species composition in structuring the fouling diatom community. This community exhibited seasonal variation during the monsoon, post-monsoon and pre-monsoon periods. During each of these seasons, diatom species interactions varied depending upon the species composition. It was observed that excess nutrients favoured those species with comparatively higher growth rates, thereby suppressing the growth of other co-existing species. This competitive trait was found to be effective at an appropriate cell density ratio of the competitive and target species. Understanding such pathways will be useful for modelling the interactions between diatom species in various habitats under different resource conditions.

  8. Evolution of species interactions determines microbial community productivity in new environments.

    PubMed

    Fiegna, Francesca; Moreno-Letelier, Alejandra; Bell, Thomas; Barraclough, Timothy G

    2015-05-01

    Diversity generally increases ecosystem productivity over short timescales. Over longer timescales, both ecological and evolutionary responses to new environments could alter productivity and diversity-productivity relationships. In turn, diversity might affect how component species adapt to new conditions. We tested these ideas by culturing artificial microbial communities containing between 1 and 12 species in three different environments for ∼60 generations. The relationship between community yields and diversity became steeper over time in one environment. This occurred despite a general tendency for the separate yields of isolates of constituent species to be lower at the end if they had evolved in a more diverse community. Statistical comparisons of community and species yields showed that species interactions had evolved to be less negative over time, especially in more diverse communities. Diversity and evolution therefore interacted to enhance community productivity in a new environment. PMID:25387206

  9. Evolution of species interactions determines microbial community productivity in new environments

    PubMed Central

    Fiegna, Francesca; Moreno-Letelier, Alejandra; Bell, Thomas; Barraclough, Timothy G

    2015-01-01

    Diversity generally increases ecosystem productivity over short timescales. Over longer timescales, both ecological and evolutionary responses to new environments could alter productivity and diversity–productivity relationships. In turn, diversity might affect how component species adapt to new conditions. We tested these ideas by culturing artificial microbial communities containing between 1 and 12 species in three different environments for ∼60 generations. The relationship between community yields and diversity became steeper over time in one environment. This occurred despite a general tendency for the separate yields of isolates of constituent species to be lower at the end if they had evolved in a more diverse community. Statistical comparisons of community and species yields showed that species interactions had evolved to be less negative over time, especially in more diverse communities. Diversity and evolution therefore interacted to enhance community productivity in a new environment. PMID:25387206

  10. Evolutionary Diversification of Prey and Predator Species Facilitated by Asymmetric Interactions

    PubMed Central

    Zu, Jian; Wang, Jinliang; Huang, Gang

    2016-01-01

    We investigate the influence of asymmetric interactions on coevolutionary dynamics of a predator-prey system by using the theory of adaptive dynamics. We assume that the defense ability of prey and the attack ability of predators all can adaptively evolve, either caused by phenotypic plasticity or by behavioral choice, but there are certain costs in terms of their growth rate or death rate. The coevolutionary model is constructed from a deterministic approximation of random mutation-selection process. To sum up, if prey’s trade-off curve is globally weakly concave, then five outcomes of coevolution are demonstrated, which depend on the intensity and shape of asymmetric predator-prey interactions and predator’s trade-off shape. Firstly, we find that if there is a weakly decelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species may occur, but after branching further coevolution may lead to extinction of the predator species with a larger trait value. However, if there is a weakly accelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species is also possible and after branching the dimorphic predator can evolutionarily stably coexist with a monomorphic prey species. Secondly, if the asymmetric interactions become a little strong, then prey and predators will evolve to an evolutionarily stable equilibrium, at which they can stably coexist on a long-term timescale of evolution. Thirdly, if there is a weakly accelerating cost and a relatively strongly accelerating benefit for prey species, then evolutionary branching in the prey species is possible and the finally coevolutionary outcome contains a dimorphic prey and a monomorphic predator species. Fourthly, if the asymmetric interactions become more stronger, then predator-prey coevolution may lead to cycles in both traits and equilibrium population densities. The Red Queen dynamic is a

  11. Knowing You, Knowing Me (KYKM): an interactive game to address positive mother-daughter communication and relationships

    PubMed Central

    Katsikitis, Mary; Jones, Christian; Muscat, Melody; Crawford, Kate

    2014-01-01

    This technical report describes an interactive game environment designed to bring mothers and their adolescent daughters together to discuss three issues that have previously been shown in the literature to be of concern to families, as young girls transition from middle childhood to the adolescent years. The game is called Knowing you, Knowing me or KYKM, and is used to help mothers and daughters discuss the following three topics: positive communication skills, relationship building, and managing risky behaviors in the social environment. As the game remains untested, its limitations and future implications of its utility are discussed. PMID:25071682

  12. A multidisciplinary project to address the onset of rifting and the interaction between deformation and inherited fabrics

    NASA Astrophysics Data System (ADS)

    Tiberi, Christel; Gautier, Stéphanie; Albaric, Julie; Ebinger, Cindy; Déverchère, Jacques; Wambura, Richard Ferdinand; Muzuka, Alfred

    2016-04-01

    Onset of continental rifting and the role of the different factors involved in the deformation when breakup occurs is still a pending question. We started a new project in 2013 in North Tanzania, near Natron and Manyara areas to tackle these questions. Besides, these two regions present clearly opposite seismological and magmatic behaviours: near Natron the seismicity is well located within the upper crust and linked to present day magmatism (Lengai), whereas Manyara area is characterized by a deep seismicity and no evidence of present magmatic activity at the surface. This project gathers different approaches in geophysics, geochemistry, petrophysics,… to enhance our understanding of an active region where both tectonic and magmatic processes clearly interact. We present here the preliminary results from classic seismology, gravity and magnetotelluric studies we lead from 2013 to 2014 in this region. We take advantage of the distribution of our networks (both in 3D and 2D profiles) to investigate different scales and to better image the crustal and lithospheric structures beneath Natron and Manyara regions. Moreover, the combination of those geophysical technics with geochemistry should contribute to a more constrained understanding of the differences between Natron and Manyara areas. This integrated study will bring new insight on the interactions between magmatic and tectonic processes in this rifting area.

  13. Estimating abundances of interacting species using morphological traits, foraging guilds, and habitat

    USGS Publications Warehouse

    Dorazio, Robert M.; Connor, Edward F.

    2014-01-01

    We developed a statistical model to estimate the abundances of potentially interacting species encountered while conducting point-count surveys at a set of ecologically relevant locations - as in a metacommunity of species. In the model we assume that abundances of species with similar traits (e.g., body size) are potentially correlated and that these correlations, when present, may exist among all species or only among functionally related species (such as members of the same foraging guild). We also assume that species-specific abundances vary among locations owing to systematic and stochastic sources of heterogeneity. For example, if abundances differ among locations due to differences in habitat, then measures of habitat may be included in the model as covariates. Naturally, the quantitative effects of these covariates are assumed to differ among species. Our model also accounts for the effects of detectability on the observed counts of each species. This aspect of the model is especially important for rare or uncommon species that may be difficult to detect in community-level surveys. Estimating the detectability of each species requires sampling locations to be surveyed repeatedly using different observers or different visits of a single observer. As an illustration, we fitted models to species-specific counts of birds obtained while sampling an avian community during the breeding season. In the analysis we examined whether species abundances appeared to be correlated due to similarities in morphological measures (body mass, beak length, tarsus length, wing length, tail length) and whether these correlations existed among all species or only among species of the same foraging guild. We also used the model to estimate the effects of forested area on species abundances and the effects of sound power output (as measured by body size) on species detection probabilities.

  14. Addressing Methodological Challenges in Large Communication Datasets: Collecting and Coding Longitudinal Interactions in Home Hospice Cancer Care

    PubMed Central

    Reblin, Maija; Clayton, Margaret F; John, Kevin K; Ellington, Lee

    2015-01-01

    In this paper, we present strategies for collecting and coding a large longitudinal communication dataset collected across multiple sites, consisting of over 2000 hours of digital audio recordings from approximately 300 families. We describe our methods within the context of implementing a large-scale study of communication during cancer home hospice nurse visits, but this procedure could be adapted to communication datasets across a wide variety of settings. This research is the first study designed to capture home hospice nurse-caregiver communication, a highly understudied location and type of communication event. We present a detailed example protocol encompassing data collection in the home environment, large-scale, multi-site secure data management, the development of theoretically-based communication coding, and strategies for preventing coder drift and ensuring reliability of analyses. Although each of these challenges have the potential to undermine the utility of the data, reliability between coders is often the only issue consistently reported and addressed in the literature. Overall, our approach demonstrates rigor and provides a “how-to” example for managing large, digitally-recorded data sets from collection through analysis. These strategies can inform other large-scale health communication research. PMID:26580414

  15. Addressing Methodological Challenges in Large Communication Data Sets: Collecting and Coding Longitudinal Interactions in Home Hospice Cancer Care.

    PubMed

    Reblin, Maija; Clayton, Margaret F; John, Kevin K; Ellington, Lee

    2016-07-01

    In this article, we present strategies for collecting and coding a large longitudinal communication data set collected across multiple sites, consisting of more than 2000 hours of digital audio recordings from approximately 300 families. We describe our methods within the context of implementing a large-scale study of communication during cancer home hospice nurse visits, but this procedure could be adapted to communication data sets across a wide variety of settings. This research is the first study designed to capture home hospice nurse-caregiver communication, a highly understudied location and type of communication event. We present a detailed example protocol encompassing data collection in the home environment, large-scale, multisite secure data management, the development of theoretically-based communication coding, and strategies for preventing coder drift and ensuring reliability of analyses. Although each of these challenges has the potential to undermine the utility of the data, reliability between coders is often the only issue consistently reported and addressed in the literature. Overall, our approach demonstrates rigor and provides a "how-to" example for managing large, digitally recorded data sets from collection through analysis. These strategies can inform other large-scale health communication research.

  16. Addressing Methodological Challenges in Large Communication Data Sets: Collecting and Coding Longitudinal Interactions in Home Hospice Cancer Care.

    PubMed

    Reblin, Maija; Clayton, Margaret F; John, Kevin K; Ellington, Lee

    2016-07-01

    In this article, we present strategies for collecting and coding a large longitudinal communication data set collected across multiple sites, consisting of more than 2000 hours of digital audio recordings from approximately 300 families. We describe our methods within the context of implementing a large-scale study of communication during cancer home hospice nurse visits, but this procedure could be adapted to communication data sets across a wide variety of settings. This research is the first study designed to capture home hospice nurse-caregiver communication, a highly understudied location and type of communication event. We present a detailed example protocol encompassing data collection in the home environment, large-scale, multisite secure data management, the development of theoretically-based communication coding, and strategies for preventing coder drift and ensuring reliability of analyses. Although each of these challenges has the potential to undermine the utility of the data, reliability between coders is often the only issue consistently reported and addressed in the literature. Overall, our approach demonstrates rigor and provides a "how-to" example for managing large, digitally recorded data sets from collection through analysis. These strategies can inform other large-scale health communication research. PMID:26580414

  17. An inter-species protein-protein interaction network across vast evolutionary distance.

    PubMed

    Zhong, Quan; Pevzner, Samuel J; Hao, Tong; Wang, Yang; Mosca, Roberto; Menche, Jörg; Taipale, Mikko; Taşan, Murat; Fan, Changyu; Yang, Xinping; Haley, Patrick; Murray, Ryan R; Mer, Flora; Gebreab, Fana; Tam, Stanley; MacWilliams, Andrew; Dricot, Amélie; Reichert, Patrick; Santhanam, Balaji; Ghamsari, Lila; Calderwood, Michael A; Rolland, Thomas; Charloteaux, Benoit; Lindquist, Susan; Barabási, Albert-László; Hill, David E; Aloy, Patrick; Cusick, Michael E; Xia, Yu; Roth, Frederick P; Vidal, Marc

    2016-04-22

    In cellular systems, biophysical interactions between macromolecules underlie a complex web of functional interactions. How biophysical and functional networks are coordinated, whether all biophysical interactions correspond to functional interactions, and how such biophysical-versus-functional network coordination is shaped by evolutionary forces are all largely unanswered questions. Here, we investigate these questions using an "inter-interactome" approach. We systematically probed the yeast and human proteomes for interactions between proteins from these two species and functionally characterized the resulting inter-interactome network. After a billion years of evolutionary divergence, the yeast and human proteomes are still capable of forming a biophysical network with properties that resemble those of intra-species networks. Although substantially reduced relative to intra-species networks, the levels of functional overlap in the yeast-human inter-interactome network uncover significant remnants of co-functionality widely preserved in the two proteomes beyond human-yeast homologs. Our data support evolutionary selection against biophysical interactions between proteins with little or no co-functionality. Such non-functional interactions, however, represent a reservoir from which nascent functional interactions may arise.

  18. Population variation affects interactions between two California salt marsh plant species more than precipitation.

    PubMed

    Noto, Akana E; Shurin, Jonathan B

    2016-02-01

    Species that occur along broad environmental gradients often vary in phenotypic traits that make them better adapted to local conditions. Variation in species interactions across gradients could therefore be due to either phenotypic differences among populations or environmental conditions that shift the balance between competition and facilitation. To understand how the environment (precipitation) and variation among populations affect species interactions, we conducted a common garden experiment using two common salt marsh plant species, Salicornia pacifica and Jaumea carnosa, from six salt marshes along the California coast encompassing a large precipitation gradient. Plants were grown alone or with an individual of the opposite species from the same site and exposed to one of three precipitation regimes. J. carnosa was negatively affected in the presence of S. pacifica, while S. pacifica was facilitated by J. carnosa. The strength of these interactions varied by site of origin but not by precipitation treatment. These results suggest that phenotypic variation among populations can affect interaction strength more than environment, despite a threefold difference in precipitation. Geographic intraspecific variation may therefore play an important role in determining the strength of interactions in communities.

  19. Population variation affects interactions between two California salt marsh plant species more than precipitation.

    PubMed

    Noto, Akana E; Shurin, Jonathan B

    2016-02-01

    Species that occur along broad environmental gradients often vary in phenotypic traits that make them better adapted to local conditions. Variation in species interactions across gradients could therefore be due to either phenotypic differences among populations or environmental conditions that shift the balance between competition and facilitation. To understand how the environment (precipitation) and variation among populations affect species interactions, we conducted a common garden experiment using two common salt marsh plant species, Salicornia pacifica and Jaumea carnosa, from six salt marshes along the California coast encompassing a large precipitation gradient. Plants were grown alone or with an individual of the opposite species from the same site and exposed to one of three precipitation regimes. J. carnosa was negatively affected in the presence of S. pacifica, while S. pacifica was facilitated by J. carnosa. The strength of these interactions varied by site of origin but not by precipitation treatment. These results suggest that phenotypic variation among populations can affect interaction strength more than environment, despite a threefold difference in precipitation. Geographic intraspecific variation may therefore play an important role in determining the strength of interactions in communities. PMID:26481794

  20. Rodent-Mediated Interactions Among Seed Species of Differing Quality in a Shrubsteppe Ecosystem

    USGS Publications Warehouse

    Beard, Karen H.; Faulhaber, Craig A.; Howe, Frank P.; Edwards, Thomas C.

    2013-01-01

    Interactions among seeds, mediated by granivorous rodents, are likely to play a strong role in shrubsteppe ecosystem restoration. Past studies typically consider only pairwise interactions between preferred and less preferred seed species, whereas rangeland seedings are likely to contain more than 2 seed species, potentially leading to complex interactions. We examined how the relative proportion of seeds in a 3-species polyculture changes rodent seed selectivity (i.e., removal) and indirect interactions among seeds. We presented 2 rodent species, Peromyscus maniculatus (deer mice) and Perognathus parvus (pocket mice), in arenas with 3-species seed mixtures that varied in the proportion of a highly preferred, moderately preferred, and least preferred seed species, based on preferences determined in this study. We then conducted a field experiment in a pocket mouse—dominated ecosystem with the same 3-species seed mixtures in both “treated” (reduced shrub and increased forb cover) and “untreated” shrubsteppe. In the arena experiment, we found that rodents removed more of the highly preferred seed when the proportions of all 3 seeds were equal. Moderately preferred seeds experienced increased removal when the least preferred seed was in highest proportion. Removal of the least preferred seed increased when the highly preferred seed was in highest proportion. In the field experiment, results were similar to those from the arena experiment and did not differ between treated and untreated shrubsteppe areas. Though our results suggest that 3-species mixtures induce complex interactions among seeds, managers applying these results to restoration efforts should carefully consider the rodent community present and the potential fate of removed seeds.

  1. Disentangling climate change effects on species interactions: effects of temperature, phenological shifts, and body size.

    PubMed

    Rudolf, Volker H W; Singh, Manasvini

    2013-11-01

    Climate-mediated shifts in species' phenologies are expected to alter species interactions, but predicting the consequences of this is difficult because phenological shifts may be driven by different climate factors that may or may not be correlated. Temperature could be an important factor determining effects of phenological shifts by altering species' growth rates and thereby the relative size ratios of interacting species. We tested this hypothesis by independently manipulating temperature and the relative hatching phenologies of two competing amphibian species. Relative shifts in hatching time generally altered the strength of competition, but the presence and magnitude of this effect was temperature dependent and joint effects of temperature and hatching phenology were non-additive. Species that hatched relatively early or late performed significantly better or worse, respectively, but only at higher temperatures and not at lower temperatures. As a consequence, climate-mediated shifts in hatching phenology or temperature resulted in stronger or weaker effects than expected when both factors acted in concert. Furthermore, consequences of phenological shifts were asymmetric; arriving relatively early had disproportional stronger (or weaker) effects than arriving relatively late, and this varied with species identity. However, consistent with recent theory, these seemingly idiosyncratic effects of phenological shifts could be explained by species-specific differences in growth rates across temperatures and concordant shifts in relative body size of interacting species. Our results emphasize the need to account for environmental conditions when predicting the effects of phenological shifts, and suggest that shifts in size-structured interactions can mediate the impact of climate change on natural communities.

  2. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances

    PubMed Central

    Boulangeat, Isabelle; Gravel, Dominique; Thuiller, Wilfried

    2014-01-01

    Although abiotic factors, together with dispersal and biotic interactions, are often suggested to explain the distribution of species and their abundances, species distribution models usually focus on abiotic factors only. We propose an integrative framework linking ecological theory, empirical data and statistical models to understand the distribution of species and their abundances together with the underlying community assembly dynamics. We illustrate our approach with 21 plant species in the French Alps. We show that a spatially nested modelling framework significantly improves the model’s performance and that the spatial variations of species presence–absence and abundances are predominantly explained by different factors. We also show that incorporating abiotic, dispersal and biotic factors into the same model bring new insights to our understanding of community assembly. This approach, at the crossroads between community ecology and biogeography, is a promising avenue for a better understanding of species co-existence and biodiversity distribution. PMID:22462813

  3. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change

    USGS Publications Warehouse

    McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.

    2012-01-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  4. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change.

    PubMed

    McCluney, Kevin E; Belnap, Jayne; Collins, Scott L; González, Angélica L; Hagen, Elizabeth M; Nathaniel Holland, J; Kotler, Burt P; Maestre, Fernando T; Smith, Stanley D; Wolf, Blair O

    2012-08-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  5. Elevated CO2 and plant species diversity interact to slow root decomposition

    SciTech Connect

    De Graaff, Marie-Anne; Schadt, Christopher Warren; Rula, Kelly L; Six, Johan W U A; Schweitzer, Jennifer A; Classen, Aimee T

    2011-01-01

    Changes in plant species diversity can result in synergistic increases in decomposition rates, while elevated atmospheric CO2 can slow the decomposition rates; yet it remains unclear how diversity and changes in atmospheric CO2 may interact to alter root decomposition. To investigate how elevated CO2 interacts with changes in root-litter diversity to alter decomposition rates, we conducted a 120-day laboratory incubation. Roots from three species (Trifolium repens, Lespedeza cuneata, and Festuca pratense) grown under ambient or elevated CO2 were incubated individually or in combination in soils that were exposed to ambient or elevated CO2 for five years. Our experiment resulted in two main findings: (1) Roots from T. repens and L. cuneata, both nitrogen (N) fixers, grown under elevated CO2 treatments had significantly slower decomposition rates than similar roots grown under ambient CO2 treatments; but the decomposition rate of F. pratense roots (a non-N-fixing species) was similar regardless of CO2 treatment. (2) Roots of the three species grown under ambient CO2 and decomposed in combination with each other had faster decomposition rates than when they were decomposed as single species. However, roots of the three species grown under elevated CO2 had similar decomposition rates when they were incubated alone or in combination with other species. These data suggest that if elevated CO2 reduces the root decomposition rate of even a few species in the community, it may slow root decomposition of the entire plant community.

  6. Macro- and microclimatic interactions can drive variation in species' habitat associations.

    PubMed

    Pateman, Rachel M; Thomas, Chris D; Hayward, Scott A L; Hill, Jane K

    2016-02-01

    Many species are more restricted in their habitat associations at the leading edges of their range margins, but some species have broadened their habitat associations in these regions during recent climate change. We examine the effects of multiple, interacting climatic variables on spatial and temporal patterns of species' habitat associations, using the speckled wood butterfly, Pararge aegeria, in Britain, as our model taxon. Our analyses reveal that this species, traditionally regarded as a woodland-dependent insect, is less restricted to woodland in regions with warmer winters and warmer and wetter summers. In addition, over the past 40 years of climate change, the species has become less restricted to woodland in locations where temperature and summer rainfall have increased most. We show that these patterns arise mechanistically because larval growth rates are slower in open (i.e. nonwoodland) habitats associated with colder microclimates in winter and greater host plant desiccation in summer. We conclude that macro- and microclimatic interactions drive variation in species' habitat associations, which for our study species resulted predominantly in a widening of habitat associations under climate change. However, species vary in their climatic and nonclimatic requirements, and so complex spatial and temporal patterns of changes in habitat associations are likely to be observed in future as the climate changes.

  7. Mixed biofilms formed by C. albicans and non-albicans species: a study of microbial interactions.

    PubMed

    Santos, Jéssica Diane dos; Piva, Elisabete; Vilela, Simone Furgeri Godinho; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Most Candida infections are related to microbial biofilms often formed by the association of different species. The objective of this study was to evaluate the interactions between Candida albicans and non-albicans species in biofilms formed in vitro. The non-albicans species studied were:Candida tropicalis, Candida glabrata and Candida krusei. Single and mixed biofilms (formed by clinical isolates of C. albicans and non-albicans species) were developed from standardized suspensions of each strain (10(7) cells/mL), on flat-bottom 96-well microtiter plates for 48 hour. These biofilms were analyzed by counting colony-forming units (CFU/mL) in Candida HiChrome agar and by determining cell viability, using the XTT 2,3-bis (2-methoxy-4-nitro-5-sulphophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide colorimetric assay. The results for both the CFU/mL count and the XTT colorimetric assay showed that all the species studied were capable of forming high levels of in vitro biofilm. The number of CFU/mL and the metabolic activity of C. albicans were reduced in mixed biofilms with non-albicans species, as compared with a single C. albicans biofilm. Among the species tested, C. krusei exerted the highest inhibitory action against C. albicans. In conclusion, C. albicans established antagonistic interactions with non-albicans Candida species in mixed biofilms.

  8. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    PubMed Central

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  9. Arabidopsis thaliana polyamine content is modified by the interaction with different Trichoderma species.

    PubMed

    Salazar-Badillo, Fatima Berenice; Sánchez-Rangel, Diana; Becerra-Flora, Alicia; López-Gómez, Miguel; Nieto-Jacobo, Fernanda; Mendoza-Mendoza, Artemio; Jiménez-Bremont, Juan Francisco

    2015-10-01

    Plants are associated with a wide range of microorganisms throughout their life cycle, and some interactions result on plant benefits. Trichoderma species are plant beneficial fungi that enhance plant growth and development, contribute to plant nutrition and induce defense responses. Nevertheless, the molecules involved in these beneficial effects still need to be identify. Polyamines are ubiquitous molecules implicated in plant growth and development, and in the establishment of plant microbe interactions. In this study, we assessed the polyamine profile in Arabidopsis plants during the interaction with Trichoderma virens and Trichoderma atroviride, using a system that allows direct plant-fungal contact or avoids their physical interaction (split system). The plantlets that grew in the split system exhibited higher biomass than the ones in direct contact with Trichoderma species. After 3 days of interaction, a significant decrease in Arabidopsis polyamine levels was observed in both systems (direct contact and split). After 5 days of interaction polyamine levels were increased. The highest levels were observed with T. atroviride (split system), and with T. virens (direct contact). The expression levels of Arabidopsis ADC1 and ADC2 genes during the interaction with the fungi were also assessed. We observed a time dependent regulation of ADC1 and ADC2 genes, which correlates with polyamine levels. Our data show an evident change in polyamine profile during Arabidopsis - Trichoderma interaction, accompanied by evident alterations in plant root architecture. Polyamines could be involved in the changes undergone by plant during the interaction with this beneficial fungus.

  10. Database of host-pathogen and related species interactions, and their global distribution

    PubMed Central

    Wardeh, Maya; Risley, Claire; McIntyre, Marie Kirsty; Setzkorn, Christian; Baylis, Matthew

    2015-01-01

    Interactions between species, particularly where one is likely to be a pathogen of the other, as well as the geographical distribution of species, have been systematically extracted from various web-based, free-access sources, and assembled with the accompanying evidence into a single database. The database attempts to answer questions such as what are all the pathogens of a host, and what are all the hosts of a pathogen, what are all the countries where a pathogen was found, and what are all the pathogens found in a country. Two datasets were extracted from the database, focussing on species interactions and species distribution, based on evidence published between 1950–2012. The quality of their evidence was checked and verified against well-known, alternative, datasets of pathogens infecting humans, domestic animals and wild mammals. The presented datasets provide a valuable resource for researchers of infectious diseases of humans and animals, including zoonoses. PMID:26401317

  11. Competitive and Predacious Interactions Among Three Phytoseiid Species Under Experimental Conditions (Acari: Phytoseiidae).

    PubMed

    Ji, J; Zhang, Y-X; Saito, Y; Takada, T; Tsuji, N

    2016-02-01

    The effect of competition on species that coexist with similar ecological niches is an important theme in ecology. Furthermore, species displacement by introduced or invaded species is also an important environmental problem for biological control and conservation ecology. We tested whether two species of phytoseiids could coexist in closed cages with ample quantities of the extraguild prey species Carpoglyphus lactis (L.). Three species of phytoseiid mites-Amblyseius eharai Amitai & Swirski (a species native to China), Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (both species were introduced from outside of China)-were tested under experimental conditions (25 ± 1°C, 90 ± 5% relative humidity, and a photoperiod of 14:10 [L:D] h). With extraguild prey, we found that the numbers of a single population of each phytoseiid species (initial density of 10 females per cage) reached a plateau between 18 and 25 d after introduction into the experimental cages, suggesting that density-dependent factors were operating. In closed environments, one of these density-dependent factors might be cannibalism by these species. With regression analyses, Lotka-Volterra equations estimated the rate of population increase (r) and the carrying capacity (K) of each species with the data from observations on population dynamics. We next observed the interactions of two phytoseiid species with abundant extraguild prey. In all species combinations, one species went extinct and the other increased in population size, despite the availability of sufficient extraguild prey, suggesting some type of competition must have caused the extinctions. We suggested that intraguild predation is the most plausible hypothesis to explain the results. PMID:26496951

  12. Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints.

    PubMed

    Colwell, Robert K; Gotelli, Nicholas J; Ashton, Louise A; Beck, Jan; Brehm, Gunnar; Fayle, Tom M; Fiedler, Konrad; Forister, Matthew L; Kessler, Michael; Kitching, Roger L; Klimes, Petr; Kluge, Jürgen; Longino, John T; Maunsell, Sarah C; McCain, Christy M; Moses, Jimmy; Noben, Sarah; Sam, Katerina; Sam, Legi; Shapiro, Arthur M; Wang, Xiangping; Novotny, Vojtech

    2016-09-01

    We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not itself explicitly mechanistic, this approach offers a path towards understanding mechanisms. In this study, we focused on the diverse patterns of species richness on mountainsides. We conjectured that elevational range midpoints of species may be drawn towards a single midpoint attractor - a unimodal gradient of environmental favourability. The midpoint attractor interacts with geometric constraints imposed by sea level and the mountaintop to produce taxon-specific patterns of species richness. We developed a Bayesian simulation model to estimate the location and strength of the midpoint attractor from species occurrence data sampled along mountainsides. We also constructed midpoint predictor models to test whether environmental variables could directly account for the observed patterns of species range midpoints. We challenged these models with 16 elevational data sets, comprising 4500 species of insects, vertebrates and plants. The midpoint predictor models generally failed to predict the pattern of species midpoints. In contrast, the midpoint attractor model closely reproduced empirical spatial patterns of species richness and range midpoints. Gradients of environmental favourability, subject to geometric constraints, may parsimoniously account for elevational and other patterns of species richness.

  13. Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints.

    PubMed

    Colwell, Robert K; Gotelli, Nicholas J; Ashton, Louise A; Beck, Jan; Brehm, Gunnar; Fayle, Tom M; Fiedler, Konrad; Forister, Matthew L; Kessler, Michael; Kitching, Roger L; Klimes, Petr; Kluge, Jürgen; Longino, John T; Maunsell, Sarah C; McCain, Christy M; Moses, Jimmy; Noben, Sarah; Sam, Katerina; Sam, Legi; Shapiro, Arthur M; Wang, Xiangping; Novotny, Vojtech

    2016-09-01

    We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not itself explicitly mechanistic, this approach offers a path towards understanding mechanisms. In this study, we focused on the diverse patterns of species richness on mountainsides. We conjectured that elevational range midpoints of species may be drawn towards a single midpoint attractor - a unimodal gradient of environmental favourability. The midpoint attractor interacts with geometric constraints imposed by sea level and the mountaintop to produce taxon-specific patterns of species richness. We developed a Bayesian simulation model to estimate the location and strength of the midpoint attractor from species occurrence data sampled along mountainsides. We also constructed midpoint predictor models to test whether environmental variables could directly account for the observed patterns of species range midpoints. We challenged these models with 16 elevational data sets, comprising 4500 species of insects, vertebrates and plants. The midpoint predictor models generally failed to predict the pattern of species midpoints. In contrast, the midpoint attractor model closely reproduced empirical spatial patterns of species richness and range midpoints. Gradients of environmental favourability, subject to geometric constraints, may parsimoniously account for elevational and other patterns of species richness. PMID:27358193

  14. Addressing Concerns.

    ERIC Educational Resources Information Center

    Cronin, Greg; Helmig, Mary; Kaplan, Bill; Kosch, Sharon

    2002-01-01

    Four camp directors discuss how the September 11 tragedy and current world events will affect their camps. They describe how they are addressing safety concerns, working with parents, cooperating with outside agencies, hiring and screening international staff, and revising emergency plans. Camps must continue to offer community and support to…

  15. Abundance and phenology patterns of two pond-breeding salamanders determine species interactions in natural populations.

    PubMed

    Anderson, Thomas L; Hocking, Daniel J; Conner, Christopher A; Earl, Julia E; Harper, Elizabeth B; Osbourn, Michael S; Peterman, William E; Rittenhouse, Tracy A G; Semlitsch, Raymond D

    2015-03-01

    Phenology often determines the outcome of interspecific interactions, where early-arriving species often dominate interactions over those arriving later. The effects of phenology on species interactions are especially pronounced in aquatic systems, but the evidence is largely derived from experimental studies. We examined whether differences in breeding phenology between two pond-breeding salamanders (Ambystoma annulatum and A. maculatum) affected metamorph recruitment and demographic traits within natural populations, with the expectation that the fall-breeding A. annulatum would negatively affect the spring-breeding A. maculatum. We monitored populations of each species at five ponds over 4 years using drift fences. Metamorph abundance and survival of A. annulatum were affected by intra- and interspecific processes, whereas metamorph size and date of emigration were primarily influenced by intraspecific effects. Metamorph abundance, snout-vent length, date of emigration and survival for A. maculatum were all predicted by combinations of intra- and interspecific effects, but often showed negative relationships with A. annulatum metamorph traits and abundance. Size and date of metamorphosis were strongly correlated within each species, but in opposite patterns (negative for A. annulatum and positive for A. maculatum), suggesting that the two species use alternative strategies to enhance terrestrial survival and that these factors may influence their interactions. Our results match predictions from experimental studies that suggest recruitment is influenced by intra- and interspecific processes which are determined by phenological differences between species. Incorporating spatiotemporal variability when modeling population dynamics is necessary to understand the importance of phenology in species interactions, especially as shifts in phenology occur under climate change.

  16. Abundance and phenology patterns of two pond-breeding salamanders determine species interactions in natural populations.

    PubMed

    Anderson, Thomas L; Hocking, Daniel J; Conner, Christopher A; Earl, Julia E; Harper, Elizabeth B; Osbourn, Michael S; Peterman, William E; Rittenhouse, Tracy A G; Semlitsch, Raymond D

    2015-03-01

    Phenology often determines the outcome of interspecific interactions, where early-arriving species often dominate interactions over those arriving later. The effects of phenology on species interactions are especially pronounced in aquatic systems, but the evidence is largely derived from experimental studies. We examined whether differences in breeding phenology between two pond-breeding salamanders (Ambystoma annulatum and A. maculatum) affected metamorph recruitment and demographic traits within natural populations, with the expectation that the fall-breeding A. annulatum would negatively affect the spring-breeding A. maculatum. We monitored populations of each species at five ponds over 4 years using drift fences. Metamorph abundance and survival of A. annulatum were affected by intra- and interspecific processes, whereas metamorph size and date of emigration were primarily influenced by intraspecific effects. Metamorph abundance, snout-vent length, date of emigration and survival for A. maculatum were all predicted by combinations of intra- and interspecific effects, but often showed negative relationships with A. annulatum metamorph traits and abundance. Size and date of metamorphosis were strongly correlated within each species, but in opposite patterns (negative for A. annulatum and positive for A. maculatum), suggesting that the two species use alternative strategies to enhance terrestrial survival and that these factors may influence their interactions. Our results match predictions from experimental studies that suggest recruitment is influenced by intra- and interspecific processes which are determined by phenological differences between species. Incorporating spatiotemporal variability when modeling population dynamics is necessary to understand the importance of phenology in species interactions, especially as shifts in phenology occur under climate change. PMID:25413866

  17. Interactive effects of elevation, species richness and extreme climatic events on plant-pollinator networks.

    PubMed

    Hoiss, Bernhard; Krauss, Jochen; Steffan-Dewenter, Ingolf

    2015-11-01

    Plant-pollinator interactions are essential for the functioning of terrestrial ecosystems, but are increasingly affected by global change. The risks to such mutualistic interactions from increasing temperature and more frequent extreme climatic events such as drought or advanced snow melt are assumed to depend on network specialization, species richness, local climate and associated parameters such as the amplitude of extreme events. Even though elevational gradients provide valuable model systems for climate change and are accompanied by changes in species richness, responses of plant-pollinator networks to climatic extreme events under different environmental and biotic conditions are currently unknown. Here, we show that elevational climatic gradients, species richness and experimentally simulated extreme events interactively change the structure of mutualistic networks in alpine grasslands. We found that the degree of specialization in plant-pollinator networks (H2') decreased with elevation. Nonetheless, network specialization increased after advanced snow melt at high elevations, whereas changes in network specialization after drought were most pronounced at sites with low species richness. Thus, changes in network specialization after extreme climatic events depended on climatic context and were buffered by high species richness. In our experiment, only generalized plant-pollinator networks changed in their degree of specialization after climatic extreme events. This indicates that contrary to our assumptions, network generalization may not always foster stability of mutualistic interaction networks.

  18. Non-additive increases in sediment stability are generated by macroinvertebrate species interactions in laboratory streams.

    PubMed

    Albertson, Lindsey K; Cardinale, Bradley J; Sklar, Leonard S

    2014-01-01

    Previous studies have shown that biological structures such as plant roots can have large impacts on landscape morphodynamics, and that physical models that do not incorporate biology can generate qualitatively incorrect predictions of sediment transport. However, work to date has focused almost entirely on the impacts of single, usually dominant, species. Here we ask whether multiple, coexisting species of hydropsychid caddisfly larvae have different impacts on sediment mobility compared to single-species systems due to competitive interactions and niche differences. We manipulated the presence of two common species of net-spinning caddisfly (Ceratopsyche oslari, Arctopsyche californica) in laboratory mesocosms and measured how their silk filtration nets influence the critical shear stress required to initiate sediment grain motion when they were in monoculture versus polyculture. We found that critical shear stress increases non-additively in polycultures where species were allowed to interact. Critical shear stress was 26% higher in multi-species assemblages compared to the average single-species monoculture, and 21% greater than levels of stability achieved by the species having the largest impact on sediment motion in monoculture. Supplementary behavioral experiments suggest the non-additive increase in critical shear stress may have occurred as competition among species led to shifts in the spatial distribution of the two populations and complementary habitat use. To explore the implications of these results for field conditions, we used results from the laboratory study to parameterize a common model of sediment transport. We then used this model to estimate potential bed movement in a natural stream for which we had measurements of channel geometry, grain size, and daily discharge. Although this extrapolation is speculative, it illustrates that multi-species impacts could be sufficiently large to reduce bedload sediment flux over annual time scales in

  19. Non-Additive Increases in Sediment Stability Are Generated by Macroinvertebrate Species Interactions in Laboratory Streams

    PubMed Central

    Albertson, Lindsey K.; Cardinale, Bradley J.; Sklar, Leonard S.

    2014-01-01

    Previous studies have shown that biological structures such as plant roots can have large impacts on landscape morphodynamics, and that physical models that do not incorporate biology can generate qualitatively incorrect predictions of sediment transport. However, work to date has focused almost entirely on the impacts of single, usually dominant, species. Here we ask whether multiple, coexisting species of hydropsychid caddisfly larvae have different impacts on sediment mobility compared to single-species systems due to competitive interactions and niche differences. We manipulated the presence of two common species of net-spinning caddisfly (Ceratopsyche oslari, Arctopsyche californica) in laboratory mesocosms and measured how their silk filtration nets influence the critical shear stress required to initiate sediment grain motion when they were in monoculture versus polyculture. We found that critical shear stress increases non-additively in polycultures where species were allowed to interact. Critical shear stress was 26% higher in multi-species assemblages compared to the average single-species monoculture, and 21% greater than levels of stability achieved by the species having the largest impact on sediment motion in monoculture. Supplementary behavioral experiments suggest the non-additive increase in critical shear stress may have occurred as competition among species led to shifts in the spatial distribution of the two populations and complementary habitat use. To explore the implications of these results for field conditions, we used results from the laboratory study to parameterize a common model of sediment transport. We then used this model to estimate potential bed movement in a natural stream for which we had measurements of channel geometry, grain size, and daily discharge. Although this extrapolation is speculative, it illustrates that multi-species impacts could be sufficiently large to reduce bedload sediment flux over annual time scales in

  20. Habitat traits and species interactions differentially affect abundance and body size in pond-breeding amphibians.

    PubMed

    Ousterhout, Brittany H; Anderson, Thomas L; Drake, Dana L; Peterman, William E; Semlitsch, Raymond D

    2015-07-01

    In recent studies, habitat traits have emerged as stronger predictors of species occupancy, abundance, richness and diversity than competition. However, in many cases, it remains unclear whether habitat also mediates processes more subtle than competitive exclusion, such as growth, or whether intra- and interspecific interactions among individuals of different species may be better predictors of size. To test whether habitat traits are a stronger predictor of abundance and body size than intra- and interspecific interactions, we measured the density and body size of three species of larval salamanders in 192 ponds across a landscape. We found that the density of larvae was best predicted by models that included habitat features, while models incorporating interactions among individuals of different species best explained the body size of larvae. Additionally, we found a positive relationship between focal species density and congener density, while focal species body size was negatively related to congener density. We posit that salamander larvae may not experience competitive exclusion and thus reduced densities, but instead compensate for increased competition behaviourally (e.g. reduced foraging), resulting in decreased growth. The discrepancy between larval density and body size, a strong predictor of fitness in this system, also highlights a potential shortcoming in using density or abundance as a metric of habitat quality or population health. PMID:25643605

  1. Habitat traits and species interactions differentially affect abundance and body size in pond-breeding amphibians.

    PubMed

    Ousterhout, Brittany H; Anderson, Thomas L; Drake, Dana L; Peterman, William E; Semlitsch, Raymond D

    2015-07-01

    In recent studies, habitat traits have emerged as stronger predictors of species occupancy, abundance, richness and diversity than competition. However, in many cases, it remains unclear whether habitat also mediates processes more subtle than competitive exclusion, such as growth, or whether intra- and interspecific interactions among individuals of different species may be better predictors of size. To test whether habitat traits are a stronger predictor of abundance and body size than intra- and interspecific interactions, we measured the density and body size of three species of larval salamanders in 192 ponds across a landscape. We found that the density of larvae was best predicted by models that included habitat features, while models incorporating interactions among individuals of different species best explained the body size of larvae. Additionally, we found a positive relationship between focal species density and congener density, while focal species body size was negatively related to congener density. We posit that salamander larvae may not experience competitive exclusion and thus reduced densities, but instead compensate for increased competition behaviourally (e.g. reduced foraging), resulting in decreased growth. The discrepancy between larval density and body size, a strong predictor of fitness in this system, also highlights a potential shortcoming in using density or abundance as a metric of habitat quality or population health.

  2. Consequences of past climate change for species engaged in obligatory interactions

    NASA Astrophysics Data System (ADS)

    Blatrix, Rumsaïs; McKey, Doyle; Born, Céline

    2013-07-01

    Obligatory interactions between species are fundamental to ecosystem functioning and are expected to be particularly sensitive to climate change. Although the effect of past and current climate changes on individual species has been thoroughly investigated, their effect on obligatory interactions has been overlooked. In this review, we present predictions about the effects of climate change on obligatory interactions and illustrate these predictions with examples from the literature. We focus on abrupt past climate change, especially during the Quaternary, because knowing past responses is useful for understanding and predicting the response of organisms and ecosystems to the current climate change. We also pinpoint the need for better time calibration of demographic events from genetic data, and for more studies focused on particularly suitable biological models. We hope that this review will stimulate interaction between the earth sciences and the life sciences on this timely topic.

  3. Io's Interaction with the Plasma Torus: Multi-Species Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Šebek, Ondřej; Trávníček, Pavel; Walker, Raymond; Hellinger, Petr

    2016-04-01

    We present analysis of global 3-dimensional multi-species hybrid simulations of Io's interaction with Jovian magnetospheric plasma. In the multi-species simulations we assume five species, plasma torus is composed of O+, S+ and S++ ions and ions of SO+, SO2+ are created around Io by ionization of its neutral atmosphere. We consider several ionization processes, namely, charge exchange ionization and photoionization/electron impact ionization. We compare our results to data acquired in situ by the Galileo spacecraft. Our results are in a good qualitative agreement with the in situ magnetic field measurements made during Galileo's flybys around Io.

  4. Addressing healthcare.

    PubMed

    Daly, Rich

    2013-02-11

    Though President Barack Obama has rarely made healthcare references in his State of the Union addresses, health policy experts are hoping he changes that strategy this year. "The question is: Will he say anything? You would hope that he would, given that that was the major issue he started his presidency with," says Dr. James Weinstein, left, of the Dartmouth-Hitchcock health system. PMID:23487896

  5. Interactions between terrestrial mammals and the fruits of two neotropical rainforest tree species

    NASA Astrophysics Data System (ADS)

    Camargo-Sanabria, Angela A.; Mendoza, Eduardo

    2016-05-01

    Mammalian frugivory is a distinctive biotic interaction of tropical forests; however, most efforts in the Neotropics have focused on cases of animals foraging in the forest canopy, in particular primates and bats. In contrast much less is known about this interaction when it involves fruits deposited on the forest floor and terrestrial mammals. We conducted a camera-trapping survey to analyze the characteristics of the mammalian ensembles visiting fruits of Licania platypus and Pouteria sapota deposited on the forest floor in a well preserved tropical rainforest of Mexico. Both tree species produce large fruits but contrast in their population densities and fruit chemical composition. In particular, we expected that more species of terrestrial mammals would consume P. sapota fruits due to its higher pulp:seed ratio, lower availability and greater carbohydrate content. We monitored fruits at the base of 13 trees (P. sapota, n = 4 and L. platypus, n = 9) using camera-traps. We recorded 13 mammal species from which we had evidence of 8 consuming or removing fruits. These eight species accounted for 70% of the species of mammalian frugivores active in the forest floor of our study area. The ensemble of frugivores associated with L. platypus (6 spp.) was a subset of that associated with P. sapota (8 spp). Large body-sized species such as Tapirus bairdii, Pecari tajacu and Cuniculus paca were the mammals more frequently interacting with fruits of the focal species. Our results further our understanding of the characteristics of the interaction between terrestrial mammalian frugivores and large-sized fruits, helping to gain a more balanced view of its importance across different tropical forests and providing a baseline to compare against defaunated forests.

  6. Biotic Interactions Overrule Plant Responses to Climate, Depending on the Species' Biogeography

    PubMed Central

    Welk, Astrid; Welk, Erik; Bruelheide, Helge

    2014-01-01

    This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type) responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account. PMID:25356912

  7. Species interactions determine the spatial mortality patterns emerging in plant communities after extreme events

    PubMed Central

    Liao, Jinbao; Bogaert, Jan; Nijs, Ivan

    2015-01-01

    Gap disturbance is assumed to maintain species diversity by creating environmental heterogeneity. However, little is known about how interactions with neighbours, such as competition and facilitation, alter the emerging gap patterns after extreme events. Using a spatially explicit community model we demonstrate that negative interactions, especially intraspecific competition, greatly promote both average gap size and gap-size diversity relative to positive interspecific interaction. This suggests that competition would promote diversity maintenance but also increase community invasibility, as large gaps with a wide size variety provide more diverse niches for both local and exotic species. Under interspecific competition, both gap metrics interestingly increased with species richness, while they were reduced under intraspecific competition. Having a wider range of species interaction strengths led to a smaller average gap size only under intraspecific competition. Increasing conspecific clumping induced larger gaps with more variable sizes under intraspecific competition, in contrast to interspecific competition. Given the range of intraspecific clumping in real communities, models or experiments based on randomly synthesized communities may yield biased estimates of the opportunities for potential colonizers to fill gaps. Overall, our “static” model on gap formation offers perspectives to better predict recolonization opportunity and thus community secondary succession under extreme event regimes. PMID:26054061

  8. Dynamics of species interaction strength in space, time and with developmental stage.

    PubMed

    Kordas, Rebecca L; Dudgeon, Steve

    2011-06-22

    Quantifying species interaction strengths enhances prediction of community dynamics, but variability in the strength of species interactions in space and time complicates accurate prediction. Interaction strengths can vary in response to density, indirect effects, priority effects or a changing environment, but the mechanism(s) causing direction and magnitudes of change are often unclear. We designed an experiment to characterize how environmental factors influence the direction and the strength of priority effects between sessile species. We estimated per capita non-trophic effects of barnacles (Semibalanus balanoides) on newly settled germlings of the fucoid, Ascophyllum nodosum, in the presence and absence of consumers in experiments on rocky shores throughout the Gulf of Maine, USA. Per capita effects on germlings varied among environments and barnacle life stages, and these interaction strengths were largely unaltered by changing consumer abundance. Whereas previous evidence shows adult barnacles facilitate fucoids, here, we show that recent settlers and established juveniles initially compete with germlings. As barnacles mature, they switch to become facilitators of fucoids. Consumers caused variable mortality of germlings through time comparable to that from competition. Temporally variable effects of interactors (e.g. S. balanoides), or spatial variation in their population structure, in different regions differentially affect target populations (e.g. A. nodosum). This may affect abundance of critical stages and the resilience of target species to environmental change in different geographical regions.

  9. Dynamics of species interaction strength in space, time and with developmental stage.

    PubMed

    Kordas, Rebecca L; Dudgeon, Steve

    2011-06-22

    Quantifying species interaction strengths enhances prediction of community dynamics, but variability in the strength of species interactions in space and time complicates accurate prediction. Interaction strengths can vary in response to density, indirect effects, priority effects or a changing environment, but the mechanism(s) causing direction and magnitudes of change are often unclear. We designed an experiment to characterize how environmental factors influence the direction and the strength of priority effects between sessile species. We estimated per capita non-trophic effects of barnacles (Semibalanus balanoides) on newly settled germlings of the fucoid, Ascophyllum nodosum, in the presence and absence of consumers in experiments on rocky shores throughout the Gulf of Maine, USA. Per capita effects on germlings varied among environments and barnacle life stages, and these interaction strengths were largely unaltered by changing consumer abundance. Whereas previous evidence shows adult barnacles facilitate fucoids, here, we show that recent settlers and established juveniles initially compete with germlings. As barnacles mature, they switch to become facilitators of fucoids. Consumers caused variable mortality of germlings through time comparable to that from competition. Temporally variable effects of interactors (e.g. S. balanoides), or spatial variation in their population structure, in different regions differentially affect target populations (e.g. A. nodosum). This may affect abundance of critical stages and the resilience of target species to environmental change in different geographical regions. PMID:21106597

  10. Interaction between microalgal species richness and environmental variables in Peringalkuthu Reservoir, Western Ghats, Kerala.

    PubMed

    Nasser, K M Mohamed; Sureshkumar, S

    2013-11-01

    Microalgae are the most diverse group of aquatic organisms and are the primary food source for animals of higher trophic levels in the aquatic food web. Biomonitoring the fresh water habitats in terms of phycological evaluation provide useful information about the pollution status of the water body. The present investigation aimed to delineate the interaction between microalgal species richness and environmental variables in Peringalkuthu Reservoir of Western Ghats, Kerala. Samples were collected during 2009-2011 for the analysis of environmental variables and microalgal community. Ninety four species of microalgae belonged to 42 genera under the classes Chlorophyceae, Desmidiaceae, Bacillariophyceae, Cyanophyceae and Euglenophycea were recorded from the samples. The dominant groups were desmids followed by diatoms. Factor analysis and multivariate analysis were applied to evaluate the extent of interaction between the microalgal species richness and the environmental variables. Temperature, total alkalinity, BOD, phosphate, silicate and chloride showed positive relationship with the species richness of the microalgae. While pH, total hardness, nitrate, fluoride, calcium and magnesium hinder the microalgal species richness. Elucidation of the interactions between microalgae and various environmental parameters suggested a control over the anthropogenic interventions to the reservoir to check the conversion of the lake oligotrophic to eutrophic condition. PMID:24555328

  11. Deciphering microbial interactions and detecting keystone species with co-occurrence networks.

    PubMed

    Berry, David; Widder, Stefanie

    2014-01-01

    Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics. We then construct co-occurrence networks and evaluate how well networks reveal the underlying interactions and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets.

  12. Deciphering microbial interactions and detecting keystone species with co-occurrence networks.

    PubMed

    Berry, David; Widder, Stefanie

    2014-01-01

    Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics. We then construct co-occurrence networks and evaluate how well networks reveal the underlying interactions and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets. PMID:24904535

  13. Tempo and mode in fossil molluscs: Investigating organism-environment interactions, species, and speciation

    SciTech Connect

    Geary, D.H. )

    1992-01-01

    After 20 years of investigation into the tempo and mode of species-level change in the fossil record, it is clear that both punctuated equilibrium and phyletic gradualism occur, as do a variety of intermediate patterns. Important questions regarding the maintenance and diversification of species remain, however. The author documents a variety of evolutionary patterns from gastropods and bivalves, and uses these to discuss two basic issues: environment-organism interactions over time, and the importance of information on geographic variation. The tempo of morphological change is an expression of the interaction of organisms and their environment. The initial over which new species appear may be a geologic instant'' (Melanopsis gastropods), or may last 10[sup 4]--10[sup 5] years (Prunum gastropods), or 10[sup 6] years (Melanopsis). This wide range of intervals indicates a variety of tempos of environmental change, and/or different kinds of organismal responses. Analysis of geographic variation is of critical importance in understanding species and speciation, yet is lacking in many paleontological studies. An example of the utility of geographic information is a study of the muricid gastropod Acanthina, which demonstrates how a geographically localized form may spread through a species range. Another example involves a species of Pleuriocardia in stasis: geographic variation among roughly correlative samples greatly exceeds long-term temporal variation. Considerations of the mechanisms for stasis and change must take into account such intraspecific variation.

  14. Interaction between common organic acids and trace nucleation species in the Earth's atmosphere.

    PubMed

    Xu, Yisheng; Nadykto, Alexey B; Yu, Fangqun; Herb, J; Wang, Wei

    2010-01-14

    Atmospheric aerosols formed via nucleation in the Earth's atmosphere play an important role in the aerosol radiative forcing associated directly with global climate changes and public health. Although it is well-known that atmospheric aerosol particles contain organic species, the chemical nature of and physicochemical processes behind atmospheric nucleation involving organic species remain unclear. In the present work, the interaction of common organic acids with molecular weights of 122, 116, 134, 88, 136, and 150 (benzoic, maleic, malic, pyruvic, phenylacetic, and tartaric acids) with nucleation precursors and charged trace species has been investigated. We found a moderate strong effect of the organic species on the stability of neutral and charged ionic species. In most cases, the free energies of the mixed H(2)SO(4)-organic acid dimer formation are within 1-1.5 kcal mol(-1) of the (H(2)SO(4))(NH(3)) formation energy. The interaction of the organic acids with trace ionic species is quite strong, and the corresponding free energies far exceed those of the (H(3)O(+))(H(2)SO(4)) and (H(3)O(+))(H(2)SO(4))(2) formation. These considerations lead us to conclude that the aforementioned organic acids may possess a substantial capability of stabilizing both neutral and positively charged prenucleation clusters, and thus, they should be studied further with regard to their involvement in the gas-to-particle conversion in the Earth's atmosphere.

  15. Habitat-mediated carry-over effects lead to context-dependent outcomes of species interactions.

    PubMed

    Van Allen, Benjamin G; Rudolf, Volker H W

    2015-11-01

    When individuals disperse, their performance in newly colonized habitats can be influenced by the conditions they experienced in the past, leading to environmental carry-over effects. While carry-over effects are ubiquitous in animal and plant systems, their impact on species interactions and coexistence are largely ignored in traditional coexistence theory. Here we used a combination of modelling and experiments with two competing species to examine when and how such environmental carry-over effects influence community dynamics and competitive exclusions. We found that variation in the natal habitat quality of colonizing individuals created carry-over effects which altered competitive coefficients, fecundity and mortality rates, and extinction probabilities of both species. As a consequence, the dynamics of competitive exclusion within and across habitat types was contingent on the natal habitat of colonizing individuals, indicating that spatial carry-over effects can fundamentally alter the dynamics and outcome of interspecific competition. Interestingly, carry-over effects persistently influenced dynamics in systems with interspecific competition for the entire duration of the experiment while carry-over effects were transient and only influenced initial dynamics in single-species populations. Thus carry-over effects can be enhanced by species interactions, suggesting that their long-term effects may often not be accurately predicted by single-species studies. Given that carry-over effects are ubiquitous in heterogeneous landscapes, our results provide a novel mechanism that could help explain variation in the structure of natural communities.

  16. Conditions Promoting Mycorrhizal Parasitism Are of Minor Importance for Competitive Interactions in Two Differentially Mycotrophic Species

    PubMed Central

    Friede, Martina; Unger, Stephan; Hellmann, Christine; Beyschlag, Wolfram

    2016-01-01

    Interactions of plants with arbuscular mycorrhizal fungi (AMF) may range along a broad continuum from strong mutualism to parasitism, with mycorrhizal benefits received by the plant being determined by climatic and edaphic conditions affecting the balance between carbon costs vs. nutritional benefits. Thus, environmental conditions promoting either parasitism or mutualism can influence the mycorrhizal growth dependency (MGD) of a plant and in consequence may play an important role in plant-plant interactions. In a multifactorial field experiment we aimed at disentangling the effects of environmental and edaphic conditions, namely the availability of light, phosphorus and nitrogen, and the implications for competitive interactions between Hieracium pilosella and Corynephorus canescens for the outcome of the AMF symbiosis. Both species were planted in single, intraspecific and interspecific combinations using a target-neighbor approach with six treatments distributed along a gradient simulating conditions for the interaction between plants and AMF ranking from mutualistic to parasitic. Across all treatments we found mycorrhizal association of H. pilosella being consistently mutualistic, while pronounced parasitism was observed in C. canescens, indicating that environmental and edaphic conditions did not markedly affect the cost:benefit ratio of the mycorrhizal symbiosis in both species. Competitive interactions between both species were strongly affected by AMF, with the impact of AMF on competition being modulated by colonization. Biomass in both species was lowest when grown in interspecific competition, with colonization being increased in the less mycotrophic C. canescens, while decreased in the obligate mycotrophic H. pilosella. Although parasitism-promoting conditions negatively affected MGD in C. canescens, these effects were small as compared to growth decreases related to increased colonization levels in this species. Thus, the lack of plant control over

  17. Antagonistic interactions between an invasive alien and a native coccinellid species may promote coexistence.

    PubMed

    Hentley, William T; Vanbergen, Adam J; Beckerman, Andrew P; Brien, Melanie N; Hails, Rosemary S; Jones, T Hefin; Johnson, Scott N

    2016-07-01

    Despite the capacity of invasive alien species to alter ecosystems, the mechanisms underlying their impact remain only partly understood. Invasive alien predators, for example, can significantly disrupt recipient communities by consuming prey species or acting as an intraguild predator (IGP). Behavioural interactions are key components of interspecific competition between predators, yet these are often overlooked invasion processes. Here, we show how behavioural, non-lethal IGP interactions might facilitate the establishment success of an invading alien species. We experimentally assessed changes in feeding behaviour (prey preference and consumption rate) of native UK coccinellid species (Adalia bipunctata and Coccinella septempunctata), whose populations are, respectively, declining and stable, when exposed to the invasive intraguild predator, Harmonia axyridis. Using a population dynamics model parameterized with these experimental data, we predicted how intraguild predation, accommodating interspecific behavioural interactions, might impact the abundance of the native and invasive alien species over time. When competing for the same aphid resource, the feeding rate of A. bipunctata significantly increased compared to the feeding in isolation, while the feeding rate of H. axyridis significantly decreased. This suggests that despite significant declines in the UK, A. bipunctata is a superior competitor to the intraguild predator H. axyridis. In contrast, the behaviour of non-declining C. septempunctata was unaltered by the presence of H. axyridis. Our experimental data show the differential behavioural plasticity of competing native and invasive alien predators, but do not explain A. bipunctata declines observed in the UK. Using behavioural plasticity as a parameter in a population dynamic model for A. bipunctata and H. axyridis, coexistence is predicted between the native and invasive alien following an initial period of decline in the native species. We

  18. Antagonistic interactions between an invasive alien and a native coccinellid species may promote coexistence.

    PubMed

    Hentley, William T; Vanbergen, Adam J; Beckerman, Andrew P; Brien, Melanie N; Hails, Rosemary S; Jones, T Hefin; Johnson, Scott N

    2016-07-01

    Despite the capacity of invasive alien species to alter ecosystems, the mechanisms underlying their impact remain only partly understood. Invasive alien predators, for example, can significantly disrupt recipient communities by consuming prey species or acting as an intraguild predator (IGP). Behavioural interactions are key components of interspecific competition between predators, yet these are often overlooked invasion processes. Here, we show how behavioural, non-lethal IGP interactions might facilitate the establishment success of an invading alien species. We experimentally assessed changes in feeding behaviour (prey preference and consumption rate) of native UK coccinellid species (Adalia bipunctata and Coccinella septempunctata), whose populations are, respectively, declining and stable, when exposed to the invasive intraguild predator, Harmonia axyridis. Using a population dynamics model parameterized with these experimental data, we predicted how intraguild predation, accommodating interspecific behavioural interactions, might impact the abundance of the native and invasive alien species over time. When competing for the same aphid resource, the feeding rate of A. bipunctata significantly increased compared to the feeding in isolation, while the feeding rate of H. axyridis significantly decreased. This suggests that despite significant declines in the UK, A. bipunctata is a superior competitor to the intraguild predator H. axyridis. In contrast, the behaviour of non-declining C. septempunctata was unaltered by the presence of H. axyridis. Our experimental data show the differential behavioural plasticity of competing native and invasive alien predators, but do not explain A. bipunctata declines observed in the UK. Using behavioural plasticity as a parameter in a population dynamic model for A. bipunctata and H. axyridis, coexistence is predicted between the native and invasive alien following an initial period of decline in the native species. We

  19. Species response to environmental change: impacts of food web interactions and evolution.

    PubMed

    Harmon, Jason P; Moran, Nancy A; Ives, Anthony R

    2009-03-01

    How environmental change affects species abundances depends on both the food web within which species interact and their potential to evolve. Using field experiments, we investigated both ecological and evolutionary responses of pea aphids (Acyrthosiphon pisum), a common agricultural pest, to increased frequency of episodic heat shocks. One predator species ameliorated the decrease in aphid population growth with increasing heat shocks, whereas a second predator did not, with this contrast caused by behavioral differences between predators. We also compared aphid strains with stably inherited differences in heat tolerance caused by bacterial endosymbionts and showed the potential for rapid evolution for heat-shock tolerance. Our results illustrate how ecological and evolutionary complexities should be incorporated into predictions of the consequences of environmental change for species' populations.

  20. No species is an island: testing the effects of biotic interactions on models of avian niche occupation.

    PubMed

    Morelli, Federico; Tryjanowski, Piotr

    2015-02-01

    Traditionally, the niche of a species is described as a hypothetical 3D space, constituted by well-known biotic interactions (e.g. predation, competition, trophic relationships, resource-consumer interactions, etc.) and various abiotic environmental factors. Species distribution models (SDMs), also called "niche models" and often used to predict wildlife distribution at landscape scale, are typically constructed using abiotic factors with biotic interactions generally been ignored. Here, we compared the goodness of fit of SDMs for red-backed shrike Lanius collurio in farmlands of Western Poland, using both the classical approach (modeled only on environmental variables) and the approach which included also other potentially associated bird species. The potential associations among species were derived from the relevant ecological literature and by a correlation matrix of occurrences. Our findings highlight the importance of including heterospecific interactions in improving our understanding of niche occupation for bird species. We suggest that suite of measures currently used to quantify realized species niches could be improved by also considering the occurrence of certain associated species. Then, an hypothetical "species 1" can use the occurrence of a successfully established individual of "species 2" as indicator or "trace" of the location of available suitable habitat to breed. We hypothesize this kind of biotic interaction as the "heterospecific trace effect" (HTE): an interaction based on the availability and use of "public information" provided by individuals from different species. Finally, we discuss about the incomes of biotic interactions for enhancing the predictive capacities on species distribution models.

  1. Biodiversity and the Lotka-Volterra theory of species interactions: open systems and the distribution of logarithmic densities.

    PubMed

    Wilson, William G; Lundberg, Per

    2004-09-22

    Theoretical interest in the distributions of species abundances observed in ecological communities has focused recently on the results of models that assume all species are identical in their interactions with one another, and rely upon immigration and speciation to promote coexistence. Here we examine a one-trophic level system with generalized species interactions, including species-specific intraspecific and interspecific interaction strengths, and density-independent immigration from a regional species pool. Comparisons between results from numerical integrations and an approximate analytic calculation for random communities demonstrate good agreement, and both approaches yield abundance distributions of nearly arbitrary shape, including bimodality for intermediate immigration rates.

  2. Interaction of species traits and environmental disturbance predicts invasion success of aquatic microorganisms.

    PubMed

    Mächler, Elvira; Altermatt, Florian

    2012-01-01

    Factors such as increased mobility of humans, global trade and climate change are affecting the range of many species, and cause large-scale translocations of species beyond their native range. Many introduced species have a strong negative influence on the new local environment and lead to high economic costs. There is a strong interest to understand why some species are successful in invading new environments and others not. Most of our understanding and generalizations thereof, however, are based on studies of plants and animals, and little is known on invasion processes of microorganisms. We conducted a microcosm experiment to understand factors promoting the success of biological invasions of aquatic microorganisms. In a controlled lab experiment, protist and rotifer species originally isolated in North America invaded into a natural, field-collected community of microorganisms of European origin. To identify the importance of environmental disturbances on invasion success, we either repeatedly disturbed the local patches, or kept them as undisturbed controls. We measured both short-term establishment and long-term invasion success, and correlated it with species-specific life-history traits. We found that environmental disturbances significantly affected invasion success. Depending on the invading species' identity, disturbances were either promoting or decreasing invasion success. The interaction between habitat disturbance and species identity was especially pronounced for long-term invasion success. Growth rate was the most important trait promoting invasion success, especially when the species invaded into a disturbed local community. We conclude that neither species traits nor environmental factors alone conclusively predict invasion success, but an integration of both of them is necessary.

  3. Ecological opportunity and phenotypic plasticity interact to promote character displacement and species coexistence.

    PubMed

    Pfennig, David W; Rice, Amber M; Martin, Ryan A

    2006-03-01

    exploitable resources are available, character displacement is not guaranteed to transpire if species cannot utilize such resources expeditiously. Phenotypic plasticity provides a general and important mechanism for facilitating resource partitioning. Thus, by facilitating shifts in resource use, phenotypic plasticity and ecological opportunity may often interact to promote divergence and coexistence of competitors.

  4. Effects of geographical heterogeneity in species interactions on the evolution of venom genes.

    PubMed

    Chang, Dan; Olenzek, Amy M; Duda, Thomas F

    2015-04-22

    Geographical heterogeneity in the composition of biotic interactions can create a mosaic of selection regimes that may drive the differentiation of phenotypes that operate at the interface of these interactions. Nonetheless, little is known about effects of these geographical mosaics on the evolution of genes encoding traits associated with species interactions. Predatory marine snails of the family Conidae use venom, a cocktail of conotoxins, to capture prey. We characterized patterns of geographical variation at five conotoxin genes of a vermivorous species, Conus ebraeus, at Hawaii, Guam and American Samoa, and evaluated how these patterns of variation are associated with geographical heterogeneity in prey utilization. All populations show distinct patterns of prey utilization. Three 'highly polymorphic' conotoxin genes showed significant geographical differences in allelic frequency, and appear to be affected by different modes of selection among populations. Two genes exhibited low levels of diversity and a general lack of differentiation among populations. Levels of diversity of 'highly polymorphic' genes exhibit a positive relationship with dietary breadth. The different patterns of evolution exhibited by conotoxin genes suggest that these genes play different roles in prey capture, and that some genes are more greatly affected by differences in predator-prey interactions than others. Moreover, differences in dietary breadth appear to have a greater influence on the differentiation of venoms than differences in the species of prey. PMID:25788600

  5. Indirect trophic interactions with an invasive species affect phenotypic divergence in a top consumer.

    PubMed

    Hirsch, P E; Eklöv, P; Svanbäck, R

    2013-05-01

    While phenotypic responses to direct species interactions are well studied, we know little about the consequences of indirect interactions for phenotypic divergence. In this study we used lakes with and without the zebra mussel to investigate effects of indirect trophic interactions on phenotypic divergence between littoral and pelagic perch. We found a greater phenotypic divergence between littoral and pelagic individuals in lakes with zebra mussels and propose a mussel-mediated increase in pelagic and benthic resource availability as a major factor underlying this divergence. Lakes with zebra mussels contained higher densities of large plankton taxa and large invertebrates. We suggest that this augmented resource availability improved perch foraging opportunities in both the littoral and pelagic zones. Perch in both habitats could hence express a more specialized foraging morphology, leading to an increased divergence of perch forms in lakes with zebra mussels. As perch do not prey on mussels directly, we conclude that the increased divergence results from indirect interactions with the mussels. Our results hence suggest that species at lower food web levels can indirectly affect phenotypic divergence in species at the top of the food chain. PMID:23463242

  6. Effects of geographical heterogeneity in species interactions on the evolution of venom genes.

    PubMed

    Chang, Dan; Olenzek, Amy M; Duda, Thomas F

    2015-04-22

    Geographical heterogeneity in the composition of biotic interactions can create a mosaic of selection regimes that may drive the differentiation of phenotypes that operate at the interface of these interactions. Nonetheless, little is known about effects of these geographical mosaics on the evolution of genes encoding traits associated with species interactions. Predatory marine snails of the family Conidae use venom, a cocktail of conotoxins, to capture prey. We characterized patterns of geographical variation at five conotoxin genes of a vermivorous species, Conus ebraeus, at Hawaii, Guam and American Samoa, and evaluated how these patterns of variation are associated with geographical heterogeneity in prey utilization. All populations show distinct patterns of prey utilization. Three 'highly polymorphic' conotoxin genes showed significant geographical differences in allelic frequency, and appear to be affected by different modes of selection among populations. Two genes exhibited low levels of diversity and a general lack of differentiation among populations. Levels of diversity of 'highly polymorphic' genes exhibit a positive relationship with dietary breadth. The different patterns of evolution exhibited by conotoxin genes suggest that these genes play different roles in prey capture, and that some genes are more greatly affected by differences in predator-prey interactions than others. Moreover, differences in dietary breadth appear to have a greater influence on the differentiation of venoms than differences in the species of prey.

  7. Indirect trophic interactions with an invasive species affect phenotypic divergence in a top consumer.

    PubMed

    Hirsch, P E; Eklöv, P; Svanbäck, R

    2013-05-01

    While phenotypic responses to direct species interactions are well studied, we know little about the consequences of indirect interactions for phenotypic divergence. In this study we used lakes with and without the zebra mussel to investigate effects of indirect trophic interactions on phenotypic divergence between littoral and pelagic perch. We found a greater phenotypic divergence between littoral and pelagic individuals in lakes with zebra mussels and propose a mussel-mediated increase in pelagic and benthic resource availability as a major factor underlying this divergence. Lakes with zebra mussels contained higher densities of large plankton taxa and large invertebrates. We suggest that this augmented resource availability improved perch foraging opportunities in both the littoral and pelagic zones. Perch in both habitats could hence express a more specialized foraging morphology, leading to an increased divergence of perch forms in lakes with zebra mussels. As perch do not prey on mussels directly, we conclude that the increased divergence results from indirect interactions with the mussels. Our results hence suggest that species at lower food web levels can indirectly affect phenotypic divergence in species at the top of the food chain.

  8. Plant pollinator interactions: comparison between an invasive and a native congeneric species

    NASA Astrophysics Data System (ADS)

    Vanparys, Valérie; Meerts, Pierre; Jacquemart, Anne-Laure

    2008-11-01

    Plant-pollinator interactions determine reproductive success for animal-pollinated species and, in the case of invasive plants, they are supposed to play an important role in invasive success. We compared the invasive Senecio inaequidens to its native congener S. jacobaea in terms of interactions with pollinators. Visitor guild, visitation rate, and seed set were compared over 3 years in three sites in Belgium. Floral display (capitula number and arrangement) and phenology were quantified, and visiting insects were individually censused, i.e. number of visited capitula and time per visited capitulum. As expected from capitula resemblance, visitor guilds of both species were very similar (proportional similarity = 0.94). Senecio inaequidens was visited by 33 species, versus 36 for S. jacobaea. For both species, main visitors were Diptera, especially Syrphidae, and Hymenoptera. Visitation rate averaged 0.13 visitor per capitulum per 10 min for S. inaequidens against 0.08 for S. jacobaea. However, insects visited more capitula per plant on S. jacobaea, due to high capitula density (886 m -2 versus 206 m -2 for S. inaequidens), which is likely to increase self-pollen deposition considerably. Seed set of S. jacobaea was lower than that of S. inaequidens. We suggest that floral display is the major factor explaining the differences in insect visitation and seed set between the two Senecio species.

  9. Protein-protein interaction network-based detection of functionally similar proteins within species.

    PubMed

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent.

  10. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change

    USGS Publications Warehouse

    Wenger, S.J.; Isaak, D.J.; Luce, C.H.; Neville, H.M.; Fausch, K.D.; Dunham, J.B.; Dauwalter, D.C.; Young, M.K.; Elsner, M.M.; Rieman, B.E.; Hamlet, A.F.; Williams, J.E.

    2011-01-01

    Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species' physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations.

  11. Inaugural address

    NASA Astrophysics Data System (ADS)

    Joshi, P. S.

    2014-03-01

    From jets to cosmos to cosmic censorship P S Joshi Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India E-mail: psj@tifr.res.in 1. Introduction At the outset, I should like to acknowledge that part of the title above, which tries to capture the main flavour of this meeting, and has been borrowed from one of the plenary talks at the conference. When we set out to make the programme for the conference, we thought of beginning with observations on the Universe, but then we certainly wanted to go further and address deeper questions, which were at the very foundations of our inquiry, and understanding on the nature and structure of the Universe. I believe, we succeeded to a good extent, and it is all here for you in the form of these Conference Proceedings, which have been aptly titled as 'Vishwa Mimansa', which could be possibly translated as 'Analysis of the Universe'! It is my great pleasure and privilege to welcome you all to the ICGC-2011 meeting at Goa. The International Conference on Gravitation and Cosmology (ICGC) series of meetings are being organized by the Indian Association for General Relativity and Gravitation (IAGRG), and the first such meeting was planned and conducted in Goa in 1987, with subsequent meetings taking place at a duration of about four years at various locations in India. So, it was thought appropriate to return to Goa to celebrate the 25 years of the ICGC meetings. The recollections from that first meeting have been recorded elsewhere here in these Proceedings. The research and teaching on gravitation and cosmology was initiated quite early in India, by V V Narlikar at the Banares Hindu University, and by N R Sen in Kolkata in the 1930s. In course of time, this activity grew and gained momentum, and in early 1969, at the felicitation held for the 60 years of V V Narlikar at a conference in Ahmedabad, P C Vaidya proposed the formation of the IAGRG society, with V V Narlikar being the first President. This

  12. Interactive effects of elevated CO2 and precipitation change on leaf nitrogen of dominant Stipa L. species.

    PubMed

    Shi, Yaohui; Zhou, Guangsheng; Jiang, Yanling; Wang, Hui; Xu, Zhenzhu; Song, Jian

    2015-07-01

    Nitrogen (N) serves as an important mineral element affecting plant productivity and nutritional quality. However, few studies have addressed the interactive effects of elevated CO2 and precipitation change on leaf N of dominant grassland genera such as Stipa L. This has restricted our understanding of the responses of grassland to climate change. We simulated the interactive effects of elevated CO2 concentration and varied precipitation on leaf N concentration (Nmass) of four Stipa species (Stipa baicalensis, Stipa bungeana, Stipa grandis, and Stipa breviflora; the most dominant species in arid and semiarid grassland) using open-top chambers (OTCs). The relationship between the Nmass of these four Stipa species and precipitation well fits a logarithmic function. The sensitivity of these four species to precipitation change was ranked as follows: S. bungeana > S. breviflora > S. baicalensis > S. grandis. The Nmass of S. bungeana was the most sensitive to precipitation change, while S. grandis was the least sensitive among these Stipa species. Elevated CO2 exacerbated the effect of precipitation on Nmass. Nmass decreased under elevated CO2 due to growth dilution and a direct negative effect on N assimilation. Elevated CO2 reduced Nmass only in a certain precipitation range for S. baicalensis (163-343 mm), S. bungeana (164-355 mm), S. grandis (148-286 mm), and S. breviflora (130-316 mm); severe drought or excessive rainfall would be expected to result in a reduced impact of elevated CO2. Elevated CO2 affected the Nmass of S. grandis only in a narrow precipitation range. The effect of elevated CO2 reached a maximum when the amount of precipitation was 253, 260, 217, and 222 mm for S. baicalensis, S. bungeana, S. grandis, and S. breviflora, respectively. The Nmass of S. grandis was the least sensitive to elevated CO2. The Nmass of S. breviflora was more sensitive to elevated CO2 under a drought condition compared with the other Stipa species.

  13. Interactive effects of elevated CO2 and precipitation change on leaf nitrogen of dominant Stipa L. species

    PubMed Central

    Shi, Yaohui; Zhou, Guangsheng; Jiang, Yanling; Wang, Hui; Xu, Zhenzhu; Song, Jian

    2015-01-01

    Nitrogen (N) serves as an important mineral element affecting plant productivity and nutritional quality. However, few studies have addressed the interactive effects of elevated CO2 and precipitation change on leaf N of dominant grassland genera such as Stipa L. This has restricted our understanding of the responses of grassland to climate change. We simulated the interactive effects of elevated CO2 concentration and varied precipitation on leaf N concentration (Nmass) of four Stipa species (Stipa baicalensis, Stipa bungeana, Stipa grandis, and Stipa breviflora; the most dominant species in arid and semiarid grassland) using open-top chambers (OTCs). The relationship between the Nmass of these four Stipa species and precipitation well fits a logarithmic function. The sensitivity of these four species to precipitation change was ranked as follows: S. bungeana > S. breviflora > S. baicalensis > S. grandis. The Nmass of S. bungeana was the most sensitive to precipitation change, while S. grandis was the least sensitive among these Stipa species. Elevated CO2 exacerbated the effect of precipitation on Nmass. Nmass decreased under elevated CO2 due to growth dilution and a direct negative effect on N assimilation. Elevated CO2 reduced Nmass only in a certain precipitation range for S. baicalensis (163–343 mm), S. bungeana (164–355 mm), S. grandis (148–286 mm), and S. breviflora (130–316 mm); severe drought or excessive rainfall would be expected to result in a reduced impact of elevated CO2. Elevated CO2 affected the Nmass of S. grandis only in a narrow precipitation range. The effect of elevated CO2 reached a maximum when the amount of precipitation was 253, 260, 217, and 222 mm for S. baicalensis, S. bungeana, S. grandis, and S. breviflora, respectively. The Nmass of S. grandis was the least sensitive to elevated CO2. The Nmass of S. breviflora was more sensitive to elevated CO2 under a drought condition compared with the other Stipa

  14. Potential Role of Elicitins in the Interaction between Phytophthora Species and Tobacco

    PubMed Central

    Kamoun, Sophien; Young, Mary; Förster, Helga; Coffey, Michael D.; Tyler, Brett M.

    1994-01-01

    The potential role of extracellular elicitor proteins (elicitins) from Phytophthora species as avirulence factors in the interaction between Phytophthora and tobacco was examined. A survey of 85 Phytophthora isolates representing 14 species indicated that production of elicitin is almost ubiquitous except for isolates of Phytophthora parasitica from tobacco. The production of elicitins by isolates of P. parasitica correlated without exception with low or no virulence on tobacco. Genetic analysis was conducted by using a cross between two isolates of P. parasitica, segregating for production of elicitin and virulence on tobacco. Virulence assays of the progeny on tobacco confirmed the correlation between production of elicitin and low virulence. Images PMID:16349258

  15. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America.

    PubMed

    Harsch, Melanie A; HilleRisLambers, Janneke

    2016-01-01

    Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)-despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species' elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change. PMID:27447834

  16. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America.

    PubMed

    Harsch, Melanie A; HilleRisLambers, Janneke

    2016-01-01

    Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)-despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species' elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change.

  17. Tree species identity and interactions with neighbors determine nutrient leaching in model tropical forests.

    PubMed

    Ewel, John J; Bigelow, Seth W

    2011-12-01

    An ecosystem containing a mixture of species that differ in phenology, morphology, and physiology might be expected to resist leaching of soil nutrients to a greater extent than one composed of a single species. We tested the effects of species identity and plant-life-form richness on nutrient leaching at a lowland tropical site where deep infiltration averages >2 m year(-1). Three indigenous tree species with contrasting leafing phenologies (evergreen, dry-season deciduous, and wet-season deciduous) were grown in monoculture and together with two other life-forms with which they commonly occur in tropical forests: a palm and a giant, perennial herb. To calculate nutrient leaching over an 11-year period, concentrations of nutrients in soil water were multiplied by drainage rates estimated from a water balance. The effect of plant-life-form richness on retention differed according to tree species identity and nutrient. Nitrate retention was greater in polycultures of the dry-season deciduous tree species (mean of 7.4 kg ha(-1) year(-1) of NO(3)-N lost compared to 12.7 in monoculture), and calcium and magnesium retention were greater in polycultures of the evergreen and wet-season deciduous tree species. Complementary use of light led to intensification of soil exploitation by roots, the main agent responsible for enhanced nutrient retention in some polycultures. Other mechanisms included differences in nutrient demand among species, and avoidance of catastrophic failure due to episodic weather events or pest outbreaks. Even unrealistically simple multi-life-form mimics of tropical forest can safeguard a site's nutrient capital if careful attention is paid to species' characteristics and temporal changes in interspecific interactions. PMID:21691855

  18. Tree species identity and interactions with neighbors determine nutrient leaching in model tropical forests.

    PubMed

    Ewel, John J; Bigelow, Seth W

    2011-12-01

    An ecosystem containing a mixture of species that differ in phenology, morphology, and physiology might be expected to resist leaching of soil nutrients to a greater extent than one composed of a single species. We tested the effects of species identity and plant-life-form richness on nutrient leaching at a lowland tropical site where deep infiltration averages >2 m year(-1). Three indigenous tree species with contrasting leafing phenologies (evergreen, dry-season deciduous, and wet-season deciduous) were grown in monoculture and together with two other life-forms with which they commonly occur in tropical forests: a palm and a giant, perennial herb. To calculate nutrient leaching over an 11-year period, concentrations of nutrients in soil water were multiplied by drainage rates estimated from a water balance. The effect of plant-life-form richness on retention differed according to tree species identity and nutrient. Nitrate retention was greater in polycultures of the dry-season deciduous tree species (mean of 7.4 kg ha(-1) year(-1) of NO(3)-N lost compared to 12.7 in monoculture), and calcium and magnesium retention were greater in polycultures of the evergreen and wet-season deciduous tree species. Complementary use of light led to intensification of soil exploitation by roots, the main agent responsible for enhanced nutrient retention in some polycultures. Other mechanisms included differences in nutrient demand among species, and avoidance of catastrophic failure due to episodic weather events or pest outbreaks. Even unrealistically simple multi-life-form mimics of tropical forest can safeguard a site's nutrient capital if careful attention is paid to species' characteristics and temporal changes in interspecific interactions.

  19. Interaction of Species Traits and Environmental Disturbance Predicts Invasion Success of Aquatic Microorganisms

    PubMed Central

    Mächler, Elvira; Altermatt, Florian

    2012-01-01

    Factors such as increased mobility of humans, global trade and climate change are affecting the range of many species, and cause large-scale translocations of species beyond their native range. Many introduced species have a strong negative influence on the new local environment and lead to high economic costs. There is a strong interest to understand why some species are successful in invading new environments and others not. Most of our understanding and generalizations thereof, however, are based on studies of plants and animals, and little is known on invasion processes of microorganisms. We conducted a microcosm experiment to understand factors promoting the success of biological invasions of aquatic microorganisms. In a controlled lab experiment, protist and rotifer species originally isolated in North America invaded into a natural, field-collected community of microorganisms of European origin. To identify the importance of environmental disturbances on invasion success, we either repeatedly disturbed the local patches, or kept them as undisturbed controls. We measured both short-term establishment and long-term invasion success, and correlated it with species-specific life-history traits. We found that environmental disturbances significantly affected invasion success. Depending on the invading species’ identity, disturbances were either promoting or decreasing invasion success. The interaction between habitat disturbance and species identity was especially pronounced for long-term invasion success. Growth rate was the most important trait promoting invasion success, especially when the species invaded into a disturbed local community. We conclude that neither species traits nor environmental factors alone conclusively predict invasion success, but an integration of both of them is necessary. PMID:23028985

  20. Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: Future Suborbital Activities to Address Knowledge Gaps in Satellite and Model Assessments

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Wood, R.; Zuidema, P.; Haywood, J. M.; Piketh, S.; Formenti, P.; L'Ecuyer, T. S.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Shinozuka, Y.; LeBlanc, S. E.; Vaughan, M. A.; Schmidt, S.; Flynn, C. J.; Song, S.; Schmid, B.; Luna, B.; Abel, S.

    2015-12-01

    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. Our understanding of aerosol-cloud interactions in the SE Atlantic is hindered both by the lack of knowledge on aerosol and cloud properties, as well as the lack of knowledge about detailed physical processes involved. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling. Recent efforts to make full use of A-Train aerosol sensor synergies will be highlighted. We describe planned field campaigns in the region to address the existing knowledge gaps. Specifically, we describe the scientific objectives and implementation of the five synergistic, international research activities aimed at providing some of the key aerosol and cloud properties and a process-level understanding of aerosol-cloud interactions over the SE Atlantic: NASA

  1. Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: Future Suborbital Activities to Address Knowledge Gaps in Satellite and Model Assessments

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Wood, R.; Zuidema, P.; Haywood, J.; Piketh, S.; Formenti, P.; L'Ecuyer, T.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Shinozuka, Y.; LeBlanc, S.; Vaughan, M.; Schmidt, S.; Flynn, C.; Schmid, B.; Luna, B.; Abel, S.

    2016-01-01

    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. Our understanding of aerosol-cloud interactions in the SE Atlantic is hindered both by the lack of knowledge on aerosol and cloud properties, as well as the lack of knowledge about detailed physical processes involved. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling. Recent efforts to make full use of A-Train aerosol sensor synergies will be highlighted. We describe planned field campaigns in the region to address the existing knowledge gaps. Specifically, we describe the scientific objectives and implementation of the five synergistic, international research activities aimed at providing some of the key aerosol and cloud properties and a process-level understanding of aerosol-cloud interactions over the SE Atlantic: NASA

  2. Ulysses - an application for the projection of molecular interactions across species.

    PubMed

    Kemmer, Danielle; Huang, Yong; Shah, Sohrab P; Lim, Jonathan; Brumm, Jochen; Yuen, Macaire M S; Ling, John; Xu, Tao; Wasserman, Wyeth W; Ouellette, B F Francis

    2005-01-01

    We developed Ulysses as a user-oriented system that uses a process called Interolog Analysis for the parallel analysis and display of protein interactions detected in various species. Ulysses was designed to perform such Interolog Analysis by the projection of model organism interaction data onto homologous human proteins, and thus serves as an accelerator for the analysis of uncharacterized human proteins. The relevance of projections was assessed and validated against published reference collections. All source code is freely available, and the Ulysses system can be accessed via a web interface http://www.cisreg.ca/ulysses. PMID:16356269

  3. Ulysses - an application for the projection of molecular interactions across species.

    PubMed

    Kemmer, Danielle; Huang, Yong; Shah, Sohrab P; Lim, Jonathan; Brumm, Jochen; Yuen, Macaire M S; Ling, John; Xu, Tao; Wasserman, Wyeth W; Ouellette, B F Francis

    2005-01-01

    We developed Ulysses as a user-oriented system that uses a process called Interolog Analysis for the parallel analysis and display of protein interactions detected in various species. Ulysses was designed to perform such Interolog Analysis by the projection of model organism interaction data onto homologous human proteins, and thus serves as an accelerator for the analysis of uncharacterized human proteins. The relevance of projections was assessed and validated against published reference collections. All source code is freely available, and the Ulysses system can be accessed via a web interface http://www.cisreg.ca/ulysses.

  4. Opening Address

    NASA Astrophysics Data System (ADS)

    Yamada, T.

    2014-12-01

    Ladies and Gentlemen, it is my great honor and pleasure to present an opening address of the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3). On the behalf of the organizing committee, I certainly welcome all your visits to KGU Kannai Media Center belonging to Kanto Gakuin University, and stay in Yokohama. In particular, to whom come from abroad more than 17 countries, I would appreciate your participations after long long trips from your homeland to Yokohama. The first international workshop on "State of the Art in Nuclear Cluster Physics", called SOTANCP, was held in Strasbourg, France, in 2008, and the second one was held in Brussels, Belgium, in 2010. Then the third workshop is now held in Yokohama. In this period, we had the traditional 10th cluster conference in Debrecen, Hungary, in 2012. Thus we have the traditional cluster conference and SOTANCP, one after another, every two years. This obviously shows our field of nuclear cluster physics is very active and flourishing. It is for the first time in about 10 years to hold the international workshop on nuclear cluster physics in Japan, because the last cluster conference held in Japan was in Nara in 2003, about 10 years ago. The president in Nara conference was Prof. K. Ikeda, and the chairpersons were Prof. H. Horiuchi and Prof. I. Tanihata. I think, quite a lot of persons in this room had participated at the Nara conference. Since then, about ten years passed. So, this workshop has profound significance for our Japanese colleagues. The subjects of this workshop are to discuss "the state of the art in nuclear cluster physics" and also discuss the prospect of this field. In a couple of years, we saw significant progresses of this field both in theory and in experiment, which have brought better and new understandings on the clustering aspects in stable and unstable nuclei. I think, the concept of clustering has been more important than ever. This is true also in the

  5. Convocation address.

    PubMed

    Ghatowar, P S

    1993-07-01

    The Union Deputy Minister of Health and Family Welfare in India addressed the 35th convocation of the International Institute for Population Sciences in Bombay in 1993. Officials in developing countries have been concerned about population growth for more than 30 years and have instituted policies to reduce population growth. In the 1960s, population growth in developing countries was around 2.5%, but today it is about 2%. Despite this decline, the world will have 1 billion more individuals by the year 2001. 95% of these new people will be born in developing countries. India's population size is so great that India does not have the time to wait for development to reduce population growth. Population needs to be viewed as an integrated part of overall development, since it is linked to poverty, illiteracy, environmental damage, gender issues, and reproductive health. Despite a large population size, India has made some important advancements in health and family planning. For example, India has reduced population growth (to 2.14% annually between 1981-1991), infant mortality, and its birth rate. It has increased the contraceptive use rate and life expectancy. Its southern states have been more successful at achieving demographic goals than have the northern states. India needs to implement efforts to improve living conditions, to change attitudes and perceptions about small families and contraception, and to promote family planning acceptance earlier among young couples. Improvement of living conditions is especially important in India, since almost 33% of the people live in poverty. India needs to invest in nutrition, health, and education. The mass media and nongovernmental organizations need to create population awareness and demand for family planning services. Improvement in women's status accelerates fertility decline, as has happened in Kerala State. The government needs to facilitate generation of jobs. Community participation is needed for India to achieve

  6. Soil invertebrate/micro-invertebrate interactions: disproportionate effects of species on food web structure and function.

    PubMed

    Moore, J C; DeRuiter, P C; Hunt, H W

    1993-06-01

    The preservation of biodiversity requires an appreciation of food web structure and an understanding of how disturbance alters their structure and function. Theoretical and empirical studies of food webs demonstrate that food webs possess a regular structure. Food chain length appears limited to three to four transfers, and, complexity and diversity are constrained. When ecosystem energetics are considered, species within food webs are seen to form interactive assemblages that process matter at different rates and respond to disturbance differently. Disturbance may affect the diversity of a system, or, may influence the relative importance of one species assemblage over another. Moreover, predicting the impact of disturbance on a system is difficult as species that comprise and process a small fraction of the system's biomass may control a disproportionate fraction of the system's biomass and diversity. Seven food webs at four sites were used in a modeling exercise to demonstrate this point. Field studies involving the role of mycorrhizal fungi yielded results consistent with the modeling studies as the types of plant species present, the level of production and the diversity of production were related to the levels of mycorrhizal fungi in the soils following disturbance. The results indicate that all species are important to ecosystem structure and function and that the monitoring of ecosystems and conservation efforts should expand their emphasis to the preservation of ecosystem integrity as well as that of individual species.

  7. Two-species-coagulation approach to consensus by group level interactions

    SciTech Connect

    Escudero, Carlos; Macia, Fabricio

    2010-07-15

    We explore the self-organization dynamics of a set of entities by considering the interactions that affect the different subgroups conforming the whole. To this end, we employ the widespread example of coagulation kinetics, and characterize which interaction types lead to consensus formation and which do not, as well as the corresponding different macroscopic patterns. The crucial technical point is extending the usual one species coagulation dynamics to the two species one. This is achieved by means of introducing explicitly solvable kernels which have a clear physical meaning. The corresponding solutions are calculated in the long time limit, in which consensus may or may not be reached. The lack of consensus is characterized by means of scaling limits of the solutions. The possible applications of our results to some topics in which consensus reaching is fundamental, such as collective animal motion and opinion spreading dynamics, are also outlined.

  8. A Search for Nonstandard Neutron Spin Interactions using Dual Species Xenon Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Larsen, Michael; Mirijanian, James; Fu, Changbo; Yan, Haiyang; Smith, Erick; Snow, Mike; Walker, Thad

    2012-06-01

    NMR measurements using polarized noble gases can constrain possible exotic spin-dependent interactions involving nucleons. A differential measurement insensitive to magnetic field fluctuations can be performed using a mixture of two polarized species with different ratios of nucleon spin to magnetic moment. We used the NMR cell test station at Northrop Grumman Corporation (NGC) (developed to evaluate dual species xenon vapor cells for the Nuclear Magnetic Resonance Gyroscope) to search for NMR frequency shifts of xenon-129 and xenon-131 when a non-magnetic zirconia rod is modulated near the NMR cell. We simultaneously excited both Xe isotopes and detected free-induction-decay transients. In combination with theoretical calculations of the neutron spin contribution to the nuclear angular momentum, the measurements put a new upper bound on possible monopole-dipole interactions of the neutron for ranges around 1mm. This work is supported by the NGC Internal Research and Development (IRAD) funding, the Department of Energy, and the NSF.

  9. Soil nutrients, land use history and species composition interact to influence tropical N2 fixation

    NASA Astrophysics Data System (ADS)

    Batterman, S. A.; Hall, J.; Van Breugel, M.; Hedin, L. O.

    2011-12-01

    Symbiotic di-nitrogen fixation plays an important role in terrestrial biogeochemical cycles as it can bring in large quantities of nitrogen into ecosystems and provide the nitrogen required for individual plant growth in nitrogen limited environments. Of particular interest is how fixation interacts with nitrogen and phosphorus cycles in heterogeneous tropical forests. Recent advances on this topic using plants grown in a shadehouse show that the interaction of nitrogen and phosphorus control fixation at the level of individual plants and that plants adjust nutrient acquisition strategies with some successes at overcoming nutrient limitation on biomass growth depending on nutrient availability and the strategy employed (Batterman et al. unpublished). Exactly how these results translate to biodiverse tropical forests with heterogeneous resource availabilities and a history of land use disturbances, however, remains largely unresolved. We surveyed fixation across a chronosequence of forest stands in Panama that were at various stages of recovery from the abandonment of cattle pasture. Stands ranged in age from new secondary regrowth to mature forest. We examined nine common species of putative N2 fixing trees and lianas for nodulation, tree size, and abundance for four stands each of four forest ages to determine if species differ in strategies and function. In addition, we measured light availability to each tree and total and bioavailable phosphorus and nitrogen for each stand to examine the interactions of fixation with these biogeochemical cycles. Results were scaled to estimate stand level fixation. We found unique patterns in fixation that contrasted with predictions based on evidence of how fixation interacts with land use and biogeochemical cycles in extra-tropical forests. Soil nutrients showed unexpected patterns in availability across the chronosequence and interacted with fixation. Finally, species displayed distinct differences in temporal patterns in

  10. Multiple vs. single phytoplankton species alter stoichiometry of trophic interaction with zooplankton.

    PubMed

    Plum, Christoph; Hüsener, Matthias; Hillebrand, Helmut

    2015-11-01

    Despite the progress made in explaining trophic interactions through the stoichiometric interplay between consumers and resources, it remains unclear how the number of species in a trophic group influences the effects of elemental imbalances in food webs. Therefore, we conducted a laboratory experiment to test the hypothesis that multispecies producer assemblages alter the nutrient dynamics in a pelagic community. Four algal species were reared in mono- and polycultures under a 2 x 2 factorial combination of light and nutrient supply, thereby contrasting the stoichiometry of trophic interactions involving single vs. multiple producer species. After 9 d, these cultures were fed to the calanoid copepod Acartia tonsa, and we monitored biomass, resource use, and C:N:P stoichiometry in both phyto- and zooplankton. According to our expectations, light and N supply resulted in gradients of phytoplankton biomass and nutrient composition (C:N:P). Significant net diversity effects for algal biomass and C:N:P ratios reflected the greater responsiveness of the phytoplankton polyculture to altered resource supply compared to monocultures. These alterations of elemental ratios were common, and were partly triggered by changes in species frequency in the mixtures and partly by diversity-related changes in resource use. Copepod individual biomass increased under high light (HL) and N-reduced (-N) conditions, when food was high in C:N but low in C:P and N:P, whereas copepod growth was obviously P limited, and copepod stoichiometry was not affected by phytoplankton elemental composition. Correspondingly, copepod individual biomass reflected significant net diversity effects: compared to expectations- derived from monocultures, copepod individuals feeding on algal polycultures remained smaller than predicted under HL and N-sufficient (+N) conditions but grew larger than predicted under HL, -N and low light +N conditions. In conclusion, multiple producer species altered the

  11. Multiple vs. single phytoplankton species alter stoichiometry of trophic interaction with zooplankton.

    PubMed

    Plum, Christoph; Hüsener, Matthias; Hillebrand, Helmut

    2015-11-01

    Despite the progress made in explaining trophic interactions through the stoichiometric interplay between consumers and resources, it remains unclear how the number of species in a trophic group influences the effects of elemental imbalances in food webs. Therefore, we conducted a laboratory experiment to test the hypothesis that multispecies producer assemblages alter the nutrient dynamics in a pelagic community. Four algal species were reared in mono- and polycultures under a 2 x 2 factorial combination of light and nutrient supply, thereby contrasting the stoichiometry of trophic interactions involving single vs. multiple producer species. After 9 d, these cultures were fed to the calanoid copepod Acartia tonsa, and we monitored biomass, resource use, and C:N:P stoichiometry in both phyto- and zooplankton. According to our expectations, light and N supply resulted in gradients of phytoplankton biomass and nutrient composition (C:N:P). Significant net diversity effects for algal biomass and C:N:P ratios reflected the greater responsiveness of the phytoplankton polyculture to altered resource supply compared to monocultures. These alterations of elemental ratios were common, and were partly triggered by changes in species frequency in the mixtures and partly by diversity-related changes in resource use. Copepod individual biomass increased under high light (HL) and N-reduced (-N) conditions, when food was high in C:N but low in C:P and N:P, whereas copepod growth was obviously P limited, and copepod stoichiometry was not affected by phytoplankton elemental composition. Correspondingly, copepod individual biomass reflected significant net diversity effects: compared to expectations- derived from monocultures, copepod individuals feeding on algal polycultures remained smaller than predicted under HL and N-sufficient (+N) conditions but grew larger than predicted under HL, -N and low light +N conditions. In conclusion, multiple producer species altered the

  12. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change

    PubMed Central

    Wenger, Seth J.; Isaak, Daniel J.; Luce, Charles H.; Neville, Helen M.; Fausch, Kurt D.; Dunham, Jason B.; Dauwalter, Daniel C.; Young, Michael K.; Elsner, Marketa M.; Rieman, Bruce E.; Hamlet, Alan F.; Williams, Jack E.

    2011-01-01

    Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species’ physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations. PMID:21844354

  13. Welcome Address

    NASA Astrophysics Data System (ADS)

    Kiku, H.

    2014-12-01

    Ladies and Gentlemen, It is an honor for me to present my welcome address in the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3), as the president of Kanto Gakuin University. Particularly to those from abroad more than 17 countries, I am very grateful for your participation after long long trips from your home to Yokohama. On the behalf of the Kanto Gakuin University, we certainly welcome your visit to our university and stay in Yokohama. First I would like to introduce Kanto Gakuin University briefly. Kanto Gakuin University, which is called KGU, traces its roots back to the Yokohama Baptist Seminary founded in 1884 in Yamate, Yokohama. The seminary's founder was Albert Arnold Bennett, alumnus of Brown University, who came to Japan from the United States to establish a theological seminary for cultivating and training Japanese missionaries. Now KGU is a major member of the Kanto Gakuin School Corporation, which is composed of two kindergartens, two primary schools, two junior high schools, two senior high schools as well as KGU. In this university, we have eight faculties with graduate school including Humanities, Economics, Law, Sciences and Engineering, Architecture and Environmental Design, Human and Environmental Studies, Nursing, and Law School. Over eleven thousands students are currently learning in our university. By the way, my major is the geotechnical engineering, and I belong to the faculty of Sciences and Engineering in my university. Prof. T. Yamada, here, is my colleague in the same faculty. I know that the nuclear physics is one of the most active academic fields in the world. In fact, about half of the participants, namely, more than 50 scientists, come from abroad in this conference. Moreover, I know that the nuclear physics is related to not only the other fundamental physics such as the elementary particle physics and astrophysics but also chemistry, medical sciences, medical cares, and radiation metrology

  14. Species interactions regulate the collapse of biodiversity and ecosystem function in tropical forest fragments.

    PubMed

    Bregman, Tom P; Lees, Alexander C; Seddon, Nathalie; Macgregor, Hannah E A; Darski, Bianca; Aleixo, Alexandre; Bonsall, Michael B; Tobias, Joseph A

    2015-10-01

    Competitive interactions among species with similar ecological niches are known to regulate the assembly of biological communities. However, it is not clear whether such forms of competition can predict the collapse of communities and associated shifts in ecosystem function in the face of environmental change. Here, we use phylogenetic and functional trait data to test whether communities of two ecologically important guilds of tropical birds (frugivores and insectivores) are structured by species interactions in a fragmented Amazonian forest landscape. In both guilds, we found that forest patch size, quality, and degree of isolation influence the phylogenetic and functional trait structure of communities, with small, degraded, or isolated forest patches having an increased signature of competition (i.e., phylogenetic and functional trait overdispersion in relation to null models). These results suggest that local extinctions in the context of fragmentation are nonrandom, with a consistent bias toward more densely occupied regions of niche space. We conclude that the loss of biodiversity in fragmented landscapes is mediated by niche-based competitive interactions among species, with potentially far-reaching implications for key ecosystem processes, including seed dispersal and plant damage by phytophagous insects. PMID:26649390

  15. Species interactions regulate the collapse of biodiversity and ecosystem function in tropical forest fragments.

    PubMed

    Bregman, Tom P; Lees, Alexander C; Seddon, Nathalie; Macgregor, Hannah E A; Darski, Bianca; Aleixo, Alexandre; Bonsall, Michael B; Tobias, Joseph A

    2015-10-01

    Competitive interactions among species with similar ecological niches are known to regulate the assembly of biological communities. However, it is not clear whether such forms of competition can predict the collapse of communities and associated shifts in ecosystem function in the face of environmental change. Here, we use phylogenetic and functional trait data to test whether communities of two ecologically important guilds of tropical birds (frugivores and insectivores) are structured by species interactions in a fragmented Amazonian forest landscape. In both guilds, we found that forest patch size, quality, and degree of isolation influence the phylogenetic and functional trait structure of communities, with small, degraded, or isolated forest patches having an increased signature of competition (i.e., phylogenetic and functional trait overdispersion in relation to null models). These results suggest that local extinctions in the context of fragmentation are nonrandom, with a consistent bias toward more densely occupied regions of niche space. We conclude that the loss of biodiversity in fragmented landscapes is mediated by niche-based competitive interactions among species, with potentially far-reaching implications for key ecosystem processes, including seed dispersal and plant damage by phytophagous insects.

  16. Decreased competitive interactions drive a reverse species richness latitudinal gradient in subarctic forests.

    PubMed

    Marshall, Katie E; Baltzer, Jennifer L

    2015-02-01

    The tendency for species richness to decrease toward the poles is one of the best-characterized patterns in biogeography. The mechanisms behind this pattern have received much attention, yet very few studies have investigated very high-latitude communities. Here, using data from 134 permanent sample plots from 60 degrees to 68 degrees N, we show that boreal forest plant communities in northwestern Canada increase in richness toward the poles, despite a strong increase in climatic harshness. We hypothesized three possible explanations for this pattern: (1) historical biogeography, (2) reduced competition for light at high latitudes (biotic interactions), and (3) changes in soil characteristics with latitude. We used multidimensional scaling to investigate the community composition at each site and found no clustering of communities by latitude, suggesting that historical biogeography was not constraining site diversity. We then investigated the mechanisms behind this gradient using both abiotic (climate and soil) and biotic (tree stand characteristics) variables in a multiple factor analysis. We found that the best predictor of species richness is an environmental gradient that describes an inverse relationship between temperature and tree-stand density, suggesting that reduced competition for light due to reduced tree growth at low temperatures at higher latitudes allows greater species richness. This study shows that low energy availability and climatic harshness may not be limiting species richness toward the poles, rather, abiotic effects act instead on the strength of biotic interactions. PMID:26240867

  17. Decreased competitive interactions drive a reverse species richness latitudinal gradient in subarctic forests.

    PubMed

    Marshall, Katie E; Baltzer, Jennifer L

    2015-02-01

    The tendency for species richness to decrease toward the poles is one of the best-characterized patterns in biogeography. The mechanisms behind this pattern have received much attention, yet very few studies have investigated very high-latitude communities. Here, using data from 134 permanent sample plots from 60 degrees to 68 degrees N, we show that boreal forest plant communities in northwestern Canada increase in richness toward the poles, despite a strong increase in climatic harshness. We hypothesized three possible explanations for this pattern: (1) historical biogeography, (2) reduced competition for light at high latitudes (biotic interactions), and (3) changes in soil characteristics with latitude. We used multidimensional scaling to investigate the community composition at each site and found no clustering of communities by latitude, suggesting that historical biogeography was not constraining site diversity. We then investigated the mechanisms behind this gradient using both abiotic (climate and soil) and biotic (tree stand characteristics) variables in a multiple factor analysis. We found that the best predictor of species richness is an environmental gradient that describes an inverse relationship between temperature and tree-stand density, suggesting that reduced competition for light due to reduced tree growth at low temperatures at higher latitudes allows greater species richness. This study shows that low energy availability and climatic harshness may not be limiting species richness toward the poles, rather, abiotic effects act instead on the strength of biotic interactions.

  18. In vitro colony interactions among species of trichoderma with inference toward biological control. Forest Service research paper

    SciTech Connect

    Reaves, J.L.; Crawford, R.H.

    1994-07-01

    Colony of interactions among 15 isolates representing seven species of Trichoderma were evaluated in vitro interactions characterized by zones of inhibition, demarcation lines, ridges of conidia, overgrowth, intermingling, anastomosis, and hyphal coiling in self-pairings and intraspecific and interspecific pairings of the seven species were recorded. Antagnostic interactions such as zones of inhibition were prevelent in these pairings. An understanding of the compatibility between species of isolates of Trichoderma will provide information on the use of multiple species of Trichoderma as biological control agents.

  19. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America

    PubMed Central

    Harsch, Melanie A.; HilleRisLambers, Janneke

    2016-01-01

    Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)–despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species’ elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change. PMID:27447834

  20. The Importance of Interspecific Interactions on the Present Range of the Invasive Mosquito Aedes albopictus (Diptera: Culicidae) and Persistence of Resident Container Species in the United States.

    PubMed

    Fader, Joseph E

    2016-09-01

    Aedes albopictus (Skuse) established in the United States over 30 yr ago and quickly spread throughout the entire eastern half of the country. It has recently spread into western regions and projected climate change scenarios suggest continued expansion to the west and north. Aedes albopictus has had major impacts on, and been impacted by, a diverse array of resident mosquito species. Laying eggs at the edges of small, water-holding containers, hatched larvae develop within these containers feeding on detritus-based resources. Under limited resource conditions, Ae. albopictus has been shown to be a superior competitor to essentially all native and resident species in the United States. Adult males also mate interspecifically with at least one resident species with significant negative impacts on reproductive output for susceptible females. Despite these strong interference effects on sympatric species, competitor outcomes have been highly variable, ranging from outright local exclusion by Ae. albopictus, to apparent exclusion of Ae. albopictus in the presence of the same species. Context-dependent mechanisms that alter the relative strengths of inter- and intraspecific competition, as well as rapid evolution of satyrization-resistant females, may help explain these patterns of variable coexistence. Although there is a large body of research on interspecific interactions of Ae. albopictus in the United States, there remain substantial gaps in our understanding of the most important species interactions. Addressing these gaps is important in predicting the future distribution of this species and understanding consequences for resident species, including humans, that interact with this highly invasive mosquito.

  1. The Importance of Interspecific Interactions on the Present Range of the Invasive Mosquito Aedes albopictus (Diptera: Culicidae) and Persistence of Resident Container Species in the United States.

    PubMed

    Fader, Joseph E

    2016-09-01

    Aedes albopictus (Skuse) established in the United States over 30 yr ago and quickly spread throughout the entire eastern half of the country. It has recently spread into western regions and projected climate change scenarios suggest continued expansion to the west and north. Aedes albopictus has had major impacts on, and been impacted by, a diverse array of resident mosquito species. Laying eggs at the edges of small, water-holding containers, hatched larvae develop within these containers feeding on detritus-based resources. Under limited resource conditions, Ae. albopictus has been shown to be a superior competitor to essentially all native and resident species in the United States. Adult males also mate interspecifically with at least one resident species with significant negative impacts on reproductive output for susceptible females. Despite these strong interference effects on sympatric species, competitor outcomes have been highly variable, ranging from outright local exclusion by Ae. albopictus, to apparent exclusion of Ae. albopictus in the presence of the same species. Context-dependent mechanisms that alter the relative strengths of inter- and intraspecific competition, as well as rapid evolution of satyrization-resistant females, may help explain these patterns of variable coexistence. Although there is a large body of research on interspecific interactions of Ae. albopictus in the United States, there remain substantial gaps in our understanding of the most important species interactions. Addressing these gaps is important in predicting the future distribution of this species and understanding consequences for resident species, including humans, that interact with this highly invasive mosquito. PMID:27354436

  2. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens

    PubMed Central

    Giaouris, Efstathios; Heir, Even; Desvaux, Mickaël; Hébraud, Michel; Møretrø, Trond; Langsrud, Solveig; Doulgeraki, Agapi; Nychas, George-John; Kačániová, Miroslava; Czaczyk, Katarzyna; Ölmez, Hülya; Simões, Manuel

    2015-01-01

    A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety. PMID:26347727

  3. Species- and cell type-specific interactions between CD47 and human SIRPα

    PubMed Central

    Subramanian, Shyamsundar; Parthasarathy, Ranganath; Sen, Shamik; Boder, Eric T.; Discher, Dennis E.

    2006-01-01

    CD47 on red blood cells (RBCs) reportedly signals “self” by binding SIRPα on phagocytes, at least in mice. Such interactions across and within species, from mouse to human, are not yet clear and neither is the relation to cell adhesion. Using human SIRPα1 as a probe, antibody-inhibitable binding to CD47 was found only with human and pig RBCs (not mouse, rat, or cow). In addition, CD47-mediated adhesion of human and pig RBCs to SIRPα1 surfaces resists sustained forces in centrifugation (as confirmed by atomic force microscopy) but only at SIRPα-coating densities far above those measurable on human neutrophils, monocytes, and THP-1 macrophages. While interactions strengthen with deglycosylation of SIRPα1, low copy numbers explain the absence of RBC adhesion to phagocytes under physiologic conditions and imply that the interaction being studied is not responsible for red cell clearance in humans. Evidence of clustering nonetheless suggests mechanisms of avidity enhancement. Finally, using the same CD47 antibodies and soluble SIRPα1, bone marrow-derived mesenchymal stem cells were assayed and found to display CD47 but not bind SIRPα1 significantly. The results thus demonstrate that SIRPα-CD47 interactions, which reportedly define self, exhibit cell type specificity and limited cross-species reactivity. (Blood. 2006;107:2548-2556) PMID:16291597

  4. Species- and cell type-specific interactions between CD47 and human SIRPalpha.

    PubMed

    Subramanian, Shyamsundar; Parthasarathy, Ranganath; Sen, Shamik; Boder, Eric T; Discher, Dennis E

    2006-03-15

    CD47 on red blood cells (RBCs) reportedly signals "self" by binding SIRPalpha on phagocytes, at least in mice. Such interactions across and within species, from mouse to human, are not yet clear and neither is the relation to cell adhesion. Using human SIRPalpha1 as a probe, antibody-inhibitable binding to CD47 was found only with human and pig RBCs (not mouse, rat, or cow). In addition, CD47-mediated adhesion of human and pig RBCs to SIRPalpha1 surfaces resists sustained forces in centrifugation (as confirmed by atomic force microscopy) but only at SIRPalpha-coating densities far above those measurable on human neutrophils, monocytes, and THP-1 macrophages. While interactions strengthen with deglycosylation of SIRPalpha1, low copy numbers explain the absence of RBC adhesion to phagocytes under physiologic conditions and imply that the interaction being studied is not responsible for red cell clearance in humans. Evidence of clustering nonetheless suggests mechanisms of avidity enhancement. Finally, using the same CD47 antibodies and soluble SIRPalpha1, bone marrow-derived mesenchymal stem cells were assayed and found to display CD47 but not bind SIRPalpha1 significantly. The results thus demonstrate that SIRPalpha-CD47 interactions, which reportedly define self, exhibit cell type specificity and limited cross-species reactivity.

  5. Spatio-temporal dynamics of a three interacting species mathematical model inspired in physics

    NASA Astrophysics Data System (ADS)

    Sánchez-Garduño, Faustino; Breña-Medina, Víctor F.

    2008-02-01

    In this paper we study both, analytically and numerically, the spatio-temporal dynamics of a three interacting species mathematical model. The populations take the form of pollinators, a plant and herbivores; the model consists of three nonlinear reaction-diffusion-advection equations. In view of considering the full model, as a previous step we firstly analyze a mutualistic interaction (pollinator-plant), later on a predator-prey (plant-herbivore) interaction model is studied and finally, we consider the full model. In all cases, the purely temporal dynamics is given; meanwhile for the spatio-temporal dynamics, we use numerical simulations, corresponding to those parameter values for which we obtain interesting temporal dynamics.

  6. Genetic interactions underlying hybrid male sterility in the Drosophila bipectinata species complex.

    PubMed

    Mishra, Paras Kumar; Singh, Bashisth Narayan

    2006-06-01

    Understanding genetic mechanisms underlying hybrid male sterility is one of the most challenging problems in evolutionary biology especially speciation. By using the interspecific hybridization method roles of Y chromosome, Major Hybrid Sterility (MHS) genes and cytoplasm in sterility of hybrid males have been investigated in a promising group, the Drosophila bipectinata species complex that consists of four closely related species: D. pseudoananassae, D. bipectinata, D. parabipectinata and D. malerkotliana. The interspecific introgression analyses show that neither cytoplasm nor MHS genes are involved but X-Y interactions may be playing major role in hybrid male sterility between D. pseudoananassae and the other three species. The results of interspecific introgression analyses also show considerable decrease in the number of males in the backcross offspring and all males have atrophied testes. There is a significant positive correlation between sex - ratio distortion and severity of sterility in backcross males. These findings provide evidence that D. pseudoananassae is remotely related with other three species of the D. bipectinata species complex.

  7. Identification of Subnanometric Ag Species, Their Interaction with Supports and Role in Catalytic CO Oxidation.

    PubMed

    Kotolevich, Yulia; Kolobova, Ekaterina; Khramov, Evgeniy; Cabrera Ortega, Jesús Efren; Farías, Mario H; Zubavichus, Yan; Zanella, Rodolfo; Mota-Morales, Josué D; Pestryakov, Alexey; Bogdanchikova, Nina; Cortés Corberán, Vicente

    2016-04-22

    The nature and size of the real active species of nanoparticulated metal supported catalysts is still an unresolved question. The technique of choice to measure particle sizes at the nanoscale, HRTEM, has a practical limit of 1 nm. This work is aimed to identify the catalytic role of subnanometer species and methods to detect and characterize them. In this frame, we investigated the sensitivity to redox pretreatments of Ag/Fe/TiO₂, Ag/Mg/TiO₂ and Ag/Ce/TiO₂ catalysts in CO oxidation. The joint application of HRTEM, SR-XRD, DRS, XPS, EXAFS and XANES methods indicated that most of the silver in all samples is in the form of Ag species with size <1 nm. The differences in catalytic properties and sensitivity to pretreatments, observed for the studied Ag catalysts, could not be explained taking into account only the Ag particles whose size distribution is measured by HRTEM, but may be explained by the presence of the subnanometer Ag species, undetectable by HRTEM, and their interaction with supports. This result highlights their role as active species and the need to take them into account to understand integrally the catalysis by supported nanometals.

  8. Identification of Subnanometric Ag Species, Their Interaction with Supports and Role in Catalytic CO Oxidation.

    PubMed

    Kotolevich, Yulia; Kolobova, Ekaterina; Khramov, Evgeniy; Cabrera Ortega, Jesús Efren; Farías, Mario H; Zubavichus, Yan; Zanella, Rodolfo; Mota-Morales, Josué D; Pestryakov, Alexey; Bogdanchikova, Nina; Cortés Corberán, Vicente

    2016-01-01

    The nature and size of the real active species of nanoparticulated metal supported catalysts is still an unresolved question. The technique of choice to measure particle sizes at the nanoscale, HRTEM, has a practical limit of 1 nm. This work is aimed to identify the catalytic role of subnanometer species and methods to detect and characterize them. In this frame, we investigated the sensitivity to redox pretreatments of Ag/Fe/TiO₂, Ag/Mg/TiO₂ and Ag/Ce/TiO₂ catalysts in CO oxidation. The joint application of HRTEM, SR-XRD, DRS, XPS, EXAFS and XANES methods indicated that most of the silver in all samples is in the form of Ag species with size <1 nm. The differences in catalytic properties and sensitivity to pretreatments, observed for the studied Ag catalysts, could not be explained taking into account only the Ag particles whose size distribution is measured by HRTEM, but may be explained by the presence of the subnanometer Ag species, undetectable by HRTEM, and their interaction with supports. This result highlights their role as active species and the need to take them into account to understand integrally the catalysis by supported nanometals. PMID:27110757

  9. Plant-pollinator interactions and floral convergence in two species of Heliconia from the Caribbean Islands.

    PubMed

    Martén-Rodríguez, Silvana; Kress, W John; Temeles, Ethan J; Meléndez-Ackerman, Elvia

    2011-12-01

    Variation in interspecific interactions across geographic space is a potential driver of diversification and local adaptation. This study quantitatively examined variation in floral phenotypes and pollinator service of Heliconia bihai and H. caribaea across three Antillean islands. The prediction was that floral characters would correspond to the major pollinators of these species on each island. Analysis of floral phenotypes revealed convergence among species and populations of Heliconia from the Greater Antilles. All populations of H. caribaea were similar, characterized by long nectar chambers and short corolla tubes. In contrast, H. bihai populations were strongly divergent: on Dominica, H. bihai had flowers with short nectar chambers and long corollas, whereas on Hispaniola, H. bihai flowers resembled those of H. caribaea with longer nectar chambers and shorter corolla tubes. Morphological variation in floral traits corresponded with geographic differences or similarities in the major pollinators on each island. The Hispaniolan mango, Anthracothorax dominicus, is the principal pollinator of both H. bihai and H. caribaea on Hispaniola; thus, the similarity of floral phenotypes between Heliconia species suggests parallel selective regimes imposed by the principal pollinator. Likewise, divergence between H. bihai populations from Dominica and Hispaniola corresponded with differences in the pollinators visiting this species on the two islands. The study highlights the putative importance of pollinator-mediated selection as driving floral convergence and the evolution of locally-adapted plant variants across a geographic mosaic of pollinator species.

  10. Edges in agricultural landscapes: species interactions and movement of natural enemies.

    PubMed

    Macfadyen, Sarina; Muller, Warren

    2013-01-01

    Agricultural landscapes can be characterized as a mosaic of habitat patches interspersed with hostile matrix, or as a gradient of patches ranging from suitable to unsuitable for different species. Arthropods moving through these landscapes encounter a range of edges, with different permeability. Patches of native vegetation in these landscapes may support natural enemies of crop pests by providing alternate hosts for parasitic wasps and/or acting as a source for predatory insects. We test this by quantifying species interactions and measuring movement across different edge-types. A high diversity of parasitoid species used hosts in the native vegetation patches, however we recorded few instances of the same parasitoid species using hosts in both the native vegetation and the crop (canola). However, we did find overall greater densities of parasitoids moving from native vegetation into the crop. Of the parasitoid groups examined, parasitoids of aphids (Braconidae: Aphidiinae) frequently moved from native vegetation into canola. In contrast, parasitoids of caterpillars (Braconidae: Microgastrinae) moved commonly from cereal fields into canola. Late season samples showed both aphids and parasitoids moving frequently out of native vegetation, in contrast predators moved less commonly from native vegetation (across the whole season). The season-long net advantage or disadvantage of native vegetation for pest control services is therefore difficult to evaluate. It appears that the different edge-types alter movement patterns of natural enemies more so than herbivorous pest species, and this may impact pest control services. PMID:23555737

  11. Edges in agricultural landscapes: species interactions and movement of natural enemies.

    PubMed

    Macfadyen, Sarina; Muller, Warren

    2013-01-01

    Agricultural landscapes can be characterized as a mosaic of habitat patches interspersed with hostile matrix, or as a gradient of patches ranging from suitable to unsuitable for different species. Arthropods moving through these landscapes encounter a range of edges, with different permeability. Patches of native vegetation in these landscapes may support natural enemies of crop pests by providing alternate hosts for parasitic wasps and/or acting as a source for predatory insects. We test this by quantifying species interactions and measuring movement across different edge-types. A high diversity of parasitoid species used hosts in the native vegetation patches, however we recorded few instances of the same parasitoid species using hosts in both the native vegetation and the crop (canola). However, we did find overall greater densities of parasitoids moving from native vegetation into the crop. Of the parasitoid groups examined, parasitoids of aphids (Braconidae: Aphidiinae) frequently moved from native vegetation into canola. In contrast, parasitoids of caterpillars (Braconidae: Microgastrinae) moved commonly from cereal fields into canola. Late season samples showed both aphids and parasitoids moving frequently out of native vegetation, in contrast predators moved less commonly from native vegetation (across the whole season). The season-long net advantage or disadvantage of native vegetation for pest control services is therefore difficult to evaluate. It appears that the different edge-types alter movement patterns of natural enemies more so than herbivorous pest species, and this may impact pest control services.

  12. Electrocommunication behaviour during social interactions in two species of pulse-type weakly electric fishes (Mormyridae).

    PubMed

    Gebhardt, K; Böhme, M; von der Emde, G

    2012-12-01

    This study compares electrocommunication behaviour in groups of freely swimming weakly electric fishes of two species, Marcusenius altisambesi and Mormyrus rume. Animals emitted variable temporal sequences of stereotyped electric organ discharges (EOD) that served as communication signals. While the waveform of individual signals remained constant, the inter-discharge interval (IDI) patterns conveyed situation-specific information. Both species showed different types of group behaviour, e.g. they engaged in collective (group) foraging. The results show that in each species, during different behavioural conditions (resting, foraging and agonistic encounters), certain situation-specific IDI patterns occurred. In both species, neighbouring fishes swimming closely together interacted electrically by going in and out of synchronization episodes, i.e. periods of temporally correlated EOD production. These often resulted in echo responses between neighbours. During group foraging, fishes often signalled in a repetitive fixed order (fixed-order signalling). During foraging, EOD emission rates of M. altisambesi were higher and more regular than those of M. rume. The two species also differed in the quantity of group behaviours with M. altisambesi being more social than M. rume, which was reflected in the lack of specific agonistic IDI patterns, more fixed-order signalling and more communal resting behaviour in M. altisambesi.

  13. Derivation of Pitzer Interaction Parameters for an Aqueous Species Pair of FeCitrate- and Mg2+

    NASA Astrophysics Data System (ADS)

    Jang, J.; Olivas, T.; Nemer, M.

    2013-12-01

    The Waste Isolation Pilot Plant (WIPP) is a deep underground repository for the disposal of transuranic (TRU) radioactive waste developed by the U.S. Department of Energy (DOE). The WIPP is located within the bedded salts of the Permian Salado Formation, which consists of interbedded halite and anhydrite layers overlaying the Castile Formation. The waste includes, but is not limited to, the salts of citric acid and iron. To calculate the solution chemistry for brines of WIPP-relevance, WIPP Performance Assessment (PA) employs the Pitzer formulation to determine the activity coefficients of aqueous species in brine. The current WIPP thermodynamic database, however, does not include iron species and their Pitzer parameters, in spite of the fact that there will be a large amount of iron in the WIPP. Iron would be emplaced as part of the waste, as well as the containers for the waste. The objective of this analysis is to derive the Pitzer binary interaction parameters for the pair of Mg2+ and FeCitrate-. Briefly, an aqueous model for dissolution of Fe(OH)2(s) in MgNa2Citrate solution was fitted to the experimentally measured solubility data. The aqueous model consists of several chemical reactions and related Pitzer interaction parameters. Specifically, Pitzer binary interaction parameters for the Mg2+ and FeCitrate- pair (β(0), β(1), and Cφ) were fitted to the experimental data. Anoxic gloveboxes were used to keep the oxygen level low (less than 6 ppm) throughout the experiments. Aging time was more than 800 days to ensure equilibrium. EQ3NR packaged in EQ3/6 v.8.0a calculates the aqueous speciation and saturation index using an aqueous model addressed in EQ3/6's database. The saturation index indicates how far the system is from equilibrium with respect to the solid of interest. Thus, the smaller the sum of squared saturation indices that the aqueous model calculates for the given number of experiments, the more closely the model attributes equilibrium to each

  14. Opening Address

    NASA Astrophysics Data System (ADS)

    Crovini, L.

    1994-01-01

    Ladies and Gentlemen To quote Mr Jean Terrien: "Physics must be one step ahead of metrology". A long-serving Director of the BIPM, he said these words when visiting the IMGC in 1970 as a member of the scientific board of our Institute. At that time it was still an open question whether the IMGC should start research work on the absolute measurement of silicon lattice spacing. Mr Terrien underlined the revolutionary character of x-ray interferometry and, eventually, he caused the balance needle to lean towards the ... right direction. Mr Terrien correctly foresaw that, like Michelson's interferometer of 1880, x-ray interferometry could have a prominent place in today's science and technology. And while, in the first case, after more than a century we can see instruments based on electromagnetic wave interaction within every one's reach in laboratories and, sometimes, in workshops, in the second case, twenty-five years since the first development of an x-ray interferometer we can witness its role in nanometrology. Today and tomorrow we meet to discuss how to go beyond the sixth decimal place in the value of the Avogadro constant. We are aware that the quest for this achievement requires the cooperation of scientists with complementary capabilities. I am sure that the present workshop is a very good opportunity to present and discuss results and to improve and extend existing cooperation. The new adjustment of fundamental constants envisaged by the CODATA Task Group is redoubling scientists' efforts to produce competitive values of NA. The results of the measurements of the silicon lattice spacing in terms of an optical wavelength, which were available for the 1986 adjustment, combined with the determination of silicon molar volume, demonstrate how such an NA determination produces a consistent set of other constants and opens the way to a possible redefinition of the kilogram. We shall see in these two days how far we have progressed along this road. For us at the

  15. Species distribution models contribute to determine the effect of climate and interspecific interactions in moving hybrid zones.

    PubMed

    Engler, J O; Rödder, D; Elle, O; Hochkirch, A; Secondi, J

    2013-11-01

    Climate is a major factor delimiting species' distributions. However, biotic interactions may also be prominent in shaping geographical ranges, especially for parapatric species forming hybrid zones. Determining the relative effect of each factor and their interaction of the contact zone location has been difficult due to the lack of broad scale environmental data. Recent developments in species distribution modelling (SDM) now allow disentangling the relative contributions of climate and species' interactions in hybrid zones and their responses to future climate change. We investigated the moving hybrid zone between the breeding ranges of two parapatric passerines in Europe. We conducted SDMs representing the climatic conditions during the breeding season. Our results show a large mismatch between the realized and potential distributions of the two species, suggesting that interspecific interactions, not climate, account for the present location of the contact zone. The SDM scenarios show that the southerly distributed species, Hippolais polyglotta, might lose large parts of its southern distribution under climate change, but a similar gain of novel habitat along the hybrid zone seems unlikely, because interactions with the other species (H. icterina) constrain its range expansion. Thus, whenever biotic interactions limit range expansion, species may become 'trapped' if range loss due to climate change is faster than the movement of the contact zone. An increasing number of moving hybrid zones are being reported, but the proximate causes of movement often remain unclear. In a global context of climate change, we call for more interest in their interactions with climate change.

  16. Arsenic species interactions with a porous carbon electrode as determined with an electrochemical quartz crystal microbalance

    PubMed Central

    Morallón, Emilia; Arias-Pardilla, Joaquín; Calo, J.M.; Cazorla-Amorós, D.

    2009-01-01

    The interactions of arsenic species with platinum and porous carbon electrodes were investigated with an electrochemical quartz crystal microbalance (EQCM) and cyclic voltammetry in alkaline solutions. It is shown that the redox reactions in arsenic-containing solutions, due to arsenic reduction/deposition, oxidation/desorption, and electrocatalyzed oxidation by Pt can be readily distinguished with the EQCM. This approach was used to show that the arsenic redox reactions on the carbon electrode are mechanistically similar to that on the bare Pt electrode. This could not be concluded with just classical cyclic voltammetry alone due to the obfuscation of the faradaic features by the large capacitative effects of the carbon double layer. For the porous carbon electrode, a continual mass loss was always observed during potential cycling, with or without arsenic in the solution. This was attributed to electrogasification of the carbon. The apparent mass loss per cycle was observed to decrease with increasing arsenic concentration due to a net mass increase in adsorbed arsenic per cycle that increased with arsenic concentration, offsetting the carbon mass loss. Additional carbon adsorption sites involved in arsenic species interactions are created during electrogasification, thereby augmenting the net uptake of arsenic per cycle. It is demonstrated that EQCM, and in particular the information given by the behavior of the time derivative of the mass vs. potential, or massogram, is very useful for distinguishing arsenic species interactions with carbon electrodes. It may also prove to be effective for investigating redox/adsorption/desorption behavior of other species in solution with carbon materials as well. PMID:20161369

  17. Arsenic species interactions with a porous carbon electrode as determined with an electrochemical quartz crystal microbalance.

    PubMed

    Morallón, Emilia; Arias-Pardilla, Joaquín; Calo, J M; Cazorla-Amorós, D

    2009-06-30

    The interactions of arsenic species with platinum and porous carbon electrodes were investigated with an electrochemical quartz crystal microbalance (EQCM) and cyclic voltammetry in alkaline solutions. It is shown that the redox reactions in arsenic-containing solutions, due to arsenic reduction/deposition, oxidation/desorption, and electrocatalyzed oxidation by Pt can be readily distinguished with the EQCM. This approach was used to show that the arsenic redox reactions on the carbon electrode are mechanistically similar to that on the bare Pt electrode. This could not be concluded with just classical cyclic voltammetry alone due to the obfuscation of the faradaic features by the large capacitative effects of the carbon double layer.For the porous carbon electrode, a continual mass loss was always observed during potential cycling, with or without arsenic in the solution. This was attributed to electrogasification of the carbon. The apparent mass loss per cycle was observed to decrease with increasing arsenic concentration due to a net mass increase in adsorbed arsenic per cycle that increased with arsenic concentration, offsetting the carbon mass loss. Additional carbon adsorption sites involved in arsenic species interactions are created during electrogasification, thereby augmenting the net uptake of arsenic per cycle.It is demonstrated that EQCM, and in particular the information given by the behavior of the time derivative of the mass vs. potential, or massogram, is very useful for distinguishing arsenic species interactions with carbon electrodes. It may also prove to be effective for investigating redox/adsorption/desorption behavior of other species in solution with carbon materials as well.

  18. Tropical Plant–Herbivore Networks: Reconstructing Species Interactions Using DNA Barcodes

    PubMed Central

    García-Robledo, Carlos; Erickson, David L.; Staines, Charles L.; Erwin, Terry L.; Kress, W. John

    2013-01-01

    Plants and their associated insect herbivores, represent more than 50% of all known species on earth. The first step in understanding the mechanisms generating and maintaining this important component of biodiversity is to identify plant-herbivore associations. In this study we determined insect-host plant associations for an entire guild of insect herbivores using plant DNA extracted from insect gut contents. Over two years, in a tropical rain forest in Costa Rica (La Selva Biological Station), we recorded the full diet breadth of rolled-leaf beetles, a group of herbivores that feed on plants in the order Zingiberales. Field observations were used to determine the accuracy of diet identifications using a three-locus DNA barcode (rbcL, trnH-psbA and ITS2). Using extraction techniques for ancient DNA, we obtained high-quality sequences for two of these loci from gut contents (rbcL and ITS2). Sequences were then compared to a comprehensive DNA barcode library of the Zingiberales. The rbcL locus identified host plants to family (success/sequence = 58.8%) and genus (success/sequence = 47%). For all Zingiberales except Heliconiaceae, ITS2 successfully identified host plants to genus (success/sequence = 67.1%) and species (success/sequence = 61.6%). Kindt’s sampling estimates suggest that by collecting ca. four individuals representing each plant-herbivore interaction, 99% of all host associations included in this study can be identified to genus. For plants that amplified ITS2, 99% of the hosts can be identified to species after collecting at least four individuals representing each interaction. Our study demonstrates that host plant identifications at the species-level using DNA barcodes are feasible, cost-effective, and reliable, and that reconstructing plant-herbivore networks with these methods will become the standard for a detailed understanding of these interactions. PMID:23308128

  19. Tropical plant-herbivore networks: reconstructing species interactions using DNA barcodes.

    PubMed

    García-Robledo, Carlos; Erickson, David L; Staines, Charles L; Erwin, Terry L; Kress, W John

    2013-01-01

    Plants and their associated insect herbivores, represent more than 50% of all known species on earth. The first step in understanding the mechanisms generating and maintaining this important component of biodiversity is to identify plant-herbivore associations. In this study we determined insect-host plant associations for an entire guild of insect herbivores using plant DNA extracted from insect gut contents. Over two years, in a tropical rain forest in Costa Rica (La Selva Biological Station), we recorded the full diet breadth of rolled-leaf beetles, a group of herbivores that feed on plants in the order Zingiberales. Field observations were used to determine the accuracy of diet identifications using a three-locus DNA barcode (rbcL, trnH-psbA and ITS2). Using extraction techniques for ancient DNA, we obtained high-quality sequences for two of these loci from gut contents (rbcL and ITS2). Sequences were then compared to a comprehensive DNA barcode library of the Zingiberales. The rbcL locus identified host plants to family (success/sequence = 58.8%) and genus (success/sequence = 47%). For all Zingiberales except Heliconiaceae, ITS2 successfully identified host plants to genus (success/sequence = 67.1%) and species (success/sequence = 61.6%). Kindt's sampling estimates suggest that by collecting ca. four individuals representing each plant-herbivore interaction, 99% of all host associations included in this study can be identified to genus. For plants that amplified ITS2, 99% of the hosts can be identified to species after collecting at least four individuals representing each interaction. Our study demonstrates that host plant identifications at the species-level using DNA barcodes are feasible, cost-effective, and reliable, and that reconstructing plant-herbivore networks with these methods will become the standard for a detailed understanding of these interactions.

  20. Tree species diversity interacts with elevated CO2 to induce a greater root system response.

    PubMed

    Smith, Andrew R; Lukac, Martin; Bambrick, Michael; Miglietta, Franco; Godbold, Douglas L

    2013-01-01

    As a consequence of land-use change and the burning of fossil fuels, atmospheric concentrations of CO2 are increasing and altering the dynamics of the carbon cycle in forest ecosystems. In a number of studies using single tree species, fine root biomass has been shown to be strongly increased by elevated CO2 . However, natural forests are often intimate mixtures of a number of co-occurring species. To investigate the interaction between tree mixture and elevated CO2 , Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of single species and a three species polyculture in a free-air CO2 enrichment study (BangorFACE). The trees were exposed to ambient or elevated CO2 (580 μmol mol(-1) ) for 4 years. Fine and coarse root biomass, together with fine root turnover and fine root morphological characteristics were measured. Fine root biomass and morphology responded differentially to the elevated CO2 at different soil depths in the three species when grown in monocultures. In polyculture, a greater response to elevated CO2 was observed in coarse roots to a depth of 20 cm, and fine root area index to a depth of 30 cm. Total fine root biomass was positively affected by elevated CO2 at the end of the experiment, but not by species diversity. Our data suggest that existing biogeochemical cycling models parameterized with data from species grown in monoculture may be underestimating the belowground response to global change. PMID:23504733

  1. Molybdenum accumulation, tolerance and molybdenum-selenium-sulfur interactions in Astragalus selenium hyperaccumulator and nonaccumulator species.

    PubMed

    DeTar, Rachael Ann; Alford, Élan R; Pilon-Smits, Elizabeth A H

    2015-07-01

    Some species hyperaccumulate selenium (Se) upwards of 0.1% of dry weight. This study addressed whether Se hyperaccumulators also accumulate and tolerate more molybdenum (Mo). A field survey revealed on average 2-fold higher Mo levels in three hyperaccumulator Astragali compared to three nonaccumulator Astragali, which were not significantly different. Next, a controlled study was performed where hyperaccumulators Astragalus racemosus and Astragalus bisulcatus were compared with nonaccumulators Astragalus drummondii and Astragalus convallarius for Mo accumulation and tolerance, alone or in the presence of Se. When grown on agar media with 0, 12, 24 or 48 mg L(-1) molybdate and/or 0, 1.6 or 3.2 mg L(-1) selenate, all species decreased in biomass with increasing Mo supply. Selenium did not impact biomass at the supplied levels. All Astragali accumulated Mo upwards of 0.1% of dry weight. Selenium levels were up to 0.08% in Astragalus racemosus and 0.04% Se in the other species. Overall, there was no correlation between Se hyperaccumulation and Mo accumulation capacity. However, the hyperaccumulators and nonaccumulators differed in some respects. While none of the species had a higher tissue Mo to sulfur (S) ratio than the growth medium, nonaccumulators had a higher Mo/S ratio than hyperaccumulators. Also, while molybdate and selenate reduced S accumulation in nonaccumulators, it did not in hyperaccumulators. Furthermore, A. racemosus had a higher Se/S ratio than its medium, while the other species did not. Additionally, Mo and Se treatment affected S levels in nonaccumulators, but not in hyperaccumulators. In conclusion, there is no evidence of a link between Se and Mo accumulation and tolerance in Astragalus. Sulfate transporters in hyperaccumulating Astragali appear to have higher sulfate specificity over other oxyanions, compared to nonaccumulators, and A. racemosus may have a transporter with enhanced selenate specificity relative to sulfate or molybdate.

  2. Interaction of selenite with reduced Fe and/or S species: An XRD and XAS study

    NASA Astrophysics Data System (ADS)

    Finck, Nicolas; Dardenne, Kathy

    2016-05-01

    In this study, we investigated the interaction between selenite and either Fe(II)aq or S(- II)aq in solution, and the results were used to investigate the interaction between Se(IV)aq and FeS in suspension. The reaction products were characterized by a combination of methods (SEM, XRD and XAS) and the reaction mechanisms were identified. In a first experiment, Se(IV)aq was reduced to Se(0) by interaction with Fe(II)aq which was oxidized to Fe(III), but the reaction was only partial. Subsequently, some Fe(III) produced akaganeite (β-FeOOH) and the release of proton during that reaction decreased the pH. The pH decrease changed the Se speciation in solution which hindered further Se(IV) reduction by Fe(II)aq. In a second experiment, Se(IV)aq was quantitatively reduced to Se(0) by S(- II)aq and the reaction was fast. Two sulfide species were needed to reduce one Se(IV), and the observed pH increase was due to a proton consumption. For both experiments, experimental results are consistent with expectations based on the oxidation reduction potential of the various species. Upon interaction with FeS, Se(IV)aq was reduced to Se(0) and minute amounts of pyrite were detected, a consequence of partial mackinawite oxidation at surface sulfur sites. These results are of prime importance with respect to safe deep disposal of nuclear waste which contains the long-lived radionuclide 79Se. This study shows that after release of 79Se(IV) upon nuclear waste matrix corrosion, selenite can be reduced in the near field to low soluble Se(0) by interaction with Fe(II)aq and/or S(- II)aq species. Because the solubility of Se(0) species is significantly lower than that of Se(IV), selenium will become much less (bio)available and its migration out of deep HLW repositories may be drastically hindered.

  3. Evolution of mutualism between species

    SciTech Connect

    Post, W.M.; Travis, C.C.; DeAngelis, D.L.

    1980-01-01

    Recent theoretical work on mutualism, the interaction between species populations that is mutually beneficial, is reviewed. Several ecological facts that should be addressed in the construction of dynamic models for mutualism are examined. Basic terminology is clarified. (PSB)

  4. Medicago truncatula gene responses specific to arbuscular mycorrhiza interactions with different species and genera of Glomeromycota.

    PubMed

    Massoumou, M; van Tuinen, D; Chatagnier, O; Arnould, C; Brechenmacher, L; Sanchez, L; Selim, S; Gianinazzi, S; Gianinazzi-Pearson, V

    2007-05-01

    Plant genes exhibiting common responses to different arbuscular mycorrhizal (AM) fungi and not induced under other biological conditions have been sought for to identify specific markers for monitoring the AM symbiosis. A subset of 14 candidate Medicago truncatula genes was identified as being potentially mycorrhiza responsive in previous cDNA microarray analyses and exclusive to cDNA libraries derived from mycorrhizal root tissues. Transcriptional activity of the selected plant genes was compared during root interactions with seven AM fungi belonging to different species of Glomus, Acaulospora, Gigaspora, or Scutellospora, and under widely different biological conditions (mycorrhiza, phosphate fertilization, pathogenic/beneficial microbe interactions, incompatible plant genotype). Ten of the M. truncatula genes were commonly induced by all the tested AM fungal species, and all were activated by at least two fungi. Most of the plant genes were transcribed uniquely in mycorrhizal roots, and several were already active at the appressorium stage of fungal development. Novel data provide evidence that common recognition responses to phylogenetically different Glomeromycota exist in plants during events that are unique to mycorrhiza interactions. They indicate that plants should possess a mycorrhiza-specific genetic program which is comodulated by a broad spectrum of AM fungi.

  5. Characterizing species interactions to understand press perturbations: What is the community matrix?

    USGS Publications Warehouse

    Novak, Mark; Yeakel, Justin D.; Noble, Andrew E.; Doak, Daniel F.; Emmerson, Mark; Estes, James A.; Jacob, Ute; Tinker, M. Tim; Wootton, J. Timothy

    2016-01-01

    The community matrix is among ecology's most important mathematical abstractions, formally encapsulating the interconnected network of effects that species have on one another's populations. Despite its importance, the term `community matrix' has been applied to matrices having differing interpretations. This has hindered the application of theory for understanding community structure and perturbation responses, particularly in the contexts of ecosystem-based management and conservation. Here we clarify the correspondence and distinctions between the Interaction matrix, the Alpha matrix and the Jacobian matrix, terms which are frequently used interchangeably and have numerous synonyms, including the term Community matrix. We illustrate how these matrices correspond to different ways of characterizing interaction strengths, how they permit insights regarding different types of press perturbations of species growth rates or abundances, and how these are related by a simple scaling relationship. Connections to additional interaction strength characterizations encapsulated by the Beta matrix, the Gamma matrix, and the Removal matrix are also discussed. Our synthesis highlights the empirical challenges that remain in using these mathematical tools to understand actual communities.

  6. Interactions between ecosystem engineers: A native species indirectly facilitates a non-native one

    NASA Astrophysics Data System (ADS)

    Sueiro, María Cruz; Schwindt, Evangelina; Mendez, María Martha (Pitu); Bortolus, Alejandro

    2013-08-01

    The positive impact that native species have on the survival, persistence and/or range-expansion of invasive species, is receiving increasing attention from ecologists and land managers trying to better understand and predict future invasions worldwide. Ecosystem engineers are among the best-known model organisms for such studies. The austral cordgrass Spartina densiflora is an ecosystem engineer native to South America coast, where it colonizes rocky shores that were recently successfully invaded by the acorn barnacle Balanus glandula. We conducted a field experiment combining living Spartina transplants and artificial model plants in order to address the following questions: Does the native ecosystem engineer S. densiflora facilitate the invasion of rocky shores by B. glandula? If so, how much of this facilitation is caused by its physical structure alone? We found that S. densiflora had a positive effect on the invasive barnacle by trapping among its stems, the mussels, shells and gravels where B. glandula settles. Dislodged mussels, cobbles, and small shells covered and agglutinated by living barnacles were retained within the aboveground structures of S. densiflora while the control plots (without living or artificial plant structures) remained mostly bare throughout the experiment, showing how plant structures speed the colonization process. Moreover, transplanting living Spartina and artificial Spartina models led to a maximum increase in the area covered by barnacles of more than 1700% relative to the unvegetated control plots. Our study clearly shows how a native ecosystem engineers can enhance the success of invasive species and facilitate their local spread.

  7. Chasing Ecological Interactions.

    PubMed

    Jordano, Pedro

    2016-09-01

    Basic research on biodiversity has concentrated on individual species-naming new species, studying distribution patterns, and analyzing their evolutionary relationships. Yet biodiversity is more than a collection of individual species; it is the combination of biological entities and processes that support life on Earth. To understand biodiversity we must catalog it, but we must also assess the ways species interact with other species to provide functional support for the Tree of Life. Ecological interactions may be lost well before the species involved in those interactions go extinct; their ecological functions disappear even though they remain. Here, I address the challenges in studying the functional aspects of species interactions and how basic research is helping us address the fast-paced extinction of species due to human activities.

  8. Chasing Ecological Interactions.

    PubMed

    Jordano, Pedro

    2016-09-01

    Basic research on biodiversity has concentrated on individual species-naming new species, studying distribution patterns, and analyzing their evolutionary relationships. Yet biodiversity is more than a collection of individual species; it is the combination of biological entities and processes that support life on Earth. To understand biodiversity we must catalog it, but we must also assess the ways species interact with other species to provide functional support for the Tree of Life. Ecological interactions may be lost well before the species involved in those interactions go extinct; their ecological functions disappear even though they remain. Here, I address the challenges in studying the functional aspects of species interactions and how basic research is helping us address the fast-paced extinction of species due to human activities. PMID:27631692

  9. No species is an island: testing the effects of biotic interactions on models of avian niche occupation

    PubMed Central

    Morelli, Federico; Tryjanowski, Piotr

    2015-01-01

    Traditionally, the niche of a species is described as a hypothetical 3D space, constituted by well-known biotic interactions (e.g. predation, competition, trophic relationships, resource–consumer interactions, etc.) and various abiotic environmental factors. Species distribution models (SDMs), also called “niche models” and often used to predict wildlife distribution at landscape scale, are typically constructed using abiotic factors with biotic interactions generally been ignored. Here, we compared the goodness of fit of SDMs for red-backed shrike Lanius collurio in farmlands of Western Poland, using both the classical approach (modeled only on environmental variables) and the approach which included also other potentially associated bird species. The potential associations among species were derived from the relevant ecological literature and by a correlation matrix of occurrences. Our findings highlight the importance of including heterospecific interactions in improving our understanding of niche occupation for bird species. We suggest that suite of measures currently used to quantify realized species niches could be improved by also considering the occurrence of certain associated species. Then, an hypothetical “species 1” can use the occurrence of a successfully established individual of “species 2” as indicator or “trace” of the location of available suitable habitat to breed. We hypothesize this kind of biotic interaction as the “heterospecific trace effect” (HTE): an interaction based on the availability and use of “public information” provided by individuals from different species. Finally, we discuss about the incomes of biotic interactions for enhancing the predictive capacities on species distribution models. PMID:25691996

  10. Leapfrogging of tree species provenances? Interaction of microclimate and genetics on upward shifts in tree species' range limits

    NASA Astrophysics Data System (ADS)

    Reinhardt, K.; Castanha, C.; Germino, M. J.; Kueppers, L. M.

    2011-12-01

    The elevation limit of tree growth (alpine treeline) is considered to be constrained by environmental (i.e., thermal) and genetic (i.e., inability to adapt to climatic conditions) limitations to growth. Warming conditions due to climate change are predicted to cause upward shifts in the elevation of alpine treelines, through relief of cold-induced physiological limitations on seedling recruitment beyond current treeline boundaries. To determine how genetics and climate may interact to affect seedling establishment, we transplanted recently germinated seedlings from high- and low-elevation provenances (HI and LO, respectively) of Pinus flexilis in common gardens arrayed along an elevation and canopy gradient from subalpine forest into the alpine zone at Niwot Ridge, CO. We compared differences in microclimate and seedling ecophysiology among sites and between provenances. During the first summer of growth, frequently cloudy skies resulted in similar solar radiation incidence and air and soil temperatures among sites, despite nearly a 500 m-span in elevation across all sites. Preliminary findings suggest that survival of seedlings was similar between the lowest and highest elevations, with greater survival of LO (60%) compared to HI (40%) seedlings at each of these sites. Photosynthesis, carbon balance (photosynthesis/respiration), and conductance increased more than 2X with elevation for both provenances, and were 35-77% greater in LO seedlings compared to HI seedlings. There were no differences in dark-adapted chlorophyll fluorescence (Fv/Fm) among sites or between provenances. However, in a common-garden study at low elevation, we observed no differences in carbon or water relations between two naturally-germinated mitochondrial haplotypes of P. flexilis (of narrow and wide-ranging distributions). We did observe water-related thresholds on seedling carbon balance and survival that occurred when soil volumetric water content dropped below 10% and seedling water

  11. Interactions among four parasite species in an amphipod population from Patagonia.

    PubMed

    Rauque, C A; Semenas, L

    2013-03-01

    Parasites commonly share their hosts with specimens of the same or different parasite species, resulting in multiple parasites obtaining resources from the same host. This could potentially lead to conflicts between co-infecting parasites, especially at high infection intensities. In Pool Los Juncos (Patagonia, Argentina), the amphipod Hyalella patagonica is an intermediate host to three parasites that mature in birds (the acanthocephalan Pseudocorynosoma sp. and larval stages of two Cyclophyllidea cestodes), in addition to a microsporidian (Thelohania sp.), whose life cycle is unknown, but very likely to be monoxenous. The aim of this study was to describe interactions between these parasite species in their amphipod host population. Amphipods were collected monthly between June 2002 and January 2004 to assess parasite infection. Infection prevalence and mean intensity were greatest in larger male amphipods for all parasite species. We also found a positive association between Thelohania sp. and both Pseudocorynosoma sp. and Cyclophyllidea sp. 1 infections, though Pseudocorynosoma sp. and Cyclophyllidea sp. 1 were negatively associated with each other. We conclude that contrasting associations between parasite species may be associated with competition for both food intake and space in the haemocoel.

  12. A literature review of interaction of oxidized uranium species and uranium complexes with soluble organic matter

    USGS Publications Warehouse

    Jennings, Joan K.; Leventhal, J.S.

    1978-01-01

    Organic material is commonly found associated with uranium ores in sandstone-type deposits. This review of the literature summarizes the classes and separations of naturally occurring organic material but the emphasis is on soluble organic species. The main class of materials of interest is humic substances which are high-molecular-weight complex molecules that are soluble in alkaline solution. These humic substances are able to solubilize (make soluble) minerals and also to complex [by ion exchange and (or) chelation] many cations. The natural process of soil formation results in both mineral decomposition and element complexing by organic species. Uranium in solution, such as ground water, can form many species with other elements or complexes present depending on Eh and pH. In natural systems (oxidizing Eh, pH 5-9) the uranium is usually present as a complex with hydroxide or carbonate. Thermodynamic data for these species are presented. Interacting metals and organic materials have been observed in nature and studied in the laboratory by many workers in diverse scientific disciplines. The results are not easily compared. Measurements of the degree of complexation are reported as equilibrium stability constant determinations. This type of research has been done for Mn, Fe, Cu, Zn, Pb, Ni, Co, Mg, Ca, Al, and to a limited degree for U. The use of Conditional Stability Constants has given quantitative results in some cases. The methods utilized in experiments and calculations are reviewed.

  13. Macrofaunal involvement in the sublittoral decay of kelp debris: the detritivore community and species interactions

    NASA Astrophysics Data System (ADS)

    Bedford, A. P.; Moore, P. G.

    1984-01-01

    The fauna associated with sea-bed accumulations of decomposing Laminaria saccharina has been studied by year-round SCUBA diving at two sites in the Clyde Sea area. Seasonal changes in density of 64 species are reported. In the autumn, large quantities of kelp are detached by storms. This weed carries with it to the sea bed a large part of its normal fauna. Additional species settle onto the weed from the plankton whilst others migrate onto it from the surrounding sea bed. Peak densities of associated species were recorded in autumn. Litter bag experiments in situ showed that, except during the summer, weed is lost from sea-bed accumulations at a faster rate when macrofaunal animals are excluded. The macrofauna therefore inhibits decomposition. The relative importance of interactive cropping by three macrodetritivores, Psammechinus miliaris (Echinodermata), Platynereis dumerilii (Polychaeta) and Gammarus locusta (Amphipoda) was studied by in situ containment of different species combinations. The presence of Gammarus with Psammechinus resulted in less weed being lost than when Psammechinus was isolated. This is because Gammarus selectively crops rotting weed, retarding frond disintegration by microbes. Platynereis retards microbial colonization of frond tissues ruptured during its feeding by repeated cropping of the same region. Weed would decompose very rapidly were it not for macrofaunal cropping. Macroalgal decay thus differs profoundly from that of vascular plants.

  14. Are you talking to me? Neural activations in 6-month-old infants in response to being addressed during natural interactions

    PubMed Central

    Lloyd-Fox, S.; Széplaki-Köllőd, B.; Yin, J.; Csibra, G.

    2015-01-01

    Human interactions are guided by continuous communication among the parties involved, in which verbal communication plays a primary role. However, speech does not necessarily reveal to whom it is addressed, especially for young infants who are unable to decode its semantic content. To overcome such difficulty, adults often explicitly mark their communication as infant-directed. In the present study we investigated whether ostensive signals, which would disambiguate the infant as the addressee of a communicative act, would modulate the brain responses of 6-month-old infants to speech and gestures in an ecologically valid setting. In Experiment 1, we tested whether the gaze direction of the speaker modulates cortical responses to infant-direct speech. To provide a naturalistic environment, two infants and their parents participated at the same time. In Experiment 2, we tested whether a similar modulation of the cortical response would be obtained by varying the intonation (infant versus adult directed speech) of the speech during face-to-face communication, one on one. The results of both experiments indicated that only the combination of ostensive signals (infant directed speech and direct gaze) led to enhanced brain activation. This effect was indicated by responses localized in regions known to be involved in processing auditory and visual aspects of social communication. This study also demonstrated the potential of fNIRS as a tool for studying neural responses in naturalistic scenarios, and for simultaneous measurement of brain function in multiple participants. PMID:25891796

  15. Are you talking to me? Neural activations in 6-month-old infants in response to being addressed during natural interactions.

    PubMed

    Lloyd-Fox, Sarah; Széplaki-Köllőd, Borbála; Yin, Jun; Csibra, Gergely

    2015-09-01

    Human interactions are guided by continuous communication among the parties involved, in which verbal communication plays a primary role. However, speech does not necessarily reveal to whom it is addressed, especially for young infants who are unable to decode its semantic content. To overcome such difficulty, adults often explicitly mark their communication as infant-directed. In the present study we investigated whether ostensive signals, which would disambiguate the infant as the addressee of a communicative act, would modulate the brain responses of 6-month-old infants to speech and gestures in an ecologically valid setting. In Experiment 1, we tested whether the gaze direction of the speaker modulates cortical responses to infant-direct speech. To provide a naturalistic environment, two infants and their parents participated at the same time. In Experiment 2, we tested whether a similar modulation of the cortical response would be obtained by varying the intonation (infant versus adult directed speech) of the speech during face-to-face communication, one on one. The results of both experiments indicated that only the combination of ostensive signals (infant directed speech and direct gaze) led to enhanced brain activation. This effect was indicated by responses localized in regions known to be involved in processing auditory and visual aspects of social communication. This study also demonstrated the potential of fNIRS as a tool for studying neural responses in naturalistic scenarios, and for simultaneous measurement of brain function in multiple participants. PMID:25891796

  16. Ice-cover effects on competitive interactions between two fish species.

    PubMed

    Helland, Ingeborg P; Finstad, Anders G; Forseth, Torbjørn; Hesthagen, Trygve; Ugedal, Ola

    2011-05-01

    1. Variations in the strength of ecological interactions between seasons have received little attention, despite an increased focus on climate alterations on ecosystems. Particularly, the winter situation is often neglected when studying competitive interactions. In northern temperate freshwaters, winter implies low temperatures and reduced food availability, but also strong reduction in ambient light because of ice and snow cover. Here, we study how brown trout [Salmo trutta (L.)] respond to variations in ice-cover duration and competition with Arctic charr [Salvelinus alpinus (L.)], by linking laboratory-derived physiological performance and field data on variation in abundance among and within natural brown trout populations. 2. Both Arctic charr and brown trout reduced resting metabolic rate under simulated ice-cover (darkness) in the laboratory, compared to no ice (6-h daylight). However, in contrast to brown trout, Arctic charr was able to obtain positive growth rate in darkness and had higher food intake in tank experiments than brown trout. Arctic charr also performed better (lower energy loss) under simulated ice-cover in a semi-natural environment with natural food supply. 3. When comparing brown trout biomass across 190 Norwegian lakes along a climate gradient, longer ice-covered duration decreased the biomass only in lakes where brown trout lived together with Arctic charr. We were not able to detect any effect of ice-cover on brown trout biomass in lakes where brown trout was the only fish species. 4. Similarly, a 25-year time series from a lake with both brown trout and Arctic charr showed that brown trout population growth rate depended on the interaction between ice breakup date and Arctic charr abundance. High charr abundance was correlated with low trout population growth rate only in combination with long winters. 5. In conclusion, the two species differed in performance under ice, and the observed outcome of competition in natural populations

  17. Yakima River Species Interactions Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    SciTech Connect

    Pearsons, Todd N.; Temple, Gabriel M.; Fritts, Anthony L.

    2005-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the thirteenth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin (Hindman et al. 1991; McMichael et al. 1992; Pearsons et al. 1993; Pearsons et al. 1994; Pearsons et al. 1996; Pearsons et al. 1998, Pearsons et al. 1999, Pearsons et al. 2001a, Pearsons et al. 2001b, Pearsons et al. 2002, Pearsons et al. 2003, Pearsons et al. 2004). Journal articles and book chapters have also been published from our work (McMichael 1993; Martin et al. 1995; McMichael et al. 1997; McMichael and Pearsons 1998; McMichael et al. 1998; Pearsons and Fritts 1999; McMichael et al. 1999; McMichael et al. 1999; Pearsons and Hopley 1999; Ham and Pearsons 2000; Ham and Pearsons 2001; Amaral et al. 2001; McMichael and Pearsons 2001; Pearsons 2002, Fritts and Pearsons 2004, Pearsons et al. in press, Major et al. in press). This progress report summarizes data collected between January 1, 2004 and December 31, 2004. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding (Pearsons et al. 1994; Busack et al. 1997; Pearsons and Hopley 1999). Furthermore, the success of a supplementation program may

  18. Poplar-Root Knot Nematode Interaction: A Model for Perennial Woody Species.

    PubMed

    Baldacci-Cresp, Fabien; Sacré, Pierre-Yves; Twyffels, Laure; Mol, Adeline; Vermeersch, Marjorie; Ziemons, Eric; Hubert, Philippe; Pérez-Morga, David; El Jaziri, Mondher; de Almeida Engler, Janice; Baucher, Marie

    2016-07-01

    Plant root-knot nematode (RKN) interaction studies are performed on several host plant models. Though RKN interact with trees, no perennial woody model has been explored so far. Here, we show that poplar (Populus tremula × P. alba) grown in vitro is susceptible to Meloidogyne incognita, allowing this nematode to penetrate, to induce feeding sites, and to successfully complete its life cycle. Quantitative reverse transcription-polymerase chain reaction analysis was performed to study changes in poplar gene expression in galls compared with noninfected roots. Three genes (expansin A, histone 3.1, and asparagine synthase), selected as gall development marker genes, followed, during poplar-nematode interaction, a similar expression pattern to what was described for other plant hosts. Downregulation of four genes implicated in the monolignol biosynthesis pathway was evidenced in galls, suggesting a shift in the phenolic profile within galls developed on poplar roots. Raman microspectroscopy demonstrated that cell walls of giant cells were not lignified but mainly composed of pectin and cellulose. The data presented here suggest that RKN exercise conserved strategies to reproduce and to invade perennial plant species and that poplar is a suitable model host to study specific traits of tree-nematode interactions. PMID:27135257

  19. Poplar-Root Knot Nematode Interaction: A Model for Perennial Woody Species.

    PubMed

    Baldacci-Cresp, Fabien; Sacré, Pierre-Yves; Twyffels, Laure; Mol, Adeline; Vermeersch, Marjorie; Ziemons, Eric; Hubert, Philippe; Pérez-Morga, David; El Jaziri, Mondher; de Almeida Engler, Janice; Baucher, Marie

    2016-07-01

    Plant root-knot nematode (RKN) interaction studies are performed on several host plant models. Though RKN interact with trees, no perennial woody model has been explored so far. Here, we show that poplar (Populus tremula × P. alba) grown in vitro is susceptible to Meloidogyne incognita, allowing this nematode to penetrate, to induce feeding sites, and to successfully complete its life cycle. Quantitative reverse transcription-polymerase chain reaction analysis was performed to study changes in poplar gene expression in galls compared with noninfected roots. Three genes (expansin A, histone 3.1, and asparagine synthase), selected as gall development marker genes, followed, during poplar-nematode interaction, a similar expression pattern to what was described for other plant hosts. Downregulation of four genes implicated in the monolignol biosynthesis pathway was evidenced in galls, suggesting a shift in the phenolic profile within galls developed on poplar roots. Raman microspectroscopy demonstrated that cell walls of giant cells were not lignified but mainly composed of pectin and cellulose. The data presented here suggest that RKN exercise conserved strategies to reproduce and to invade perennial plant species and that poplar is a suitable model host to study specific traits of tree-nematode interactions.

  20. The Contribution of High-Order Metabolic Interactions to the Global Activity of a Four-Species Microbial Community

    PubMed Central

    Guo, Xiaokan

    2016-01-01

    The activity of a biological community is the outcome of complex processes involving interactions between community members. It is often unclear how to accurately incorporate these interactions into predictive models. Previous work has shown a range of positive and negative metabolic pairwise interactions between species. Here we examine the ability of a modified general Lotka-Volterra model with cell-cell interaction coefficients to predict the overall metabolic rate of a well-mixed microbial community comprised of four heterotrophic natural isolates, experimentally quantifying the strengths of two, three, and four-species interactions. Within this community, interactions between any pair of microbial species were positive, while higher-order interactions, between 3 or more microbial species, slightly modulated community metabolism. For this simple community, the metabolic rate of can be well predicted only with taking into account pairwise interactions. Simulations using the experimentally determined interaction parameters revealed that spatial heterogeneity in the distribution of cells increased the importance of multispecies interactions in dictating function at both the local and global scales. PMID:27623159

  1. The Contribution of High-Order Metabolic Interactions to the Global Activity of a Four-Species Microbial Community.

    PubMed

    Guo, Xiaokan; Boedicker, James Q

    2016-09-01

    The activity of a biological community is the outcome of complex processes involving interactions between community members. It is often unclear how to accurately incorporate these interactions into predictive models. Previous work has shown a range of positive and negative metabolic pairwise interactions between species. Here we examine the ability of a modified general Lotka-Volterra model with cell-cell interaction coefficients to predict the overall metabolic rate of a well-mixed microbial community comprised of four heterotrophic natural isolates, experimentally quantifying the strengths of two, three, and four-species interactions. Within this community, interactions between any pair of microbial species were positive, while higher-order interactions, between 3 or more microbial species, slightly modulated community metabolism. For this simple community, the metabolic rate of can be well predicted only with taking into account pairwise interactions. Simulations using the experimentally determined interaction parameters revealed that spatial heterogeneity in the distribution of cells increased the importance of multispecies interactions in dictating function at both the local and global scales. PMID:27623159

  2. Mechanisms driving change: altered species interactions and ecosystem function through global warming.

    PubMed

    Traill, Lochran W; Lim, Matthew L M; Sodhi, Navjot S; Bradshaw, Corey J A

    2010-09-01

    1. We review the mechanisms behind ecosystem functions, the processes that facilitate energy transfer along food webs, and the major processes that allow the cycling of carbon, oxygen and nitrogen, and use case studies to show how these have already been, and will continue to be, altered by global warming. 2. Increased temperatures will affect the interactions between heterotrophs and autotrophs (e.g. pollination and seed dispersal), and between heterotrophs (e.g. predators-prey, parasites/pathogens-hosts), with generally negative ramifications for important ecosystem services (functions that provide direct benefit to human society such as pollination) and potential for heightened species co-extinction rates. 3. Mitigation of likely impacts of warming will require, in particular, the maintenance of species diversity as insurance for the provision of basic ecosystem services. Key to this will be long-term monitoring and focused research that seek to maintain ecosystem resilience in the face of global warming. 4. We provide guidelines for pursuing research that quantifies the nexus between ecosystem function and global warming. These include documentation of key functional species groups within systems, and understanding the principal outcomes arising from direct and indirect effects of a rapidly warming environment. Localized and targeted research and monitoring, complemented with laboratory work, will determine outcomes for resilience and guide adaptive conservation responses and long-term planning.

  3. Top-down Control of Stream Food Webs: Indirect Effects by Changed Behaviour and Species Interactions

    NASA Astrophysics Data System (ADS)

    Winkelmann, C.; Petzoldt, T.; Koop, J. H.; Benndorf, J.

    2005-05-01

    Predators may directly control stream food webs by consuming invertebrates. But sub lethal effects on prey such as change of activity rhythm or feeding behaviour may lead to indirect effects of predation on other species. Thus, predators may strongly effect invertebrate community structure. The aim of a currently running paired ecosystem experiment is to detect changes of species interaction induced by benthivorous gudgeon (Gobio gobio). For this purpose we link the measurement of physiological fitness parameters to the observation of behavioural changes. Preliminary studies indicated a top-down control of the drift activity of Baetis larvae, while a bottom-up effect could not be observed. The presence of benthivorous gudgeon led to a significantly changed species composition of the invertebrate drift and reduced drift activity of Baetis larvae compared to the fish free control. The diurnal drift pattern of Baetis larvae with a nocturnal peak was observed both in the control and fish reaches. Thus benthivorous gudgeon controls the drift behaviour in a similar way as known for drift-feeding trout. The content of triglycerides and glycogen did not differ between the drifting and not-drifting individuals. Therefore their energetic status does not seem to control drift the activity of Baetis larvae.

  4. Reactive Oxygen Species and Nitric Oxide Control Early Steps of the Legume - Rhizobium Symbiotic Interaction.

    PubMed

    Damiani, Isabelle; Pauly, Nicolas; Puppo, Alain; Brouquisse, Renaud; Boscari, Alexandre

    2016-01-01

    The symbiotic interaction between legumes and nitrogen-fixing rhizobium bacteria leads to the formation of a new organ, the nodule. Early steps of the interaction are characterized by the production of bacterial Nod factors, the reorientation of root-hair tip growth, the formation of an infection thread (IT) in the root hair, and the induction of cell division in inner cortical cells of the root, leading to a nodule primordium formation. Reactive oxygen species (ROS) and nitric oxide (NO) have been detected in early steps of the interaction. ROS/NO are determinant signals to arbitrate the specificity of this mutualistic association and modifications in their content impair the development of the symbiotic association. The decrease of ROS level prevents root hair curling and ITs formation, and that of NO conducts to delayed nodule formation. In root hairs, NADPH oxidases were shown to produce ROS which could be involved in the hair tip growth process. The use of enzyme inhibitors suggests that nitrate reductase and NO synthase-like enzymes are the main route for NO production during the early steps of the interaction. Transcriptomic analyses point to the involvement of ROS and NO in the success of the infection process, the induction of early nodulin gene expression, and the repression of plant defense, thereby favoring the establishment of the symbiosis. The occurrence of an interplay between ROS and NO was further supported by the finding of both S-sulfenylated and S-nitrosylated proteins during early symbiotic interaction, linking ROS/NO production to a redox-based regulation of the symbiotic process. PMID:27092165

  5. Reactive Oxygen Species and Nitric Oxide Control Early Steps of the Legume – Rhizobium Symbiotic Interaction

    PubMed Central

    Damiani, Isabelle; Pauly, Nicolas; Puppo, Alain; Brouquisse, Renaud; Boscari, Alexandre

    2016-01-01

    The symbiotic interaction between legumes and nitrogen-fixing rhizobium bacteria leads to the formation of a new organ, the nodule. Early steps of the interaction are characterized by the production of bacterial Nod factors, the reorientation of root-hair tip growth, the formation of an infection thread (IT) in the root hair, and the induction of cell division in inner cortical cells of the root, leading to a nodule primordium formation. Reactive oxygen species (ROS) and nitric oxide (NO) have been detected in early steps of the interaction. ROS/NO are determinant signals to arbitrate the specificity of this mutualistic association and modifications in their content impair the development of the symbiotic association. The decrease of ROS level prevents root hair curling and ITs formation, and that of NO conducts to delayed nodule formation. In root hairs, NADPH oxidases were shown to produce ROS which could be involved in the hair tip growth process. The use of enzyme inhibitors suggests that nitrate reductase and NO synthase-like enzymes are the main route for NO production during the early steps of the interaction. Transcriptomic analyses point to the involvement of ROS and NO in the success of the infection process, the induction of early nodulin gene expression, and the repression of plant defense, thereby favoring the establishment of the symbiosis. The occurrence of an interplay between ROS and NO was further supported by the finding of both S-sulfenylated and S-nitrosylated proteins during early symbiotic interaction, linking ROS/NO production to a redox-based regulation of the symbiotic process. PMID:27092165

  6. Chasing Ecological Interactions

    PubMed Central

    2016-01-01

    Basic research on biodiversity has concentrated on individual species—naming new species, studying distribution patterns, and analyzing their evolutionary relationships. Yet biodiversity is more than a collection of individual species; it is the combination of biological entities and processes that support life on Earth. To understand biodiversity we must catalog it, but we must also assess the ways species interact with other species to provide functional support for the Tree of Life. Ecological interactions may be lost well before the species involved in those interactions go extinct; their ecological functions disappear even though they remain. Here, I address the challenges in studying the functional aspects of species interactions and how basic research is helping us address the fast-paced extinction of species due to human activities. PMID:27631692

  7. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau.

    PubMed

    Liang, Eryuan; Wang, Yafeng; Piao, Shilong; Lu, Xiaoming; Camarero, Jesús Julio; Zhu, Haifeng; Zhu, Liping; Ellison, Aaron M; Ciais, Philippe; Peñuelas, Josep

    2016-04-19

    The alpine treeline is commonly regarded as being sensitive to climatic warming because regeneration and growth of trees at treeline generally are limited by low temperature. The alpine treelines of the Tibetan Plateau (TP) occur at the highest elevations (4,900 m above sea level) in the Northern Hemisphere. Ongoing climatic warming is expected to shift treelines upward. Studies of treeline dynamics at regional and local scales, however, have yielded conflicting results, indicating either unchanging treeline elevations or upward shifts. To reconcile this conflict, we reconstructed in detail a century of treeline structure and tree recruitment at sites along a climatic gradient of 4 °C and mean annual rainfall of 650 mm on the eastern TP. Species interactions interacted with effects of warming on treeline and could outweigh them. Densification of shrubs just above treeline inhibited tree establishment, and slowed upward movement of treelines on a time scale of decades. Interspecific interactions are major processes controlling treeline dynamics that may account for the absence of an upward shift at some TP treelines despite continued climatic warming. PMID:27044083

  8. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau

    PubMed Central

    Liang, Eryuan; Wang, Yafeng; Piao, Shilong; Lu, Xiaoming; Camarero, Jesús Julio; Zhu, Haifeng; Zhu, Liping; Ciais, Philippe; Peñuelas, Josep

    2016-01-01

    The alpine treeline is commonly regarded as being sensitive to climatic warming because regeneration and growth of trees at treeline generally are limited by low temperature. The alpine treelines of the Tibetan Plateau (TP) occur at the highest elevations (4,900 m above sea level) in the Northern Hemisphere. Ongoing climatic warming is expected to shift treelines upward. Studies of treeline dynamics at regional and local scales, however, have yielded conflicting results, indicating either unchanging treeline elevations or upward shifts. To reconcile this conflict, we reconstructed in detail a century of treeline structure and tree recruitment at sites along a climatic gradient of 4 °C and mean annual rainfall of 650 mm on the eastern TP. Species interactions interacted with effects of warming on treeline and could outweigh them. Densification of shrubs just above treeline inhibited tree establishment, and slowed upward movement of treelines on a time scale of decades. Interspecific interactions are major processes controlling treeline dynamics that may account for the absence of an upward shift at some TP treelines despite continued climatic warming. PMID:27044083

  9. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau.

    PubMed

    Liang, Eryuan; Wang, Yafeng; Piao, Shilong; Lu, Xiaoming; Camarero, Jesús Julio; Zhu, Haifeng; Zhu, Liping; Ellison, Aaron M; Ciais, Philippe; Peñuelas, Josep

    2016-04-19

    The alpine treeline is commonly regarded as being sensitive to climatic warming because regeneration and growth of trees at treeline generally are limited by low temperature. The alpine treelines of the Tibetan Plateau (TP) occur at the highest elevations (4,900 m above sea level) in the Northern Hemisphere. Ongoing climatic warming is expected to shift treelines upward. Studies of treeline dynamics at regional and local scales, however, have yielded conflicting results, indicating either unchanging treeline elevations or upward shifts. To reconcile this conflict, we reconstructed in detail a century of treeline structure and tree recruitment at sites along a climatic gradient of 4 °C and mean annual rainfall of 650 mm on the eastern TP. Species interactions interacted with effects of warming on treeline and could outweigh them. Densification of shrubs just above treeline inhibited tree establishment, and slowed upward movement of treelines on a time scale of decades. Interspecific interactions are major processes controlling treeline dynamics that may account for the absence of an upward shift at some TP treelines despite continued climatic warming.

  10. Species Introductions and Their Cascading Impacts on Biotic Interactions in desert riparian ecosystems.

    PubMed

    Hultine, Kevin R; Bean, Dan W; Dudley, Tom L; Gehring, Catherine A

    2015-10-01

    Desert riparian ecosystems of North America are hotspots of biodiversity that support many sensitive species, and are in a region experiencing some of the highest rates of climatic alteration in North America. Fremont cottonwood, Populus fremontii, is a foundation tree species of this critical habitat, but it is threatened by global warming and regional drying, and by a non-native tree/shrub, Tamarix spp., all of which can disrupt the mutualism between P. fremontii and its beneficial mycorrhizal fungal communities. Specialist herbivorous leaf beetles (Diorhabda spp.) introduced for biocontrol of Tamarix are altering the relationship between this shrub and its environment. Repeated episodic feeding on Tamarix foliage by Diorhabda results in varying rates of dieback and mortality, depending on genetic variation in allocation of resources, growing conditions, and phenological synchrony between herbivore and host plant. In this article, we review the complex interaction between climatic change and species introductions and their combined impacts on P. fremontii and their associated communities. We anticipate that (1) certain genotypes of P. fremontii will respond more favorably to the presence of Tamarix and to climatic change due to varying selection pressures to cope with competition and stress; (2) the ongoing evolution of Diorhabda's life cycle timing will continue to facilitate its expansion in North America, and will over time enhance herbivore impact to Tamarix; (3) defoliation by Diorhabda will reduce the negative impact of Tamarix on P. fremontii associations with mycorrhizal fungi; and (4) spatial variability in climate and climatic change will modify the capacity for Tamarix to survive episodic defoliation by Diorhabda, thereby altering the relationship between Tamarix and P. fremontii, and its associated mycorrhizal fungal communities. Given the complex biotic/abiotic interactions outlined in this review, conservation biologists and riparian ecosystem

  11. INTERACTIONS BETWEEN CALCIUM AND REACTIVE OXYGEN SPECIES IN PULMONARY ARTERIAL SMOOTH MUSCLE RESPONSES TO HYPOXIA

    PubMed Central

    Shimoda, Larissa A.; Undem, Clark

    2010-01-01

    In contrast to the systemic vasculature, where hypoxia causes vasodilation, pulmonary arteries constrict in response to hypoxia. The mechanisms underlying this unique response have been the subject of investigation for over 50 years, and still remain a topic of great debate. Over the last 20 years, there has emerged a general consensus that both increases in intracellular calcium concentration and changes in reactive oxygen species (ROS) generation play key roles in the pulmonary vascular response to hypoxia. Controversy exists, however, regarding whether ROS increase or decrease during hypoxia, the source of ROS, and the mechanisms by which changes in ROS might impact intracellular calcium, and vice versa. This review will discuss the mechanisms regulating [Ca2+]i and ROS in PASMCs, and the interaction between ROS and Ca2+ signaling during exposure to acute hypoxia. PMID:20801238

  12. Trophic interactions between indigenous and non-indigenous species in Lampedusa Island, Mediterranean Sea.

    PubMed

    Marić, Martina; De Troch, Marleen; Occhipinti-Ambrogi, Anna; Olenin, Sergej

    2016-09-01

    Using stable isotope analysis, we investigated trophic interactions between indigenous benthic taxa and the non-indigenous species (NIS): the green alga Caulerpa cylindracea, the red alga Asparagopsis taxiformis, the crab Percnon gibbesi and the sea hare Aplysia dactylomela. The study was conducted on Lampedusa Island, Mediterranean Sea. We evaluated the trophic positions and isotopic niches of consumers. Using Bayesian mixing models, we quantified the food source contribution to diets of indigenous and non-indigenous herbivores. Isotopic niche of NIS showed no overlap with the ones of indigenous macroinvertebrates and fish. Caulerpa cylindracea provided the largest contribution to the diet of P. gibbesi (0.431-1), while the dietary contribution estimates overlapped considerably for all sources of A. dactylomela and indigenous herbivores. From these results, we conclude that the invasion of C. cylindracea is increasing the diversity of available prey and might facilitate the expansion of other NIS. PMID:27568584

  13. What happens to negatively charged lipid vesicles upon interacting with polycation species?

    PubMed

    Kabanov, V A; Yaroslavov, A A

    2002-01-17

    Complexation of synthetic polycations with negative lipid vesicles as cell-mimetic species was studied. It was found that such interaction could be accompanied by lateral lipid segregation, highly accelerated transmembrane migration of lipid molecules (polycation-induced flip-flop), incorporation of adsorbed polycations into vesicular membrane as well as aggregation and disruption of vesicles. A polycation adsorbed on the surface of liquid vesicles due to electrostatic attraction could be completely removed from the membrane by increase in simple salt concentration or by recomplexation with polyanions. In contrast, adsorption of a polycation carrying pendant hydrophobic groups was irreversible apparently due to incorporation of these groups into the hydrophobic part of the vesicular membrane. The above mentioned phenomena were examined depending on the polycation structure, fraction of charged lipids in the membrane, vesicle phase state and ionic strength of solution. PMID:11772467

  14. Towards a mechanistic understanding of temperature and enrichment effects on species interaction strength, omnivory and food-web structure.

    PubMed

    Sentis, Arnaud; Hemptinne, Jean-Louis; Brodeur, Jacques

    2014-07-01

    Revealing the links between species functional traits, interaction strength and food-web structure is of paramount importance for understanding and predicting the relationships between food-web diversity and stability in a rapidly changing world. However, little is known about the interactive effects of environmental perturbations on individual species, trophic interactions and ecosystem functioning. Here, we combined modelling and laboratory experiments to investigate the effects of warming and enrichment on a terrestrial tritrophic system. We found that the food-web structure is highly variable and switches between exploitative competition and omnivory depending on the effects of temperature and enrichment on foraging behaviour and species interaction strength. Our model contributes to identifying the mechanisms that explain how environmental effects cascade through the food web and influence its topology. We conclude that considering environmental factors and flexible food-web structure is crucial to improve our ability to predict the impacts of global changes on ecosystem diversity and stability.

  15. Artificial light pollution: are shifting spectral signatures changing the balance of species interactions?

    PubMed

    Davies, Thomas W; Bennie, Jonathan; Inger, Richard; de Ibarra, Natalie Hempel; Gaston, Kevin J

    2013-05-01

    Technological developments in municipal lighting are altering the spectral characteristics of artificially lit habitats. Little is yet known of the biological consequences of such changes, although a variety of animal behaviours are dependent on detecting the spectral signature of light reflected from objects. Using previously published wavelengths of peak visual pigment absorbance, we compared how four alternative street lamp technologies affect the visual abilities of 213 species of arachnid, insect, bird, reptile and mammal by producing different wavelength ranges of light to which they are visually sensitive. The proportion of the visually detectable region of the light spectrum emitted by each lamp was compared to provide an indication of how different technologies are likely to facilitate visually guided behaviours such as detecting objects in the environment. Compared to narrow spectrum lamps, broad spectrum technologies enable animals to detect objects that reflect light over more of the spectrum to which they are sensitive and, importantly, create greater disparities in this ability between major taxonomic groups. The introduction of broad spectrum street lamps could therefore alter the balance of species interactions in the artificially lit environment.

  16. Species-specific interaction of Streptococcus pneumoniae with human complement factor H

    PubMed Central

    Lu, Ling; Ma, Zhuo; Jokiranta, T. Sakari; Whitney, Adeline R.; DeLeo, Frank R.; Zhang, Jing-Ren

    2008-01-01

    Streptococcus pneumoniae naturally colonizes the nasopharynx as a commensal organism and sometimes causes infections in remote tissue sites. This bacterium is highly capable of resisting host innate immunity during nasopharyngeal colonization and disseminating infections. The ability to recruit complement factor H (FH) by S. pneumoniae has been implicated as a bacterial immune evasion mechanism against complement-mediated bacterial clearance because FH is a complement alternative pathway inhibitor. S. pneumoniae recruits FH through a previously defined FH-binding domain of choline-binding protein A (CbpA), a major surface protein of S. pneumoniae. In this study, we show that CbpA binds to human FH but not to the FH proteins of mouse and other animal species tested thus far. Accordingly, deleting the FH-binding domain of CbpA in strain D39 did not result in obvious change in the levels of pneumococcal bacteremia or virulence in a bacteremia mouse model. Furthermore, this species-specific pneumococcal interaction with FH was shown to occur in multiple pneumococcal isolates from the blood and cerebrospinal fluid (CSF). Finally, our phagocytosis experiments with human- and mouse phagocytes and complement systems provide additional evidence to support our hypothesis that CbpA acts as a bacterial determinant for pneumococcal resistance to complement-mediated host defense in humans. PMID:18981135

  17. Allelopathic Interactions between the Opportunistic Species Ulva prolifera and the Native Macroalga Gracilaria lichvoides

    PubMed Central

    Zhang, Xiaowen; Fan, Xiao; Wang, Yitao; Li, Demao; Wang, Wei; Zhuang, Zhimeng; Ye, Naihao

    2012-01-01

    Allelopathy, one type of direct plant competition, can be a potent mechanism through which plant communities are structured. The aim of this study was to determine whether allelopathic interactions occur between the opportunistic green tide-forming species Ulva prolifera and the native macroalga Gracilaria lichvoides, both of which were collected from the coastline of East China sea. In laboratory experiments, the presence of G. lichvoides at 1.25 g wet weight L−1 significantly inhibited growth and photosynthesis of U. prolifera at concentrations of 1.25, 2.50, and 3.75 g wet weight L−1 (p<0.05) in both semi-continuous co-culture assays and in co-culture assays without nutrient supplementation. In contrast, although U. prolifera had a density effect on G. lichvoides, the differences among treatments were not significant (p>0.05). Culture medium experiments further confirmed that some allelochemicals may be released by both of the tested macroalgae, and these could account for the observed physiological inhibition of growth and photosynthesis. Moreover, the native macroalgae G. lichvoides was a stronger competitor than the opportunistic species U. prolifera. Collectively, the results of the present study represent a significant advance in exploring ecological questions about the effects of green tide blooms on the macroalgal community. PMID:22496758

  18. Allelopathic interactions between the opportunistic species Ulva prolifera and the native macroalga Gracilaria lichvoides.

    PubMed

    Xu, Dong; Gao, Zhengquan; Zhang, Xiaowen; Fan, Xiao; Wang, Yitao; Li, Demao; Wang, Wei; Zhuang, Zhimeng; Ye, Naihao

    2012-01-01

    Allelopathy, one type of direct plant competition, can be a potent mechanism through which plant communities are structured. The aim of this study was to determine whether allelopathic interactions occur between the opportunistic green tide-forming species Ulva prolifera and the native macroalga Gracilaria lichvoides, both of which were collected from the coastline of East China sea. In laboratory experiments, the presence of G. lichvoides at 1.25 g wet weight L(-1) significantly inhibited growth and photosynthesis of U. prolifera at concentrations of 1.25, 2.50, and 3.75 g wet weight L(-1) (p<0.05) in both semi-continuous co-culture assays and in co-culture assays without nutrient supplementation. In contrast, although U. prolifera had a density effect on G. lichvoides, the differences among treatments were not significant (p>0.05). Culture medium experiments further confirmed that some allelochemicals may be released by both of the tested macroalgae, and these could account for the observed physiological inhibition of growth and photosynthesis. Moreover, the native macroalgae G. lichvoides was a stronger competitor than the opportunistic species U. prolifera. Collectively, the results of the present study represent a significant advance in exploring ecological questions about the effects of green tide blooms on the macroalgal community.

  19. Living benthic foraminiferal species as indicators of cold-warm water masses interaction and upwelling areas

    NASA Astrophysics Data System (ADS)

    Eichler, Patrícia P. B.; Pimenta, Felipe M.; Eichler, Beatriz B.; Vital, Helenice

    2016-03-01

    The western South Atlantic continental margin, between 27° and 37°S, is dominated by four main water masses: cold-fresh Subantarctic Shelf Water (SASW), warm-salty Subtropical Shelf Water (STSW), cold upwelled South Atlantic Central Water (SACW), and fresh Plata Plume Water (PPW). Despite the large seasonal variability of PPW extension along the shelf, an intense and relatively stable temperature-salinity gradient separates the SASW and the STSW forming the Subtropical Shelf Front (STSF) around 32°S. The two dominant shelf water masses (SASW and STSW) arise from the process of mixing of oceanic waters. The SASW originates from the dilution of Subantarctic Water due to excess precipitation and continental runoff, and the STSW consists of modified warm tropical waters and South Atlantic Central Water (SACW) diluted below PPW. A previous article demonstrates distribution of Bulimina marginata, a shelf environment and deep-sea species of benthic foraminifera, is influenced by the front location and it can be used as a proxy of the STSF in sediment core analysis. Here we show three other infaunal living species inhabiting at the Continental margin: Buccella peruviana, Globocassidulina subglobosa and Uvigerina peregrina and their distribution limits show the interaction of Subantartic Shelf Water, Subtropical Shelf Water, and upwelling of SACW, in the bottom sediment of coastal studied areas.

  20. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions.

    PubMed

    Storch, Daniela; Menzel, Lena; Frickenhaus, Stephan; Pörtner, Hans-O

    2014-10-01

    Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean. PMID:24890266

  1. Temperature-mediated biotic interactions influence enemy release of nonnative species in warming environments.

    PubMed

    Fey, Samuel B; Herren, Cristina M

    2014-08-01

    "Enemy release" occurs when invading species suffer from interactions with pathogens, parasites, herbivores, or predators to a lesser degree than native species due to a lack of shared evolutionary history. Here we provide strong support for the hypothesis that variable thermal sensitivities between a consumer and its resources can generate temperature-dependent enemy release using both a mathematical model and a field experiment. We identify three common scenarios where changes in temperature should alter enemy release based on asymmetric responses among enemies and their resources to changes in temperature: (1) the vital rates of a shared enemy are more sensitive to changes in temperature than its resources, (2) the enemy's thermal maximum for consumption is higher than the resources' maxima for growth, and (3) the invading resource has a higher thermal maximum for growth than its native competitor. Mathematical representations indicated that warming is capable of altering enemy release in each of these three scenarios. We also tested our hypothesis using a mesocosm warming experiment in a system that exhibits variable thermal sensitivities between a predator and its native and nonnative prey. We conducted a six-week experiment manipulating the presence of Lepomis sunfish (present, absent) and water temperature (ambient, heated) using the nonnative crustacean zooplankter, Daphnia lumholtzi, whose morphological defenses reduce predation from juvenile sunfish relative to native Daphnia pulex. Our results indicate that D. lumholtzi benefited to a greater extent from the presence of Lepomis predators as temperatures increase. Taken together, our model and experiment indicate that changes in environmental temperature may directly influence the success of nonnative species and may assist with forecasting the community consequences of biological invasions in a warming world. PMID:25230475

  2. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions.

    PubMed

    Storch, Daniela; Menzel, Lena; Frickenhaus, Stephan; Pörtner, Hans-O

    2014-10-01

    Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean.

  3. Quantifying the interaction structure and the topological importance of species in food webs: a signed digraph approach.

    PubMed

    Liu, Wei-chung; Chen, Hsuan-Wien; Jordán, Ferenc; Lin, Wen-Hsieh; Liu, Chester Wai-Jen

    2010-12-01

    Due to the structural complexity of nature, it is not always easy to identify topologically importance species in an ecosystem. In the past decade, several studies in ecology have developed methods for measuring species importance basing on direct and indirect inter-specific interactions. Here, by extending a previously developed methodology, we present an approach that can quantify the interaction structure of a food web and consequently the topological importance of species when the food web is viewed as a signed digraph. The basic principle behind our approach is to determine the sign and strength of direct and indirect interactions for all pathways up to a predefined number of steps. Our approach mainly differs from the previous methodology in that we are able to quantify the strength of inter-specific interaction as well as in what way species interact with each other, as it can explicitly quantify a wide range of ecological interactions such as cascading effect, indirect food supply effect, apparent and exploitive competitions in the same framework. This then allows us to quantify the topological importance of a species and examine whether it is a predominately positive or negative interactor in a food web. Furthermore, our analysis reveals that positive and negative effects from one species on others eventually cancel each other out for longer pathways resulting in stable interaction structure. Applications of our methodology include providing a more informative index for conservation biologists, and the potential use of interaction structure derived from our approach in food web robustness studies is also discussed. PMID:20816857

  4. Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins.

    PubMed

    Vedelek, Balázs; Blastyák, András; Boros, Imre M

    2015-01-01

    Telomere integrity in Drosophila melanogaster is maintained by a putative multisubunit complex called terminin that is believed to act in analogy to the mammalian shelterin complex in protecting chromosome ends from being recognized as sites of DNA damage. The five proteins supposed to form the terminin complex are HP1-ORC associated protein, HP1-HOAP interacting protein, Verrocchio, Drosophila Telomere Loss/Modigliani and Heterochromatic Protein 1. Four of these proteins evolve rapidly within the Drosophila genus. The accelerated evolution of terminin components may indicate the involvement of these proteins in the process by which new species arise, as the resulting divergence of terminin proteins might prevent hybrid formation, thus driving speciation. However, terminin is not an experimentally proven entity, and no biochemical studies have been performed to investigate its assembly and action in detail. Motivated by these facts in order to initiate biochemical studies on terminin function, we attempted to reconstitute terminin by co-expressing its subunits in bacteria and investigated the possible role of the fast-evolving parts of terminin components in complex assembly. Our results suggest formation of stable subcomplexes of terminin, but not of the whole complex in vitro. We found that the accelerated evolution is restricted to definable regions of terminin components, and that the divergence of D. melanogaster Drosophila Telomere Loss and D. yakuba Verrocchio proteins does not preclude their stable interaction.

  5. Cross-habitat interactions among bivalve species control community structure on intertidal flats.

    PubMed

    Donadi, Serena; van der Heide, Tjisse; van der Zee, Els M; Eklöf, Johan S; van de Koppel, Johan; Weerman, Ellen J; Piersma, Theunis; Olff, Han; Eriksson, Britas Klemens

    2013-02-01

    Increasing evidence shows that spatial interactions between sedentary organisms can structure communities and promote landscape complexity in many ecosystems. Here we tested the hypothesis that reef-forming mussels (Mytilus edulis L.), a dominant intertidal ecosystem engineer in the Wadden Sea, promote abundances of the burrowing bivalve Cerastoderma edule L. (cockle) in neighboring habitats at relatively long distances coastward from mussel beds. Field surveys within and around three mussel beds showed a peak in cockle densities at 50-100 m toward the coast from the mussel bed, while cockle abundances elsewhere in the study area were very low. Field transplantation of cockles showed higher survival of young cockles (2-3 years old) and increased spat fall coastward of the mussel bed compared to within the bed and to areas without mussels, whereas growth decreased within and coastward of the mussel bed. Our measurements suggest that the observed spatial patterns in cockle numbers resulted from (1) inhibition effects by the mussels close to the beds due to preemptive algal depletion and deteriorated sediment conditions and (2) facilitation effects by the mussels farther away from the beds due to reduction of wave energy. Our results imply that these spatial, scale-dependent interactions between reef-forming ecosystem engineers and surrounding communities of sedentary benthic organisms can be an important determinant of the large-scale community structure in intertidal ecosystems. Understanding this interplay between neighboring communities of sedentary species is therefore essential for effective conservation and restoration of soft-bottom intertidal communities.

  6. Interaction of arsenic species with tropical river aquatic humic substances enriched with aluminum and iron.

    PubMed

    de Oliveira, Lilian Karla; Melo, Camila de Almeida; Fraceto, Leonardo Fernandes; Friese, Kurt; Rosa, André Henrique

    2016-04-01

    The mobility and bioavailability of arsenic (As) are strongly controlled by adsorption/precipitation processes involving metal oxides. However, the organic matter present in the environment, in combination with these oxides, can also play an important role in the cycle of arsenic. This work concerns the interaction between As and two samples of aquatic humic substances (AHS) from tropical rivers. The AHS were extracted as proposed by IHSS, and were characterized by (13)C NMR. The experiments were conducted with the AHS in natura and enriched with metal cations, with different concentrations of As, and complexation capacity was evaluated at three different pH levels (5.0, 7.0, and 9.0). The AHS samples showed similar chemical compositions. The results suggested that there was no interaction between As(III) and AHS in natura or enriched with Al. Low concentrations of As(V) were bound to AHS in natura. For As(III), the complexation capacity of the AHS enriched with Fe was approximately 48 μmol per g of C, while the values for As(V) were in the range 69-80 μmol per grams of C. Fluorescence spectra showed that changes in Eh affected the complexation reactions of As(V) species with AHS. PMID:26606934

  7. Interaction of arsenic species with tropical river aquatic humic substances enriched with aluminum and iron.

    PubMed

    de Oliveira, Lilian Karla; Melo, Camila de Almeida; Fraceto, Leonardo Fernandes; Friese, Kurt; Rosa, André Henrique

    2016-04-01

    The mobility and bioavailability of arsenic (As) are strongly controlled by adsorption/precipitation processes involving metal oxides. However, the organic matter present in the environment, in combination with these oxides, can also play an important role in the cycle of arsenic. This work concerns the interaction between As and two samples of aquatic humic substances (AHS) from tropical rivers. The AHS were extracted as proposed by IHSS, and were characterized by (13)C NMR. The experiments were conducted with the AHS in natura and enriched with metal cations, with different concentrations of As, and complexation capacity was evaluated at three different pH levels (5.0, 7.0, and 9.0). The AHS samples showed similar chemical compositions. The results suggested that there was no interaction between As(III) and AHS in natura or enriched with Al. Low concentrations of As(V) were bound to AHS in natura. For As(III), the complexation capacity of the AHS enriched with Fe was approximately 48 μmol per g of C, while the values for As(V) were in the range 69-80 μmol per grams of C. Fluorescence spectra showed that changes in Eh affected the complexation reactions of As(V) species with AHS.

  8. Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins

    PubMed Central

    Vedelek, Balázs; Blastyák, András; Boros, Imre M.

    2015-01-01

    Telomere integrity in Drosophila melanogaster is maintained by a putative multisubunit complex called terminin that is believed to act in analogy to the mammalian shelterin complex in protecting chromosome ends from being recognized as sites of DNA damage. The five proteins supposed to form the terminin complex are HP1-ORC associated protein, HP1-HOAP interacting protein, Verrocchio, Drosophila Telomere Loss/Modigliani and Heterochromatic Protein 1. Four of these proteins evolve rapidly within the Drosophila genus. The accelerated evolution of terminin components may indicate the involvement of these proteins in the process by which new species arise, as the resulting divergence of terminin proteins might prevent hybrid formation, thus driving speciation. However, terminin is not an experimentally proven entity, and no biochemical studies have been performed to investigate its assembly and action in detail. Motivated by these facts in order to initiate biochemical studies on terminin function, we attempted to reconstitute terminin by co-expressing its subunits in bacteria and investigated the possible role of the fast-evolving parts of terminin components in complex assembly. Our results suggest formation of stable subcomplexes of terminin, but not of the whole complex in vitro. We found that the accelerated evolution is restricted to definable regions of terminin components, and that the divergence of D. melanogaster Drosophila Telomere Loss and D. yakuba Verrocchio proteins does not preclude their stable interaction. PMID:26566042

  9. The smell of change: warming affects species interactions mediated by chemical information.

    PubMed

    Sentis, Arnaud; Ramon-Portugal, Felipe; Brodeur, Jacques; Hemptinne, Jean-Louis

    2015-10-01

    Knowledge of how temperature influences an organism's physiology and behaviour is of paramount importance for understanding and predicting the impacts of climate change on species' interactions. While the behaviour of many organisms is driven by chemical information on which they rely on to detect resources, conspecifics, natural enemies and competitors, the effects of temperature on infochemical-mediated interactions remain largely unexplored. Here, we experimentally show that temperature strongly influences the emission of infochemicals by ladybeetle larvae, which, in turn, modifies the oviposition behaviour of conspecific females. Temperature also directly affects female perception of infochemicals and their oviposition behaviour. Our results suggest that temperature-mediated effects on chemical communication can influence flows across system boundaries (e.g. immigration and emigration) and thus alter the dynamics and stability of ecological networks. We therefore argue that investigating the effects of temperature on chemical communication is a crucial step towards a better understanding of the functioning of ecological communities facing rapid environmental changes. PMID:25820469

  10. Cross-habitat interactions among bivalve species control community structure on intertidal flats.

    PubMed

    Donadi, Serena; van der Heide, Tjisse; van der Zee, Els M; Eklöf, Johan S; van de Koppel, Johan; Weerman, Ellen J; Piersma, Theunis; Olff, Han; Eriksson, Britas Klemens

    2013-02-01

    Increasing evidence shows that spatial interactions between sedentary organisms can structure communities and promote landscape complexity in many ecosystems. Here we tested the hypothesis that reef-forming mussels (Mytilus edulis L.), a dominant intertidal ecosystem engineer in the Wadden Sea, promote abundances of the burrowing bivalve Cerastoderma edule L. (cockle) in neighboring habitats at relatively long distances coastward from mussel beds. Field surveys within and around three mussel beds showed a peak in cockle densities at 50-100 m toward the coast from the mussel bed, while cockle abundances elsewhere in the study area were very low. Field transplantation of cockles showed higher survival of young cockles (2-3 years old) and increased spat fall coastward of the mussel bed compared to within the bed and to areas without mussels, whereas growth decreased within and coastward of the mussel bed. Our measurements suggest that the observed spatial patterns in cockle numbers resulted from (1) inhibition effects by the mussels close to the beds due to preemptive algal depletion and deteriorated sediment conditions and (2) facilitation effects by the mussels farther away from the beds due to reduction of wave energy. Our results imply that these spatial, scale-dependent interactions between reef-forming ecosystem engineers and surrounding communities of sedentary benthic organisms can be an important determinant of the large-scale community structure in intertidal ecosystems. Understanding this interplay between neighboring communities of sedentary species is therefore essential for effective conservation and restoration of soft-bottom intertidal communities. PMID:23691667

  11. Timing matters: species-specific interactions between spawning time, substrate quality, and recruitment success in three salmonid species

    PubMed Central

    Sternecker, Katharina; Denic, Marco; Geist, Juergen

    2014-01-01

    Substratum quality and oxygen supply to the interstitial zone are crucial for the reproductive success of salmonid fishes. At present, degradation of spawning grounds due to fine sediment deposition and colmation are recognized as main factors for reproductive failure. In addition, changes in water temperatures due to climate change, damming, and cooling water inlets are predicted to reduce hatching success. We tested the hypothesis that the biological effects of habitat degradation depend strongly on the species-specific spawning seasons and life-history strategies (e.g., fall- vs. spring-spawners, migratory vs. resident species) and assessed temperature as an important species-specific factor for hatching success within river substratum. We studied the species-specific differences in their responses to such disturbances using egg-to-fry survival of Danube Salmon (Hucho hucho), resident brown trout (Salmo trutta fario), and migratory brown trout (Salmo trutta lacustris) as biological endpoint. The egg incubation and hatching success of the salmonids and their dependence on temperature and stream substratum quality were compared. Hatching rates of Danube salmon were lower than of brown trout, probably due to higher oxygen demands and increased interstitial respiration in spring. Increases in maximum water temperature reduced hatching rates of resident and migratory brown trout (both fall-spawners) but were positively correlated with hatching rates of Danube salmon (a spring-spawner). Significantly longer incubation periods of resident and migratory brown trout coincided with relatively low stream substratum quality at the end of the egg incubation. Danube salmon seem to avoid low oxygen concentrations in the hyporheic zone by faster egg development favored by higher water temperatures. Consequently, the prediction of effects of temperature changes and altered stream substratum properties on gravel-spawning fishes and biological communities should consider the

  12. The consequences of direct versus indirect species interactions to selection on traits: pollination and nectar robbing in Ipomopsis aggregata.

    PubMed

    Irwin, Rebecca E

    2006-03-01

    Organisms experience a complex suite of species interactions. Although the ecological consequences of direct versus indirect species interactions have received attention, their evolutionary implications are not well understood. I examined selection on floral traits through direct versus indirect pathways of species interactions using the plant Ipomopsis aggregata and its pollinators and nectar robber. Using path analysis and structural equation modeling, I tested competing hypotheses comparing the relative importance of direct (pollinator-mediated) versus indirect (robber-mediated) interactions to trait selection through female plant function in 2 years. The hypothesis that provided the best fit to the observed data included robbing and pollination, suggesting that both interactors are important in driving selection on some traits; however, the direction and intensity of selection through robbing versus pollination varied between years. I then increased my scope of inference by assessing traits and species interactions across more years. I found that the potential for temporal variation in the direction and intensity of selection was pronounced. Taken together, results suggest that assessing the broader context in which organisms evolve, including both direct and indirect interactions and across multiple years, can provide increased mechanistic understanding of the diversity of ways that animals shape floral and plant evolution.

  13. Electrochemical, spectroscopic, and mass spectrometric studies of the interaction of silver species with polyamidoamine dendrimers.

    PubMed

    Fan, Fu-Ren F; Mazzitelli, Carolyn L; Brodbelt, Jennifer S; Bard, Allen J

    2005-07-15

    Electrochemical, spectroscopic, and mass spectrometric (MS) methods were used to probe the interaction (complexation) of silver ions and zerovalent silver species with polyamidoamine generation 1 amine-terminated (PAMAMG1NH2) and generation 2 hydroxy-terminated (PAMAMG2OH) dendrimers (DDMs). Stability constants (Kq+) and stoichiometries (q) (i.e., the number of silver ions complexed per DDM molecule) were determined from the voltammetric data, that is, shifts in potential and changes in peak or limiting current with addition of DDM. When the mole ratio of DDM to Ag+ is > or = 1, Ag+ binds with PAMAMG2OH to form a dominant 1:1 complex with a value of 1.1 x 10(7) M(-1). Under similar conditions, Ag+ binds with PAMAMG1NH2, yielding a 1:1 complex with = 4 x 10(9) M(-1), which is consistent with the finding of the MS experiments. When the mole ratio is < 1, q > or = 2. The E0' of the Ag-PAMAMG1NH2(+/0) couple shifted to a more negative value than that of the Ag(+/0) couple. The negative shift in the halfwave potential also suggests that DDM binds more strongly with Ag+ than with zerovalent silver species. Spectroscopic results suggest that hydroxyl-terminated PAMAMG2OH favors the formation of small zerovalent silver clusters after reduction while amine-terminated PAMAMG1NH2 allows for simultaneous formation of both clusters and larger nanoparticles at similar conditions. Other quantities, such as diffusion coefficients of the complexes and molar absorptivity of the Ag+ DDMs, are also reported. PMID:16013854

  14. Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux

    PubMed Central

    Snowden, M. Chase; Cope, Kevin R.; Bugbee, Bruce

    2016-01-01

    Despite decades of research, the effects of spectral quality on plant growth, and development are not well understood. Much of our current understanding comes from studies with daily integrated light levels that are less than 10% of summer sunlight thus making it difficult to characterize interactions between light quality and quantity. Several studies have reported that growth is increased under fluorescent lamps compared to mixtures of wavelengths from LEDs. Conclusions regarding the effect of green light fraction range from detrimental to beneficial. Here we report the effects of eight blue and green light fractions at two photosynthetic photon fluxes (PPF; 200 and 500 μmol m-2 s-1; with a daily light integral of 11.5 and 29 mol m-2 d-1) on growth (dry mass), leaf expansion, stem and petiole elongation, and whole-plant net assimilation of seven diverse plant species. The treatments included cool, neutral, and warm white LEDs, and combinations of blue, green and/or red LEDs. At the higher PPF (500), increasing blue light in increments from 11 to 28% reduced growth in tomato, cucumber, and pepper by 22, 26, and 14% respectively, but there was no statistically significant effect on radish, soybean, lettuce or wheat. At the lower PPF (200), increasing blue light reduced growth only in tomato (41%). The effects of blue light on growth were mediated by changes in leaf area and radiation capture, with minimal effects on whole-plant net-assimilation. In contrast to the significant effects of blue light, increasing green light in increments from 0 to 30% had a relatively small effect on growth, leaf area and net assimilation at either low or high PPF. Surprisingly, growth of three of the seven species was not reduced by a treatment with 93% green light compared to the broad spectrum treatments. Collectively, these results are consistent with a shade avoidance response associated with either low blue or high green light fractions. PMID:27706176

  15. Atomic scale simulations of the interactions of plasma species on nickel catalyst surfaces

    NASA Astrophysics Data System (ADS)

    Somers, Wesley

    The increased greenhouse gas concentrations compared to the pre-industrial values have led to an enhanced greenhouse effect and, as a consequence, global warming. One of the possibilities to mitigate the climate change is to increase the energy efficiency of industrial processes. This is particularly interesting for the methane reforming processes, since CH4 (and CO2 in the case of dry reforming) is converted into syngas, a valuable chemical mixture of H2 and CO. These processes have a large energy cost under conventional conditions, due to the high temperatures that are required. A promising alternative to the conventional procedure is the use of plasma catalysis, i.e. the combination of plasma technology and catalysis. However, this technology is very complex and there is little fundamental knowledge on the operative interaction mechanisms between plasma and catalyst. Therefore, reactive molecular dynamics (MD) simulations are used in this doctoral study to investigate the interactions of plasma species on different nickel catalyst surfaces. The plasma species under study are CH, radicals (x={1,2,3}) and vibrationally excited CH4. These particles impinge on a total of six different nickel surfaces, to study the influence of crystallinity on the reactivity. At a temperature of 400 K, different reaction mechanisms are observed, dependent on the nickel surface. The reactivity of impinging CH2 and CH radicals is high, however little H2 is formed at this temperature. A temperature study within the range of 400 K -1600 K showed that high H2 yields are obtained at temperatures above 1400 K. However, at these temperatures the crystallinity of the nickel surface is reduced due to the continuous C-diffusion into the surface. Therefore, the role of the surface structure seems to become limited. Afterwards, the motion of vibrationally excited CH4 is included in the MD simulations. This is done by first calculating the normal coordinates of the vibrational modes. These are

  16. Interaction of ozone with wooden building products, treated wood samples and exotic wood species

    NASA Astrophysics Data System (ADS)

    Schripp, Tobias; Langer, Sarka; Salthammer, Tunga

    2012-07-01

    Wooden building products indoors are known to be able to affect the perceived air quality depending on their emission strength. The indoor application of modern ecological lacquer systems (eco-lacquers or 'green' lacquers) may be a much stronger source than the substrates itself. Especially with regard to the formation of ultrafine particles by gas-to-particle conversion in the presence of ozone or other reactive species the impact of the applied building products on the indoor air quality has to be addressed. The present study reports a two concentration step ozonation of OSB panels, painted beech boards, and a number of solid 'exotic' wood types in a 1 m³ emission test chamber. The emission of volatile organic compounds (VOC) was recorded as well as the formation of ultrafine particles in the range 7-300 nm. The products are characterized on the basis of their ozone deposition velocity; the obtained values of 0.008-0.381 cm s-1 are comparable with previously published data. Within the samples of the present study one eco-lacquer was the strongest source of VOC (total VOC ˜ 60 mg m-3) while the wooden building products (OSB) were of intermediate emission strength. The lowest emission was found for the solid (exotic) wood samples. The VOC release of the samples corresponded roughly to the particle formation potential. However, the strongest UFP formation was measured for one solid wood sample ('Garapa') which showed a strong surface reaction in the presence of ozone and formed a large number of particles <40 nm. Overall, the experiments demonstrated the necessity of real-life samples for the estimation of UFP indoor air pollution from the ozone chemistry of terpenes.

  17. Modularity reveals the tendency of arbuscular mycorrhizal fungi to interact differently with generalist and specialist plant species in gypsum soils.

    PubMed

    Torrecillas, Emma; del Mar Alguacil, Maria; Roldán, Antonio; Díaz, Gisela; Montesinos-Navarro, Alicia; Torres, Maria Pilar

    2014-09-01

    Patterns in plant-soil biota interactions could be influenced by the spatial distribution of species due to soil conditions or by the functional traits of species. Gypsum environments usually constitute a mosaic of heterogeneous soils where gypsum and nongypsum soils are imbricated at a local scale. A case study of the interactions of plants with arbuscular mycorrhizal fungi (AMF) in gypsum environments can be illustrative of patterns in biotic interactions. We hypothesized that (i) soil characteristics might affect the AMF community and (ii) there are differences between the AMF communities (modules) associated with plants exclusive to gypsum soils (gypsophytes) and those associated with plants that show facultative behavior on gypsum and/or marly-limestone soils (gypsovags). We used indicator species and network analyses to test for differences between the AMF communities harbored in gypsophyte and gypsovag plants. We recorded 46 operational taxonomic units (OTUs) belonging to nine genera of Glomeromycota. The indicator species analysis showed two OTUs preferentially associating with gypsum soils and three OTUs preferentially associating with marly-limestone soils. Modularity analysis revealed that soil type can be a major factor shaping AMF communities, and some AMF groups showed a tendency to interact differently with plants that had distinct ecological strategies (gypsophytes and gypsovags). Characterization of ecological networks can be a valuable tool for ascertaining the potential influence of above- and below-ground biotic interactions (plant-AMF) on plant community composition. PMID:24973074

  18. Modularity Reveals the Tendency of Arbuscular Mycorrhizal Fungi To Interact Differently with Generalist and Specialist Plant Species in Gypsum Soils

    PubMed Central

    Torrecillas, Emma; del Mar Alguacil, Maria; Roldán, Antonio; Díaz, Gisela; Montesinos-Navarro, Alicia

    2014-01-01

    Patterns in plant–soil biota interactions could be influenced by the spatial distribution of species due to soil conditions or by the functional traits of species. Gypsum environments usually constitute a mosaic of heterogeneous soils where gypsum and nongypsum soils are imbricated at a local scale. A case study of the interactions of plants with arbuscular mycorrhizal fungi (AMF) in gypsum environments can be illustrative of patterns in biotic interactions. We hypothesized that (i) soil characteristics might affect the AMF community and (ii) there are differences between the AMF communities (modules) associated with plants exclusive to gypsum soils (gypsophytes) and those associated with plants that show facultative behavior on gypsum and/or marly-limestone soils (gypsovags). We used indicator species and network analyses to test for differences between the AMF communities harbored in gypsophyte and gypsovag plants. We recorded 46 operational taxonomic units (OTUs) belonging to nine genera of Glomeromycota. The indicator species analysis showed two OTUs preferentially associating with gypsum soils and three OTUs preferentially associating with marly-limestone soils. Modularity analysis revealed that soil type can be a major factor shaping AMF communities, and some AMF groups showed a tendency to interact differently with plants that had distinct ecological strategies (gypsophytes and gypsovags). Characterization of ecological networks can be a valuable tool for ascertaining the potential influence of above- and below-ground biotic interactions (plant-AMF) on plant community composition. PMID:24973074

  19. An interactive multi-entry key to the species of Megalostomis Chevrolat, with description of a new species from Paraguay (Chrysomelidae, Cryptocephalinae)

    PubMed Central

    Agrain, Federico A.

    2014-01-01

    Abstract The main goal of this contribution is to release an interactive multi-entry key to all known species of the genus Megalostomis Chevrolat. This key constitutes a new tool created to aid the identification of the species of this diverse genus, which occasionally may be difficult to identify to the species-level, due to the lack of reference collections for most countries within its distribution range, and to the presence of intra-specific variation and secondary sexual characters. It is expected that this on-line key will facilitate future periodic updates, and will benefit all those persons interested in identifying these taxa. The present paper also includes the description of Megalostomis juanenrique sp. n., a new species from Paraguay. In addition, Megalostomis gigas Lacordaire, and Megalostomis robustipes Monrós are newly cited for the fauna of Paraguay. The online interactive Lucid key is available at http://keys.lucidcentral.org/keys/v3/megalostomis. Offline Lucid data files in LIF and SDD formats are also available at doi: 10.3897/zookeys.425.7631.app1 and doi: 10.3897/zookeys.425.7631.app2. PMID:25147449

  20. The distribution of positive and negative species interactions across environmental gradients on a dual-lattice model.

    PubMed

    Travis, J M J; Brooker, R W; Clark, E J; Dytham, C

    2006-08-21

    There has been considerable recent interest in understanding the role of positive inter-specific interactions within ecology, and significant progress has been made both empirically and theoretically. Similarly, considerable progress has been made in improving our understanding of the mechanisms that limit species' ranges. In this contribution, we seek to understand the setting of species' borders when some species within the assemblage exhibit positive inter-specific interactions. We use a spatially explicit dual-lattice simulation model to explore the distribution of different interactions across environmental gradients. We first simulate community dynamics when there is either a gradient in reproductive rate or in mortality. We then consider what happens when gradients in reproduction and mortality run in parallel or perpendicular to one another. If the stress gradient impacts on reproductive potential, positive interactions are found where there is high abiotic stress. In this instance, the mutualists are able to tolerate an environment that the cheaters cannot. However, when the stress gradient influences mortality, we find that the mutualists occur as a stripe surrounded by cheaters both towards the better and the harsher ends of the gradient. Previous theory and most empirical evidence tend to indicate that net positive interactions are likely to occur in environments characterized by high abiotic stress. However, evidence from some stress gradients suggests that the distribution of positive and negative interactions can be more complex, with the most stressful environments being occupied by individuals engaging in negative rather than positive interactions. Our results provide a potential theoretical explanation for these recent field observation, and highlight the need for further theoretical and empirical work to better our understanding of how positive and negative interactions act to determine the limits to species' ranges.

  1. Behavioural interactions selecting for symmetry and asymmetry in sexual reproductive systems of eusocial species.

    PubMed

    Witting, Lars

    2007-05-01

    Understanding the life-history complex of eusociality has remained an enduring problem in evolutionary ecology, partially because natural selection models have considered traits in relative isolation. I aim for a more inclusive model that uses ecological interactions to predict the evolutionary existence of sexual reproduction, sexual reproduction asymmetry, and sex ratios in eusocial species. Using a two-level selection process, with within-population selection on the sex ratio of the sexual caste and between-population selection on the worker sex ratio and the degree of sexual reproduction asymmetry, it is found that a male-haploid genome and a worker caste of pure females is the evolutionary optimum of most initial conditions when, like in eusocial hymenoptera, there is no pair bond between the sexual male and female. That a diploid genome and a worker caste with both males and females is the evolutionary optimum of most initial conditions when, like in eusocial termites, there is a pair bond. That sex-linked genomes may evolve in diploid eusocials, and that the model will not generally maintain sexual reproduction by itself. These results hold for ploidy-levels that behave as quantitative or discrete traits, over a relatively wide range of the relative investment in a sexual male versus sexual female, and for partial sexual systems where the genomic portion with diploid inheritance is either fixed or random.

  2. Different Endosymbiotic Interactions in Two Hydra Species Reflect the Evolutionary History of Endosymbiosis.

    PubMed

    Ishikawa, Masakazu; Yuyama, Ikuko; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-08-03

    Endosymbiosis is an important evolutionary event for organisms, and there is widespread interest in understanding the evolution of endosymbiosis establishment. Hydra is one of the most suitable organisms for studying the evolution of endosymbiosis. Within the genus Hydra, H. viridissima and H. vulgaris show endosymbiosis with green algae. Previous studies suggested that the endosymbiosis in H. vulgaris took place much more recently than that in H. viridissima, noting that the establishment of the interaction between H. vulgaris and its algae is not as stable as in H. viridissima. To investigate the on-going process of endosymbiosis, we first compared growth and tolerance to starvation in symbiotic and aposymbiotic polyps of both species. The results revealed that symbiotic H. viridissima had a higher growth rate and greater tolerance to starvation than aposymbiotic polyps. By contrast, growth of symbiotic H. vulgaris was identical to that of aposymbiotic polyps, and symbiotic H. vulgaris was less tolerant to starvation. Moreover, our gene expression analysis showed a pattern of differential gene expression in H. viridissima similar to that in other endosymbiotically established organisms, and contrary to that observed in H. vulgaris We also showed that H. viridissima could cope with oxidative stress that caused damage, such as cell death, in H. vulgaris These observations support the idea that oxidative stress related genes play an important role in the on-going process of endosymbiosis evolution. The different evolutionary stages of endosymbiosis studied here provide a deeper insight into the evolutionary processes occurring toward a stable endosymbiosis.

  3. Different Endosymbiotic Interactions in Two Hydra Species Reflect the Evolutionary History of Endosymbiosis.

    PubMed

    Ishikawa, Masakazu; Yuyama, Ikuko; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-01-01

    Endosymbiosis is an important evolutionary event for organisms, and there is widespread interest in understanding the evolution of endosymbiosis establishment. Hydra is one of the most suitable organisms for studying the evolution of endosymbiosis. Within the genus Hydra, H. viridissima and H. vulgaris show endosymbiosis with green algae. Previous studies suggested that the endosymbiosis in H. vulgaris took place much more recently than that in H. viridissima, noting that the establishment of the interaction between H. vulgaris and its algae is not as stable as in H. viridissima. To investigate the on-going process of endosymbiosis, we first compared growth and tolerance to starvation in symbiotic and aposymbiotic polyps of both species. The results revealed that symbiotic H. viridissima had a higher growth rate and greater tolerance to starvation than aposymbiotic polyps. By contrast, growth of symbiotic H. vulgaris was identical to that of aposymbiotic polyps, and symbiotic H. vulgaris was less tolerant to starvation. Moreover, our gene expression analysis showed a pattern of differential gene expression in H. viridissima similar to that in other endosymbiotically established organisms, and contrary to that observed in H. vulgaris We also showed that H. viridissima could cope with oxidative stress that caused damage, such as cell death, in H. vulgaris These observations support the idea that oxidative stress related genes play an important role in the on-going process of endosymbiosis evolution. The different evolutionary stages of endosymbiosis studied here provide a deeper insight into the evolutionary processes occurring toward a stable endosymbiosis. PMID:27324918

  4. Different Endosymbiotic Interactions in Two Hydra Species Reflect the Evolutionary History of Endosymbiosis

    PubMed Central

    Ishikawa, Masakazu; Yuyama, Ikuko; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-01-01

    Endosymbiosis is an important evolutionary event for organisms, and there is widespread interest in understanding the evolution of endosymbiosis establishment. Hydra is one of the most suitable organisms for studying the evolution of endosymbiosis. Within the genus Hydra, H. viridissima and H. vulgaris show endosymbiosis with green algae. Previous studies suggested that the endosymbiosis in H. vulgaris took place much more recently than that in H. viridissima, noting that the establishment of the interaction between H. vulgaris and its algae is not as stable as in H. viridissima. To investigate the on-going process of endosymbiosis, we first compared growth and tolerance to starvation in symbiotic and aposymbiotic polyps of both species. The results revealed that symbiotic H. viridissima had a higher growth rate and greater tolerance to starvation than aposymbiotic polyps. By contrast, growth of symbiotic H. vulgaris was identical to that of aposymbiotic polyps, and symbiotic H. vulgaris was less tolerant to starvation. Moreover, our gene expression analysis showed a pattern of differential gene expression in H. viridissima similar to that in other endosymbiotically established organisms, and contrary to that observed in H. vulgaris. We also showed that H. viridissima could cope with oxidative stress that caused damage, such as cell death, in H. vulgaris. These observations support the idea that oxidative stress related genes play an important role in the on-going process of endosymbiosis evolution. The different evolutionary stages of endosymbiosis studied here provide a deeper insight into the evolutionary processes occurring toward a stable endosymbiosis. PMID:27324918

  5. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination.

    PubMed

    El-Maarouf-Bouteau, Hayat; Sajjad, Yasar; Bazin, Jérémie; Langlade, Nicolas; Cristescu, Simona M; Balzergue, Sandrine; Baudouin, Emmanuel; Bailly, Christophe

    2015-02-01

    Sunflower (Helianthus annuus L.) seed dormancy is regulated by reactive oxygen species (ROS) and can be alleviated by incubating dormant embryos in the presence of methylviologen (MV), a ROS-generating compound. Ethylene alleviates sunflower seed dormancy whereas abscisic acid (ABA) represses germination. The purposes of this study were to identify the molecular basis of ROS effect on seed germination and to investigate their possible relationship with hormone signalling pathways. Ethylene treatment provoked ROS generation in embryonic axis whereas ABA had no effect on their production. The beneficial effect of ethylene on germination was lowered in the presence of antioxidant compounds, and MV suppressed the inhibitory effect of ABA. MV treatment did not alter significantly ethylene nor ABA production during seed imbibition. Microarray analysis showed that MV treatment triggered differential expression of 120 probe sets (59 more abundant and 61 less abundant genes), and most of the identified transcripts were related to cell signalling components. Many transcripts less represented in MV-treated seeds were involved in ABA signalling, thus suggesting an interaction between ROS and ABA signalling pathways at the transcriptional level. Altogether, these results shed new light on the crosstalk between ROS and plant hormones in seed germination.

  6. Structure-based Engineering of Species Selectivity in the Interaction Between Urokinase and its Receptor: Implication for Preclinical Cancer Therapy

    SciTech Connect

    Lin, L.; Gardsvoll, H; Huai, Q; Huang, M; Ploug, M

    2010-01-01

    The high affinity interaction between the urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) is decisive for cell surface-associated plasminogen activation. Because plasmin activity controls fibrinolysis in a variety of pathological conditions, including cancer and wound healing, several intervention studies have focused on targeting the uPA {center_dot} uPAR interaction in vivo. Evaluations of such studies in xenotransplanted tumor models are, however, complicated by the pronounced species selectivity in this interaction. We now report the molecular basis underlying this difference by solving the crystal structure for the murine uPA {center_dot} uPAR complex and demonstrate by extensive surface plasmon resonance studies that the kinetic rate constants for this interaction can be swapped completely between these orthologs by exchanging only two residues. This study not only discloses the structural basis required for a successful rational design of the species selectivity in the uPA {center_dot} uPAR interaction, which is highly relevant for functional studies in mouse models, but it also suggests the possible development of general inhibitors that will target the uPA {center_dot} uPAR interaction across species barriers.

  7. Derivation of Pitzer Interaction Parameters for an Aqueous Species Pair of Sodium and Iron(II)-Citrate Complex

    NASA Astrophysics Data System (ADS)

    Jang, J. H.; Nemer, M.

    2015-12-01

    The U.S. DOE Waste Isolation Pilot Plant (WIPP) is a deep underground repository for the permanent disposal of transuranic (TRU) radioactive waste. The WIPP is located in the Permian Delaware Basin near Carlsbad, New Mexico, U.S.A. The TRU waste includes, but is not limited to, iron-based alloys and the complexing agent, citric acid. Iron is also present from the steel used in the waste containers. The objective of this analysis is to derive the Pitzer activity coefficients for the pair of Na+ and FeCit- complex to expand current WIPP thermodynamic database. An aqueous model for the dissolution of Fe(OH)2(s) in a Na3Cit solution was fitted to the experimentally measured solubility data. The aqueous model consists of several chemical reactions and related Pitzer interaction parameters. Specifically, Pitzer interaction parameters for the Na+ and FeCit- pair (β(0), β(1), and Cφ) plus the stability constant for species of FeCit- were fitted to the experimental data. Anoxic gloveboxes were used to keep the oxygen level low (<1 ppm) throughout the experiments due to redox sensitivity. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations, packaged in EQ3/6 v.8.0a, calculates the aqueous speciation and saturation index using an aqueous model addressed in EQ3/6's database. The saturation index indicates how far the system is from equilibrium with respect to the solid of interest. Thus, the smaller the sum of squared saturation indices that the aqueous model calculates for the given number of experiments, the more closely the model attributes equilibrium to each individual experiment with respect to the solid of interest. The calculation of aqueous speciation and saturation indices was repeated by adjusting stability constant of FeCit-, β(0), β(1), and Cφ in the database until the values are found that make the sum of squared saturation indices the smallest for the given number of experiments. Results will be presented at the time of

  8. Differential impacts of plant interactions on herbaceous species recruitment: disentangling factors controlling emergence, survival and growth of seedlings.

    PubMed

    Fayolle, Adeline; Violle, Cyrille; Navas, Marie-Laure

    2009-04-01

    Recruitment is a crucial event in the plant life cycle that is very sensitive to interaction with established vegetation. Based on a large comparative experiment, we tested the hypothesis that the components of recruitment--emergence time and rate, seedling survival and biomass--differ in response to plant-plant interactions during recruitment. The consequences for the population are predicted with a simple demographic model assessing the response of seed production. In a common garden experiment, we recorded the recruitment of four target species in an individual-based survey protocol. A total of 7,680 seeds were sown within 20 neighbourhoods, consisting of 19 mono-specific herbaceous stands and a control treatment without vegetation. We measured transmitted light, temperature and moisture at soil surface to characterise the environmental conditions within neighbourhoods. The mean height of neighbours controlled temperature buffering and light interception and thus depicted the interaction gradient. Emergence rate and time increased with neighbour height in two of the four target species, while seedling survival and biomass significantly decreased with neighbour height in three and all four target species, respectively. We recorded a shift in seedling neighbour interactions under the tallest neighbours that largely favoured emergence but strongly depressed seedling survival and biomass. The components of recruitment were predicted to differ in their impact on later adult performance. Biomass strongly contributed to predicted seed production in three target species, and emergence had an equal or greater impact on a fourth species. These results confirm the fundamental role of plant-plant interactions in the recruitment of herbaceous species through a complex combination of habitat amelioration, which facilitates emergence and light competition, which in turn limits seedling survival and biomass.

  9. Interaction between zinc and freshwater and marine diatom species: Surface complexation and Zn isotope fractionation

    NASA Astrophysics Data System (ADS)

    Gélabert, A.; Pokrovsky, O. S.; Viers, J.; Schott, J.; Boudou, A.; Feurtet-Mazel, A.

    2006-02-01

    This work is devoted to characterization of zinc interaction in aqueous solution with two marine planktonic ( Thalassiosira weissflogii = TW, Skeletonema costatum = SC) and two freshwater periphytic species ( Achnanthidium minutissimum = AMIN, Navicula minima = NMIN) by combining adsorption and electrophoretic measurements with surface complexation modeling and by assessing Zn isotopes fractionation during both long term uptake and short term adsorption on diatom cells and their frustules. Reversible adsorption experiments were performed at 25 and 5 °C as a function of exposure time (5 min to 140 h), pH (2 to 10), zinc concentration in solution (10 nM to 1 mM), ionic strength ( I = 0.001 to 1.0 M) and the presence of light. While the shape of pH-dependent adsorption edge is almost the same for all four species, the constant-pH adsorption isotherm and maximal Zn binding capacities differ by an order of magnitude. The extent of adsorption increases with temperature from 5 to 25 °C and does not depend on light intensity. Zinc adsorption decreases with increase of ionic strength suggesting competition with sodium for surface sites. Cell number-normalized concentrations of sorbed zinc on whole cells and their silica frustules demonstrated only weak contribution of the latter (10-20%) to overall zinc binding by diatom cell wall. Measurements of electrophoretic mobilities ( μ) revealed negative diatoms surface potential in the full range of zinc concentrations investigated (0.15-760 μmol/L), however, the absolute value of μ decreases at [Zn] > 15 μmol/L suggesting a change in surface speciation. These observations allowed us to construct a surface complexation model for Zn binding by diatom surfaces that postulates the constant capacitance of the electric double layer and considers Zn complexation with carboxylate and silanol groups. Thermodynamic and structural parameters of this model are based on previous acid-base titration and spectroscopic results and allow

  10. Flat Mites of the World interactive identification key for economically important species in the family Tenuipalpidae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several flat mite species associated with fruit and crop trees, and ornamentals are commonly intercepted at U.S. ports-of-entry. These species complex are also the most complicated and part of the most diverse group in the flat mite family. Three of the most economically important species in the fa...

  11. On their best behavior: how animal behavior can help determine the combined effects of species interactions and climate change.

    PubMed

    Harmon, Jason P; Barton, Brandon T

    2013-09-01

    The increasingly appreciated link between climate change and species interactions has the potential to help us understand and predict how organisms respond to a changing environment. As this connection grows, it becomes even more important to appreciate the mechanisms that create and control the combined effect of these factors. However, we believe one such important set of mechanisms comes from species' behavior and the subsequent trait-mediated interactions, as opposed to the more often studied density-mediated effects. Behavioral mechanisms are already well appreciated for mitigating the separate effects of the environment and species interactions. Thus, they could be at the forefront for understanding the combined effects. In this review, we (1) show some of the known behaviors that influence the individual and combined effects of climate change and species interactions; (2) conceptualize general ways behavior may mediate these combined effects; and (3) illustrate the potential importance of including behavior in our current tools for predicting climate change effects. In doing so, we hope to promote more research on behavior and other mechanistic factors that may increase our ability to accurately predict climate change effects.

  12. Interactions among Bt maize, entomopathogens, and rootworm species (Coleoptera: Chrysomelidae) in the field: effects on survival, yield and root injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A two year field study was conducted to determine how a blend of entomopathogens interacts with Bt maize to affect survival of corn rootworm (Diabrotica spp.) species and performance of maize (Zea maize L.). The blend of entomopathogens included two entomopathogenic nematodes, Steinernema carpocaps...

  13. Process-Based Species Pools Reveal the Hidden Signature of Biotic Interactions Amid the Influence of Temperature Filtering.

    PubMed

    Lessard, Jean-Philippe; Weinstein, Ben G; Borregaard, Michael K; Marske, Katharine A; Martin, Danny R; McGuire, Jimmy A; Parra, Juan L; Rahbek, Carsten; Graham, Catherine H

    2016-01-01

    A persistent challenge in ecology is to tease apart the influence of multiple processes acting simultaneously and interacting in complex ways to shape the structure of species assemblages. We implement a heuristic approach that relies on explicitly defining species pools and permits assessment of the relative influence of the main processes thought to shape assemblage structure: environmental filtering, dispersal limitations, and biotic interactions. We illustrate our approach using data on the assemblage composition and geographic distribution of hummingbirds, a comprehensive phylogeny and morphological traits. The implementation of several process-based species pool definitions in null models suggests that temperature-but not precipitation or dispersal limitation-acts as the main regional filter of assemblage structure. Incorporating this environmental filter directly into the definition of assemblage-specific species pools revealed an otherwise hidden pattern of phylogenetic evenness, indicating that biotic interactions might further influence hummingbird assemblage structure. Such hidden patterns of assemblage structure call for a reexamination of a multitude of phylogenetic- and trait-based studies that did not explicitly consider potentially important processes in their definition of the species pool. Our heuristic approach provides a transparent way to explore patterns and refine interpretations of the underlying causes of assemblage structure. PMID:27277404

  14. A Single Case Design Evaluation of a Software and Tutor Intervention Addressing Emotion Recognition and Social Interaction in Four Boys with ASD

    ERIC Educational Resources Information Center

    Lacava, Paul G.; Rankin, Ana; Mahlios, Emily; Cook, Katie; Simpson, Richard L.

    2010-01-01

    Many students with Autism Spectrum Disorders (ASD) have delays learning to recognize emotions. Social behavior is also challenging, including initiating interactions, responding to others, developing peer relationships, and so forth. In this single case design study we investigated the relationship between use of computer software ("Mind Reading:…

  15. Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate–boreal forest

    PubMed Central

    Frelich, Lee E.; Peterson, Rolf O.; Dovčiak, Martin; Reich, Peter B.; Vucetich, John A.; Eisenhauer, Nico

    2012-01-01

    As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems. PMID:23007083

  16. Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate-boreal forest.

    PubMed

    Frelich, Lee E; Peterson, Rolf O; Dovčiak, Martin; Reich, Peter B; Vucetich, John A; Eisenhauer, Nico

    2012-11-01

    As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems.

  17. Aerosol-Cloud Interactions in the South-East Atlantic: Knowledge Gaps, Planned Observations to Address Them, and Implications for Global Climate Change Modeling

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Wood, R.; Zuidema, P.; Haywood, J.; Luna, B.; Abel, S.

    2015-01-01

    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical Stratocumulus (Sc) cloud decks in the world. The stratocumulus "climate radiators" are critical to the regional and global climate system. They interact with dense layers of BB aerosols that initially overlay the cloud deck, but later subside and are mixed into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects. As emphasized in the latest IPCC report, the global representation of these aerosol-cloud interaction processes in climate models is one of the largest uncertainty in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling, and describe planned field campaigns in the region. Specifically, we describe the scientific objectives and implementation of the following four synergistic, international research activities aimed at providing a process-level understanding of aerosol-cloud interactions over the SE Atlantic: 1) ORACLES (Observations of Aerosols above Clouds and their interactions), a five-year investigation between 2015 and 2019 with three Intensive Observation Periods (IOP), recently funded by the NASA Earth-Venture Suborbital Program, 2) CLARIFY-2016 (Cloud-Aerosol-Radiation Interactions and Forcing: Year 2016), a comprehensive observational and modeling programme funded by the UK's Natural Environment Research Council (NERC), and supported by the UK Met Office. 3) LASIC (Layered Atlantic Smoke Interactions with Clouds), a funded

  18. Aerosol-cloud interactions in the South-East Atlantic: knowledge gaps, planned observations to address them, and implications for global climate change modeling

    NASA Astrophysics Data System (ADS)

    Redemann, Jens; Wood, Robert; Zuidema, Paquita; Haywood, James; Luna, Bernadette; Abel, Steven

    2015-04-01

    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical Stratocumulus (Sc) cloud decks in the world. The stratocumulus "climate radiators" are critical to the regional and global climate system. They interact with dense layers of BB aerosols that initially overlay the cloud deck, but later subside and are mixed into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects. As emphasized in the latest IPCC report, the global representation of these aerosol-cloud interaction processes in climate models is one of the largest uncertainty in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling, and describe planned field campaigns in the region. Specifically, we describe the scientific objectives and implementation of the following four synergistic, international research activities aimed at providing a process-level understanding of aerosol-cloud interactions over the SE Atlantic: 1) ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS), a five-year investigation between 2015 and 2019 with three Intensive Observation Periods (IOP), recently funded by the NASA Earth-Venture Suborbital Program, 2) CLARIFY-2016 (CLoud-Aerosol-Radiation Interactions and Forcing: Year 2016), a comprehensive observational and modeling programme funded by the UK's Natural Environment Research Council (NERC), and supported by the UK Met Office. 3) LASIC (Layered Atlantic Smoke Interactions with Clouds), a funded

  19. Both Leaf Properties and Microbe-Microbe Interactions Influence Within-Species Variation in Bacterial Population Diversity and Structure in the Lettuce (Lactuca Species) Phyllosphere▿

    PubMed Central

    Hunter, Paul J.; Hand, Paul; Pink, David; Whipps, John M.; Bending, Gary D.

    2010-01-01

    Morphological and chemical differences between plant genera influence phyllosphere microbial populations, but the factors driving within-species variation in phyllosphere populations are poorly understood. Twenty-six lettuce accessions were used to investigate factors controlling within-species variation in phyllosphere bacterial populations. Morphological and physiochemical characteristics of the plants were compared, and bacterial community structure and diversity were investigated using terminal restriction fragment length polymorphism (T-RFLP) profiling and 16S rRNA gene clone libraries. Plant morphology and levels of soluble carbohydrates, calcium, and phenolic compounds (which have long been associated with plant responses to biotic stress) were found to significantly influence bacterial community structure. Clone libraries from three representative accessions were found to be significantly different in terms of both sequence differences and the bacterial genera represented. All three libraries were dominated by Pseudomonas species and the Enterobacteriaceae family. Significant differences in the relative proportions of genera in the Enterobacteriaceae were detected between lettuce accessions. Two such genera (Erwinia and Enterobacter) showed significant variation between the accessions and revealed microbe-microbe interactions. We conclude that both leaf surface properties and microbial interactions are important in determining the structure and diversity of the phyllosphere bacterial community. PMID:20952648

  20. Bax: Addressed to kill.

    PubMed

    Renault, Thibaud T; Manon, Stéphen

    2011-09-01

    The pro-apoptototic protein Bax (Bcl-2 Associated protein X) plays a central role in the mitochondria-dependent apoptotic pathway. In healthy mammalian cells, Bax is essentially cytosolic and inactive. Following a death signal, the protein is translocated to the outer mitochondrial membrane, where it promotes a permeabilization that favors the release of different apoptogenic factors, such as cytochrome c. The regulation of Bax translocation is associated to conformational changes that are under the control of different factors. The evidences showing the involvement of different Bax domains in its mitochondrial localization are presented. The interactions between Bax and its different partners are described in relation to their ability to promote (or prevent) Bax conformational changes leading to mitochondrial addressing and to the acquisition of the capacity to permeabilize the outer mitochondrial membrane. PMID:21641962

  1. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation

    NASA Astrophysics Data System (ADS)

    Grossiord, Charlotte; Gessler, Arthur; Granier, André; Berger, Sigrid; Bréchet, Claude; Hentschel, Rainer; Hommel, Robert; Scherer-Lorenzen, Michael; Bonal, Damien

    2014-11-01

    Interactions between tree species in forests can be beneficial to ecosystem functions and services related to the carbon and water cycles by improving for example transpiration and productivity. However, little is known on below- and above-ground processes leading to these positive effects. We tested whether stratification in soil water uptake depth occurred between four tree species in a 10-year-old temperate mixed species plantation during a dry summer. We selected dominant and co-dominant trees of European beech, Sessile oak, Douglas fir and Norway spruce in areas with varying species diversity, competition intensity, and where different plant functional types (broadleaf vs. conifer) were present. We applied a deuterium labelling approach that consisted of spraying labelled water to the soil surface to create a strong vertical gradient of the deuterium isotope composition in the soil water. The deuterium isotope composition of both the xylem sap and the soil water was measured before labelling, and then again three days after labelling, to estimate the soil water uptake depth using a simple modelling approach. We also sampled leaves and needles from selected trees to measure their carbon isotope composition (a proxy for water use efficiency) and total nitrogen content. At the end of the summer, we found differences in the soil water uptake depth between plant functional types but not within types: on average, coniferous species extracted water from deeper layers than did broadleaved species. Neither species diversity nor competition intensity had a detectable influence on soil water uptake depth, foliar water use efficiency or foliar nitrogen concentration in the species studied. However, when coexisting with an increasing proportion of conifers, beech extracted water from progressively deeper soil layers. We conclude that complementarity for water uptake could occur in this 10-year-old plantation because of inherent differences among functional groups (conifers

  2. Biologic interactions determining geographic range size: a one species response to phylogenetic community structure

    PubMed Central

    Herrera-Alsina, Leonel; Villegas-Patraca, Rafael

    2014-01-01

    Range size variation in closely related species suggests different responses to biotic and abiotic heterogeneity across large geographic regions. Species turnover generates a wide spectrum of species assemblages, resulting in different competition intensities among taxa, creating restrictions as important as environmental constraints. We chose to adopt the widely used phylogenetic relatedness (NRI) measurement to define a metric that depicts competition strength (via phylogenetic similarity), which one focal species confronts in its environment. This new approach (NRIfocal) measures the potential of the community structure effect over performance of a single species. We chose two ecologically similar Peucaea sparrows, which co-occur and have highly dissimilar range size to test whether the population response to competition intensity is different between species. We analyzed the correlation between both Peucaea species population sizes and NRIfocal using data from point counts. Results indicated that the widespread species population size was not associated with NRIfocal, whereas the population of restricted-sized species exhibited a negative relationship with competition intensity. Consequently, a species' sensitivity to competition might be a limiting factor to range expansion, which provides new insights into geographic range analysis and community ecology. PMID:24772275

  3. A New Species of Science Education: Harnessing the Power of Interactive Technology to Teach Laboratory Science

    ERIC Educational Resources Information Center

    Reddy, Christopher

    2014-01-01

    Interactive television is a type of distance education that uses streaming audio and video technology for real-time student-teacher interaction. Here, I discuss the design and logistics for developing a high school laboratory-based science course taught to students at a distance using interactive technologies. The goal is to share a successful…

  4. SETI meets a social intelligence: Dolphins as a model for real-time interaction and communication with a sentient species

    NASA Astrophysics Data System (ADS)

    Herzing, Denise L.

    2010-12-01

    In the past SETI has focused on the reception and deciphering of radio signals from potential remote civilizations. It is conceivable that real-time contact and interaction with a social intelligence may occur in the future. A serious look at the development of relationship, and deciphering of communication signals within and between a non-terrestrial, non-primate sentient species is relevant. Since 1985 a resident community of free-ranging Atlantic spotted dolphins has been observed regularly in the Bahamas. Life history, relationships, regular interspecific interactions with bottlenose dolphins, and multi-modal underwater communication signals have been documented. Dolphins display social communication signals modified for water, their body types, and sensory systems. Like anthropologists, human researchers engage in benign observation in the water and interact with these dolphins to develop rapport and trust. Many individual dolphins have been known for over 20 years. Learning the culturally appropriate etiquette has been important in the relationship with this alien society. To engage humans in interaction the dolphins often initiate spontaneous displays, mimicry, imitation, and synchrony. These elements may be emergent/universal features of one intelligent species contacting another for the intention of initiating interaction. This should be a consideration for real-time contact and interaction for future SETI work.

  5. Joint estimation of habitat dynamics and species interactions: Disturbance reduces co-occurrence of non-native predators with an endangered toad

    USGS Publications Warehouse

    Miller, David A.W.; Brehme, Cheryl S.; Hines, James E.; Nichols, James D.; Fisher, Robert N.

    2012-01-01

    1. Ecologists have long been interested in the processes that determine patterns of species occurrence and co-occurrence. Potential short-comings of many existing empirical approaches that address these questions include a reliance on patterns of occurrence at a single time point, failure to account properly for imperfect detection and treating the environment as a static variable.2. We fit detection and non-detection data collected from repeat visits using a dynamic site occupancy model that simultaneously accounts for the temporal dynamics of a focal prey species, its predators and its habitat. Our objective was to determine how disturbance and species interactions affect the co-occurrence probabilities of an endangered toad and recently introduced non-native predators in stream breeding habitats. For this, we determined statistical support for alternative processes that could affect co-occurrence frequency in the system.3. We collected occurrence data at stream segments in two watersheds where streams were largely ephemeral and one watershed dominated by perennial streams. Co-occurrence probabilities of toads with non-native predators were related to disturbance frequency, with low co-occurrence in the ephemeral watershed and high co-occurrence in the perennial watershed. This occurred because once predators were established at a site, they were rarely lost from the site except in cases when the site dried out. Once dry sites became suitable again, toads colonized them much more rapidly than predators, creating a period of predator-free space.4. We attribute the dynamics to a storage effect, where toads persisting outside the stream environment during periods of drought rapidly colonized sites when they become suitable again. Our results support that even in highly connected stream networks, temporal disturbance can structure frequencies with which breeding amphibians encounter non-native predators.5. Dynamic multi-state occupancy models are a powerful

  6. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation Is Species and Strain Specific.

    PubMed

    Wang, Chunxiao; Mas, Albert; Esteve-Zarzoso, Braulio

    2016-01-01

    The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris, and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations compared with Hanseniaspora uvarum and Metschnikowia pulcherrima. Strain differences in culturability and nutrient consumption (glucose, alanine, ammonium, arginine, or glutamine) were found within each species in mixed fermentation with S. cerevisiae. The interaction was further analyzed using cell-free supernatant from S. cerevisiae and synthetic media mimicking both single fermentations with S. cerevisiae and using mixed fermentations with the corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants induced faster culturability loss than synthetic media corresponding to the same fermentation stage. This demonstrated that some metabolites produced by S. cerevisiae played the main role in the decreased culturability of the other non-Saccharomyces yeasts. However, changes in the concentrations of main metabolites had also an effect. Culturability differences were observed among species and strains in culture assays and thus showed distinct tolerance to S. cerevisiae metabolites and fermentation environment. Viability kit and recovery analyses on non-culturable cells verified the existence of viable but not-culturable status. These findings are discussed in the context of interaction between non-Saccharomyces and S. cerevisiae.

  7. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation Is Species and Strain Specific

    PubMed Central

    Wang, Chunxiao; Mas, Albert; Esteve-Zarzoso, Braulio

    2016-01-01

    The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris, and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations compared with Hanseniaspora uvarum and Metschnikowia pulcherrima. Strain differences in culturability and nutrient consumption (glucose, alanine, ammonium, arginine, or glutamine) were found within each species in mixed fermentation with S. cerevisiae. The interaction was further analyzed using cell-free supernatant from S. cerevisiae and synthetic media mimicking both single fermentations with S. cerevisiae and using mixed fermentations with the corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants induced faster culturability loss than synthetic media corresponding to the same fermentation stage. This demonstrated that some metabolites produced by S. cerevisiae played the main role in the decreased culturability of the other non-Saccharomyces yeasts. However, changes in the concentrations of main metabolites had also an effect. Culturability differences were observed among species and strains in culture assays and thus showed distinct tolerance to S. cerevisiae metabolites and fermentation environment. Viability kit and recovery analyses on non-culturable cells verified the existence of viable but not-culturable status. These findings are discussed in the context of interaction between non-Saccharomyces and S. cerevisiae. PMID:27148191

  8. Reduction of low temperature engine pollutants by understanding the exhaust species interactions in a diesel oxidation catalyst.

    PubMed

    Lefort, I; Herreros, J M; Tsolakis, A

    2014-02-18

    The interactions between exhaust gas species and their effect (promotion or inhibition) on the light-off and activity of a diesel oxidation catalyst (DOC) for the removal of pollutants are studied, using actual engine exhaust gases from the combustion of diesel, alternative fuels (rapeseed methyl ester and gas-to-liquid fuel) and diesel/propane dual fuel combustion. The activity of the catalyst was recorded during a heating temperature ramp where carbon monoxide (CO) and hydrocarbon (HC) light-off curves were obtained. From the catalyst activity tests, it was found that the presence of species including CO, medium-heavy HC, alkenes, alkanes, and NOx and their concentration influence the catalyst ability to reduce CO and total HC emissions before release to the atmosphere. CO could inhibit itself and other species oxidation (e.g., light and medium-heavy hydrocarbons) while suffering from competitive adsorption with NO. Hydrocarbon species were also found to inhibit their own oxidation as well as CO through adsorption competition. On the other hand, NO2 was found to promote low temperature HC oxidation through its partial reduction, forming NO. The understanding of these exhaust species interactions within the DOC could aid the design of an efficient aftertreatment system for the removal of diesel exhaust pollutants.

  9. Seed trait-mediated selection by rodents affects mutualistic interactions and seedling recruitment of co-occurring tree species.

    PubMed

    Zhang, Hongmao; Yan, Chuan; Chang, Gang; Zhang, Zhibin

    2016-02-01

    As mutualists, seed dispersers may significantly affect mutualistic interactions and seedling recruitment of sympatric plants that share similar seed dispersers, but studies are rare. Here, we compared seed dispersal fitness in two co-occurring plant species (Armeniaca sibirica and Amygdalus davidiana) that inhabit warm temperate deciduous forest in northern China. We tested the hypothesis that seed trait-mediated selection by rodents may influence mutualistic interactions with rodents and then seedling establishment of co-occurring plant species. A. davidiana seeds are larger and harder (thick endocarps) than A. sibirica seeds, but they have similar levels of nutrients (crude fat, crude protein), caloric value and tannin. More A. sibirica seedlings are found in the field. Semi-natural enclosure tests indicated that the two seed species were both harvested by the same six rodent species, but that A. sibirica had mutualistic interactions (scatter hoarding) with four rodent species (Apodemus peninsulae, A. agrarius, Sciurotamias davidianus, Tamias sibiricus), and A. davidiana with only one (S. davidianus). Tagged seed dispersal experiments in the field indicated that more A. sibirica seeds were scatter-hoarded by rodents, and more A. sibirica seeds survived to the next spring and became seedlings. A. sibirica seeds derive more benefit from seed dispersal by rodents than A. davidiana seeds, particularly in years with limited seed dispersers, which well explained the higher seedling recruitment of A. sibirica compared with that of A. davidiana under natural conditions. Our results suggest that seed dispersers may play a significant role in seedling recruitment and indirect competition between co-occurring plant species. PMID:26546082

  10. Seed trait-mediated selection by rodents affects mutualistic interactions and seedling recruitment of co-occurring tree species.

    PubMed

    Zhang, Hongmao; Yan, Chuan; Chang, Gang; Zhang, Zhibin

    2016-02-01

    As mutualists, seed dispersers may significantly affect mutualistic interactions and seedling recruitment of sympatric plants that share similar seed dispersers, but studies are rare. Here, we compared seed dispersal fitness in two co-occurring plant species (Armeniaca sibirica and Amygdalus davidiana) that inhabit warm temperate deciduous forest in northern China. We tested the hypothesis that seed trait-mediated selection by rodents may influence mutualistic interactions with rodents and then seedling establishment of co-occurring plant species. A. davidiana seeds are larger and harder (thick endocarps) than A. sibirica seeds, but they have similar levels of nutrients (crude fat, crude protein), caloric value and tannin. More A. sibirica seedlings are found in the field. Semi-natural enclosure tests indicated that the two seed species were both harvested by the same six rodent species, but that A. sibirica had mutualistic interactions (scatter hoarding) with four rodent species (Apodemus peninsulae, A. agrarius, Sciurotamias davidianus, Tamias sibiricus), and A. davidiana with only one (S. davidianus). Tagged seed dispersal experiments in the field indicated that more A. sibirica seeds were scatter-hoarded by rodents, and more A. sibirica seeds survived to the next spring and became seedlings. A. sibirica seeds derive more benefit from seed dispersal by rodents than A. davidiana seeds, particularly in years with limited seed dispersers, which well explained the higher seedling recruitment of A. sibirica compared with that of A. davidiana under natural conditions. Our results suggest that seed dispersers may play a significant role in seedling recruitment and indirect competition between co-occurring plant species.

  11. Relative importance of phenotypic trait matching and species' abundances in determining plant-avian seed dispersal interactions in a small insular community.

    PubMed

    González-Castro, Aarón; Yang, Suann; Nogales, Manuel; Carlo, Tomás A

    2015-03-05

    Network theory has provided a general way to understand mutualistic plant-animal interactions at the community level. However, the mechanisms responsible for interaction patterns remain controversial. In this study we use a combination of statistical models and probability matrices to evaluate the relative importance of species morphological and nutritional (phenotypic) traits and species abundance in determining interactions between fleshy-fruited plants and birds that disperse their seeds. The models included variables associated with species abundance, a suite of variables associated with phenotypic traits (fruit diameter, bird bill width, fruit nutrient compounds), and the species identity of the avian disperser. Results show that both phenotypic traits and species abundance are important determinants of pairwise interactions. However, when considered separately, fruit diameter and bill width were more important in determining seed dispersal interactions. The effect of fruit compounds was less substantial and only important when considered together with abundance-related variables and/or the factor 'animal species'.

  12. MAEA Interactive Science Programs: An Innovative Approach to Address the Under-representation of Minorities and Women in Science, Math, and Technological Fields.

    NASA Astrophysics Data System (ADS)

    Holloman, E. L.; Baynes, D. L.

    2004-12-01

    Minority Aviation Education Association Inc. (MAEA) was founded in 1992 by Darryl Lee Baynes to address the under-representation of minorities and women in all science, math, and technological fields. The organization is committed to exposing minorities and women to science, math, and technology in grades K-12. The first objective of MAEA is to educate teachers on how to integrate hands-on experiments in their class and include inquiry based learning in their science curriculum. A second objective is to educate students, teachers, and the community regarding the history of minorities in the fields of science, math, and technology, in order to provide role models in these fields. The last objective is to demonstrate the relevance of science in everyday life, with the intention of stimulating future career interest in the fields of science, math, and technology. MAEA currently offers more than 70 hands on inquiry-based programs that are aligned with the 2061 Bench Marks and National Science Standards. The programs are divided into four main categories: auditorium/classroom, enrichment and outreach, after school, and professional development. For the last 14 years, MAEA has served communities and schools across the country with remarkable success and therefore offers an alternative model for K-12 science education. This alternative is significant to the scientific community because it links the under-served population to an active academic and professional pipeline.

  13. Landscape-scale evaluation of asymmetric interactions between Brown Trout and Brook Trout using two-species occupancy models

    USGS Publications Warehouse

    Wagner, Tyler; Jefferson T. Deweber,; Jason Detar,; John A. Sweka,

    2013-01-01

    Predicting the distribution of native stream fishes is fundamental to the management and conservation of many species. Modeling species distributions often consists of quantifying relationships between species occurrence and abundance data at known locations with environmental data at those locations. However, it is well documented that native stream fish distributions can be altered as a result of asymmetric interactions between dominant exotic and subordinate native species. For example, the naturalized exotic Brown Trout Salmo trutta has been identified as a threat to native Brook Trout Salvelinus fontinalis in the eastern United States. To evaluate large-scale patterns of co-occurrence and to quantify the potential effects of Brown Trout presence on Brook Trout occupancy, we used data from 624 stream sites to fit two-species occupancy models. These models assumed that asymmetric interactions occurred between the two species. In addition, we examined natural and anthropogenic landscape characteristics we hypothesized would be important predictors of occurrence of both species. Estimated occupancy for Brook Trout, from a co-occurrence model with no landscape covariates, at sites with Brown Trout present was substantially lower than sites where Brown Trout were absent. We also observed opposing patterns for Brook and Brown Trout occurrence in relation to percentage forest, impervious surface, and agriculture within the network catchment. Our results are consistent with other studies and suggest that alterations to the landscape, and specifically the transition from a forested catchment to one that contains impervious surface or agriculture, reduces the occurrence probability of wild Brook Trout. Our results, however, also suggest that the presence of Brown Trout results in lower occurrence probability of Brook Trout over a range of anthropogenic landscape characteristics, compared with streams where Brown Trout were absent.

  14. Collective decision making and social interaction rules in mixed-species flocks of songbirds.

    PubMed

    Farine, Damien R; Aplin, Lucy M; Garroway, Colin J; Mann, Richard P; Sheldon, Ben C

    2014-09-01

    Associations in mixed-species foraging groups are common in animals, yet have rarely been explored in the context of collective behaviour. Despite many investigations into the social and ecological conditions under which individuals should form groups, we still know little about the specific behavioural rules that individuals adopt in these contexts, or whether these can be generalized to heterospecifics. Here, we studied collective behaviour in flocks in a community of five species of woodland passerine birds. We adopted an automated data collection protocol, involving visits by RFID-tagged birds to feeding stations equipped with antennae, over two winters, recording 91 576 feeding events by 1904 individuals. We demonstrated highly synchronized feeding behaviour within patches, with birds moving towards areas of the patch with the largest proportion of the flock. Using a model of collective decision making, we then explored the underlying decision rule birds may be using when foraging in mixed-species flocks. The model tested whether birds used a different decision rule for conspecifics and heterospecifics, and whether the rules used by individuals of different species varied. We found that species differed in their response to the distribution of conspecifics and heterospecifics across foraging patches. However, simulating decisions using the different rules, which reproduced our data well, suggested that the outcome of using different decision rules by each species resulted in qualitatively similar overall patterns of movement. It is possible that the decision rules each species uses may be adjusted to variation in mean species abundance in order for individuals to maintain the same overall flock-level response. This is likely to be important for maintaining coordinated behaviour across species, and to result in quick and adaptive flock responses to food resources that are patchily distributed in space and time. PMID:25214653

  15. Collective decision making and social interaction rules in mixed-species flocks of songbirds.

    PubMed

    Farine, Damien R; Aplin, Lucy M; Garroway, Colin J; Mann, Richard P; Sheldon, Ben C

    2014-09-01

    Associations in mixed-species foraging groups are common in animals, yet have rarely been explored in the context of collective behaviour. Despite many investigations into the social and ecological conditions under which individuals should form groups, we still know little about the specific behavioural rules that individuals adopt in these contexts, or whether these can be generalized to heterospecifics. Here, we studied collective behaviour in flocks in a community of five species of woodland passerine birds. We adopted an automated data collection protocol, involving visits by RFID-tagged birds to feeding stations equipped with antennae, over two winters, recording 91 576 feeding events by 1904 individuals. We demonstrated highly synchronized feeding behaviour within patches, with birds moving towards areas of the patch with the largest proportion of the flock. Using a model of collective decision making, we then explored the underlying decision rule birds may be using when foraging in mixed-species flocks. The model tested whether birds used a different decision rule for conspecifics and heterospecifics, and whether the rules used by individuals of different species varied. We found that species differed in their response to the distribution of conspecifics and heterospecifics across foraging patches. However, simulating decisions using the different rules, which reproduced our data well, suggested that the outcome of using different decision rules by each species resulted in qualitatively similar overall patterns of movement. It is possible that the decision rules each species uses may be adjusted to variation in mean species abundance in order for individuals to maintain the same overall flock-level response. This is likely to be important for maintaining coordinated behaviour across species, and to result in quick and adaptive flock responses to food resources that are patchily distributed in space and time.

  16. Collective decision making and social interaction rules in mixed-species flocks of songbirds

    PubMed Central

    Farine, Damien R.; Aplin, Lucy M.; Garroway, Colin J.; Mann, Richard P.; Sheldon, Ben C.

    2014-01-01

    Associations in mixed-species foraging groups are common in animals, yet have rarely been explored in the context of collective behaviour. Despite many investigations into the social and ecological conditions under which individuals should form groups, we still know little about the specific behavioural rules that individuals adopt in these contexts, or whether these can be generalized to heterospecifics. Here, we studied collective behaviour in flocks in a community of five species of woodland passerine birds. We adopted an automated data collection protocol, involving visits by RFID-tagged birds to feeding stations equipped with antennae, over two winters, recording 91 576 feeding events by 1904 individuals. We demonstrated highly synchronized feeding behaviour within patches, with birds moving towards areas of the patch with the largest proportion of the flock. Using a model of collective decision making, we then explored the underlying decision rule birds may be using when foraging in mixed-species flocks. The model tested whether birds used a different decision rule for conspecifics and heterospecifics, and whether the rules used by individuals of different species varied. We found that species differed in their response to the distribution of conspecifics and heterospecifics across foraging patches. However, simulating decisions using the different rules, which reproduced our data well, suggested that the outcome of using different decision rules by each species resulted in qualitatively similar overall patterns of movement. It is possible that the decision rules each species uses may be adjusted to variation in mean species abundance in order for individuals to maintain the same overall flock-level response. This is likely to be important for maintaining coordinated behaviour across species, and to result in quick and adaptive flock responses to food resources that are patchily distributed in space and time. PMID:25214653

  17. Ecological consequences of body size decline in harvested fish species: positive feedback loops in trophic interactions amplify human impact.

    PubMed

    Audzijonyte, Asta; Kuparinen, Anna; Gorton, Rebecca; Fulton, Elizabeth A

    2013-04-23

    Humans are changing marine ecosystems worldwide, both directly through fishing and indirectly through climate change. One of the little explored outcomes of human-induced change involves the decreasing body sizes of fishes. We use a marine ecosystem model to explore how a slow (less than 0.1% per year) decrease in the length of five harvested species could affect species interactions, biomasses and yields. We find that even small decreases in fish sizes are amplified by positive feedback loops in the ecosystem and can lead to major changes in natural mortality. For some species, a total of 4 per cent decrease in length-at-age over 50 years resulted in 50 per cent increase in predation mortality. However, the magnitude and direction in predation mortality changes differed among species and one shrinking species even experienced reduced predation pressure. Nevertheless, 50 years of gradual decrease in body size resulted in 1-35% decrease in biomasses and catches of all shrinking species. Therefore, fisheries management practices that ignore contemporary life-history changes are likely to overestimate long-term yields and can lead to overfishing. PMID:23365151

  18. Ecological consequences of body size decline in harvested fish species: positive feedback loops in trophic interactions amplify human impact.

    PubMed

    Audzijonyte, Asta; Kuparinen, Anna; Gorton, Rebecca; Fulton, Elizabeth A

    2013-04-23

    Humans are changing marine ecosystems worldwide, both directly through fishing and indirectly through climate change. One of the little explored outcomes of human-induced change involves the decreasing body sizes of fishes. We use a marine ecosystem model to explore how a slow (less than 0.1% per year) decrease in the length of five harvested species could affect species interactions, biomasses and yields. We find that even small decreases in fish sizes are amplified by positive feedback loops in the ecosystem and can lead to major changes in natural mortality. For some species, a total of 4 per cent decrease in length-at-age over 50 years resulted in 50 per cent increase in predation mortality. However, the magnitude and direction in predation mortality changes differed among species and one shrinking species even experienced reduced predation pressure. Nevertheless, 50 years of gradual decrease in body size resulted in 1-35% decrease in biomasses and catches of all shrinking species. Therefore, fisheries management practices that ignore contemporary life-history changes are likely to overestimate long-term yields and can lead to overfishing.

  19. The Interactions between Imidazolium-Based Ionic Liquids and Stable Nitroxide Radical Species: A Theoretical Study.

    PubMed

    Zhang, Shaoze; Wang, Guimin; Lu, Yunxiang; Zhu, Weiliang; Peng, Changjun; Liu, Honglai

    2016-08-01

    In this work, the interactions between imidazolium-based ionic liquids and some stable radicals based on 2,2,6,6-tetramethylpiperidine-1-yloxyl (TEMPO) have been systematically investigated using density functional theory calculations at the level of M06-2x. Several different substitutions, such as hydrogen bonding formation substituent (OH) and ionic substituents (N(CH3)3(+) and OSO3(-)), are presented at the 4-position of the spin probe, which leads to additional hydrogen bonds or ionic interactions between these substitutions and ionic liquids. The interactions in the systems of the radicals containing ionic substitutions with ionic liquids are predicted much stronger than those in the systems of neutral radicals, resulting in a significant reduction of the mobility of ionic radicals in ionic liquids. To further understand the nature of these interactions, the natural bond order, atoms in molecules, noncovalent interaction index, electron density difference, energy decomposition analysis, and charge decomposition analysis schemes were employed. The additional ionic interactions between ionic radicals and counterions in ionic liquids are dominantly contributed from the electrostatic term, while the orbital interaction plays a major role in other interactions. The results reported herein are important to understand radical processes in ionic liquids and will be very useful in the design of task-specific ionic liquids to make the processes more efficient.

  20. The Interactions between Imidazolium-Based Ionic Liquids and Stable Nitroxide Radical Species: A Theoretical Study.

    PubMed

    Zhang, Shaoze; Wang, Guimin; Lu, Yunxiang; Zhu, Weiliang; Peng, Changjun; Liu, Honglai

    2016-08-01

    In this work, the interactions between imidazolium-based ionic liquids and some stable radicals based on 2,2,6,6-tetramethylpiperidine-1-yloxyl (TEMPO) have been systematically investigated using density functional theory calculations at the level of M06-2x. Several different substitutions, such as hydrogen bonding formation substituent (OH) and ionic substituents (N(CH3)3(+) and OSO3(-)), are presented at the 4-position of the spin probe, which leads to additional hydrogen bonds or ionic interactions between these substitutions and ionic liquids. The interactions in the systems of the radicals containing ionic substitutions with ionic liquids are predicted much stronger than those in the systems of neutral radicals, resulting in a significant reduction of the mobility of ionic radicals in ionic liquids. To further understand the nature of these interactions, the natural bond order, atoms in molecules, noncovalent interaction index, electron density difference, energy decomposition analysis, and charge decomposition analysis schemes were employed. The additional ionic interactions between ionic radicals and counterions in ionic liquids are dominantly contributed from the electrostatic term, while the orbital interaction plays a major role in other interactions. The results reported herein are important to understand radical processes in ionic liquids and will be very useful in the design of task-specific ionic liquids to make the processes more efficient. PMID:27428048

  1. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions

    PubMed Central

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y.

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia. In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. PMID:27402618

  2. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions.

    PubMed

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. PMID:27402618

  3. Soil fertility and disturbance interact to drive contrasting responses of co-occurring native and nonnative species.

    PubMed

    Peltzer, Duane A; Kurokawa, Hiroko; Wardle, David A

    2016-02-01

    Some plant functional groups such as nonnative invasive and nitrogen (N)-fixing plants are widely thought to have consistent, coordinated differences in their functional traits relative to other groups such as native and non -N-fixing plants. Recent evidence suggests that these trait differences between groups can be context dependent, varying with environmental factors such as resource availability and disturbance. However, many previous comparisons among plant groups differing in invasion status have not standardized growth form between groups or have compared species that do not co-occur, which could result in invasion status per se being confounded with other factors. We determined growth and leaf functional trait responses of 20 co-occurring woody species, that is, five species within each of four functional groups (native N-fixers, native non -N-fixers, nonnative [invasive] N-fixers and nonnative [invasive] non-N-fixers), to factorial combinations of soil fertility and defoliation treatments in a mesocosm experiment to test each of two hypotheses. First, we hypothesized that nonnative invasive and N-fixing species will have functional traits associated with rapid resource acquisition whereas natives and non -N-fixing species will have traits linked to resource conservation. Second, we hypothesized that plant growth and leaf traits of nonnative and N-fixing species will be more strongly influenced by environmental factors (i.e., soil fertility and disturbance) than will natives and non-N-fixers. Plant growth, foliar nutrients, and leaf structural traits varied among plant functional groups in a manner consistent with our first hypothesis. Support for our second hypothesis was mixed; origin (native vs. nonnative) and soil fertility rarely interacted to determine plant growth or variation in leaf traits whereas interactions involving N-fixing ability and soil fertility were common. Further, there were no consistent interactive effects between plant groupings and

  4. Evolution of opercle shape in cichlid fishes from Lake Tanganyika - adaptive trait interactions in extant and extinct species flocks

    PubMed Central

    Wilson, Laura A. B.; Colombo, Marco; Sánchez-Villagra, Marcelo R.; Salzburger, Walter

    2015-01-01

    Phenotype-environment correlations and the evolution of trait interactions in adaptive radiations have been widely studied to gain insight into the dynamics underpinning rapid species diversification. In this study we explore the phenotype-environment correlation and evolution of operculum shape in cichlid fishes using an outline-based geometric morphometric approach combined with stable isotope indicators of macrohabitat and trophic niche. We then apply our method to a sample of extinct saurichthyid fishes, a highly diverse and near globally distributed group of actinopterygians occurring throughout the Triassic, to assess the utility of extant data to inform our understanding of ecomorphological evolution in extinct species flocks. A series of comparative methods were used to analyze shape data for 54 extant species of cichlids (N = 416), and 6 extinct species of saurichthyids (N = 44). Results provide evidence for a relationship between operculum shape and feeding ecology, a concentration in shape evolution towards present along with evidence for convergence in form, and significant correlation between the major axes of shape change and measures of gut length and body elongation. The operculum is one of few features that can be compared in extant and extinct groups, enabling reconstruction of phenotype-environment interactions and modes of evolutionary diversification in deep time. PMID:26584885

  5. Evolution of opercle shape in cichlid fishes from Lake Tanganyika - adaptive trait interactions in extant and extinct species flocks.

    PubMed

    Wilson, Laura A B; Colombo, Marco; Sánchez-Villagra, Marcelo R; Salzburger, Walter

    2015-11-20

    Phenotype-environment correlations and the evolution of trait interactions in adaptive radiations have been widely studied to gain insight into the dynamics underpinning rapid species diversification. In this study we explore the phenotype-environment correlation and evolution of operculum shape in cichlid fishes using an outline-based geometric morphometric approach combined with stable isotope indicators of macrohabitat and trophic niche. We then apply our method to a sample of extinct saurichthyid fishes, a highly diverse and near globally distributed group of actinopterygians occurring throughout the Triassic, to assess the utility of extant data to inform our understanding of ecomorphological evolution in extinct species flocks. A series of comparative methods were used to analyze shape data for 54 extant species of cichlids (N = 416), and 6 extinct species of saurichthyids (N = 44). Results provide evidence for a relationship between operculum shape and feeding ecology, a concentration in shape evolution towards present along with evidence for convergence in form, and significant correlation between the major axes of shape change and measures of gut length and body elongation. The operculum is one of few features that can be compared in extant and extinct groups, enabling reconstruction of phenotype-environment interactions and modes of evolutionary diversification in deep time.

  6. Species Interactions during Diversification and Community Assembly in an Island Radiation of Shrews

    PubMed Central

    Esselstyn, Jacob A.; Maher, Sean P.; Brown, Rafe M.

    2011-01-01

    Background Closely related, ecologically similar species often have adjacent distributions, suggesting competitive exclusion may contribute to the structure of some natural communities. In systems such as island archipelagos, where speciation is often tightly associated with dispersal over oceanic barriers, competitive exclusion may prevent population establishment following inter-island dispersal and subsequent cladogenesis. Methodology/Principal Findings Using a combination of tools, we test the hypothesis that the distributions of shrew (Crocidura) species in the Philippines are the result of competitive exclusion preventing secondary invasion of occupied islands. We first compare ecological niche models between two widespread, allopatric species and find statistical support for their ecological similarity, implying that competition for habitat between these species is possible. We then examine dispersion patterns among sympatric species and find some signal for overdispersion of body size, but not for phylogenetic branch length. Finally, we simulate the process of inter-island colonization under a stochastic model of dispersal lacking ecological forces. Results are dependent on the geographic scope and colonization probability employed. However, some combinations suggest that the number of inter-island dispersal events necessary to populate the archipelago may be much higher than the minimum number of colonization events necessary to explain current estimates of species richness and phylogenetic relationships. If our model is appropriate, these results imply that alternative factors, such as competitive exclusion, may have influenced the process of inter-island colonization and subsequent cladogenesis. Conclusions/Significance We interpret the combined results as providing tenuous evidence that similarity in body size may prevent co-occurrence in Philippine shrews and that competitive exclusion among ecologically similar species, rather than an inability to

  7. Negative and positive interactions among plants: effects of competitors and litter on seedling emergence and growth of forest and grassland species.

    PubMed

    Loydi, A; Donath, T W; Otte, A; Eckstein, R L

    2015-05-01

    Living plant neighbours, but also their dead aboveground remains (i.e. litter), may individually exert negative or positive effects on plant recruitment. Although living plants and litter co-occur in most ecosystems, few studies have addressed their combined effects, and conclusions are ambivalent. Therefore, we examined the response in terms of seedling emergence and growth of herbaceous grassland and forest species to different litter types and amounts and the presence of competitors. We conducted a pot experiment testing the effects of litter type (grass, oak), litter amount (low, medium, high) and interspecific competition (presence or absence of four Festuca arundinacea individuals) on seedling emergence and biomass of four congeneric pairs of hemicryptophytes from two habitat types (woodland, grassland). Interactions between litter and competition were weak. Litter presence increased competitor biomass. It also had positive effects on seedling emergence at low litter amounts and negative effects at high litter amounts, while competition had no effect on seedling emergence. Seedling biomass was negatively affected by the presence of competitors, and this effect was stronger in combination with high amounts of litter. Litter affected seedling emergence while competition determined the biomass of the emerged individuals, both affecting early stages of seedling recruitment. High litter accumulation also reduced seedling biomass, but this effect seemed to be additive to competitor effects. This suggests that live and dead plant mass can affect species recruitment in natural systems, but the mechanisms by which they operate and their timing differ. PMID:25381837

  8. Negative and positive interactions among plants: effects of competitors and litter on seedling emergence and growth of forest and grassland species.

    PubMed

    Loydi, A; Donath, T W; Otte, A; Eckstein, R L

    2015-05-01

    Living plant neighbours, but also their dead aboveground remains (i.e. litter), may individually exert negative or positive effects on plant recruitment. Although living plants and litter co-occur in most ecosystems, few studies have addressed their combined effects, and conclusions are ambivalent. Therefore, we examined the response in terms of seedling emergence and growth of herbaceous grassland and forest species to different litter types and amounts and the presence of competitors. We conducted a pot experiment testing the effects of litter type (grass, oak), litter amount (low, medium, high) and interspecific competition (presence or absence of four Festuca arundinacea individuals) on seedling emergence and biomass of four congeneric pairs of hemicryptophytes from two habitat types (woodland, grassland). Interactions between litter and competition were weak. Litter presence increased competitor biomass. It also had positive effects on seedling emergence at low litter amounts and negative effects at high litter amounts, while competition had no effect on seedling emergence. Seedling biomass was negatively affected by the presence of competitors, and this effect was stronger in combination with high amounts of litter. Litter affected seedling emergence while competition determined the biomass of the emerged individuals, both affecting early stages of seedling recruitment. High litter accumulation also reduced seedling biomass, but this effect seemed to be additive to competitor effects. This suggests that live and dead plant mass can affect species recruitment in natural systems, but the mechanisms by which they operate and their timing differ.

  9. Modelling multi-species interactions in the Barents Sea ecosystem with special emphasis on minke whales and their interactions with cod, herring and capelin

    NASA Astrophysics Data System (ADS)

    Lindstrøm, Ulf; Smout, Sophie; Howell, Daniel; Bogstad, Bjarte

    2009-10-01

    The Barents Sea ecosystem, one of the most productive and commercially important ecosystems in the world, has experienced major fluctuations in species abundance the past five decades. Likely causes are natural variability, climate change, overfishing and predator-prey interactions. In this study, we use an age-length structured multi-species model (Gadget, Globally applicable Area-Disaggregated General Ecosystem Toolbox) to analyse the historic population dynamics of major fish and marine mammal species in the Barents Sea. The model was used to examine possible effects of a number of plausible biological and fisheries scenarios. The results suggest that changes in cod mortality from fishing or cod cannibalism levels have the largest effect on the ecosystem, while changes to the capelin fishery have had only minor effects. Alternate whale migration scenarios had only a moderate impact on the modelled ecosystem. Indirect effects are seen to be important, with cod fishing pressure, cod cannibalism and whale predation on cod having an indirect impact on capelin, emphasising the importance of multi-species modelling in understanding and managing ecosystems. Models such as the one presented here provide one step towards an ecosystem-based approach to fisheries management.

  10. Interactive effects of disturbance and dispersal directionality on species richness and composition in metacommunities.

    PubMed

    Altermatt, Florian; Schreiber, Sebastian; Holyoak, Marcel

    2011-04-01

    Dispersal among ecological communities is usually assumed to be random in direction, or to vary in distance or frequency among species. However, a variety of natural systems and types of organisms may experience dispersal that is biased by directional currents or by gravity on hillslopes. We developed a general model for competing species in metacommunities to evaluate the role of directionally biased dispersal on species diversity, abundance, and traits. In parallel, we tested the role of directionally biased dispersal on communities in a microcosm experiment with protists and rotifers. Both the model and experiment independently demonstrated that diversity in local communities was reduced by directionally biased dispersal, especially dispersal that was biased away from disturbed patches. Abundance of species (and composition) in local communities was a product of disturbance intensity but not dispersal directionality. High disturbance selected for species with high intrinsic growth rates and low competitive abilities. Overall, our conclusions about the key role of dispersal directionality in (meta)communities seem robust and general, since they were supported both by the model, which was set in a general framework and not parameterized to fit to a specific system, and by a specific experimental test with microcosms.

  11. Predicting the process of extinction in experimental microcosms and accounting for interspecific interactions in single-species time series

    PubMed Central

    Ferguson, Jake M; Ponciano, José M

    2014-01-01

    Predicting population extinction risk is a fundamental application of ecological theory to the practice of conservation biology. Here, we compared the prediction performance of a wide array of stochastic, population dynamics models against direct observations of the extinction process from an extensive experimental data set. By varying a series of biological and statistical assumptions in the proposed models, we were able to identify the assumptions that affected predictions about population extinction. We also show how certain autocorrelation structures can emerge due to interspecific interactions, and that accounting for the stochastic effect of these interactions can improve predictions of the extinction process. We conclude that it is possible to account for the stochastic effects of community interactions on extinction when using single-species time series. PMID:24304946

  12. Interaction of Actinide Species with Microorganisms & Microbial Chelators: Cellular Uptake, Toxicity, & Implications for Bioremediation of Soil & Ground Water.

    SciTech Connect

    Hakim Boukhalfa Mary, P. Neu Alvin Crumbliss

    2006-03-28

    Microorganisms influence the natural cycle of major elements, including C, N, P, S, and transition metals such as Mn and Fe. Bacterial processes can also influence the behavior of actinides in soil and ground water. While radionuclides have no known biological utility, they have the potential to interact with microorganisms and to interfere with processes involving other elements such as Fe and Mn. These interactions can transform radionuclides and affect their fate and transport. Organic acids, extruded by-products of cell metabolism, can solubilize radionuclides and facilitate their transport. The soluble complexes formed can be taken up by the cells and incorporated into biofilm structures. We have examined the interactions of Pu species with bacterial metabolites, studied Pu uptake by microorganisms and examined the toxicity of Pu and other toxic metals to environmentally relevant bacteria. We have also studied the speciation of Pu(IV) in the presence of natural and synthetic chelators.

  13. Predicting the process of extinction in experimental microcosms and accounting for interspecific interactions in single-species time series.

    PubMed

    Ferguson, Jake M; Ponciano, José M

    2014-02-01

    Predicting population extinction risk is a fundamental application of ecological theory to the practice of conservation biology. Here, we compared the prediction performance of a wide array of stochastic, population dynamics models against direct observations of the extinction process from an extensive experimental data set. By varying a series of biological and statistical assumptions in the proposed models, we were able to identify the assumptions that affected predictions about population extinction. We also show how certain autocorrelation structures can emerge due to interspecific interactions, and that accounting for the stochastic effect of these interactions can improve predictions of the extinction process. We conclude that it is possible to account for the stochastic effects of community interactions on extinction when using single-species time series.

  14. Predicting the process of extinction in experimental microcosms and accounting for interspecific interactions in single-species time series.

    PubMed

    Ferguson, Jake M; Ponciano, José M

    2014-02-01

    Predicting population extinction risk is a fundamental application of ecological theory to the practice of conservation biology. Here, we compared the prediction performance of a wide array of stochastic, population dynamics models against direct observations of the extinction process from an extensive experimental data set. By varying a series of biological and statistical assumptions in the proposed models, we were able to identify the assumptions that affected predictions about population extinction. We also show how certain autocorrelation structures can emerge due to interspecific interactions, and that accounting for the stochastic effect of these interactions can improve predictions of the extinction process. We conclude that it is possible to account for the stochastic effects of community interactions on extinction when using single-species time series. PMID:24304946

  15. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species.

    PubMed

    Perkins, T Alex; Phillips, Benjamin L; Baskett, Marissa L; Hastings, Alan

    2013-08-01

    Populations on the edge of an expanding range are subject to unique evolutionary pressures acting on their life-history and dispersal traits. Empirical evidence and theory suggest that traits there can evolve rapidly enough to interact with ecological dynamics, potentially giving rise to accelerating spread. Nevertheless, which of several evolutionary mechanisms drive this interaction between evolution and spread remains an open question. We propose an integrated theoretical framework for partitioning the contributions of different evolutionary mechanisms to accelerating spread, and we apply this model to invasive cane toads in northern Australia. In doing so, we identify a previously unrecognised evolutionary process that involves an interaction between life-history and dispersal evolution during range shift. In roughly equal parts, life-history evolution, dispersal evolution and their interaction led to a doubling of distance spread by cane toads in our model, highlighting the potential importance of multiple evolutionary processes in the dynamics of range expansion.

  16. Natural enemy-mediated indirect interactions among prey species: potential for enhancing biocontrol services in agroecosystems.

    PubMed

    Chailleux, Anaïs; Mohl, Emily K; Teixeira Alves, Mickaël; Messelink, Gerben J; Desneux, Nicolas

    2014-12-01

    Understanding how arthropod pests and their natural enemies interact in complex agroecosystems is essential for pest management programmes. Theory predicts that prey sharing a predator, such as a biological control agent, can indirectly reduce each other's density at equilibrium (apparent competition). From this premise, we (i) discuss the complexity of indirect interactions among pests in agroecosystems and highlight the importance of natural enemy-mediated indirect interactions other than apparent competition, (ii) outline factors that affect the nature of enemy-mediated indirect interactions in the field and (iii) identify the way to manipulate enemy-mediated interactions for biological control. We argue that there is a need to increase the link between community ecology theory and biological control to develop better agroecological methods of crop protection via conservation biological control. In conclusion, we identify (i) interventions to be chosen depending on agroecosystem characteristics and (ii) several lines of research that will improve the potential for enemy-mediated indirect interactions to be applied to biological control.

  17. Quantitative thermodynamic predication of interactions between nucleic acid and non-nucleic acid species using Microsoft excel.

    PubMed

    Zou, Jiaqi; Li, Na

    2013-09-01

    Proper design of nucleic acid sequences is crucial for many applications. We have previously established a thermodynamics-based quantitative model to help design aptamer-based nucleic acid probes by predicting equilibrium concentrations of all interacting species. To facilitate customization of this thermodynamic model for different applications, here we present a generic and easy-to-use platform to implement the algorithm of the model with Microsoft(®) Excel formulas and VBA (Visual Basic for Applications) macros. Two Excel spreadsheets have been developed: one for the applications involving only nucleic acid species, the other for the applications involving both nucleic acid and non-nucleic acid species. The spreadsheets take the nucleic acid sequences and the initial concentrations of all species as input, guide the user to retrieve the necessary thermodynamic constants, and finally calculate equilibrium concentrations for all species in various bound and unbound conformations. The validity of both spreadsheets has been verified by comparing the modeling results with the experimental results on nucleic acid sequences reported in the literature. This Excel-based platform described here will allow biomedical researchers to rationalize the sequence design of nucleic acid probes using the thermodynamics-based modeling even without relevant theoretical and computational skills.

  18. Are there interactions of iodine and sulfur species in marine air photochemistry?

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Crutzen, Paul J.

    1990-01-01

    The effects of dimethyl sulfide (DMS) and methyl iodide (MI) emissions are analyzed using a two-dimensional photochemical model of a marine tropical tropospheric synoptic system. The model traces the atmospheric transformation cycles of the emissions to aerosols. The study is focused on remote tropical ocean regions and includes simulations of the spatial and diurnal variations of various iodine and sulfur species, and the species OH, HO2, and H2O2. One line of analysis leads to the conclusion that the reaction IO + DMS yields DMSO + I may play a significant role in destroying DMS if it proceeds at the published fast rate. Alternative lines of analyses are presented.

  19. The species and heme pocket properties of sturgeon hemoglobins upon interaction with N-dodecyl trimethylammonium bromide.

    PubMed

    Ariaeenejad, Shohreh; Moosavi-Movahedi, Ali A; Kavousi, Kaveh; Dayer, Mohammad Reza; Hong, Jun; Yousefi, Reza; Sheibani, Nader; Habibi-Rezaei, Mehran

    2014-01-01

    The variations in fish hemoglobin (Hb) structures play a vital role in their respiratory performance under various environmental conditions and are impacted by their physiological properties. The major hemoglobins from two species of sturgeon were studied upon interaction with n-dodecyl trimethyl ammonium bromide (DTAB) using the UV-vis absorption, circular dichroism (CD), fluorescence spectroscopy, and oxygen affinity measurement methods as well as chemometric analysis. The UV-Vis absorption spectra between 500 and 650 nm was used to identify each species of hemoglobin, and to show that the concentration of oxyHb and metHb decreases, while that of deoxyHb increases upon interaction with DTAB. Both reduced oxyHb and oxidized hemichrome of the two Hbs were studied to obtain information about the DTAB efects on their structural features. The circular dichroism (CD) was utilized to obtain secondary structure and compactness for Hb upon interaction with DTAB. Binding of DTAB molecules induced the unfolding of Hb, and was accompanied with exposure of the heme pocket facilitating its oxidation. The differences between unfolding processes for the two Acipenser species were indicated by fluorescence spectroscopy. The chemometric analysis of Hbs was investigated upon interaction with DTAB under titration, using fluorescence spectra allowing determination of the number of components and mole fractions of the oxidized Hb. Our data showed that Acipenser persicus Hb had a more hyperchromic character, more surface area, more loosely folded structure, and therefore, exposed region of heme group compared with Acipenser stellatus oxyHb. In addition, with increasing DTAB the transition of Acipenser stellatus oxyHb to the state of hemichrome occurred at a slower speed than Acipenser persicus oxyHb, and finally more oxygen affinity and compactness. Our results suggest that these differences aroused from the inherent differences between the heme groups which fulfil a potentially

  20. QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions.

    PubMed

    Li, Ling; Zheng, Wenguang; Zhu, Yanbing; Ye, Huaxun; Tang, Buyun; Arendsee, Zebulun W; Jones, Dallas; Li, Ruoran; Ortiz, Diego; Zhao, Xuefeng; Du, Chuanlong; Nettleton, Dan; Scott, M Paul; Salas-Fernandez, Maria G; Yin, Yanhai; Wurtele, Eve Syrkin

    2015-11-24

    The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua-Quine Starch; At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates metabolic processes affecting carbon and nitrogen partitioning among proteins and carbohydrates, modulating leaf and seed composition in Arabidopsis and soybean. Here the universality of QQS function in modulating carbon and nitrogen allocation is exemplified by a series of transgenic experiments. We show that ectopic expression of QQS increases soybean protein independent of the genetic background and original protein content of the cultivar. Furthermore, transgenic QQS expression increases the protein content of maize, a C4 species (a species that uses 4-carbon photosynthesis), and rice, a protein-poor agronomic crop, both highly divergent from Arabidopsis. We determine that QQS protein binds to the transcriptional regulator AtNF-YC4 (Arabidopsis nuclear factor Y, subunit C4). Overexpression of AtNF-YC4 in Arabidopsis mimics the QQS-overexpression phenotype, increasing protein and decreasing starch levels. NF-YC, a component of the NF-Y complex, is conserved across eukaryotes. The NF-YC4 homologs of soybean, rice, and maize also bind to QQS, which provides an explanation of how QQS can act in species where it does not occur endogenously. These findings are, to our knowledge, the first insight into the mechanism of action of QQS in modulating carbon and nitrogen allocation across species. They have major implications for the emergence and function of orphan genes, and identify a nontransgenic strategy for modulating protein levels in crop species, a trait of great agronomic significance.

  1. QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions

    PubMed Central

    Li, Ling; Zheng, Wenguang; Zhu, Yanbing; Ye, Huaxun; Tang, Buyun; Arendsee, Zebulun W.; Jones, Dallas; Li, Ruoran; Ortiz, Diego; Zhao, Xuefeng; Du, Chuanlong; Nettleton, Dan; Scott, M. Paul; Salas-Fernandez, Maria G.; Yin, Yanhai; Wurtele, Eve Syrkin

    2015-01-01

    The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua-Quine Starch; At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates metabolic processes affecting carbon and nitrogen partitioning among proteins and carbohydrates, modulating leaf and seed composition in Arabidopsis and soybean. Here the universality of QQS function in modulating carbon and nitrogen allocation is exemplified by a series of transgenic experiments. We show that ectopic expression of QQS increases soybean protein independent of the genetic background and original protein content of the cultivar. Furthermore, transgenic QQS expression increases the protein content of maize, a C4 species (a species that uses 4-carbon photosynthesis), and rice, a protein-poor agronomic crop, both highly divergent from Arabidopsis. We determine that QQS protein binds to the transcriptional regulator AtNF-YC4 (Arabidopsis nuclear factor Y, subunit C4). Overexpression of AtNF-YC4 in Arabidopsis mimics the QQS-overexpression phenotype, increasing protein and decreasing starch levels. NF-YC, a component of the NF-Y complex, is conserved across eukaryotes. The NF-YC4 homologs of soybean, rice, and maize also bind to QQS, which provides an explanation of how QQS can act in species where it does not occur endogenously. These findings are, to our knowledge, the first insight into the mechanism of action of QQS in modulating carbon and nitrogen allocation across species. They have major implications for the emergence and function of orphan genes, and identify a nontransgenic strategy for modulating protein levels in crop species, a trait of great agronomic significance. PMID:26554020

  2. Tritrophic interactions at a community level: effects of host plant species quality on bird predation of caterpillars.

    PubMed

    Singer, Michael S; Farkas, Timothy E; Skorik, Christian M; Mooney, Kailen A

    2012-03-01

    Effects of plant traits on herbivore-carnivore interactions are well documented in component communities but are not well understood at the level of large, complex communities. We report on a 2-year field experiment testing mechanisms by which variation in food quality among eight temperate forest tree species alters avian suppression of an assemblage of dietary generalist caterpillars. Plant quality and bird effects varied dramatically among tree species; high-quality plants yielded herbivores of 50% greater mass than those on low-quality plants, and bird effects ranged from near 0% to 97% reductions in caterpillar density. We also find evidence for two mechanisms linking host plant quality to bird effects. If caterpillar density was statistically controlled for, birds had relatively strong effects on the herbivores of low-quality plants, as predicted by the slow-growth/high-mortality hypothesis. At the same time, caterpillar density increased with plant quality, and bird effects were density dependent. Consequently, the net effect of birds was strongest on the herbivores of high-quality plants, a dynamic we call the high-performance/high-mortality hypothesis. Host plant quality thus changes highly generalized herbivore-carnivore interactions by two complementary but opposing mechanisms. These results highlight the interrelatedness of plant-herbivore and herbivore-carnivore interactions and thus the importance of a tritrophic perspective.

  3. Human C4b-binding protein selectively interacts with Neisseria gonorrhoeae and results in species-specific infection.

    PubMed

    Ngampasutadol, Jutamas; Ram, Sanjay; Blom, Anna M; Jarva, Hanna; Jerse, Ann E; Lien, Egil; Goguen, Jon; Gulati, Sunita; Rice, Peter A

    2005-11-22

    Neisseria gonorrhoeae is the causative agent of gonorrhea, a disease that is restricted to humans. Complement forms a key arm of the innate immune system that combats gonococcal infections. N. gonorrhoeae uses its outer membrane porin (Por) molecules to bind the classical pathway of complement down-regulatory protein C4b-binding protein (C4bp) to evade killing by human complement. Strains of N. gonorrhoeae that resisted killing by human serum complement were killed by serum from rodent, lagomorph, and primate species, which cannot be readily infected experimentally with this organism and whose C4bp molecules did not bind to N. gonorrhoeae. In contrast, we found that Yersinia pestis, an organism that can infect virtually all mammals, bound species-specific C4bp and uniformly resisted serum complement-mediated killing by these species. Serum resistance of gonococci was restored in these sera by human C4bp. An exception was serotype Por1B-bearing gonococcal strains that previously had been used successfully in a chimpanzee model of gonorrhea that simulates human disease. Por1B gonococci bound chimpanzee C4bp and resisted killing by chimpanzee serum, providing insight into the host restriction of gonorrhea and addressing why Por1B strains, but not Por1A strains, have been successful in experimental chimpanzee infection. Our findings may lead to the development of better animal models for gonorrhea and may also have implications in the choice of complement sources to evaluate neisserial vaccine candidates.

  4. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome.

    PubMed

    Pii, Youry; Borruso, Luigimaria; Brusetti, Lorenzo; Crecchio, Carmine; Cesco, Stefano; Mimmo, Tanja

    2016-02-01

    Plant-associated microorganisms can stimulate plants growth and influence both crops yield and quality by nutrient mobilization and transport. Therefore, rhizosphere microbiome appears to be one of the key determinants of plant health and productivity. The roots of plants have the ability to influence its surrounding microbiology, the rhizosphere microbiome, through the creation of specific chemical niches in the soil mediated by the release of phytochemicals (i.e. root exudates) that depends on several factors, such as plants genotype, soil properties, plant nutritional status, climatic conditions. In the present research, two different crop species, namely barley and tomato, characterized by different strategies for Fe acquisition, have been grown in the RHIZOtest system using either complete or Fe-free nutrient solution to induce Fe starvation. Afterward, plants were cultivated for 6 days on two different calcareous soils. Total DNA was extracted from rhizosphere and bulk soil and 454 pyrosequencing technology was applied to V1-V3 16S rRNA gene region. Approximately 5000 sequences were obtained for each sample. The analysis of the bacterial population confirmed that the two bulk soils showed a different microbial community. The presence of the two plant species, as well as the nutritional status (Fe-deficiency and Fe-sufficiency), could promote a differentiation of the rhizosphere microbiome, as highlighted by non-metric multidimensional scaling (NMDS) analysis. Alphaproteobacteria, Actinobacteria, Chloracidobacteria, Thermoleophilia, Betaproteobacteria, Saprospirae, Gemmatimonadetes, Gammaproteobacteria, Acidobacteria were the most represented classes in all the samples analyzed even though their relative abundance changed as a function of the soil, plant species and nutritional status. To our knowledge, this research demonstrate for the first time that different plants species with a diverse nutritional status can promote the development of a peculiar

  5. Allelopathic interactions between the macroalga Ulva pertusa and eight microalgal species

    NASA Astrophysics Data System (ADS)

    Nan, Chunrong; Zhang, Haizhi; Zhao, Guangqiang

    2004-11-01

    Growth of Ulva pertusa and eight microalgal species, Heterosigma akashiwo, Skeletonema costatum, Tetraselmis subcordiformis, Nitzschia closterium, Chaetoceros gracile, Chroomonas placoidea 1967, Isochrysis galbana 8701, and Alexandrium tamarense, was examined in a series of batch, semi-continuous and isolated co-cultures ( U. pertusa and one microalgal species). The results of the experiments with co-cultures confirmed the secretion of allelopathic substances by U. pertusa. Growth was significantly ( p<0.05) suppressed in each of the macroalgal species in batch co-cultures, nutrient replete semi-continuous co-cultures and isolated co-cultures. The percentage growth reduction varied between 42 and 100% in batch co-cultures, between 28 and 100% in semi-continuous co-cultures, and between 21 and 100% in isolated co-cultures. In addition, we examined the potential allelopathic effect of U. pertusa culture filtrate. The Ulva culture filtrate significantly ( p<0.01) inhibited the growth of C. placoidea from 2 days after incubation until the end of the experiment, and it exhibited no inhibitory effect on the growth of the other microalgal species. This may suggest that the allelochemicals released from U. pertusa are rapidly degradable. The microalgae tested exhibited different (stimulatory, inhibitory or no) effects on the growth of U. pertusa. U. pertusa grew faster with H. akashiwo (+16%) and S. costatum (+9%), less with T. subcordiformis (-20%), N. closterium (-23%) and C. gracile (-30%), but was not significantly affected by I. galbana, A. tamarense and C. placoidea. The microalgae tested exhibited no clear allelopathic effects on U. pertusa.

  6. On the interaction between glyceraldehyde-3-phosphate dehydrogenase and airborne particles: Evidence for electrophilic species

    NASA Astrophysics Data System (ADS)

    Shinyashiki, Masaru; Rodriguez, Chester E.; Di Stefano, Emma W.; Sioutas, Constantinos; Delfino, Ralph J.; Kumagai, Yoshito; Froines, John R.; Cho, Arthur K.

    Many of the adverse health effects of airborne particulate matter (PM) have been attributed to the chemical properties of some of the large number of chemical species present in PM. Some PM component chemicals are capable of generating reactive oxygen species and eliciting a state of oxidative stress. In addition, however, PM can contain chemical species that elicit their effects through covalent bond formation with nucleophilic functions in the cell. In this manuscript, we report the presence of constituents with electrophilic properties in ambient and diesel exhaust particles, demonstrated by their ability to inhibit the thiol enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). GAPDH is irreversibly inactivated by electrophiles under anaerobic conditions by covalent bond formation. This inactivation can be blocked by the prior addition of a high concentration of dithiothreitol (DTT) as an alternate nucleophile. Addition of DTT after the reaction between the electrophile and GAPDH, however, does not reverse the inactivation. This property has been utilized to develop a procedure that provides a quantitative measure of electrophiles present in samples of ambient particles collected in the Los Angeles Basin and in diesel exhaust particles. The toxicity of electrophiles is the result of irreversible changes in biological molecules; recovery is dependent on resynthesis. If the resynthesis is slow, the irreversible effects can be cumulative and manifest themselves after chronic exposure to low levels of electrophiles.

  7. Nitrogen Level Changes the Interactions between a Native (Scirpus triqueter) and an Exotic Species (Spartina anglica) in Coastal China

    PubMed Central

    Li, Hong-li; Lei, Guang-chun; Zhi, Ying-biao; An, Shu-qing; Huang, He-ping; Ouyang, Yan; Zhao, Lei; Deng, Zi-fa; Liu, Yu-hong

    2011-01-01

    The exotic species Spartina anglica, introduced from Europe in 1963, has been experiencing a decline in the past decade in coastal China, but the reasons for the decline are still not clear. It is hypothesized that competition with the native species Scirpus triqueter may have played an important role in the decline due to niche overlap in the field. We measured biomass, leaf number and area, asexual reproduction and relative neighborhood effect (RNE) of the two species in both monoculture and mixture under three nitrogen levels (control, low and high). S. anglica showed significantly lower biomass accumulation, leaf number and asexual reproduction in mixture than in monoculture. The inter- and intra-specific RNE of S. anglica were all positive, and the inter-specific RNE was significantly higher than the intra-specific RNE in the control. For S. triqueter, inter- and intra-specific RNE were negative at the high nitrogen level but positive in the control and at the low nitrogen level. This indicates that S. triqueter exerted an asymmetric competitive advantage over S. anglica in the control and low nitrogen conditions; however, S. anglica facilitated growth of S. triqueter in high nitrogen conditions. Nitrogen level changed the interactions between the two species because S. triqueter better tolerated low nitrogen. Since S. anglica is increasingly confined to upper, more nitrogen-limited marsh areas in coastal China, increased competition from S. triqueter may help explain its decline. PMID:21998676

  8. Modeling of the dorsal gradient across species reveals interaction between embryo morphology and Toll signaling pathway during evolution.

    PubMed

    Ambrosi, Priscilla; Chahda, Juan Sebastian; Koslen, Hannah R; Chiel, Hillel J; Mizutani, Claudia Mieko

    2014-08-01

    Morphogenetic gradients are essential to allocate cell fates in embryos of varying sizes within and across closely related species. We previously showed that the maternal NF-κB/Dorsal (Dl) gradient has acquired different shapes in Drosophila species, which result in unequally scaled germ layers along the dorso-ventral axis and the repositioning of the neuroectodermal borders. Here we combined experimentation and mathematical modeling to investigate which factors might have contributed to the fast evolutionary changes of this gradient. To this end, we modified a previously developed model that employs differential equations of the main biochemical interactions of the Toll (Tl) signaling pathway, which regulates Dl nuclear transport. The original model simulations fit well the D. melanogaster wild type, but not mutant conditions. To broaden the applicability of this model and probe evolutionary changes in gradient distributions, we adjusted a set of 19 independent parameters to reproduce three quantified experimental conditions (i.e. Dl levels lowered, nuclear size and density increased or decreased). We next searched for the most relevant parameters that reproduce the species-specific Dl gradients. We show that adjusting parameters relative to morphological traits (i.e. embryo diameter, nuclear size and density) alone is not sufficient to reproduce the species Dl gradients. Since components of the Tl pathway simulated by the model are fast-evolving, we next asked which parameters related to Tl would most effectively reproduce these gradients and identified a particular subset. A sensitivity analysis reveals the existence of nonlinear interactions between the two fast-evolving traits tested above, namely the embryonic morphological changes and Tl pathway components. Our modeling further suggests that distinct Dl gradient shapes observed in closely related melanogaster sub-group lineages may be caused by similar sequence modifications in Tl pathway components, which

  9. Modeling of the Dorsal Gradient across Species Reveals Interaction between Embryo Morphology and Toll Signaling Pathway during Evolution

    PubMed Central

    Koslen, Hannah R.; Chiel, Hillel J.; Mizutani, Claudia Mieko

    2014-01-01

    Morphogenetic gradients are essential to allocate cell fates in embryos of varying sizes within and across closely related species. We previously showed that the maternal NF-κB/Dorsal (Dl) gradient has acquired different shapes in Drosophila species, which result in unequally scaled germ layers along the dorso-ventral axis and the repositioning of the neuroectodermal borders. Here we combined experimentation and mathematical modeling to investigate which factors might have contributed to the fast evolutionary changes of this gradient. To this end, we modified a previously developed model that employs differential equations of the main biochemical interactions of the Toll (Tl) signaling pathway, which regulates Dl nuclear transport. The original model simulations fit well the D. melanogaster wild type, but not mutant conditions. To broaden the applicability of this model and probe evolutionary changes in gradient distributions, we adjusted a set of 19 independent parameters to reproduce three quantified experimental conditions (i.e. Dl levels lowered, nuclear size and density increased or decreased). We next searched for the most relevant parameters that reproduce the species-specific Dl gradients. We show that adjusting parameters relative to morphological traits (i.e. embryo diameter, nuclear size and density) alone is not sufficient to reproduce the species Dl gradients. Since components of the Tl pathway simulated by the model are fast-evolving, we next asked which parameters related to Tl would most effectively reproduce these gradients and identified a particular subset. A sensitivity analysis reveals the existence of nonlinear interactions between the two fast-evolving traits tested above, namely the embryonic morphological changes and Tl pathway components. Our modeling further suggests that distinct Dl gradient shapes observed in closely related melanogaster sub-group lineages may be caused by similar sequence modifications in Tl pathway components, which

  10. Genetic Variation of the Host Plant Species Matters for Interactions with Above- and Belowground Herbivores

    PubMed Central

    Kafle, Dinesh; Krähmer, Andrea; Naumann, Annette; Wurst, Susanne

    2014-01-01

    Plants are challenged by both above- and belowground herbivores which may indirectly interact with each other via herbivore-induced changes in plant traits; however, little is known about how genetic variation of the host plant shapes such interactions. We used two genotypes (M4 and E9) of Solanum dulcamara (Solanaceae) with or without previous experience of aboveground herbivory by Spodoptera exigua (Noctuidae) to quantify its effects on subsequent root herbivory by Agriotes spp. (Elateridae). In the genotype M4, due to the aboveground herbivory, shoot and root biomass was significantly decreased, roots had a lower C/N ratio and contained significantly higher levels of proteins, while the genotype E9 was not affected. However, aboveground herbivory had no effects on weight gain or mortality of the belowground herbivores. Root herbivory by Agriotes increased the nitrogen concentration in the roots of M4 plants leading to a higher weight gain of conspecific larvae. Also, in feeding bioassays, Agriotes larvae tended to prefer roots of M4 over E9, irrespective of the aboveground herbivore treatment. Fourier-Transform Infrared Spectroscopy (FT-IR) documented differences in metabolic profiles of the two plant genotypes and of the roots of M4 plants after aboveground herbivory. Together, these results demonstrate that previous aboveground herbivory can have genotype-specific effects on quantitative and qualitative root traits. This may have consequences for belowground interactions, although generalist root herbivores might not be affected when the root biomass offered is still sufficient for growth and survival. PMID:26462832

  11. Candida species differ in their interactions with immature human gastrointestinal epithelial cells.

    PubMed

    Falgier, Christina; Kegley, Sara; Podgorski, Heather; Heisel, Timothy; Storey, Kathleen; Bendel, Catherine M; Gale, Cheryl A

    2011-05-01

    Life-threatening gastrointestinal (GI) diseases of prematurity are highly associated with systemic candidiasis. This implicates the premature GI tract as an important site for invasion by Candida. Invasive interactions of Candida spp. with immature enterocytes have heretofore not been analyzed. Using a primary immature human enterocyte line, we compared the ability of multiple isolates of different Candida spp. to penetrate, injure, and induce a cytokine response from host cells. Of all the Candida spp. analyzed, C. albicans had the greatest ability to penetrate and injure immature enterocytes and to elicit IL-8 release (p < 0.01). In addition, C. albicans was the only Candida spp. to form filamentous hyphae when in contact with immature enterocytes. Similarly, a C. albicans mutant with defective hyphal morphogenesis and invasiveness had attenuated cytotoxicity for immature enterocytes (p < 0.003). Thus, hyphal morphogenesis correlates with immature enterocyte penetration, injury, and inflammatory responses. Furthermore, variability in enterocyte injury was observed among hyphal-producing C. albicans strains, suggesting that individual organism genotypes also influence host-pathogen interactions. Overall, the finding that Candida spp. differed in their interactions with immature enterocytes implicates that individual spp. may use different pathogenesis mechanisms.

  12. Intraguild Interactions of Native and Introduced Coccinellids: The Decline of a Flagship Species.

    PubMed

    Tumminello, Giuseppe; Ugine, Todd A; Losey, John E

    2015-02-01

    The decline of Coccinella novemnotata Herbst, the ninespotted lady beetle, across North America has been attributed to the introduction of Coccinella septempunctata L. It has been suggested that C. septempunctata negatively impacted C. novemnotata through a combination of mechanisms. We investigated the effects of scramble competition and intraguild predation between groups of C. septempunctata and C. novemnotata. A novel aspect of these experiments for this species combination was that we provided beetles the option to cannibalize conspecifics or predate on heterospecifics (i.e. intraguild predation); thus, we were able to compare interspecific versus intraspecific competition. Increasing prey density resulted in significantly lower rates of intraguild predation on C. novemnotata by C. septempunctata. Percentage survival of C. novemnotata grouped with C. septempunctata at low and high aphid densities was 6 and 61%, respectively. For our second study, we increased the spatial complexity and volume of the assay system, and provided prey ad libitum. C. novemnotata survival from first-instar to adult was significantly lower than C. septempunctata survival when grouped heterospecifically (43 vs 61% survival, respectively). Finally, we conducted a study to determine if hungry larvae discriminate conspecific versus heterospecific larvae by testing whether they predated selectively on the basis of species, which they did not appear to do. We conclude that C. novemnotata larvae suffer greater rates of intraguild predation from C. septempunctata compared with cannibalism, that this difference appears to be due to size asymmetry between the two species, and that local conditions impact the severity of intraguild predation by C. septempunctata. PMID:26308807

  13. Agency interaction at the Savannah River Plant under the Endangered Species Act

    SciTech Connect

    Mackey, H.E. Jr.

    1984-01-01

    The 300 square mile Savannah River Plant (SRP) offers a variety of protected habitats for endangered species including the alligator (resident), red-cockaded woodpecker (resident), short-nose sturgeon (migratory), and wood stock (fish-forager). The most recent of these four species to be listed by the US Fish and Wildlife Service (US FWS) is the wood stock. It had been observed prior to 1983 as an infrequent forager in the SRP Savannah River swamp which adjoins SRP on the south and southwest. In anticipation of its listing as an endangered species, DOE-SR requested in the spring of 1983 that the Savannah River Ecology Laboratory, University of Georgia, conduct field surveys and studies of the nearest colony of wood storks to SRP (the Birdsville colony in north-central Georgia). The objective of these studies was to determine potential effects of the flooding of the Steel Creek swamp area with cooling water from L-Reactor. L-Reactor, which is proposed for restart, has not been operated since 1968. The survey found that wood storks forage in the Steel Creek delta swamp area of the Savannah River at SRP. Based on the numbers of storks at various foraging locations, sites at SRP ranked higher than non-SRP sites during the pre-fledging phase of the colony. Cold flow testing of L-Reactor also demonstrated that foraging sites in the Steel Creek delta would be unavailable during L-Reactor operation because of increased water levels. Consultation meetings between DOE-SR and US FWS in April 1984, resulted in an agreement between the two agencies to develop alternative foraging habitat for the wood stork to replace potential losses in the Steel Creek delta area. A suitable habitat was located on the National Audubon Society's Silver Bluff Plantation Sanctuary just west of SRP. This location will be developed by the US Soil Conservation Service through an interagency agreement with DOE-SR. 6 references, 4 figures.

  14. Interactions of gold nanoparticles with freshwater aquatic macrophytes are size and species dependent.

    PubMed

    Glenn, J Brad; White, Sarah A; Klaine, Stephen J

    2012-01-01

    The partitioning of 4- and 18-nm gold nanoparticles (AuNPs) to aquatic macrophytes was investigated in vivo with exposure suspension in well water. Three morphologically distinct aquatic macrophytes were studied. Myriophyllum simulans Orch. and Egeria densa Planch. are submerged aquatic vascular plants, whereas Azolla caroliniana Willd. is a free-floating aquatic fern. Because aquatic plants absorb the majority of their nutrients from the water column, it is logical to hypothesize that they may absorb nanomaterials in suspension, potentially facilitating trophic transfer. Each plant was exposed to two different-sized gold nanospheres at a nominal concentration of 250 µg/L AuNPs for 24 h. Macrophytes were harvested at six time points (1, 3, 6, 12, 18, and 24 h), dried, and then analyzed for gold concentration via inductively coupled plasma-mass spectrometry. Concentrations were normalized to whole-plant dry tissue mass. The present study shows that absorption of AuNPs through root uptake was size and species dependent. Electron microscopy revealed that 4- and 18-nm AuNPs adsorbed to the roots of each species. Root tissue was sectioned, and transmission electron microscopy indicated that 4-nm and 18-nm AuNPs were absorbed by A. caroliniana, whereas only 4-nm AuNPs were absorbed by M. simulans. Egeria densa did not absorb AuNPs of either size. Gold nanoparticles were confirmed in tissue by using energy-dispersive X-ray spectroscopy. Absorption of AuNPs by plants may be a function of the salinity tolerance of each species. PMID:22038861

  15. Yakima River Species Interactions Study; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 7 of 7, 2003-2004 Annual Report.

    SciTech Connect

    Pearsons, Todd N.; Fritts, Anthony L.; Temple, Gabriel M.

    2004-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the twelfth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin (Hindman et al. 1991; McMichael et al. 1992; Pearsons et al. 1993; Pearsons et al. 1994; Pearsons et al. 1996; Pearsons et al. 1998, Pearsons et al. 1999, Pearsons et al. 2001a, Pearsons et al. 2001b, Pearsons et al. 2002, Pearsons et al. 2003). Journal articles and book chapters have also been published from our work (McMichael 1993; Martin et al. 1995; McMichael et al. 1997; McMichael and Pearsons 1998; McMichael et al. 1998; Pearsons and Fritts 1999; McMichael et al. 1999; McMichael et al. 1999; Pearsons and Hopley 1999; Ham and Pearsons 2000; Ham and Pearsons 2001; Amaral et al. 2001; McMichael and Pearsons 2001; Pearsons 2002, Fritts and Pearsons 2004, Pearsons et al. in press, Major et al. in press). This progress report summarizes data collected between January 1, 2003 and December 31, 2003. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding (Pearsons et al. 1994; Busack et al. 1997; Pearsons and Hopley 1999). Furthermore, the success of a supplementation program may be limited by strong

  16. Fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes by protein mixtures: the role of inter-foulant-species interaction.

    PubMed

    Wang, Yi-Ning; Tang, Chuyang Y

    2011-08-01

    Protein fouling of nanofiltration (NF), reverse osmosis (RO), and ultrafiltration (UF) membranes by bovine serum albumin (BSA), lysozyme (LYS), and their mixture was investigated under cross-flow conditions. The effect of solution chemistry, membrane properties, and permeate flux level was systematically studied. When the solution pH was within the isoelectric points (IEPs) of the two proteins (i.e., pH 4.7-10.4), the mixed protein system experienced more severe flux decline compared to the respective single protein systems, which may be attributed to the electrostatic attraction between the negatively charged BSA and positively charged LYS molecules. Unlike a typical single protein system, membrane fouling by BSA-LYS mixture was only weakly dependent on solution pH within this pH range, and increased ionic strength was found to enhance the membrane flux as a result of the suppressed BSA-LYS electrostatic attraction. Membrane fouling was likely controlled by foulant-fouled-membrane interaction under severe fouling conditions (elevated flux level and unfavorable solution chemistry that promotes fouling), whereas it was likely dominated by foulant-clean-membrane interaction under mild fouling conditions. Compared to nonporous NF and RO membranes, the porous UF membrane was more susceptible to dramatic flux decline due to the increased risk of membrane pore plugging. This study reveals that membrane fouling by mixed macromolecules may behave very differently from that by typical single foulant system, especially when the inter-foulant-species interaction dominates over the intra-species interaction in the mixed foulant system.

  17. Interactions among chemical components of Cocoa tea (Camellia ptilophylla Chang), a naturally low caffeine-containing tea species.

    PubMed

    Lin, Xiaorong; Chen, Zhongzheng; Zhang, Yuanyuan; Gao, Xiong; Luo, Wei; Li, Bin

    2014-06-01

    In the 1980s, a novel tea species, Cocoa tea (Camellia ptilophylla Chang), was discovered in Southern China with surprisingly low caffeine content (0.2% by dry weight). Although its health promoting characteristics have been known for a while, a very limited amount of scientific research has been focused on Cocoa tea. Herein, a systematic study on Cocoa tea and its chemical components, interactions and bioactivities was performed. YD tea (Yunnan Daye tea, Camellia sinensis), a tea species with a high caffeine content (5.8% by dry weight), was used as a control. By UV-Vis spectrometry, High Performance Liquid Chromatography (HPLC), and Flame Atomic Absorption Spectrometry (FAAS) for chemical composition analysis, C-2 epimeric isomers of tea catechins and theobromine were found to be the major catechins and methylxanthine in Cocoa tea, respectively. More gallated catechins, methylxanthines, and proteins were detected in Cocoa tea compared with YD tea. Moreover, the tendency of major components in Cocoa tea for precipitation was significantly higher than that in YD tea. Catechins, methylxanthines, proteins, iron, calcium, and copper were presumed to be the origins of molecular interactions in Cocoa tea and YD tea. The interactions between catechins and methylxanthines were highly related to the galloyl moiety in catechins and methyl groups in methylxanthines. In vitro anti-inflammatory activity assays revealed that Cocoa tea was a more potent inhibitor of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated macrophage cells (RAW 264.7) than YD tea. This study constructs a solid phytochemical foundation for further research on the mechanisms of molecular interactions and the integrated functions of Cocoa tea.

  18. Reactive Oxygen Species Generation-Scavenging and Signaling during Plant-Arbuscular Mycorrhizal and Piriformospora indica Interaction under Stress Condition

    PubMed Central

    Nath, Manoj; Bhatt, Deepesh; Prasad, Ram; Gill, Sarvajeet S.; Anjum, Naser A.; Tuteja, Narendra

    2016-01-01

    A defined balance between the generation and scavenging of reactive oxygen species (ROS) is essential to utilize ROS as an adaptive defense response of plants under biotic and abiotic stress conditions. Moreover, ROS are not only a major determinant of stress response but also act as signaling molecule that regulates various cellular processes including plant-microbe interaction. In particular, rhizosphere constitutes the biologically dynamic zone for plant–microbe interactions which forms a mutual link leading to reciprocal signaling in both the partners. Among plant–microbe interactions, symbiotic associations of arbuscular mycorrhizal fungi (AMF) and arbuscular mycorrhizal-like fungus especially Piriformospora indica with plants are well known to improve plant growth by alleviating the stress-impacts and consequently enhance the plant fitness. AMF and P. indica colonization mainly enhances ROS-metabolism, maintains ROS-homeostasis, and thereby averts higher ROS-level accrued inhibition in plant cellular processes and plant growth and survival under stressful environments. This article summarizes the major outcomes of the recent reports on the ROS-generation, scavenging and signaling in biotic-abiotic stressed plants with AMF and P. indica colonization. Overall, a detailed exploration of ROS-signature kinetics during plant-AMF/P. indica interaction can help in designing innovative strategies for improving plant health and productivity under stress conditions.

  19. Two-dimensional symbiotic solitons and vortices in binary condensates with attractive cross-species interaction

    NASA Astrophysics Data System (ADS)

    Ma, Xuekai; Driben, Rodislav; Malomed, Boris A.; Meier, Torsten; Schumacher, Stefan

    2016-10-01

    We consider a two-dimensional (2D) two-component spinor system with cubic attraction between the components and intra-species self-repulsion, which may be realized in atomic Bose-Einstein condensates, as well as in a quasi-equilibrium condensate of microcavity polaritons. Including a 2D spatially periodic potential, which is necessary for the stabilization of the system against the critical collapse, we use detailed numerical calculations and an analytical variational approximation (VA) to predict the existence and stability of several types of 2D symbiotic solitons in the spinor system. Stability ranges are found for symmetric and asymmetric symbiotic fundamental solitons and vortices, including hidden-vorticity (HV) modes, with opposite vorticities in the two components. The VA produces exceptionally accurate predictions for the fundamental solitons and vortices. The fundamental solitons, both symmetric and asymmetric ones, are completely stable, in either case when they exist as gap solitons or regular ones. The symmetric and asymmetric vortices are stable if the inter-component attraction is stronger than the intra-species repulsion, while the HV modes have their stability region in the opposite case.

  20. Two-dimensional symbiotic solitons and vortices in binary condensates with attractive cross-species interaction

    PubMed Central

    Ma, Xuekai; Driben, Rodislav; Malomed, Boris A.; Meier, Torsten; Schumacher, Stefan

    2016-01-01

    We consider a two-dimensional (2D) two-component spinor system with cubic attraction between the components and intra-species self-repulsion, which may be realized in atomic Bose-Einstein condensates, as well as in a quasi-equilibrium condensate of microcavity polaritons. Including a 2D spatially periodic potential, which is necessary for the stabilization of the system against the critical collapse, we use detailed numerical calculations and an analytical variational approximation (VA) to predict the existence and stability of several types of 2D symbiotic solitons in the spinor system. Stability ranges are found for symmetric and asymmetric symbiotic fundamental solitons and vortices, including hidden-vorticity (HV) modes, with opposite vorticities in the two components. The VA produces exceptionally accurate predictions for the fundamental solitons and vortices. The fundamental solitons, both symmetric and asymmetric ones, are completely stable, in either case when they exist as gap solitons or regular ones. The symmetric and asymmetric vortices are stable if the inter-component attraction is stronger than the intra-species repulsion, while the HV modes have their stability region in the opposite case. PMID:27703235

  1. Interaction and behavior of virgin and physogastric queens in three Meliponini species (Hymenoptera, Apidae).

    PubMed

    Nogueira-Ferreira, F H; Silva-Matos, E V; Zucchi, R

    2009-01-01

    We studied the behavior of virgin queens of the stingless bee species Schwarziana quadripunctata, Paratrigona lineata and Tetragona clavipes, investigating internal nest activities, including the cell provisioning and oviposition process. We made direct observation of queen behavior, with the aid of video filming. Forty-four virgin queens of S. quadripunctata were observed; one was larger and more attractive than the others. Miniature queens were more abundant than normal-size queens; both were found in prison chambers. Agonistic behavior between virgin and physogastric queens of P. lineata was observed during attempts at queen supersedure. After the disappearance of the physogastric queen and the appearance of a virgin queen in T. clavipes nests, the brood cells were sealed with pollen alone, but no egg. In all three species, the presence of one or more virgin queens appeared to make the colonies nervous, even though constant production of virgin queens is vital to the survival of the colony and is part of the colony cycle in these bees. PMID:19554769

  2. Selective logging in tropical forests decreases the robustness of liana-tree interaction networks to the loss of host tree species.

    PubMed

    Magrach, Ainhoa; Senior, Rebecca A; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F; Santamaria, Luis; Edwards, David P

    2016-03-16

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'. PMID:26936241

  3. Selective logging in tropical forests decreases the robustness of liana-tree interaction networks to the loss of host tree species.

    PubMed

    Magrach, Ainhoa; Senior, Rebecca A; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F; Santamaria, Luis; Edwards, David P

    2016-03-16

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'.

  4. Variable addressability imaging systems

    NASA Astrophysics Data System (ADS)

    Kubala, Kenneth Scott

    The use of variable addressability for creating an optimum human-machine interface is investigated. Current wide field optical systems present more information to the human visual system than it has the capacity to perceive. The axial resolution, and/or the field of view can be increased by minimizing the difference between what the eye can perceive and what the system presents. The variable addressability function was developed through the use of a human factors experiment that characterized the position of the eye during the simulated use of a binocular system. Applying the variable addressability function to a conventional optical design required the development of a new metric for evaluating the expected performance of the variable addressability system. The new metric couples psycho-visual data and traditional optical data in order to specify the required performance of the variable addressability system. A non-linear mapping of the pixels is required in order to have the system work most efficiently with the human visual system, while also compensating for eye motion. The non-linear mapping function, which is the backbone of the variable addressability technique, can be created using optical distortion. The lens and system design is demonstrated in two different spectral bands. One of the designs was fabricated, tested, and assembled into a prototype. Through a second human factors study aimed at measuring performance, the variable addressability prototype was directly compared to a uniform addressability prototype, quantifying the difference in performance for the two prototypes. The human factors results showed that the variable addressability prototype provided better resolution 13% of the time throughout the experiment, but was 15% slower in use than the uniform addressability prototype.

  5. New insight into Biomineralisation Mechanisms of Colonial Cold-Water Scleractinians based on Species Interaction

    NASA Astrophysics Data System (ADS)

    Oppelt, Alexandra; Rocha, Carlos

    2016-04-01

    The scleractinian cold-water coral species Lophelia pertusa has been subject of many biomineralisation reconstruction attempts in order to decipher environmental signals potentially recorded within its skeletal structures. Even though understanding the mechanisms of carbonate precipitation is a prerequisite to interpret variations in geochemical signals along coral growth axis and evaluate the effects of potential kinetic fractionation, results of research into this area are still largely inconclusive. A close look at similar calcification patterns in microstructure and in the geochemistry of Lophelia pertusa and Madrepora oculata coral branches along the contact with polychaete tubes provides in our view additional information that may be relevant to understanding the biomineralisation mechanisms of colonial corals. Our analysis suggests a common precipitation mechanism and its origin is most likely found in the aspect of the extracytoplasmic calcifying medium. Based on prior research and own results we suggest mucus as part of, or even the main medium controlling calcification mechanics

  6. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    SciTech Connect

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  7. Structure of the ribosomal interacting GTPase YjeQ from the enterobacterial species Salmonella typhimurium

    SciTech Connect

    Nichols, C. E.; Johnson, C.; Lamb, H. K.; Lockyer, M.; Charles, I. G.; Hawkins, A. R.; Stammers, D. K.

    2007-11-01

    The X-ray crystal structure of the GTPase YjeQ from S. typhimurium is presented and compared with those of orthologues from T. maritima and B. subtilis. The YjeQ class of P-loop GTPases assist in ribosome biogenesis and also bind to the 30S subunit of mature ribosomes. YjeQ ribosomal binding is GTP-dependent and thought to specifically direct protein synthesis, although the nature of the upstream signal causing this event in vivo is as yet unknown. The attenuating effect of YjeQ mutants on bacterial growth in Escherichia coli makes it a potential target for novel antimicrobial agents. In order to further explore the structure and function of YjeQ, the isolation, crystallization and structure determination of YjeQ from the enterobacterial species Salmonella typhimurium (StYjeQ) is reported. Whilst the overall StYjeQ fold is similar to those of the previously reported Thematoga maritima and Bacillus subtilis orthologues, particularly the GTPase domain, there are larger differences in the three OB folds. Although the zinc-finger secondary structure is conserved, significant sequence differences alter the nature of the external surface in each case and may reflect varying signalling pathways. Therefore, it may be easier to develop YjeQ-specific inhibitors that target the N- and C-terminal regions, disrupting the metabolic connectivity rather than the GTPase activity. The availability of coordinates for StYjeQ will provide a significantly improved basis for threading Gram-negative orthologue sequences and in silico compound-screening studies, with the potential for the development of species-selective drugs.

  8. A survey of the interaction of calcium ions with mitochondria from different tissues and species.

    PubMed

    Carafoli, E; Lehninger, A L

    1971-05-01

    A survey was made of the capacity of mitochondria isolated from a number of different tissues and species to accumulate Ca(2+) from the suspending medium during electron transport. The species examined included the rat, mouse, rabbit, hamster, guinea pig, cow, chicken, turtle, blowfly, yeast and Neurospora crassa. The tissues examined included vertebrate liver, kidney, brain, heart, spleen, thyroid and adrenal cortex, and the flight muscle of the blowfly. The mitochondria from all vertebrate tissues examined showed: (a) stimulation of State 4 respiration by added Ca(2+) (Ca(2+)/~ activation ratio about 2.0), accompanied by accumulation of Ca(2+) and ejection of H(+), with a H(+)/Ca(2+) ratio about 1.0; (b) a requirement of phosphate for accumulation of large amounts of Ca(2+); (c) respiration-independent high-affinity binding sites for Ca(2+); (d) endogenous Ca(2+), which is largely released by uncoupling agents. However, mitochondria from yeast and blowfly flight muscle are unable to accumulate Ca(2+) in a respiration-dependent process and possess no high-affinity Ca(2+)-binding sites. These findings support the view that the high-affinity sites represent the ligand-binding sites of a specific Ca(2+) ;permease' or transport system in the membrane. The relatively high affinity for Ca(2+), which equals or exceeds the affinity for ADP, and the generally uniform characteristics of Ca(2+) transport in all the vertebrate mitochondria tested strongly suggest that respiration-linked Ca(2+) accumulation plays a general and fundamental role in vertebrate cell physiology.

  9. Aerosol-halogen interaction: Change of physico-chemical properties of SOA by naturally released halogen species

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Krüger, H.; Platt, U.; Schmitt-Kopplin, P.; Zetzsch, C.

    2011-12-01

    Reactive halogen species are released by various sources like photo-activated sea-salt aerosol or salt pans and salt lakes. These heterogeneous release mechanisms have been overlooked so far, although their potential of interaction with organic aerosols like Secondary Organic Aerosol (SOA), Biomass Burning Organic Aerosol (BBOA) or Atmospheric Humic LIke Substances (HULIS) is completely unknown. Such reactions can constitute sources of gaseous organo-halogen compounds or halogenated organic particles in the atmospheric boundary layer. To study the interaction of organic aerosols with reactive halogen species (RHS), SOA was produced from α-pinene, catechol and guaiacol using an aerosol smog-chamber. The model SOAs were characterized in detail using a variety of physico-chemical methods (Ofner et al., 2011). Those aerosols were exposed to molecular halogens in the presence of UV/VIS irradiation and to halogens, released from simulated natural halogen sources like salt pans, in order to study the complex aerosol-halogen interaction. The heterogeneous reaction of RHS with those model aerosols leads to different gaseous species like CO2, CO and small reactive/toxic molecules like phosgene (COCl2). Hydrogen containing groups on the aerosol particles are destroyed to form HCl or HBr, and a significant formation of C-Br bonds could be verified in the particle phase. Carbonyl containing functional groups of the aerosol are strongly affected by the halogenation process. While changes of functional groups and gaseous species were visible using FTIR spectroscopy, optical properties were studied using Diffuse Reflectance UV/VIS spectroscopy. Overall, the optical properties of the processed organic aerosols are significantly changed. While chlorine causes a "bleaching" of the aerosol particles, bromine shifts the maximum of UV/VIS absorption to the red end of the UV/VIS spectrum. Further physico-chemical changes were recognized according to the aerosol size-distributions or the

  10. Parasite species richness and intensity of interspecific interactions increase with latitude in two wide-ranging hosts.

    PubMed

    Torchin, Mark E; Miura, Osamu; Hechinger, Ryan F

    2015-11-01

    Although the latitudinal diversity gradient is a well-known and general pattern, the mechanisms structuring it remain elusive. Two key issues limit differentiating these. First, habitat type usually varies with latitude, precluding a standardized evaluation of species richness. Second, broad-scale and local factors hypothesized to shape diversity patterns covary with one another, making it difficult to tease apart independent effects. Examining communities of parasites in widely distributed hosts can eliminate some of these confounding factors. We quantified diversity and interspecific interactions for trematode parasites infecting two similar snail species across 27 degrees of latitude from 43 locations in tropical and temperate oceans. Counter to typical patterns, we found that species richness, levels of parasitism, and intensity of intraguild predation increased with latitude. Because speciation rates are precluded from driving diversity gradients in this particular system, the reversed gradients are likely due to local ecological factors, specifically, increased productivity and stability. We highlight how this system may serve as a useful tool to provide insight into what processes drive diversity gradients in general. PMID:27070022

  11. High-throughput biodiversity analysis: Rapid assessment of species richness and ecological interactions of Chrysomelidae (Coleoptera) in the tropics

    PubMed Central

    Gómez-Zurita, Jesús; Cardoso, Anabela; Coronado, Indiana; De la Cadena, Gissela; Jurado-Rivera, José A.; Maes, Jean-Michel; Montelongo, Tinguaro; Nguyen, Dinh Thi; Papadopoulou, Anna

    2016-01-01

    Abstract Biodiversity assessment has been the focus of intense debate and conceptual and methodological advances in recent years. The cultural, academic and aesthetic impulses to recognise and catalogue the diversity in our surroundings, in this case of living objects, is furthermore propelled by the urgency of understanding that we may be responsible for a dramatic reduction of biodiversity, comparable in magnitude to geological mass extinctions. One of the most important advances in this attempt to characterise biodiversity has been incorporating DNA-based characters and molecular taxonomy tools to achieve faster and more efficient species delimitation and identification, even in hyperdiverse tropical biomes. In this assay we advocate for a broad understanding of Biodiversity as the inventory of species in a given environment, but also the diversity of their interactions, with both aspects being attainable using molecular markers and phylogenetic approaches. We exemplify the suitability and utility of this framework for large-scale biodiversity assessment with the results of our ongoing projects trying to characterise the communities of leaf beetles and their host plants in several tropical setups. Moreover, we propose that approaches similar to ours, establishing the inventories of two ecologically inter-related and species-rich groups of organisms, such as insect herbivores and their angiosperm host-plants, can serve as the foundational stone to anchor a comprehensive assessment of diversity, also in tropical environments, by subsequent addition of trophic levels. PMID:27408583

  12. High-throughput biodiversity analysis: Rapid assessment of species richness and ecological interactions of Chrysomelidae (Coleoptera) in the tropics.

    PubMed

    Gómez-Zurita, Jesús; Cardoso, Anabela; Coronado, Indiana; De la Cadena, Gissela; Jurado-Rivera, José A; Maes, Jean-Michel; Montelongo, Tinguaro; Nguyen, Dinh Thi; Papadopoulou, Anna

    2016-01-01

    Biodiversity assessment has been the focus of intense debate and conceptual and methodological advances in recent years. The cultural, academic and aesthetic impulses to recognise and catalogue the diversity in our surroundings, in this case of living objects, is furthermore propelled by the urgency of understanding that we may be responsible for a dramatic reduction of biodiversity, comparable in magnitude to geological mass extinctions. One of the most important advances in this attempt to characterise biodiversity has been incorporating DNA-based characters and molecular taxonomy tools to achieve faster and more efficient species delimitation and identification, even in hyperdiverse tropical biomes. In this assay we advocate for a broad understanding of Biodiversity as the inventory of species in a given environment, but also the diversity of their interactions, with both aspects being attainable using molecular markers and phylogenetic approaches. We exemplify the suitability and utility of this framework for large-scale biodiversity assessment with the results of our ongoing projects trying to characterise the communities of leaf beetles and their host plants in several tropical setups. Moreover, we propose that approaches similar to ours, establishing the inventories of two ecologically inter-related and species-rich groups of organisms, such as insect herbivores and their angiosperm host-plants, can serve as the foundational stone to anchor a comprehensive assessment of diversity, also in tropical environments, by subsequent addition of trophic levels. PMID:27408583

  13. High-throughput biodiversity analysis: Rapid assessment of species richness and ecological interactions of Chrysomelidae (Coleoptera) in the tropics.

    PubMed

    Gómez-Zurita, Jesús; Cardoso, Anabela; Coronado, Indiana; De la Cadena, Gissela; Jurado-Rivera, José A; Maes, Jean-Michel; Montelongo, Tinguaro; Nguyen, Dinh Thi; Papadopoulou, Anna

    2016-01-01

    Biodiversity assessment has been the focus of intense debate and conceptual and methodological advances in recent years. The cultural, academic and aesthetic impulses to recognise and catalogue the diversity in our surroundings, in this case of living objects, is furthermore propelled by the urgency of understanding that we may be responsible for a dramatic reduction of biodiversity, comparable in magnitude to geological mass extinctions. One of the most important advances in this attempt to characterise biodiversity has been incorporating DNA-based characters and molecular taxonomy tools to achieve faster and more efficient species delimitation and identification, even in hyperdiverse tropical biomes. In this assay we advocate for a broad understanding of Biodiversity as the inventory of species in a given environment, but also the diversity of their interactions, with both aspects being attainable using molecular markers and phylogenetic approaches. We exemplify the suitability and utility of this framework for large-scale biodiversity assessment with the results of our ongoing projects trying to characterise the communities of leaf beetles and their host plants in several tropical setups. Moreover, we propose that approaches similar to ours, establishing the inventories of two ecologically inter-related and species-rich groups of organisms, such as insect herbivores and their angiosperm host-plants, can serve as the foundational stone to anchor a comprehensive assessment of diversity, also in tropical environments, by subsequent addition of trophic levels.

  14. Interactions between Bifidobacterium and Bacteroides Species in Cofermentations Are Affected by Carbon Sources, Including Exopolysaccharides Produced by Bifidobacteria

    PubMed Central

    Rios-Covian, David; Arboleya, Silvia; Hernandez-Barranco, Ana M.; Alvarez-Buylla, Jorge R.; Ruas-Madiedo, Patricia; Gueimonde, Miguel

    2013-01-01

    Cocultures of strains from two Bifidobacterium and two Bacteroides species were performed with exopolysaccharides (EPS) previously purified from bifidobacteria, with inulin, or with glucose as the carbon source. Bifidobacterium longum NB667 and Bifidobacterium breve IPLA20004 grew in glucose but showed poor or no growth in complex carbohydrates (inulin, EPS E44, and EPS R1), whereas Bacteroides grew well in the four carbon sources tested. In the presence of glucose, the growth of Bacteroides thetaiotaomicron DSM-2079 was inhibited by B. breve, whereas it remained unaffected in the presence of B. longum. Ba. fragilis DSM-2151 contributed to a greater survival of B. longum, promoting changes in the synthesis of short-chain fatty acids (SCFA) and organic acids in coculture with respect to monocultures. In complex carbohydrates, cocultures of bifidobacterium strains with Ba. thetaiotaomicron did not modify the behavior of Bacteroides nor improve the poor growth of bifidobacteria. The metabolic activity of Ba. fragilis in coculture with bifidobacteria was not affected by EPS, but greater survival of bifidobacteria at late stages of incubation occurred in cocultures than in monocultures, leading to a higher production of acetic acid than in monocultures. Therefore, cocultures of Bifidobacterium and Bacteroides can behave differently against fermentable carbohydrates as a function of the specific characteristics of the strains from each species. These results stress the importance of considering specific species and strain interactions and not simply higher taxonomic divisions in the relationship among intestinal microbial populations and their different responses to probiotics and prebiotics. PMID:24077708

  15. Parasite species richness and intensity of interspecific interactions increase with latitude in two wide-ranging hosts.

    PubMed

    Torchin, Mark E; Miura, Osamu; Hechinger, Ryan F

    2015-11-01

    Although the latitudinal diversity gradient is a well-known and general pattern, the mechanisms structuring it remain elusive. Two key issues limit differentiating these. First, habitat type usually varies with latitude, precluding a standardized evaluation of species richness. Second, broad-scale and local factors hypothesized to shape diversity patterns covary with one another, making it difficult to tease apart independent effects. Examining communities of parasites in widely distributed hosts can eliminate some of these confounding factors. We quantified diversity and interspecific interactions for trematode parasites infecting two similar snail species across 27 degrees of latitude from 43 locations in tropical and temperate oceans. Counter to typical patterns, we found that species richness, levels of parasitism, and intensity of intraguild predation increased with latitude. Because speciation rates are precluded from driving diversity gradients in this particular system, the reversed gradients are likely due to local ecological factors, specifically, increased productivity and stability. We highlight how this system may serve as a useful tool to provide insight into what processes drive diversity gradients in general.

  16. Scales of benthic–pelagic coupling and the intensity of species interactions: From recruitment limitation to top-down control

    PubMed Central

    Navarrete, Sergio A.; Wieters, Evie A.; Broitman, Bernardo R.; Castilla, Juan Carlos

    2005-01-01

    Large and usually unpredictable variation in species interaction strength has been a major roadblock to applying local experimental results to large-scale management and conservation issues. Recent studies explicitly considering benthic-pelagic coupling are starting to shed light on, and find regularities in, the causes of such large-scale variation in coastal ecosystems. Here, we evaluate the effects of variation in wind-driven upwelling on community regulation along 900 km of coastline of the southeastern Pacific, between 29°S and 35°S during 72 months. Variability in the intensity of upwelling occurring over tens of km produced predictable variation in recruitment of intertidal mussels, but not barnacles, and did not affect patterns of community structure. In contrast, sharp discontinuities in upwelling regimes produced abrupt and persistent breaks in the dynamics of benthic and pelagic communities over hundreds of km (regional) scales. Rates of mussel and barnacle recruitment changed sharply at ≈32°-33°S, determining a geographic break in adult abundance of these competitively dominant species. Analysis of satellite images demonstrates that regional-scale discontinuities in oceanographic regimes can couple benthic and pelagic systems, as evidenced by coincident breaks in dynamics and concentration of offshore surface chlorophyll-a. Field experiments showed that the paradigm of top-down control of intertidal benthic communities holds only south of the discontinuity. To the north, populations seem recruitment-limited, and predators have negligible effects, despite attaining similarly high abundances and potential predation effects across the region. Thus, geographically discontinuous oceanographic regimes set bounds to the strength of species interactions and define distinct regions for the design and implementation of sustainable management and conservation policies. PMID:16332959

  17. Interactions of warming and exposure affect susceptibility to parasite infection in a temperate fish species.

    PubMed

    Sheath, Danny J; Andreou, Demetra; Britton, J Robert

    2016-09-01

    Predicting how elevated temperatures from climate change alter host-parasite interactions requires understandings of how warming affects host susceptibility and parasite virulence. Here, the effect of elevated water temperature and parasite exposure level was tested on parasite prevalence, abundance and burden, and on fish growth, using Pomphorhynchus laevis and its fish host Squalius cephalus. At 60 days post-exposure, prevalence was higher at the elevated temperature (22 °C) than ambient temperature (18 °C), with infections achieved at considerably lower levels of exposure. Whilst parasite number was significantly higher in infected fish at 22 °C, both mean parasite weight and parasite burden was significantly higher at 18 °C. There were, however, no significant relationships between fish growth rate and temperature, parasite exposure, and the infection parameters. Thus, whilst elevated temperature significantly influenced parasite infection rates, it also impacted parasite development rates, suggesting warming could have complex implications for parasite dynamics and host resistance.

  18. Silver nanoparticle-algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects.

    PubMed

    He, Di; Dorantes-Aranda, Juan José; Waite, T David

    2012-08-21

    The short-term toxicity of citrate-stabilized silver nanoparticles (AgNPs) and ionic silver Ag(I) to the ichthyotoxic marine raphidophyte Chattonella marina has been examined using the fluorometric indicator alamarBlue. Aggregation and dissolution of AgNPs occurred after addition to GSe medium while uptake of dissolved Ag(I) occurred in the presence of C. marina. Based on total silver mass, toxicity was much higher for Ag(I) than for AgNPs. Cysteine, a strong Ag(I) ligand, completely removed the inhibitory effects of Ag(I) and AgNPs on the metabolic activity of C. marina, suggesting that the toxicity of AgNPs was due to the release of Ag(I). Synergistic toxic effects of AgNPs/Ag(I) and C. marina to fish gill cells were observed with these effects possibly attributable to enhancement in the generation of reactive oxygen species by C. marina on exposure of the organism to silver.

  19. Positive Selection within a Diatom Species Acts on Putative Protein Interactions and Transcriptional Regulation

    PubMed Central

    Koester, Julie A.; Swanson, Willie J.; Armbrust, E. Virginia

    2013-01-01

    Diatoms are the most species-rich group of microalgae, and their contribution to marine primary production is important on a global scale. Diatoms can form dense blooms through rapid asexual reproduction; mutations acquired and propagated during blooms likely provide the genetic, and thus phenotypic, variability upon which natural selection may act. Positive selection was tested using genome and transcriptome-wide pair-wise comparisons of homologs in three genera of diatoms (Pseudo-nitzschia, Ditylum, and Thalassiosira) that represent decreasing phylogenetic distances. The signal of positive selection was greatest between two strains of Thalassiosira pseudonana. Further testing among seven strains of T. pseudonana yielded 809 candidate genes of positive selection, which are 7% of the protein-coding genes. Orphan genes and genes encoding protein-binding domains and transcriptional regulators were enriched within the set of positively selected genes relative to the genome as a whole. Positively selected genes were linked to the potential selective pressures of nutrient limitation and sea surface temperature based on analysis of gene expression profiles and identification of positively selected genes in subsets of strains from locations with similar environmental conditions. The identification of positively selected genes presents an opportunity to test new hypotheses in natural populations and the laboratory that integrate selected genotypes in T. pseudonana with their associated phenotypes and selective forces. PMID:23097498

  20. Positive selection within a diatom species acts on putative protein interactions and transcriptional regulation.

    PubMed

    Koester, Julie A; Swanson, Willie J; Armbrust, E Virginia

    2013-02-01

    Diatoms are the most species-rich group of microalgae, and their contribution to marine primary production is important on a global scale. Diatoms can form dense blooms through rapid asexual reproduction; mutations acquired and propagated during blooms likely provide the genetic, and thus phenotypic, variability upon which natural selection may act. Positive selection was tested using genome and transcriptome-wide pair-wise comparisons of homologs in three genera of diatoms (Pseudo-nitzschia, Ditylum, and Thalassiosira) that represent decreasing phylogenetic distances. The signal of positive selection was greatest between two strains of Thalassiosira pseudonana. Further testing among seven strains of T. pseudonana yielded 809 candidate genes of positive selection, which are 7% of the protein-coding genes. Orphan genes and genes encoding protein-binding domains and transcriptional regulators were enriched within the set of positively selected genes relative to the genome as a whole. Positively selected genes were linked to the potential selective pressures of nutrient limitation and sea surface temperature based on analysis of gene expression profiles and identification of positively selected genes in subsets of strains from locations with similar environmental conditions. The identification of positively selected genes presents an opportunity to test new hypotheses in natural populations and the laboratory that integrate selected genotypes in T. pseudonana with their associated phenotypes and selective forces. PMID:23097498

  1. Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species

    PubMed Central

    Cao, Hieu X.; Schmutzer, Thomas; Scholz, Uwe; Pecinka, Ales; Schubert, Ingo; Vu, Giang T. H.

    2015-01-01

    In the carnivorous plant genus Genlisea a unique lobster pot trapping mechanism supplements nutrition in nutrient-poor habitats. A wide spectrum of microbes frequently occurs in Genlisea's leaf-derived traps without clear relevance for Genlisea carnivory. We sequenced the metatranscriptomes of subterrestrial traps vs. the aerial chlorophyll-containing leaves of G. nigrocaulis and of G. hispidula. Ribosomal RNA assignment revealed soil-borne microbial diversity in Genlisea traps, with 92 genera of 19 phyla present in more than one sample. Microbes from 16 of these phyla including proteobacteria, green algae, amoebozoa, fungi, ciliates and metazoans, contributed additionally short-lived mRNA to the metatranscriptome. Furthermore, transcripts of 438 members of hydrolases (e.g., proteases, phosphatases, lipases), mainly resembling those of metazoans, ciliates and green algae, were found. Compared to aerial leaves, Genlisea traps displayed a transcriptional up-regulation of endogenous NADH oxidases generating reactive oxygen species as well as of acid phosphatases for prey digestion. A leaf-vs.-trap transcriptome comparison reflects that carnivory provides inorganic P- and different forms of N-compounds (ammonium, nitrate, amino acid, oligopeptides) and implies the need to protect trap cells against oxidative stress. The analysis elucidates a complex food web inside the Genlisea traps, and suggests ecological relationships between this plant genus and its entrapped microbiome. PMID:26236284

  2. Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species.

    PubMed

    Cao, Hieu X; Schmutzer, Thomas; Scholz, Uwe; Pecinka, Ales; Schubert, Ingo; Vu, Giang T H

    2015-01-01

    In the carnivorous plant genus Genlisea a unique lobster pot trapping mechanism supplements nutrition in nutrient-poor habitats. A wide spectrum of microbes frequently occurs in Genlisea's leaf-derived traps without clear relevance for Genlisea carnivory. We sequenced the metatranscriptomes of subterrestrial traps vs. the aerial chlorophyll-containing leaves of G. nigrocaulis and of G. hispidula. Ribosomal RNA assignment revealed soil-borne microbial diversity in Genlisea traps, with 92 genera of 19 phyla present in more than one sample. Microbes from 16 of these phyla including proteobacteria, green algae, amoebozoa, fungi, ciliates and metazoans, contributed additionally short-lived mRNA to the metatranscriptome. Furthermore, transcripts of 438 members of hydrolases (e.g., proteases, phosphatases, lipases), mainly resembling those of metazoans, ciliates and green algae, were found. Compared to aerial leaves, Genlisea traps displayed a transcriptional up-regulation of endogenous NADH oxidases generating reactive oxygen species as well as of acid phosphatases for prey digestion. A leaf-vs.-trap transcriptome comparison reflects that carnivory provides inorganic P- and different forms of N-compounds (ammonium, nitrate, amino acid, oligopeptides) and implies the need to protect trap cells against oxidative stress. The analysis elucidates a complex food web inside the Genlisea traps, and suggests ecological relationships between this plant genus and its entrapped microbiome.

  3. Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species.

    PubMed

    Cao, Hieu X; Schmutzer, Thomas; Scholz, Uwe; Pecinka, Ales; Schubert, Ingo; Vu, Giang T H

    2015-01-01

    In the carnivorous plant genus Genlisea a unique lobster pot trapping mechanism supplements nutrition in nutrient-poor habitats. A wide spectrum of microbes frequently occurs in Genlisea's leaf-derived traps without clear relevance for Genlisea carnivory. We sequenced the metatranscriptomes of subterrestrial traps vs. the aerial chlorophyll-containing leaves of G. nigrocaulis and of G. hispidula. Ribosomal RNA assignment revealed soil-borne microbial diversity in Genlisea traps, with 92 genera of 19 phyla present in more than one sample. Microbes from 16 of these phyla including proteobacteria, green algae, amoebozoa, fungi, ciliates and metazoans, contributed additionally short-lived mRNA to the metatranscriptome. Furthermore, transcripts of 438 members of hydrolases (e.g., proteases, phosphatases, lipases), mainly resembling those of metazoans, ciliates and green algae, were found. Compared to aerial leaves, Genlisea traps displayed a transcriptional up-regulation of endogenous NADH oxidases generating reactive oxygen species as well as of acid phosphatases for prey digestion. A leaf-vs.-trap transcriptome comparison reflects that carnivory provides inorganic P- and different forms of N-compounds (ammonium, nitrate, amino acid, oligopeptides) and implies the need to protect trap cells against oxidative stress. The analysis elucidates a complex food web inside the Genlisea traps, and suggests ecological relationships between this plant genus and its entrapped microbiome. PMID:26236284

  4. Neonatal Amygdala Lesions Alter Mother–Infant Interactions in Rhesus Monkeys Living in a Species-Typical Social Environment

    PubMed Central

    Stephens, Shannon B.Z.; Sanchez, Mar; Bachevalier, Jocelyne; Wallen, Kim

    2015-01-01

    The current study examined the effects of neonatal amygdala lesions on mother–infant interactions in rhesus monkeys reared in large species-typical social groups. Focal observations of mother–infant interactions were collected in their social group for the first 12 months postpartum on infants that had received amygdala lesions (Neo-A) at 24–25 days of age and control infants. Early amygdala lesions resulted in subtle behavioral alterations. Neo-A females exhibited earlier emergence of independence from the mother than did control females, spending more time away from their mother, whereas Neo-A males did not. Also, a set of behaviors, including coo vocalizations, time in contact, and time away from the mother, accurately discriminated Neo-A females from control females, but not Neo-A and control males. Data suggest that neonatal amygdalectomy either reduced fear, therefore increasing exploration in females, or reduced the positive reward value of maternal contact. Unlike females, neonatal amygdala lesions had little measurable effects on male mother–infant interactions. The source of this sex difference is unknown. PMID:24986273

  5. Addressivity in cogenerative dialogues

    NASA Astrophysics Data System (ADS)

    Hsu, Pei-Ling

    2014-03-01

    Ashraf Shady's paper provides a first-hand reflection on how a foreign teacher used cogens as culturally adaptive pedagogy to address cultural misalignments with students. In this paper, Shady drew on several cogen sessions to showcase his journey of using different forms of cogens with his students. To improve the quality of cogens, one strategy he used was to adjust the number of participants in cogens. As a result, some cogens worked and others did not. During the course of reading his paper, I was impressed by his creative and flexible use of cogens and at the same time was intrigued by the question of why some cogens work and not others. In searching for an answer, I found that Mikhail Bakhtin's dialogism, especially the concept of addressivity, provides a comprehensive framework to address this question. In this commentary, I reanalyze the cogen episodes described in Shady's paper in the light of dialogism. My analysis suggests that addressivity plays an important role in mediating the success of cogens. Cogens with high addressivity function as internally persuasive discourse that allows diverse consciousnesses to coexist and so likely affords productive dialogues. The implications of addressivity in teaching and learning are further discussed.

  6. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2

    NASA Astrophysics Data System (ADS)

    Breitkopf, Susanne B.; Yang, Xuemei; Begley, Michael J.; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B.; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A.; Hong, Pengyu; Kontaridis, Maria I.; Cantley, Lewis C.; Perrimon, Norbert; Asara, John M.

    2016-02-01

    Using a series of immunoprecipitation (IP) – tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway.

  7. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2

    NASA Astrophysics Data System (ADS)

    Breitkopf, Susanne B.; Yang, Xuemei; Begley, Michael J.; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B.; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A.; Hong, Pengyu; Kontaridis, Maria I.; Cantley, Lewis C.; Perrimon, Norbert; Asara, John M.

    2016-02-01

    Using a series of immunoprecipitation (IP) - tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway.

  8. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2

    PubMed Central

    Breitkopf, Susanne B.; Yang, Xuemei; Begley, Michael J.; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B.; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A.; Hong, Pengyu; Kontaridis, Maria I.; Cantley, Lewis C.; Perrimon, Norbert; Asara, John M.

    2016-01-01

    Using a series of immunoprecipitation (IP) – tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway. PMID:26839216

  9. Celebrity Climate Contrarians: Understanding a keystone species in contemporary climate science-policy-public interactions

    NASA Astrophysics Data System (ADS)

    Boykoff, M. T.

    2012-12-01

    Since the 1980s, a keystone species called 'climate contrarians' has emerged and thrived. Through resistance to dominant interpretations of scientific evidence, and often outlier views on optimal responses to climate threats, contrarians have raised many meta-level questions: for instance, questions involve to what extent have their varied interventions been effective in terms of sparking a new and wise Copernican revolution; or do their amplified voices instead service entrenched carbon-based industry interests while they blend debates over 'climate change' with other culture wars? While the value of their influence has generated numerous debates, there is no doubt that climate contrarians have had significant influence on climate science, policy and public communities in ways that are larger than would be expected from their relative abundance in society. As such, a number of these actors have achieved 'celebrity status' in science-policy circles, and, at times, larger public spaces. This presentation focuses on how - particularly through amplified mass media attention to their movements - various outlier interventions have demonstrated themselves to be (often deliberately) detrimental to efforts that seek to enlarge rather than constrict the spectrum of possibility for mobilizing appropriate responses to ongoing climate challenges. Also, this work analyses the growth pathways of these charismatic megafauna through interview data and participant observations completed by the author at the 2011 Heartland Institute's Sixth International Conference on Climate Change. This provides detail on how outlier perspectives characterized as climate contrarians do work in these spaces under the guise of public intellectualism to achieve intended goals and objectives. The research undertaken and related in the presentation here seeks to better understand motivations that prop up these contrarian stances, such as possible ideological or evidentiary disagreement to the orthodox

  10. Interlayer interaction in Ca-Fe layered double hydroxides intercalated with nitrate and chloride species

    NASA Astrophysics Data System (ADS)

    Al-Jaberi, Muayad; Naille, Sébastien; Dossot, Manuel; Ruby, Christian

    2015-12-01

    Ca-Fe layered double hydroxide (LDH) intercalated with chloride and nitrate ions has been synthesized with varying CaII:FeIII molar ratios of the initial solution. Phase pure LDH is observed with CaII:FeIII molar ratio of 2:1 and a mixture of LDH and Ca(OH)2 is formed for CaII:FeIII molar ratios higher than 2:1. Vibrational spectroscopies (Raman and IR) were used successfully to understand the interaction between the cationic and anionic sheets. The Raman bands positions at lower frequencies (150-600 cm-1) are intimately correlated to the nature of the divalent and trivalent ions but also to the nature of the anions. Indeed, a shift of ˜9 cm-1 is observed for the Raman double bands situated in the 300-400 cm-1 region when comparing Raman spectra of CaFe-LDH containing either nitrate or chloride ions. Two types of nitrate environments are observed namely free (non-hydrogen bonded) nitrate and nitrate hydrogen bonded to the interlayer water or to the 'brucite-like' hydroxyl surface. Multiple types of water structure are observed and would result from different hydrogen bond structures. Water bending modes are identified at 1645 cm-1 greater than the one observed for LDH intercalated with chloride anions (1618 cm-1), indicating that the water is strongly hydrogen bonded to the nitrate anions.

  11. Sublethal effects of imidacloprid on interactions in a tritrophic system of non-target species.

    PubMed

    Uhl, Philipp; Bucher, Roman; Schäfer, Ralf B; Entling, Martin H

    2015-08-01

    Imidacloprid is one of the most used insecticides worldwide, but is highly toxic to non-target arthropods. Effects of sublethal imidacloprid intoxication can potentially propagate in food webs, yet little is known about the impact on non-target populations and communities. We investigated short-term sublethal toxicity of imidacloprid in a tritrophic model system of wild strawberry Fragaria vesca, wood cricket Nemobius sylvestris and nursery web spider Pisaura mirabilis. Strawberries were treated two times with 0mg (control), 1mg (low rate) and 10mg (high rate) of Confidor® WG 70 and crickets were allowed to feed on them. In four lab experiments, we quantified the impact of imidacloprid on leaf damage, growth, behaviour and survival of crickets. The high imidacloprid rate reduced feeding, mass gain, thorax growth and mobility in crickets compared to the control, while mortality was similarly low in all treatments. The low rate reduced mass gain only. Cricket survival of spider predation was higher in the low rate treatment than in the control. Overall, herbivory and predation were reduced at sublethal imidacloprid rates in a non-target organism, three-level food chain, which demonstrates possible propagation of sublethal effects through trophic interactions.

  12. Laser fluorescence studies of the chemical interactions of sodium species with sulfur bearing fuels

    NASA Technical Reports Server (NTRS)

    Steinberg, M.; Schofield, K.

    1983-01-01

    By using a large matrix of fuel rich and fuel lean H2/O2/N2 and fuel rich C2H2/O2/N2 flames, the behavior of sodium and its interactions with sulfur at high temperatures was extensively characterized. OH concentrations were measured for each flame using the previously validated laser induced fluorescence technique. Sodium atomic concentrations were obtained by the saturated laser fluorescence method. Measurements were made in the absence and presence of up to 2% sulfur. In oxygen rich systems sodium is depleted by NaO2 and NaOH formation. The relative amounts of each are controlled by the degree of nonequilibration of the flame radicals and by the temperature. The bond strength of NaO2 was established. For the first time, a complete understanding of the complex behavior of sodium in fuel lean H2/O2 flames has emerged and computer modeling has permitted various rate constants of Na, NaO2 and NaOH reactions to be approximately fixed.

  13. Genetic analysis of the interaction between Allium species and arbuscular mycorrhizal fungi.

    PubMed

    Galván, Guillermo A; Kuyper, Thomas W; Burger, Karin; Keizer, L C Paul; Hoekstra, Rolf F; Kik, Chris; Scholten, Olga E

    2011-03-01

    The response of Allium cepa, A. roylei, A. fistulosum, and the hybrid A. fistulosum × A. roylei to the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was studied. The genetic basis for response to AMF was analyzed in a tri-hybrid A. cepa × (A. roylei × A. fistulosum) population. Plant response to mycorrhizal symbiosis was expressed as relative mycorrhizal responsiveness (R') and absolute responsiveness (R). In addition, the average performance (AP) of genotypes under mycorrhizal and non-mycorrhizal conditions was determined. Experiments were executed in 2 years, and comprised clonally propagated plants of each genotype grown in sterile soil, inoculated with G. intraradices or non-inoculated. Results were significantly correlated between both years. Biomass of non-mycorrhizal and mycorrhizal plants was significantly positively correlated. R' was negatively correlated with biomass of non-mycorrhizal plants and hence unsuitable as a breeding criterion. R and AP were positively correlated with biomass of mycorrhizal and non-mycorrhizal plants. QTLs contributing to mycorrhizal response were located on a linkage map of the A. roylei × A. fistulosum parental genotype. Two QTLs from A. roylei were detected on chromosomes 2 and 3 for R, AP, and biomass of mycorrhizal plants. A QTL from A. fistulosum was detected on linkage group 9 for AP (but not R), biomass of mycorrhizal and non-mycorrhizal plants, and the number of stem-borne roots. Co-segregating QTLs for plant biomass, R and AP indicate that selection for plant biomass also selects for enhanced R and AP. Moreover, our findings suggest that modern onion breeding did not select against the response to AMF, as was suggested before for other cultivated species. Positive correlation between high number of roots, biomass and large response to AMF in close relatives of onion opens prospects to combine these traits for the development of more robust onion cultivars. PMID:21222096

  14. Weak intramolecular interaction effects on the torsional spectra of ethylene glycol, an astrophysical species

    NASA Astrophysics Data System (ADS)

    Boussessi, R.; Senent, M. L.; Jaïdane, N.

    2016-04-01

    An elaborate variational procedure of reduced dimensionality based on explicitly correlated coupled clusters calculations is applied to understand the far infrared spectrum of ethylene-glycol, an astrophysical species. This molecule can be classified in the double molecular symmetry group G8 and displays nine stable conformers, gauche and trans. In the gauche region, the effect of the potential energy surface anisotropy due to the formation of intramolecular hydrogen bonds is relevant. For the primary conformer, stabilized by a hydrogen bond, the ground vibrational state rotational constants are computed to be A0 = 15 369.57 MHz, B0 = 5579.87 MHz, and C0 = 4610.02 MHz corresponding to differences of 6.3 MHz, 7.2 MHz, and 3.5 MHz from the experimental parameters. Ethylene glycol displays very low torsional energy levels whose classification is not straightforward and requires a detailed analysis of the torsional wavefunctions. Tunneling splittings are significant and unpredictable due to the anisotropy of the potential energy surface PES. The ground vibrational state splits into 16 sublevels separated ˜142 cm-1. The splitting of the "G1 sublevels" was calculated to be ˜0.26 cm-1 in very good agreement with the experimental data (0.2 cm-1 = 6.95 MHz). Transitions corresponding to the three internal rotation modes allow assignment of previously observed Q branches. Band patterns, calculated between 362.3 cm-1 and 375.2 cm-1, 504 cm-1 and 517 cm-1, and 223.3 cm-1 and 224.1 cm-1, that correspond to the tunnelling components of the v21 fundamental (v21 = OH-torsional mode), are assigned to the prominent experimental Q branches.

  15. A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates.

    PubMed

    Wang, Hui; Tomasch, Jürgen; Jarek, Michael; Wagner-Döbler, Irene

    2014-01-01

    Some microalgae in nature live in symbiosis with microorganisms that can enhance or inhibit growth, thus influencing the dynamics of phytoplankton blooms. In spite of the great ecological importance of these interactions, very few defined laboratory systems are available to study them in detail. Here we present a co-cultivation system consisting of the toxic phototrophic dinoflagellate Prorocentrum minimum and the photoheterotrophic alphaproteobacterium Dinoroseobacter shibae. In a mineral medium lacking a carbon source, vitamins for the bacterium and the essential vitamin B12 for the dinoflagellate, growth dynamics reproducibly went from a mutualistic phase, where both algae and bacteria grow, to a pathogenic phase, where the algae are killed by the bacteria. The data show a "Jekyll and Hyde" lifestyle that had been proposed but not previously demonstrated. We used RNAseq and microarray analysis to determine which genes of D. shibae are transcribed and differentially expressed in a light dependent way at an early time-point of the co-culture when the bacterium grows very slowly. Enrichment of bacterial mRNA for transcriptome analysis was optimized, but none of the available methods proved capable of removing dinoflagellate ribosomal RNA completely. RNAseq showed that a phasin encoding gene (phaP1 ) which is part of the polyhydroxyalkanoate (PHA) metabolism operon represented approximately 10% of all transcripts. Five genes for aerobic anoxygenic photosynthesis were down-regulated in the light, indicating that the photosynthesis apparatus was functional. A betaine-choline-carnitine-transporter (BCCT) that may be used for dimethylsulfoniopropionate (DMSP) uptake was the highest up-regulated gene in the light. The data suggest that at this early mutualistic phase of the symbiosis, PHA degradation might be the main carbon and energy source of D. shibae, supplemented in the light by degradation of DMSP and aerobic anoxygenic photosynthesis. PMID:25009539

  16. Possible Role of Mother-Daughter Vocal Interactions on the Development of Species-Specific Song in Gibbons

    PubMed Central

    Koda, Hiroki; Lemasson, Alban; Oyakawa, Chisako; Rizaldi; Pamungkas, Joko; Masataka, Nobuo

    2013-01-01

    Mother-infant vocal interactions play a crucial role in the development of human language. However, comparatively little is known about the maternal role during vocal development in nonhuman primates. Here, we report the first evidence of mother-daughter vocal interactions contributing to vocal development in gibbons, a singing and monogamous ape species. Gibbons are well known for their species-specific duets sung between mates, yet little is known about the role of intergenerational duets in gibbon song development. We observed singing interactions between free-ranging mothers and their sub-adult daughters prior to emigration. Daughters sang simultaneously with their mothers at different rates. First, we observed significant acoustic variation between daughters. Co-singing rates between mother and daughter were negatively correlated with the temporal precision of the song’s synchronization. In addition, songs of daughters who co-sang less with their mothers were acoustically more similar to the maternal song than any other adult female’s song. All variables have been reported to be influenced by social relationships of pairs. Therefore those correlations would be mediated by mother-daughter social relationship, which would be modifiable in daughter’s development. Here we hypothesized that daughters who co-sing less often, well-synchronize, and converge acoustically with the maternal acoustic pattern would be at a more advanced stage of social independence in sub-adult females prior to emigration. Second, we observed acoustic matching between mothers and daughters when co-singing, suggesting short-term vocal flexibility. Third, we found that mothers adjusted songs to a more stereotyped pattern when co-singing than when singing alone. This vocal adjustment was stronger for mothers with daughters who co-sang less. These results indicate the presence of socially mediated vocal flexibility in gibbon sub-adults and adults, and that mother-daughter co

  17. Interactions between metal oxides and species of nitrogen and iodine in bioturbated marine sediments

    NASA Astrophysics Data System (ADS)

    Anschutz, Pierre; Sundby, Bjørn; Lefrançois, Lucie; Luther, George W.; Mucci, Alfonso

    2000-08-01

    oxidation of ammonia to N 2 by manganese oxides is a potential removal mechanism. It would require one quarter of the total oxygen flux. The high-resolution profiles of redox species support the conceptualization of bioturbated sediments as a spatially and temporally changing mosaic of redox reactions. They show evidence for a multitude of reactions whose relative importance will vary over time, and for reaction pathways complementing those usually considered in diagenetic studies.

  18. Transportation and localization of phenanthrene and its interaction with different species of arsenic in Pteris vittata L.

    PubMed

    Liao, Xiaoyong; Ma, Xu; Yan, Xiulan; Lin, Longyong; Shi, Peili; Wu, Zeying

    2016-06-01

    The interaction between arsenic (As) and phenanthrene (PHE) in Pteris vittata L. was investigated in this study. The migration and occurrence of PHE in P. vittata were determined by two-photon laser scanning confocal microscopy. Data indicated that PHE supplementation lowers the As concentration in P. vittata, decreasing As levels by 16.8-39.9% in the pinnae, 30.0-49.0% in the rachis, and 45-51.5% in the roots, respectively. Different arsenic species inhibited P. vittata PHE absorption. The most significant effect was observed using dimethylarsenic acid (DMA), which decreased PHE accumulation by 20.73%. With the exception of elevated As(V) concentrations in As(III)-treated plants, PHE treatment significantly reduced inorganic As concentrations in P. vittata. However, PHE elevated root DMA concentrations by 9%. According to in situ visualization, PHE is primarily found in the upper and lower epidermis and stomatal cells, particularly the stomata guard cells. PMID:27023118

  19. Assessing the putative roles of X-autosome and X-Y interactions in hybrid male sterility of the Drosophila bipectinata species complex.

    PubMed

    Mishra, Paras Kumar; Singh, Bashisth Narayan

    2007-07-01

    Interspecific F1 hybrid males of the Drosophila bipectinata species complex are sterile, while females are fertile, following Haldane's rule. A backcross scheme involving a single recessive visible marker on the X chromosome has been used to assess the putative roles of X-autosome and X-Y interactions in hybrid male sterility in the D. bipectinata species complex. The results suggest that X-Y interactions are playing the major role in hybrid male sterility in the crosses D. bipectinata x D. parabipectinata and D. bipectinata x D. pseudoananassae, while X-autosome interactions are largely involved in hybrid male sterility in the crosses D. malerkotliana x D. bipectinata and D. malerkotliana x D. parabipectinata. However, by using this single marker it is not possible to rule out the involvement of autosome-autosome interactions in hybrid male sterility. These findings also lend further support to the phylogenetic relationships among 4 species of the D. bipectinata complex.

  20. A nonlinear macroscopic multi-phasic model for describing interactions between solid, fluid and ionic species in biological tissue materials

    NASA Astrophysics Data System (ADS)

    Li, Long-yuan; Pinsky, Peter M.

    2011-01-01

    A nonlinear, macroscopic multi-phasic model for describing the interactions between solid, fluid, and ionic species in porous materials is presented. Governing equations are derived based on the nonlinear theories of solid mechanics, linear flow theory of Newtonian fluids, and theory of irreversible thermodynamics for the transport of ions and ionic solutions. The model shows that the transport coupling between ions and ionic solution exists only when the porous material has a membrane-like feature, which could be inside the material or on the material boundaries. Otherwise, the coupling occurs only between the solid and fluid phases and the transport of ionic species will have no effect on the macroscopic stresses, strains and displacements of the porous material. As an application of the present multi-phasic model, a numerical example of the human cornea under the shock of NaCl hypertonic solution applied to its endothelial surface is presented. This is a typical example of how ionic transport induces swelling in biological tissues. The results obtained from the present multi-phasic model demonstrate that the mechanical properties of the tissue have an important influence on the swelling of the cornea. Without taking into account this influence, the predicted swelling may be exaggerated.

  1. Hemoparasites in a wild primate: Infection patterns suggest interaction of Plasmodium and Babesia in a lemur species.

    PubMed

    Springer, Andrea; Fichtel, Claudia; Calvignac-Spencer, Sébastien; Leendertz, Fabian H; Kappeler, Peter M

    2015-12-01

    Hemoparasites can cause serious morbidity in humans and animals and often involve wildlife reservoirs. Understanding patterns of hemoparasite infections in natural populations can therefore inform about emerging disease risks, especially in the light of climate change and human disruption of natural ecosystems. We investigated the effects of host age, sex, host group size and season on infection patterns of Plasmodium sp., Babesia sp. and filarial nematodes in a population of wild Malagasy primates, Verreaux's sifakas (Propithecus verreauxi), as well as the effects of these infections on hematological variables. We tested 45 blood samples from 3