Science.gov

Sample records for addressable vertical-cavity laser

  1. Vertical-Cavity Surface-Emitting Lasers

    NASA Astrophysics Data System (ADS)

    Wilmsen, Carl W.; Temkin, Henryk; Coldren, Larry A.

    2002-01-01

    1. Introduction to VCSELs L. A. Coldren, C. W. Wilmsen and H. Temkin; 2. Fundamental issues in VCSEL design L. A. Coldren and Eric R. Hegblom; 3. Enhancement of spontaneous emission in microcavities E. F. Schubert and N. E. J. Hunt; 4. Epitaxy of vertical-cavity lasers R. P. Schneider Jr and Y. H. Young; 5. Fabrication and performance of vertical-cavity surface-emitting lasers Kent D. Choquette and Kent Geib; 6. Polarization related properties of vertical cavity lasers Dmitri Kuksenkov and Henryk Temkin; 7. Visible light emitting vertical cavity lasers Robert L. Thornton; 8. Long-wavelength vertical-cavity lasers Dubrakovo I. Babic, Joachim Piprek and John E. Bowers; 9. Overview of VCSEL applications Richard C. Williamson; 10. Optical interconnection applications and required characteristics Kenichi Kasahara; 11. VCSEL-based fiber-optic data communications Kenneth Hahn and Kirk Giboney; 12. VCSEL-based smart pixels for free space optoelectronic processing C. W. Wilmsen.

  2. Long wavelength vertical cavity surface emitting laser

    DOEpatents

    Choquette, Kent D.; Klem, John F.

    2005-08-16

    Selectively oxidized vertical cavity lasers emitting near 1300 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave below, at and above room temperature. The lasers employ two n-type Al.sub.0.94 Ga.sub.0.06 As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the active region, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55.degree. C.

  3. Vertical-cavity surface-emitting laser device

    DOEpatents

    Hadley, G. Ronald; Lear, Kevin L.; Awyoung, Adelbert; Choquette, Kent D.

    1999-01-01

    A vertical-cavity surface-emitting laser device. The vertical-cavity surface-emitting laser (VCSEL) device comprises one or more VCSELs with each VCSEL having a mode-control region thereabout, with the mode-control region forming an optical cavity with an effective cavity length different from the effective cavity length within each VCSEL. Embodiments of the present invention can be formed as single VCSELs and as one- or two-dimensional arrays of VCSELs, with either an index-guided mode of operation or an index anti-guided mode of operation being defined by a sign of the difference in the two effective cavity lengths.

  4. Electrically injected visible vertical cavity surface emitting laser diodes

    DOEpatents

    Schneider, Richard P.; Lott, James A.

    1994-01-01

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors.

  5. Electrically injected visible vertical cavity surface emitting laser diodes

    DOEpatents

    Schneider, R.P.; Lott, J.A.

    1994-09-27

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

  6. Vertical-cavity surface-emitting laser device

    DOEpatents

    Hadley, G.R.; Lear, K.L.; Awyoung, A.; Choquette, K.D.

    1999-05-11

    A vertical-cavity surface-emitting laser device is disclosed. The vertical-cavity surface-emitting laser (VCSEL) device comprises one or more VCSELs with each VCSEL having a mode-control region thereabout, with the mode-control region forming an optical cavity with an effective cavity length different from the effective cavity length within each VCSEL. Embodiments of the present invention can be formed as single VCSELs and as one- or two-dimensional arrays of VCSELs, with either an index-guided mode of operation or an index anti-guided mode of operation being defined by a sign of the difference in the two effective cavity lengths. 10 figs.

  7. Analysis and Design of Vertical Cavity Surface Emitting Lasers

    NASA Astrophysics Data System (ADS)

    Yu, S. F.

    2003-08-01

    A practical, hands-on guidebook for the efficient modeling of VCSELs Vertical Cavity Surface Emitting Lasers (VCSELs) are a unique type of semiconductor laser whose optical output is vertically emitted from the surface as opposed to conventional edge-emitting semiconductor lasers. Complex in design and expensive to produce, VCSELs nevertheless represent an already widely used laser technology that promises to have even more significant applications in the future. Although the research has accelerated, there have been relatively few books written on this important topic. Analysis and Design of Vertical Cavity Surface Emitting Lasers seeks to encapsulate this growing body of knowledge into a single, comprehensive reference that will be of equal value for both professionals and academics in the field. The author, a recognized expert in the field of VCSELs, attempts to clarify often conflicting assumptions in order to help readers achieve the simplest and most efficient VCSEL models for any given problem. Highlights of the text include: * A clear and comprehensive theoretical treatment of VCSELs * Detailed derivations for understanding the operational principles of VCSELs * Mathematical models for the investigation of electrical, optical, and thermal properties of VCSELs * Case studies on the mathematical modeling of VCSELs and the implementation of simulation programs

  8. Reliability of vertical-cavity lasers at Hewlett-Packard

    NASA Astrophysics Data System (ADS)

    Herrick, Robert W.; Lei, Chun; Keever, Mark R.; Lim, Sui F.; Deng, Hongyu; Dudley, Jim J.; Bhagat, Jay K.

    1999-04-01

    Vertical-Cavity Surface-Emitting Lasers (VCSELs) have rapidly been adopted for use in data communications modules due largely to the improvement in reliability over that of competing compact disc lasers. While very long mean lifetimes for VCSELs have been published elsewhere (> 5 X 106 h MTTF at 40C), telecommunications switching applications require further reduction in the early failure rate to meet targets of < 0.5% failures over 25 years at 50 - 70 degree(s)C. Therefore, a extensive reliability program is needed to measure both the wear-out lifetime and the random failure rate of the devices. The results of accelerated life tests will be presented, and we will discuss the methodology used to estimate the failure rate. Models of current and thermal acceleration will be presented. Degradation mechanisms observed in HP lasers will be briefly discussed. We also present preliminary results from HP oxide-aperture VCSELs.

  9. Oxide-Confined Vertical-Cavity Surface-Emitting Lasers

    NASA Astrophysics Data System (ADS)

    Liu, W. L.; Li, L.; Zhong, J. C.; Zhao, Y. J.; Zeng, L. N.; Yan, C. L.

    Novel distributed Bragg reflectors (DBRs) with 6-pair-GaAs/AlAs short period superlattice for the oxide-confined vertical-cavity surface-emitting lasers (VCSEL) are designed. They are for the VCSEL that emits at 840 nm and is grown with 34-period n-type mirrors, three-quantum-well active region, and 22-period p-type mirrors. In addition, a 35-nm-layer of Al0.98Ga0.02As was inserted in the top mirrors for being selectively oxidized. The maximum output power is more than 2 mW with low threshold current of about 2 mA. The fact that the device's threshold current in both CW and pulsed operation depends slightly on the operation temperature shows its higher characteristic temperature (T0).

  10. Epitaxial approaches to long-wavelength vertical-cavity lasers

    NASA Astrophysics Data System (ADS)

    Hall, Eric Michael

    The success of short-wavelength (850 nm) vertical-cavity surface-emitting lasers (VCSELs) as low-cost components in fiber optic networks has created a strong demand for similar low-cost devices at longer wavelengths (1.3--1.55mum), which are even more important in telecommunications systems. Extending the success of VCSELs to these longer wavelengths, however, has been slowed by the absence of a mature technology that incorporates all of the necessary components on one substrate without sacrificing the inexpensive and manufacturable nature of VCSELs. Although InAlGaAs active regions on InP substrates have been developed extensively, the other components of vertical-cavity lasers, especially epitaxially-grown distributed Bragg reflectors (DBRs), are less mature on these substrates. This thesis examines the materials and technologies that enable long-wavelength VCSELs to be grown in a single, epitaxial, lattice-matched step on InP substrates. The advantages and shortcomings of each material system are identified and the impact on devices examined. Additionally, processing technologies that rely on the properties of these materials are developed. From these studies, a InP-based, lattice-matched VCSEL design is presented that utilizes AlGaAsSb for high reflectivity DBRs, InAlGaAs for high quality active regions, InP for heat and current spreading, and a materials selective etch for electrical and optical confinement. In short, the design avoids the shortcomings of each material system while emphasizing the advantages. The resulting devices, showing low threshold currents, high efficiencies and powers, and high operating temperatures, not only validate this approach but demonstrate that such lattice-matched, InP-based devices may be a low-cost, manufacturable answer to this long-wavelength VCSEL demand.

  11. Time-dependent numerical simulation of vertical cavity lasers

    SciTech Connect

    Thode, L.E.; Csanak, G.; So, L.L.; Kwan, T.J.T.; Campbell, M.

    1994-12-31

    To simulate vertical cavity surface emitting lasers (VCSELs), the authors are developing a three-dimensional, time-dependent field-gain model with absorption in bulk dielectric regions and gain in quantum well regions. Since the laser linewidth is narrow, the bulk absorption coefficient is assumed to be independent of frequency with a value determined by the material and the lattice temperature. In contrast, the frequency-dependent gain regions must be solved consistently in the time domain. Treatment of frequency-dependent media in a finite-difference time-domain code is computationally intensive. However, because the volume of the quantum well regions is small relative to the volume of the multilayer dielectric (MLD) mirror regions, the computational overhead is reasonable. A key issue is the calculation of the fields in the MLD mirror regions. Although computationally intensive, good agreement has been obtained between simulation results and matrix equation solutions for the reflection coefficient, transmission coefficient, and bandwidth of MLD mirrors. The authors discuss the development and testing of the two-dimensional field-gain model. This field-gain model will be integrated with a carrier transport model to form the self-consistent laser code, VCSEL.

  12. Visible light emitting vertical cavity surface emitting lasers

    DOEpatents

    Bryan, R.P.; Olbright, G.R.; Lott, J.A.; Schneider, R.P. Jr.

    1995-06-27

    A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of {lambda}/2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In{sub z}(Al{sub y}Ga{sub 1{minus}y}){sub 1{minus}z}P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m {lambda}/2n{sub eff} where m is an integer and n{sub eff} is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of {lambda}/n, typically within the green to red portion of the visible spectrum. 10 figs.

  13. Visible light emitting vertical cavity surface emitting lasers

    DOEpatents

    Bryan, Robert P.; Olbright, Gregory R.; Lott, James A.; Schneider, Jr., Richard P.

    1995-01-01

    A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of .lambda./2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In.sub.z (Al.sub.y Ga.sub.1-y).sub.1-z P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m .lambda./2n.sub.eff where m is an integer and n.sub.eff is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of .lambda./n, typically within the green to red portion of the visible spectrum.

  14. Red vertical cavity surface emitting lasers (VCSELs) for consumer applications

    NASA Astrophysics Data System (ADS)

    Duggan, Geoffrey; Barrow, David A.; Calvert, Tim; Maute, Markus; Hung, Vincent; McGarvey, Brian; Lambkin, John D.; Wipiejewski, Torsten

    2008-02-01

    There are many potential applications of visible, red (650nm - 690nm) vertical cavity surface emitting lasers (VCSELs) including high speed (Gb) communications using plastic optical fiber (POF), laser mouse sensors, metrology, position sensing. Uncertainty regarding the reliability of red VCSELs has long been perceived as the most significant roadblock to their commercialization. In this paper we will present data on red VCSELs optimized for performance and reliability that will allow exploitation of this class of VCSEL in a wide range of high volume consumer, communication and medical applications. VCSELs operating at ~665nm have been fabricated on 4" GaAs substrates using MOCVD as the growth process and using standard VCSEL processing technology. The active region is AlGaInP-based and the DBR mirrors are made from AlGaAs. Threshold currents are typically less than 2mA, the devices operate up to >60C and the light output is polarized in a stable, linear characteristic over all normal operating conditions. The 3dB modulation bandwidth of the devices is in excess of 3GHz and we have demonstrated the operation of a transceiver module operating at 1.25Gb/s over both SI-POF and GI-POF. Ageing experiments carried out using a matrix of current and temperature stress conditions allows us to estimate that the time to failure of 1% of devices (TT1%F) is over 200,000h for reasonable use conditions - making these red VCSELs ready for commercial exploitation in a variety of consumer-type applications. Experiments using appropriate pulsed driving conditions have resulted in operation of 665nm VCSELs at a temperature of 85°C whilst still offering powers useable for eye-safe free space and POF communications.

  15. Vertical-cavity surface-emitting lasers: present and future

    NASA Astrophysics Data System (ADS)

    Morgan, Robert A.

    1997-04-01

    This manuscript reviews the present status of 'commercial- grade,' state-of-the-art planar, batch-fabricable, vertical- cavity surface-emitting lasers (VCSELs). Commercial-grade performance on all fronts for high-speed data communications is clearly established. In discussing the 'present,' we focus on the entrenched proton-implanted AlGaAs-based (emitting near 850 nm) technology. Renditions of this VCSEL design exist in commercial products and have enabled numerous application demonstrations. Our designs more than adequately meet producibility, performance, and robustness stipulations. Producibility milestones include greater than 99% device yield across 3-in-dia metal-organic vapor phase epitaxy (MOVPE)-grown wafers and wavelength operation across greater than 100-nm range. Progress in performance includes the elimination of the excessive voltage-drop that plagued VCSELs as recently as 2 to 3 years ago. Threshold voltages as low as Vth equals 1.53 V (and routinely less than 1.6 V) are now commonplace. Submilliamp threshold currents (Ith equals 0.68 mA) have even been demonstrated with this planar structure. Moreover, continuous wave (cw) power Pcw greater than 59 mW and respectable wall-plug efficiencies ((eta) wp equals 28%) have been demonstrated. VCSEL robustness is evidenced by maximum cw lasing temperature T equals 200 degrees Celsius and temperature ranges of 10 K to 400 K and minus 55 degrees Celsius to 155 degrees Celsius on a single VCSEL. These characteristics should enable great advances in VCSEL-based technologies and beckon the notion that 'commercial-grade' VCSELs are viable in cryogenic and avionics/military environments. We also discuss what the future may hold in extensions of this platform to different wavelengths, increased integration, and advanced structures. This includes low-threshold, high- speed, single-mode VCSELs, hybrid VCSEL transceivers, and self-pulsating VCSELs.

  16. Integration of photoactive and electroactive components with vertical cavity surface emitting lasers

    DOEpatents

    Bryan, R.P.; Esherick, P.; Jewell, J.L.; Lear, K.L.; Olbright, G.R.

    1997-04-29

    A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications. 9 figs.

  17. Integration of photoactive and electroactive components with vertical cavity surface emitting lasers

    DOEpatents

    Bryan, Robert P.; Esherick, Peter; Jewell, Jack L.; Lear, Kevin L.; Olbright, Gregory R.

    1997-01-01

    A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications.

  18. III-Nitride Vertical-Cavity Surface-Emitting Lasers

    NASA Astrophysics Data System (ADS)

    Leonard, John T.

    Vertical-cavity surface-emitting lasers (VCSELs) have a long history of development in GaAs-based and InP-based systems, however III-nitride VCSELs research is still in its infancy. Yet, over the past several years we have made dramatic improvements in the lasing characteristics of these highly complex devices. Specifically, we have reduced the threshold current density from ˜100 kA/cm2 to ˜3 kA/cm2, while simultaneously increasing the output power from ˜10 muW to ˜550 muW. These developments have primarily come about by focusing on the aperture design and intracavity contact design for flip-chip dual dielectric DBR III-nitride VCSELs. We have carried out a number of studies developing an Al ion implanted aperture (IIA) and photoelectrochemically etched aperture (PECA), while simultaneously improving the quality of tin-doped indium oxide (ITO) intracavity contacts, and demonstrating the first III-nitride VCSEL with an n-GaN tunnel junction intracavity contact. Beyond these most notable research fronts, we have analyzed numerous other parameters, including epitaxial growth, flip-chip bonding, substrate removal, and more, bringing further improvement to III-nitride VCSEL performance and yield. This thesis aims to give a comprehensive discussion of the relevant underlying concepts for nonpolar VCSELs, while detailing our specific experimental advances. In Section 1, we give an overview of the applications of VCSELs generally, before describing some of the potential applications for III-nitride VCSELs. This is followed by a summary of the different material systems used to fabricate VCSELs, before going into detail on the basic design principles for developing III-nitride VCSELs. In Section 2, we outline the basic process and geometry for fabricating flip-chip nonpolar VCSELs with different aperture and intracavity contact designs. Finally, in Section 3 and 4, we delve into the experimental results achieved in the last several years, beginning with a discussion on

  19. Coupled-resonator vertical-cavity lasers with two active gain regions

    DOEpatents

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-05-20

    A new class of coupled-resonator vertical-cavity semiconductor lasers has been developed. These lasers have multiple resonant cavities containing regions of active laser media, resulting in a multi-terminal laser component with a wide range of novel properties.

  20. Transverse Mode Dynamics and Ultrafast Modulation of Vertical-Cavity Surface-Emitting Lasers

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We show that multiple transverse mode dynamics of VCSELs (Vertical-Cavity Surface-Emitting Lasers) can be utilized to generate ultrafast intensity modulation at a frequency over 100 GHz, much higher than the relaxation oscillation frequency. Such multimode beating can be greatly enhanced by taking laser output from part of the output facet.

  1. Optical glucose monitoring using vertical cavity surface emitting lasers (VCSELs)

    NASA Astrophysics Data System (ADS)

    Talebi Fard, Sahba; Hofmann, Werner; Talebi Fard, Pouria; Kwok, Ezra; Amann, Markus-Christian; Chrostowski, Lukas

    2009-08-01

    Diabetes Mellitus is a common chronic disease that has become a public health issue. Continuous glucose monitoring improves patient health by stabilizing the glucose levels. Optical methods are one of the painless and promising methods that can be used for blood glucose predictions. However, having accuracies lower than what is acceptable clinically has been a major concern. Using lasers along with multivariate techniques such as Partial Least Square (PLS) can improve glucose predictions. This research involves investigations for developing a novel optical system for accurate glucose predictions, which leads to the development of a small, low power, implantable optical sensor for diabetes patients.

  2. Dynamic Range of Vertical Cavity Surface Emitting Lasers in Multimode Links

    SciTech Connect

    Lee, H.L.T.; Dalal, R.V.; Ram, R.J.; Choquette, K.D.

    1999-07-07

    The authors report spurious free dynamic range measurements of 850nm vertical cavity surface emitting lasers in short multimode links for radio frequency communication. For a 27m fiber link, the dynamic range at optimal bias was greater than 95dB-Hz{sup 2/3} for modulation frequencies between 1 and 5.5 GHz, which exceeds the requirements for antenna remoting in microcellular networks. In a free space link, they have measured the highest dynamic range in an 850nm vertical cavity surface emitting laser of 113dB-Hz{sup 2/3} at 900MHz. We have also investigated the effects of modal noise and differential mode delay on the dynamic range for longer lengths of fiber.

  3. Effective index model predicts modal frequencies of vertical-cavity lasers

    SciTech Connect

    SERKLAND,DARWIN K.; HADLEY,G. RONALD; CHOQUETTE,KENT D.; GEIB,KENT M.; ALLERMAN,ANDREW A.

    2000-04-18

    Previously, an effective index optical model was introduced for the analysis of lateral waveguiding effects in vertical-cavity surface-emitting lasers. The authors show that the resultant transverse equation is almost identical to the one typically obtained in the analysis of dielectric waveguide problems, such as a step-index optical fiber. The solution to the transverse equation yields the lateral dependence of the optical field and, as is recognized in this paper, the discrete frequencies of the microcavity modes. As an example, they apply this technique to the analysis of vertical-cavity lasers that contain thin-oxide apertures. The model intuitively explains the experimental data and makes quantitative predictions in good agreement with a highly accurate numerical model.

  4. Red vertical-cavity surface-emitting lasers grown by solid-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Saarinen, M.; Xiang, N.; Vilokkinen, V.; Melanen, P.; Orsila, S.; Uusimaa, P.; Savolainen, P.; Toivonen, M.; Pessa, M.

    2001-07-01

    Plastic optical fibres, which have a local attenuation minimum at 650 nm, have attracted much interest for low-cost short-haul communication systems. Red vertical-cavity surface-emitting lasers (VCSELs) provide a potential solution as light sources for these systems. The operation of vertical cavity emitters is based on a Fabry-Perot microcavity, which is formed by placing an optically active region inside of two parallel mirrors. These mirrors are usually formed epitaxially. So far, metal organic chemical vapour deposition (MOCVD) has been the major technology used for growing visible VCSELs. Recently, an alternative growth method—solid-source molecular beam epitaxy (SSMBE)—has been introduced to be a viable solution to the fabrication of these structures. The authors present the first MBE-grown visible AlGaInP vertical-cavity surface-emitting lasers. A laser with a 10 μm emitting window has an external quantum efficiency of 6.65% under continuous wave operation and it is still lasing at 45°C. Furthermore, a threshold current less than 1.0 mA is obtained for a device, which has an 8 μm emitting window.

  5. One way synchronization of polarization chaos from a solitary Vertical-Cavity Surface-Emitting Laser

    NASA Astrophysics Data System (ADS)

    Virte, Martin; Sciamanna, Marc; Thienpont, Hugo; Panajotov, Krassimir

    2016-04-01

    We investigate theoretically the synchronization properties of the polarization chaos dynamics generated by a free-running vertical-cavity surface-emitting laser (VCSEL). Here, we focus on a one-way master-slave configuration - or unidirectional coupling - with two chaotic VCSELs. The spin-flip model is used to model the two devices and derived to account for the coupling between them. We demonstrate that the chaotic dynamics generated by the two lasers can indeed synchronize in the proposed configuration. The synchronization appears to be of high quality as we obtain a high-level of similarity between the emission characteristics of the master and slave laser dynamics.

  6. Vector cavity solitons in broad area Vertical-Cavity Surface-Emitting Lasers

    PubMed Central

    Averlant, Etienne; Tlidi, Mustapha; Thienpont, Hugo; Ackemann, Thorsten; Panajotov, Krassimir

    2016-01-01

    We report the experimental observation of two-dimensional vector cavity solitons in a Vertical-Cavity Surface-Emitting Laser (VCSEL) under linearly polarized optical injection when varying optical injection linear polarization direction. The polarization of the cavity soliton is not the one of the optical injection as it acquires a distinct ellipticity. These experimental results are qualitatively reproduced by the spin-flip VCSEL model. Our findings open the road to polarization multiplexing when using cavity solitons in broad-area lasers as pixels in information technology. PMID:26847004

  7. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems

    SciTech Connect

    Hurtado, Antonio; Javaloyes, Julien

    2015-12-14

    Multiple controllable spiking patterns are achieved in a 1310 nm Vertical-Cavity Surface Emitting Laser (VCSEL) in response to induced perturbations and for two different cases of polarized optical injection, namely, parallel and orthogonal. Furthermore, reproducible spiking responses are demonstrated experimentally at sub-nanosecond speed resolution and with a controlled number of spikes fired. This work opens therefore exciting research avenues for the use of VCSELs in ultrafast neuromorphic photonic systems for non-traditional computing applications, such as all-optical binary-to-spiking format conversion and spiking information encoding.

  8. High-contrast grating reflectors for 980 nm vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Gebski, M.; Kuzior, O.; Wasiak, M.; Szerling, A.; Wójcik-Jedlińska, A.; Pałka, N.; Dems, M.; Xie, Y. Y.; Xu, Z. J.; Wang, Q. J.; Zhang, D. H.; Czyszanowski, T.

    2015-02-01

    This paper presents results of computer simulation of 1D monolithic high refractive index contrast grating (MHCG) reflector also called surface grating reflector (SGR). We analyzed optical properties of the GaAs reflector designed for 980 nm wavelength with respect to the grating parameters variation. We also determined the electric field patterns after reflection from the structure in several cases of parameters variation. We show that thanks to the scalability and design simplicity, proposed design is a promising candidate for simple, next generation vertical cavity surface emitting lasers emitting from ultra-violet to infrared.

  9. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-03-14

    The authors report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, they can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%. 4 figs.

  10. Mode selectivity study of vertical-cavity surface-emitting lasers

    SciTech Connect

    Liu, G.; Seurin, J.; Chuang, S.L.; Babic, D.I.; Corzine, S.W.; Tan, M.; Barnes, D.C.; Tiouririne, T.N.

    1998-08-01

    Mode selectivity of an air-post index-guided vertical-cavity surface-emitting laser structure operating at 1550 nm is investigated using a full-vector Maxwell-equation solver with a finite-difference time-domain method. The resonance wavelengths, quality factors, and spatial field distributions are calculated for the three lowest-order modes. Transverse-mode competition is quantitatively described as a function of the cavity size and the pillar etch depth. {copyright} {ital 1998 American Institute of Physics.}

  11. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.

  12. High power 808 nm vertical cavity surface emitting laser with multi-ring-shaped-aperture structure

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Shang, C. Y.; Feng, Y.; Yan, C. L.; Zhao, Y. J.; Wang, Y. X.; Wang, X. H.; Liu, G. J.

    2011-02-01

    The carrier conglomeration effect has been one of the main problems in developing electrically pumped high power vertical cavity surface emitting laser (VCSEL) with large aperture. We demonstrate a high power 808 nm VCSEL with multi-ring-shaped-aperture (MRSA) to weaken the carrier conglomeration effect. Compared with typical VCSEL with single large aperture (SLA), the 300-μm-diameter VCSEL with MRSA has more uniform near field and far field patterns. Moreover, MRSA laser exhibits maximal CW light output power 0.3 W which is about 3 times that of SLA laser. And the maximal wall-plug efficiency of 17.4% is achieved, higher than that of SLA laser by 10%.

  13. Optical Phased Array Antennas using Coupled Vertical Cavity Surface Emitting Lasers

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; Rojas, Roberto A.; Nessel, James A.; Miranda, Felix A.

    2007-01-01

    High data rate communication links are needed to meet the needs of NASA as well as other organizations to develop space-based optical communication systems. These systems must be robust to high radiation environments, reliable, and operate over a wide temperature range. Highly desirable features include beam steering capability, reconfigurability, low power consumption, and small aperture size. Optical communication links, using coupled vertical cavity surface emitting laser radiating elements are promising candidates for the transmit portion of these communication links. In this talk we describe a mission scenario, and how the antenna requirements are derived from the mission needs. We describe a potential architecture for this type of antenna, and outline the advantages and drawbacks of this approach relative to competing technologies. The technology we are proposing used coupled arrays of 1550 nm vertical cavity surface emitting lasers for transmission. The feasibility of coupling these arrays together, to form coherent high-power beams that can be modulated at data rates exceeding 1 Gbps, will be explored. We will propose an architecture that enables electronic beam steering, thus mitigating the need for ancillary acquisition, tracking and beam pointing equipment such as needed for current optical communicatin systems. The beam-steering capability we are proposing also opens the possibility of using this technology for inter-satellite communicatin links, and satellite-to-surface links.

  14. Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics

    SciTech Connect

    Torcini, Alessandro; Barland, Stephane; Giacomelli, Giovanni; Marin, Francesco

    2006-12-15

    The limits of applicability of the Lang-Kobayashi (LK) model for a semiconductor laser with optical feedback are analyzed. The model equations, equipped with realistic values of the parameters, are investigated below the solitary laser threshold where low-frequency fluctuations (LFF's) are usually observed. The numerical findings are compared with experimental data obtained for the selected polarization mode from a vertical cavity surface emitting laser (VCSEL) subject to polarization selective external feedback. The comparison reveals the bounds within which the dynamics of the LK model can be considered as realistic. In particular, it clearly demonstrates that the deterministic LK model, for realistic values of the linewidth enhancement factor {alpha}, reproduces the LFF's only as a transient dynamics towards one of the stationary modes with maximal gain. A reasonable reproduction of real data from VCSEL's can be obtained only by considering the noisy LK or alternatively deterministic LK model for extremely high {alpha} values.

  15. Birefringent vertical cavity surface-emitting lasers: toward high-speed spin-lasers

    NASA Astrophysics Data System (ADS)

    Gerhardt, Nils C.; Lindemann, Markus; Pusch, Tobias; Michalzik, Rainer; Hofmann, Martin R.

    2016-04-01

    Spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs) provide novel opportunities to overcome several limitations of conventional, purely charge-based semiconductor lasers. Presumably the highest potential lies in the spin-VCSEL's capability for ultrafast spin and polarization dynamics which can be significantly faster than the intensity dynamics in conventional devices. By injecting spin-polarized carriers, these coupled spin-photon dynamics can be controlled and utilized for high-speed applications. While relaxation oscillations provide insights in the speed and direct modulation bandwidth of conventional devices, resonance oscillations in the circular polarization degree step in for the spin and polarization dynamics in spin-VCSELs. These polarization oscillations can be generated using pulsed spin injection and achieve much higher frequencies than the conventional intensity relaxation oscillations in these devices. Furthermore polarization oscillations can be switched on and off and it is possible to generate short polarization pulses, which may represent an information unit in polarization-based optical communication. The frequency of polarization oscillations is mainly determined by the birefringence-induced mode splitting between both orthogonal linearly polarized laser modes. Thus the polarization modulation bandwidth of spin-VCSELs can be increased by adding a high amount of birefringence to the cavity, for example by incorporating mechanical strain. Using this technique, we could demonstrate tunable polarization oscillations from 10 to 40 GHz in AlGaAs-based 850nm VCSELs recently. Furthermore a birefringence-induced mode splitting of more than 250 GHz could be demonstrated experimentally. Provided that this potential for ultrafast dynamics can be fully exploited, birefringent spin-VCSELs are ideal devices for fast short-haul optical interconnects. In this paper we review our recent progress on polarization dynamics of birefringent spin

  16. Transverse-mode dynamics in vertical-cavity surface-emitting lasers with optical feedback

    SciTech Connect

    Torre, M.S.; Masoller, C.; Mandel, Paul

    2002-11-01

    We study the transverse-mode dynamics of vertical-cavity surface-emitting lasers with weak optical feedback. We use a model that takes into account the spatial dependence of the transverse modes and of two carrier density profiles, associated with confined carriers in the quantum well region of the laser and unconfined carriers in the barrier region. Optical feedback is included as in the Lang-Kobayashi model. We find that for adequate parameter values antiphase dynamics occurs. As the injection current varies, the antiphase dynamics is destroyed through a sequence of periodic mixed states leading to in-phase dynamics. In these mixed states there are time intervals in which the modes are in phase, followed by time intervals in which they are in antiphase. We study the origin of the antiphase dynamics, assessing the role of the different spatial profiles. We show that the competition between the different profiles leads to the observed antiphase behavior.

  17. Stable polarization self-modulation in vertical-cavity surface-emitting lasers

    SciTech Connect

    Li, H.; Hohl, A.; Gavrielides, A.; Hou, H.; Choquette, K.D.

    1998-05-01

    The characteristics of polarization self-modulation in a vertical-cavity surface-emitting laser (VCSEL) were studied for frequencies up to {approx}9 GHz both experimentally and theoretically. Polarization self-modulation was obtained by rotating the linearly polarized output of the VCSEL by 90{degree} and reinjecting it into the laser. Experimentally we simultaneously recorded time traces, optical and radio-frequency spectra. We found for increasing modulation frequencies that the output characteristics changed from square-wave to sinusoidal and the VCSEL system assumed new polarization eigenstates that are different from the free-running VCSEL eigenstates. We modeled polarization self-modulation as an interband process and found a good qualitative agreement between our experimental and numerical results. {copyright} {ital 1998 American Institute of Physics.}

  18. Commercial manufacturing of vertical-cavity surface-emitting laser arrays

    NASA Astrophysics Data System (ADS)

    Swirhun, Stan E.; Bryan, Robert P.; Fu, Winston S.; Quinn, William E.; Jewell, Jack L.; Olbright, Greg R.

    1994-06-01

    Optoelectronic integrated circuits based on arrays of vertical- cavity surface emitting lasers (VCSELs) are evolving into functional chips enhancing the performance of fiber optic networks, optical data storage, laser printing and scanning, visual displays, and optoelectronic computing and other systems. This evolution involves the development of advanced manufacturing technology germane to packaged arrays of VCSELs comprising micro- optic lens arrays and interface electronics. In this paper we describe Photonics Research's LASE-ARRAY commercial manufacturing efforts. Specifically we will discuss commercial manufacturing advancements in molecular beam epitaxial growth, full-wafer processing, interface electronics, microoptic lens arrays, packaging and implementation of statistical process control. Yield and reliability will also be discussed. Last we discuss emerging applications for the LASE-ARRAY technology.

  19. Vertical cavity surface emitting lasers emitting near 1.5 {mu}m with Sb-based reflectors

    SciTech Connect

    Blum, O.; Klem, J.F.; Vawter, G.A.

    1998-04-01

    We describe use of AlAsSb/AlGaAsSb lattice matched to InP for distributed Bragg reflectors. These structures are integral to several surface normal devices, in particular vertical cavity surface emitting lasers. The high refractive index ratio of these materials allows formation of a highly reflective mirror with relatively few mirror pairs. As a result, we have been able to show for the first time the 77K CW operation of an optically pumped, monolithic, all-epitaxial vertical cavity laser, emitting at 1.56 {mu}m.

  20. Progress and issues for high-speed vertical cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Lear, Kevin L.; Al-Omari, Ahmad N.

    2007-02-01

    Extrinsic electrical, thermal, and optical issues rather than intrinsic factors currently constrain the maximum bandwidth of directly modulated vertical cavity surface emitting lasers (VCSELs). Intrinsic limits based on resonance frequency, damping, and K-factor analysis are summarized. Previous reports are used to compare parasitic circuit values and electrical 3dB bandwidths and thermal resistances. A correlation between multimode operation and junction heating with bandwidth saturation is presented. The extrinsic factors motivate modified bottom-emitting structures with no electrical pads, small mesas, copper plated heatsinks, and uniform current injection. Selected results on high speed quantum well and quantum dot VCSELs at 850 nm, 980 nm, and 1070 nm are reviewed including small-signal 3dB frequencies up to 21.5 GHz and bit rates up to 30 Gb/s.

  1. Transient thermal imaging of a vertical cavity surface-emitting laser using thermoreflectance microscopy

    NASA Astrophysics Data System (ADS)

    Garcia, V. G.; Farzaneh, M.

    2016-01-01

    Thermal transient response at the surface of a Vertical Cavity Surface-emitting Laser (VCSEL) is measured under operating conditions using a thermoreflectance imaging technique. From the transient curve, a thermal time constant of (9.7 ± 0.5) μs is obtained for the device surface in response to a 40 μs heating pulse. A cross-plane thermal diffusivity of the order of 2 × 10-6 m2/s has been deduced from both the experimental data and heat transfer modeling. This reduced thermal diffusivity compared to the bulk is attributed to the enhanced phonon scattering at the boundaries of the VCSEL's multi-layered structure.

  2. Selective oxidization cavity confinement for low threshold vertical cavity transistor laser

    NASA Astrophysics Data System (ADS)

    Wu, M. K.; Liu, M.; Tan, F.; Feng, M.; Holonyak, N.

    2013-07-01

    Data are presented for a low threshold n-p-n vertical cavity transistor laser (VCTL) with improved cavity confinement by trench opening and selective oxidation. The oxide-confined VCTL with a 6.5 × 7.5 μm2 oxide aperture demonstrates a threshold base current of 1.6 mA and an optical power of 150 μW at IB = 3 mA operating at -80 °C due to the mismatch between the quantum well emission peak and the resonant cavity optical mode. The VCTL operation switching from spontaneous to coherent stimulated emission is clearly observed in optical output power L-VCE characteristics. The collector output IC-VCE characteristics demonstrate the VCTL can lase in transistor's forward-active mode with a collector current gain β = 0.48.

  3. Power dissipation in oxide-confined 980-nm vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Shi, Guo-Zhu; Guan, Bao-Lu; Li, Shuo; Wang, Qiang; Shen, Guang-Di

    2013-01-01

    We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a 16-μm oxide aperture. Optical power, voltage, and emission wavelength are measured in an ambient temperature range of 5 °C-80 °C. Measurements combined with an empirical model are used to analyse the power dissipation in the device and the physical mechanism contributing to the thermal rollover phenomenon in VCSEL. It is found that the carrier leakage induced self-heating in the active region and the Joule heating caused by the series resistance are the main sources of power dissipation. In addition, carrier leakage induced self-heating increases as the injection current increases, resulting in a rapid decrease of the internal quantum efficiency, which is a dominant contribution to the thermal rollover of the VCSEL at a larger current. Our study provides useful guidelines to design a 980-nm oxide-confined VCSEL for thermal performance enhancement.

  4. Comprehensive numerical model for cw vertical-cavity surface-emitting lasers

    SciTech Connect

    Hadley, G.R.; Lear, K.L.; Warren, M.E.; Choquette, K.D.; Scott, J.W.; Corzine, S.W.

    1995-03-01

    The authors present a comprehensive numerical model for vertical-cavity surface-emitting lasers that includes all major processes effecting cw operation of axisymmetric devices. In particular, the model includes a description of the 2D transport of electrons and holes through the cladding layers to the quantum well(s), diffusion and recombination processes of these carriers within the wells, the 2D transport of heat throughout the device, and a multi-lateral-mode effective index optical model. The optical gain acquired by photons traversing the quantum wells is computed including the effects of strained band structure and quantum confinement. They employ the model to predict the behavior of higher-order lateral modes in proton-implanted devices, and to provide an understanding of index-guiding in devices fabricated using selective oxidation.

  5. Vertical cavity surface emitting laser based optoelectronic asynchronous transfer mode switch

    SciTech Connect

    Wilmsen, C.W.; Duan, C.; Collington, J.R.; Dames, M.P.; Crossland, W.A.

    1999-07-01

    Large broadband asynchronous transfer mode (ATM) switching nodes require novel hardware solutions that could benefit from the inclusion of optical interconnect technology, since electronic solutions are limited by pin out and by the capacitance/inductance of the interconnections. We propose, analyze and demonstrate a new three stage free space optical switch that utilizes vertical cavity surface emitting lasers (VCSELs) for the optical interconnections, a liquid crystal spatial light modulator (SLM) as a reconfigurable shutter and relatively simple optics for fan out and fan in. A custom complementary metal oxide semiconductor (CMOS) chip is required to introduce a time delay in the optical bit stream and to drive the VCSELs. Analysis shows that the switch should be scalable to 1024{times}1024, which would require 2048 {approximately}2 mW VCSELs. {copyright} {ital 1999 Society of Photo-Optical Instrumentation Engineers.}

  6. Radiation resistance of GaAs-GaAlAs vertical cavity surface emitting lasers

    SciTech Connect

    Jabbour, J.; Zazoui, M.; Sun, G.C.; Bourgoin, J.C.; Gilard, O.

    2005-02-15

    The variations of the optical and electrical characteristics of a vertical cavity surface emitting laser based on GaAs quantum wells have been monitored versus irradiation with 1 MeV electrons. The results are understood by the introduction of nonradiative recombination centers in the wells whose characteristics, capture cross section for minority carriers times their introduction rate, can be determined. A similar study performed for proton irradiation shows that the results can be explained in the same way when the introduction rate of the defects is replaced by the proton energy loss into atomic collisions. These results allow us to deduce the equivalence between electron and proton irradiations: A flux of 1 proton cm{sup -2} which loses an energy E{sub nl} (eV) into atomic collisions is equivalent to a fluence of about 9x10{sup -2} E{sub nl} cm{sup -2}, 1 MeV electrons.

  7. Photonic crystal heterostructures based on vertical-cavity surface-emitting laser arrays

    NASA Astrophysics Data System (ADS)

    Lundeberg, Lars D. A.; Boiko, Dmitri L.; Kapon, Eli

    The design and analysis of phase-coupled arrays of vertical-cavity surface-emitting lasers (VCSELs) can greatly profit from concepts related to photonic crystals (PhCs). VCSEL-arrays can be modeled as PhCs in which the refractive index varies periodically in the plane normal to the beam propagation direction. The relatively simple implementation of these structures via lithography techniques permits the exploration of complex PhC configurations and the realization of novel spatial-mode-controlled VCSEL array structures. We elaborate here the concept of VCSEL-based PhC heterostructures that permit the control of photonic envelope functions in novel and useful ways. In particular, we discuss envelope function confinement, coupling and switching. Several such heterostructures, implemented using VCSEL arrays employing Bragg mirror patterning, are demonstrated and investigated experimentally.

  8. Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: Theory and experiment

    SciTech Connect

    Nagler, Bob; Peeters, Michael; Albert, Jan; Verschaffelt, Guy; Panajotov, Krassimir; Thienpont, Hugo; Veretennicoff, Irina; Danckaert, Jan; Barbay, Sylvain; Giacomelli, Giovanni; Marin, Francesco

    2003-07-01

    In this paper, we present a theoretical and experimental analysis of stochastic effects observed in polarization switching vertical-cavity surface-emitting lasers. We make a thorough comparison between theoretical predictions and experiments, comparing measured quasipotentials and dwell times. The correspondence between our theoretical model based on stochastic intensity rate equations and the experiments is found to be very good.

  9. Flip-chip bonding of vertical-cavity surface-emitting lasers using laser-induced forward transfer

    SciTech Connect

    Kaur, K. S. Missinne, J.; Van Steenberge, G.

    2014-02-10

    This letter reports the use of the Laser-Induced Forward Transfer (LIFT) technique for the fabrication of indium micro-bumps for the flip-chip (FC) bonding of single vertical-cavity surface-emitting laser chips. The FC bonded chips were electrically and optically characterized, and the successful functioning of the devices post-bonding is demonstrated. The die shear and life-time tests carried out on the bonded chips confirmed the mechanical reliability of the LIFT-assisted FC bonded assemblies.

  10. Flip-chip bonding of vertical-cavity surface-emitting lasers using laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Kaur, K. S.; Missinne, J.; Van Steenberge, G.

    2014-02-01

    This letter reports the use of the Laser-Induced Forward Transfer (LIFT) technique for the fabrication of indium micro-bumps for the flip-chip (FC) bonding of single vertical-cavity surface-emitting laser chips. The FC bonded chips were electrically and optically characterized, and the successful functioning of the devices post-bonding is demonstrated. The die shear and life-time tests carried out on the bonded chips confirmed the mechanical reliability of the LIFT-assisted FC bonded assemblies.

  11. High reflectivity III-nitride UV-C distributed Bragg reflectors for vertical cavity emitting lasers

    NASA Astrophysics Data System (ADS)

    Franke, A.; Hoffmann, M. P.; Kirste, R.; Bobea, M.; Tweedie, J.; Kaess, F.; Gerhold, M.; Collazo, R.; Sitar, Z.

    2016-10-01

    UV-C distributed Bragg reflectors (DBRs) for vertical cavity surface emitting laser applications and polariton lasers are presented. The structural integrity of up to 25 layer pairs of AlN/Al0.65Ga0.35N DBRs is maintained by balancing the tensile and compressive strain present between the single layers of the multilayer stack grown on top of an Al0.85Ga0.35N template. By comparing the structural and optical properties for DBRs grown on low dislocation density AlN and AlGaN templates, the criteria for plastic relaxation by cracking thick nitride Bragg reflectors are deduced. The critical thickness is found to be limited mainly by the accumulated strain energy during the DBR growth and is only negligibly affected by the dislocations. A reflectance of 97.7% at 273 nm is demonstrated. The demonstrated optical quality and an ability to tune the resonance wavelength of our resonators and microcavity structures open new opportunities for UV-C vertical emitters.

  12. Energy-efficiency of optical network units with vertical-cavity surface-emitting lasers.

    PubMed

    Wong, Elaine; Mueller, Michael; Dias, Maluge P I; Chan, Chien Aun; Amann, Markus C

    2012-07-01

    The energy savings of 10 Gbps vertical-cavity surface-emitting lasers (VCSELs) for use in energy-efficient optical network units (ONUs) is critically examined in this work. We experimentally characterize and analytically show that the fast settling time and low power consumption during active and power-saving modes allow the VCSEL-ONU to achieve significant energy savings over the distributed feedback laser (DFB) based ONU. The power consumption per customer using VCSEL-ONUs and DFB-ONUs, is compared through an illustrative example of 10G-EPON for Video-on-Demand delivery. Using energy consumption models and numerical analyses in sleep and doze mode operations, we present an impact study of network and protocol parameters, e.g. polling cycle time, network load, and upstream access scheme used, on the achievable energy savings of VCSEL-ONUs over DFB-ONUs. Guidance on the specific power-saving mode to maximum energy savings throughout the day, is also presented. PMID:22772191

  13. Transverse and polarization effects in index-guided vertical-cavity surface-emitting lasers

    SciTech Connect

    Torre, M. S.; Masoller, C.; Mandel, Paul

    2006-10-15

    We study numerically the polarization dynamics of vertical-cavity surface-emitting lasers (VCSEL's) operating in the fundamental transverse mode. We use an extension of the spin-flip model that not only accounts for the vector nature of the laser field, but also considers spatial transverse effects. The model assumes two orthogonal, linearly polarized fields, which are coupled to two carrier populations, associated with different spin sublevels of the conduction and valence bands in the quantum-well active region. Spatial effects are taken into account by considering transverse profiles for the two polarizations, for the two carrier populations, and for the carrier diffusion. The optical profile is the LP{sub 01} mode, suitable for describing index-guided VCSEL's with cylindrical symmetry emitting on the fundamental transverse mode for both polarizations. We find that in small-active-region VCSEL's, fast carrier diffusion induces self-sustained oscillations of the total laser output, which are not present in larger-area devices or with slow carrier diffusion. These self-pulsations appear close to threshold, and, as the injection current increases, they grow in amplitude; however, there is saturation and the self-pulsations disappear at higher injection levels. The dependence of the oscillation amplitude on various laser parameters is investigated, and the results are found to be in good qualitative agreement with those reported by Van der Sande et al. [Opt. Lett. 29, 53 (2004)], based on a rate-equation model that takes into account transverse inhomogeneities through an intensity-dependent confinement factor.

  14. Complexity of chaos in three cascaded vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Hong, Yanhua; Quirce, Ana; Wang, Bingjie; Panajotov, Krassimir; Spencer, Paul S.

    2016-04-01

    The complexity of chaos generated in two systems has been studied experimentally. The complexity of the chaos is quantified by calculating average normalized permutation entropy (HS(P)). In the first system, a chaotic output from a master laser (ML) is injected into a CW slave laser (SL). The results show that the complexity of chaos generated in the SL decreases with absolute value of the frequency detuning Δf1, which means the complexity of the chaos is compromised with enhancing the bandwidth, as Δf1 is increased. The second system comprises three vertical-cavity surface-emitting lasers (VCSELs); the first VCSEL (used as ML) was rendered chaotic by optical feedback, the second VCSEL is used as intermediate laser (IL), which is rendered chaotic when it is subject to optical injection from the chaotic ML and the third VCSEL is used as a SL and is a subject of optical injection from the chaotic IL, thus entering chaotic dynamics. In this three-VCSEL system, small, intermediate and wide bandwidths of the injecting chaos signals, have been used to study the effect of the bandwidth of the injecting chaos on the complexity of chaos generated in the SL. The results show that the bandwidth of the chaotic injection beam does not impact the complexity of the chaos generated in the SL for positive frequency detuning; however, for large negative frequency detuning, the complexity of the chaos in the SL has been reduced significantly for the intermediate and lower bandwidth of the chaotic injection beam.

  15. Al-based thermal oxides in vertical cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Liliental-Weber, Zuzanna; Ruvimov, S.; Swider, W.; Washburn, Jack; Li, Meng; Li, Gabriel S.; Chang-Hasnain, Constance J.; Weber, Eicke R.

    1997-01-01

    The microstructure of wet oxidized layers for vertical cavity surface emitting lasers (VCSELS) was studied by transmission electron microscopy. These oxides were formed by reaction of AlxGa1-xAs(x approximately equals 0 - 0.2) with water vapor at elevated temperatures (approximately 400 - 450 degrees Celsius). Due to the excellent carrier confinement provided by the oxidized layer, VCSELS have very low threshold currents and high efficiencies. This study revealed the accumulation of excess As at the interfaces with the oxidized layers and occasionally at the sample surface. To avoid this As accumulation on the sample surface, GaInP layers were grown on top of AlGaAs/GaAs layers. In this case no As was found at the layer surface. In addition, substantial shrinkage was found after oxidation, and the formation of large pores at the interface between the oxide and the high Al content layer, which might be detrimental for the device performance. The dependence of the oxide and interface quality on the composition of the oxidized layers, oxidation time and temperature are discussed in relation to the optical quality of VCSELs.

  16. Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform.

    PubMed

    McPolin, Cillian P T; Bouillard, Jean-Sebastien; Vilain, Sebastien; Krasavin, Alexey V; Dickson, Wayne; O'Connor, Daniel; Wurtz, Gregory A; Justice, John; Corbett, Brian; Zayats, Anatoly V

    2016-01-01

    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices. PMID:27491686

  17. Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

    NASA Astrophysics Data System (ADS)

    McPolin, Cillian P. T.; Bouillard, Jean-Sebastien; Vilain, Sebastien; Krasavin, Alexey V.; Dickson, Wayne; O'Connor, Daniel; Wurtz, Gregory A.; Justice, John; Corbett, Brian; Zayats, Anatoly V.

    2016-08-01

    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices.

  18. Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

    PubMed Central

    McPolin, Cillian P. T.; Bouillard, Jean-Sebastien; Vilain, Sebastien; Krasavin, Alexey V.; Dickson, Wayne; O'Connor, Daniel; Wurtz, Gregory A.; Justice, John; Corbett, Brian; Zayats, Anatoly V.

    2016-01-01

    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices. PMID:27491686

  19. Efficient vertical-cavity surface-emitting lasers for infrared illumination applications

    NASA Astrophysics Data System (ADS)

    Seurin, Jean-Francois; Xu, Guoyang; Guo, Baiming; Miglo, Alexander; Wang, Qing; Pradhan, Prachi; Wynn, James D.; Khalfin, Viktor; Zou, Wei-Xiong; Ghosh, Chuni; Van Leeuwen, Robert

    2011-03-01

    Infrared illumination is used in the commercial and defense markets for surveillance and security, for high-speed imaging, and for military covert operations. Vertical-cavity surface-emitting lasers (VCSELs) are an attractive candidate for IR illumination applications as they offer advantageous properties such as efficiency, intrinsically low diverging circular beam, low-cost manufacturing, narrow emission spectrum, and high reliability. VCSELs can also operate at high temperatures, thereby meeting the harsh environmental requirements of many illuminators. The efficiency and brightness of these VCSELs also reduce the requirements of the power supply compared to, for example, an LED approach. We present results on VCSEL arrays for illumination applications, as well as results on VCSEL-based illumination experiments. These VCSELs are used in illuminators emitting from a few Watts up to several hundred Watts. The emission of these VCSEL-based illuminators is speckle-free with no interference patterns. Infra-red illumination at up to 1,600ft (500m) from the source has been demonstrated using VCSEL-based illumination, without any optics.

  20. Vertical cavity surface emitting laser-based smart pixels with coplanar bump-bonded contacts

    NASA Astrophysics Data System (ADS)

    Jurrat, Randy; Pu, Rui; Hayes, Eric M.; Pulver, Daryl; Feld, Stewart A.; Wilmsen, Carl W.

    1996-11-01

    Integration of vertical cavity surface emitting lasers (VCSELs) onto a prefabricated smart pixel chip introduces fabrication problems since they can not be grown on foundry fabricated Si CMOS or GaAs MESFET circuit. This paper presents an approach to flip-chip bump-bonding VCSEL-arrays to a pixel chip in which each VCSEL is bonding directly to the appropriate pixel circuit. Thus, no added area is required and the interconnect capacitance is held to a minimum. The technique requires contacting both the n- and p-mirror of the VCSEL on the same side of the VCSEL chip and in the same plane. This allows bump bonding both contacts to the pixel chip and subsequent removal of the VCSEL chip substrate. The steps required to accomplish the VCSEL coplanar bonding include reactive ion etching of mesas and device separation in BCL3/Cl, electroplating a 4.5 micrometers high gold coplanar contact post, In/Sn alloy solder deposition, bonding to the smart pixel chip, and accurate alignment of the VCSEL and pixel chips, epoxy underfill and at last substrate removal.

  1. Temperature-insensitive vertical-cavity surface-emitting lasers and method for fabrication thereof

    DOEpatents

    Chow, W.W.; Choquette, K.D.; Gourley, P.L.

    1998-01-27

    A temperature-insensitive vertical-cavity surface-emitting laser (VCSEL) and method for fabrication thereof are disclosed. The temperature-insensitive VCSEL comprises a quantum-well active region within a resonant cavity, the active region having a gain spectrum with a high-order subband (n {>=} 2) contribution thereto for broadening and flattening the gain spectrum, thereby substantially reducing any variation in operating characteristics of the VCSEL over a temperature range of interest. The method for forming the temperature-insensitive VCSEL comprises the steps of providing a substrate and forming a plurality of layers thereon for providing first and second distributed Bragg reflector (DBR) mirror stacks with an active region sandwiched therebetween, the active region including at least one quantum-well layer providing a gain spectrum having a high-order subband (n {>=} 2) gain contribution, and the DBR mirror stacks having predetermined layer compositions and thicknesses for providing a cavity resonance within a predetermined wavelength range substantially overlapping the gain spectrum. 12 figs.

  2. Temperature-insensitive vertical-cavity surface-emitting lasers and method for fabrication thereof

    DOEpatents

    Chow, Weng W.; Choquette, Kent D.; Gourley, Paul L.

    1998-01-01

    A temperature-insensitive vertical-cavity surface-emitting laser (VCSEL) and method for fabrication thereof. The temperature-insensitive VCSEL comprises a quantum-well active region within a resonant cavity, the active region having a gain spectrum with a high-order subband (n.gtoreq.2) contribution thereto for broadening and flattening the gain spectrum, thereby substantially reducing any variation in operating characteristics of the VCSEL over a temperature range of interest. The method for forming the temperature-insensitive VCSEL comprises the steps of providing a substrate and forming a plurality of layers thereon for providing first and second distributed Bragg reflector (DBR) mirror stacks with an active region sandwiched therebetween, the active region including at least one quantum-well layer providing a gain spectrum having a high-order subband (n.gtoreq.2) gain contribution, and the DBR mirror stacks having predetermined layer compositions and thicknesses for providing a cavity resonance within a predetermined wavelength range substantially overlapping the gain spectrum.

  3. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Cohen, D. A.; Yonkee, B. P.; Farrell, R. M.; Margalith, T.; Lee, S.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-07-01

    We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3 nm quantum well width, 1 nm barriers, a 5 nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406 nm nonpolar VCSEL with a low threshold current density (˜16 kA/cm2), a peak output power of ˜12 μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.

  4. Frequency tuning of polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Lindemann, Markus; Pusch, Tobias; Michalzik, Rainer; Gerhardt, Nils C.; Hofmann, Martin R.

    2016-04-01

    Controlling the coupled spin-photon dynamics in vertical-cavity surface-emitting lasers (VCSELs) is an attractive opportunity to overcome the limitations of conventional, purely charge based semiconductor lasers. Such spin-controlled VCSELs (spin-VCSELs) offer several advantages, like reduced threshold, spin amplification and polarization control. Furthermore the coupling between carrier spin and light polarization bears the potential for ultrafast polarization dynamics. By injecting spin-polarized carriers, the complex polarization dynamics can be controlled and utilized for high-speed applications. Polarization oscillations as resonance oscillations of the coupled spin- photon system can be generated using pulsed spin injection, which can be much faster than the intensity dynamics in conventional devices. We already demonstrated that the oscillations can be switched in a controlled manner. These controllable polarization dynamics can be used for ultrafast polarization-based optical data communication. The polarization oscillation frequency and therefore the possible data transmission rate is assumed to be mainly determined by the birefringence-induced mode-splitting. This provides a direct tool to increase the polarization dynamics toward higher frequencies by adding a high amount of birefringence to the VCSEL structure. Using this technique, we could recently demonstrate experimentally a birefringence splitting of more than 250 GHz using mechanical strain. Here, we employ the well-known spin-flip model to investigate the tuning of the polarization oscillation frequency. The changing mechanical strain is represented by a linear birefringence sweep to values up to 80πGHz. The wide tuning range presented enables us to generate polarization oscillation frequencies exceeding the conventional intensity modulation frequency in the simulated device by far, mainly dependent on the birefringence in the cavity only.

  5. Towards monolithic integration of mode-locked vertical cavity surface emitting laser

    NASA Astrophysics Data System (ADS)

    Aldaz, Rafael I.

    2007-12-01

    The speed and performance of today's high end computing and communications systems have placed difficult but still feasible demands on off-chip electrical interconnects. However, future interconnect systems may need aggregate bandwidths well into the terahertz range thereby making electrical bandwidth, density, and power targets impossible to meet. Optical interconnects, and specifically compact semiconductor mode-locked lasers, could alleviate this problem by providing short pulses in time at 10s of GHz repetition rates for Optical Time Division Multiplexing (OTDM) and clock distribution applications. Furthermore, the characteristic spectral comb of frequencies of these lasers could also serve as a multi-wavelength source for Wavelength Division Multiplexing (WDM) applications. A fully integrated mode-locked Vertical Cavity Surface Emitting Laser (VCSEL) is proposed as a low-cost high-speed source for these applications. The fundamental laser platform for such a device has been developed and a continuous-wave version of these lasers has been fabricated and demonstrated excellent results. Output powers close to 60mW have been obtained with very high beam quality factor of M2 < 1.07. The mode-locked laser utilizes a passive mode-locking region provided by a semiconductor saturable absorber integrated together with the gain region. Such an aggressive integration forces the resonant beam in the cavity to have the same area on the gain and absorber sections, placing high demands on the saturation fluence and absorption coefficient for the saturable absorber. Quantum Wells (QWs), excitons in QWs and Quantum Dots (QDs) have been investigated as possible saturable absorbers for the proposed device. QDs have been found to have the lowest saturation fluence and total absorption, necessary to meet the mode-locking requirements for this configuration. The need to further understand QDs as saturable absorbers has led to the development of a theoretical model on the dynamics of

  6. High-power single-mode vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Samal, Nigamananda

    High-power single-mode vertical-cavity surface-emitting lasers (VCSEL) have a great potential to replace the distributed feedback (DFB) and Fabry-Perot (FP) edge emitting lasers that are currently used in optical communication. VCSELs also have tremendous potential in many niche applications such as "optical read and write," laser printing, bar code scanning and sensing. Despite many of their inherent advantages over its rivals, VCSELs still suffer from some outstanding issues. Most prominent are "limited power" and "multi-mode behavior" at higher injection. This work aims at a few solutions for these fundamental issues. Using strain-compensated GaAsSb as an active material and a standard single-aperture design, 1.3 mum VCSELs are demonstrated and characterized. These devices face basic issues such as "limited output power" and "multi-mode behavior." These VCSELs achieved room temperature CW operation with power outputs from 50--200 muW for wavelengths ranging from 1245 to 1290 nm. To resolve the issue of limited power, several on-wafer thermal-management schemes are proposed. One of the schemes is pursued in this work. To resolve the issue of multi-mode behavior, a novel device design using asymmetric double oxide-apertures is proposed, theoretically modeled, and implemented in this work. The optical mode behavior of this novel design is compared with a traditional single-aperture design using fabricated devices and theoretical modeling. A clear trend of spectral purity in the modal behavior of the devices, under both continuous wave (CW) and pulsed conditions, is demonstrated and is in good agreement with theoretical predictions. One of the novel designs tested on an InGaAs VCSEL has shown a multi-mode power more than 23 mW with maximum wall plug efficiency of 32%, threshold current of 2.5 mA, threshold voltage of 1.2 V, and a slope efficiency of 0.83 W/A. The best design demonstrated a room temperature CW single-mode output power of more than 7 mW with a side

  7. Optical Injection Locking of Vertical Cavity Surface-Emitting Lasers: Digital and Analog Applications

    NASA Astrophysics Data System (ADS)

    Parekh, Devang

    With the rise of mobile (cellphones, tablets, notebooks, etc.) and broadband wireline communications (Fiber to the Home), there are increasing demands being placed on transmitters for moving data from device to device and around the world. Digital and analog fiber-optic communications have been the key technology to meet this challenge, ushering in ubiquitous Internet and cable TV over the past 20 years. At the physical layer, high-volume low-cost manufacturing of semiconductor optoelectronic devices has played an integral role in allowing for deployment of high-speed communication links. In particular, vertical cavity surface emitting lasers (VCSEL) have revolutionized short reach communications and are poised to enter more markets due to their low cost, small size, and performance. However, VCSELs have disadvantages such as limited modulation performance and large frequency chirp which limits fiber transmission speed and distance, key parameters for many fiber-optic communication systems. Optical injection locking is one method to overcome these limitations without re-engineering the VCSEL at the device level. By locking the frequency and phase of the VCSEL by the direct injection of light from another laser oscillator, improved device performance is achieved in a post-fabrication method. In this dissertation, optical injection locking of VCSELs is investigated from an applications perspective. Optical injection locking of VCSELs can be used as a pathway to reduce complexity, cost, and size of both digital and analog fiber-optic communications. On the digital front, reduction of frequency chirp via bit pattern inversion for large-signal modulation is experimentally demonstrated showing up to 10 times reduction in frequency chirp and over 90 times increase in fiber transmission distance. Based on these results, a new reflection-based interferometric model for optical injection locking was established to explain this phenomenon. On the analog side, the resonance

  8. Bifurcation to polarization switching and locking in vertical-cavity surface-emitting lasers with optical injection

    SciTech Connect

    Gatare, I.; Sciamanna, M.; Nizette, M.; Panajotov, K.

    2007-09-15

    We unveil the bifurcations underlying polarization switching and injection locking in a vertical-cavity surface-emitting laser subject to optical injection. A Hopf bifurcation, not reported for conventional edge-emitting lasers, delimits the injection locking region and influences the polarization switching conditions. We furthermore theoretically show and experimentally observe periodic dynamics at the relaxation oscillation frequency in the noninjected mode together with wave-mixing dynamics in the injected mode. These dynamics precede the polarization switching leading to injection locking and are attributed to a torus bifurcation arising on a two-polarization mode solution.

  9. Optical AND/OR gates based on monolithically integrated vertical cavity laser with depleted optical thyristor structure.

    PubMed

    Choi, Woon-Kyung; Kim, Doo-Gun; Kim, Do-Gyun; Choi, Young-Wan; Choquette, Kent D; Lee, Seok; Woo, Deok-Ha

    2006-11-27

    Latching optical switches and optical logic gates with AND and OR functionality are demonstrated for the first time by the monolithic integration of a vertical cavity lasers with depleted optical thyristor structure. The thyristors have a low threshold current of 0.65 mA and a high on/off contrast ratio of more than 50 dB. By simply changing a reference switching voltage, this single device operates as two logic functions, optical logic AND and OR. The thyristor laser fabricated by using the oxidation process and has achieved high optical output power efficiency and a high sensitivity to the optical input light.

  10. Simulation of Optical Resonators for Vertical-Cavity Surface-Emitting Lasers (vcsel)

    NASA Astrophysics Data System (ADS)

    Mansour, Mohy S.; Hassen, Mahmoud F. M.; El-Nozahey, Adel M.; Hafez, Alaa S.; Metry, Samer F.

    2010-04-01

    Simulation and modeling of the reflectivity and transmissivity of the multilayer DBR of VCSEL, as well as inside the active region quantum well are analyzed using the characteristic matrix method. The electric field intensity distributions inside such vertical-cavity structure are calculated. A software program under MATLAB environment is constructed for the simulation. This study was performed for two specific Bragg wavelengths 980 nm and 370 nm for achieving a resonant periodic gain (RPG)

  11. Sub-gigahertz beam switching of vertical-cavity surface-emitting laser with transverse coupled cavity

    NASA Astrophysics Data System (ADS)

    Nakahama, M.; Gu, X.; Sakaguchi, T.; Matsutani, A.; Ahmed, M.; Bakry, A.; Koyama, F.

    2015-08-01

    We report a high-speed electrical beam switching of vertical cavity surface emitting laser with a transverse coupled cavity. A high speed (sub-gigahertz) and large deflection angle (>30°) beam switching is demonstrated by employing the transverse mode switching. The angular switching speed of 900 MHz is achieved with narrow beam divergence of below 4° and extinction ratio of 8 dB. We also measured the near- and far-field patterns to clarify the origin of the beam switching. We present a simple one-dimensional Bragg reflector waveguide model, which well predicts the beam switching characteristic.

  12. Two-dimensional integration of a vertical-cavity surface-emitting laser and photodetectors for position sensing.

    PubMed

    Giannopoulos, Antonios V; Kasten, Ansas M; Long, Christopher M; Chen, Chen; Choquette, Kent D

    2008-09-01

    Noncontact long-range position sensing is desirable for a number of applications. We have designed and fabricated a monolithically integrated vertical-cavity surface-emitting laser (VCSEL) and p-type/intrinsic/n-type (PIN) photodetectors for optical position sensing. Calculations using the reflection from a periodic metallic corrugation as a position gauge indicate resolution in the submicron regime. High device uniformity is obtained using novel fabrication techniques. We observe a threshold current of 0.52 mA for the VCSELs and a detector responsivity of 0.38 A/W at 840 nm. The optical cross talk between VCSELs and detectors is also quantified.

  13. Parallel self-mixing imaging system based on an array of vertical-cavity surface-emitting lasers

    SciTech Connect

    Tucker, John R.; Baque, Johnathon L.; Lim, Yah Leng; Zvyagin, Andrei V.; Rakic, Aleksandar D

    2007-09-01

    In this paper we investigate the feasibility of a massively parallel self-mixing imaging system based on an array of vertical-cavity surface-emitting lasers (VCSELs) to measure surface profiles of displacement,distance, velocity, and liquid flow rate. The concept of the system is demonstrated using a prototype to measure the velocity at different radial points on a rotating disk, and the velocity profile of diluted milk in a custom built diverging-converging planar flow channel. It is envisaged that a scaled up version of the parallel self-mixing imaging system will enable real-time surface profiling, vibrometry, and flowmetry.

  14. GaN-based vertical-cavity laser performance improvements using tunnel-junction-cascaded active regions

    SciTech Connect

    Piprek, Joachim

    2014-07-07

    This Letter investigates the output power enhancement achieved by tunnel junction insertion into the InGaN multi-quantum well (MQW) active region of a 410 nm vertical-cavity surface-emitting laser which enables the repeated use of carriers for light generation (carrier recycling). While the number of quantum wells remains unchanged, the tunnel junction eliminates absorption caused by the non-uniform MQW carrier distribution. The thermal resistance drops and the excess bias lead to a surprisingly small rise in self-heating.

  15. Sub-gigahertz beam switching of vertical-cavity surface-emitting laser with transverse coupled cavity

    SciTech Connect

    Nakahama, M.; Gu, X.; Sakaguchi, T.; Matsutani, A.; Ahmed, M.; Bakry, A.; Koyama, F.

    2015-08-17

    We report a high-speed electrical beam switching of vertical cavity surface emitting laser with a transverse coupled cavity. A high speed (sub-gigahertz) and large deflection angle (>30°) beam switching is demonstrated by employing the transverse mode switching. The angular switching speed of 900 MHz is achieved with narrow beam divergence of below 4° and extinction ratio of 8 dB. We also measured the near- and far-field patterns to clarify the origin of the beam switching. We present a simple one-dimensional Bragg reflector waveguide model, which well predicts the beam switching characteristic.

  16. Electron beam pumped III-V nitride vertical cavity surface emitting lasers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ng, Hock Min

    The design and fabrication by molecular beam epitaxy of a prototype vertical cavity laser based on the III-V nitrides were investigated in this work. The bottom mirror of the laser consists of distributed Bragg reflectors (DBRs) based on quarterwave AlN (or AlxGa1-xN) and GaN layers. Such DBRs were designed for maximum reflectivity in the spectral region from 390--600 nm. The epitaxial growth of these two binaries on each other revealed that while AlN grows on GaN in a two-dimensional mode (Frank-van der Merwe mode), GaN grows on AlN in a three-dimensional mode (Stranski-Krastanov mode). In spite of that, DBRs with peak reflectance up to 99% and bandwidths of 45nm were fabricated. The measured reflectance spectra were compared with simulations using the transmission matrix method. The mechanical stability of these DBR structures due to non-uniform distribution of strain arising from lattice or thermal mismatch of the various components were also addressed. The active region of the laser consists of InGaN/GaN multiple quantum wells (MQWs). The existence of up to the third order diffraction peaks in the x-ray diffraction spectra suggests that the interfaces between InGaN and GaN are sharp with little interdiffusion at the growth temperature. The photoluminescence and cathodoluminescence spectra were analyzed to determine the optical quality of the MQWs. The best MQWs were shown to have a single emission peak at 397nm with full width half maximum (FWHM) of 11nm. Cathodoluminescence studies showed that there are spatially localized areas of intense light emission. The complete device was formed on (0001) sapphire substrates using the previously described DBRs as bottom mirrors and the MQWs as the active region. The top mirror of the device consists of metallic silver. The device was pumped by an electron beam from the top mirror side and the light output was collected from the sapphire side. Measurements at 100K showed narrowing of the linewidth with increasing pump

  17. High brightness imaging system using vertical cavity surface-emitting laser micro-arrays- results and proposed enhancements

    NASA Astrophysics Data System (ADS)

    Mentzer, Mark A.; Ghosh, Chuni L.

    2011-05-01

    Laser illumination systems for high brightness imaging through the self-luminosity of explosive events, at Aberdeen Proving Ground and elsewhere, required complex pulse timing, extensive cooling, large-scale laser systems (frequencydoubled flash-pumped Nd:YAG, Cu-vapor, Q-switched ruby), making them difficult to implement for range test illumination in high speed videography. A Vertical Cavity Surface-Emitting Laser (VCSEL) array was designed and implemented with spectral filtering to effectively remove self-luminosity and the fireball from the image, providing excellent background discrimination in a variety of range test scenarios. Further improvements to the system are proposed for applications such as imaging through murky water or dust clouds with optimal penetration of obscurants.

  18. Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks

    NASA Astrophysics Data System (ADS)

    Al-Samaneh, A.; Bou Sanayeh, M.; Miah, M. J.; Schwarz, W.; Wahl, D.; Kern, A.; Michalzik, R.

    2012-10-01

    Vertical-cavity surface-emitting lasers (VCSELs) with single-mode, single-polarization emission at a wavelength of 894.6 nm have become attractive light sources for miniaturized Cs-based atomic clocks. So far, VCSELs used for these applications are single-mode because of small active diameters which has the drawbacks of increased ohmic resistance and reduced lifetime. By employing surface grating reliefs, enhanced fundamental-mode emission as well as polarization-stable laser oscillation are achieved. VCSELs with 5 μm active diameter show side-mode suppression ratios of 20 dB even at currents close to thermal roll-over with orthogonal polarization suppression ratios better than 20 dB at elevated ambient temperatures up to 100 °C.

  19. Development of a compact vertical-cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy.

    PubMed

    Li, Shuo; Liu, Lei; Chen, Rongzhang; Nelsen, Bryan; Huang, Xi; Lu, Yongfeng; Chen, Kevin

    2016-03-01

    This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, and limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications. PMID:27036765

  20. Development of a compact vertical-cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Liu, Lei; Chen, Rongzhang; Nelsen, Bryan; Huang, Xi; Lu, Yongfeng; Chen, Kevin

    2016-03-01

    This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, and limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications.

  1. Polarization switching and injection locking in vertical-cavity surface-emitting lasers subject to parallel optical injection.

    PubMed

    Quirce, Ana; Pérez, Pablo; Popp, Alexandra; Valle, Ángel; Pesquera, Luis; Hong, Yanhua; Thienpont, Hugo; Panajotov, Krassimir

    2016-06-01

    Polarization switching in a long-wavelength vertical-cavity surface-emitting laser (VCSEL) under parallel optical injection is analyzed in a theoretical and experimental way. For the first time, to our knowledge, we report experimentally a state in which injection locking of the parallel polarization and excitation of the free-running orthogonal polarization of the VCSEL are simultaneously obtained. We obtain very simple analytical expressions that describe both linear polarizations. We show that the power of both linear polarizations depend linearly on the injected power in such a way that the total power emitted by the VCSEL is constant. We perform a linear stability analysis of this solution to characterize the region of parameters in which it can be observed. Our measurements qualitatively confirm the previous theoretical predictions. PMID:27244440

  2. Polarization and modal dynamics of multimode vertical-cavity surface-emitting lasers subject to optical feedback and current modulation

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Khurram, Aliza; Black-Ingersoll, Myles D.; Valle, Angel

    2015-09-01

    Dynamics of a multi-transverse mode vertical-cavity surface-emitting laser is studied experimentally in a wide parameter range of optical feedback and current modulation. While the orthogonal polarizations manifest anticorrelated feedback dynamics, dynamics of different transverse modes with orthogonal polarizations do not exhibit a clear correlation property. This may be attributed to spatial hole burning effect. As the current modulation becomes strong, both polarization and modal dynamics are modulation dominated. When the modulation frequency is close to the external cavity resonance frequency or its harmonics, feedback dynamics is enhanced. For the modulation frequency close to half integer multiples of the external cavity resonance frequency, feedback feature can be suppressed. The minimum modulation amplitude for suppressing feedback dynamics is measured for each polarization and one of the transverse modes in the polarization, and the results are discussed. Interplay of relaxation oscillation, optical feedback, and current modulation is observed and measured. Our results are compared to the theoretical predictions.

  3. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser

    SciTech Connect

    Alharthi, S. S. Henning, I. D.; Adams, M. J.; Hurtado, A.; Korpijarvi, V.-M.; Guina, M.

    2015-01-12

    We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in future optical systems.

  4. Chaotic dynamics of mode competition in a vertical-cavity surface emitting laser diode under dc excitation

    SciTech Connect

    Richie, D.A.; Zhang, T.; Zachman, J.C.; Tabatabaie, N. . Dept. of Electrical and Computer Engineering); Choquette, K.D. ); Leibenguth, R.E. )

    1994-11-01

    The authors discuss the dynamics of transverse mode competition in an etched air-post vertical-cavity laser diode under dc excitation using an annular ring contact as a spatial filter. Distinct regions of operation are found for various ranges of fixed bias currents. At 1.5 times threshold, the device enters a region which exhibits chaotic fluctuations between the fundamental and a higher order lasing mode. The dynamics of these fluctuations are studied using the method of delays, and a calculation of the power spectrum and the correlation dimension are reported. It is found that the dynamics of the chaotic fluctuations have a correlation dimension of approximately 2.8. The results are indicative of a low-dimensional strange attractor underlying the modal competition noise.

  5. Lateral integration of vertical-cavity surface-emitting laser and slow light Bragg reflector waveguide devices.

    PubMed

    Shimada, Toshikazu; Matsutani, Akihiro; Koyama, Fumio

    2014-03-20

    We present the modeling and the experiment on the lateral integration of a vertical-cavity surface-emitting laser (VCSEL) and slow light Bragg reflector waveguide devices. The modeling shows an efficient direct-lateral coupling from a VCSEL to an integrated slow light waveguide. The calculated result shows a possibility of 13 dB chip gain and an extinction ratio over 5 dB for a compact slow light semiconductor optical amplifier (SOA) and electroabsorption modulator integrated with a VCSEL, respectively. We demonstrate an SOA-integrated VCSEL, exhibiting the maximum output power over 6 mW. Also, we fabricate a sub-50-μm long electroabsorption modulator laterally integrated with a VCSEL. An extinction ratio of over 15 dB for a voltage swing of 2.0 V is obtained without noticeable change of threshold. In addition, we demonstrate an on-chip electrothermal beam deflector integrated with a VCSEL.

  6. Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array.

    PubMed

    Granero, Luis; Zalevsky, Zeev; Micó, Vicente

    2011-04-01

    We present a new implementation capable of producing two-dimensional (2D) superresolution (SR) imaging in a single exposure by aperture synthesis in digital lensless Fourier holography when using angular multiplexing provided by a vertical cavity surface-emitting laser source array. The system performs the recording in a single CCD snapshot of a multiplexed hologram coming from the incoherent addition of multiple subholograms, where each contains information about a different 2D spatial frequency band of the object's spectrum. Thus, a set of nonoverlapping bandpass images of the input object can be recovered by Fourier transformation (FT) of the multiplexed hologram. The SR is obtained by coherent addition of the information contained in each bandpass image while generating an enlarged synthetic aperture. Experimental results demonstrate improvement in resolution and image quality.

  7. Energy-efficient vertical-cavity surface-emitting lasers (VCSELs) for "green" data and computer communication

    NASA Astrophysics Data System (ADS)

    Moser, Philip; Lott, James A.; Wolf, Philip; Larisch, Gunter; Payusov, Alexey; Fiol, Gerrit; Ledentsov, Nikolay N.; Hofmann, Werner; Bimberg, Dieter

    2012-03-01

    Record energy-efficient oxide-confined 850-nm single mode and quasi-single mode vertical-cavity surface-emitting lasers (VCSELs) for optical interconnects are presented. Error-free performance at 17 Gb/s is achieved with record-low dissipated power of only 69 fJ/bit. The total energy consumption is only 93 fJ/bit. Transmission lengths up to 1 km of multimode optical fiber were achieved. Our commercial quasi-single mode devices achieve error-free operation at 25 Gb/s across up to 303 m of multimode fiber. To date our VCSELs are the most energy-efficient directly modulated light-sources at any wavelength for data transmission across all distances up to 1 km of multimode optical fiber.

  8. Design concepts of monolithic metamorphic vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range

    SciTech Connect

    Egorov, A. Yu. Karachinsky, L. Ya.; Novikov, I. I.; Babichev, A. V.; Nevedomskiy, V. N.; Bugrov, V. E.

    2015-11-15

    Possible design concepts for long-wavelength vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range on GaAs substrates are suggested. It is shown that a metamorphic GaAs–InGaAs heterostructure with a thin buffer layer providing rapid transition from the lattice constant of GaAs to that of In{sub x}Ga{sub 1–x}As with an indium fraction of x < 0.3 can be formed by molecular-beam epitaxy. Analysis by transmission electron microscopy demonstrated the effective localization of mismatch dislocations in the thin buffer layer and full suppression of their penetration into the overlying InGaAs metamorphic layer.

  9. 29 GHz directly modulated 980 nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity

    NASA Astrophysics Data System (ADS)

    Dalir, Hamed; Koyama, Fumio

    2013-08-01

    A concept for the bandwidth enhancement of directly modulated vertical-cavity surface emitting lasers (VCSELs) using a transverse-coupled-cavity (TCC) scheme is proposed, which enables us to tailor the modulation-transfer function. A bow-tie shaped oxide aperture forms the transverse-coupled cavity resulting in optical feedback to boost the modulation speed. While the bandwidth of conventional VCSELs is 9-10 GHz, the 3 dB-bandwidth of the TCC VCSEL is increased by a factor of 3 far beyond the relaxation-oscillation frequency. The maximum bandwidth is currently limited by the photo-detector used in the experiment. Clear 36 Gbps eye opening was attained with an extinction ratio of 4 dB.

  10. A precision fiber bragg grating interrogation system using long-wavelength vertical-cavity surface-emitting laser

    NASA Astrophysics Data System (ADS)

    Hu, Binxin; Jin, Guangxian; Liu, Tongyu; Wang, Jinyu

    2016-09-01

    This paper presents the development of a cost-effective precision fiber Bragg grating (FBG) interrogation system using long-wavelength vertical-cavity surface-emitting laser (VCSEL). Tuning properties of a long-wavelength VCSEL have been studied experimentally. An approximately quadratic dependence of its wavelength on the injection current has been observed. The overall design and key operations of this system including intensity normalization, peak detection, and quadratic curve fitting are introduced in detail. The results show that the system achieves an accuracy of 1.2 pm with a tuning range of 3 nm and a tuning rate of 1 kHz. It is demonstrated that this system is practical and effective by applied in the FBG transformer temperature monitoring.

  11. Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array.

    PubMed

    Granero, Luis; Zalevsky, Zeev; Micó, Vicente

    2011-04-01

    We present a new implementation capable of producing two-dimensional (2D) superresolution (SR) imaging in a single exposure by aperture synthesis in digital lensless Fourier holography when using angular multiplexing provided by a vertical cavity surface-emitting laser source array. The system performs the recording in a single CCD snapshot of a multiplexed hologram coming from the incoherent addition of multiple subholograms, where each contains information about a different 2D spatial frequency band of the object's spectrum. Thus, a set of nonoverlapping bandpass images of the input object can be recovered by Fourier transformation (FT) of the multiplexed hologram. The SR is obtained by coherent addition of the information contained in each bandpass image while generating an enlarged synthetic aperture. Experimental results demonstrate improvement in resolution and image quality. PMID:21479012

  12. Quantum well intermixing technique using proton implantation for carrier confinement of vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Moriwaki, Shouhei; Saitou, Minoru; Miyamoto, Tomoyuki

    2016-08-01

    We investigated quantum well intermixing (QWI) using proton implantation to form the carrier confinement structure in the active layer of a vertical-cavity surface-emitting laser (VCSEL). The required potential barrier height is discussed referring to the result of numerical analysis. The bandgap change due to the QWI was investigated experimentally for various quantum well structures, proton dose densities, and thermal annealing conditions. A potential barrier height of 30 meV was observed using a high-indium and thin-well structure. High crystalline quality was confirmed by photoluminescence intensity measurement, even after the QWI process, and the lasing of the fabricated QWI-VCSEL was observed without any deterioration. The proposed technique would be effective in improving the device performance in a simple fabrication process.

  13. Frequency-induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection

    SciTech Connect

    Gatare, I.; Panajotov, K.; Sciamanna, M.

    2007-02-15

    We report theoretically on a pure frequency-induced polarization bistability in a vertical-cavity surface-emitting laser (VCSEL) subject to orthogonal optical injection, i.e., the master laser light polarization is orthogonal to that of the slave VCSEL. As the frequency detuning is scanned from negative to positive values and for a fixed injected power, the VCSEL exhibits two successive and possibly bistable polarization switchings. The first switching (from the slave laser polarization to the injected light polarization) exhibits a bistable region whose width is maximum for a given value of the injected power. Such a dependency of hysteresis width on the injected power is similar to that recently found experimentally by Hong et al.[Electron. Lett. 36, 2019 (2000)]. The bistability accompanying the second switching (from the injected light polarization back to the slave laser free-running polarization) exhibits, however, significantly different features related to the occurrence of optical chaos. Interestingly, the width of the bistable region can be tuned over a large range not only by modifying the injection parameters but also by modifying the device parameters, in particular the VCSEL linewidth enhancement factor.

  14. Vertical cavity surface emitting laser emitting at 1.56 microns with AlGaAsSb/AlAsSb distributed Bragg reflectors

    SciTech Connect

    Blum, O.; Klem, J.F.; Lear, K.L.; Vawter, G.A.; Kurtz, S.R.

    1998-07-01

    The authors report 77K operation of an optically pumped vertical cavity surface emitting laser with an Sb-based cavity. The structure consists of 15 and 20 pair AlGaAsSb/AlAsSb top and bottom reflectors and a bulk InGaAs active region.

  15. Photopumped 1.56 {micro}m vertical cavity surface emitting laser with AlGaAsSb/AlAsSb distributed Bragg reflectors

    SciTech Connect

    Blum, O.; Klem, J.F.; Lear, K.L.; Vawter, G.A.; Kurtz, S.R.

    1998-11-01

    The authors report 77K operation of an optically pumped vertical cavity surface emitting laser with an Sb-based cavity. The structure consists of 15 and 20 pair AlGaAsSb/AlAsSb top and bottom reflectors and a bulk InGaAs active region.

  16. All-epitaxial, lithographically defined, current- and mode-confined vertical-cavity surface-emitting laser based on selective interfacial fermi-level pinning

    SciTech Connect

    Ahn, J.; Lu, D.; Deppe, D.G.

    2005-01-10

    An approach is presented to fabricate a current- and mode-confined vertical-cavity surface-emitting laser that is all-epitaxial and lithographically defined. The device uses selective Fermi level pinning to self-align the electrical injection to a mode-confining intracavity phase-shifting mesa.

  17. Study on effect of quantum well number on performance characteristics of GaN-based vertical cavity surface emitting laser

    NASA Astrophysics Data System (ADS)

    Zandi Goharrizi, A.; Alahyarizadeh, Gh.; Hassan, Z.; Abu Hassan, H.

    2013-05-01

    The effect of number of quantum wells and quantum well thickness on the optical performance of InGaN vertical cavity surface emitting laser (VCSEL) was numerically investigated using Integrated System Engineering Technical Computer Aided Design (ISE TCAD) simulation program. The simulation results indicated that the output power and differential quantum efficiency of the double quantum well (DQW) laser were increased and threshold current decreased as compared to the single and triplet quantum wells VCSEL. Threshold current enhancement in the single quantum well (SQW) is attributed to the electron carrier leakage increasing from active layers because of the lower optical confinement factor. Simulation results show that in the double quantum well, the optical material gain and electron and hole carrier densities are approximately uniform with respect to the SQW and TQW. Also these results indicated that the electron current density in the DQW is the lowest. In the active region, electrical field decreased for the double quantum well because of the built-in electrical field reduction inside the quantum well. Finally the effect of quantum well thickness in DQW GaN-based VCSEL was investigated and it was observed that DQW VCSEL with 3 nm quantum wells thickness had the optimum threshold current.

  18. Vertical cavity surface-emitting laser scanning cytometer for high speed analysis of cells

    SciTech Connect

    Gourley, P.L.; McDonald, A.E.; Gourley, M.F.

    1995-12-31

    We have constructed a new semiconductor laser device that may be useful in high speed characterization of cell morphology for diagnosis of disease. This laser device has critical advantages over conventional cell fluorescence detection methods since it provides intense, monochromatic, low-divergence fight signals that are emitted from lasing modes confined by a cell. Further, the device integrates biological structures with semiconductor materials at the wafer level to reduce device size and simplify cell preparation. In this paper we discuss operational characteristics of the prototype cytometer and present preliminary data for blood cells and dielectric spheres.

  19. Phonon-assisted stimulated emission and ultra-thin active layers in cleaved-cavity and vertical-cavity surface emitting lasers

    SciTech Connect

    Benjamin, S.D.

    1991-01-01

    Unique lasing processes in III-V semiconductor lasers are examined. The dynamics of stimulated photon emissions in thin AlGaAs/GaAs single quantum well lasers are observed experimentally and modeled by rate equations describing the electron and photon densities. Agreement between experiment and theory are achieved when the transition probability matrix, calculated with the spreading out of electron and hole wave functions taken into account, is used. The phonon assisted stimulated photon emission observed in this work is delayed with respect to the unassisted emission. This observation is modeled by using a weaker matrix element for the unassisted process which is expected from theory and thus supports the author' claim that this emission is phonon assisted. Rate equations developed to simulate doubly stimulated emission of photons and phonons do not describe the experimental data so the possibility of stimulated phonon emission is ruled out for the samples studied in this work. Vertical Cavity Surface Emitting Lasers are also studied since they can be designed to support unique lasing processes. The design and growth of vertical cavity surface emitting lasers are discussed and these concepts are applied to the realization of a vertical cavity surface emitting laser with the thinnest active layer of any laser yet reported. Stimulated emission supported across the sub-monolayer thick InAs single quantum well active region can be understood by considering the spreading of the electron and hole wavefunctions beyond the confines of the quantum well to increase the length of the effective gain region.

  20. Harmonic distortion dependent on optical feedback, temperature and injection current in a vertical cavity surface emitting laser

    NASA Astrophysics Data System (ADS)

    Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna

    2016-04-01

    In this paper, selective optical feedback is used to investigate the nonlinearity behaviours of a vertical cavity surface emitting laser (VCSEL) with the modulation signal. A single mode VCSEL with both parallel and orthogonal optical feedback (OF) signals modulated at 1 MHz frequency over a range of modulation depth is investigated. We also investigate the nonlinear characteristics of the orthogonal polarization modes XP and YP of the VCSEL by changing the injection current and temperature. The results show an enhancement in the harmonic distortions (HDs) of both XP and YP modes with parallel OF, and the total suppression of HDs with orthogonal OF. We show that for the VCSEL with orthogonal OF, the second and third harmonic components of the XP and YP modes decrease and reach the noise floor level of the output power spectrum. Additionally, peaks of second and third harmonic components change radically when varying the bias current and temperature. The results reveal that orthogonal OF can be employed as a new tool to improve the linear dynamic range and to control the nonlinear characteristics of the VCSEL, thus making these devices a promising optical source in present and future optical communication applications.

  1. Temperature stable mid-infrared GaInAsSb/GaSb Vertical Cavity Surface Emitting Lasers (VCSELs)

    NASA Astrophysics Data System (ADS)

    Ikyo, A. B.; Marko, I. P.; Hild, K.; Adams, A. R.; Arafin, S.; Amann, M.-C.; Sweeney, S. J.

    2016-01-01

    GaInAsSb/GaSb based quantum well vertical cavity surface emitting lasers (VCSELs) operating in mid-infrared spectral range between 2 and 3 micrometres are of great importance for low cost gas monitoring applications. This paper discusses the efficiency and temperature sensitivity of the VCSELs emitting at 2.6 μm and the processes that must be controlled to provide temperature stable operation. We show that non-radiative Auger recombination dominates the threshold current and limits the device performance at room temperature. Critically, we demonstrate that the combined influence of non-radiative recombination and gain peak – cavity mode de-tuning determines the overall temperature sensitivity of the VCSELs. The results show that improved temperature stable operation around room temperature can only be achieved with a larger gain peak – cavity mode de-tuning, offsetting the significant effect of increasing non-radiative recombination with increasing temperature, a physical effect which must be accounted for in mid-infrared VCSEL design.

  2. Delayed feedback control of cavity solitons in a broad area vertical cavity surface emitting laser with saturable absorbtion

    NASA Astrophysics Data System (ADS)

    Gurevich, S. V.; Schelte, C.; Tlidi, M.; Panajotov, K.

    2016-04-01

    We are interested in spatio-temporal dynamics of cavity solitons (CSs) in a transverse section of a broad area vertical cavity surface emitting laser (VCSEL) with saturable absorbtion subjected to time-delayed optical feedback. In the absence of delayed feedback, a single branch of localized solutions appears in the parameter space. However, in the presence of the delayed feedback, multistability of CS solutions emerges; The branches of CSs fill the surface of the "solution tube" in the parameter space, which is filled densely with increasing delay time. Further, our study reveals that the multistability of stationary solutions is caused by a delayed-induced phase bifurcation of CSs. Furthermore, it was shown that stability properties of CSs strongly depend on the delayed feedback parameters. In particular, the thresholds of the drift and phase bifurcations as well as corresponding bifurcation diagrams are obtained by a combination of analytical and numerical continuation methods. It turns out that both thresholds tend to zero in the limit of large delay times. In addition, we demonstrate that the presence of the delayed optical feedback can induce Andronov-Hopf bifurcation and a period doubling route to chaos. Moreover, a coupling between this bifurcation scenario with aforementioned delay-induced multistability leads to a complex spatio-temporal behavior of the system in question. The results of analytical bifurcation analysis are in agreement with those obtained by direct numerical integration of the model equation.

  3. Continuous sensing of tumor-targeted molecular probes with a vertical cavity surface emitting laser-based biosensor

    PubMed Central

    Parashurama, Natesh; O’Sullivan, Thomas D.; De La Zerda, Adam; El Kalassi, Pascale; Cho, Seongjae; Liu, Hongguang; Teed, Robert; Levy, Hart; Rosenberg, Jarrett; Cheng, Zhen; Levi, Ofer; Harris, James S.

    2012-01-01

    Abstract. Molecular optical imaging is a widespread technique for interrogating molecular events in living subjects. However, current approaches preclude long-term, continuous measurements in awake, mobile subjects, a strategy crucial in several medical conditions. Consequently, we designed a novel, lightweight miniature biosensor for in vivo continuous optical sensing. The biosensor contains an enclosed vertical-cavity surface-emitting semiconductor laser and an adjacent pair of near-infrared optically filtered detectors. We employed two sensors (dual sensing) to simultaneously interrogate normal and diseased tumor sites. Having established the sensors are precise with phantom and in vivo studies, we performed dual, continuous sensing in tumor (human glioblastoma cells) bearing mice using the targeted molecular probe cRGD-Cy5.5, which targets αVβ3 cell surface integrins in both tumor neovasculature and tumor. The sensors capture the dynamic time-activity curve of the targeted molecular probe. The average tumor to background ratio after signal calibration for cRGD-Cy5.5 injection is approximately 2.43±0.95 at 1 h and 3.64±1.38 at 2 h (N=5 mice), consistent with data obtained with a cooled charge coupled device camera. We conclude that our novel, portable, precise biosensor can be used to evaluate both kinetics and steady state levels of molecular probes in various disease applications. PMID:23123976

  4. Temperature stable mid-infrared GaInAsSb/GaSb Vertical Cavity Surface Emitting Lasers (VCSELs)

    PubMed Central

    Ikyo, A. B.; Marko, I. P.; Hild, K.; Adams, A. R.; Arafin, S.; Amann, M.-C.; Sweeney, S. J.

    2016-01-01

    GaInAsSb/GaSb based quantum well vertical cavity surface emitting lasers (VCSELs) operating in mid-infrared spectral range between 2 and 3 micrometres are of great importance for low cost gas monitoring applications. This paper discusses the efficiency and temperature sensitivity of the VCSELs emitting at 2.6 μm and the processes that must be controlled to provide temperature stable operation. We show that non-radiative Auger recombination dominates the threshold current and limits the device performance at room temperature. Critically, we demonstrate that the combined influence of non-radiative recombination and gain peak – cavity mode de-tuning determines the overall temperature sensitivity of the VCSELs. The results show that improved temperature stable operation around room temperature can only be achieved with a larger gain peak – cavity mode de-tuning, offsetting the significant effect of increasing non-radiative recombination with increasing temperature, a physical effect which must be accounted for in mid-infrared VCSEL design. PMID:26781492

  5. Record low-threshold index-guided InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native oxide confinement structure

    NASA Astrophysics Data System (ADS)

    Hayashi, Y.; Mukaihara, T.; Hatori, N.; Ohnoki, N.; Matsutani, A.; Koyama, F.; Iga, K.

    1995-03-01

    An index-guided InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native oxide confinement structure has been proposed and fabricated. A record threshold current of 70 micro A was achieved with a 5 micron-diameter core device. The proposed structure provides strong electrical and optical confinements. Also a reduction in nonradiative recombination and an improvement in the thermal resistance can be expected.

  6. Indium phosphide-lattice-matched, long-wavelength vertical-cavity surface-emitting lasers for optical fiber communications

    NASA Astrophysics Data System (ADS)

    Nakagawa, Shigeru

    2001-12-01

    The purpose of this dissertation is to realize reliable and practical long-wavelength vertical-cavity surface- emitting lasers (VCSELs) for real optical fiber communications. The approach is to deploy all-lattice- matched structures on InP, which have been already proven to provide high performance, reliability, low cost, and high manufacturability by GaAs-based shorter-wavelength (850-980 nm) VCSELs. AlGaAsSb is a promising material to implement highly reflecting distributed Bragg reflectors (DBRs) which are lattice-matched to InP. However, the high operating voltage and high thermal impedance caused by the AlGaAsSb/AlAsSb DBRs result in the large temperature rise, preventing CW operation. The primary advance in this dissertation is a double- intracavity contacted structure. This structure allows generated heat and injected current to bypass the Sb- based mirrors, reducing the temperature increase. The device has demonstrated excellent performance such as high maximum output power (>1 mW at 20°C and >100 μW at 80°C) and high maximum operation temperature (88°C) for the 8 μm aperture. The InP-lattice- matched VCSEL fully benefits from the double-intracavity contacted structure in terms of the device temperature, since the measured operating voltage and thermal impedance are comparable with the GaAs-lattice-matched structures. There are several parameters to be improved for the higher temperature and higher output operation. The low injection efficiency results from the small overlap of optical mode and current density profile, which will be increased using two separate oxide apertures for current and optical confinements. The relatively low characteristic temperature of the injection efficiency and threshold current must be improved by optimizing the material quality of the active region.

  7. Growth of 1.5 micron gallium indium nitrogen arsenic antimonide vertical cavity surface emitting lasers by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wistey, Mark Allan

    Fiber optics has revolutionized long distance communication and long haul networks, allowing unimaginable data speeds and noise-free telephone calls around the world for mere pennies per hour at the trunk level. But the high speeds of optical fiber generally do not extend to individual workstations or to the home, in large part because it has been difficult and expensive to produce lasers which emitted light at wavelengths which could take advantage of optical fiber. One of the most promising solutions to this problem is the development of a new class of semiconductors known as dilute nitrides. Dilute nitrides such as GaInNAs can be grown directly on gallium arsenide, which allows well-established processing techniques. More important, gallium arsenide allows the growth of vertical-cavity surface-emitting lasers (VCSELs), which can be grown in dense, 2D arrays on each wafer, providing tremendous economies of scale for manufacturing, testing, and packaging. Unfortunately, GaInNAs lasers have suffered from what has been dubbed the "nitrogen penalty," with high thresholds and low efficiency as the fraction of nitrogen in the semiconductor was increased. This thesis describes the steps taken to identify and essentially eliminate the nitrogen penalty. Protecting the wafer surface from plasma ignition, using an arsenic cap, greatly improved material quality. Using a Langmuir probe, we further found that the nitrogen plasma source produced a large number of ions which damaged the wafer during growth. The ions were dramatically reduced using deflection plates. Low voltage deflection plates were found to be preferable to high voltages, and simulations showed low voltages to be adequate for ion removal. The long wavelengths from dilute nitrides can be partly explained by wafer damage during growth. As a result of these studies, we demonstrated the first CW, room temperature lasers at wavelengths beyond 1.5mum on gallium arsenide, and the first GaInNAs(Sb) VCSELs beyond 1

  8. Polarization statistical properties of emission from single-mode vertical-cavity surface-emitting lasers with equally-lived laser levels

    NASA Astrophysics Data System (ADS)

    Golubev, Yu M.; Golubeva, T. Yu; Giacobino, E.

    2004-12-01

    The full quantum statistical theory of the vertical-cavity surface-emitting laser (VCSEL) is constructed for arbitrary relations between frequency parameters. In our approach we follow Hermier et al (2002 Phys. Rev. A 65 053825) and Golubev et al (2004 Phys. Rev. A at press; Preprint quant-ph/0407006) and formulate the theory in the form of quantum Langevin equations. For detailed analysis the theory is applied to lasers with equally-lived laser levels. Spectral densities of the Stokes parameter fluctuations are obtained in explicit analytical form. A role of physical phenomena such as spin-flip and optical anisotropy (linear birefringence and linear dichroism) in semiconductor crystals is discussed. It is shown that random sub-level electron distributions do not worsen shot noise reduction efficiency. Comparing our results with the phenomenological ones (Mulet et al 2001 Phys. Rev. A 64 023817), the serious differences are disclosed. The reasons for these differences are explained.

  9. Characteristics of bistable localized emission states in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback

    SciTech Connect

    Tanguy, Y.; Ackemann, T.; Jaeger, R.

    2006-11-15

    Small-area bistable lasing spots (about 10 {mu}m full width at half maximum) can be created at different positions within the aperture of a broad-area vertical-cavity surface-emitting laser (aperture diameter 80 {mu}m) with frequency-selective feedback from a grating in Littrow configuration, and an additional pinhole localizing feedback to a part of the laser. Their characteristics are analyzed depending on the grating tuning, injection current, and feedback strength. These spots are considered to be good candidates for self-localized cavity solitons, if the perturbation by boundaries can be reduced using devices with larger diameter.

  10. Vertical cavity surface emitting laser based on gallium arsenide/air-gap distributed Bragg reflectors: From concept to working devices

    NASA Astrophysics Data System (ADS)

    Mo, Qingwei

    Vertical-cavity surface-emitting lasers (VCSELs) have created new opportunities in optoelectronics. However, VCSELs have so far been commercialized mainly for operation at 0.85 mum, despite their potential importance at other wavelengths, such as 1.3 mum and 1.55 mum. The limitations at these longer wavelengths come from material characteristics, such as a low contrast ratio in mirror materials, lower mirror reflectivity, and smaller optical gain for longer wavelength materials versus AlGaAs/GaAs quantum wells. A similar situation, insufficient gain relative to the cavity loss, existed in the past for shorter wavelength VCSELs before high quality epitaxial mirrors were developed. Semiconductor/air-gap Distributed Bragg Reflectors (DBRs) are attractive due to their high index contrast, which leads to a high reflectivity, wide stop band and low optical loss mirror with a small number of pairs. This concept is ready to be integrated into material systems other than AlGaAs/GaAs, which is studied in this work. Therefore, the impact of these DBRs can be extended into both visible and longer infrared wavelengths as a solution to the trade-off between DBR and active region materials. Air-gap DBRs can also be used as basic building blocks of micro-opto-electro-mechanical systems (MOEMS). The high Q microcavity formed by the air-gap DBRs also provide a good platform for microcavity physics study. Air-gap DBRs are modeled using the transmission matrix formulae of the Maxwell equations. A comparison to existing DBR technology shows the great advantage and potential that the air-gap DBR possesses. Two types of air-gap are proposed and developed. The first one includes multiple GaAs/air pairs while the second one combines a single air-gap with metal and dielectric mirrors. New device structures and processing designs, especially an all-epitaxial lateral current and optical confinement technique, are carried out to incorporate air-gap DBRs into VCSEL structures. The first VCSEL

  11. Feasibility analysis and demonstration of high-speed digital imaging using micro-arrays of vertical cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Mentzer, Mark A.; Ghosh, Chuni L.; Guo, Baiming; Brewer, Kristopher; Nicolai, Robin; Herr, Douglas; Lubking, Carl; Ojason, Neil; Tangradi, Edward; Tarpine, Howard

    2011-04-01

    Previous laser illumination systems at Aberdeen Proving Ground and elsewhere required complex pulse timing, extensive cooling, large-scale laser systems (frequency-doubled flash-pumped Nd:YAG, Cu-vapor, Q-switched ruby), making them difficult to implement for range test illumination in high speed videography. Requirements to illuminate through the self-luminosity of explosive events motivate the development of a high brightness imaging technique obviating the limitations of previous attempts. A lensed vertical cavity surface-emitting laser array is proposed and implemented with spectral filtering to effectively remove self-luminosity and the fireball from the image, providing excellent background discrimination in a variety of range test scenarios.

  12. Temperature dependence of spontaneous switch-on and switch-off of laser cavity solitons in vertical-cavity surface-emitting lasers with frequency-selective feedback

    NASA Astrophysics Data System (ADS)

    Jimenez, J.; Oppo, G.-L.; Ackemann, T.

    2016-03-01

    A systematic experimental and numerical investigation of the conditions for the spontaneous formation of laser cavity solitons in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback by a volume Bragg grating is reported. It is shown that the switching thresholds are controlled by a combination of frequency shifts induced by ambient temperature and Joule heating. The gain level has only a minor influence on the threshold but controls mainly the power of the solitons. At large initial detuning and high threshold gain, the first observed structure can be a high order soliton. In real devices spatial disorder in the cavity length causes a pinning of solitons and a dispersion of thresholds. The experimental observations are in good agreement with numerical simulations taking into account disorder and the coupling of gain and cavity resonance due to Joule heating. In particular, we demonstrate that the existence of the traps explain the spontaneous switch on of the solitons, but do not modify the soliton shape significantly, i.e. the observed solitons are a good approximation of the ones expected in a homogeneous system.

  13. Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers.

    PubMed

    Weng, Guoen; Mei, Yang; Liu, Jianping; Hofmann, Werner; Ying, Leiying; Zhang, Jiangyong; Bu, Yikun; Li, Zengcheng; Yang, Hui; Zhang, Baoping

    2016-07-11

    Low threshold continuous-wave (CW) lasing of current injected InGaN quantum dot (QD) vertical-cavity surface-emitting lasers (VCSELs) was achieved at room temperature. The VCSEL was fabricated by metal bonding technique on a copper substrate to improve the heat dissipation ability of the device. For the first time, lasing was obtained at yellow-green wavelength of 560.4 nm with a low threshold of 0.61 mA, corresponding to a current density of 0.78 kA/cm2. A high degree of polarization of 94% were measured. Despite the operation in the range of "green gap" of GaN-based devices, single longitudinal mode laser emission was clearly achieved due to the high quality of active region based on InGaN QDs and the excellent thermal design of the VCSELs. PMID:27410828

  14. Optically pumped vertical-cavity surface-emitting laser at 374.9 nm with an electrically conducting n-type distributed Bragg reflector

    NASA Astrophysics Data System (ADS)

    Liu, Yuh-Shiuan; Saniul Haq, Abul Fazal Muhammad; Mehta, Karan; Kao, Tsung-Ting; Wang, Shuo; Xie, Hongen; Shen, Shyh-Chiang; Yoder, P. Douglas; Ponce, Fernando A.; Detchprohm, Theeradetch; Dupuis, Russell D.

    2016-11-01

    An optically pumped vertical-cavity surface-emitting laser with an electrically conducting n-type distributed Bragg reflector was achieved at 374.9 nm. An epitaxially grown 40-pair n-type AlGaN/GaN distributed Bragg reflector was used as the bottom mirror, while the top mirror was formed by a dielectric distributed Bragg reflector composed of seven pairs of HfO2/SiO2. A numerical simulation for the optical mode clearly demonstrated that a high confinement factor was achieved and the threshold pumping power density at room temperature was measured as 1.64 MW/cm2. The achieved optically pumped laser demonstrates the potential of utilizing an n-type distributed Bragg reflector for surface-emitting optical devices.

  15. High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source.

    PubMed

    Grulkowski, Ireneusz; Liu, Jonathan J; Potsaid, Benjamin; Jayaraman, Vijaysekhar; Jiang, James; Fujimoto, James G; Cable, Alex E

    2013-03-01

    We demonstrate ultralong-range swept-source optical coherence tomography (OCT) imaging using vertical cavity surface emitting laser technology. The ability to adjust laser parameters and high-speed acquisition enables imaging ranges from a few centimeters up to meters using the same instrument. We discuss the challenges of long-range OCT imaging. In vivo human-eye imaging and optical component characterization are presented. The precision and accuracy of OCT-based measurements are assessed and are important for ocular biometry and reproducible intraocular distance measurement before cataract surgery. Additionally, meter-range measurement of fiber length and multicentimeter-range imaging are reported. 3D visualization supports a class of industrial imaging applications of OCT.

  16. Characterization of 2.3 μm GaInAsSb-based vertical-cavity surface-emitting laser structures using photo-modulated reflectance

    SciTech Connect

    Chai, G. M. T.; Hosea, T. J. C.; Fox, N. E.; Hild, K.; Ikyo, A. B.; Marko, I. P.; Sweeney, S. J.; Bachmann, A.; Arafin, S.; Amann, M.-C.

    2014-01-07

    We report angle dependent and temperature dependent (9 K–300 K) photo-modulated reflectance (PR) studies on vertical-cavity surface-emitting laser (VCSEL) structures, designed for 2.3 μm mid-infrared gas sensing applications. Changing the temperature allows us to tune the energies of the quantum well (QW) transitions relative to the VCSEL cavity mode (CM) energy. These studies show that this VCSEL structure has a QW-CM offset of 21 meV at room temperature. Consequently the QW ground-state transition comes into resonance with the CM at 220 ± 2 K. The results from these PR studies are closely compared with those obtained in a separate study of actual operating devices and show how the PR technique may be useful for device optimisation without the necessity of having first to process the wafers into working devices.

  17. High-differential-quantum-efficiency, long-wavelength vertical-cavity lasers using five-stage bipolar-cascade active regions

    SciTech Connect

    Koda, R.; Wang, C.S.; Lofgreen, D.D.; Coldren, L.A.

    2005-05-23

    We present five-stage bipolar-cascade vertical-cavity surface-emitting lasers emitting at 1.54 {mu}m grown monolithically on an InP substrate by molecular beam epitaxy. A differential quantum efficiency of 120%, was measured with a threshold current density of 767 A/cm{sup 2} and voltage of 4.49 V, only 0.5 V larger than 5x0.8 V, the aggregate photon energy. Diffraction loss study on deeply etched pillars indicates that diffraction loss is a major loss mechanism for such multiple-active region devices larger than 20 {mu}m. We also report a model on the relationship of diffraction loss to the number of active stages.

  18. Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection

    SciTech Connect

    Alharthi, S. S. Hurtado, A.; Al Seyab, R. K.; Henning, I. D.; Adams, M. J.; Korpijarvi, V.-M.; Guina, M.

    2014-11-03

    We experimentally demonstrate the control of the light polarization emitted by a 1310 nm dilute nitride spin-Vertical Cavity Surface Emitting Laser (VCSEL) at room temperature. This is achieved by means of a combination of polarized optical pumping and polarized optical injection. Without external injection, the polarization of the optical pump controls that of the spin-VCSEL. However, the addition of the externally injected signal polarized with either left- (LCP) or right-circular polarization (RCP) is able to control the polarization of the spin-VCSEL switching it at will to left- or right-circular polarization. A numerical model has been developed showing a very high degree of agreement with the experimental findings.

  19. AlGaAs/GaAs/InGaAs pnp-type vertical-cavity surface-emitting transistor-lasers.

    PubMed

    Xiang, Y; Reuterskiöld-Hedlund, C; Yu, X; Yang, C; Zabel, T; Hammar, M; Akram, M N

    2015-06-15

    We report on the design, fabrication and analysis of vertical-cavity surface-emitting transistor-lasers (T-VCSELs) based on the homogeneous integration of an InGaAs/GaAs VCSEL and an AlGaAs/GaAs pnp-heterojunction bipolar transistor (HBT). Epitaxial regrowth confinement, modulation doping, intracavity contacting and non-conducting mirrors are used to ensure a low-loss structure, and a variety of design variations are investigated for a proper internal biasing and current injection to ensure a wide operating range. Optimized devices show mW-range output power, mA-range base threshold current and high-temperature operation to at least 60°C with the transistor in its active mode of operation for base currents well beyond threshold. Current confinement schemes based on pnp-blocking layers or a buried tunnel junction are investigated as well as asymmetric current injection for reduced extrinsic resistances.

  20. Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers.

    PubMed

    Sayyah, Keyvan; Efimov, Oleg; Patterson, Pamela; Schaffner, James; White, Carson; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander

    2015-07-27

    We demonstrate, both theoretically and experimentally, a pseudo-random, two-dimensional optical phased array (OPA) concept based on tandem injection locking of 64-element vertical cavity surface emitting laser (VCSEL) arrays. A low cavity-Q VCSEL design resulted in an injection locking optical power of less than 1 μW per VCSEL, providing large OPA scaling potential. Tandem injection locking of two VCSEL arrays resulted in measured controllable optical phase change of 0-1.6π. A high quality beam formed with suppressed grating lobes due to the pseudo-random array design was demonstrated with performance close to simulated results. A preliminary 2.2° x 1.2° beam steering example using the tandem arrays was also demonstrated.

  1. On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers.

    PubMed

    Liu, W J; Hu, X L; Ying, L Y; Chen, S Q; Zhang, J Y; Akiyama, H; Cai, Z P; Zhang, B P

    2015-01-01

    Cavity-length dependence of the property of optically pumped GaN-based vertical-cavity surface-emitting lasers (VCSELs) with two dielectric distributed Bragg reflectors was investigated. The cavity lengths were well controlled by employing etching with inductively coupled plasma and chemical mechanical polishing. It was found that the lasing characteristics including threshold, slope efficiency and spontaneous emission coupling factor were substantially improved with reducing the cavity length. In comparison with the device pumped by a 400 nm pulsed laser, the lasing spectrum was featured by a red shift and simultaneous broadening with increasing the pumping energy of a 355 nm pulsed laser. Moreover, the lasing threshold was much higher when pumped by a 355 nm pulsed laser. These were explained by taking into account of the significant heating effect under 355 nm pumping. Our results demonstrate that a short cavity length and good heat-dissipation are essential to GaN-based VCSELs. PMID:25873327

  2. The study of temperature effect on the performance characteristics of the InGaN-based vertical cavity surface emitting laser (VCSEL) by solving the rate equations

    NASA Astrophysics Data System (ADS)

    Goharrizi, A. Zandi; Alahyarizadeh, Gh.

    2016-08-01

    The use of semiconductor lasers is beneficial in long-distance communications. Practical communication systems based on these lasers need high ambient temperature, with temperature changes between 40∘C and 85∘C. The study of the temperature-dependent response of these lasers is important to improve them. This study investigates the effect of temperature on InGaN-based vertical cavity surface emitting lasers (VCSEL). The active region in this structure includes a single quantum well (SQW). The rate equations of carriers and densities are numerically solved. The time variations of carrier density, photon density and output power (N, S and P) at 25∘C and the current injection of 0.04 A are obtained. Values obtained for threshold current and output power include 7 mA and 44 mW, respectively. The effect of temperature on the time variations of N, S and P from 10∘C to 35∘C is studied. Results show that these parameters decrease and the threshold current increases with an increase in temperature. Furthermore, the investigation of the effect of injection current on N, S and P shows that raising the injection current can increase these parameters. Moreover, an increase in the injection current reduces the time response.

  3. On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers.

    PubMed

    Liu, W J; Hu, X L; Ying, L Y; Chen, S Q; Zhang, J Y; Akiyama, H; Cai, Z P; Zhang, B P

    2015-01-01

    Cavity-length dependence of the property of optically pumped GaN-based vertical-cavity surface-emitting lasers (VCSELs) with two dielectric distributed Bragg reflectors was investigated. The cavity lengths were well controlled by employing etching with inductively coupled plasma and chemical mechanical polishing. It was found that the lasing characteristics including threshold, slope efficiency and spontaneous emission coupling factor were substantially improved with reducing the cavity length. In comparison with the device pumped by a 400 nm pulsed laser, the lasing spectrum was featured by a red shift and simultaneous broadening with increasing the pumping energy of a 355 nm pulsed laser. Moreover, the lasing threshold was much higher when pumped by a 355 nm pulsed laser. These were explained by taking into account of the significant heating effect under 355 nm pumping. Our results demonstrate that a short cavity length and good heat-dissipation are essential to GaN-based VCSELs.

  4. Vertical-cavity surface-emitting laser in the long-wavelength (700 nm) region in the visible by energy transfer between organic dyes

    NASA Astrophysics Data System (ADS)

    Liao, Zhifu; Zhou, Yuan; Cui, Yuanjing; Yang, Yu; Wang, Zhiyu; Qian, Guodong

    2014-06-01

    In this work, organic vertical-cavity surface-emitting lasers (VCSELs) with single-mode laser output in the long-wavelength region (~700 nm) of the visible were reported based on the energy transfer between dye pairs consisting of pyrromethene 597 (PM597) and rhodamine 700 (LD700). By co-doping PM597 into the polymeric hosts, the fluorescence intensity of LD700 was enhanced by 30-fold and the photophysical parameters of the donor-acceptor pairs were investigated, indicating the involvement of non-radiative resonance energy transfer processes between PM597 and LD700. Active distributed Bragg reflectors (DBR) were made by alternately spin-coating dye-doped polyvinylcarbazole and cellulose acetate thin films as the high and low refractive index layers, respectively. By sandwiching the active layer with 2 DBR mirrors, VCSEL emission at 698.9 nm in the biological first window (650-950 nm) was observed under the 532-nm laser pulses. The laser slope efficiency and threshold were also measured.

  5. Single-mode vertical-cavity surface emitting lasers for {sup 87}Rb-based chip-scale atomic clock

    SciTech Connect

    Derebezov, I. A. Haisler, V. A.; Bakarov, A. K.; Kalagin, A. K.; Toropov, A. I.; Kachanova, M. M.; Gavrilova, T. A.; Semenova, O. I.; Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.; Ryabtsev, I. I.

    2010-11-15

    The results of numerical simulation and study of lasing characteristics of semiconductor verticalcavity surface-emitting lasers based on Al{sub x}Ga{sub 1-x}As alloys are presented. Lasers exhibit stable single-mode lasing at a wavelength of 795 nm at low operating currents {approx}1.5 mA and an output power of 350 {mu}W, which offers prospects of their applications in next-generation chip-scale atomic clocks

  6. Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation

    SciTech Connect

    Dalir, Hamed; Ahmed, Moustafa; Bakry, Ahmed; Koyama, Fumio

    2014-08-25

    We demonstrate a compact electro-absorption slow-light modulator laterally-integrated with an 850 nm vertical-cavity surface-emitting laser (VCSEL), which enables highly efficient millimeter-wave modulation. We found a strong leaky travelling wave in the lateral direction between the two cavities via widening the waveguide width with a taper shape. The small signal response of the fabricated device shows a large enhancement of over 55 dB in the modulation amplitude at frequencies beyond 35 GHz; thanks to the photon-photon resonance. A large group index of over 150 in a Bragg reflector waveguide enables the resonance at millimeter wave frequencies for 25 μm long compact modulator. Based on the modeling, we expect a resonant modulation at a higher frequency of 70 GHz. The resonant modulation in a compact slow-light modulator plays a significant key role for high efficient narrow-band modulation in the millimeter wave range far beyond the intrinsic modulation bandwidth of VCSELs.

  7. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact

    SciTech Connect

    Leonard, J. T. Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Margalith, T.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2015-08-31

    We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (J{sub th}) of ∼3.5 kA/cm{sup 2}, compared to the ITO VCSEL J{sub th} of 8 kA/cm{sup 2}. The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ∼550 μW, compared to ∼80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing in the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL.

  8. Generation of polarization-resolved wideband unpredictability-enhanced chaotic signals based on vertical-cavity surface-emitting lasers subject to chaotic optical injection.

    PubMed

    Chen, Jian-Jun; Wu, Zheng-Mao; Tang, Xi; Deng, Tao; Fan, Li; Zhong, Zhu-Qiang; Xia, Guang-Qiong

    2015-03-23

    A system framework is proposed and analyzed for generating polarization-resolved wideband unpredictability-enhanced chaotic signals based on a slave vertical-cavity surface-emitting laser (S-VCSEL) driven by an injected optical chaos signal from a master VCSEL (M-VCSEL) under optical feedback. After calculating the time series outputs from the M-VCSEL under optical feedback and the S-VCSEL under chaotic optical injection by using the spin-flip model (SFM), the unpredictability degree (UD) is evaluated by permutation entropy (PE), and the bandwidth of the polarization-resolved outputs from the M-VCSEL and S-VCSEL are numerically investigated. The results show that, under suitable parameters, both the bandwidth and UD of two polarization components (PCs) outputs from the S-VCSEL can be enhanced significantly compared with that of the driving chaotic signals output from the M-VCSEL. By simulating the influences of the feedback and injection parameters on the bandwidth and UD of the polarization-resolved outputs from S-VCSEL, related operating parameters can be optimized.

  9. The influence of quaternary electron blocking layer on the performance characteristics of intracavity-contacted oxide-confined InGaN-based vertical cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Goharrizi, A. Zandi; Alahyarizadeh, Gh.; Hassan, Z.; Hassan, H. Abu

    2015-11-01

    The effect of electron blocking layer (EBL) on the performance characteristics of InGaN-based vertical cavity surface emitting lasers (VCSELs) was numerically investigated using an integrated system engineering technical computer aided design (ISE TCAD) simulation program. Simulation results indicated that the performance characteristics of InGaN quantum well VCSEL were improved by the ternary Al0.17Ga0.83N EBL. Better performance was also obtained when Al0.17Ga0.83N EBL was replaced by a polarization-matched Al0.275In0.115Ga0.61N EBL having the same energy bandgap. The quaternary EBL enhances the output power and differential quantum efficiency (DQE) as well as reduces the threshold current compared with the ternary EBL. Enhancement in the value of the optical intensity was also observed in the VCSEL structure with quaternary EBL. Furthermore, the effect of Al composition of AlInGaN EBL on the performance of InGaN-based VCSEL structure that uses the quaternary AlInGaN EBL was studied. In mole fraction was 0.115, Al mole fraction changed from 0.260 to 0.290 by step 0.005, and optimum performance was achieved in 0.275 Al mole fraction of AlInGaN EBL.

  10. Continuous wave vertical cavity surface emitting lasers at 2.5 μm with InP-based type-II quantum wells

    SciTech Connect

    Sprengel, S.; Andrejew, A.; Federer, F.; Veerabathran, G. K.; Boehm, G.; Amann, M.-C.

    2015-04-13

    A concept for electrically pumped vertical cavity surface emitting lasers (VCSEL) for emission wavelength beyond 2 μm is presented. This concept integrates type-II quantum wells into InP-based VCSELs with a buried tunnel junction as current aperture. The W-shaped quantum wells are based on the type-II band alignment between GaInAs and GaAsSb. The structure includes an epitaxial GaInAs/InP and an amorphous AlF{sub 3}/ZnS distributed Bragg reflector as bottom and top (outcoupling) mirror, respectively. Continuous-wave operation up to 10 °C at a wavelength of 2.49 μm and a peak output power of 400 μW at −18 °C has been achieved. Single-mode emission with a side-mode suppression ratio of 30 dB for mesa diameters up to 14 μm is presented. The long emission wavelength and current tunability over a wavelength range of more than 5 nm combined with its single-mode operation makes this device ideally suited for spectroscopy applications.

  11. Failure mode analysis of degraded InGaAs-AlGaAs strained quantum well multi-mode vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Lingley, Zachary; Brodie, Miles; Huang, Michael; Bushmaker, Adam; Theiss, Jesse; Presser, Nathan; Foran, Brendan; Moss, Steven C.

    2016-03-01

    Remarkable progress made in vertical cavity surface emitting lasers (VCSELs) emitting at 850 and 980 nm has led them to find an increasing number of applications in high speed data communications as well as in potential space satellite systems. However, little has been reported on reliability and failure modes of InGaAs VCSELs emitting at ~980 nm although it is crucial to understand failure modes and underlying degradation mechanisms in developing these VCSELs that exceed lifetime requirements for space missions. The active layer of commercial VCSELs that we studied consisted of two or three InGaAs quantum wells. The laser structures were fabricated into deep mesas followed by a steam oxidation process to form oxide-apertures for current and optical confinements. Our multi- mode VCSELs showed a laser threshold of ~ 0.5 mA at RT. Failures were generated via accelerated life-testing of VCSELs. For the present study, we report on failure mode analysis of degraded oxide-VCSELs using various techniques. We employed nondestructive techniques including electroluminescence (EL), optical beam induced current (OBIC), and electron beam induced current (EBIC) techniques as well as destructive techniques including focused ion beam (FIB) and high-resolution TEM techniques to study VCSELs that showed different degradation behaviors. Especially, we employed FIB systems to locally remove a portion of top-DBR mirrors of degraded VCSELs, which made it possible for our subsequent EBIC and OBIC techniques to locate damaged areas that were generated as a result of degradation processes and also for our HR-TEM technique to prepare TEM cross sections from damaged areas. Our nondestructive and destructive physical analysis results are reported including defect and structural analysis results from pre-aged VCSELs as well as from degraded VCSELs life-tested under different test conditions.

  12. Chaos synchronization in mutually coupled long-wavelength vertical-cavity surface-emitting lasers with long delay time

    NASA Astrophysics Data System (ADS)

    Quirce, A.; Valle, A.; Thienpont, H.; Panajotov, K.

    2016-04-01

    We present an experimental study of the nonlinear dynamics and the chaos synchronization using an asymmetric all-fiber setup in mutually coupled but nonidentical 1550-nm VCSELs with a large total coupling delay time of 274.2 ns. The linear polarization of the two VCSELs is adjusted to be parallel to each other, i.e. to achieve parallel coupling. The results are analyzed in terms of the frequency detuning and the coupling strength between the two lasers. We define the frequency detuning as the emitting frequency difference between the solitary VCSEL 1 and VCSEL 2. For positive frequency detuning, limit cycle and period doubling have been observed. For zero and negative frequency detuning, periodic dynamics, polarization switching and chaotic behavior have been found. Novel results have been obtained for the suppressed polarization of both parallel mutually coupled VCSELs. CW emission and dynamics in the orthogonal polarization can appear for negative frequency detuning. We have analyzed the accuracy of chaos synchronization in both VCSELs given by the cross-correlation function. Good achronal chaotic synchronization is found, with a time shift that corresponds to the large coupling delay time between the lasers. The leader-laggard relationship is also investigated.

  13. Thermal oxidation rates of Al(x)Ga(1-x)As in H(2)O vapor and oxide-defined vertical cavity surface emitting laser characteristics

    NASA Astrophysics Data System (ADS)

    Ochiai, Mari

    The incorporation of oxides into semiconductor structures formed by the thermal oxidation of Alsb{x}Gasb{1-x}As in water vapor has resulted in a marked improvement in device performance. Vertical cavity surface emitting lasers (VCSEL's), in particular, have benefited from this technology, demonstrating record operating characteristics. This study focuses on the following areas with respect to oxide defined VCSEL's: the establishment of rate laws for the lateral oxidation of AlAs, the fabrication of VCSEL's, and the characterization of VCSEL's designed for high speed operation. An oxidation rate study was conducted on structures with AlAs oxidation layers. At low temperatures and short oxidation times, oxidation was found to be reaction rate limited. Conversely, diffusion across the oxide was determined to be the rate limiting mechanism at high temperature or long oxidation times. The observed rates can be modeled by rate equations by which the two component mechanisms can be separated. An activation energy of 1.6 eV and 0.8 eV was determined for the reaction and diffusion limited mechanism, respectively. A reduction in oxidation rates was observed with decreasing oxidation layer thickness and increasing doping concentration. The thickness dependence can be incorporated into the rate equations by assuming an oxidation reaction rate which is inhibited by the presence of strain in thin layers. The reaction rate can be characterized by a threshold thickness for which a value of 20 nm was determined for Alsb{x}Gasb{1-x}As. Oxide defined GaAs VCSEL's varying in size and oxidation layer composition were fabricated. Threshold currents of 450 muA and external differential quantum efficiencies of 0.5 were obtained. Finally, the large signal modulation characteristics of oxide defined VCSEL's were investigated. A threshold carrier lifetime of 1.6 nanoseconds VCSEL's was determined from laser turn-on delay measurements. The laser turn-on delay was also measured under various

  14. Vertical-cavity in-plane heterostructures: Physics and applications

    SciTech Connect

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2015-11-02

    We show that in-plane (lateral) heterostructures realized in vertical cavities with high contrast grating reflectors can be used to significantly modify the anisotropic dispersion curvature, also interpreted as the photon effective mass. This design freedom enables exotic configurations of heterostructures and many interesting applications. The effects of the anisotropic photon effective mass on the mode confinement, mode spacing, and transverse modes are investigated. As a possible application, the method of boosting the speed of diode lasers by engineering the photon-photon resonance is discussed. Based on this platform, we propose a system of two laterally coupled cavities, which shows the breaking of parity-time symmetry in vertical cavity structures.

  15. InGaAsP/AlGaAs multiple-wavelength vertical-cavity lasers and arrays in the 1.5-μm band fabricated by localized wafer fusion technique

    NASA Astrophysics Data System (ADS)

    Syrbu, Alexei V.; Iakovlev, Vladimir P.; Rudra, Alok P.; Berseth, Claude-Albert; Kapon, Eli E.; Mereuta, Alexandru Z.; Sagnes, Isabelle; Ougazzaden, Abdallah

    2000-02-01

    We have demonstrated InGaAsP/AlGaAs double fused 1.5 micrometers multiple wavelength vertical cavity lasers and arrays in which element definition is obtained by localized fusion. Laser elements emit in continuous wave under electrical and optical pumping. Multiple wavelength single element VCSELs have been fabricated in the same batch taking advantage of layer thickness nonuniformity of InGaAsP/InP material close to the edge of the wafer. To obtain multiple wavelength arrays a controllable cavity length variation using anodic oxidation has been performed. The wavelength span in an 8 by 1 laser array is 10 nm. Single mode operation with more than of 40 dB side mode suppression ratio is characteristic for laser elements in the array.

  16. Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Ikeyama, Kazuki; Kozuka, Yugo; Matsui, Kenjo; Yoshida, Shotaro; Akagi, Takanobu; Akatsuka, Yasuto; Koide, Norikatsu; Takeuchi, Tetsuya; Kamiyama, Satoshi; Iwaya, Motoaki; Akasaki, Isamu

    2016-10-01

    The room-temperature continuous-wave operation of a 1.5λ-cavity GaN-based vertical-cavity surface-emitting laser with an n-type conducting AlInN/GaN distributed Bragg reflector (DBR) was achieved. A peak reflectivity of over 99.9% was obtained in the n-type conducting AlInN/GaN DBR so that the current was injected through the DBR for the operation. The threshold current was 2.6 mA, corresponding to the threshold current density of 5.2 kA/cm2, and the operating voltage was 4.7 V. A lasing spectrum with a peak wavelength of 405.1 nm and a full-width at half maximum of 0.08 nm was also observed.

  17. Swept-source optical coherence tomography powered by a 1.3-μm vertical cavity surface emitting laser enables 2.3-mm-deep brain imaging in mice in vivo

    PubMed Central

    Choi, Woo June; Wang, Ruikang K.

    2015-01-01

    Abstract. We report noninvasive, in vivo optical imaging deep within a mouse brain by swept-source optical coherence tomography (SS-OCT), enabled by a 1.3-μm vertical cavity surface emitting laser (VCSEL). VCSEL SS-OCT offers a constant signal sensitivity of 105 dB throughout an entire depth of 4.25 mm in air, ensuring an extended usable imaging depth range of more than 2 mm in turbid biological tissue. Using this approach, we show deep brain imaging in mice with an open-skull cranial window preparation, revealing intact mouse brain anatomy from the superficial cerebral cortex to the deep hippocampus. VCSEL SS-OCT would be applicable to small animal studies for the investigation of deep tissue compartments in living brains where diseases such as dementia and tumor can take their toll. PMID:26447860

  18. Swept-source optical coherence tomography powered by a 1.3-μm vertical cavity surface emitting laser enables 2.3-mm-deep brain imaging in mice in vivo

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Wang, Ruikang K.

    2015-10-01

    We report noninvasive, in vivo optical imaging deep within a mouse brain by swept-source optical coherence tomography (SS-OCT), enabled by a 1.3-μm vertical cavity surface emitting laser (VCSEL). VCSEL SS-OCT offers a constant signal sensitivity of 105 dB throughout an entire depth of 4.25 mm in air, ensuring an extended usable imaging depth range of more than 2 mm in turbid biological tissue. Using this approach, we show deep brain imaging in mice with an open-skull cranial window preparation, revealing intact mouse brain anatomy from the superficial cerebral cortex to the deep hippocampus. VCSEL SS-OCT would be applicable to small animal studies for the investigation of deep tissue compartments in living brains where diseases such as dementia and tumor can take their toll.

  19. Effect of the photon lifetime on the characteristics of 850-nm vertical-cavity surface-emitting lasers with fully doped distributed Bragg reflectors and an oxide current aperture

    SciTech Connect

    Bobrov, M. A.; Blokhin, S. A. Kuzmenkov, A. G.; Maleev, N. A.; Blokhin, A. A.; Zadiranov, Yu. M.; Nikitina, E. V.; Ustinov, V. M.

    2014-12-15

    The effect of the photon lifetime in an optical microcavity on the characteristics of 850-nm vertical-cavity surface-emitting lasers (VCSELs) with fully doped distributed Bragg reflectors (DBRs) and an oxide current aperture is studied. The photon lifetime in the microcavity is controlled by varying the upper DBR reflectance. It is found that the speed of VCSELs with a current-aperture diameter of 10 μm is mainly limited by the self-heating effect, despite an increase in the relaxation-oscillation damping coefficient with increasing photon lifetime in the microcavity. At the same time, the higher level of internal optical loss in lasers with a current-aperture diameter of 1.5 μm leads to dominance of the effect of relaxation-oscillation damping independently of the radiation output loss. In the case of devices with a current-aperture diameter of 5.5 μm, both mechanisms limiting the speed operate, which allow an increase in the VCSEL effective modulation frequency from 21 to 24 GHz as the photon lifetime decreases from 3.7 to 0.8 ps.

  20. A Novel, Free-Space Optical Interconnect Employing Vertical-Cavity Surface Emitting Laser Diodes and InGaAs Metal-Semiconductor-Metal Photodetectors for Gbit/s RF/Microwave Systems

    NASA Technical Reports Server (NTRS)

    Savich, Gregory R.; Simons, Rainee N.

    2006-01-01

    Emerging technologies and continuing progress in vertical-cavity surface emitting laser (VCSEL) diode and metal-semiconductor-metal (MSM) photodetector research are making way for novel, high-speed forms of optical data transfer in communication systems. VCSEL diodes operating at 1550 nm have only recently become commercially available, while MSM photodetectors are pushing the limits of contact lithography with interdigitated electrode widths reaching sub micron levels. We propose a novel, free-space optical interconnect operating at about 1Gbit/s utilizing VCSEL diodes and MSM photodetectors. We report on development, progress, and current work, which are as follows: first, analysis of the divergent behavior of VCSEL diodes for coupling to MSM photodetectors with a 50 by 50 m active area and second, the normalized frequency response of the VCSEL diode as a function of the modulating frequency. Third, the calculated response of MSM photodetectors with varying electrode width and spacing on the order of 1 to 3 m as well as the fabrication and characterization of these devices. The work presented here will lead to the formation and characterization of a fully integrated 1Gbit/s free-space optical interconnect at 1550 nm and demonstrates both chip level and board level functionality for RF/microwave digital systems.

  1. Anomalous lasing of high-speed 850 nm InGaAlAs oxide-confined vertical-cavity surface-emitting lasers with a large negative gain-to-cavity wavelength detuning

    SciTech Connect

    Blokhin, S. A. Bobrov, M. A.; Maleev, N. A.; Sakharov, A. V.; Ustinov, V. M.; Kuzmenkov, A. G.; Blokhin, A. A.; Moser, P.; Lott, J. A.; Bimberg, D.

    2014-08-11

    The impact of a large negative quantum well gain-to-cavity etalon wavelength detuning on the static and dynamic characteristics of 850 nm InGaAlAs high-speed oxide-confined vertical-cavity surface-emitting lasers (VCSELs) was investigated. Three distinct lasing regimes were revealed in large square aperture (≥7 μm per side) devices with large detuning including: (1) an anomalous lasing via higher order Hermite–Gaussian modes at low forward bias current; (2) lasing via the lowest order Hermite–Gaussian modes at high bias current; and (3) simultaneous lasing via both types of transverse modes at intermediate bias currents. In contrast to conventional multimode VCSELs a two-resonance modulation response was observed for the case of co-lasing via multiple transverse modes with high spectral separation. The reduction in the oxide aperture area resulted in classical lasing via the lowest order modes with a conventional single-resonance frequency response.

  2. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators

    NASA Astrophysics Data System (ADS)

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2011-06-01

    We describe the factors that go into the component choices for a short wavelength IR (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7 °C. In addition, we have mated our InGaAs detector arrays to 640×512 readout integrated integrated circuits to make focal plane arrays (FPAs). The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 μm at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0 °C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling. In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, and provide artifact-free imagery versus conventional laser illuminators.

  3. 850-nm Zn-diffusion vertical-cavity surface-emitting lasers with with oxide-relief structure for high-speed and energy-efficient optical interconnects from very-short to medium (2km) reaches

    NASA Astrophysics Data System (ADS)

    Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jason (Jyehong); Yang, Ying-Jay

    2015-03-01

    High-speed and "green" ~850 nm vertical-cavity surface-emitting lasers (VCSELs) have lately attracted lots of attention due to their suitability for applications in optical interconnects (OIs). To further enhance the speed and its maximum allowable linking distance of VCSELs are two major trends to meet the requirement of OI in next generation data centers. Recently, by use of the advanced 850 nm VCSEL technique, data rate as high as 64 Gbit/sec over 57m and 20 Gbit/sec over 2km MMF transmission have been demonstrated, respectively. Here, we will review our recent work about 850 nm Zn-diffusion VCSELs with oxide-relief apertures to further enhance the above-mentioned performances. By using Zn-diffusion, we can not only reduce the device resistance but also manipulate the number of optical modes to benefit transmission. Combing such device, which has excellent single-mode (SMSR >30 dB) and high-power (~7mW) performance, with advanced modulation format (OFDM), record-high bit-rate-distance-product through MMF (2.3 km×28 Gbit/sec) has been demonstrated. Furthermore, by selective etching away the oxide aperture inside Zn-diffusion VCSEL, significant enhancement of device speed, D-factor, and reliability can be observed. With such unique VCSEL structure, >40 Gbit/sec energy-efficient transmission over 100m MMF under extremely low-driving current density (<10kA/cm2) has been successfully demonstrated.

  4. Impact of a large negative gain-to-cavity wavelength detuning on the performance of InGaAlAs oxide-confined vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Blokhin, Sergey A.; Bobrov, Mikhail A.; Maleev, Nikolai A.; Kuzmenkov, Alexander G.; Sakharov, Alexey V.; Blokhin, Alexey A.; Moser, Philip; Lott, James A.; Bimberg, Dieter; Ustinov, Viktor M.

    2015-03-01

    Vertical-cavity surface-emitting lasers (VCSELs) based on the InGaAlAs-materials system on GaAs substrates are the key component for short-reach data and computer communications systems. Several different modulation schemes have been developed to realize high data bit rates based on various oxide-confined near-infrared VCSEL designs operated under direct current modulation. However, one open question to resolve is the optimal gain-to-cavity wavelength detuning to employ for temperature-stable high-speed performance. We investigate the static and dynamic characteristics of 850 nm high-speed oxide-confined VCSELs with different negative gain-to-cavity wavelength detunings. Our oxideconfined 850 nm VCSELs with a more common ~10 nm negative gain-to-cavity detuning demonstrate the conventional optical mode behavior with a classical single-resonance frequency response. With a larger (≥ 20 nm) negative detuning, our devices with large oxide-aperture size (>6 μm) show an anomalous start of lasing via higher order modes with a subsequent switching to lasing via the lowest order modes at higher currents. At intermediate currents, co-lasing via two types of transverse modes and a two-resonance modulation response is observed. The increase of operation temperature as well as the reduction in the oxide-aperture area resulted in classical lasing of index-guided VCSELs. The observed optical mode behavior can be attributed to the specific index guiding profile caused by the oxide-apertures, low internal optical losses, and the large gain-to-cavity detuning. Moreover, one can suggest that the complex shape of the modulation response results from the mode competition for the available gain during an interesting co-lasing operating regime.

  5. MEMS-tunable vertical-cavity SOAs

    NASA Astrophysics Data System (ADS)

    Cole, Garrett D.

    Vertical-cavity semiconductor optical amplifiers (VCSOAs) are attractive as a low-cost alternative to existing amplifier technologies for use in fiber-optic communication systems such as metro and access networks. In contrast with in-plane SOAs, the surface-normal operation of vertical-cavity SOAs gives rise to a number of advantages including a high coupling efficiency to optical fiber, polarization insensitive gain, the potential to fabricate high fill-factor two-dimensional arrays, and the ability to test devices on wafer. Due to their narrow gain bandwidth, VCSOAs function as amplifying filters. In these devices the inherent spectral filtering of the high-finesse Fabry-Perot cavity leads to the elimination of out-of-band noise and results in channel-selective amplification. For multi-wavelength communications systems, it is of great interest to develop widely tunable VCSOAs that can be dynamically adjusted to match the signal wavelength. A promising approach to achieve wide wavelength tuning in VCSOAs is micromechanical, or MEMS-based tuning. Here, mechanical alteration of the effective cavity length gives rise to tuning ranges greater than those that can be achieved via refractive index modulation. This dissertation outlines the development of three generations of MEMS-tunable VCSOAs (MT-VCSOAs), with the initial generation of devices being noteworthy as the first demonstration of a micromechanically-tunable VCSOA. In contrast with temperature tuning, the AlGaAs-based electrostatic actuator used in these devices allows for rapid, low power, and wide wavelength tuning. In the final generation, the MT-VCSOA utilizes a bottom-emitting configuration in which the MEMS-tuning element serves as the high-reflectivity back mirror. By suppressing the variation in reflectance with tuning, this configuration exhibits a two-fold increase in the effective tuning range as compared with the initial generation of devices---with a minimum of 5 dB fiber-to-fiber gain (12 dB on

  6. Long wavelength vertical-cavity light-emitting devices

    NASA Astrophysics Data System (ADS)

    Christenson, Gina Lee

    Long wavelength tunable transmitters are essential in the field of optical communications. Wavelength control and cost reduction are very important issues, especially in applications such as wavelength division multiplexing (WDM) networks, where several closely spaced wavelengths are transmitted and processed simultaneously. This thesis introduces a transmitter design that can alleviate these problems. This work involves the development, fabrication, and characterization of a narrowband tunable resonant cavity light-emitting diode (LED). The emission is centered at 1.51 mum, an important wavelength for optical communications. The linewidth is only 4 nm and the tuning range covers 75 nm. Wafer bonding and surface micromachining techniques have been integrated in the design to produce a structure that combines the assets of each technology. Wafer bonding is used to build the base for a vertical cavity surface emitting laser (VCSEL) structure, which is composed of an InP-based active layer on a GaAs-based mirror. Surface micromachining is then used to fabricate the suspended top mirror of the VCSEL, in place of the traditional top mirror that is grown directly on the VCSEL structure. The suspended mirror moves towards the substrate with the application of a voltage, thus changing the Fabry-Perot cavity length and providing the wavelength tunability of the device. This transmitter design relaxes the need for preset wavelengths in VCSEL processing by allowing the user to adjust the central wavelength after processing. Arrays of transmitters with identical wavelengths for high power applications or with gradually decreasing emission wavelengths across a wafer can also be achieved. The tunability of the devices allows for real time wavelength monitoring and tracking to ensure stability of the wavelengths with temperature or environmental changes, as well as compensating for shifts in wavelength due to degradation of the devices over time. Due to the monolithic, vertical

  7. Laser addressed holographic memory system

    NASA Technical Reports Server (NTRS)

    Gange, R. A.; Wagle, E. M.; Steinmetz, C. C.

    1973-01-01

    Holographic recall and storage system uses red-lipid microcrystalline wax as storage medium. When laser beam strikes wax, its energy heats point of incidence enough to pass wax through transition temperature. Holograph image can then be written or erased in softened wax.

  8. Near Field and Far Field Effects in the Taguchi-Optimized Design of AN InP/GaAs-BASED Double Wafer-Fused Mqw Long-Wavelength Vertical-Cavity Surface-Emitting Laser

    NASA Astrophysics Data System (ADS)

    Menon, P. S.; Kandiah, K.; Mandeep, J. S.; Shaari, S.; Apte, P. R.

    Long-wavelength VCSELs (LW-VCSEL) operating in the 1.55 μm wavelength regime offer the advantages of low dispersion and optical loss in fiber optic transmission systems which are crucial in increasing data transmission speed and reducing implementation cost of fiber-to-the-home (FTTH) access networks. LW-VCSELs are attractive light sources because they offer unique features such as low power consumption, narrow beam divergence and ease of fabrication for two-dimensional arrays. This paper compares the near field and far field effects of the numerically investigated LW-VCSEL for various design parameters of the device. The optical intensity profile far from the device surface, in the Fraunhofer region, is important for the optical coupling of the laser with other optical components. The near field pattern is obtained from the structure output whereas the far-field pattern is essentially a two-dimensional fast Fourier Transform (FFT) of the near-field pattern. Design parameters such as the number of wells in the multi-quantum-well (MQW) region, the thickness of the MQW and the effect of using Taguchi's orthogonal array method to optimize the device design parameters on the near/far field patterns are evaluated in this paper. We have successfully increased the peak lasing power from an initial 4.84 mW to 12.38 mW at a bias voltage of 2 V and optical wavelength of 1.55 μm using Taguchi's orthogonal array. As a result of the Taguchi optimization and fine tuning, the device threshold current is found to increase along with a slight decrease in the modulation speed due to increased device widths.

  9. Magnetic shielding for the Fermilab Vertical Cavity Test Facility

    SciTech Connect

    Ginsburg, Camille M.; Reid, Clark; Sergatskov, Dmitri A.; /Fermilab

    2008-09-01

    A superconducting RF cavity has to be shielded from magnetic fields present during cool down below the critical temperature to avoid freezing in the magnetic flux at localized impurities, thereby degrading the cavity intrinsic quality factor Q{sub 0}. The magnetic shielding designed for the Fermilab vertical cavity test facility (VCTF), a facility for CW RF vertical testing of bare ILC 1.3 GHz 9-cell SRF cavities, was recently completed. For the magnetic shielding design, we used two cylindrical layers: a room temperature 'outer' shield of Amumetal (80% Ni alloy), and a 2K 'inner' shield of Cryoperm 10. The magnetic and mechanical design of the magnetic shielding and measurement of the remanent magnetic field inside the shielding are described.

  10. Coherence optimization of vertical-cavity semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Sanchez, Michael; Wen, Pengyue; Gross, Matthias; Kibar, Osman; Esener, Sadik C.

    2002-06-01

    Vertical cavity semiconductor optical amplifiers (VCSOAs) are attractive devices for use in coherent optical amplification, especially where 2-D amplifier arrays are required. However, the coherence preservation quality of a VCSOA depends strongly on the bias condition, resonant wavelength mismatch, and the optical input power level. We characterize the coherence degree of a VCSOA as a function of these parameters by measuring interference fringe visibility with an interferometer. The dominant factors influencing the contrast of the fringes are the ratio of coherent, stimulated emission photons to amplified spontaneous emission (ASE) photons, and the spectral distortion of the amplified signal. Mostly, the overall gain and the saturation characteristic of the amplifier determine the ratio of stimulated emission to ASE. The spectral distortion of the signal is due to the narrow gain window of the VCSOA, but the effect significantly degrades the visibility only for relatively large wavelength mismatch from the gain peak. Analytic expressions may be used to identify the optimal bias current and optical input power to maximize the amplifier gain and visibility of the interference.

  11. Radiation shielding for the Fermilab Vertical Cavity Test Facility

    SciTech Connect

    Ginsburg, Camille; Rakhno, Igor; /Fermilab

    2010-03-01

    The results of radiation shielding studies for the vertical test cryostat VTS1 at Fermilab performed with the codes FISHPACT and MARS15 are presented and discussed. The analysis is focused on operations with two RF cavities in the cryostat. The vertical cavity test facility (VCTF) for superconducting RF cavities in Industrial Building 1 at Fermilab has been in operation since 2007. The facility currently consists of a single vertical test cryostat VTS1. Radiation shielding for VTS1 was designed for operations with single 9-cell 1.3 GHz cavities, and the shielding calculations were performed using a simplified model of field emission as the radiation source. The operations are proposed to be extended in such a way that two RF cavities will be in VTS1 at a time, one above the other, with tests for each cavity performed sequentially. In such a case the radiation emitted during the tests from the lower cavity can, in part, bypass the initially designed shielding which can lead to a higher dose in the building. Space for additional shielding, either internal or external to VTS1, is limited. Therefore, a re-evaluation of the radiation shielding was performed. An essential part of the present analysis is in using realistic models for cavity geometry and spatial, angular and energy distributions of field-emitted electrons inside the cavities. The calculations were performed with the computer codes FISHPACT and MARS15.

  12. Cryogenic Infrastructure for Fermilab's Ilc Vertical Cavity Test Facility

    NASA Astrophysics Data System (ADS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.

    2008-03-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R&D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  13. CRYOGENIC INFRASTRUCTURE FOR FERMILAB'S ILC VERTICAL CAVITY TEST FACILITY

    SciTech Connect

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.

    2008-03-16

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  14. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    SciTech Connect

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; /Fermilab

    2006-06-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R&D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  15. Vertical cavity lasing from melt-grown crystals of cyano-substituted thiophene/phenylene co-oligomer

    SciTech Connect

    Tanaka, Yosuke; Yanagi, Hisao; Goto, Kaname; Yamashita, Kenichi; Yamao, Takeshi; Hotta, Shu; Sasaki, Fumio

    2015-10-19

    Vertical-cavity organic lasers are fabricated with melt-grown crystals of a cyano-substituted thiophene-phenylene co-oligomer. Due to lying molecular orientation, surface-emitting lasing is achieved even in the half-cavity crystal grown on a distributed Bragg reflector (DBR) under optical pumping at room temperature. Anticrossing splits in angle-resolved photoluminescence spectra suggest the formation of exciton-polaritons between the cavity photons and the confined Frenkel excitons. By constructing the full-cavity structure sandwiched between the top and bottom DBRs, the lasing threshold is reduced to one order, which is as low as that of the half cavity. Around the threshold, the time profile of the full-cavity emission is collapsed to a pulsed shape accompanied by a finite turn-on delay. We discuss these observed characteristics in terms of a polariton contribution to the conventional photon lasing.

  16. The variable input coupler for the Fermilab Vertical Cavity Test Facility

    SciTech Connect

    Champion, Mark; Ginsburg, Camille M.; Lunin, Andrei; Moeller, Wolf-Dietrich; Nehring, Roger; Poloubotko, Valeri; /Fermilab

    2008-09-01

    A variable input coupler has been designed for the Fermilab vertical cavity test facility (VCTF), a facility for CW RF vertical testing of bare ILC 1.3 GHz 9-cell SRF cavities at 2K, to provide some flexibility in the test stand RF measurements. The variable coupler allows the cavity to be critically coupled for all RF tests, including all TM010 passband modes, which will simplify or make possible the measurement of those modes with very low end-cell fields, e.g., {pi}/9 mode. The variable coupler assembly mounts to the standard input coupler port on the cavity, and uses a cryogenic motor submerged in superfluid helium to control the antenna position. The RF and mechanical design and RF test results are described.

  17. Q-switched operation of a coupled-resonator vertical-cavity laser diode

    SciTech Connect

    FISCHER,ARTHUR J.; CHOW,WENG W.; CHOQUETTE,KENT D.; ALLERMAN,ANDREW A.; GEIB,KENT M.

    2000-02-08

    The authors report Q-switched operation from an electrically-injected monolithic coupled-resonator structure which consists of an active cavity with InGaAs quantum wells optically coupled to a passive cavity. The passive cavity contains a bulk GaAs region which is reverse-biased to provide variable absorption at the lasing wavelength of 990 nm. Cavity coupling is utilized to effect large changes in output intensity with only very small changes in passive cavity absorption. The device is shown to produce pulses as short as 150 ps at repetition rates as high 4 GHz. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulse shape. Small-signal frequency response measurements also show a transition from a slower ({approximately} 300 MHZ) forward-biased modulation regime to a faster ({approximately} 2 GHz) modulation regime under reverse-bias operation.

  18. Proton Irradiation Effects in Oxide-Confined Vertical Cavity Surface Emitting Laser (VCSEL) Diodes

    SciTech Connect

    Armendariz, M.G.; Barnes, C.E.; Choquette, K.D.; Guertin, S.; Hash, G.L.; Schwank, J.R.; Swift, G.M.

    1999-03-11

    Recent space experience has shown that the use of commercial optocouplers can be problematic in spacecraft, such as TOPEX/Poseidon, that must operate in significant radiation environments. Radiation--induced failures of these devices have been observed in space and have been further documented at similar radiation doses in the laboratory. The ubiquitous use of optocouplers in spacecraft systems for a variety of applications, such as electrical isolation, switching and power transfer, is indicative of the need for optocouplers that can withstand the space radiation environment. In addition, the distributed nature of their use implies that it is not particularly desirable to shield optocouplers for use in radiation environments. Thus, it will be important for the space community to have access to radiation hardened/tolerant optocouplers. For many microelectronic and photonic devices, it is difficult to achieve radiation hardness without sacrificing performance. However, in the case of optocouplers, one should be able to achieve both superior radiation hardness and performance for such characteristics as switching speed, current transfer ratio (CTR), minimum power usage and array power transfer, if standard light emitting diodes (LEDs), such as those in the commercial optocouplers mentioned above, are avoided, and VCSELs are employed as the emitter portion of the optocoupler. The physical configuration of VCSELs allows one to achieve parallel use of an array of devices and construct a multichannel optocoupler in the standard fashion with the emitters and detectors looking at each other. In addition, detectors similar in structure to the VCSELs can be fabricated which allows bidirectional functionality of the optocoupler. Recent discussions suggest that VCSELs will enjoy widespread applications in the telecommunications and data transfer fields.

  19. Modeling of optically controlled reflective bistability in a vertical cavity semiconductor saturable absorber

    NASA Astrophysics Data System (ADS)

    Mishra, L.

    2015-05-01

    Bistability switching between two optical signals has been studied theoretically utilizing the concept of cross absorption modulation in a vertical cavity semiconductor saturable absorber (VCSSA). The probe beam is fixed at a wavelength other than the low power cavity resonance wavelength, which exhibits bistable characteristic by controlling the power of a pump beam (λpump≠λprobe). The cavity nonlinear effects that arises simultaneously from the excitonic absorption bleaching, and the carrier induced nonlinear index change has been considered in the model. The high power absorption in the active region introduces thermal effects within the nonlinear cavity due to which the effective cavity length changes. This leads to a red-shift of the cavity resonance wavelength, which results a change in phase of the optical fields within the cavity. In the simulation, the phase-change due to this resonance shifting is considered to be constant over time, and it assumes the value corresponding to the maximum input power. Further, an initial phase detuning of the probe beam has been considered to investigate its effect on switching. It is observed from the simulated results that, the output of the probe beam exhibits either clockwise or counter-clockwise bistability, depending on its initial phase detuning.

  20. Nonlinear semiconductor lasers and amplifiers for all-optical information processing.

    PubMed

    Adams, M J; Hurtado, A; Labukhin, D; Henning, I D

    2010-09-01

    The nonlinear properties of semiconductor lasers and laser amplifiers when subject to optical injection are reviewed and new results are presented for multisection lasers, vertical cavity semiconductor optical amplifiers, and surface-emitting lasers. The main underlying material parameters are outlined and the key design approaches are discussed for both edge-emitting and vertical cavity devices. An overview of theoretical modeling approaches is discussed and a summary of key experimental results is presented. The practical use of optically injected edge-emitting and vertical cavity semiconductor lasers and laser amplifiers is illustrated with examples of applications including, among others, optical logic and chaotic communication.

  1. Phase correction in a laser chain using an optically addressed LC SLM

    NASA Astrophysics Data System (ADS)

    Wattelier, B.; Chanteloup, Jean-Christophe; Zou, Jiping; Sauteret, A.; Migus, Arnold; Huignard, Jean-Pierre; Loiseaux, Brigitte

    2001-11-01

    We show wave front correction of a 300 fs/60J laser pulse serie. This correction is based on an optically addressed liquid crystal optical valve (OASLM) which induces high resolution phase modulations. When performed before complete thermal relaxation of the laser Nd:glass amplifiers, this correction allows to increase the system repetition rate by a factor three.

  2. Self-assembled InAs quantum dots within a vertical cavity structure for all-optical switching devices

    NASA Astrophysics Data System (ADS)

    Jin, C. Y.; Kojima, O.; Inoue, T.; Kita, T.; Wada, O.; Hopkinson, M.; Akahane, K.

    2010-02-01

    An all-optical switching device has been proposed by using self-assembled InAs/GaAs quantum dots (QDs) within a vertical cavity structure for ultrafast optical communications. This device has several desirable properties, such as the ultra-low power consumption, the micrometre size, and the polarization insensitive operation. Due to the threedimensional confined carrier state and the broad size distribution of self-assembled InAs/GaAs QDs, it is crucial to enhance the interaction between QDs and the cavity with appropriately designed 1D periodic structure. Significant QD/cavity nonlinearity is theoretically observed by increasing the GaAs/AlAs pair number of the bottom mirror. By this consideration, we have fabricated vertical-reflection type QD switches with 12 periods of GaAs/Al0.8Ga0.2As for the top mirror and 25 periods for the bottom mirror to give an asymmetric vertical cavity. Optical switching via the QD excited state exhibits a fast switching process with a time constant down to 23 ps, confirming that the fast intersubband relaxation of carriers inside QDs is an effective means to speed up the switching process. A technique by changing the light incident angle realizes wavelength tunability over 30 nm for the QD/cavity switch.

  3. Ultrafast Laser Beam Switching and Pulse Train Generation by Using Coupled Vertical-Cavity, Surface-Emitting Lasers (VCSELS)

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor); Ning, Cun-Zheng (Inventor)

    2005-01-01

    Ultrafast directional beam switching is achieved using coupled VCSELs. This approach is demonstrated to achieve beam switching frequencies of 40 GHz and more and switching directions of about eight degrees. This switching scheme is likely to be useful for ultrafast optical networks at frequencies much higher than achievable with other approaches.

  4. Address substrates as promising targets for laser histochemical surgery as a nontraditional line in medicine

    NASA Astrophysics Data System (ADS)

    Piruzyan, L. A.; Mikhailovskiy, Ye. M.; Piruzyan, A. L.

    1999-12-01

    The priority concept of the laser histochemical surgery as a potentially novel line in medicine is presented. The histochemical stains, selectively coloring some targets (address substrates), that are cells or their biochemical ingredients, sensitize them to the laser irradiation. Such sensitization to laser irradiation by staining turns the colored targets into targets for the laser beam. The action of the irradiation onto its specific targets beats out of the cell its ingredients which participate in a pathology process. In particular, the beating of a stained ferment out of the general stage of biochemical processes characteristic for the pathology interrupts their currence. The laser beam, when beating out its stained targets without any damage of the unstained tissues, acts like a scalpel that cuts off affected tissues not brushing healthy ones. A scheme for testing stains as sensitizers of the `address substrates' to the laser irradiation is presented. As the criterion of the stain sensitization the fact was chosen of absence or weakness of pathomorphologic and biochemical signs of the disease in an experimental model of the pathology irradiated with laser after a stain use, while the pathology signs are present in a control sample. The basis is done for study of the histochemical stains as potential means for the laser histochemical surgery of disseminated sclerosis, mucopolysaccharidosis, hypercholesterolemia, myocardial infarction, cardiosclerosis, caries and parodontosis.

  5. Occasional Addresses by Edward Teller at Conferences of Laser Interaction and Related Plasma Phenomena (LIRPP)

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Miley, George H.

    2016-10-01

    The following sections are included: * Futurology of High Intensity Lasers (LIRPP Vol. 3A) * Lecture in Connection with the Edward Teller Medal Award (LIRPP Vol. 10) * Photo of the First Recipients of the Edward Teller Medal in 1991 * Photos from the Edward Teller Medal Celebration in 1997 * Photo with Participants of the LIRPP No. 12 Conference, 1995 * Photo with Edward Teller Medalists at IFSA01, Kyoto, 2001 * Keynote Address: The Edward Teller Lecture (LIRPP Vol. 11) * Keynote Address: Dr. Edward Teller (LIRPP Vol. 12) * Teller Award Presentation and Keynote Address (LIRPP Vol. 13) * Laudations of Awardees 1991-1995 (LIRPP Vol. 13) * Laudations of Awardees 1999-2003

  6. Bistability characteristics of different types of optical modes amplified by quantum dot vertical cavity semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Qasaimeh, Omar

    2016-04-01

    We have studied the characteristics of optical bistability of different types of optical modes amplified by small-size quantum dot vertical cavity semiconductor optical amplifiers operated in reflection. Our analysis reveals that TE01 mode exhibits stronger intensity-dependent non-linearity in small radius devices, which results in stronger optical phase modulation and therefore larger hysteresis width compared with the other modes. The effect of the wavelength detuning of the input signal on the shape of the hysteresis loop is studied. We find that butterfly hysteresis loop exhibits the largest hysteresis width compared with clockwise and counterclockwise loops. Our analysis reveals that doping the quantum dots with p-type doping slightly reduces the hysteresis width while doping the dots with n-type doping clearly increases the hysteresis width for any wavelength detuning. We estimate that the hysteresis width of quantum dot active layer will exhibit higher hysteresis width compared with quantum well active layer having the same threshold gain.

  7. Multiple wavelength vertical-cavity surface-emitting laser arrays using surface-controlled MOCVD growth rate enhancement and reduction

    SciTech Connect

    Ortiz, G.G.; Hains, C.P.; Luong, S.; Cheng, J.; Hou, H.Q.; Vawter, G.A.

    1997-04-01

    Multiple-wavelength VCSEL and photodetector arrays are useful for wavelength-multiplexed fiberoptic networks, and for optical crosstalk isolation in parallel, free-space interconnects. Multiple wavelength VCSEL arrays have been obtained by varying the growth rate using thermal gradients caused by a backside-patterned substrate, by growth enhancement on a patterned substrate, and by varying the cavity length through anodic oxidation and selective etching of the wafer. We show here for the first time both the enhancement and the reduction of the growth rate of the entire VCSEL structure on a topographically patterned substrate, and demonstrate the controlled variation of the lasing wavelengths of a VCSEL array over an extended spectral range.

  8. Binary arithmetic using optical symbolic substitution and integrated phototransistor surface-emitting laser logic

    SciTech Connect

    Cheng, J. ); Olbright, G.R.; Bryan, R.P. )

    1991-10-20

    We outline an architecture for performing binary addition by using optical symbolic substitution and optical logic gates based on heterojunction phototransistors and vertical-cavity surface-emitting lasers.

  9. Near-infrared compressive line sensing imaging system using individually addressable laser diode array

    NASA Astrophysics Data System (ADS)

    Ouyang, Bing; Hou, Weilin; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.; Gong, Sue; Britton, Walter

    2015-05-01

    The compressive line sensing (CLS) active imaging system was proposed and validated through a series of test-tank experiments. As an energy-efficient alternative to the traditional line-scan serial image, the CLS system will be highly beneficial for long-duration surveillance missions using unmanned, power-constrained platforms such as unmanned aerial or underwater vehicles. In this paper, the application of an active spatial light modulator (SLM), the individually addressable laser diode array, in a CLS imaging system is investigated. In the CLS context, active SLM technology can be advantageous over passive SLMs such as the digital micro-mirror device. Initial experimental results are discussed.

  10. Position-addressable digital laser scanning point fluorescence microscopy with a Blu-ray disk pickup head

    PubMed Central

    Tsai, Rung-Ywan; Chen, Jung-Po; Lee, Yuan-Chin; Huang, Chun-Chieh; Huang, Tai-Ting; Chiang, Hung-Chih; Cheng, Chih-Ming; Lo, Feng-Hsiang; Chang, Sheng-Li; Weng, Kuo-Yao; Chung, Lung-Pin; Chen, Jyh-Chern; Tiao, Golden

    2014-01-01

    A compact and position-addressable blue ray scanning microscope (BSM) based on a commercially available Blu-ray disk pickup head (PUH) is developed for cell imaging with high resolution and low cost. The BSM comprises two objective lenses with numerical apertures (NAs) of 0.85 and 0.6 for focusing blue and red laser beams, respectively, on the sample slide. The blue and red laser beams are co-located adjacent to each other and move synchronously. A specially designed sample slide is used with a sample area and an address-patterned area for sample holding and address recognition, respectively. The blue laser beam is focused on the sample area and is used for fluorescent excitation and image capturing, whereas the red laser beam is focused on the address-patterned area and is used for address recognition and dynamic focusing. The address-patterned area is divided into 310 sectors. The cell image of each sector of the sampling area has a corresponding address pattern. Fluorescence images of monkey-derived kidney epithelial cells and fibroblast cells in which the F-actin is stained with fluorophore phalloidin CF 405 are measured by the BSM, with results comparable to those measured by a Leica TCS CP2 confocal microscope. The cell image of an area of interest can be easily tracked based on the coded address, and a large-area sample image can be accurately reconstructed from the sector images. PMID:24575338

  11. Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture

    NASA Astrophysics Data System (ADS)

    Missaggia, Leo; Wang, Christine; Connors, Michael; Saar, Brian; Sanchez-Rubio, Antonio; Creedon, Kevin; Turner, George; Herzog, William

    2016-03-01

    There are a number of military and commercial applications for high-power laser systems in the mid-to-long-infrared wavelength range. By virtue of their demonstrated watt-level performance and wavelength diversity, quantum cascade laser (QCL) and amplifier devices are an excellent choice of emitter for those applications. To realize the power levels of interest, beam combining of arrays of these emitters is required and as a result, array technology must be developed. With this in mind, packaging and thermal management strategies were developed to facilitate the demonstration of a monolithic QCL array operating under CW conditions. Thermal models were constructed and simulations performed to determine the effect of parameters such as array-element ridge width and pitch on gain region temperature rise. The results of the simulations were considered in determining an appropriate QCL array configuration. State-of-the-art micro-impingement cooling along with an electrical distribution scheme comprised of AlN multi-layer technology were integrated into the design. The design of the module allows for individual electrical addressability of the array elements, a method of phase control demonstrated previously for coherent beam combining of diode arrays, along with access to both front and rear facets. Hence, both laser and single-pass amplifier arrays can be accommodated. A module was realized containing a 5 mm cavity length monolithic QCL array comprised of 7 elements on 450 m pitch. An output power of 3.16 W was demonstrated under CW conditions at an emission wavelength of 9μm.

  12. Semiconductor laser with multiple lasing wavelengths

    DOEpatents

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-07-29

    A new class of multi-terminal vertical-cavity semiconductor laser components has been developed. These multi-terminal laser components can be switched, either electrically or optically, between distinct lasing wavelengths, or can be made to lase simultaneously at multiple wavelengths.

  13. AlGaInN laser diode bar and array technology for high-power and individual addressable applications

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Boćkowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.

    2016-04-01

    The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well, giving rise to new and novel applications for medical, industrial, display and scientific purposes. Ridge waveguide laser diode structures are fabricated to achieve single mode operation with high optical powers of >100mW with high reliability. Low defectivity and highly uniform GaN substrates allow arrays and bars of nitride lasers to be fabricated. We demonstrate the operation of monolithic AlGaInN laser bars with up to 20 emitters giving optical powers up to 4W cw at ~395nm with a common contact configuration. These bars are suitable for optical pumps and novel extended cavity systems. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space and/or fibre optic system integration within a very small form-factor.

  14. Addressing Control of Hazardous Energy (COHE) Requirements in a Laser Safety Program

    SciTech Connect

    Woods, Michael; /SLAC

    2012-02-15

    OSHA regulation 29CFR1910.147 specifies control of hazardous energy requirements for 'the servicing and maintenance of machines and equipment in which the unexpected energization or start up of the machines or equipment, or release of stored energy could cause injury to employees.' Class 3B and Class 4 laser beams must be considered hazardous energy sources because of the potential for serious eye injury; careful consideration is therefore needed to safely de-energize these lasers. This paper discusses and evaluates control of hazardous energy principles in this OSHA regulation, in ANSI Z136.1 ''Safe Use of Lasers,'' and in ANSI Z244.1 ''Control of Hazardous Energy, Lockout/Tagout and Alternative Methods.'' Recommendations are made for updating and improving CoHE (control of hazardous energy) requirements in these standards for their applicability to safe laser operations.

  15. Addressing the Numerical Challenges Associated With Laser-Induced Melt Convection

    NASA Astrophysics Data System (ADS)

    Weston, Brian; Nourgaliev, Robert; Delplanque, Jean Pierre; Anderson, Andy

    2015-11-01

    We present a new robust and efficient numerical framework for simulating multi-material flows with phase change. The work is motivated by laser-induced phase change applications, particularly the selective laser melting (SLM) process in additive manufacturing. Physics-based simulations of the laser melt dynamics requires a fully compressible framework, since incompressible flow solvers are inefficient for stiff systems, arising from laser-induced rapid phase change. In this study, the liquid and solid phases are both modeled with the compressible Navier-Stokes equations. The solid phase has an additional combined variable viscosity and drag force model to suppress the velocity in the solid. Our all-speed Navier-Stokes solver is based on a fully-implicit, high-order reconstructed Discontinuous Galerkin method. A Newton-Krylov based framework is used to solve the resulting set of non-linear equations, enabling robust simulations of the highly stiff compressible Navier-Stokes equations. We demonstrate the method's capabilities for phase change on several different melting and freezing configurations, including a three-dimensional laser-induced melt convection problem. Future model enhancements will incorporate material evaporation and rapid solidification.

  16. James Clerk Maxwell Prize Address: High Intensity Laser Propagation and Interactions

    NASA Astrophysics Data System (ADS)

    Sprangle, Phillip

    2013-10-01

    High intensity laser radiation sources cover a wide range of parameters, e.g., peak powers from tera to peta watts, pulse lengths from pico to femto seconds, repetition rates ranging from kilo to mega hertz and average powers of many tens of watts. This talk will cover, among other things, some of the unique physical processes which result when high intensity laser radiation interacts with gases and plasmas. One of the interesting topics to be discussed is the propagation of these laser pulses in a turbulent atmosphere which results in a multitude of coupled linear and nonlinear processes including filamentation and scintillation. Phase conjugation techniques to reduce the effects of atmospheric turbulence (scintillation) will be described. This talk will also discuss a range of potential applications of these high intensity lasers, including: electron acceleration in spatially periodic and tapered plasma channels, detection of radioactive material using electromagnetic signatures, atmospheric lasing of N2 molecules, as well as incoherent and coherent x-ray generation mechanisms. Research supported by NRL, ONR and UMD.

  17. Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance

    NASA Astrophysics Data System (ADS)

    Gaona, I.; Serrano, J.; Moros, J.; Laserna, J. J.

    2014-06-01

    Although radioactive materials are nowadays valuable tools in nearly all fields of modern science and technology, the dangers stemming from the uncontrolled use of ionizing radiation are more than evident. Since preparedness is a key issue to face the risks of a radiation dispersal event, development of rapid and efficient monitoring technologies to control the contamination caused by radioactive materials is of crucial interest. Laser-induced breakdown spectroscopy (LIBS) exhibits appealing features for this application. This research focuses on the assessment of LIBS potential for the in-situ fingerprinting and identification of radioactive material surrogates from a safe distance. LIBS selectivity and sensitivity to detect a variety of radioactive surrogates, namely 59Co, 88Sr, 130Ba, 133Cs, 193Ir and 238U, on the surface of common urban materials at a distance of 30 m have been evaluated. The performance of the technique for nuclear forensics has been also studied on different model scenarios. Findings have revealed the difficulties to detect and to identify the analytes depending on the surface being interrogated. However, as demonstrated, LIBS shows potential enough for prompt and accurate gathering of essential evidence at a number of sites after the release, either accidental or intentional, of radioactive material. The capability of standoff analysis confers to LIBS unique advantages in terms of fast and safe inspection of forensic scenarios. The identity of the radioactive surrogates is easily assigned from a distance and the sensitivity to their detection is in the range of a few hundreds of ng per square centimeter.

  18. A ten-element array of individually addressable channeled-substrate-planar AlGaAs diode lasers

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Goldstein, B.; Bednarz, J. P.; Harvey, M. G.; Dinkel, N. A.

    1987-01-01

    The fabrication of arrays of channeled-substrate-planar (CSP) AlGaAs diode lasers which emit up to 150 mW CW in a single spatial mode and are applicable to mulitchannel optical recording systems is described. The CSP diode lasers are incorporated in ten-array geometry, and each array is 1.95 nm in width and 100 microns in thickness and is cleaved to have a cavity length of 200 microns and coated to produce 90-percent reflectivity on the back facet and 10-percent reflectivity on the front facet. The array is attached to a thermoelectrically cooled submount. The optical output power versus input current characteristics for the array are evaluated, and the lateral far-field intensity profiles for each of the lasers (at 30 mW CW) and CW spectra of the lasers are analyzed.

  19. Laser optomechanics

    PubMed Central

    Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.

    2015-01-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors. PMID:26333804

  20. Laser optomechanics

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.

    2015-09-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors.

  1. Laser optomechanics.

    PubMed

    Yang, Weijian; Gerke, Stephen Adair; Ng, Kar Wei; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J

    2015-01-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors.

  2. Two-mode dynamics in different semiconductor laser structures

    NASA Astrophysics Data System (ADS)

    Scirè, Alessandro; Sorel, Marc; Colet, Pere; Tessone, Claudio Juan; Mirasso, Claudio R.; San Miguel, Maxi

    2006-04-01

    We review three two-mode models for different semiconductor laser structures: Vertical-Cavity Surface-Emitting Lasers (VCSELs), Twin-Stripe Semiconductor-Lasers (TSSL), and Semiconductor Ring Lasers (SRL). The VCSELs model and TSSL model display rich dynamic behavior when a saturable absorber is embedded in the cavity. VCSELs with saturable absorber showed polarization chaos, which found applications in encoded communications; TSSLs with saturable absorber show coherent locked states as well as chaotic behavior; and SRLs show a complex two-mode dynamics giving rise to bidirectional operation, alternate oscillations and spontaneous symmetry breaking toward quasi-unidirectional bistable solutions, with potential applications to all-optical switching.

  3. Communication using VCSEL laser array

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    2008-01-01

    Ultrafast directional beam switching, using coupled vertical cavity surface emitting lasers (VCSELs) is combined with a light modulator to provide information transfer at bit rates of tens of GHz. This approach is demonstrated to achieve beam switching frequencies of 32-50 GHz in some embodiments and directional beam switching with angular differences of about eight degrees. This switching scheme is likely to be useful for ultrafast optical networks at frequencies much higher than achievable with other approaches. A Mach-Zehnder interferometer, a Fabry-Perot etalon, or a semiconductor-based electro-absorption transmission channel, among others, can be used as a light modulator.

  4. Resonant activation in bistable semiconductor lasers

    SciTech Connect

    Lepri, Stefano; Giacomelli, Giovanni

    2007-08-15

    We theoretically investigate the possibility of observing resonant activation in the hopping dynamics of two-mode semiconductor lasers. We present a series of simulations of a rate-equation model under random and periodic modulation of the bias current. In both cases, for an optimal choice of the modulation time scale, the hopping times between the stable lasing modes attain a minimum. The simulation data are understood by means of an effective one-dimensional Langevin equation with multiplicative fluctuations. Our conclusions apply to both edge-emitting and vertical cavity lasers, thus opening the way to several experimental tests in such optical systems.

  5. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  6. VCSEL-pumped passively Q-switched monolithic solid-state lasers

    NASA Astrophysics Data System (ADS)

    Van Leeuwen, Robert; Xu, Bing; Chen, Tong; Wang, Qing; Seurin, Jean-Francois; Xu, Guoyang; Zhou, Delai; Ghosh, Chuni

    2016-03-01

    High power 808 nm vertical-cavity surface-emitting laser (VCSEL) arrays were used to end-pump diffusion-bonded composite laser rods consisting of an Nd:YAG gain medium and a Cr:YAG saturable absorber. The laser pulse energy, q-switch delay time, and optical efficiency of a passively Q-switched monolithic solid state laser in a compact rugged package were measured as a function of VCSEL power for various heatsink temperatures. Up to 19 mJ laser pulse energy was produced with 13% optical efficiency.

  7. Composite Resonator Surface Emitting Lasers

    SciTech Connect

    FISCHER,ARTHUR J.; CHOQUETTE,KENT D.; CHOW,WENG W.; ALLERMAN,ANDREW A.; GEIB,KENT M.

    2000-05-01

    The authors have developed electrically-injected coupled-resonator vertical-cavity lasers and have studied their novel properties. These monolithically grown coupled-cavity structures have been fabricated with either one active and one passive cavity or with two active cavities. All devices use a selectively oxidized current aperture in the lower cavity, while a proton implant was used in the active-active structures to confine current in the top active cavity. They have demonstrated optical modulation from active-passive devices where the modulation arises from dynamic changes in the coupling between the active and passive cavities. The laser intensity can be modulated by either forward or reverse biasing the passive cavity. They have also observed Q-switched pulses from active-passive devices with pulses as short as 150 ps. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulseshape. They have designed and demonstrated the operation of active-active devices which la.se simultaneously at both longitudinal cavity resonances. Extremely large bistable regions have also been observed in the light-current curves for active-active coupled resonator devices. This bistability can be used for high contrast switching with contrast ratios as high as 100:1. Coupled-resonator vertical-cavity lasers have shown enhanced mode selectivity which has allowed devices to lase with fundamental-mode output powers as high as 5.2 mW.

  8. Visible light surface emitting semiconductor laser

    DOEpatents

    Olbright, Gregory R.; Jewell, Jack L.

    1993-01-01

    A vertical-cavity surface-emitting laser is disclosed comprising a laser cavity sandwiched between two distributed Bragg reflectors. The laser cavity comprises a pair of spacer layers surrounding one or more active, optically emitting quantum-well layers having a bandgap in the visible which serve as the active optically emitting material of the device. The thickness of the laser cavity is m .lambda./2n.sub.eff where m is an integer, .lambda. is the free-space wavelength of the laser radiation and n.sub.eff is the effective index of refraction of the cavity. Electrical pumping of the laser is achieved by heavily doping the bottom mirror and substrate to one conductivity-type and heavily doping regions of the upper mirror with the opposite conductivity type to form a diode structure and applying a suitable voltage to the diode structure. Specific embodiments of the invention for generating red, green, and blue radiation are described.

  9. Preliminary surface-emitting laser logic device evaluation

    NASA Astrophysics Data System (ADS)

    Libby, S. I.; Parker, M. A.; Olbright, G. R.; Swanson, P. D.

    1993-03-01

    This report discusses the evaluation of a monolithically integrated heterojunction phototransistor and vertical-cavity surface-emitting laser, designated the surface-Emitting Laser Logic device (CELL). Included is a discussion of the device structure and theory of operation, test procedures, results, and conclusions. Also presented is the CELL's opto-electronic input/output characteristics which includes spectral analysis, characteristic emitted light versus current and current versus voltage curves, input wavelength tolerance, output wavelength sensitivity to bias current, and insensitivity to input wavelength and power within a specified range.

  10. Addressing Concerns.

    ERIC Educational Resources Information Center

    Cronin, Greg; Helmig, Mary; Kaplan, Bill; Kosch, Sharon

    2002-01-01

    Four camp directors discuss how the September 11 tragedy and current world events will affect their camps. They describe how they are addressing safety concerns, working with parents, cooperating with outside agencies, hiring and screening international staff, and revising emergency plans. Camps must continue to offer community and support to…

  11. Addressing healthcare.

    PubMed

    Daly, Rich

    2013-02-11

    Though President Barack Obama has rarely made healthcare references in his State of the Union addresses, health policy experts are hoping he changes that strategy this year. "The question is: Will he say anything? You would hope that he would, given that that was the major issue he started his presidency with," says Dr. James Weinstein, left, of the Dartmouth-Hitchcock health system. PMID:23487896

  12. Inaugural address

    NASA Astrophysics Data System (ADS)

    Joshi, P. S.

    2014-03-01

    From jets to cosmos to cosmic censorship P S Joshi Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India E-mail: psj@tifr.res.in 1. Introduction At the outset, I should like to acknowledge that part of the title above, which tries to capture the main flavour of this meeting, and has been borrowed from one of the plenary talks at the conference. When we set out to make the programme for the conference, we thought of beginning with observations on the Universe, but then we certainly wanted to go further and address deeper questions, which were at the very foundations of our inquiry, and understanding on the nature and structure of the Universe. I believe, we succeeded to a good extent, and it is all here for you in the form of these Conference Proceedings, which have been aptly titled as 'Vishwa Mimansa', which could be possibly translated as 'Analysis of the Universe'! It is my great pleasure and privilege to welcome you all to the ICGC-2011 meeting at Goa. The International Conference on Gravitation and Cosmology (ICGC) series of meetings are being organized by the Indian Association for General Relativity and Gravitation (IAGRG), and the first such meeting was planned and conducted in Goa in 1987, with subsequent meetings taking place at a duration of about four years at various locations in India. So, it was thought appropriate to return to Goa to celebrate the 25 years of the ICGC meetings. The recollections from that first meeting have been recorded elsewhere here in these Proceedings. The research and teaching on gravitation and cosmology was initiated quite early in India, by V V Narlikar at the Banares Hindu University, and by N R Sen in Kolkata in the 1930s. In course of time, this activity grew and gained momentum, and in early 1969, at the felicitation held for the 60 years of V V Narlikar at a conference in Ahmedabad, P C Vaidya proposed the formation of the IAGRG society, with V V Narlikar being the first President. This

  13. Opening Address

    NASA Astrophysics Data System (ADS)

    Yamada, T.

    2014-12-01

    Ladies and Gentlemen, it is my great honor and pleasure to present an opening address of the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3). On the behalf of the organizing committee, I certainly welcome all your visits to KGU Kannai Media Center belonging to Kanto Gakuin University, and stay in Yokohama. In particular, to whom come from abroad more than 17 countries, I would appreciate your participations after long long trips from your homeland to Yokohama. The first international workshop on "State of the Art in Nuclear Cluster Physics", called SOTANCP, was held in Strasbourg, France, in 2008, and the second one was held in Brussels, Belgium, in 2010. Then the third workshop is now held in Yokohama. In this period, we had the traditional 10th cluster conference in Debrecen, Hungary, in 2012. Thus we have the traditional cluster conference and SOTANCP, one after another, every two years. This obviously shows our field of nuclear cluster physics is very active and flourishing. It is for the first time in about 10 years to hold the international workshop on nuclear cluster physics in Japan, because the last cluster conference held in Japan was in Nara in 2003, about 10 years ago. The president in Nara conference was Prof. K. Ikeda, and the chairpersons were Prof. H. Horiuchi and Prof. I. Tanihata. I think, quite a lot of persons in this room had participated at the Nara conference. Since then, about ten years passed. So, this workshop has profound significance for our Japanese colleagues. The subjects of this workshop are to discuss "the state of the art in nuclear cluster physics" and also discuss the prospect of this field. In a couple of years, we saw significant progresses of this field both in theory and in experiment, which have brought better and new understandings on the clustering aspects in stable and unstable nuclei. I think, the concept of clustering has been more important than ever. This is true also in the

  14. Progress Toward Measuring CO2 Isotopologue Fluxes in situ with the LLNL Miniature, Laser-based CO2 Sensor

    NASA Astrophysics Data System (ADS)

    Osuna, J. L.; Bora, M.; Bond, T.

    2015-12-01

    One method to constrain photosynthesis and respiration independently at the ecosystem scale is to measure the fluxes of CO2­ isotopologues. Instrumentation is currently available to makes these measurements but they are generally costly, large, bench-top instruments. Here, we present progress toward developing a laser-based sensor that can be deployed directly to a canopy to passively measure CO2 isotopologue fluxes. In this study, we perform initial proof-of-concept and sensor characterization tests in the laboratory and in the field to demonstrate performance of the Lawrence Livermore National Laboratory (LLNL) tunable diode laser flux sensor. The results shown herein demonstrate measurement of bulk CO2 as a first step toward achieving flux measurements of CO2 isotopologues. The sensor uses a Vertical Cavity Surface Emitting Laser (VCSEL) in the 2012 nm range. The laser is mounted in a multi-pass White Cell. In order to amplify the absorption signal of CO2 in this range we employ wave modulation spectroscopy, introducing an alternating current (AC) bias component where f is the frequency of modulation on the laser drive current in addition to the direct current (DC) emission scanning component. We observed a strong linear relationship (r2 = 0.998 and r2 = 0.978 at all and low CO2 concentrations, respectively) between the 2f signal and the CO2 concentration in the cell across the range of CO2 concentrations relevant for flux measurements. We use this calibration to interpret CO2 concentration of a gas flowing through the White cell in the laboratory and deployed over a grassy field. We will discuss sensor performance in the lab and in situ as well as address steps toward achieving canopy-deployed, passive measurements of CO2 isotopologue fluxes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675788

  15. Convocation address.

    PubMed

    Ghatowar, P S

    1993-07-01

    The Union Deputy Minister of Health and Family Welfare in India addressed the 35th convocation of the International Institute for Population Sciences in Bombay in 1993. Officials in developing countries have been concerned about population growth for more than 30 years and have instituted policies to reduce population growth. In the 1960s, population growth in developing countries was around 2.5%, but today it is about 2%. Despite this decline, the world will have 1 billion more individuals by the year 2001. 95% of these new people will be born in developing countries. India's population size is so great that India does not have the time to wait for development to reduce population growth. Population needs to be viewed as an integrated part of overall development, since it is linked to poverty, illiteracy, environmental damage, gender issues, and reproductive health. Despite a large population size, India has made some important advancements in health and family planning. For example, India has reduced population growth (to 2.14% annually between 1981-1991), infant mortality, and its birth rate. It has increased the contraceptive use rate and life expectancy. Its southern states have been more successful at achieving demographic goals than have the northern states. India needs to implement efforts to improve living conditions, to change attitudes and perceptions about small families and contraception, and to promote family planning acceptance earlier among young couples. Improvement of living conditions is especially important in India, since almost 33% of the people live in poverty. India needs to invest in nutrition, health, and education. The mass media and nongovernmental organizations need to create population awareness and demand for family planning services. Improvement in women's status accelerates fertility decline, as has happened in Kerala State. The government needs to facilitate generation of jobs. Community participation is needed for India to achieve

  16. Welcome Address

    NASA Astrophysics Data System (ADS)

    Kiku, H.

    2014-12-01

    Ladies and Gentlemen, It is an honor for me to present my welcome address in the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3), as the president of Kanto Gakuin University. Particularly to those from abroad more than 17 countries, I am very grateful for your participation after long long trips from your home to Yokohama. On the behalf of the Kanto Gakuin University, we certainly welcome your visit to our university and stay in Yokohama. First I would like to introduce Kanto Gakuin University briefly. Kanto Gakuin University, which is called KGU, traces its roots back to the Yokohama Baptist Seminary founded in 1884 in Yamate, Yokohama. The seminary's founder was Albert Arnold Bennett, alumnus of Brown University, who came to Japan from the United States to establish a theological seminary for cultivating and training Japanese missionaries. Now KGU is a major member of the Kanto Gakuin School Corporation, which is composed of two kindergartens, two primary schools, two junior high schools, two senior high schools as well as KGU. In this university, we have eight faculties with graduate school including Humanities, Economics, Law, Sciences and Engineering, Architecture and Environmental Design, Human and Environmental Studies, Nursing, and Law School. Over eleven thousands students are currently learning in our university. By the way, my major is the geotechnical engineering, and I belong to the faculty of Sciences and Engineering in my university. Prof. T. Yamada, here, is my colleague in the same faculty. I know that the nuclear physics is one of the most active academic fields in the world. In fact, about half of the participants, namely, more than 50 scientists, come from abroad in this conference. Moreover, I know that the nuclear physics is related to not only the other fundamental physics such as the elementary particle physics and astrophysics but also chemistry, medical sciences, medical cares, and radiation metrology

  17. Secondary bifurcations and transverse standing-wave patterns in anisotropic microcavity lasers close to the first laser threshold

    SciTech Connect

    Babushkin, I.V.; Loiko, N.A.; Ackemann, T.

    2003-01-01

    It is well known that in a laser--in the limit of an infinite extent of the transverse aperture--traveling tilted waves are excited at the laser threshold for positive detuning between the frequency of the gain maximum of the active medium and the cavity frequency [Phys. Rev. A 45, 8129 (1992)]. However, a transverse standing wave is unstable. In this paper, it is shown that in anisotropic lasers there can be a chain of secondary bifurcations very close to threshold, which stabilizes the standing wave and then destabilizes it again through a supercritical Hopf bifurcation. The parameter dependence of these bifurcations is discussed. The investigations are motivated by interest in pattern formation in vertical-cavity surface-emitting lasers in which the rotational symmetry is broken due to the dependence of the reflectance of the Bragg reflectors on the polarization vector of the field. The applicability of the results to other class-B lasers is discussed.

  18. Evaluation of laser speckle contrast imaging as an intrinsic method to monitor blood brain barrier integrity

    PubMed Central

    Dufour, Suzie; Atchia, Yaaseen; Gad, Raanan; Ringuette, Dene; Sigal, Iliya; Levi, Ofer

    2013-01-01

    The integrity of the blood brain barrier (BBB) can contribute to the development of many brain disorders. We evaluate laser speckle contrast imaging (LSCI) as an intrinsic modality for monitoring BBB disruptions through simultaneous fluorescence and LSCI with vertical cavity surface emitting lasers (VCSELs). We demonstrated that drug-induced BBB opening was associated with a relative change of the arterial and venous blood velocities. Cross-sectional flow velocity ratio (veins/arteries) decreased significantly in rats treated with BBB-opening drugs, ≤0.81 of initial values. PMID:24156049

  19. Laser Doppler velocimetry using a modified computer mouse

    NASA Astrophysics Data System (ADS)

    Zaron, Edward D.

    2016-10-01

    A computer mouse has been modified for use as a low-cost laser Doppler interferometer and used to measure the two-component fluid velocity of a flowing soap film. The mouse sensor contains two vertical cavity surface emitting lasers, photodiodes, and signal processing hardware integrated into a single package, approximately 1 cm2 in size, and interfaces to a host computer via a standard USB port. Using the principle of self-mixing interferometry, whereby laser light re-enters the laser cavity after being scattered from a moving target, the Doppler shift and velocity of scatterers dispersed in the flow are measured. Observations of the boundary layer in a turbulent soap film channel flow demonstrate the capabilities of the sensor.

  20. [Lasers].

    PubMed

    Passeron, T

    2012-11-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  1. Lasers.

    PubMed

    Passeron, T

    2012-12-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  2. Photoconductive semiconductor switches: Laser Q-switch trigger and switch-trigger laser integration

    SciTech Connect

    Loubriel, G.M.; Mar, A.; Hamil, R.A.; Zutavern, F.J.; Helgeson, W.D.

    1997-12-01

    This report provides a summary of the Pulser In a Chip 9000-Discretionary LDRD. The program began in January of 1997 and concluded in September of 1997. The over-arching goal of this LDRD is to study whether laser diode triggered photoconductive semiconductor switches (PCSS) can be used to activate electro-optic devices such as Q-switches and Pockels cells and to study possible laser diode/switch integration. The PCSS switches we used were high gain GaAs switches because they can be triggered with small amounts of laser light. The specific goals of the LDRD were to demonstrate: (1) that small laser diode arrays that are potential candidates for laser-switch integration will indeed trigger the PCSS switch, and (2) that high gain GaAs switches can be used to trigger optical Q-switches in lasers such as the lasers to be used in the X-1 Advanced Radiation Source and the laser used for direct optical initiation (DOI) of explosives. The technology developed with this LDRD is now the prime candidate for triggering the Q switch in the multiple lasers in the laser trigger system of the X-1 Advanced Radiation Source and may be utilized in other accelerators. As part of the LDRD we developed a commercial supplier. To study laser/switch integration we tested triggering the high gain GaAs switches with: edge emitting laser diodes, vertical cavity surface emitting lasers (VCSELs), and transverse junction stripe (TJS) lasers. The first two types of lasers (edge emitting and VCSELs) did activate the PCSS but are harder to integrate with the PCSS for a compact package. The US lasers, while easier to integrate with the switch, did not trigger the PCSS at the US laser power levels we used. The PCSS was used to activate the Q-switch of the compact laser to be used in the X-1 Advanced Radiation Source.

  3. Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor.

    PubMed

    Zhang, Edward; Beard, Paul

    2006-07-01

    An optical system for rapidly mapping broad-band ultrasound fields with high spatial resolution has been developed. The transduction mechanism is based upon the detection of acoustically induced changes in the optical thickness of a thin polymer film acting as a Fabry Perot sensing interferometer (FPI). By using a PC-controlled galvanometer mirror to line-scan a focused laser beam over the surface of the FPI, and a wavelength-tuned phase bias control system to optimally set the FPI working point, a notional 1D ultrasound array was synthesized. This system enabled ultrasound fields to be mapped over an aperture of 40 mm, in 50-microm steps with an optically defined element size of 50 microm and an acquisition time of 50 ms per step. The sensor comprised a 38-microm polymer film FPI which was directly vacuum-deposited onto an impedance-matched polycarbonate backing stub. The -3 dB acoustic bandwidth of the sensor was 300 kHz to 28 MHz and the peak noise-equivalent-pressure was 10 kPa over a 20-MHz measurement bandwidth. To demonstrate the system, the outputs of various planar and focused pulsed ultrasound transducers with operating frequencies in the range 3.5 to 20 MHz were mapped. It is considered that this approach offers a practical and inexpensive alternative to piezoelectric-based arrays and scanning systems for rapid transducer field characterization and biomedical and industrial ultrasonic imaging applications. PMID:16889340

  4. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  5. Single-mode operation of mushroom structure surface emitting lasers

    SciTech Connect

    Wang, Y.J.; Dziura, T.G.; Wang, S.C. ); Du, G.; Wang, S. )

    1991-01-01

    Mushroom structure vertical cavity surface emitting lasers with a 0.6 {mu}m GaAs active layer sandwiched by two Al{sub 0.6{sup {minus}}}Ga{sub 0.4}As-Al{sub 0.08}Ga{sub 0.92}As multilayers as top and bottom mirrors exhibit 15 mA pulsed threshold current at 880 nm. Single longitudinal and single transverse mode operation was achieved on lasers with a 5 {mu}m diameter active region at current levels near 2 {times} I{sub th}. The light output above threshold current was linearly polarized with a polarization ratio of 25:1.

  6. Interferometric measurements beyond the coherence length of the laser source.

    PubMed

    Salvadé, Yves; Przygodda, Frank; Rohner, Marcel; Polster, Albert; Meyer, Yves; Monnerat, Serge; Gloriod, Olivier; Llera, Miguel; Matthey, Renaud; di Francesco, Joab; Gruet, Florian; Mileti, Gaetano

    2016-09-19

    Interferometric measurements beyond the coherence length of the laser are investigated theoretically and experimentally in this paper. Thanks to a high-bandwidth detection, high-speed digitizers and a fast digital signal processing, we have demonstrated that the limit of the coherence length can be overcome. Theoretically, the maximal measurable displacement is infinite provided that the sampling rate is sufficiently short to prevent any phase unwrapping error. We could verify experimentally this concept using a miniature interferometer prototype, based on a frequency stabilized vertical cavity surface emitting laser. Displacement measurements at optical path differences up to 36 m could be realized with a relative stability better than 0.1 ppm, although the coherence length estimated from the linewidth and frequency noise measurements do not exceed 6.6 m. PMID:27661911

  7. Large mode-volume, large beta, photonic crystal laser resonator

    SciTech Connect

    Dezfouli, Mohsen Kamandar; Dignam, Marc M.

    2014-12-15

    We propose an optical resonator formed from the coupling of 13, L2 defects in a triangular-lattice photonic crystal slab. Using a tight-binding formalism, we optimized the coupled-defect cavity design to obtain a resonator with predicted single-mode operation, a mode volume five times that of an L2-cavity mode and a beta factor of 0.39. The results are confirmed using finite-difference time domain simulations. This resonator is very promising for use as a single mode photonic crystal vertical-cavity surface-emitting laser with high saturation output power compared to a laser consisting of one of the single-defect cavities.

  8. Microfabrication techniques for semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Tamanuki, Takemasa; Tadokoro, T.; Morito, Ken; Koyama, Fumio; Iga, Kenichi

    1991-03-01

    Several important techniques for fabricating micro-cavity semiconductor lasers including surface emitting lasers have been developed. Reactive ion beam etch (RIBE) for GaA1As and GaInAsP is employed and its condition for vertical fine etch under low damages and removal of residual damages are made clear. Passivation by sulfur is introduced to the fabrication process. Regrowth techniques for DII structures by LPE and MOCVD has been established. Some device applications are discussed. 1. MICRO-ETCHING PROCESS Micro-cavity lasers including a vertical cavity surface emitting laser1 are attracting the research interest for optical parallel processing and parallel light wave systems. In order to realize micron-order or sub-micron laserdevices the technology of micro-fabrication must be established. In this study the total fabrication technology has been almost completed. First fine and low damage etching condition by ultrahigh vacuum background RIBE using a Cl2 gas has been made clear. We have found an isotropic etching condition for the vertical side wall formation and good mask traceability i. e. the acceleration voltage is 500 V and substrate temperature is 150 C with a 5000A thickness Si02 mask. Residual damages induced on the surface and the side wall are characterized by photo-luminescence and making stripe lasers. Figure 1 is the histogram of the nominal threshold current density for (a) oxide-defined stripe lasers (b) RIBE etched and LPE regrown BH-lasers using an LPE grown DII wafer (LPE/LPE) and (c) RIBE etched

  9. Laser Science and Applications

    NASA Astrophysics Data System (ADS)

    El-Nadi, Lotfia M.; Mansour, Mohy S.

    2010-04-01

    Attosecond high harmonic pulses: generation and characterization / C. H. Nam and K. T. Kim -- High power lasers and interactions / C. Chatwin and R. Young -- Laser accelerators / L. M. El-Nadi ... [et al.] -- Energy levels, oscillator strengths, lifetimes, and gain distributions of S VII, CI VIII, and Ar IX / Wessameldin. S. Abdelaziz and Th. M. El-Sherbini -- The gain distribution according to theoretical level structure and decay dynamics of W[symbol] / H. M. Hamed ... [et al.] -- Raman spectroscopy and low temperature photoluminescence ZnSe[symbol]Te[symbol] ternary alloys / A. Salah ... [et al.] -- Automated polarization-discrimination technique to minimize lidar detected skylight background noise, part I / Y. Y. Hassebo, K. Elsayed and S. Ahmed -- Laser interferometric measurements of the physical properties for He, Ne gases and their mixture / N. M. Abdel-Moniem ... [et al.] -- Analytical studies of laser beam propagation through the atmosphere / M. I. El-Saftawy, A. M. Abd El-Hamed and N. Sh. Kalifa -- Laser techniques in conservation of artworks: problems and breakthroughs / R. Salimbeni and S. Siano -- Technology-aided heritage conservation laser cleaning for buildings / M. S. Nada -- Technology significance in conservation of the built heritage 3D visualization impact / M. S. Nada -- Simulation of optical resonators for Vertical-Cavity Surface-Emitting Lasers (VCSEL) / M. S. Mansour ... [et al.] -- Optical design alternatives: a survey study / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Materials for digital optical design; a survey study / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Proposed design for optical digital circuits / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Photo-induced effect on bacterial cells / M. H. El Batanouny ... [et al.] -- Laser and non-coherent light effect on peripheral blood normal and acute lymphoblastic leukemic cells by using different types of photosensitizers / M. H. El Batanouny ... [et al

  10. Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms.

    PubMed

    Kaur, K S; Subramanian, A Z; Cardile, P; Verplancke, R; Van Kerrebrouck, J; Spiga, S; Meyer, R; Bauwelinck, J; Baets, R; Van Steenberge, G

    2015-11-01

    This article presents the flip-chip bonding of vertical-cavity surface-emitting lasers (VCSELs) to silicon grating couplers (GCs) via SU8 prisms. The SU8 prisms are defined on top of the GCs using non-uniform laser ablation process. The prisms enable perfectly vertical coupling from the bonded VCSELs to the GCs. The VCSELs are flip-chip bonded on top of the silicon GCs employing the laser-induced forward transfer (LIFT)-assisted thermocompression technique. An excess loss of < 1 dB at 1.55 µm measured from the bonded assemblies is reported in this paper. The results of high speed transmission experiments performed on the bonded assemblies with clear eye openings up to 20 Gb/s are also presented. PMID:26561097

  11. Optimizing electrically pumped vertical extended cavity surface emitting semiconductor lasers (E-VECSELs)

    NASA Astrophysics Data System (ADS)

    McInerney, John G.; Mooradian, Aram

    2011-03-01

    The future evolution of photonics, for a wide spectrum of applications ranging from established optical telecommunications to emerging opportunities such as biotechnology, reprographics and projection displays, will depend on availability of compact, rugged, efficient and inexpensive lasers which deliver high power, good beam quality, excellent wavelength stability, low noise and long lifetime in the near infrared and visible regions. This combination is not readily available from either of the traditional classes of semiconductor laser, edge-emitters and vertical cavity surface emitters (VCSELs). Here we describe a novel class of laser based on geometry similar to VCSELs but controlled by an extended coupled cavity. These devices are scalable to high powers while maintaining fundamental spatial mode performance, a feature that is essential to efficient coupling into a single mode optical fibre or waveguide, or long range propagation in free space. They are also ideally suited to mode locking, gain-switching and intracavity frequency conversion, among other applications.

  12. Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms.

    PubMed

    Kaur, K S; Subramanian, A Z; Cardile, P; Verplancke, R; Van Kerrebrouck, J; Spiga, S; Meyer, R; Bauwelinck, J; Baets, R; Van Steenberge, G

    2015-11-01

    This article presents the flip-chip bonding of vertical-cavity surface-emitting lasers (VCSELs) to silicon grating couplers (GCs) via SU8 prisms. The SU8 prisms are defined on top of the GCs using non-uniform laser ablation process. The prisms enable perfectly vertical coupling from the bonded VCSELs to the GCs. The VCSELs are flip-chip bonded on top of the silicon GCs employing the laser-induced forward transfer (LIFT)-assisted thermocompression technique. An excess loss of < 1 dB at 1.55 µm measured from the bonded assemblies is reported in this paper. The results of high speed transmission experiments performed on the bonded assemblies with clear eye openings up to 20 Gb/s are also presented.

  13. Visible-wavelength semiconductor lasers and arrays

    DOEpatents

    Schneider, Jr., Richard P.; Crawford, Mary H.

    1996-01-01

    A visible semiconductor laser. The visible semiconductor laser includes an InAlGaP active region surrounded by one or more AlGaAs layers on each side, with carbon as the sole p-type dopant. Embodiments of the invention are provided as vertical-cavity surface-emitting lasers (VCSELs) and as edge-emitting lasers (EELs). One or more transition layers comprised of a substantially indium-free semiconductor alloy such as AlAsP, AlGaAsP, or the like may be provided between the InAlGaP active region and the AlGaAS DBR mirrors or confinement layers to improve carrier injection and device efficiency by reducing any band offsets. Visible VCSEL devices fabricated according to the invention with a one-wavelength-thick (1.lambda.) optical cavity operate continuous-wave (cw) with lasing output powers up to 8 mW, and a peak power conversion efficiency of up to 11%.

  14. Optical Addressing And Clocking Of RAM's

    NASA Technical Reports Server (NTRS)

    Johnston, Alan R.; Nixon, Robert H.; Bergman, Larry A.; Esener, Sadik

    1989-01-01

    Proposed random-access-memory (RAM) addressing system, in which memory linked optically to read/write logic circuits, greatly increases computer operating speed. System - comprises addressing circuits including numerous lasers as signal sources, numerous optical gates including optical detectors associated with memory cells, and holographic element to direct light signals to desired memory-cell locations - applied to high-capacity digital systems, supercomputers, and complex microcircuits.

  15. Key techniques for space-based solar pumped semiconductor lasers

    NASA Astrophysics Data System (ADS)

    He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua

    2014-12-01

    In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.

  16. Variable addressability imaging systems

    NASA Astrophysics Data System (ADS)

    Kubala, Kenneth Scott

    The use of variable addressability for creating an optimum human-machine interface is investigated. Current wide field optical systems present more information to the human visual system than it has the capacity to perceive. The axial resolution, and/or the field of view can be increased by minimizing the difference between what the eye can perceive and what the system presents. The variable addressability function was developed through the use of a human factors experiment that characterized the position of the eye during the simulated use of a binocular system. Applying the variable addressability function to a conventional optical design required the development of a new metric for evaluating the expected performance of the variable addressability system. The new metric couples psycho-visual data and traditional optical data in order to specify the required performance of the variable addressability system. A non-linear mapping of the pixels is required in order to have the system work most efficiently with the human visual system, while also compensating for eye motion. The non-linear mapping function, which is the backbone of the variable addressability technique, can be created using optical distortion. The lens and system design is demonstrated in two different spectral bands. One of the designs was fabricated, tested, and assembled into a prototype. Through a second human factors study aimed at measuring performance, the variable addressability prototype was directly compared to a uniform addressability prototype, quantifying the difference in performance for the two prototypes. The human factors results showed that the variable addressability prototype provided better resolution 13% of the time throughout the experiment, but was 15% slower in use than the uniform addressability prototype.

  17. Matrix approach for modeling of emission from multilayer spin-polarized light-emitting diodes and lasers

    NASA Astrophysics Data System (ADS)

    Fördös, Tibor; Postava, Kamil; Jaffrès, Henri; Pištora, Jaromír

    2014-06-01

    Spin-polarized light sources such as the spin-polarized light-emitting diodes (spin-LEDs) and spin-polarized lasers (spin-lasers) are prospective devices in which the radiative recombination of spin-polarized carriers results in emission of circularly polarized photons. The main goal of this article is to model emitted radiation and its polarization properties from spin-LED and spin-controlled vertical-cavity surface-emitting laser (spin-VCSEL) solid-state structures. A novel approach based on 4 × 4 transfer matrix formalism is derived for modeling of the interaction of light with matter in active media of resonant multilayer anisotropic structure and enables magneto-optical effects. Quantum transitions, which result in photon emission, are described using general Jones source vectors.

  18. Visible-wavelength semiconductor lasers and arrays

    DOEpatents

    Schneider, R.P. Jr.; Crawford, M.H.

    1996-09-17

    The visible semiconductor laser includes an InAlGaP active region surrounded by one or more AlGaAs layers on each side, with carbon as the sole p-type dopant. Embodiments of the invention are provided as vertical-cavity surface-emitting lasers (VCSELs) and as edge-emitting lasers (EELs). One or more transition layers comprised of a substantially indium-free semiconductor alloy such as AlAsP, AlGaAsP, or the like may be provided between the InAlGaP active region and the AlGaAS DBR mirrors or confinement layers to improve carrier injection and device efficiency by reducing any band offsets. Visible VCSEL devices fabricated according to the invention with a one-wavelength-thick (1{lambda}) optical cavity operate continuous-wave (cw) with lasing output powers up to 8 mW, and a peak power conversion efficiency of up to 11%. 5 figs.

  19. Truly random number generation based on measurement of phase noise of a laser.

    PubMed

    Guo, Hong; Tang, Wenzhuo; Liu, Yu; Wei, Wei

    2010-05-01

    We present a simple approach to realize truly random number generator based on measuring the phase noise of a single-mode vertical cavity surface emitting laser. The true randomness of the quantum phase noise originates from the spontaneous emission of photons and the random bit generation rate is ultimately limited only by the laser linewidth. With the final bit generation rate of 20 Mbit/s, the truly random bit sequence guaranteed by the uncertainty principle of quantum mechanics passes the three standard randomness tests (ENT, Diehard, and NIST Statistical Test Suites). Moreover, a continuously generated random bit sequence, with length up to 14 Gbit, is verified by two additional criteria for its true randomness.

  20. Addressivity in cogenerative dialogues

    NASA Astrophysics Data System (ADS)

    Hsu, Pei-Ling

    2014-03-01

    Ashraf Shady's paper provides a first-hand reflection on how a foreign teacher used cogens as culturally adaptive pedagogy to address cultural misalignments with students. In this paper, Shady drew on several cogen sessions to showcase his journey of using different forms of cogens with his students. To improve the quality of cogens, one strategy he used was to adjust the number of participants in cogens. As a result, some cogens worked and others did not. During the course of reading his paper, I was impressed by his creative and flexible use of cogens and at the same time was intrigued by the question of why some cogens work and not others. In searching for an answer, I found that Mikhail Bakhtin's dialogism, especially the concept of addressivity, provides a comprehensive framework to address this question. In this commentary, I reanalyze the cogen episodes described in Shady's paper in the light of dialogism. My analysis suggests that addressivity plays an important role in mediating the success of cogens. Cogens with high addressivity function as internally persuasive discourse that allows diverse consciousnesses to coexist and so likely affords productive dialogues. The implications of addressivity in teaching and learning are further discussed.

  1. Addressing Social Issues.

    ERIC Educational Resources Information Center

    Schoebel, Susan

    1991-01-01

    Maintains that advertising can help people become more aware of social responsibilities. Describes a successful nationwide newspaper advertising competition for college students in which ads address social issues such as literacy, drugs, teen suicide, and teen pregnancy. Notes how the ads have helped grassroots programs throughout the United…

  2. Addressing Sexual Harassment

    ERIC Educational Resources Information Center

    Young, Ellie L.; Ashbaker, Betty Y.

    2008-01-01

    This article discusses ways on how to address the problem of sexual harassment in schools. Sexual harassment--simply defined as any unwanted and unwelcome sexual behavior--is a sensitive topic. Merely providing students, parents, and staff members with information about the school's sexual harassment policy is insufficient; schools must take…

  3. Holographic content addressable storage

    NASA Astrophysics Data System (ADS)

    Chao, Tien-Hsin; Lu, Thomas; Reyes, George

    2015-03-01

    We have developed a Holographic Content Addressable Storage (HCAS) architecture. The HCAS systems consists of a DMD (Digital Micromirror Array) as the input Spatial Light Modulator (SLM), a CMOS (Complementary Metal-oxide Semiconductor) sensor as the output photodetector and a photorefractive crystal as the recording media. The HCAS system is capable of performing optical correlation of an input image/feature against massive reference data set stored in the holographic memory. Detailed system analysis will be reported in this paper.

  4. Monolithically Integrated High-β Nanowire Lasers on Silicon.

    PubMed

    Mayer, B; Janker, L; Loitsch, B; Treu, J; Kostenbader, T; Lichtmannecker, S; Reichert, T; Morkötter, S; Kaniber, M; Abstreiter, G; Gies, C; Koblmüller, G; Finley, J J

    2016-01-13

    Reliable technologies for the monolithic integration of lasers onto silicon represent the holy grail for chip-level optical interconnects. In this context, nanowires (NWs) fabricated using III-V semiconductors are of strong interest since they can be grown site-selectively on silicon using conventional epitaxial approaches. Their unique one-dimensional structure and high refractive index naturally facilitate low loss optical waveguiding and optical recirculation in the active NW-core region. However, lasing from NWs on silicon has not been achieved to date, due to the poor modal reflectivity at the NW-silicon interface. We demonstrate how, by inserting a tailored dielectric interlayer at the NW-Si interface, low-threshold single mode lasing can be achieved in vertical-cavity GaAs-AlGaAs core-shell NW lasers on silicon as measured at low temperature. By exploring the output characteristics along a detection direction parallel to the NW-axis, we measure very high spontaneous emission factors comparable to nanocavity lasers (β = 0.2) and achieve ultralow threshold pump energies ≤11 pJ/pulse. Analysis of the input-output characteristics of the NW lasers and the power dependence of the lasing emission line width demonstrate the potential for high pulsation rates ≥250 GHz. Such highly efficient nanolasers grown monolithically on silicon are highly promising for the realization of chip-level optical interconnects. PMID:26618638

  5. Advances in solid state laser technology for space and medical applications

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Recent developments in laser technology and their potential for medical applications are discussed. Gas discharge lasers, dye lasers, excimer lasers, Nd:YAG lasers, HF and DF lasers, and other commonly used lasers are briefly addressed. Emerging laser technology is examined, including diode-pumped lasers and other solid state lasers.

  6. Final report on LDRD project: Semiconductor surface-emitting microcavity laser spectroscopy for analysis of biological cells and microstructures

    SciTech Connect

    Gourley, P.L.; McDonald, A.E.; Gourley, M.F.; Bellum, J.

    1997-08-01

    This article discusses a new intracavity laser technique that uses living or fixed cells as an integral part of the laser. The cells are placed on a GaAs based semiconductor wafer comprising one half of a vertical cavity surface-emitting laser. After placement, the cells are covered with a dielectric mirror to close the laser cavity. When photo-pumped with an external laser, this hybrid laser emits coherent light images and spectra that depend sensitively on the cell size, shape, and dielectric properties. The light spectra can be used to identify different cell types and distinguish normal and abnormal cells. The laser can be used to study single cells in real time as a cell-biology lab-on-a-chip, or to study large populations of cells by scanning the pump laser at high speed. The laser is well-suited to be integrated with other micro-optical or micro-fluidic components to lead to micro-optical-mechanical systems for analysis of fluids, particulates, and biological cells.

  7. Bioreactors Addressing Diabetes Mellitus

    PubMed Central

    Minteer, Danielle M.; Gerlach, Jorg C.

    2014-01-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies. PMID:25160666

  8. Bioreactors addressing diabetes mellitus.

    PubMed

    Minteer, Danielle M; Gerlach, Jorg C; Marra, Kacey G

    2014-11-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies.

  9. Content addressable memory project

    NASA Technical Reports Server (NTRS)

    Hall, J. Storrs; Levy, Saul; Smith, Donald E.; Miyake, Keith M.

    1992-01-01

    A parameterized version of the tree processor was designed and tested (by simulation). The leaf processor design is 90 percent complete. We expect to complete and test a combination of tree and leaf cell designs in the next period. Work is proceeding on algorithms for the computer aided manufacturing (CAM), and once the design is complete we will begin simulating algorithms for large problems. The following topics are covered: (1) the practical implementation of content addressable memory; (2) design of a LEAF cell for the Rutgers CAM architecture; (3) a circuit design tool user's manual; and (4) design and analysis of efficient hierarchical interconnection networks.

  10. Addressing Environmental Health Inequalities

    PubMed Central

    Gouveia, Nelson

    2016-01-01

    Environmental health inequalities refer to health hazards disproportionately or unfairly distributed among the most vulnerable social groups, which are generally the most discriminated, poor populations and minorities affected by environmental risks. Although it has been known for a long time that health and disease are socially determined, only recently has this idea been incorporated into the conceptual and practical framework for the formulation of policies and strategies regarding health. In this Special Issue of the International Journal of Environmental Research and Public Health (IJERPH), “Addressing Environmental Health Inequalities—Proceedings from the ISEE Conference 2015”, we incorporate nine papers that were presented at the 27th Conference of the International Society for Environmental Epidemiology (ISEE), held in Sao Paulo, Brazil, in 2015. This small collection of articles provides a brief overview of the different aspects of this topic. Addressing environmental health inequalities is important for the transformation of our reality and for changing the actual development model towards more just, democratic, and sustainable societies driven by another form of relationship between nature, economy, science, and politics. PMID:27618906

  11. Addressing Environmental Health Inequalities.

    PubMed

    Gouveia, Nelson

    2016-01-01

    Environmental health inequalities refer to health hazards disproportionately or unfairly distributed among the most vulnerable social groups, which are generally the most discriminated, poor populations and minorities affected by environmental risks. Although it has been known for a long time that health and disease are socially determined, only recently has this idea been incorporated into the conceptual and practical framework for the formulation of policies and strategies regarding health. In this Special Issue of the International Journal of Environmental Research and Public Health (IJERPH), "Addressing Environmental Health Inequalities-Proceedings from the ISEE Conference 2015", we incorporate nine papers that were presented at the 27th Conference of the International Society for Environmental Epidemiology (ISEE), held in Sao Paulo, Brazil, in 2015. This small collection of articles provides a brief overview of the different aspects of this topic. Addressing environmental health inequalities is important for the transformation of our reality and for changing the actual development model towards more just, democratic, and sustainable societies driven by another form of relationship between nature, economy, science, and politics. PMID:27618906

  12. Content addressable memory project

    NASA Technical Reports Server (NTRS)

    Hall, Josh; Levy, Saul; Smith, D.; Wei, S.; Miyake, K.; Murdocca, M.

    1991-01-01

    The progress on the Rutgers CAM (Content Addressable Memory) Project is described. The overall design of the system is completed at the architectural level and described. The machine is composed of two kinds of cells: (1) the CAM cells which include both memory and processor, and support local processing within each cell; and (2) the tree cells, which have smaller instruction set, and provide global processing over the CAM cells. A parameterized design of the basic CAM cell is completed. Progress was made on the final specification of the CPS. The machine architecture was driven by the design of algorithms whose requirements are reflected in the resulted instruction set(s). A few of these algorithms are described.

  13. Bax: Addressed to kill.

    PubMed

    Renault, Thibaud T; Manon, Stéphen

    2011-09-01

    The pro-apoptototic protein Bax (Bcl-2 Associated protein X) plays a central role in the mitochondria-dependent apoptotic pathway. In healthy mammalian cells, Bax is essentially cytosolic and inactive. Following a death signal, the protein is translocated to the outer mitochondrial membrane, where it promotes a permeabilization that favors the release of different apoptogenic factors, such as cytochrome c. The regulation of Bax translocation is associated to conformational changes that are under the control of different factors. The evidences showing the involvement of different Bax domains in its mitochondrial localization are presented. The interactions between Bax and its different partners are described in relation to their ability to promote (or prevent) Bax conformational changes leading to mitochondrial addressing and to the acquisition of the capacity to permeabilize the outer mitochondrial membrane. PMID:21641962

  14. Semiconductor lasers driven by self-sustained chaotic electronic oscillators and applications to optical chaos cryptography.

    PubMed

    Kingni, Sifeu Takougang; Mbé, Jimmi Hervé Talla; Woafo, Paul

    2012-09-01

    In this work, we numerically study the dynamics of vertical cavity surface emitting laser (VCSEL) firstly when it is driven by Chua's oscillator, secondly in case where it is driven by a broad frequency spectral bandwidth chaotic oscillator developed by Nana et al. [Commun. Nonlinear Sci. Numer. Simul. 14, 2266 (2009)]. We demonstrated that the VCSEL generated robust chaotic dynamics compared to the ones found in VCSEL subject to a sinusoidally modulated current and therefore it is more suitable for chaos encryption techniques. The synchronization characteristics and the communication performances of unidirectional coupled VCSEL driven by the broad frequency spectral bandwidth chaotic oscillators are investigated numerically. The results show that high-quality synchronization and transmission of messages can be realized for suitable system parameters. Chaos shift keying method is successfully applied to encrypt a message at a high bitrate.

  15. Laser bottom hole assembly

    DOEpatents

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  16. Laser power transmission

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1992-01-01

    An overview of previous studies related to laser power transmission is presented. Particular attention is given to the use of solar pumped lasers for space power applications. Three general laser mechanisms are addressed: photodissociation lasing driven by sunlight, photoexcitation lasing driven directly by sunlight, and photoexcitation lasing driven by thermal radiation.

  17. [Keynote address: Climate change

    SciTech Connect

    Forrister, D.

    1994-12-31

    Broadly speaking, the climate issue is moving from talk to action both in the United States and internationally. While few nations have adopted strict controls or stiff new taxes, a number of them are developing action plans that are making clear their intention to ramp up activity between now and the year 2000... and beyond. There are sensible, economically efficient strategies to be undertaken in the near term that offer the possibility, in many countries, to avoid more draconian measures. These strategies are by-and-large the same measures that the National Academy of Sciences recommended in a 1991 report called, Policy Implications of Greenhouse Warming. The author thinks the Academy`s most important policy contribution was how it recommended the nations act in the face of uncertain science and high risks--that cost effective measures are adopted as cheap insurance... just as nations insure against other high risk, low certainty possibilities, like catastrophic health insurance, auto insurance, and fire insurance. This insurance theme is still right. First, the author addresses how the international climate change negotiations are beginning to produce insurance measures. Next, the author will discuss some of the key issues to watch in those negotiations that relate to longer-term insurance. And finally, the author will report on progress in the United States on the climate insurance plan--The President`s Climate Action Plan.

  18. Noise induced stabilization of chaotic free-running laser diode.

    PubMed

    Virte, Martin

    2016-05-01

    In this paper, we investigate theoretically the stabilization of a free-running vertical-cavity surface-emitting laser exhibiting polarization chaos dynamics. We report the existence of a boundary isolating the chaotic attractor on one side and a steady-state on the other side and identify the unstable periodic orbit playing the role of separatrix. In addition, we highlight a small range of parameters where the chaotic attractor passes through this boundary, and therefore where chaos only appears as a transient behaviour. Then, including the effect of spontaneous emission noise in the laser, we demonstrate that, for realistic levels of noise, the system is systematically pushed over the separating solution. As a result, we show that the chaotic dynamics cannot be sustained unless the steady-state on the other side of the separatrix becomes unstable. Finally, we link the stability of this steady-state to a small value of the birefringence in the laser cavity and discuss the significance of this result on future experimental work.

  19. Addressing psychiatric comorbidity.

    PubMed

    Woody, G E; McLellan, A T; O'Brien, C P; Luborsky, L

    1991-01-01

    Research studies indicate that addressing psychiatric comorbidity can improve treatment for selected groups of substance-abusing patients. However, the chances for implementing the necessary techniques on a large scale are compromised by the absence of professional input and guidance within programs. This is especially true in public programs, which treat some of the most disadvantaged, disturbed, and socially destructive individuals in the entire mental health system. One starting point for upgrading the level of knowledge and training of staff members who work in this large treatment system could be to develop a better and more authoritative information dissemination network. Such a system exists in medicine; physicians are expected to read appropriate journals and to guide their treatment decisions using the data contained in the journals. Standards of practice and methods for modifying current practice are within the tradition of reading new facts, studying old ones, and comparing treatment outcome under different conditions with what is actually being done. No such general system of information-gathering or -sharing exists, particularly in public treatment programs. One of the most flagrant examples of this "educational shortfall" can be found among those methadone programs that adamantly insist on prescribing no more than 30 to 35 mg/day for all patients, in spite of the overwhelming evidence that these dose levels generally are inadequate. In some cases, program directors are unaware of studies that have shown the relationship between dose and outcome. In other cases, they are aware of the studies but do not modify their practices accordingly. This example of inadequate dosing is offered as an example of one situation that could be improved by adherence to a system of authoritative and systematic information dissemination. Many issues in substance abuse treatment do not lend themselves to information dissemination as readily as that of methadone dosing

  20. Exploiting broad-area surface emitting lasers to manifest the path-length distributions of finite-potential quantum billiards.

    PubMed

    Yu, Y T; Tuan, P H; Chang, K C; Hsieh, Y H; Huang, K F; Chen, Y F

    2016-01-11

    Broad-area vertical-cavity surface-emitting lasers (VCSELs) with different cavity sizes are experimentally exploited to manifest the influence of the finite confinement strength on the path-length distribution of quantum billiards. The subthreshold emission spectra of VCSELs are measured to obtain the path-length distributions by using the Fourier transform. It is verified that the number of the resonant peaks in the path-length distribution decreases with decreasing the confinement strength. Theoretical analyses for finite-potential quantum billiards are numerically performed to confirm that the mesoscopic phenomena of quantum billiards with finite confinement strength can be analogously revealed by using broad-area VCSELs. PMID:26832239

  1. Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers

    PubMed Central

    Jirauschek, Christian; Huber, Robert

    2015-01-01

    We analyze the physics behind the newest generation of rapidly wavelength tunable sources for optical coherence tomography (OCT), retaining a single longitudinal cavity mode during operation without repeated build up of lasing. In this context, we theoretically investigate the currently existing concepts of rapidly wavelength-swept lasers based on tuning of the cavity length or refractive index, leading to an altered optical path length inside the resonator. Specifically, we consider vertical-cavity surface-emitting lasers (VCSELs) with microelectromechanical system (MEMS) mirrors as well as Fourier domain mode-locked (FDML) and Vernier-tuned distributed Bragg reflector (VT-DBR) lasers. Based on heuristic arguments and exact analytical solutions of Maxwell’s equations for a fundamental laser resonator model, we show that adiabatic wavelength tuning is achieved, i.e., hopping between cavity modes associated with a repeated build up of lasing is avoided, and the photon number is conserved. As a consequence, no fundamental limit exists for the wavelength tuning speed, in principle enabling wide-range wavelength sweeps at arbitrary tuning speeds with narrow instantaneous linewidth. PMID:26203373

  2. 2015 ASHG Awards and Addresses

    PubMed Central

    2016-01-01

    Each year at the annual meeting of The American Society of Human Genetics (ASHG), addresses are given in honor of The Society and a number of award winners. A summary of each of these is given below. On the following pages, we have printed the presidential address and the addresses for the William Allan Award, the Curt Stern Award, and the Victor A. McKusick Leadership Award. Webcasts of these addresses, as well as those of many other presentations, can be found at http://www.ashg.org.

  3. High-power green and blue electron-beam pumped surface-emitting lasers using dielectric and epitaxial distributed Bragg reflectors

    SciTech Connect

    Klein, T.; Klembt, S.; Kozlovsky, V. I.; Zheng, A.; Tiberi, M. D.; Kruse, C.

    2015-03-21

    ZnSe-based electron-beam pumped vertical-cavity surface-emitting lasers for the green (λ = 530 nm) and blue (λ = 462 nm) spectral region have been realized. Structures with and without epitaxial bottom distributed Bragg reflector have been fabricated and characterized. The samples consist of an active region containing 20 quantum wells with a cavity length varying between an optical thickness of 10 λ to 20 λ. The active material is ZnCdSSe in case of the green devices and ZnSe for the blue ones. Room temperature single mode lasing for structures with and without epitaxial bottom mirror with a maximum output power up to 5.9 W (green) and 3.3 W (blue) is achieved, respectively.

  4. High duty cycle far-infrared germanium lasers

    NASA Astrophysics Data System (ADS)

    Chamberlin, Danielle Russell

    The effects of crystal geometry, heat transport, and optics on high duty cycle germanium hole population inversion lasers are investigated. Currently the laser's low duty cycle limits its utility for many applications. This low duty cycle is a result of the combination of the large electrical input power necessary and insufficient heat extraction. In order to achieve a continuous-wave device, the input power must be decreased and the cooling power increased. In order to improve laser efficiency and lower the input power, the effect of laser crystal geometry on the electric field uniformity is considered. Geometries with d/L>>1 or <<1 are shown to have improved electric field uniformity, where d is the distance between electrical contacts and L is the length in the direction of the Hall electric field. A geometry with d/L>>1 is shown to decrease the threshold voltage for lasing. Laser crystals with the traditional contact geometry have been compared to a new, planar contact design with both electrical contacts on the same side of the laser crystal. This new geometry provides a large d/L ratio while also allowing effective heat sinking. A pure, single-crystal silicon heat sink is developed for planar contact design lasers, which improves the duty cycle tenfold. For the traditional contact design, copper heat sinks are developed that demonstrate cooling powers up to 10 Watts. The effects of thermal conductivity, surface area, and interfacial thermal resistance on the heat transport are compared. To improve the cavity quality, thereby allowing for smaller crystal volumes, new optical designs are investigated. A vertical cavity structure is demonstrated for the planar contact structure using strontium titanate single crystals as mirrors. A mode-selecting cavity is implemented for the traditional contact design. The spectra of small-volume, near-threshold lasers are measured. In contrast to the emission of larger lasers, these lasers emit within narrow frequency peaks

  5. Addressing adolescent pregnancy with legislation.

    PubMed

    Montgomery, Tiffany M; Folken, Lori; Seitz, Melody A

    2014-01-01

    Adolescent pregnancy is a concern among many women's health practitioners. While it is practical and appropriate to work to prevent adolescent pregnancy by educating adolescents in health care clinics, schools and adolescent-friendly community-based organizations, suggesting and supporting legislative efforts to reduce adolescent pregnancy can help address the issue on an even larger scale. This article aims to help nurses better understand current legislation that addresses adolescent pregnancy, and to encourage support of future adolescent pregnancy prevention legislation. PMID:25145716

  6. Addressing adolescent pregnancy with legislation.

    PubMed

    Montgomery, Tiffany M; Folken, Lori; Seitz, Melody A

    2014-01-01

    Adolescent pregnancy is a concern among many women's health practitioners. While it is practical and appropriate to work to prevent adolescent pregnancy by educating adolescents in health care clinics, schools and adolescent-friendly community-based organizations, suggesting and supporting legislative efforts to reduce adolescent pregnancy can help address the issue on an even larger scale. This article aims to help nurses better understand current legislation that addresses adolescent pregnancy, and to encourage support of future adolescent pregnancy prevention legislation.

  7. A fundamental mode Nd:GdVO4 laser pumped by a large aperture 808 nm VCSEL

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Ma, J. L.; Yan, C. L.; Liu, G. J.; Ma, X. H.; Gong, J. F.; Feng, Y.; Wei, Z. P.; Wang, Y. X.; Zhao, Y. J.

    2013-05-01

    A fundamental mode Nd:GdVO4 laser pumped by a vertical cavity surface emitting laser (VCSEL) is experimentally demonstrated. The VCSEL has a circular output-beam which makes it easier for it to be directly coupled to a Nd:GdVO4 microcrystal. In our research, a large aperture 808 nm VCSEL, with a multi-ring-shaped aperture (MRSA) and an almost Gaussian-shaped far-field profile, is used as the pumping source. Experimental results for the Nd:GdVO4 laser pumped by the VCSEL are presented. The maximum output peak power of 0.754 W is obtained under a pump peak power of 1.3 W, and the corresponding opto-optic conversion efficiency is 58.1%. The average slope efficiency is 65.8% from the threshold pump power of 0.2 W to the pump power of 1.3 W. The laser beam quality factors are measured to be {M}x2=1.2 0 and {M}y2=1.1 5.

  8. Addressing problems of employee performance.

    PubMed

    McConnell, Charles R

    2011-01-01

    Employee performance problems are essentially of 2 kinds: those that are motivational in origin and those resulting from skill deficiencies. Both kinds of problems are the province of the department manager. Performance problems differ from problems of conduct in that traditional disciplinary processes ordinarily do not apply. Rather, performance problems are addressed through educational and remedial processes. The manager has a basic responsibility in ensuring that everything reasonable is done to help each employee succeed. There are a number of steps the manager can take to address employee performance problems.

  9. Individual addressing in quantum computation through spatial refocusing

    NASA Astrophysics Data System (ADS)

    Shen, C.; Gong, Z.-X.; Duan, L.-M.

    2013-11-01

    Separate addressing of individual qubits is a challenging requirement for scalable quantum computation, and crosstalk between operations on neighboring qubits remains a significant source of error for current experimental implementations of multiqubit platforms. We propose a scheme based on spatial refocusing from interference of several coherent laser beams to significantly reduce the crosstalk error for any type of quantum gate. A general framework is developed for the spatial refocusing technique, in particular with practical Gaussian beams, and we show that the crosstalk-induced infidelity of quantum gates can be reduced by several orders of magnitude with a moderate cost of a few correction laser beams under typical experimental conditions.

  10. Addressing Phonological Questions with Ultrasound

    ERIC Educational Resources Information Center

    Davidson, Lisa

    2005-01-01

    Ultrasound can be used to address unresolved questions in phonological theory. To date, some studies have shown that results from ultrasound imaging can shed light on how differences in phonological elements are implemented. Phenomena that have been investigated include transitional schwa, vowel coalescence, and transparent vowels. A study of…

  11. Every Other Day. Keynote Address.

    ERIC Educational Resources Information Center

    Tiller, Tom

    Schools need to be reoriented and restructured so that what is taught and learned, and the way in which it is taught and learned, are better integrated with young people's real-world experiences. Many indicators suggest that the meaningful aspects of school have been lost in the encounter with modern times. The title of this address--"Every Other…

  12. State of the Lab Address

    SciTech Connect

    King, Alex

    2010-01-01

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  13. State of the Lab Address

    ScienceCinema

    King, Alex

    2016-07-12

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  14. Time-multiplexed, optically-addressed, gigabit optical crossbar switch

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor); Cheng, Li-Jen (Inventor); Maserjian, Joseph (Inventor)

    1994-01-01

    A time-multiplexed, optically-addressed, crossbar switch (38) is provided using a two-dimensional, optically-addressed, reflective spatial light modulator (O-SLM) (20). Since the optical addressing is time-multiplexed, only N addressing lines are required for an N.times.N crossbar, rather than the N.sup.2 lines needed in the prior art. This reduction in addressing lines makes possible the development of enormous crossbar switches, such as 100.times.100, for the first time. In addition, since data paths remain entirely in the optics domain, data speeds can reach the multi-gigabit level. In the switch, a row (40) of N inputs (42) at the read wavelength is spread over one axis of the O-SLM. The light is refocused along the other axis to an output array (48) of detectors (50), so that each input has the potential to talk to any one output. The O-SLM is normally off, i.e., non-reflective, so that the output is, in the absence of an input signal, zero. A one-dimensional array (52) of lasers (54) at the write wavelength is imaged onto the O-SLM. Each laser scans across an entire row of the O-SLM; where the laser is on, it turns on a portion of the O-SLM and establishes a connection between a particular input and a particular output. A full row is scanned in a time much shorter than the response time of the O-SLM, so that state of the O-SLM is capacitively stored and dynamically refreshed. The scanning is accomplished by tuning the wavelength of the laser and passing it through a grating, which sweeps the beam in space.

  15. Lasers '86; Proceedings of the Ninth International Conference on Lasers and Applications, Orlando, FL, Nov. 3-7, 1986

    SciTech Connect

    Mcmillan, R.W.

    1987-01-01

    Laser physics, technology, and applications are examined in reviews and reports. Topics addressed include VUV and X-ray lasers, vibrational energy transfer and kinetics, medical applications, ultrashort lasers and spectroscopy, surface and material interactions, lasers in atmospheric physics, and fiber-optic systems. Consideration is given to alexandrite lasers, four-wave mixing and nonlinear optics, chemical lasers, semiconductor lasers, photothermal and photoacoustic spectroscopy, dye lasers, optical phase conjugation and SBS, excimer lasers, SDI laser applications, remote-sensing with lasers, FELs, and applications in chemistry. Diagrams, drawings, graphs, and photographs are provided.

  16. High power laser diodes for the NASA direct detection laser transceiver experiment

    NASA Technical Reports Server (NTRS)

    Seery, Bernard D.; Holcomb, Terry L.

    1988-01-01

    High-power semiconductor laser diodes selected for use in the NASA space laser communications experiments are discussed. The diode selection rationale is reviewed, and the laser structure is shown. The theory and design of the third mirror lasers used in the experiments are addressed.

  17. Laser Technology.

    ERIC Educational Resources Information Center

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  18. Lasers in space

    NASA Astrophysics Data System (ADS)

    Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.

    2008-05-01

    A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"

  19. Fabrication of Diffractive Optical Elements for an Integrated Compact Optical-MEMS Laser Scanner

    SciTech Connect

    WENDT,JOEL R.; KRYGOWSKI,T.W.; VAWTER,GREGORY A.; SPAHN,OLGA B.; SWEATT,WILLIAM C.; WARREN,MIAL E.; REYES,DAVID NMN

    2000-07-13

    The authors describe the microfabrication of a multi-level diffractive optical element (DOE) onto a micro-electromechanical system (MEMS) as a key element in an integrated compact optical-MEMS laser scanner. The DOE is a four-level off-axis microlens fabricated onto a movable polysilicon shuttle. The microlens is patterned by electron beam lithography and etched by reactive ion beam etching. The DOE was fabricated on two generations of MEMS components. The first generation design uses a shuttle suspended on springs and displaced by a linear rack. The second generation design uses a shuttle guided by roller bearings and driven by a single reciprocating gear. Both the linear rack and the reciprocating gear are driven by a microengine assembly. The compact design is based on mounting the MEMS module and a vertical cavity surface emitting laser (VCSEL) onto a fused silica substrate that contains the rest of the optical system. The estimated scan range of the system is {+-}4{degree} with a spot size of 0.5 mm.

  20. Exploring Ramsey-coherent population trapping atomic clock realized with pulsed microwave modulated laser

    SciTech Connect

    Yang, Jing; Yun, Peter; Tian, Yuan; Tan, Bozhong; Gu, Sihong

    2014-03-07

    A scheme for a Ramsey-coherent population trapping (CPT) atomic clock that eliminates the acousto-optic modulator (AOM) is proposed and experimentally studied. Driven by a periodically microwave modulated current, the vertical-cavity surface-emitting laser emits a continuous beam that switches between monochromatic and multichromatic modes. Ramsey-CPT interference has been studied with this mode-switching beam. In eliminating the AOM, which is used to generate pulsed laser in conventional Ramsey-CPT atomic clock, the physics package of the proposed scheme is virtually the same as that of a conventional compact CPT atomic clock, although the resource budget for the electronics will slightly increase as a microwave switch should be added. By evaluating and comparing experimentally recorded signals from the two Ramsey-CPT schemes, the short-term frequency stability of the proposed scheme was found to be 46% better than the scheme with AOM. The experimental results suggest that the implementation of a compact Ramsey-CPT atomic clock promises better frequency stability.

  1. Addressing Passive Smoking in Children

    PubMed Central

    Hutchinson, Sasha G.; Kuijlaars, Jennifer S.; Mesters, Ilse; Muris, Jean W. M.; van Schayck, Constant P.; Dompeling, Edward; Feron, Frans J. M.

    2014-01-01

    Background A significant number of parents are unaware or unconvinced of the health consequences of passive smoking (PS) in children. Physicians could increase parental awareness by giving personal advice. Aim To evaluate the current practices of three Dutch health professions (paediatricians, youth health care physicians, and family physicians) regarding parental counselling for passive smoking (PS) in children. Methods All physicians (n = 720) representing the three health professions in Limburg, the Netherlands, received an invitation to complete a self-administered electronic questionnaire including questions on their: sex, work experience, personal smoking habits, counselling practices and education regarding PS in children. Results The response rate was 34%. One tenth (11%) of the responding physicians always addressed PS in children, 32% often, 54% occasionally and 4% reported to never attend to it. The three health professions appeared comparable regarding their frequency of parental counselling for PS in children. Addressing PS was more likely when children had respiratory problems. Lack of time was the most frequently mentioned barrier, being very and somewhat applicable for respectively 14% and 43% of the physicians. One fourth of the responders had received postgraduate education about PS. Additionally, 49% of the responders who did not have any education about PS were interested in receiving it. Conclusions Physicians working in the paediatric field in Limburg, the Netherlands, could more frequently address PS in children with parents. Lack of time appeared to be the most mentioned barrier and physicians were more likely to counsel parents for PS in children with respiratory complaints/diseases. Finally, a need for more education on parental counselling for PS was expressed. PMID:24809443

  2. Addressing inequities in healthy eating.

    PubMed

    Friel, Sharon; Hattersley, Libby; Ford, Laura; O'Rourke, Kerryn

    2015-09-01

    What, when, where and how much people eat is influenced by a complex mix of factors at societal, community and individual levels. These influences operate both directly through the food system and indirectly through political, economic, social and cultural pathways that cause social stratification and influence the quality of conditions in which people live their lives. These factors are the social determinants of inequities in healthy eating. This paper provides an overview of the current evidence base for addressing these determinants and for the promotion of equity in healthy eating. PMID:26420812

  3. Identifying and Addressing Vaccine Hesitancy

    PubMed Central

    Kestenbaum, Lori A.; Feemster, Kristen A.

    2015-01-01

    In the 20th century, the introduction of multiple vaccines significantly reduced childhood morbidity, mortality, and disease outbreaks. Despite, and perhaps because of, their public health impact, an increasing number of parents and patients are choosing to delay or refuse vaccines. These individuals are described as vaccine hesitant. This phenomenon has developed due to the confluence of multiple social, cultural, political and personal factors. As immunization programs continue to expand, understanding and addressing vaccine hesitancy will be crucial to their successful implementation. This review explores the history of vaccine hesitancy, its causes, and suggested approaches for reducing hesitancy and strengthening vaccine acceptance. PMID:25875982

  4. Nanoscale content-addressable memory

    NASA Technical Reports Server (NTRS)

    Davis, Bryan (Inventor); Principe, Jose C. (Inventor); Fortes, Jose (Inventor)

    2009-01-01

    A combined content addressable memory device and memory interface is provided. The combined device and interface includes one or more one molecular wire crossbar memories having spaced-apart key nanowires, spaced-apart value nanowires adjacent to the key nanowires, and configurable switches between the key nanowires and the value nanowires. The combination further includes a key microwire-nanowire grid (key MNG) electrically connected to the spaced-apart key nanowires, and a value microwire-nanowire grid (value MNG) electrically connected to the spaced-apart value nanowires. A key or value MNGs selects multiple nanowires for a given key or value.

  5. Addressing the workforce pipeline challenge

    SciTech Connect

    Leonard Bond; Kevin Kostelnik; Richard Holman

    2006-11-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

  6. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers

    NASA Astrophysics Data System (ADS)

    Gather, Malte C.; Yun, Seok Hyun

    2014-12-01

    Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here, we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (-7 dB) and support strong optical amplification (gnet=22 cm-1 96 dB cm-1). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles.

  7. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers.

    PubMed

    Gather, Malte C; Yun, Seok Hyun

    2014-12-08

    Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here, we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (-7 dB) and support strong optical amplification (gnet=22 cm(-1); 96 dB cm(-1)). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles.

  8. Understanding lasers

    SciTech Connect

    Gibilisco, S.

    1989-01-01

    Covering all different types of laser applications-Gibilisco offers an overview of this fascinating phenomenon of light. Here he describes what lasers are and how they work and examines in detail the different kinds of lasers in use today. Topics of particular interest include: the way lasers work; the different kinds of lasers; infrared, ultraviolet and x-ray lasers; use of lasers in industry and manufacturing; use of lasers for long-distance communications; fiberoptic communications; the way laser shows work; the reality of Star Wars; lasers in surgical and medical applications; and holography and the future of laser technology.

  9. Influence of laser sources with different spectral properties on the performance of vapor cell atomic clocks based on lin||lin CPT.

    PubMed

    Breschi, Evelina; Kazakov, George; Lammegger, Roland; Matisov, Boris; Windholz, Laurentius; Mileti, Gaetano

    2009-05-01

    We evaluate the influence of 2 types of laser sources with different spectral profiles on the performance of vapor cell atomic clocks based on lin||lin coherent population trapping (CPT) resonances. We show that a short-term stability of 1-2 x 10(-11) tau(-1/2) may be reached in a compact system using a modulated vertical cavity surface-emitting laser. Here the stability is limited by the detection noise level and can be improved up to a factor of 4 by increasing the lock-in detection frequency to several tens of kilohertz, which is not possible in standard double resonance atomic clocks. We compare these results with CPT prepared under the same experimental conditions, using 2 phase-locked extended cavity diode lasers, with which we predict a challenging short-term stability of 1-3 x 10(-13) tau(-1/2), comparable to the state-of-the-art laser-pumped Rb-clocks.

  10. Addressing viral resistance through vaccines

    PubMed Central

    Laughlin, Catherine; Schleif, Amanda; Heilman, Carole A

    2015-01-01

    Antimicrobial resistance is a serious healthcare concern affecting millions of people around the world. Antiviral resistance has been viewed as a lesser threat than antibiotic resistance, but it is important to consider approaches to address this growing issue. While vaccination is a logical strategy, and has been shown to be successful many times over, next generation viral vaccines with a specific goal of curbing antiviral resistance will need to clear several hurdles including vaccine design, evaluation and implementation. This article suggests that a new model of vaccination may need to be considered: rather than focusing on public health, this model would primarily target sectors of the population who are at high risk for complications from certain infections. PMID:26604979

  11. Changing concepts: the presidential address.

    PubMed

    Weed, J C

    1974-09-01

    A discussion of conceptual change in areas related to fertility and medicine is presented in an address by the president of the American Fertility Society. Advances in technological research and medicine, particularly in steroids and reporductive physiology, have been the most readily acceptable changes. Cesarean section and surgical sterilization have also become increasingly accepted. Newer developments such as sperm banks, artificial insemination, and ovum transfer have created profound ethical, moral, and medical issued in human engineering research and evolutionary theory. The legalization of abortion has brought moral, ethical, and legal problems for many members of the medical profession. It is urged that the Society promote education of the people in reproductive function, sexual activity, and parental obligation while being acutely aware of the problems in influencing or altering human reproduction.

  12. Addressing Failures in Exascale Computing

    SciTech Connect

    Snir, Marc; Wisniewski, Robert; Abraham, Jacob; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, J.; Bose, Pradip; Cappello, Franck; Carlson, Bill; Chien, Andrew; Coteus, Paul; DeBardeleben, Nathan; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Fazzari, Saverio; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Rob; Stearley, Jon; Van Hensbergen, Eric

    2014-01-01

    We present here a report produced by a workshop on Addressing failures in exascale computing' held in Park City, Utah, 4-11 August 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system, discuss existing knowledge on resilience across the various hardware and software layers of an exascale system, and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia, and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  13. Addressing failures in exascale computing

    SciTech Connect

    Snir, Marc; Wisniewski, Robert W.; Abraham, Jacob A.; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, Jim; Bose, Pradip; Cappello, Franck; Carlson, William; Chien, Andrew A.; Coteus, Paul; Debardeleben, Nathan A.; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Saverio, Fazzari; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Robert; Stearly, Jon; Van Hensbergen, Eric

    2014-05-01

    We present here a report produced by a workshop on “Addressing Failures in Exascale Computing” held in Park City, Utah, August 4–11, 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system; discuss existing knowledge on resilience across the various hardware and software layers of an exascale system; and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia; and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  14. Light addressable photoelectrochemical cyanide sensor

    SciTech Connect

    Licht, S.; Myung, N.; Sun, Y.

    1996-03-15

    A sensor is demonstrated that is capable of spatial discrimination of cyanide with use of only a single stationary sensing element. Different spatial regions of the sensing element are light activated to reveal the solution cyanide concentration only at the point of illumination. In this light addressable photoelectrochemical (LAP) sensor the sensing element consists of an n-CdSe electrode immersed in solution, with the open-circuit potential determined under illumination. In alkaline ferro-ferri-cyanide solution, the open-circuit photopotential is highly responsive to cyanide, with a linear response of (120 mV) log [KCN]. LAP detection with a spatial resolution of {+-}1 mm for cyanide detection is demonstrated. The response is almost linear for 0.001-0.100 m cyanide with a resolution of 5 mV. 38 refs., 7 figs., 1 tab.

  15. Laser amplifier developments at Mercury

    SciTech Connect

    Rose, E.A.; Brucker, J.P.; Honig, E.M.; McCown, A.W.; Romero, V.O.; York, G.W.

    1993-09-01

    Electron-beam pumped laser amplifiers have been modified to address the mission of krypton-fluoride excimer laser technology development. Methods are described for improving the performance and reliability of two pre-existing amplifiers at minimal cost and time. Preliminary performance data are presented to support the credibility of the approach.

  16. Flow patterns of natural convection in an air-filled vertical cavity

    NASA Astrophysics Data System (ADS)

    Wakitani, Shunichi

    1998-08-01

    Flow patterns of two-dimensional natural convection in a vertical air-filled tall cavity with differentially heated sidewalls are investigated. Numerical simulations based on a finite difference method are carried out for a wide range of Rayleigh numbers and aspect ratios from the onset of the steady multicellular flow, through the reverse transition to the unicellular pattern, to the unsteady multicellular flow. For aspect ratios (height/width) from 10 to 24, the various cellular structures characterized by the number of secondary cells are clarified from the simulations by means of gradually increasing Rayleigh number to 106. Unsteady multicellular solutions are found in some region of Rayleigh numbers less than those at which the reverse transition has occurred.

  17. Addressing neurological disorders with neuromodulation.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2011-07-01

    Neurological disorders are becoming increasingly common in developed countries as a result of the aging population. In spite of medications, these disorders can result in progressive loss of function as well as chronic physical, cognitive, and emotional disability that ultimately places enormous emotional and economic on the patient, caretakers, and the society in general. Neuromodulation is emerging as a therapeutic option in these patients. Neuromodulation is a field, which involves implantable devices that allow for the reversible adjustable application of electrical, chemical, or biological agents to the central or peripheral nervous system with the objective of altering its functioning with the objective of achieving a therapeutic or clinically beneficial effect. It is a rapidly evolving field that brings together many different specialties in the fields of medicine, materials science, computer science and technology, biomedical, and neural engineering as well as the surgical or interventional specialties. It has multiple current and emerging indications, and an enormous potential for growth. The main challenges before it are in the need for effective collaboration between engineers, basic scientists, and clinicians to develop innovations that address specific problems resulting in new devices and clinical applications. PMID:21193369

  18. A region addresses patient safety.

    PubMed

    Feinstein, Karen Wolk; Grunden, Naida; Harrison, Edward I

    2002-06-01

    The Pittsburgh Regional Healthcare Initiative (PRHI) is a coalition of 35 hospitals, 4 major insurers, more than 30 major and small-business health care purchasers, dozens of corporate and civic leaders, organized labor, and partnerships with state and federal government all working together to deliver perfect patient care throughout Southwestern Pennsylvania. PRHI believes that in pursuing perfection, many of the challenges facing today's health care delivery system (eg, waste and error in the delivery of care, rising costs, frustration and shortage among clinicians and workers, financial distress, overcapacity, and lack of access to care) will be addressed. PRHI has identified patient safety (nosocomial infections and medication errors) and 5 clinical areas (obstetrics, orthopedic surgery, cardiac surgery, depression, and diabetes) as ideal starting points. In each of these areas of work, PRHI partners have assembled multifacility/multidisciplinary groups charged with defining perfection, establishing region-wide reporting systems, and devising and implementing recommended improvement strategies and interventions. Many design and conceptual elements of the PRHI strategy are adapted from the Toyota Production System and its Pittsburgh derivative, the Alcoa Business System. PRHI is in the proof-of-concept phase of development. PMID:12032502

  19. Addressing neurological disorders with neuromodulation.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2011-07-01

    Neurological disorders are becoming increasingly common in developed countries as a result of the aging population. In spite of medications, these disorders can result in progressive loss of function as well as chronic physical, cognitive, and emotional disability that ultimately places enormous emotional and economic on the patient, caretakers, and the society in general. Neuromodulation is emerging as a therapeutic option in these patients. Neuromodulation is a field, which involves implantable devices that allow for the reversible adjustable application of electrical, chemical, or biological agents to the central or peripheral nervous system with the objective of altering its functioning with the objective of achieving a therapeutic or clinically beneficial effect. It is a rapidly evolving field that brings together many different specialties in the fields of medicine, materials science, computer science and technology, biomedical, and neural engineering as well as the surgical or interventional specialties. It has multiple current and emerging indications, and an enormous potential for growth. The main challenges before it are in the need for effective collaboration between engineers, basic scientists, and clinicians to develop innovations that address specific problems resulting in new devices and clinical applications.

  20. Gender: addressing a critical focus.

    PubMed

    Thornton, L; Wegner, M N

    1995-01-01

    The definition of gender was addressed at the Fourth World Conference on Women (Beijing, China). After extensive debate, the definition developed by the UN Population Fund in 1995 was adopted: "a set of qualities and behaviors expected from a female or male by society." The sustainability of family planning (FP) programs depends on acknowledgment of the role gender plays in contraceptive decision-making and use. For example, programs must consider the fact that women in many cultures do not make FP decisions without the consent of their spouse. AVSC is examining providers' gender-based ideas about clients and the effects of these views on the quality of reproductive health services. Questions such as how service providers can encourage joint responsibility for contraception without requiring spousal consent or how they can make men feel comfortable about using a male method in a society where FP is considered a woman's issue are being discussed. Also relevant is how service providers can discuss sexual matters openly with female clients in cultures that do not allow women to enjoy their sexuality. Another concern is the potential for physical violence to a client as a result of the provision of FP services. PMID:12294397

  1. Laser physics and laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Byer, Robert L.

    1990-04-01

    Two essential difficulties must be addressed in any low-power frequency conversion device; boosting the efficiency above that of simple single-pass bulk devices (which are typically less than 1 percent/W) and achieving phase-matching for the desired interaction. Waveguide interactions were used to increase the conversion efficiency, and explored quasi-phase-matching (QPM) as a broadly applicable approach to meeting the phasematching condition. Both oxide forrelectrics like LiNbO3 and quantum-wells in III-V semiconductors have been investigated for these applications. Second harmonic generation (SHG) of near-infrared lasers to produce green and blue radiation, as well as SHG of the 9 to 11 micrometer output of a CO2 laser have been demonstrated in these materials. These media together constitute a significant step towards the goal of generic nonlinear media for the far infrared - ultraviolet, based on readily available materials and fabricated with standard technologies, applicable to essentially any frequency conversion application.

  2. 780nm-range VCSEL array for laser printer system and other applications at Ricoh

    NASA Astrophysics Data System (ADS)

    Jikutani, Naoto; Itoh, Akihiro; Harasaka, Kazuhiro; Sasaki, Toshihide; Sato, Shunichi

    2016-03-01

    A 780 nm-range 40 channels vertical-cavity surface-emitting laser (VCSEL) array was developed as a writing light source for printers. A 15° off missoriented GaAs substrate, an aluminum-free GaInAsP/GaInP compressively-strained multiple quantum well and an anisotropic-shape transverse-mode filter were employed to control polarization characteristics. The anisotropic-shape transverse-mode filter also suppressed higher transverse-mode and enabled high-power single-mode operation. Thus, orthogonal-polarization suppression-ratio (OPSR) of over 22 dB and side-mode suppression-ratio (SMSR) of 30 dB were obtained at operation power of 3mW at same time for wide oxide-aperture range below 50 μm2. Moreover, a thermal resistance was reduced for 38% by increasing a thickness of high thermal conductivity layer (3λ/4-AlAs layer) near a cavity. By this structure, a peak-power increased to 1.3 times. Moreover, a power-fall caused by self-heating at pulse-rise was decreased to 10% and the one caused by a thermal-crosstalk between channels was decreased to 46%. The VCSEL array was mounted in a ceramic package with a tilted seal glass to prevent optical-crosstalk caused by other channels. Thus, we achieved stable-output and high-quality beam characteristics for long-duration pulse drive.

  3. Laser Propulsion Standardization Issues

    SciTech Connect

    Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter; Sinko, John E.; Sasoh, Akihiro

    2010-10-08

    It is a relevant issue in the research on laser propulsion that experimental results are treated seriously and that meaningful scientific comparison is possible between groups using different equipment and measurement techniques. However, critical aspects of experimental measurements are sparsely addressed in the literature. In addition, few studies so far have the benefit of independent confirmation by other laser propulsion groups. In this paper, we recommend several approaches towards standardization of published laser propulsion experiments. Such standards are particularly important for the measurement of laser ablation pulse energy, laser spot area, imparted impulse or thrust, and mass removal during ablation. Related examples are presented from experiences of an actual scientific cooperation between NU and DLR. On the basis of a given standardization, researchers may better understand and contribute their findings more clearly in the future, and compare those findings confidently with those already published in the laser propulsion literature. Relevant ISO standards are analyzed, and revised formats are recommended for application to laser propulsion studies.

  4. CCCC Chair's Address: Representing Ourselves, 2008

    ERIC Educational Resources Information Center

    Glenn, Cheryl

    2008-01-01

    This article presents the text of the author's address at the fifty-ninth annual convention of the Conference on College Composition and Communication (CCCC) in March 2008. In her address, the author picks up strands of previous Chairs' addresses and weaves them through the fabric of her remarks. What she hopes will give sheen to the fabric is her…

  5. 32 CFR 516.7 - Mailing addresses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Mailing addresses. 516.7 Section 516.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS LITIGATION General § 516.7 Mailing addresses. Mailing addresses for organizations referenced...

  6. 47 CFR 13.10 - Licensee address.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Licensee address. 13.10 Section 13.10 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL RADIO OPERATORS General § 13.10 Licensee address. In accordance with § 1.923 of this chapter all applications must specify an address where...

  7. 75 FR 49813 - Change of Address

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... COMMISSION 11 CFR Parts 9405, 9407, 9409, 9410, 9420, and 9428 Change of Address AGENCY: United States... Assistance Commission (EAC) is amending its regulations to reflect a change of address for its headquarters. This technical amendment is a nomenclature change that updates and corrects the address for...

  8. 77 FR 48429 - Commission Address Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... HEALTH REVIEW COMMISSION 29 CFR Parts 2700, 2701, 2702, 2704, 2705, 2706 Commission Address Change AGENCY... to inform the public of the address change. DATES: This final rule will take effect on August 27... because the amendments are of a minor and administrative nature dealing with only a change in address....

  9. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  10. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  11. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  12. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  13. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  14. Individual Optical Addressing of Atomic Clock Qubits With Stark Shifts

    NASA Astrophysics Data System (ADS)

    Lee, Aaron; Smith, Jacob; Richerme, Phillip; Neyenhuis, Brian; Hess, Paul; Zhang, Jiehang; Monroe, Chris

    2016-05-01

    In recent years, trapped ions have proven to be a versatile quantum information platform, enabled by their long lifetimes and high gate fidelities. Some of the most promising trapped ion systems take advantage of groundstate hyperfine ``clock'' qubits, which are insensitive to background fields to first order. This same insensitivity also makes σz manipulations of the qubit impractical, eliminating whole classes of operations. We prove there exists a fourth-order light shift, or four-photon Stark shift, of the clock states derived from two coherent laser beams whose beatnote is close to the qubit splitting. Using a mode-locked source generates a large light shift with only modest laser powers, making it a practical σz operation on a clock qubit. We experimentally verify and measure the four-photon Stark shift and demonstrate its use to coherently individually address qubits in a chain of 10 Yb 171 ions with low crosstalk. We use this individual addressing to prepare arbitrary product states with high fidelity and also to apply independent σz terms transverse to an Ising Hamiltonian. This work is supported by the ARO Atomic Physics Program, the AFOSR MURI on Quantum Measurement and Verification, and the NSF Physics Frontier Center at JQI.

  15. Laser Welding in Electronic Packaging

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The laser has proven its worth in numerous high reliability electronic packaging applications ranging from medical to missile electronics. In particular, the pulsed YAG laser is an extremely flexible and versatile too] capable of hermetically sealing microelectronics packages containing sensitive components without damaging them. This paper presents an overview of details that must be considered for successful use of laser welding when addressing electronic package sealing. These include; metallurgical considerations such as alloy and plating selection, weld joint configuration, design of optics, use of protective gases and control of thermal distortions. The primary limitations on use of laser welding electronic for packaging applications are economic ones. The laser itself is a relatively costly device when compared to competing welding equipment. Further, the cost of consumables and repairs can be significant. These facts have relegated laser welding to use only where it presents a distinct quality or reliability advantages over other techniques of electronic package sealing. Because of the unique noncontact and low heat inputs characteristics of laser welding, it is an ideal candidate for sealing electronic packages containing MEMS devices (microelectromechanical systems). This paper addresses how the unique advantages of the pulsed YAG laser can be used to simplify MEMS packaging and deliver a product of improved quality.

  16. Addressing Two-Level Systems Variably Coupled to an Oscillating Field

    NASA Astrophysics Data System (ADS)

    Navon, Nir; Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Almog, Ido; Ozeri, Roee

    2013-08-01

    We propose a simple method to spectrally resolve an array of identical two-level systems coupled to an inhomogeneous oscillating field. The addressing protocol uses a dressing field with a spatially dependent coupling to the atoms. We validate this scheme experimentally by realizing single-spin addressing of a linear chain of trapped ions that are separated by ˜3μm, dressed by a laser field that is resonant with the micromotion sideband of a narrow optical transition.

  17. Novel Duplicate Address Detection with Hash Function

    PubMed Central

    Song, GuangJia; Ji, ZhenZhou

    2016-01-01

    Duplicate address detection (DAD) is an important component of the address resolution protocol (ARP) and the neighbor discovery protocol (NDP). DAD determines whether an IP address is in conflict with other nodes. In traditional DAD, the target address to be detected is broadcast through the network, which provides convenience for malicious nodes to attack. A malicious node can send a spoofing reply to prevent the address configuration of a normal node, and thus, a denial-of-service attack is launched. This study proposes a hash method to hide the target address in DAD, which prevents an attack node from launching destination attacks. If the address of a normal node is identical to the detection address, then its hash value should be the same as the “Hash_64” field in the neighboring solicitation message. Consequently, DAD can be successfully completed. This process is called DAD-h. Simulation results indicate that address configuration using DAD-h has a considerably higher success rate when under attack compared with traditional DAD. Comparative analysis shows that DAD-h does not require third-party devices and considerable computing resources; it also provides a lightweight security resolution. PMID:26991901

  18. Novel Duplicate Address Detection with Hash Function.

    PubMed

    Song, GuangJia; Ji, ZhenZhou

    2016-01-01

    Duplicate address detection (DAD) is an important component of the address resolution protocol (ARP) and the neighbor discovery protocol (NDP). DAD determines whether an IP address is in conflict with other nodes. In traditional DAD, the target address to be detected is broadcast through the network, which provides convenience for malicious nodes to attack. A malicious node can send a spoofing reply to prevent the address configuration of a normal node, and thus, a denial-of-service attack is launched. This study proposes a hash method to hide the target address in DAD, which prevents an attack node from launching destination attacks. If the address of a normal node is identical to the detection address, then its hash value should be the same as the "Hash_64" field in the neighboring solicitation message. Consequently, DAD can be successfully completed. This process is called DAD-h. Simulation results indicate that address configuration using DAD-h has a considerably higher success rate when under attack compared with traditional DAD. Comparative analysis shows that DAD-h does not require third-party devices and considerable computing resources; it also provides a lightweight security resolution.

  19. Novel Duplicate Address Detection with Hash Function.

    PubMed

    Song, GuangJia; Ji, ZhenZhou

    2016-01-01

    Duplicate address detection (DAD) is an important component of the address resolution protocol (ARP) and the neighbor discovery protocol (NDP). DAD determines whether an IP address is in conflict with other nodes. In traditional DAD, the target address to be detected is broadcast through the network, which provides convenience for malicious nodes to attack. A malicious node can send a spoofing reply to prevent the address configuration of a normal node, and thus, a denial-of-service attack is launched. This study proposes a hash method to hide the target address in DAD, which prevents an attack node from launching destination attacks. If the address of a normal node is identical to the detection address, then its hash value should be the same as the "Hash_64" field in the neighboring solicitation message. Consequently, DAD can be successfully completed. This process is called DAD-h. Simulation results indicate that address configuration using DAD-h has a considerably higher success rate when under attack compared with traditional DAD. Comparative analysis shows that DAD-h does not require third-party devices and considerable computing resources; it also provides a lightweight security resolution. PMID:26991901

  20. Laser Analyzer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Dopant level analysis is important to the laser system designer because it allows him to model the laser's performance. It also allows the end user to determine what went wrong when a laser fails to perform as expected. Under a Small Business Innovation Research (SBIR) contract, Scientific Materials Corporation has developed a process for producing uniform laser rods in which the amount of water trapped in the crystal during growth is reduced. This research led to the formation of a subsidiary company, Montana Analytical Services, which conducts analysis of laser rods for dopant ion concentrations. This is a significant advance in laser technology.

  1. Lasers of All Sizes

    NASA Astrophysics Data System (ADS)

    Balcou, Philippe; Forget, Sébastien Robert-Philip, Isabelle

    2015-10-01

    * Introduction * The Laser in All Its Forms * Gas lasers * Dye lasers * Solid-state lasers * Lasers for Every Taste * The rise of lasers * Lasers of all sizes * The colors of the rainbow... and beyond * Shorter and shorter lasers * Increasingly powerful lasers * Lasers: A Universal Tool? * Cutting, welding, and cleaning * Communicating * Treating illnesses * Measuring * Supplying energy? * Entertaining * Understanding * Conclusion

  2. Public Address Systems. Specifications - Installation - Operation.

    ERIC Educational Resources Information Center

    Palmer, Fred M.

    Provisions for public address in new construction of campus buildings (specifications, installations, and operation of public address systems), are discussed in non-technical terms. Consideration is given to microphones, amplifiers, loudspeakers and the placement and operation of various different combinations. (FS)

  3. Addressing Standards and Assessments on the IEP.

    ERIC Educational Resources Information Center

    Thompson, Sandra J.; Thurlow, Martha L.; Esler, Amy; Whetstone, Patti J.

    2001-01-01

    A study that examined state Individualized Education Program (IEP) forms found that out of the 41 with IEP forms, only 5 specifically addressed educational standards on their forms. Thirty-one states addressed the general curriculum on their IEP forms and 30 states listed three or more options for assessment participation. (Contains nine…

  4. History Forum Addresses Creation/Evolution Controversy.

    ERIC Educational Resources Information Center

    Schweinsberg, John

    1997-01-01

    A series of programs entitled Creationism and Evolution: The History of a Controversy was presented at the University of Alabama in Huntsville. The controversy was addressed from an historical and sociological, rather than a scientific perspective. Speakers addressed the evolution of scientific creationism, ancient texts versus sedimentary rocks…

  5. 16 CFR 1000.4 - Commission address.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Commission address. 1000.4 Section 1000.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL COMMISSION ORGANIZATION AND FUNCTIONS § 1000.4 Commission address. The principal Offices of the Commission are at 4330 East West...

  6. 10 CFR 218.34 - Addresses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Addresses. 218.34 Section 218.34 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION Procedures § 218.34 Addresses. All..., Economic Regulatory Administration, Department of Energy, 2000 M Street, NW., Washington, DC 20461, and...

  7. 40 CFR 374.6 - Addresses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 28 2011-07-01 2011-07-01 false Addresses. 374.6 Section 374.6... COMMUNITY RIGHT-TO-KNOW PROGRAMS PRIOR NOTICE OF CITIZEN SUITS § 374.6 Addresses. Administrator, U.S.... Environmental Protection Agency, 77 West Jackson Boulevard, Chicago, IL 60604. Regional Administrator, Region...

  8. 10 CFR 218.34 - Addresses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Addresses. 218.34 Section 218.34 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION Procedures § 218.34 Addresses. All correspondence, petitions, and any information required by this part shall be submitted to: Administrator, Economic Regulatory Administration, Department...

  9. 34 CFR 674.44 - Address searches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false Address searches. 674.44 Section 674.44 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION FEDERAL PERKINS LOAN PROGRAM Due Diligence § 674.44 Address searches. (a) If...

  10. 34 CFR 674.44 - Address searches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false Address searches. 674.44 Section 674.44 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION FEDERAL PERKINS LOAN PROGRAM Due Diligence § 674.44 Address searches. (a) If...

  11. 34 CFR 674.44 - Address searches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false Address searches. 674.44 Section 674.44 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION FEDERAL PERKINS LOAN PROGRAM Due Diligence § 674.44 Address searches. (a) If...

  12. 34 CFR 674.44 - Address searches.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false Address searches. 674.44 Section 674.44 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION FEDERAL PERKINS LOAN PROGRAM Due Diligence § 674.44 Address searches. (a) If...

  13. 16 CFR 0.2 - Official address.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.2 Official address. The principal office of the Commission is at Washington, DC. All communications to the Commission should be addressed to the Federal Trade Commission, 600 Pennsylvania Avenue, NW, Washington,...

  14. 16 CFR 0.2 - Official address.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.2 Official address. The principal office of the Commission is at Washington, DC. All communications to the Commission should be addressed to the Federal Trade Commission, 600 Pennsylvania Avenue, NW, Washington,...

  15. 16 CFR 0.2 - Official address.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.2 Official address. The principal office of the Commission is at Washington, DC. All communications to the Commission should be addressed to the Federal Trade Commission, 600 Pennsylvania Avenue, NW, Washington,...

  16. 16 CFR 0.2 - Official address.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.2 Official address. The principal office of the Commission is at Washington, DC. All communications to the Commission should be addressed to the Federal Trade Commission, 600 Pennsylvania Avenue, NW, Washington,...

  17. 16 CFR 0.2 - Official address.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.2 Official address. The principal office of the Commission is at Washington, DC. All communications to the Commission should be addressed to the Federal Trade Commission, 600 Pennsylvania Avenue, NW, Washington,...

  18. 34 CFR 674.44 - Address searches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Address searches. 674.44 Section 674.44 Education..., DEPARTMENT OF EDUCATION FEDERAL PERKINS LOAN PROGRAM Due Diligence § 674.44 Address searches. (a) If mail... institutional offices; (2) Reviews of telephone directories or inquiries of information operators in the...

  19. Forms of Address in Chilean Spanish

    ERIC Educational Resources Information Center

    Bishop, Kelley; Michnowicz, Jim

    2010-01-01

    The present investigation examines possible social and linguistic factors that influence forms of address used in Chilean Spanish with various interlocutors. A characteristic of the Spanish of Chile is the use of a variety of forms of address for the second person singular, "tu", "vos", and "usted", with corresponding verb conjugations (Lipski…

  20. 37 CFR 251.1 - Official addresses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ARBITRATION ROYALTY PANEL RULES AND PROCEDURES COPYRIGHT ARBITRATION ROYALTY PANEL RULES OF PROCEDURE... Copyright Arbitration Royalty Panels (CARPs) must be addressed as follows: (a) If hand delivered by a... through the U.S. Postal Service, use the following address: Copyright Arbitration Royalty Panel, P.O....

  1. Image compression using address-vector quantization

    NASA Astrophysics Data System (ADS)

    Nasrabadi, Nasser M.; Feng, Yushu

    1990-12-01

    A novel vector quantization scheme, the address-vector quantizer (A-VQ), is proposed which exploits the interblock correlation by encoding a group of blocks together using an address-codebook (AC). The AC is a set of address-codevectors (ACVs), each representing a combination of addresses or indices. Each element of the ACV is an address of an entry in the LBG-codebook, representing a vector-quantized block. The AC consists of an active (addressable) region and an inactive (nonaddressable) region. During encoding the ACVs in the AC are reordered adaptively to bring the most probable ACVs into the active region. When encoding an ACV, the active region is checked, and if such an address combination exists, its index is transmitted to the receiver. Otherwise, the address of each block is transmitted individually. The SNR of the images encoded by the A-VQ method is the same as that of a memoryless vector quantizer, but the bit rate is by a factor of approximately two.

  2. Fs-laser processing of polydimethylsiloxane

    SciTech Connect

    Atanasov, Petar A. Nedyalkov, Nikolay N.; Valova, Eugenia I.; Georgieva, Zhenya S.; Armyanov, Stefan A.; Kolev, Konstantin N.; Amoruso, Salvatore; Wang, Xuan; Bruzzese, Ricardo; Sawczak, Miroslaw; Śliwiński, Gerard

    2014-07-14

    We present an experimental analysis on surface structuring of polydimethylsiloxane films with UV (263 nm) femtosecond laser pulses, in air. Laser processed areas are analyzed by optical microscopy, SEM, and μ-Raman spectroscopy. The laser-treated sample shows the formation of a randomly nanostructured surface morphology. μ-Raman spectra, carried out at both 514 and 785 nm excitation wavelengths, prior and after laser treatment allow evidencing the changes in the sample structure. The influence of the laser fluence on the surface morphology is studied. Finally, successful electro-less metallization of the laser-processed sample is achieved, even after several months from the laser-treatment contrary to previous observation with nanosecond pulses. Our findings address the effectiveness of fs-laser treatment and chemical metallization of polydimethylsiloxane films with perspective technological interest in micro-fabrication devices for MEMS and nano-electromechanical systems.

  3. 0.52-11.86 Gbit/s OFDM modulation for power-sharing VLC transmission by using VCSEL laser.

    PubMed

    Yeh, Chien-Hung; Lu, I-Cheng

    2016-09-01

    In this paper, we propose employing a 682 nm vertical-cavity surface-emitting laser (VCSEL) with 1 GHz bandwidth for high-speed and power-sharing wireless visible light communication (VLC) in the different transmission distances of 2 to 5 m. In the measurement, the data rate of 0.52 to 11.86 Gbit/s (0.44 to 10.8 Gbit/s in a net data rate) can be achieved by using spectral-efficient orthogonal frequency division multiplexing (OFDM) modulation with bit-loading algorithm. Therefore, 4- to 256-quadrature amplitude modulations (QAMs) are employed simultaneously in the modulation bandwidth for VCSEL-based VLC. The proposed power-sharing VLC system can be divided to four end-users, when three beam splitters (BSs) are used simultaneously. Moreover, all of the measured bit error rates (BERs) are below the forward error correction (FEC) threshold (BER = 3.8 × 10-3). PMID:27607714

  4. Lasers and laser-like devices: part two.

    PubMed

    Sebaratnam, Deshan F; Lim, Adrian C; Lowe, Patricia M; Goodman, Greg J; Bekhor, Philip; Richards, Shawn

    2014-02-01

    Part two of this review series evaluates the use of lasers and laser-like devices in dermatology based on published evidence and the collective experience of the senior authors. Dermatologists can laser-treat a wide range of dermatoses, including vascular, pigmentary, textural, benign proliferative and premalignant conditions. Some of these conditions include vascular malformation, haemangioma, facial telangiectases, café-au-lait macules, naevi of Ota, lentigines, acne scarring, rhytides, rhinophyma and miscellaneous skin lesions. Photodynamic therapy with lasers and intense pulsed light is addressed, with particular reference to actinic keratosis and actinic cheilitis. A treatment algorithm for acne scarring based on scar morphology and severity is comprehensively outlined. Following from part one, the various devices are matched to the corresponding dermatological conditions with representative pictorial case vignettes illustrating likely clinical outcomes as well as limitations and potential complications of the various laser and light therapies. PMID:24433372

  5. Lasers and laser-like devices: part two.

    PubMed

    Sebaratnam, Deshan F; Lim, Adrian C; Lowe, Patricia M; Goodman, Greg J; Bekhor, Philip; Richards, Shawn

    2014-02-01

    Part two of this review series evaluates the use of lasers and laser-like devices in dermatology based on published evidence and the collective experience of the senior authors. Dermatologists can laser-treat a wide range of dermatoses, including vascular, pigmentary, textural, benign proliferative and premalignant conditions. Some of these conditions include vascular malformation, haemangioma, facial telangiectases, café-au-lait macules, naevi of Ota, lentigines, acne scarring, rhytides, rhinophyma and miscellaneous skin lesions. Photodynamic therapy with lasers and intense pulsed light is addressed, with particular reference to actinic keratosis and actinic cheilitis. A treatment algorithm for acne scarring based on scar morphology and severity is comprehensively outlined. Following from part one, the various devices are matched to the corresponding dermatological conditions with representative pictorial case vignettes illustrating likely clinical outcomes as well as limitations and potential complications of the various laser and light therapies.

  6. Laser microphone

    DOEpatents

    Veligdan, James T.

    2000-11-14

    A microphone for detecting sound pressure waves includes a laser resonator having a laser gain material aligned coaxially between a pair of first and second mirrors for producing a laser beam. A reference cell is disposed between the laser material and one of the mirrors for transmitting a reference portion of the laser beam between the mirrors. A sensing cell is disposed between the laser material and one of the mirrors, and is laterally displaced from the reference cell for transmitting a signal portion of the laser beam, with the sensing cell being open for receiving the sound waves. A photodetector is disposed in optical communication with the first mirror for receiving the laser beam, and produces an acoustic signal therefrom for the sound waves.

  7. Coherent laser vision system

    SciTech Connect

    Sebastion, R.L.

    1995-10-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  8. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2004-01-13

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  9. CW laser pumped emerald laser

    SciTech Connect

    Shand, M.L.; Lai, S.T.

    1984-02-01

    A CW laser-pumped emerald laser is reported. A 34 percent output power slope efficiency is observed with longitudinal pumping by a krypton laser in a nearly concentric cavity. The laser has been tuned from 728.8 to 809.0 nm. Losses in emerald are larger than those of alexandrite determined in a similar cavity. The present data also indicate that the excited state absorption minimum is shifted from that of alexandrite. 13 references.

  10. Cutaneous lasers.

    PubMed

    Fedok, Fred G; Garritano, Frank; Portela, Antonio

    2013-02-01

    There has been a remarkable development and evolution of laser technology, leading to adaptation of lasers for medical use and the treatment of skin problems and disorders. Many treatments that required incisional surgery and other invasive methods are now preferentially treated with a laser. Although laser advances have resulted in the availability of some amazing tools, they require the clinical skill and judgment of the clinician for their optimal use. This article provides a clinically oriented overview of many of the lasers valuable in facial plastic surgery. Basic science, clinical adaptations, and patient management topics are covered.

  11. Investigation of laser polarized xenon magnetic resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    1998-01-01

    Ground-based investigations of a new biomedical diagnostic technology: nuclear magnetic resonance of laser polarized noble gas are addressed. The specific research tasks discussed are: (1) Development of a large-scale noble gas polarization system; (2) biomedical investigations using laser polarized noble gas in conventional (high magnetic field) NMR systems; and (3) the development and application of a low magnetic field system for laser polarized noble gas NMR.

  12. One Micron Laser Technology Advancements at GSFC

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2010-01-01

    This slide presentation reviews the advancements made in one micron laser technology at Goddard Space Flight Center. It includes information about risk factors that are being addressed by GSFC, and overviews of the various programs that GSFC is currently managing that are using 1 micron laser technology.

  13. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to the Curator, ARS Patent Culture Collection, Northern Regional Research Center, USDA-ARS, 1815...

  14. 40 CFR 98.9 - Addresses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... submitted to the following address: (a) For U.S. mail. Director, Climate Change Division, 1200 Pennsylvania Ave., NW., Mail Code: 6207J, Washington, DC 20460. (b) For package deliveries. Director,...

  15. 40 CFR 98.9 - Addresses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... submitted to the following address: (a) For U.S. mail. Director, Climate Change Division, 1200 Pennsylvania Ave., NW., Mail Code: 6207J, Washington, DC 20460. (b) For package deliveries. Director,...

  16. Addressing Your Child's Weight at the Doctor

    MedlinePlus

    ... a Healthy Heart Healthy Kids Our Kids Programs Childhood Obesity What is childhood obesity? Overweight in Children BMI in Children Is Childhood Obesity an Issue in Your Home? Addressing your Child's ...

  17. Addressing Transition Issues in Languages Education.

    ERIC Educational Resources Information Center

    Steigler-Peters, Susi; Moran, Wendy; Piccioli, Maria Teresa; Chesterton, Paul

    2003-01-01

    Focuses on what has been learned from the implementation and evaluation of the Australian Language and Continuity Initiative (LCI) in relation to addressing transition issues in language education. (Author/VWL)

  18. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to the Curator, ARS Patent Culture Collection, Northern Regional Research Center, USDA-ARS, 1815...

  19. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to the Curator, ARS Patent Culture Collection, Northern Regional Research Center, USDA-ARS, 1815...

  20. 7 CFR 1730.3 - RUS addresses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE General § 1730.3 RUS addresses. (a) Persons wishing to obtain... assigned RUS General Field Representative (GFR) or such other office as designated by RUS....

  1. 7 CFR 1730.3 - RUS addresses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE General § 1730.3 RUS addresses. (a) Persons wishing to obtain... assigned RUS General Field Representative (GFR) or such other office as designated by RUS....

  2. 7 CFR 1730.3 - RUS addresses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE General § 1730.3 RUS addresses. (a) Persons wishing to obtain... assigned RUS General Field Representative (GFR) or such other office as designated by RUS....

  3. 7 CFR 1730.3 - RUS addresses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE General § 1730.3 RUS addresses. (a) Persons wishing to obtain... assigned RUS General Field Representative (GFR) or such other office as designated by RUS....

  4. 7 CFR 1730.3 - RUS addresses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE General § 1730.3 RUS addresses. (a) Persons wishing to obtain... assigned RUS General Field Representative (GFR) or such other office as designated by RUS....

  5. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to the Curator, ARS Patent Culture Collection, Northern Regional Research Center, USDA-ARS, 1815...

  6. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to the Curator, ARS Patent Culture Collection, Northern Regional Research Center, USDA-ARS, 1815...

  7. Mrs. Chandrasekhar addresses the media in TRW Media Hospitality Tent

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Mrs. Lalitha Chandrasekhar (at podium), wife of the late Indian- American Nobel Laureate Subrahmanyan Chandrasekhar, addresses the media and other invited guests in the TRW Media Hospitality Tent at the NASA Press Site at KSC. Other participants in the program (seated facing the audience, left to right) are the winners of the contest to rename the telescope, Jatila van der Veen, academic coordinator and lecturer, Physics Dept., University of Santa Barbara, Calif., and Tyrel Johnson, high school student, Laclede, Idaho; Joanne Maguire, vice-president and general manager, TRW Space & Laser Programs Division; and Dr. Alan Bunner, Science Program Director, Structure and Evolution of the Universe, Office of Space Science, NASA Headquarters, Washington, D.C. The name 'Chandra,' a shortened version of Chandrasekhar, was the name the Nobel Laureate preferred among friends and colleagues. 'Chandra' also means 'Moon' or 'luminous' in Sanskrit. The observatory is scheduled to be launched aboard Columbia on Space Shuttle mission STS-93.

  8. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  9. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  10. Atmospheric Laser Communication.

    NASA Astrophysics Data System (ADS)

    Fischer(, Kenneth W.; Witiw, Michael R.; Baars+, Jeffrey A.; Oke, T. R.

    2004-05-01

    Atmospheric laser communication, often referred to as free-space optics (FSO) or free-space laser (FSL) communication, is similar to fiber optic cable in terms of carrier wavelength and bandwidth capability, but data are transmitted directly through the atmosphere via laser beams over paths from a few meters to 4 km or longer. FSL uses lasers in the near-infrared spectrum, typically at wavelengths of 850 or 1550 nm. Given these wavelengths, atmospheric attenuation must be considered, and an adequate margin of optical power (dB) must exist to support high system availability (the percentage of time that an FSL link is in operation, typically 99.9%). A visual range of 100 m can attenuate a laser beam at a rate of nearly 130 dB km-1. For short links (< 1200 m), fog and low clouds are the primary concerns. For longer links, scintillation, heavy rain, and snow frequently become issues. To address these issues, long-term climate data are analyzed to determine the frequency of occurrence of low visibilities and low-cloud ceilings. To estimate availability at a site of interest, adjustments to airport climate data are made to accommodate differences in altitude, geography, and the effects of the urban heat island. In sum, communication via FSL is a feasible alternative to fiber optic cable when atmospheric conditions are considered and properly analyzed.(Current affiliation: The Boeing Company, Seattle, Washington+Current affiliation: Department of Atmospheric Sciences, University of Washington, Seattle, Washington

  11. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2003-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  12. Design considerations for a laser-plasma linear collider

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Toth, Cs.; Leemans, W. P.

    2009-01-22

    Design considerations for a next-generation electron-positron linear collider based on laser-plasma-accelerators are discussed. Several of the advantages and challenges of laser-plasma-based accelerator technology are addressed. An example of the parameters for a 1 TeV laser-plasma-based collider is presented.

  13. A tunable mid-infrared laser source for remote sensing

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    1991-01-01

    Many remote sensing needs can be effectively addressed with a tunable laser source in the mid infrared. One potential laser source is an optical parametric oscillator and amplifier system pumped by a near infrared solid state laser. Advantages of such a system and progress made at NASA Langley Research Center to date on such a system are described.

  14. 46 CFR 67.113 - Managing owner designation; address; requirement to report change of address.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Managing owner designation; address; requirement to... Required for Vessel Documentation § 67.113 Managing owner designation; address; requirement to report change of address. The owner of each vessel must designate a managing owner on the Application...

  15. 46 CFR 67.113 - Managing owner designation; address; requirement to report change of address.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Managing owner designation; address; requirement to... Required for Vessel Documentation § 67.113 Managing owner designation; address; requirement to report change of address. The owner of each vessel must designate a managing owner on the Application...

  16. 46 CFR 67.113 - Managing owner designation; address; requirement to report change of address.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Managing owner designation; address; requirement to... Required for Vessel Documentation § 67.113 Managing owner designation; address; requirement to report change of address. The owner of each vessel must designate a managing owner on the Application...

  17. 46 CFR 67.113 - Managing owner designation; address; requirement to report change of address.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Managing owner designation; address; requirement to... Required for Vessel Documentation § 67.113 Managing owner designation; address; requirement to report change of address. The owner of each vessel must designate a managing owner on the Application...

  18. 46 CFR 67.113 - Managing owner designation; address; requirement to report change of address.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Managing owner designation; address; requirement to... Required for Vessel Documentation § 67.113 Managing owner designation; address; requirement to report change of address. The owner of each vessel must designate a managing owner on the Application...

  19. An addressable confocal microscope for functional imaging of neuronal activity

    NASA Astrophysics Data System (ADS)

    Bansal, Vivek

    2005-07-01

    The study of computation occurring in single neurons and small networks of interconnected neurons is often limited by (1) the number of sites that can be simultaneously probed with electrophysiology tools such as patch pipettes and (2) the recording speed of fluorescence imaging tools such as confocal or multiphoton microscopy. Even in the line scan mode of galvanometer-based scanners, where one scan dimension is sacrificed to gain overall speed, the effective frame rate is limited to less than 1 kHz with no flexibility in site selection. To overcome these limitations and allow the study of many sites throughout the dendritic arbor, we have developed an addressable confocal laser-scanning microscope that permits recording from user-selected sites-of-interest at high frame rates, in addition to conventional full frame imaging. Our system utilizes acousto-optic deflectors (AODs) in the illumination pathway to allow for rapid user-defined positioning of a focused laser spot. However, since AODs rely on diffraction to steer a laser beam, they cannot effectively descan the fluorescence emission spectrum as done in mirror-based systems which utilize reflection; this prevents the use of a stationary pinhole as a spatial filter. Instead, we implement an addressable spatial filter using a digital micromirror device (DMD) in conjunction with the AODs to achieve confocality. A registration algorithm synchronizes the AODs and DMD such that point illumination and point detection are always colocalized in conjugate image planes. The current version of the confocal system has a spatial resolution of ˜1 mum. Furthermore, by letting the user tailor which sites are visited, we have shown that recordings can be made at an aggregate frame rate of ˜40 kHz. We have successfully demonstrated that the system is capable of optical sectioning and thus exhibits the main advantage of a confocal microscope for light-scattering biological tissue. This property was used to create three

  20. A Laser Technology Test Facility for Laser Inertial Fusion Energy (LIFE)

    SciTech Connect

    Bayramian, A J; Campbell, R W; Ebbers, C A; Freitas, B L; Latkowski, J; Molander, W A; Sutton, S B; Telford, S; Caird, J A

    2009-10-06

    A LIFE laser driver needs to be designed and operated which meets the rigorous requirements of the NIF laser system while operating at high average power, and operate for a lifetime of >30 years. Ignition on NIF will serve to demonstrate laser driver functionality, operation of the Mercury laser system at LLNL demonstrates the ability of a diode-pumped solid-state laser to run at high average power, but the operational lifetime >30 yrs remains to be proven. A Laser Technology test Facility (LTF) has been designed to specifically address this issue. The LTF is a 100-Hz diode-pumped solid-state laser system intended for accelerated testing of the diodes, gain media, optics, frequency converters and final optics, providing system statistics for billion shot class tests. These statistics will be utilized for material and technology development as well as economic and reliability models for LIFE laser drivers.

  1. Micromotion based single-qubit addressing with trapped-ions

    NASA Astrophysics Data System (ADS)

    Akerman, Nitzan; Navon, Nir; Kotler, Shlomi; Glickman, Yinnon; Almog, Ido; Ozeri, Roee

    2013-05-01

    Individual-particle addressing is a necessary capability in many quantum information experiments. For example, characterization of multi-qubit operations with quantum process tomography (QPT). We propose and demonstrate a scheme that exploits the inhomogeneous excess micromotion in ion trap to address single-qubits in a chain of several ion-qubits, separated by only few microns. The scheme uses a laser field which is resonant with the micromotion sideband of a narrow optical quadrupole transition and acts as a dressing field with a spatially-dependent coupling along the chain. As a consequence, the level spacing of each ion, in the dressed state picture, becomes position dependent and individual ions can be spectrally separated. We have demonstrated Individual Rabi flops with 85% fidelity in a three-ion chain. For the case of only two ions, the coupling can be tailored to vanish on one of the two. This allows preparing any two-qubit product state as well as completing state tomography without direct spatially-selective imaging. We demonstrate full QPT for two-qubit Sørensen-Mølmer entangling interaction (Bell-state preparation fidelity of 98%) which has not been process-analyzed yet. Our tomography resulted process fidelity of 92%. N. Navon et al. arXiv:1210.7336 (1012).

  2. Single layer liquid crystal optically addressed spatial light modulators

    NASA Astrophysics Data System (ADS)

    Collings, N.; Trushkevych, O.; Crossland, W. A.; Wilkinson, T. D.

    2006-08-01

    Traditionally, the light receptor and light modulation aspects of Optically Addressed Spatial Light Modulators (OASLMs) occur in separate layers. Due to the progress that has been made in the study of nonlinearity in liquid crystal cell doped with chromophores in the past 20 years, it is appropriate to consider in what ways they themselves may be useful as OASLMs. The light reception and modulation aspects coexist within the same layer in these cells. We have been studying a variety of chromophore-doped systems (azo and anthraquinone dyes, buckminsterfullerene, and carbon nanotubes) over the past four years. Dynamic holographic grating formation is observed under conditions of low power laser light both with and without external fields. The majority of the samples are planar aligned and normal incidence of light can be used. They possess very good lifetime stability and no degradation even under high write light intensities. We understand how to avoid permanent recordings using appropriate alignment surfaces. This is important in OASLM applications where real-time updating of written information is required (dynamic holography, all-optical switching). The resolution of the devices is superior to the thickness of the liquid crystal layer, and comparable to the best traditional OASLMs. We are currently working on understanding the dynamics in order to address the issue of speed of response. The report will include latest results on diffraction efficiency from our OASLM characterization set-up.

  3. High-sensitivity remote detection of atmospheric pollutants and greenhouse gases at low ppm levels using near-infrared tunable diode lasers

    NASA Astrophysics Data System (ADS)

    Roy, Anirban; Upadhyay, Abhishek; Chakraborty, Arup Lal

    2016-05-01

    The concentration of atmospheric pollutants and greenhouse gases needs to be precisely monitored for sustainable industrial development and to predict the climate shifts caused by global warming. Such measurements are made on a continuous basis in ecologically sensitive and urban areas in the advanced countries. Tunable diode laser spectroscopy (TDLS) is the most versatile non-destructive technology currently available for remote measurements of multiple gases with very high selectivity (low cross-sensitivity), very high sensitivity (on the order of ppm and ppb) and under hazardous conditions. We demonstrate absolute measurements of acetylene, methane and carbon dioxide using a fielddeployable fully automated TDLS system that uses calibration-free 2f wavelength modulation spectroscopy (2f WMS) techniques with sensitivities of low ppm levels. A 40 mW, 1531.52 nm distributed feedback (DFB) diode laser, a 10 mW, 1650 nm DFB laser and a 1 mW, 2004 nm vertical cavity surface emitting laser (VCSEL) are used in the experiments to probe the P9 transition of acetylene, R4 transition of methane and R16 transition of carbon dioxide respectively. Data acquisition and on-board analysis comprises a Raspberry Pi-based embedded system that is controllable over a wireless connection. Gas concentration and pressure are simultaneously extracted by fitting the experimental signals to 2f WMS signals simulated using spectroscopic parameters obtained from the HITRAN database. The lowest detected concentration is 11 ppm for acetylene, 275 ppm for methane and 285 ppm for carbon dioxide using a 28 cm long single-pass gas cell.

  4. Laser science and technology update - 1999

    SciTech Connect

    Chen, H L; Powell, H T

    1999-09-23

    The Laser Science and Technology (LS and T) Program's mission is to provide advanced solid-state laser and optics technologies for the Laboratory, government, and industry. The primary activities of LS and T in 1998 have been threefold--to complete the laser technology development and laser component testing for the ICF/NIF Program, to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD) and DOE, and to address the needs of other government agencies and U.S. industry. After a four-year campaign, the LS and T Program achieved timely completion of the laser development effort for the NIF in 1998. This effort includes the special laser and component development, integrated performance testing on Beamlet, and detailed design and cost optimization using computation codes. Upon completing the Title II design review, the focus of the LS and T support effort has been shifted toward NIF laser hardware acquisition and deployment. The LS and T team also continued to develop advanced high-power solid-state laser technology for both the U.S. government and industrial partners. Progress was also made in several new areas: (a) diode-pumped solid-state laser drivers for high-energy-density physics and inertial fusion energy; (b) high-average-power femtosecond and nanosecond lasers for materials processing; and (c) femtosecond lasers for the generation of advanced light sources.

  5. Cheaper Adjoints by Reversing Address Computations

    DOE PAGES

    Hascoët, L.; Utke, J.; Naumann, U.

    2008-01-01

    The reverse mode of automatic differentiation is widely used in science and engineering. A severe bottleneck for the performance of the reverse mode, however, is the necessity to recover certain intermediate values of the program in reverse order. Among these values are computed addresses, which traditionally are recovered through forward recomputation and storage in memory. We propose an alternative approach for recovery that uses inverse computation based on dependency information. Address storage constitutes a significant portion of the overall storage requirements. An example illustrates substantial gains that the proposed approach yields, and we show use cases in practical applications.

  6. Shared address collectives using counter mechanisms

    SciTech Connect

    Blocksome, Michael; Dozsa, Gabor; Gooding, Thomas M; Heidelberger, Philip; Kumar, Sameer; Mamidala, Amith R; Miller, Douglas

    2014-02-18

    A shared address space on a compute node stores data received from a network and data to transmit to the network. The shared address space includes an application buffer that can be directly operated upon by a plurality of processes, for instance, running on different cores on the compute node. A shared counter is used for one or more of signaling arrival of the data across the plurality of processes running on the compute node, signaling completion of an operation performed by one or more of the plurality of processes, obtaining reservation slots by one or more of the plurality of processes, or combinations thereof.

  7. Laser Systems

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Tunable diode lasers are employed as radiation sources in high resolution infrared spectroscopy to determine spectral characteristics of gaseous compounds. With other laser systems, they are produced by Spectra-Physics, and used to monitor chemical processes, monitor production of quantity halogen lamps, etc. The Laser Analytics Division of Spectra-Physics credits the system's reliability to a program funded by Langley in the 1970s. Company no longer U.S.-owned. 5/22/97

  8. Biocavity Lasers

    SciTech Connect

    Gourley, P.L.; Gourley, M.F.

    2000-10-05

    Laser technology has advanced dramatically and is an integral part of today's healthcare delivery system. Lasers are used in the laboratory analysis of human blood samples and serve as surgical tools that kill, burn or cut tissue. Recent semiconductor microtechnology has reduced the size o f a laser to the size of a biological cell or even a virus particle. By integrating these ultra small lasers with biological systems, it is possible to create micro-electrical mechanical systems that may revolutionize health care delivery.

  9. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  10. Laser apparatus

    DOEpatents

    Lewis, Owen; Stogran, Edmund M.

    1980-01-01

    Laser apparatus is described wherein an active laser element, such as the disc of a face-pumped laser, is mounted in a housing such that the weight of the element is supported by glass spheres which fill a chamber defined in the housing between the walls of the housing and the edges of the laser element. The uniform support provided by the spheres enable the chamber and the pump side of the laser element to be sealed without affecting the alignment or other optical properties of the laser element. Cooling fluid may be circulated through the sealed region by way of the interstices between the spheres. The spheres, and if desired also the cooling fluid may contain material which absorbs radiation at the wavelength of parasitic emissions from the laser element. These parasitic emissions enter the spheres through the interface along the edge surface of the laser element and it is desirable that the index of refraction of the spheres and cooling fluid be near the index of refraction of the laser element. Thus support, cooling, and parasitic suppression functions are all accomplished through the use of the arrangement.

  11. Four channel Laser Firing Unit using laser diodes

    NASA Technical Reports Server (NTRS)

    Rosner, David, Sr.; Spomer, Edwin, Sr.

    1994-01-01

    This paper describes the accomplishments and status of PS/EDD's (Pacific Scientific/Energy Dynamics Division) internal research and development effort to prototype and demonstrate a practical four channel laser firing unit (LFU) that uses laser diodes to initiate pyrotechnic events. The LFU individually initiates four ordnance devices using the energy from four diode lasers carried over the fiber optics. The LFU demonstrates end-to-end optical built in test (BIT) capabilities. Both Single Fiber Reflective BIT and Dual Fiber Reflective BIT approaches are discussed and reflection loss data is presented. This paper includes detailed discussions of the advantages and disadvantages of both BIT approaches, all-fire and no-fire levels, and BIT detection levels. The following topics are also addressed: electronic control and BIT circuits, fiber optic sizing and distribution, and an electromechanical shutter type safe/arm device. This paper shows the viability of laser diode initiation systems and single fiber BIT for typing military applications.

  12. 40 CFR 80.174 - Addresses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.174 Addresses. (a) The detergent additive sample..., 2565 Plymouth Road, Ann Arbor, Michigan 48105. (b) Other detergent registration and certification data, and certain other information which may be specified in this subpart, shall be sent to:...

  13. Transition through Teamwork: Professionals Address Student Access

    ERIC Educational Resources Information Center

    Bube, Sue Ann; Carrothers, Carol; Johnson, Cinda

    2016-01-01

    Prior to 2013, there was no collaboration around the transition services for deaf and hard of hearing students in Washington State. Washington had numerous agencies providing excellent support, but those agencies were not working together. It was not until January 29, 2013, when pepnet 2 hosted the Building State Capacity to Address Critical…

  14. Address Systems in "The Plum Plum Pickers"

    ERIC Educational Resources Information Center

    Geuder, Patricia A.

    1975-01-01

    The address systems in Raymond Barrio's "The Plum Plum Pickers" imply sociolinguistic differences between the Chicano and the Anglo characters. The kinds of sociolinguistic situations, the number of dyadic patterns, and the quantity of the dyadic patterns strongly suggest the differences. (Author)

  15. Preservice Educators' Confidence in Addressing Sexuality Education

    ERIC Educational Resources Information Center

    Wyatt, Tammy Jordan

    2009-01-01

    This study examined 328 preservice educators' level of confidence in addressing four sexuality education domains and 21 sexuality education topics. Significant differences in confidence levels across the four domains were found for gender, academic major, sexuality education philosophy, and sexuality education knowledge. Preservice educators…

  16. 50 CFR 228.8 - Mailing address.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Mailing address. 228.8 Section 228.8 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... the Presiding Officer, c/o Assistant Administrator, National Marine Fisheries Service, 1315...

  17. 50 CFR 228.8 - Mailing address.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Mailing address. 228.8 Section 228.8 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... the Presiding Officer, c/o Assistant Administrator, National Marine Fisheries Service, 1315...

  18. Autocheck: Addressing the Problem of Rural Transportation.

    ERIC Educational Resources Information Center

    Payne, Guy A.

    This paper describes a project implemented by a social worker from the Glynn County School District in rural Georgia to address transportation problems experienced by students and their families. The project aims to assist families who are unable to keep appointments or attend other important events due to unreliable transportation. A county needs…

  19. 40 CFR 80.174 - Addresses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Addresses. 80.174 Section 80.174 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF... Services Division, U.S. Environmental Protection Agency, National Vehicle and Fuel Emissions...

  20. Addressing Student Debt in the Classroom

    ERIC Educational Resources Information Center

    Perkins, David; Johnston, Tim; Lytle, Rick

    2016-01-01

    Student debt is a national concern. The authors address debt in the classroom to enhance students' understanding of the consequences of debt and the need for caution when financing their education. However, student feedback indicates this understanding has a delayed effect on borrowing behavior and underscores the importance of making difficult…

  1. Opening Address of Chairman Michael Pertschuk.

    ERIC Educational Resources Information Center

    Pertschuk, Michael

    Presented to a symposium sponsored by the Federal Trade Commission (FTC) to consider some of the issues involved in the continuing growth of a few large companies in the field of communication, this address cites statements of concern, made by the Supreme Court and by some periodicals, that excessive concentrations of power threaten First…

  2. How Sociology Texts Address Gun Control

    ERIC Educational Resources Information Center

    Tonso, William R.

    2004-01-01

    William R. Tonso has chosen an issue that he knows something about to examine how sociology textbooks address controversy. Appealing for gun control is fashionable, but it is at odds with a fondness that ordinary Americans have for their firearms--one that is supported by a growing body of research on deterrence to crime. There are two sides to…

  3. Registering Names and Addresses for Information Technology.

    ERIC Educational Resources Information Center

    Knapp, Arthur A.

    The identification of administrative authorities and the development of associated procedures for registering and accessing names and addresses of communications data systems are considered in this paper. It is noted that, for data communications systems using standards based on the Open Systems Interconnection (OSI) Reference Model specified by…

  4. Addressing Issues Related to Technology and Engineering

    ERIC Educational Resources Information Center

    Technology Teacher, 2008

    2008-01-01

    This article presents an interview with Michael Hacker and David Burghardt, codirectors of Hoftra University's Center for Technological Literacy. Hacker and Burghardt address issues related to technology and engineering. They argue that teachers need to be aware of the problems kids are facing, and how to present these problems in an engaging…

  5. Latitude and Longitude. AIR Presidential Address.

    ERIC Educational Resources Information Center

    Chaffee, Ellen Earle

    This speech addresses the problem of higher education's response to the forces of change and argues for a reinventing of higher education rather than repeatedly amending core teaching and research activities to fit new social and economic situations. Three higher education organizational dynamics (recruitment, budgeting, and handling outside…

  6. Federal Offices That Address Women's Issues.

    ERIC Educational Resources Information Center

    Weber, Patricia A.; And Others

    This directory contains a listing of federal offices that address women's issues. Among the departments and agencies included are: the executive branch and the executive agencies departments of agriculture, commerce, defense (Air Force, Army, Coast Guard, Marine Corps, National Guard and Navy), education, health and human services, housing and…

  7. Problem Solvers: Solutions--The Inaugural Address

    ERIC Educational Resources Information Center

    Dause, Emily

    2014-01-01

    Fourth graders in Miss Dause's and Mrs. Hicks's mathematics classes at South Mountain Elementary School in Dillsburg, Pennsylvania, worked with the data from the Inauagural Address problem that was previously published published in the February 2013 issue of "Teaching Children Mathematics". This activity allowed students to…

  8. State of the District Address, 1982.

    ERIC Educational Resources Information Center

    Koltai, Leslie

    This address by the Chancellor of the Los Angeles Community College District (LACCD) discusses recent and long-term changes in the district's programs, educational quality, and financial standing, and suggests means for future improvements. First, the paper highlights the district's achievements in improving transfer education and developing new…

  9. 40 CFR 65.14 - Addresses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Addresses. 65.14 Section 65.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED... Department of Health and Environment, Bureau of Air Quality and Radiation Control, Forbes Field,...

  10. Addressing South Africa's Engineering Skills Gaps

    ERIC Educational Resources Information Center

    Hall, Jonathan; Sandelands, Eric

    2009-01-01

    Purpose: This paper aims to provide a case study of how engineering skills gaps are being addressed by Murray & Roberts in South Africa. Design/methodology/approach: The paper focuses on skills challenges in South Africa from a reflective practitioner perspective, exploring a case example from an industry leader. Findings: The paper explores how…

  11. 76 FR 80903 - Mandatory Declassification Review Addresses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... of the Secretary Mandatory Declassification Review Addresses AGENCY: Department of Defense. ACTION... Declassification Review requests may be sent. This notice benefits the public in advising them where to send such requests for declassification review. FOR FURTHER INFORMATION CONTACT: Mr. Robert Storer, (571)...

  12. Native Women at Risk: Addressing Cancer Prevention.

    ERIC Educational Resources Information Center

    Thiemann, Kay M. B.

    1994-01-01

    Discusses outcomes of a conference that brought together representatives from Indian tribes, state health departments, the Indian Health Service, the Mayo Clinic, and the American Cancer Society, to address the high rate of cervical cancer among American Indian women. Describes barriers to health care and plans to promote cancer screening among…

  13. 21 CFR 600.2 - Mailing addresses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Mailing addresses. 600.2 Section 600.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS... Health, 21 Wilson Dr., rm. 107, Bethesda, MD 20892-6780. (d) Vaccine Adverse Event Reporting...

  14. Rational Rhymes for Addressing Common Childhood Issues

    ERIC Educational Resources Information Center

    Warren, Jeffrey M.

    2011-01-01

    Music-based interventions are valuable tools counselors can use when working with children. Specific types of music-based interventions, such as songs or rhymes, can be especially pertinent in addressing the thoughts, feelings, and behaviors of children. Rational-emotive behavior therapy (REBT) provides a therapeutic framework that encourages…

  15. Violence Goes to School. Keynote Address.

    ERIC Educational Resources Information Center

    Levin, Jack

    1998-01-01

    Increased juvenile violence in schools has led to suggested solutions that are politically expedient but fail to address what makes violence so appealing. Instead of school uniforms, conflict resolution programs, or media rating systems, a grass roots approach of alternative programs, parental involvement, and youth support systems could repair…

  16. Mapping virtual addresses to different physical addresses for value disambiguation for thread memory access requests

    DOEpatents

    Gala, Alan; Ohmacht, Martin

    2014-09-02

    A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memory access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.

  17. Fiber lasers and their applications [Invited].

    PubMed

    Shi, Wei; Fang, Qiang; Zhu, Xiushan; Norwood, R A; Peyghambarian, N

    2014-10-01

    Fiber lasers have seen progressive developments in terms of spectral coverage and linewidth, output power, pulse energy, and ultrashort pulse width since the first demonstration of a glass fiber laser in 1964. Their applications have extended into a variety of fields accordingly. In this paper, the milestones of glass fiber laser development are briefly reviewed and recent advances of high-power continuous wave, Q-switched, mode-locked, and single-frequency fiber lasers in the 1, 1.5, 2, and 3 μm regions and their applications in such areas as industry, medicine, research, defense, and security are addressed in detail.

  18. High power CO lasers and their application potential

    NASA Astrophysics Data System (ADS)

    Maisenhaelder, F.

    1989-06-01

    Industrial applications of high-power CO lasers are examined. The characteristics specific to CO lasers are briefly reviewed, and applications where the CO laser seems to promise wavelength-related advantages over other lasers are examined. Experimentally demonstrated applications in the drilling and cutting of metals, isotope separation and photochemistry, and laser medicine are addressed, Developments in the high power range in Japan, Soviet Union, and Germany are described, and a comparison is made between high power CO and CO2 gas lasers for civil applications.

  19. Lasers in Cancer Treatment

    MedlinePlus

    ... Cancer Treatment On This Page What is laser light? What is laser therapy, and how is it ... future hold for laser therapy? What is laser light? The term “ laser ” stands for light amplification by ...

  20. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1989-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.

  1. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  2. Laser Therapy

    MedlinePlus

    ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ...

  3. Laser Crystal

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lightning Optical Corporation, under an SBIR (Small Business Innovative Research) agreement with Langley Research Center, manufactures oxide and fluoride laser gain crystals, as well as various nonlinear materials. The ultimate result of this research program is the commercial availability in the marketplace of a reliable source of high-quality, damage resistant laser material, primarily for diode-pumping applications.

  4. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  5. Improving student learning by addressing misconceptions

    NASA Astrophysics Data System (ADS)

    Engelmann, Carol A.; Huntoon, Jacqueline E.

    2011-12-01

    Students—and often those who teach them—come to class with preconceptions and misconceptions that hinder their learning. For instance, many K-12 students and teachers believe groundwater exists in the ground in actual rivers or lakes, but in fact, groundwater is found in permeable rock layers called aquifers. Such misconceptions need to be addressed before students can learn scientific concepts correctly. While other science disciplines have been addressing preconceptions and misconceptions for many years, the geoscience community has only recently begun to concentrate on the impact these have on students' learning. Valuable research is being done that illuminates how geologic thinking evolves from the "novice" to "expert" level. The expert is defined as an individual with deep understanding of Earth science concepts. As research progresses, geoscientists are realizing that correcting preconceptions and misconceptions can move teachers and students closer to the "expert" level [Libarkin, 2005].

  6. Addressing medical errors in hand surgery.

    PubMed

    Johnson, Shepard P; Adkinson, Joshua M; Chung, Kevin C

    2014-09-01

    Influential think tanks such as the Institute of Medicine have raised awareness about the implications of medical errors. In response, organizations, medical societies, and hospitals have initiated programs to decrease the incidence and prevent adverse effects of these errors. Surgeons deal with the direct implications of adverse events involving patients. In addition to managing the physical consequences, they are confronted with ethical and social issues when caring for a harmed patient. Although there is considerable effort to implement system-wide changes, there is little guidance for hand surgeons on how to address medical errors. Admitting an error by a physician is difficult, but a transparent environment where patients are notified of errors and offered consolation and compensation is essential to maintain physician-patient trust. Furthermore, equipping hand surgeons with a guide for addressing medical errors will help identify system failures, provide learning points for safety improvement, decrease litigation against physicians, and demonstrate a commitment to ethical and compassionate medical care.

  7. Increasing hope by addressing clients' outcome expectations.

    PubMed

    Swift, Joshua K; Derthick, Annie O

    2013-09-01

    Addressing clients' outcome expectations is an important clinical process that can lead to a strong therapeutic alliance, more positive treatment outcomes, and decreased rates of premature termination from psychotherapy. Five interventions designed to foster appropriate outcome expectations are discussed, including presenting a convincing treatment rationale, increasing clients' faith in their therapists, expressing faith in clients, providing outcome education, and comparing progress with expectations. Clinical examples and research support are provided for each. PMID:24000836

  8. Addressing spiritual leadership: an organizational model.

    PubMed

    Burkhart, Lisa; Solari-Twadell, P Ann; Haas, Sheila

    2008-01-01

    The Joint Commission requires health systems to address spiritual care. Research indicates that spirituality is associated with better physical, psychological, and social health and that culturally diverse populations and individuals at end-of-life often request spiritual care. The authors report the results of a consensus conference of 21 executives representing 10 large faith-based health systems who discussed the input, process, and outcomes of a corporate model for spiritual leadership. Specific initiatives are highlighted.

  9. Addressing psychosocial aspects of atopic dermatitis.

    PubMed

    Kelsay, Kimberly; Klinnert, Mary; Bender, Bruce

    2010-08-01

    Moderate to severe atopic dermatitis (AD) negatively affects patients and their families. Pruritus, scratching, and sleep problems are common complaints linked to disturbed quality of life. Treatment is complex, and nonadherence rates are high. This article reviews the effect of AD on patients and their families and intervention strategies that have some success in improving quality of life. A treatment model for addressing the psychosocial effect of moderate to severe AD within a multidisciplinary setting is suggested herein. PMID:20670820

  10. Global-Address Space Networking (GASNet) Library

    2011-04-06

    GASNet (Global-Address Space Networking) is a language-independent, low-level networking layer that provides network-independent, high-performance communication primitives tailored for implementing parallel global address space SPMD languages such as UPC and Titanium. The interface is primarily intended as a compilation target and for use by runtime library writers (as opposed to end users), and the primary goals are high performance, interface portability, and expressiveness. GASNet is designed specifically to support high-performance, portable implementations of global address spacemore » languages on modern high-end communication networks. The interface provides the flexibility and extensibility required to express a wide variety of communication patterns without sacrificing performance by imposing large computational overheads in the interface. The design of the GASNet interface is partitioned into two layers to maximize porting ease without sacrificing performance: the lower level is a narrow but very general interface called the GASNet core API - the design is basedheavily on Active Messages, and is implemented directly on top of each individual network architecture. The upper level is a wider and more expressive interface called GASNet extended API, which provides high-level operations such as remote memory access and various collective operations. This release implements GASNet over MPI, the Quadrics "elan" API, the Myrinet "GM" API and the "LAPI" interface to the IBM SP switch. A template is provided for adding support for additional network interfaces.« less

  11. Aboriginal health promotion through addressing employment discrimination.

    PubMed

    Ferdinand, Angeline S; Paradies, Yin; Perry, Ryan; Kelaher, Margaret

    2014-01-01

    The Localities Embracing and Accepting Diversity (LEAD) program aimed to improve the mental health of Aboriginal Victorians by addressing racial discrimination and facilitating social and economic participation. As part of LEAD, Whittlesea Council adopted the Aboriginal Employment Pathways Strategy (AEPS) to increase Aboriginal employment and retention within the organisation. The Aboriginal Cultural Awareness Training Program was developed to build internal cultural competency and skills in recruiting and retaining Aboriginal staff. Analysis of surveys conducted before (pre; n=124) and after (post; n=107) the training program indicated a significant increase in participant understanding across all program objectives and in support of organisational policies to improve Aboriginal recruitment and retention. Participants ended the training with concrete ideas about intended changes, as well as how these changes could be supported by their supervisors and the wider organisation. Significant resources have since been allocated to implementing the AEPS over 5 years. In line with principles underpinning the National Aboriginal and Torres Strait Islander Health Plan 2013-23, particularly the focus on addressing racism as a determinant of health, this paper explores the AEPS and training program as promising approaches to health promotion through addressing barriers to Aboriginal employment. Possible implications for other large organisations are also considered. PMID:25155236

  12. Aboriginal health promotion through addressing employment discrimination.

    PubMed

    Ferdinand, Angeline S; Paradies, Yin; Perry, Ryan; Kelaher, Margaret

    2014-01-01

    The Localities Embracing and Accepting Diversity (LEAD) program aimed to improve the mental health of Aboriginal Victorians by addressing racial discrimination and facilitating social and economic participation. As part of LEAD, Whittlesea Council adopted the Aboriginal Employment Pathways Strategy (AEPS) to increase Aboriginal employment and retention within the organisation. The Aboriginal Cultural Awareness Training Program was developed to build internal cultural competency and skills in recruiting and retaining Aboriginal staff. Analysis of surveys conducted before (pre; n=124) and after (post; n=107) the training program indicated a significant increase in participant understanding across all program objectives and in support of organisational policies to improve Aboriginal recruitment and retention. Participants ended the training with concrete ideas about intended changes, as well as how these changes could be supported by their supervisors and the wider organisation. Significant resources have since been allocated to implementing the AEPS over 5 years. In line with principles underpinning the National Aboriginal and Torres Strait Islander Health Plan 2013-23, particularly the focus on addressing racism as a determinant of health, this paper explores the AEPS and training program as promising approaches to health promotion through addressing barriers to Aboriginal employment. Possible implications for other large organisations are also considered.

  13. Addressable parallel cavity-based quantum memory

    NASA Astrophysics Data System (ADS)

    Vetlugin, Anton N.; Sokolov, Ivan V.

    2014-09-01

    We elaborate theoretically a model of addressable parallel cavity-based quantum memory for light able to store multiple transverse spatial modes of the input light signal of finite duration and, at the same time, a time sequence of the signals by side illumination. Having in mind possible applications for, e.g., quantum repeaters, we reveal the addressability of our memory, that is, its handiness for the read-out on demand of a given transverse quantized signal mode and of a given signal from the time sequence. The addressability is achieved by making use of different spatial configurations of pump wave during the write-in and the readout. We also demonstrate that for the signal durations of the order of few cavity decay times, better efficiency is achieved when one excites the cavity with zero light-matter coupling and finally performs fast excitation transfer from the intracavity field to the collective spin. On the other hand, the light-matter coupling control in time, based on dynamical impedance matching, allows to store and retrieve time restricted signals of the on-demand smooth time shape.

  14. Matching Alternative Addresses: a Semantic Web Approach

    NASA Astrophysics Data System (ADS)

    Ariannamazi, S.; Karimipour, F.; Hakimpour, F.

    2015-12-01

    Rapid development of crowd-sourcing or volunteered geographic information (VGI) provides opportunities for authoritatives that deal with geospatial information. Heterogeneity of multiple data sources and inconsistency of data types is a key characteristics of VGI datasets. The expansion of cities resulted in the growing number of POIs in the OpenStreetMap, a well-known VGI source, which causes the datasets to outdate in short periods of time. These changes made to spatial and aspatial attributes of features such as names and addresses might cause confusion or ambiguity in the processes that require feature's literal information like addressing and geocoding. VGI sources neither will conform specific vocabularies nor will remain in a specific schema for a long period of time. As a result, the integration of VGI sources is crucial and inevitable in order to avoid duplication and the waste of resources. Information integration can be used to match features and qualify different annotation alternatives for disambiguation. This study enhances the search capabilities of geospatial tools with applications able to understand user terminology to pursuit an efficient way for finding desired results. Semantic web is a capable tool for developing technologies that deal with lexical and numerical calculations and estimations. There are a vast amount of literal-spatial data representing the capability of linguistic information in knowledge modeling, but these resources need to be harmonized based on Semantic Web standards. The process of making addresses homogenous generates a helpful tool based on spatial data integration and lexical annotation matching and disambiguating.

  15. Addressing language barriers to healthcare in India.

    PubMed

    Narayan, Lalit

    2013-01-01

    In spite of a growing recognition of the importance of doctor-patient communication, the issue of language barriers to healthcare has received very little attention in India. The Indian population speaks over 22 major languages with English used as the lingua franca for biomedicine. Large-scale internal migration has meant that health workers are encountering increasing instances of language discordance within clinical settings. Research done predominantly in the West has shown language discordance to significantly affect access to care, cause problems of comprehension and adherence, and decrease the satisfaction and quality of care. Addressing language barriers to healthcare in India requires a stronger political commitment to providing non-discriminatory health services, especially to vulnerable groups such as illiterate migrant workers. Research will have to address three broad areas: the ways in which language barriers affect health and healthcare, the efficacy of interventions to overcome language barriers, and the costs of language barriers and efforts to overcome them. There is a need to address such barriers in health worker education and clinical practice. Proven strategies such as hiring multilingual healthcare workers, providing language training to health providers, employing in situ translators or using telephone interpretation services will have to be evaluated for their appropriateness to the Indian context. Internet-based initiatives, the proliferation of mobile phones and recent advances in machine translation promise to contribute to the solution.

  16. Innovative Legal Approaches to Address Obesity

    PubMed Central

    Pomeranz, Jennifer L; Teret, Stephen P; Sugarman, Stephen D; Rutkow, Lainie; Brownell, Kelly D

    2009-01-01

    Context: The law is a powerful public health tool with considerable potential to address the obesity issue. Scientific advances, gaps in the current regulatory environment, and new ways of conceptualizing rights and responsibilities offer a foundation for legal innovation. Methods: This article connects developments in public health and nutrition with legal advances to define promising avenues for preventing obesity through the application of the law. Findings: Two sets of approaches are defined: (1) direct application of the law to factors known to contribute to obesity and (2) original and innovative legal solutions that address the weak regulatory stance of government and the ineffectiveness of existing policies used to control obesity. Specific legal strategies are discussed for limiting children's food marketing, confronting the potential addictive properties of food, compelling industry speech, increasing government speech, regulating conduct, using tort litigation, applying nuisance law as a litigation strategy, and considering performance-based regulation as an alternative to typical regulatory actions. Finally, preemption is an overriding issue and can play both a facilitative and a hindering role in obesity policy. Conclusions: Legal solutions are immediately available to the government to address obesity and should be considered at the federal, state, and local levels. New and innovative legal solutions represent opportunities to take the law in creative directions and to link legal, nutrition, and public health communities in constructive ways. PMID:19298420

  17. Coherent Addressing of Individual Neutral Atoms in a 3D Optical Lattice.

    PubMed

    Wang, Yang; Zhang, Xianli; Corcovilos, Theodore A; Kumar, Aishwarya; Weiss, David S

    2015-07-24

    We demonstrate arbitrary coherent addressing of individual neutral atoms in a 5×5×5 array formed by an optical lattice. Addressing is accomplished using rapidly reconfigurable crossed laser beams to selectively ac Stark shift target atoms, so that only target atoms are resonant with state-changing microwaves. The effect of these targeted single qubit gates on the quantum information stored in nontargeted atoms is smaller than 3×10^{-3} in state fidelity. This is an important step along the path of converting the scalability promise of neutral atoms into reality.

  18. Entanglement of ions in a uniformly-spaced chain using individual addressing and pulse shaping

    NASA Astrophysics Data System (ADS)

    Debnath, S.; Manning, T. A.; Choi, T.; Fields, B.; Monroe, C.

    2012-06-01

    We present progress towards entanglement of subsets of ^171Yb^+ ions in a single uniformly-spaced chain using individual optical addressing and simple laser pulse shaping. A pulsed 355 nm laser drives Raman transitions to create a spin-dependent force on individual ions in the chain, where the collective ion motion facilitates the entanglement of the ions' spin states. By coupling to transverse phonon modes instead of axial modes, we will be less sensitive to thermal motion and ion heating, resulting in comparatively higher gate fidelities. Additionally, faster gate speeds are achievable by applying sequences of a few laser pulses at optimized intensities and detuning that couple to multiple modes of motion [1,2]. [4pt] [1] G.-D. Lin, et al. Europhys. Lett. 86, 60004 (2009)[0pt] [2] S-L Zhu, et al., Europhys. Lett. 73, 485-491 (2006)

  19. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  20. Autokeratomileusis Laser

    NASA Astrophysics Data System (ADS)

    Kern, Seymour P.

    1987-03-01

    Refractive defects such as myopia, hyperopia, and astigmatism may be corrected by laser milling of the cornea. An apparatus combining automatic refraction/keratometry and an excimer type laser for precision reshaping of corneal surfaces has been developed for testing. When electronically linked to a refractometer or keratometer or holographic imaging device, the laser is capable of rapidly milling or ablating corneal surfaces to preselected dioptric power shapes without the surgical errors characteristic of radial keratotomy, cryokeratomileusis or epikeratophakia. The excimer laser simultaneously generates a synthetic Bowman's like layer or corneal condensate which appears to support re-epithelialization of the corneal surface. An electronic feedback arrangement between the measuring instrument and the laser enables real time control of the ablative milling process for precise refractive changes in the low to very high dioptric ranges. One of numerous options is the use of a rotating aperture wheel with reflective portions providing rapid alternate ablation/measurement interfaced to both laser and measurement instrumentation. The need for the eye to be fixated is eliminated or minimized. In addition to reshaping corneal surfaces, the laser milling apparatus may also be used in the process of milling both synthetic and natural corneal inlays for lamellar transplants.

  1. Laser Spot Detection Based on Reaction Diffusion

    PubMed Central

    Vázquez-Otero, Alejandro; Khikhlukha, Danila; Solano-Altamirano, J. M.; Dormido, Raquel; Duro, Natividad

    2016-01-01

    Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD) system as the main computational framework for robustly finding laser spot centers. The method presented is compared with a conventional approach for locating laser spots, and the experimental results indicate that RD-based computation generates reliable and precise solutions. These results confirm the flexibility of the new computational paradigm based on RD systems for addressing problems that can be reduced to a set of geometric operations. PMID:26938537

  2. Laser Spot Detection Based on Reaction Diffusion.

    PubMed

    Vázquez-Otero, Alejandro; Khikhlukha, Danila; Solano-Altamirano, J M; Dormido, Raquel; Duro, Natividad

    2016-03-01

    Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD) system as the main computational framework for robustly finding laser spot centers. The method presented is compared with a conventional approach for locating laser spots, and the experimental results indicate that RD-based computation generates reliable and precise solutions. These results confirm the flexibility of the new computational paradigm based on RD systems for addressing problems that can be reduced to a set of geometric operations.

  3. Windvan laser study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The goal of defining a CO2 laser transmitter approach suited to Shuttle Coherent Atmospheric Lidar Experiment (SCALE) requirements is discussed. The adaptation of the existing WINDVAN system to the shuttle environment is addressed. The size, weight, reliability, and efficiency of the existing WINDVAN system are largely compatible with SCALE requirements. Repacking is needed for compatibility with vacuum and thermal environments. Changes are required to ensure survival through launch and landing, mechanical, vibration, and acoustic loads. Existing WINDVAN thermal management approaches depending on convection need to be upgraded zero gravity operations.

  4. Addressing Key Science and Technology Issues for IFE Chambers, Target Fabrication and Target Injection

    SciTech Connect

    Meier, W R; Goodin, D T; Nobile, A; Besenbruch, G; Haynes, D; Hoffer, J; Latkowski, J; Maxwell, J; Najmabadi, F; Nikroo, A; Peterson, P; Petzoldt, R; Rickman, W; Sethian, J; Steckle, W; Stephens, E; Tillack, M; Ying, A; Yoda, M

    2002-09-25

    Significant progress has been made in addressing critical issues for high repetition rate chambers, target fabrication and injection for inertial fusion energy (IFE) for both heavy ion and laser drivers. Research is being conducted in a coordinated manner by national laboratories, universities and industry. This paper provides an overview of U.S. research activities and discusses how interface considerations (such as beam propagation and target survival during injection) impact design choices.

  5. Laser goniometer

    DOEpatents

    Fairer, George M.; Boernge, James M.; Harris, David W.; Campbell, DeWayne A.; Tuttle, Gene E.; McKeown, Mark H.; Beason, Steven C.

    1993-01-01

    The laser goniometer is an apparatus which permits an operator to sight along a geologic feature and orient a collimated lamer beam to match the attitude of the feature directly. The horizontal orientation (strike) and the angle from horizontal (dip), are detected by rotary incremental encoders attached to the laser goniometer which provide a digital readout of the azimuth and tilt of the collimated laser beam. A microprocessor then translates the square wave signal encoder outputs into an ASCII signal for use by data recording equipment.

  6. Explosive laser

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Davis, W.C.; Sullivan, J.A.

    1975-09-01

    This patent relates to a laser system wherein reaction products from the detonation of a condensed explosive expand to form a gaseous medium with low translational temperature but high vibration population. Thermal pumping of the upper laser level and de-excitation of the lower laser level occur during the expansion, resulting in a population inversion. The expansion may be free or through a nozzle as in a gas-dynamic configuration. In one preferred embodiment, the explosive is such that its reaction products are CO$sub 2$ and other species that are beneficial or at least benign to CO$sub 2$ lasing. (auth)

  7. Addressing Risks to Advance Mental Health Research

    PubMed Central

    Iltis, Ana S.; Misra, Sahana; Dunn, Laura B.; Brown, Gregory K.; Campbell, Amy; Earll, Sarah A.; Glowinski, Anne; Hadley, Whitney B.; Pies, Ronald; DuBois, James M.

    2015-01-01

    Objective Risk communication and management are essential to the ethical conduct of research, yet addressing risks may be time consuming for investigators and institutional review boards (IRBs) may reject study designs that appear too risky. This can discourage needed research, particularly in higher risk protocols or those enrolling potentially vulnerable individuals, such as those with some level of suicidality. Improved mechanisms for addressing research risks may facilitate much needed psychiatric research. This article provides mental health researchers with practical approaches to: 1) identify and define various intrinsic research risks; 2) communicate these risks to others (e.g., potential participants, regulatory bodies, society); 3) manage these risks during the course of a study; and 4) justify the risks. Methods As part of a National Institute of Mental Health (NIMH)-funded scientific meeting series, a public conference and a closed-session expert panel meeting were held on managing and disclosing risks in mental health clinical trials. The expert panel reviewed the literature with a focus on empirical studies and developed recommendations for best practices and further research on managing and disclosing risks in mental health clinical trials. IRB review was not required because there were no human subjects. The NIMH played no role in developing or reviewing the manuscript. Results Challenges, current data, practical strategies, and topics for future research are addressed for each of four key areas pertaining to management and disclosure of risks in clinical trials: identifying and defining risks, communicating risks, managing risks during studies, and justifying research risks. Conclusions Empirical data on risk communication, managing risks, and the benefits of research can support the ethical conduct of mental health research and may help investigators better conceptualize and confront risks and to gain IRB approval. PMID:24173618

  8. Addressing Extremes within the WCRP - GEWEX Framework

    NASA Astrophysics Data System (ADS)

    van Oevelen, P. J.; Stewart, R.; Detemmerman, V.

    2008-12-01

    For large international coordination programs such as the Global Energy and Water Cycle Experiment (GEWEX) as part of the World Climate Research Programme (WCRP) it is difficult to strike a good balance between enabling as much international involvement as is possible and desirable and the achievability of the objectives. WCRP has decided that "Extremes Research" is one of several areas where it would like to see its efforts strengthened and scientific research pushed forward. The foci that are being selected should be phrased such that they are practical and achievable within a time span of 1 to 3 years. Preferably these foci build upon the expertise from cross WCRP activities and are not restricted to single core project activities. In this presentation an overview will be given of the various activities within GEWEX that are related to extremes and which ones would be most ideal to be addressed as WCRP foci from a GEWEX perspective. The rationale and context of extreme research will be presented as well links to other national and international programs. "Extremes Research" as a topic is attractive since it has a high societal relevance and impact. However, numerous definitions of extremes exist and they are being used in widely varying contexts making it not always clear of what exactly is being addressed. This presentation will give an outlook on what can be expected research wise in the near future based upon the outcomes of the Extremes Workshop organised last June in Vancouver in the context of the Coordinated Energy and water cycle Observations Project (CEOP) as part of GEWEX. In particular it will be shown how these activities, which will only address certain types of extremes, can be linked to adaptation and mitigation efforts taking place in other organisations and by national and international bodies.

  9. Best Practices in Hiring: Addressing Unconscious Bias

    NASA Astrophysics Data System (ADS)

    Simpson, Caroline E.

    2012-01-01

    Research has shown that implementing certain hiring practices will increase diversity in the workplace while enhancing academic quality. All of these practices rely on addressing the issue of 'unconscious bias.' A brief overview of unconscious bias--what it is, how it works, and simple measures to counter it--will be presented. Successful strategies, actions, and recommendations for implementing best recruiting and hiring practices, which have been proven to enhance academic excellence by ensuring a deep and diverse applicant pool, will also be presented.

  10. A Task Force to Address Bullying.

    PubMed

    Keller, Ronald; Budin, Wendy C; Allie, Tammy

    2016-02-01

    Bullying in the workplace can create a dysfunctional environment that is associated with serious physical and psychological harm to the person being bullied. Nurses' experience with bullying has gained considerable attention in recent years, and warrants further discussion. Nurse leaders need to develop and implement effective bullying prevention initiatives that will foster the functioning of a professional and productive staff in a healthy work environment. The aim of this article is to review workplace bullying as experienced by nurses, and describe how nurses at a Magnet-designated academic medical center developed and implemented a bullying task force to address the problem.

  11. Addressing the water budget with SMOS

    NASA Astrophysics Data System (ADS)

    Kerr, Y. H.; AlBitar, A.; Tomer, S. K.; Merlin, O.; Pellarin, T.

    2012-12-01

    SMOS, a L Band radiometer using aperture synthesis to achieve a good spatial resolution, was successfully launched on November 2, 2009. It was developed and made under the leadership of the European Space Agency (ESA) as an Earth Explorer Opportunity mission. It is a joint program with the Centre National d'Etudes Spatiales (CNES) in France and the Centro para el Desarrollo Teccnologico Industrial (CDTI) in Spain. SMOS carries a single payload, an L band 2D interferometric,radiometer in the 1400-1427 MHz h protected band. This wavelength penetrates well through the vegetation and the atmosphere is almost transparent enabling to infer both soil moisture and vegetation water content. SMOS achieves an unprecedented spatial resolution of 50 km at L-band maximum (43 km on average) with multi angular-dual polarized (or fully polarized) brightness temperatures over the globe and with a revisit time smaller than 3 days. SMOS as been now acquiring data for almost 2 years. The data quality exceeds what was expected, showing very good sensitivity and stability. The data is however very much impaired by man made emission in the protected band, leading to degraded measurements in several areas including parts of Europe and of China. However, many different international teams are now addressing cal val activities in various parts of the world, with notably large field campaigns either on the long time scale or over specific targets to address the specific issues. In parallel different teams are now starting addressing data use in various fields including hydrology. It requires coupling with other models and or disaggregation to address soil moisture distribution over watersheds. Significant new results were obtained for floods and drought events, together with new potential applications in terms of precipitation monitoring This paper thus gives an overview of the science goals of the SMOS mission, a description of its main elements, and a taste of the first results including

  12. A Task Force to Address Bullying.

    PubMed

    Keller, Ronald; Budin, Wendy C; Allie, Tammy

    2016-02-01

    Bullying in the workplace can create a dysfunctional environment that is associated with serious physical and psychological harm to the person being bullied. Nurses' experience with bullying has gained considerable attention in recent years, and warrants further discussion. Nurse leaders need to develop and implement effective bullying prevention initiatives that will foster the functioning of a professional and productive staff in a healthy work environment. The aim of this article is to review workplace bullying as experienced by nurses, and describe how nurses at a Magnet-designated academic medical center developed and implemented a bullying task force to address the problem. PMID:26817556

  13. Optical addressing technique for a CMOS RAM

    NASA Technical Reports Server (NTRS)

    Wu, W. H.; Bergman, L. A.; Allen, R. A.; Johnston, A. R.

    1988-01-01

    Progress on optically addressing a CMOS RAM for a feasibility demonstration of free space optical interconnection is reported in this paper. The optical RAM chip has been fabricated and functional testing is in progress. Initial results seem promising. New design and SPICE simulation of optical gate cell (OGC) circuits have been carried out to correct the slow fall time of the 'weak pull down' OGC, which has been characterized experimentally. Methods of reducing the response times of the photodiodes and the associated circuits are discussed. Even with the current photodiode, it appears that an OGC can be designed with a performance that is compatible with a CMOS circuit such as the RAM.

  14. Addressing the underperformance of faculty and staff.

    PubMed

    Kenner, Carole; Pressler, Jana L

    2006-01-01

    Many new nursing leaders assuming work as deans, assistant deans, or interim deans have limited education, experience, or background to prepare them for the job. To assist new deans and those aspiring to be deans, the authors of this department, both deans, offer survival tips based on their personal experiences and insights. They address common issues, challenges, and opportunities that face academic executive teams, such as negotiating an executive contract, obtaining faculty lines, building effective work teams, managing difficult employees, and creating nimble organizational structure to respond to changing consumer, healthcare delivery, and community needs. The authors welcome counterpoint discussions with readers. PMID:17108781

  15. Gas and metal vapor lasers and applications; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 23, 1991

    NASA Astrophysics Data System (ADS)

    Kim, Jin J.; Tittel, Frank K.

    Various papers on gas and metal vapor lasers and applications are presented. Individual topics addressed include: high-power copper vapor laser development, modified off-axis unstable resonator for copper vapor laser, industrial applications of metal vapor lasers, newly developed excitation circuit for kHz pulsed lasers, copper vapor laser precision processing, development of solid state pulse power supply for copper vapor laser, multiple spectral structure of the 578.2-nm line for copper vapor laser, adsorption of bromine in CuBr laser, processing of polytetrafluoroethylene with high-power VUV laser radiation, characterization of a subpicosecond XeF(C - A) excimer laser, X-ray preionization for high-repetition-rate discharge excimer lasers. Also discussed are: investigation of microwave-pumped excimer and rare-gas laser transitions, influence of gas composition of XeCl laser performance, output power stabilization of a XeCl excimer laser by HCl gas injection, excimer laser machining of optical fiber taps, diagnostics of a compact UV-preionized XeCl laser with BCl3 halogen donor, blackbody-pumped CO32 lasers using Gaussian and waveguide cavities, chemical problems of high-power sealed-off CO lasers, laser action of Xe and Ne pumped by electron beam, process monitoring during CO2 laser cutting, double-pulsed TEA CO2 laser, superhigh-gain gas laser, high-power ns-pulse iodine laser provided with SBS mirror. (No individual items are abstracted in this volume)

  16. Laser barometer

    SciTech Connect

    Abercrombie, K.R.; Shiels, D.; Rash, T.

    1998-04-01

    This paper describes an invention of a pressure measuring instrument which uses laser radiation to sense the pressure in an enclosed environment by means of measuring the change in refractive index of a gas - which is pressure dependent.

  17. Laser fusion

    SciTech Connect

    Smit, W.A.; Boskma, P.

    1980-12-01

    Unrestricted laser fusion offers nations an opportunity to circumvent arms control agreements and develop thermonuclear weapons. Early laser weapons research sought a clean radiation-free bomb to replace the fission bomb, but this was deceptive because a fission bomb was needed to trigger the fusion reaction and additional radioactivity was induced by generating fast neutrons. As laser-implosion experiments focused on weapons physics, simulating weapons effects, and applications for new weapons, the military interest shifted from developing a laser-ignited hydrogen bomb to more sophisticated weapons and civilian applications for power generation. Civilian and military research now overlap, making it possible for several countries to continue weapons activities and permitting proliferation of nuclear weapons. These countries are reluctant to include inertial confinement fusion research in the Non-Proliferation Treaty. 16 references. (DCK)

  18. Multi-port, optically addressed RAM

    NASA Technical Reports Server (NTRS)

    Johnston, Alan R. (Inventor); Nixon, Robert H. (Inventor); Bergman, Larry A. (Inventor); Esener, Sadik (Inventor)

    1989-01-01

    A random access memory addressing system utilizing optical links between memory and the read/write logic circuits comprises addressing circuits including a plurality of light signal sources, a plurality of optical gates including optical detectors associated with the memory cells, and a holographic optical element adapted to reflect and direct the light signals to the desired memory cell locations. More particularly, it is a multi-port, binary computer memory for interfacing with a plurality of computers. There are a plurality of storage cells for containing bits of binary information, the storage cells being disposed at the intersections of a plurality of row conductors and a plurality of column conductors. There is interfacing logic for receiving information from the computers directing access to ones of the storage cells. There are first light sources associated with the interfacing logic for transmitting a first light beam with the access information modulated thereon. First light detectors are associated with the storage cells for receiving the first light beam, for generating an electrical signal containing the access information, and for conducting the electrical signal to the one of the storage cells to which it is directed. There are holographic optical elements for reflecting the first light beam from the first light sources to the first light detectors.

  19. Framework for Address Cooperative Extended Transactions

    1997-12-01

    The Framework for Addressing Cooperative Extended Transactions (FACET) is an object-oriented software framework for building models of complex, cooperative behaviors of agents. it can be used to implement simulation models of societal processes such as the complex interplay of participating individuals and organizations engaged in multiple concurrent transactions in pursuit of their various goals. These transactions can be patterned on, for example, clinical guidelines and procedures, business practices, government and corporate policies, etc. FACET canmore » also address other complex behaviors such as biological life cycles or manufacturing processes. FACET includes generic software objects representing the fundamental classes of agent -- Person and Organization - with mechanisms for resource management, including resolution of conflicting requests for participation and/or use of the agent's resources. The FACET infrastructure supports stochastic behavioral elements and coping mechanisms by which specified special conditions and events can cause an active cooperative process to be preempted, diverting the participants onto appropriate alternative behavioral pathways.« less

  20. Addressing Science Use Cases with HELIO

    NASA Astrophysics Data System (ADS)

    Bentley, R. D.; Aboudarham, J.; Csillaghy, A.; Jacquey, C.; Hapgood, M. A.; Messerotti, M.; Gallagher, P.; Bocchialini, K.; Hurlburt, N. E.; Roberts, D.; Sanchez Duarte, L.

    2009-12-01

    The Heliophysics Integrated Observatory (HELIO) is a new VO project funded under the EC's Seventh Framework Programme (FP7). It includes thirteen partners scattered over six countries and is led by University College London. HELIO is designed to support the heliophysics community and is based on a Service Oriented Architecture. The services developed by and integrated into HELIO can be used to address a wide range of science problems; they can be used individually or as part of a work-flow driven search engine that can use a propagation (or other) model to help locate obervations that describe interesting phenomena. We will describe and discuss how the components of HELIO could be used to address science use cases, particularly how a user can adapt the work flow to their own science interests. Networking is one of the three Activities of the HELIO Integrated Infrastructure Initiatives (I3) project. Within this activity we plan to involve the community in all aspects of the design and testing of the HELIO system, including determining which data and metadata should be included, how the quality and content of metadata can be included, etc. We are investigating ways of making HELIO "domain-aware" so that researchers who are specialists in one of the communities that constitute heliophysics can easily identify, access and use data they need from the other communities. We will discuss how the community can help us develop this capability.

  1. Laser bronchoscopy.

    PubMed

    Duhamel, D R; Harrell, J H

    2001-11-01

    Because the lung cancer epidemic shows no signs of abating, little doubt exists that the need for interventional bronchoscopists will persist for many years to come. The Nd:YAG laser and the rigid bronchoscope remain crucial weapons in the fight against lung cancer. With more than 4000 published interventions pertaining to it, this combination is ideal for treating central airways obstruction. The safety and efficacy of laser bronchoscopy has been well established, and the reported incidence of complications is impressively low. If complications were to arise, a skilled bronchoscopist can manage them easily by using the beneficial attributes of the rigid bronchoscope. Many complications can be avoided by implementing the established safety procedures and techniques. A solid understanding of laser physics and tissue interactions is a necessity to anyone performing laser surgery. The team approach, relying on communication among the bronchoscopist, anesthesiologist, laser technician, and nurses, leads to a safer and more successful procedure. It is important to remember, however, that this is typically a palliative procedure, and therefore the focus should be on alleviating symptoms and improving quality of life. Unfortunately, because not every patient is a candidate for laser bronchoscopy, there are specific characteristics of endobronchial lesions that make them more or less amenable to resection. Each year a promising new technology is being developed, such as argon plasma coagulation, cryotherapy, and endobronchial electrosurgery. Although it is unclear what role these technologies will have, prospective controlled studies must be done to help clarify this question. The future may lay in combining these various technologies along with Nd:YAG laser bronchoscopy to maximize the therapeutic, palliative, and possibly even curative effect. As the experience of the medical community with Nd:YAG laser bronchoscopy continues to grow and as more health-care professionals

  2. Laser Technology

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Amoco Laser Company, a subsidiary of Amoco Corporation, has developed microlasers for the commercial market based on a JPL concept for optical communications over interplanetary distances. Lasers emit narrow, intense beams of light or other radiation. The beams transmit communication signals, drill, cut or melt materials or remove diseased body tissue. The microlasers cover a broad portion of the spectrum, and performance is improved significantly. Current applications include medical instrumentation, color separation equipment, telecommunications, etc.

  3. Laser-PlasmaWakefield Acceleration with Higher Order Laser Modes

    SciTech Connect

    Geddes, C.G.R.; Cormier-Michel, E.; Esarey, E.; Schroeder, C.B.; Mullowney, P.; Paul, K.; Cary, J.R.; Leemans, W.P.

    2010-06-01

    Laser-plasma collider designs point to staging of multiple accelerator stages at the 10 GeV level, which are to be developed on the upcoming BELLA laser, while Thomson Gamma source designs use GeV stages, both requiring efficiency and low emittance. Design and scaling of stages operating in the quasi-linear regime to address these needs are presented using simulations in the VORPAL framework. In addition to allowing symmetric acceleration of electrons and positrons, which is important for colliders, this regime has the property that the plasma wakefield is proportional to the transverse gradient of the laser intensity profile. We demonstrate use of higher order laser modes to tailor the laser pulse and hence the transverse focusing forces in the plasma. In particular, we show that by using higher order laser modes, we can reduce the focusing fields and hence increase the matched electron beam radius, which is important to increased charge and efficiency, while keeping the low bunch emittance required for applications.

  4. Laser Angioplasty

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The principal method of dealing with coronary artery blockage is bypass surgery. A non-surgical alternative available to some patients is balloon angioplasty. For several years, medical researchers have been exploring another alternative that would help a wider circle of patients than the balloon treatment and entail less risk than bypass surgery. A research group is on the verge of an exciting development: laser angioplasty with a 'cool' type of laser, called an excimer laser, that does not damage blood vessel walls and offers non-surgical cleansing of clogged arteries with extraordinary precision. The system is the Dymer 200+ Excimer Laser Angioplasty System, developed by Advanced Intraventional Systems. Used in human clinical tests since 1987, the system is the first fully integrated 'cool' laser capable of generating the requisite laser energy and delivering the energy to target arteries. Thirteen research hospitals in the U.S. have purchased Dymer 200+ systems and used them in clinical trials in 121 peripheral and 555 coronary artery cases. The success rate in opening blocked coronary arteries is 85 percent, with fewer complications than in balloon angioplasty. Food and Drug Administration approval for the system is hoped for in the latter part of 1990. * Advanced Intraventional Systems became Spectranetics in 1994 and discontinued the product.

  5. Laser neutralization

    SciTech Connect

    Peterson, O.G.

    1986-06-17

    Laser photodetachment of the excess electron to neutralize relativistic ions offers many advantages over the more conventional collisional methods using gases or thin foils as the neutralization agents. Probably the two most important advantages of laser photodetachment are the generation of a compact and low divergence beam, and the production of intense neutral beams at very high efficiency (approximately 90%). The high intensities or high current densities of the neutral beam result from the fixed maximum divergence that can be added to the beam by photodetachment of the charge using laser intensity of fixed wavelength and incident angle. The high neutralization efficiency is possible because there is no theoretical maximum to the neutralization efficiency, although higher efficiencies require higher laser powers and, therefore, costs. Additional advantages include focusability of the laser light onto the ion beam to maximize its efficacy. There certainly is no residual gas left in the particle beam path as is typical with gas neutralizers. The photodetachment process leaves the neutral atoms in the ground state so there is no excited state fluorescence to interfere with the subsequent beam sensing. Finally, since the beams to be neutralized are very high powered, for a large range of neutralization efficiencies the neutral beam can be increased more by increasing the power to the laser neutralizer than by adding an equal amount of power to the primary accelerator. 26 figs.

  6. Addressing key challenges in space gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Cornish, Neil

    A space based gravitational wave detector will open up the source-rich low frequency portion of the spectrum that can not be accessed from the ground, making possible some very exciting scientific studies. The rich data set collected by such an instrument will be unlike anything encountered by ground based (Laser interferometers or Pulsar timing) gravitational wave observatories, and it will take unique data analysis techniques to realize the full potential of the mission. At present, no techniques exist to exploit the discovery space opened by such a mission. Discovery potential is one of the main selling points for a mission in a new waveband. Our goal is to address this, and other key outstanding issues, by (i) Developing techniques for detecting un-modeled and un-expected signals (ii) Producing improved waveform models for spinning black hole binaries and use them to assess trade-offs in the mission design (iii) Develop robust techniques to identify possible departures from the predictions of Einstein's theory of gravity and (iv) explore the constraints that can be placed on astrophysical and modified gravity models by observing multiple systems.

  7. Addressing submarine geohazards through scientific drilling

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  8. 2D silicon-based surface-normal vertical cavity photonic crystal waveguide array for high-density optical interconnects

    NASA Astrophysics Data System (ADS)

    Ahn, JaeHyun; Subbaraman, Harish; Zhu, Liang; Chakravarty, Swapnajit; Tutuc, Emanuel; Chen, Ray T.

    2013-02-01

    In this paper, we present the design guidelines, fabrication challenges and device evaluation results of a surface-normal photonic crystal waveguide array for high-density optical interconnects. We utilize the slow light effect of photonic crystals to increase the effective interaction length between photons and medium, which in turn can be used to decrease the physical length and make compact devices. The effect of the structural parameters variations on the guided mode are studied in order to provide a guideline for fabrication. Photonic crystal waveguides are vertically implemented in a silicon-on insulator substrate. Our structure possesses advantages such as universal design, CMOS compatibility, and simple fabrication process, suitable for high dense on-chip applications. Transmission results show increase of power near 1.67 μm wavelength, which agrees with our simulation results.

  9. Library outreach: addressing Utah's "Digital Divide".

    PubMed

    McCloskey, K M

    2000-10-01

    A "Digital Divide" in information and technological literacy exists in Utah between small hospitals and clinics in rural areas and the larger health care institutions in the major urban area of the state. The goals of the outreach program of the Spencer S. Eccles Health Sciences Library at the University of Utah address solutions to this disparity in partnership with the National Network of Libraries of Medicine-- Midcontinental Region, the Utah Department of Health, and the Utah Area Health Education Centers. In a circuit-rider approach, an outreach librarian offers classes and demonstrations throughout the state that teach information-access skills to health professionals. Provision of traditional library services to unaffiliated health professionals is integrated into the library's daily workload as a component of the outreach program. The paper describes the history, methodology, administration, funding, impact, and results of the program.

  10. Addressing Chronic Disease Within Supportive Housing Programs

    PubMed Central

    Henwood, Benjamin F.; Stanhope, Victoria; Brawer, Rickie; Weinstein, Lara Carson; Lawson, James; Stwords, Edward; Crossan, Cornelius

    2015-01-01

    Background Tenants of supportive housing have a high burden of chronic health conditions. Objectives To examine the feasibility of developing a tenant-involved health promotion initiative within a “housing first” agency using a community-based participatory research (CBPR) framework. Methods Qualitative analyses of nine research capacity-building group meetings and fifteen individual pre- and post-interviews with those who completed a chronic disease self-management program, resulting in the development of several themes. Results Tenants of supportive housing successfully partnered with health care providers to implement a chronic disease self-management program, noting that “health care becomes ‘relevant’ with housing.” Conclusions Supportive housing organizations are well-situated to implement health promotion initiatives. Such publicly subsidized housing that is accompanied by comprehensive supports must also include self-management training to help people overcome both internal and external barriers to addressing chronic health needs. PMID:23543023

  11. Hybrid content addressable memory MSD arithmetic

    NASA Astrophysics Data System (ADS)

    Li, Yao; Kim, Dai Hyun; Kostrzewski, Andrew A.; Eichmann, George

    1990-07-01

    The modified signed-digit (MSD) number system, because of its inherent weak interdigit dependance, has been suggested as a useful means for a fast and parallel digital arithmetic. To maintain a fast processing speed, a single-stage holographic optical content-addressable memory (CAM) based MSD algorithm was suggested. In this paper, a novel non-holographic opto-electronic CAM based fast MSD addition processing architecture is proposed. The proposed concept has been verified with our first-order proof-of-principle experiments. A figure of merit comparison of this and other existing approaches is also presented. Based on this key opto-electronic CAM element, implementation of more sophisticated I'VISD arithmetic, such as optical MSD subtraction and multiplication operations, are proposed.

  12. Addressing submarine geohazards through scientific drilling

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  13. How is environmental conflict addressed by SIA?

    SciTech Connect

    Barrow, C.J.

    2010-09-15

    The fields of Environmental Conflict Management (ECM), Environmental Conflict Resolution (ECR), and Peace and Conflict Impact Assessment (PCIA) have become well established; however, as yet there has not been much use of Social Impact Assessment (SIA) to manage environmental conflicts. ECM, ECR and PCIA are mainly undertaken when problems are advanced or, more likely, have run their course (post-conflict). This paper examines how conflict is addressed by SIA and whether there is potential to develop it for more proactive assessment of conflicts (pre-conflict or while things develop). SIA has the potential to identify and clarify the cause(s) of environmental and natural resources conflicts, and could possibly enable some avoidance or early mitigation. A promising approach may be for 'conflict-aware' SIA to watch for critical conflict stages or thresholds and to monitor stakeholders. Effective conflict-aware SIA might also significantly contribute to efforts to achieve sustainable development.

  14. Applying evolutionary biology to address global challenges

    PubMed Central

    Carroll, Scott P.; Jørgensen, Peter Søgaard; Kinnison, Michael T.; Bergstrom, Carl T.; Denison, R. Ford; Gluckman, Peter; Smith, Thomas B.; Strauss, Sharon Y.; Tabashnik, Bruce E.

    2014-01-01

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens and pests that evolve too quickly, and the second from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This review highlights both progress and gaps in genetic, developmental and environmental manipulations across the life sciences that either target the rate and direction of evolution, or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development. PMID:25213376

  15. STS-79 John Blaha address news media

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-79 Mission Specialist John E. Blaha addresses news media gathered for the flight crew's late night arrival at the KSC Shuttle Landing Facility. A veteran space traveler who served as either commander or pilot on his four previous Shuttle flights, Blaha is taking a mission specialist's slot on STS-79 because he will be transferring to the Russian Space Station Mir for an extended stay. American astronaut Shannon Lucid will take his place aboard the Space Shuttle Atlantis for the return trip home. Final preparations are under way for launch of Atlantis on Mission STS-79, with liftoff scheduled to occur during an approximately seven-minute window opening at 4:54 a.m. EDT, Sept.16.

  16. Remediation tradeoffs addressed with simulated annealing optimization

    SciTech Connect

    Rogers, L. L., LLNL

    1998-02-01

    Escalation of groundwater remediation costs has encouraged both advances in optimization techniques to balance remediation objectives and economics and development of innovative technologies to expedite source region clean-ups. We present an optimization application building on a pump-and-treat model, yet assuming a prior removal of different portions of the source area to address the evolving management issue of more aggressive source remediation. Separate economic estimates of in-situ thermal remediation are combined with the economic estimates of the subsequent optimal pump-and-treat remediation to observe tradeoff relationships of cost vs. highest remaining contamination levels (hot spot). The simulated annealing algorithm calls the flow and transport model to evaluate the success of a proposed remediation scenario at a U.S.A. Superfund site contaminated with volatile organic compounds (VOCs).

  17. Applying evolutionary biology to address global challenges.

    PubMed

    Carroll, Scott P; Jørgensen, Peter Søgaard; Kinnison, Michael T; Bergstrom, Carl T; Denison, R Ford; Gluckman, Peter; Smith, Thomas B; Strauss, Sharon Y; Tabashnik, Bruce E

    2014-10-17

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens, and pests that evolve too quickly and the second, from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This Review highlights both progress and gaps in genetic, developmental, and environmental manipulations across the life sciences that either target the rate and direction of evolution or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development.

  18. Extreme space weather studies: Addressing societal needs

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.

    2014-12-01

    Extreme space weather events can adversely impact the operations of critical modern-day technological infrastructure such as high-voltage electric power transmission grids. Understanding of coupled magnetosphere-ionosphere dynamics under extreme solar wind driving conditions is still a major challenge mainly because of a lack of data during such time intervals. This presentation will highlight some of the past and on-going investigations on extreme space weather events, and how these investigations are used to address societal needs. Particularly, I will describe how first principles physics-based 3-D global MHD models are playing a major role in advancing our knowledge on extreme geomagnetically induced currents. These MHD models represent a very important component of attempts to understand the response of the magnetosphere-ionosphere system to varying solar wind conditions.

  19. Professional Culture and Climate: Addressing Unconscious Bias

    NASA Astrophysics Data System (ADS)

    Knezek, Patricia

    2016-10-01

    Unconscious bias reflects expectations or stereotypes that influence our judgments of others (regardless of our own group). Everyone has unconscious biases. The end result of unconscious bias can be an accumulation of advantage or disadvantage that impacts the long term career success of individuals, depending on which biases they are subject to. In order to foster a professional culture and climate, being aware of these unconscious biases and mitigating against them is a first step. This is particularly important when judgements are needed, such as in cases for recruitment, choice of speakers for conferences, and even reviewing papers submitted for publication. This presentation will cover how unconscious bias manifests itself, what evidence exists to demonstrate it exists, and ways it can be addressed.

  20. Trends in laser-plasma-instability experiments for laser fusion

    SciTech Connect

    Drake, R.P. Lawrence Livermore National Lab., CA )

    1991-06-06

    Laser-plasma instability experiments for laser fusion have followed three developments. These are advances in the technology and design of experiments, advances in diagnostics, and evolution of the design of high-gain targets. This paper traces the history of these three topics and discusses their present state. Today one is substantially able to produce controlled plasma conditions and to diagnose specific instabilities within such plasmas. Experiments today address issues that will matter for future laser facilities. Such facilities will irradiate targets with {approx}1 MJ of visible or UV light pulses that are tens of nanoseconds in duration, very likely with a high degree of spatial and temporal incoherence. 58 refs., 4 figs.

  1. Laser beam monitoring system

    DOEpatents

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  2. 27 CFR 4.35 - Name and address.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the stated address, or (C) Produced sparkling wine by secondary fermentation at the stated address... alcoholic beverage business at such additional place or address, and (2) The label also contains in...

  3. 14 CFR 61.60 - Change of address.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... mailing address may not, after 30 days from that date, exercise the privileges of the certificate unless..., OK 73125, of the new permanent mailing address, or if the permanent mailing address includes a...

  4. 27 CFR 4.35 - Name and address.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the stated address, or (C) Produced sparkling wine by secondary fermentation at the stated address... alcoholic beverage business at such additional place or address, and (2) The label also contains in...

  5. Laser physics and laser-tissue interaction.

    PubMed

    Welch, A J; Torres, J H; Cheong, W F

    1989-01-01

    Within the last few years, lasers have gained increasing use in the management of cardiovascular disease, and laser angioplasty has become a widely performed procedure. For this reason, a basic knowledge of lasers and their applications is essential to vascular surgeons, cardiologists, and interventional radiologists. To elucidate some fundamental concepts regarding laser physics, we describe how laser light is generated and review the properties that make lasers useful in medicine. We also discuss beam profile and spotsize, as well as dosimetric specifications for laser angioplasty. After considering laser-tissue interaction and light propagation in tissue, we explain how the aforementioned concepts apply to direct laser angioplasty and laser-balloon angioplasty. An understanding of these issues should prove useful not only in performing laser angioplasty but in comparing the reported results of various laser applications.

  6. Tunable solid state lasers

    SciTech Connect

    Hammerling, R.; Budgor, A.B.; Pinto, A.

    1985-01-01

    This book presents the papers given at a conference on solid state lasers. Topics considered at the conference included transition-metal-doped lasers, line-narrowed alexandrite lasers, NASA specification, meteorological lidars, laser materials spectroscopy, laser pumped single pass gain, vibronic laser materials growth, crystal growth methods, vibronic laser theory, cross-fertilization through interdisciplinary fields, and laser action of color centers in diamonds.

  7. Header For Laser Diode

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Spadin, Paul L.

    1990-01-01

    Header designed to contain laser diode. Output combined incoherently with outputs of other laser diodes in grating laser-beam combiner in optical communication system. Provides electrical connections to laser diode, cooling to thermally stabilize laser operation, and optomechanical adjustments that steer and focus laser beam. Range of adjustments provides for correction of worst-case decentering and defocusing of laser beam encountered with laser diodes. Mechanical configuration made simple to promote stability and keep cost low.

  8. Laser detection of remote targets applying chaotic pulse position modulation

    NASA Astrophysics Data System (ADS)

    Du, Pengfei; Geng, Dongxian; Wang, Wei; Gong, Mali

    2015-11-01

    Chaotic pulse position modulation (CPPM) has been successfully used in robust digital communication for years. We propose to adapt CPPM for laser detection of remote targets to address the issue of noise. Specified in a time-of-flight (TOF) consecutive laser ranging application scenario, the feasibility of laser detection applying CPPM for laser detection is experimentally investigated. The scheme including the adaptive design for laser detection and parameter settings with validation is introduced. Lab-based electrical experiment and a proof-of-concept outdoor TOF experiment are further conducted to verify the feasibility of laser ranging and detection using CPPM through comparison with traditional Lidar detection and other pulse interval patterns. According to experiments and the following analysis, laser ranging using CPPM is feasible and more robust than traditional laser ranging.

  9. Highly sensitive covalently functionalized light-addressable potentiometric sensor for determination of biomarker.

    PubMed

    Liang, Jintao; Guan, Mingyuan; Huang, Guoyin; Qiu, Hengming; Chen, Zhengcheng; Li, Guiyin; Huang, Yong

    2016-06-01

    A biomarker is related to the biological status of a living organism and shows great promise for the early prediction of a related disease. Herein we presented a novel structured light-addressable potentiometric sensor (LAPS) for the determination of a model biomarker, human immunoglobulin G (hIgG). In this system, the goat anti-human immunoglobulin G antibody was used as recognition element and covalently immobilized on the surface of light-addressable potentiometric sensor chip to capture human immunoglobulin G. Due to the light addressable capability of light-addressable potentiometric sensor, human immunoglobulin G dissolved in the supporting electrolyte solution can be detected by monitoring the potential shifts of the sensor. In order to produce a stable photocurrent, the laser diode controlled by field-programmable gate array was used as the light emitter to drive the light-addressable potentiometric sensor. A linear correlation between the potential shift response and the concentration of human immunoglobulin G was achieved and the corresponding regression equation was ΔV (V)=0.00714ChIgG (μg/mL)-0.0147 with a correlation coefficient of 0.9968 over a range 0-150 μg/mL. Moreover, the light-addressable potentiometric sensor system also showed acceptable stability and reproducibility. All the results demonstrated that the system was more applicable to detection of disease biomarkers with simple operation, multiple-sample format and might hold great promise in various environmental, food, and clinical applications.

  10. Addressing social resistance in emerging security technologies.

    PubMed

    Mitchener-Nissen, Timothy

    2013-01-01

    In their efforts to enhance the safety and security of citizens, governments and law enforcement agencies look to scientists and engineers to produce modern methods for preventing, detecting, and prosecuting criminal activities. Whole body scanners, lie detection technologies, biometrics, etc., are all being developed for incorporation into the criminal justice apparatus. Yet despite their purported security benefits these technologies often evoke social resistance. Concerns over privacy, ethics, and function-creep appear repeatedly in analyses of these technologies. It is argued here that scientists and engineers continue to pay insufficient attention to this resistance; acknowledging the presence of these social concerns yet failing to meaningfully address them. In so doing they place at risk the very technologies and techniques they are seeking to develop, for socially controversial security technologies face restrictions and in some cases outright banning. By identifying sources of potential social resistance early in the research and design process, scientists can both engage with the public in meaningful debate and modify their security technologies before deployment so as to minimize social resistance and enhance uptake. PMID:23970863

  11. Assessing what to address in science communication.

    PubMed

    Bruine de Bruin, Wändi; Bostrom, Ann

    2013-08-20

    As members of a democratic society, individuals face complex decisions about whether to support climate change mitigation, vaccinations, genetically modified food, nanotechnology, geoengineering, and so on. To inform people's decisions and public debate, scientific experts at government agencies, nongovernmental organizations, and other organizations aim to provide understandable and scientifically accurate communication materials. Such communications aim to improve people's understanding of the decision-relevant issues, and if needed, promote behavior change. Unfortunately, existing communications sometimes fail when scientific experts lack information about what people need to know to make more informed decisions or what wording people use to describe relevant concepts. We provide an introduction for scientific experts about how to use mental models research with intended audience members to inform their communication efforts. Specifically, we describe how to conduct interviews to characterize people's decision-relevant beliefs or mental models of the topic under consideration, identify gaps and misconceptions in their knowledge, and reveal their preferred wording. We also describe methods for designing follow-up surveys with larger samples to examine the prevalence of beliefs as well as the relationships of beliefs with behaviors. Finally, we discuss how findings from these interviews and surveys can be used to design communications that effectively address gaps and misconceptions in people's mental models in wording that they understand. We present applications to different scientific domains, showing that this approach leads to communications that improve recipients' understanding and ability to make informed decisions.

  12. Assessing what to address in science communication

    PubMed Central

    Bruine de Bruin, Wändi; Bostrom, Ann

    2013-01-01

    As members of a democratic society, individuals face complex decisions about whether to support climate change mitigation, vaccinations, genetically modified food, nanotechnology, geoengineering, and so on. To inform people’s decisions and public debate, scientific experts at government agencies, nongovernmental organizations, and other organizations aim to provide understandable and scientifically accurate communication materials. Such communications aim to improve people’s understanding of the decision-relevant issues, and if needed, promote behavior change. Unfortunately, existing communications sometimes fail when scientific experts lack information about what people need to know to make more informed decisions or what wording people use to describe relevant concepts. We provide an introduction for scientific experts about how to use mental models research with intended audience members to inform their communication efforts. Specifically, we describe how to conduct interviews to characterize people’s decision-relevant beliefs or mental models of the topic under consideration, identify gaps and misconceptions in their knowledge, and reveal their preferred wording. We also describe methods for designing follow-up surveys with larger samples to examine the prevalence of beliefs as well as the relationships of beliefs with behaviors. Finally, we discuss how findings from these interviews and surveys can be used to design communications that effectively address gaps and misconceptions in people’s mental models in wording that they understand. We present applications to different scientific domains, showing that this approach leads to communications that improve recipients’ understanding and ability to make informed decisions. PMID:23942122

  13. Addressing Underrepresentation: Physics Teaching for All

    NASA Astrophysics Data System (ADS)

    Rifkin, Moses

    2016-02-01

    Every physics teacher wants to give his or her students the opportunity to learn physics well. Despite these intentions, certain groups of students—including women and underrepresented minorities (URMs)—are not taking and not remaining in physics. In many cases, these disturbing trends are more significant in physics than in any other science. This is a missed opportunity for our discipline because demographic diversity strengthens science. The question is what we can do about these trends in our classrooms, as very few physics teachers have been explicitly prepared to address them. In this article, I will share some steps that I've taken in my classroom that have moved my class in the right direction. In the words of Nobel Prize-winning physicist Carl Wieman and psychologists Lauren Aguilar and Gregory Walton: "By investing a small amount of class time in carefully designed and implemented interventions, physics teachers can promote greater success among students from diverse backgrounds. Ultimately, we hope such efforts will indeed improve the diversity and health of the physics profession."

  14. Presidential address. Fatti Maschii Parole Femine.

    PubMed

    Murphy, G P

    1984-03-15

    The current role of the Society of Surgical Oncology has demonstrated leadership in the field of surgical oncology in both word and deed, as exemplified by the motto of the State of Maryland, adopted from the 1632 family seal of Lord Baltimore, "Fatti Maschii Parole Femine." The current emphasis on the need for clinical research on human cancers, and the education of surgeons in all aspects of various cancers is well founded in the writings and the addresses of Dr. James Ewing, the Society's founder. Our goals as a society for the next decade have been precisely defined and, as in all important national programs, made current and interfaced with corresponding priorities of the American Cancer Society and the National Cancer Institute. The Society, in three project areas, is: (1) assessing current progress in surgical oncology, as well as future manpower needs; (2) studying on a comprehensive basis the surgical practices in cancer patient management; and (3) surveying academic centers concerning the nature of current education and training of academic surgeons in clinical research. The Training Committee currently reviews and recognizes 2-year postresidency multidisciplinary training at several institutions, and the James Ewing Foundation has expanded its fiscal support of educational activities. This annual meeting marks an historic first signified by the conjoint sessions being held with other international surgical oncology societies.

  15. Assessing what to address in science communication.

    PubMed

    Bruine de Bruin, Wändi; Bostrom, Ann

    2013-08-20

    As members of a democratic society, individuals face complex decisions about whether to support climate change mitigation, vaccinations, genetically modified food, nanotechnology, geoengineering, and so on. To inform people's decisions and public debate, scientific experts at government agencies, nongovernmental organizations, and other organizations aim to provide understandable and scientifically accurate communication materials. Such communications aim to improve people's understanding of the decision-relevant issues, and if needed, promote behavior change. Unfortunately, existing communications sometimes fail when scientific experts lack information about what people need to know to make more informed decisions or what wording people use to describe relevant concepts. We provide an introduction for scientific experts about how to use mental models research with intended audience members to inform their communication efforts. Specifically, we describe how to conduct interviews to characterize people's decision-relevant beliefs or mental models of the topic under consideration, identify gaps and misconceptions in their knowledge, and reveal their preferred wording. We also describe methods for designing follow-up surveys with larger samples to examine the prevalence of beliefs as well as the relationships of beliefs with behaviors. Finally, we discuss how findings from these interviews and surveys can be used to design communications that effectively address gaps and misconceptions in people's mental models in wording that they understand. We present applications to different scientific domains, showing that this approach leads to communications that improve recipients' understanding and ability to make informed decisions. PMID:23942122

  16. Addressing HIV stigma in protected medical settings

    PubMed Central

    Li, Li; Liang, Li-Jung; Lin, Chunqing; Wu, Zunyou

    2015-01-01

    Previous studies suggest that the implementation of universal precaution (UP) plays a role in reducing HIV stigma. In this study we investigate the efficacy of a stigma reduction intervention on UP compliance and explore whether UP compliance could potentially influence HIV stigma reduction in medical settings. A randomized controlled intervention trial was conducted in two provinces of China with 1760 healthcare service providers recruited from 40 county-level hospitals. Longitudinal analyses included data collection at baseline, 6-, and 12-month follow-up assessments. Using a hierarchical modeling approach, we estimated the intervention effect for each provider’s UP compliance and its potential mediating role on HIV stigma with the bootstrapping method. A significant intervention effect on UP compliance was observed at both the 6- and 12-month follow-up assessments. The intervention effect on provider avoidance intent was partially mediated by the provider’s own UP compliance at the two follow-up points. This study provides evidence that UP compliance should be part of HIV stigma reduction programs, especially in resource-restrained countries. Findings suggest that a protected work environment may be necessary but not sufficient to address HIV stigma in medical settings. PMID:26608559

  17. Programming chemistry in DNA-addressable bioreactors.

    PubMed

    Fellermann, Harold; Cardelli, Luca

    2014-10-01

    We present a formal calculus, termed the chemtainer calculus, able to capture the complexity of compartmentalized reaction systems such as populations of possibly nested vesicular compartments. Compartments contain molecular cargo as well as surface markers in the form of DNA single strands. These markers serve as compartment addresses and allow for their targeted transport and fusion, thereby enabling reactions of previously separated chemicals. The overall system organization allows for the set-up of programmable chemistry in microfluidic or other automated environments. We introduce a simple sequential programming language whose instructions are motivated by state-of-the-art microfluidic technology. Our approach integrates electronic control, chemical computing and material production in a unified formal framework that is able to mimic the integrated computational and constructive capabilities of the subcellular matrix. We provide a non-deterministic semantics of our programming language that enables us to analytically derive the computational and constructive power of our machinery. This semantics is used to derive the sets of all constructable chemicals and supermolecular structures that emerge from different underlying instruction sets. Because our proofs are constructive, they can be used to automatically infer control programs for the construction of target structures from a limited set of resource molecules. Finally, we present an example of our framework from the area of oligosaccharide synthesis.

  18. Programming chemistry in DNA-addressable bioreactors

    PubMed Central

    Fellermann, Harold; Cardelli, Luca

    2014-01-01

    We present a formal calculus, termed the chemtainer calculus, able to capture the complexity of compartmentalized reaction systems such as populations of possibly nested vesicular compartments. Compartments contain molecular cargo as well as surface markers in the form of DNA single strands. These markers serve as compartment addresses and allow for their targeted transport and fusion, thereby enabling reactions of previously separated chemicals. The overall system organization allows for the set-up of programmable chemistry in microfluidic or other automated environments. We introduce a simple sequential programming language whose instructions are motivated by state-of-the-art microfluidic technology. Our approach integrates electronic control, chemical computing and material production in a unified formal framework that is able to mimic the integrated computational and constructive capabilities of the subcellular matrix. We provide a non-deterministic semantics of our programming language that enables us to analytically derive the computational and constructive power of our machinery. This semantics is used to derive the sets of all constructable chemicals and supermolecular structures that emerge from different underlying instruction sets. Because our proofs are constructive, they can be used to automatically infer control programs for the construction of target structures from a limited set of resource molecules. Finally, we present an example of our framework from the area of oligosaccharide synthesis. PMID:25121647

  19. A European framework to address psychosocial hazards.

    PubMed

    Leka, Stavroula; Kortum, Evelyn

    2008-01-01

    Over the past decades, emphasis has been placed on the changing nature of work and new forms of risk that could negatively affect employee health and safety. These are mainly associated with new types of occupational hazards that have been termed psychosocial. Issues such as work-related stress, bullying and harassment are now receiving attention on a global basis and efforts have been made to address them at the workplace level. However, it has been acknowledged that despite developments of policy in this area, there still appear to be a broad science-policy gap and an even broader one between policy and practice. The WHO Network of Collaborating Centers in Occupational Health has, since the late 1990s, been supporting a dedicated program of work on psychosocial factors and work-related stress. Part of the Network's work is currently focusing on the translation of existing knowledge into practice in the area of psychosocial risk management. This program has identified that the optimum way forward lies in the development of a European framework for psychosocial risk management. This framework will serve as the basis for coordination of research activities and preventive action with an emphasis on evidence based interventions and best practice on an international basis. PMID:18408344

  20. Presidential address: Experimenting with the scientific past.

    PubMed

    Radick, Gregory

    2016-06-01

    When it comes to knowledge about the scientific pasts that might have been - the so-called 'counterfactual' history of science - historians can either debate its possibility or get on with the job. Taking the latter course means re-engaging with some of the most general questions about science. It can also lead to fresh insights into why particular episodes unfolded as they did and not otherwise. Drawing on recent research into the controversy over Mendelism in the early twentieth century, this address reports and reflects on a novel teaching experiment conducted in order to find out what biology and its students might be like now had the controversy gone differently. The results suggest a number of new options: for the collection of evidence about the counterfactual scientific past, for the development of collaborations between historians of science and science educators, for the cultivation of more productive relationships between scientists and their forebears, and for heightened self-awareness about the curiously counterfactual business of being historical. PMID:27353945

  1. Emergency preparedness: addressing a residency training gap.

    PubMed

    Uddin, Sayeedha Ghori; Barnett, Daniel J; Parker, Cindy L; Links, Jonathan M; Alexander, Miriam

    2008-03-01

    As the importance of physician involvement and leadership in crisis preparedness is recognized, the literature suggests that few physicians are adequately trained to practice effectively in a large-scale crisis situation. A logical method for addressing the emergency preparedness training deficiency identified across several medical specialties is to include disaster and emergency preparedness training in residency curricula. In this article, the authors outline the development and implementation of an emergency preparedness curriculum for the Johns Hopkins General Preventive Medicine Residency (JHGPMR) from 2004 to 2006. The curriculum consists of two components. The first was developed for the academic year in the JHGPMR and includes didactic lectures, practical exercises to apply new knowledge, and an opportunity to integrate the knowledge and skills in a real-world exercise. The second, developed for the practicum year of the residency, includes Web-based lectures and online content and culminates in a tabletop preparedness exercise. Topics for both components include weapons of mass destruction, risk communication and personal preparedness, aspects of local emergency response planning, and mental health and psychological aspects of terrorism. On the basis of the emergency preparedness training gap that has been identified in the literature, and the success of the three-year experience in implementing a preparedness training curriculum in the JHGPMR, the authors recommend incorporation of competency-based emergency preparedness training for residencies of all specialties, and offer insights into how the described curriculum could be adapted for use in other residency settings.

  2. Addressing social resistance in emerging security technologies

    PubMed Central

    Mitchener-Nissen, Timothy

    2013-01-01

    In their efforts to enhance the safety and security of citizens, governments and law enforcement agencies look to scientists and engineers to produce modern methods for preventing, detecting, and prosecuting criminal activities. Whole body scanners, lie detection technologies, biometrics, etc., are all being developed for incorporation into the criminal justice apparatus.1 Yet despite their purported security benefits these technologies often evoke social resistance. Concerns over privacy, ethics, and function-creep appear repeatedly in analyses of these technologies. It is argued here that scientists and engineers continue to pay insufficient attention to this resistance; acknowledging the presence of these social concerns yet failing to meaningfully address them. In so doing they place at risk the very technologies and techniques they are seeking to develop, for socially controversial security technologies face restrictions and in some cases outright banning. By identifying sources of potential social resistance early in the research and design process, scientists can both engage with the public in meaningful debate and modify their security technologies before deployment so as to minimize social resistance and enhance uptake. PMID:23970863

  3. Laser barometer

    DOEpatents

    Abercrombie, Kevin R.; Shiels, David; Rash, Tim

    2001-02-06

    A pressure measuring instrument that utilizes the change of the refractive index of a gas as a function of pressure and the coherent nature of a laser light to determine the barometric pressure within an environment. As the gas pressure in a closed environment varies, the index of refraction of the gas changes. The amount of change is a function of the gas pressure. By illuminating the gas with a laser light source, causing the wavelength of the light to change, pressure can be quantified by measuring the shift in fringes (alternating light and dark bands produced when coherent light is mixed) in an interferometer.

  4. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.

    1976-01-01

    A theoretical and experimental investigation into the possibility of achieving CW discharge pumped excimer laser oscillation is reported. Detailed theoretical modeling of capillary discharge pumping of the XeF and KXe and K2 excimer systems was carried out which predicted the required discharge parameters for reaching laser threshold on these systems. Capillary discharge pumping of the XeF excimer system was investigated experimentally. The experiments revealed a lower excimer level population density than predicted theoretically by about an order of magnitude. The experiments also revealed a fluorine consumption problem in the discharge in agreement with theory.

  5. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  6. Computational strategies to address chromatin structure problems

    NASA Astrophysics Data System (ADS)

    Perišić, Ognjen; Schlick, Tamar

    2016-06-01

    While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin’s dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber’s structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure.

  7. USGS Science: Addressing Our Nation's Challenges

    USGS Publications Warehouse

    Larson, Tania M.

    2009-01-01

    With 6.6 billion people already living on Earth, and that number increasing every day, human influence on our planet is ever more apparent. Changes to the natural world combined with increasing human demands threaten our health and safety, our national security, our economy, and our quality of life. As a planet and a Nation, we face unprecedented challenges: loss of critical and unique ecosystems, the effects of climate change, increasing demand for limited energy and mineral resources, increasing vulnerability to natural hazards, the effects of emerging diseases on wildlife and human health, and growing needs for clean water. The time to respond to these challenges is now, but policymakers and decisionmakers face difficult choices. With competing priorities to balance, and potentially serious - perhaps irreversible - consequences at stake, our leaders need reliable scientific information to guide their decisions. As the Nation's earth and natural science agency, the USGS monitors and conducts scientific research on natural hazards and resources and how these elements and human activities influence our environment. Because the challenges we face are complex, the science needed to better understand and deal with these challenges must reflect the complex interplay among natural and human systems. With world-class expertise in biology, geology, geography, hydrology, geospatial information, and remote sensing, the USGS is uniquely capable of conducting the comprehensive scientific research needed to better understand the interdependent interactions of Earth's systems. Every day, the USGS helps decisionmakers to minimize loss of life and property, manage our natural resources, and protect and enhance our quality of life. This brochure provides examples of the challenges we face and how USGS science helps decisionmakers to address these challenges.

  8. Final Report on Internet Addressable Lightswitch

    SciTech Connect

    Rubinstein, Francis; Pettler, Peter

    2001-08-27

    This report describes the work performed to develop and test a new switching system and communications network that is useful for economically switching lighting circuits in existing commercial buildings. The first section of the report provides the general background of the IBECS (Integrated Building Environmental Communications System) research and development work as well as the context for the development of the new switching system. The research and development effort that went into producing the first proof-of-concept (the IBECS Addressable Power Switch or APS) and the physical prototype of that concept is detailed in the second section. In the third section of the report, we detail the refined Powerline Carrier Based IBECS Title 24 Wall Switch system that evolved from the APS prototype. The refined system provided a path for installing IBECS switching technology in existing buildings that may not be already wired for light level switching control. The final section of the report describes the performance of the IBECS Title 24 Switch system as applied to a small demonstration in two offices at LBNL's Building 90. We learned that the new Powerline Carrier control systems (A-10 technology) that have evolved from the early X-10 systems have solved most of the noise problems that dogged the successful application of X-10 technologies in commercial buildings. We found that the new A-10 powerline carrier control technology can be reliable and effective for switching lighting circuits even in electrically noisy office environments like LBNL. Thus we successfully completed the task objectives by designing, building and demonstrating a new switching system that can provide multiple levels of light which can be triggered either from specially designed wall switches or from a digital communications network. By applying commercially available powerline carrier based technologies that communicate over the in-place lighting wiring system, this type of control can be

  9. DDT and Malaria Prevention: Addressing the Paradox

    PubMed Central

    Bouwman, Hindrik; van den Berg, Henk; Kylin, Henrik

    2011-01-01

    Background The debate regarding dichlorodiphenyltrichloroethane (DDT) in malaria prevention and human health is polarized and can be classified into three positions: anti-DDT, centrist-DDT, pro-DDT. Objective We attempted to arrive at a synthesis by matching a series of questions on the use of DDT for indoor residual spraying (IRS) with literature and insights, and to identify options and opportunities. Discussion Overall, community health is significantly improved through all available malaria control measures, which include IRS with DDT. Is DDT “good”? Yes, because it has saved many lives. Is DDT safe as used in IRS? Recent publications have increasingly raised concerns about the health implications of DDT. Therefore, an unqualified statement that DDT used in IRS is safe is untenable. Are inhabitants and applicators exposed? Yes, and to high levels. Should DDT be used? The fact that DDT is “good” because it saves lives, and “not safe” because it has health and environmental consequences, raises ethical issues. The evidence of adverse human health effects due to DDT is mounting. However, under certain circumstances, malaria control using DDT cannot yet be halted. Therefore, the continued use of DDT poses a paradox recognized by a centrist-DDT position. At the very least, it is now time to invoke precaution. Precautionary actions could include use and exposure reduction. Conclusions There are situations where DDT will provide the best achievable health benefit, but maintaining that DDT is safe ignores the cumulative indications of many studies. In such situations, addressing the paradox from a centrist-DDT position and invoking precaution will help design choices for healthier lives. PMID:21245017

  10. Addressing the Public About Science and Religion

    NASA Astrophysics Data System (ADS)

    Peshkin, Murray

    2010-03-01

    Attacks on the integrity of science teaching in our public schools have recently become increasingly threatening. Geology and Darwinian evolution are the primary targets and cosmology is at risk. Up to now, the Supreme Court has excluded teachings based on religion from public schools for constitutional, not scientific, reasons. But now the incumbent Supreme Court seem less committed to strict separation of church and state than were their predecessors, and federal courts are beginning to judge the science itself. In this situation, we need to create a climate of public opinion favorable to the protection of good science by explaining the issues both to students and to others. I have been trying to do that by addressing audiences such as church groups, other community groups, and high school and college classes. I do not seek to convert committed anti-evolutionists. I am trying to inform the reasonable majority who do not really know what science is and does, or what a theory is and how we know when it's right, or why we tell them that all knowledge is provisional but still insist that we are teaching the right science. Many have been advised by their religious teachers that there is no conflict between science and their religious beliefs but do not see how that can be. I try to explain how they are disjoint discussions. I also discuss the likely consequences for our country if we degrade the teaching of science in the public schools. My audiences have generally been receptive. Here I will relate some lessons I have learned from my experience with such talks. Without doubt, the most important lesson is that most Americans have religious beliefs that are important to them and are willing to consider what I say only because they know I respect their beliefs. This work was partially supported by the U.S. Dept. of Energy, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  11. Public health approach to address maternal mortality.

    PubMed

    Rai, Sanjay K; Anand, K; Misra, Puneet; Kant, Shashi; Upadhyay, Ravi Prakash

    2012-01-01

    Reducing maternal mortality is one of the major challenges to health systems worldwide, more so in developing countries that account for nearly 99% of these maternal deaths. Lack of a standard method for reporting of maternal death poses a major hurdle in making global comparisons. Currently much of the focus is on documenting the "number" of maternal deaths and delineating the "medical causes" behind these deaths. There is a need to acknowledge the social correlates of maternal deaths as well. Investigating and in-depth understanding of each maternal death can provide indications on practical ways of addressing the problem. Death of a mother has serious implications for the child as well as other family members and to prevent the same, a comprehensive approach is required. This could include providing essential maternal care, early management of complications and good quality intrapartum care through the involvement of skilled birth attendants. Ensuring the availability, affordability, and accessibility of quality maternal health services, including emergency obstetric care (EmOC) would prove pivotal in reducing the maternal deaths. To increase perceived seriousness of the community regarding maternal health, a well-structured awareness campaign is needed with importance be given to avoid adolescent pregnancy as well. Initiatives like Janani Surakhsha Yojna (JSY) that have the potential to improve maternal health needs to be strengthened. Quality assessments should form an essential part of all services that are directed toward improving maternal health. Further, emphasis needs to be given on research by involving multiple allied partners, with the aim to develop a prioritized, coordinated, and innovative research agenda for women's health. PMID:23229211

  12. Addressing Free Radical Oxidation in Acne Vulgaris

    PubMed Central

    Criscito, Maressa C.; Schlesinger, Todd E.; Verdicchio, Robert; Szoke, Ernest

    2016-01-01

    Objective: Comparatively little attention has been paid to the role of free radical oxidation in acne vulgaris. Here, using the traditional abnormalities cited for acne, the authors address the role of free radical oxidation throughout the pathogenesis by detailing the chemistry that may contribute to clinical changes. To probe the effects of free radical oxidation and test an antioxidant, they conducted a preliminary study of topically applied vitamin E. Methods: Seventeen patients with mild-to-moderate acne vulgaris were evaluated over an eight-week period in two private dermatology practices in this open-label study. All patients enrolled were on the same baseline regimen of salicylic acid and benzoyl peroxide. This regimen was then supplemented with topical vitamin E in sunflower seed oil. Results: At the end of the eight-week period, all patients demonstrated clinical improvement, as indicated by a reduction in the number of lesions and global mean difference. A statistically significant reduction was noted as early as Week 2. Enrolled patients also expressed a positive experience due to good tolerability and easy application. Conclusion: Although the exact pathogenesis of acne vulgaris remains unknown, the presence of excessive reactive oxygen species can be implicated in each of the major abnormalities involved. This presence, along with the positive results of the authors’ preliminary study, demonstrates the need for more exploration on the use of topical antioxidants in limiting free radical oxidation in the acne model. This paper is designed to stimulate academic discussion regarding a new way of thinking about the disease state of acne. PMID:26962389

  13. High power lasers: Sources, laser-material interactions, high excitations, and fast dynamics in laser processing and industrial applications; Proceedings of the Meeting, The Hague, Netherlands, Mar. 31-Apr. 3, 1987

    NASA Technical Reports Server (NTRS)

    Kreutz, E. W. (Editor); Quenzer, Alain (Editor); Schuoecker, Dieter (Editor)

    1987-01-01

    The design and operation of high-power lasers for industrial applications are discussed in reviews and reports. Topics addressed include the status of optical technology in the Netherlands, laser design, the deposition of optical energy, laser diagnostics, nonmetal processing, and energy coupling and plasma formation. Consideration is given to laser-induced damage to materials, fluid and gas flow dynamics, metal processing, and manufacturing. Graphs, diagrams, micrographs, and photographs are provided.

  14. Laser capture.

    PubMed

    Potter, S Steven; Brunskill, Eric W

    2012-01-01

    This chapter describes detailed methods used for laser capture microdissection (LCM) of discrete subpopulations of cells. Topics covered include preparing tissue blocks, cryostat sectioning, processing slides, performing the LCM, and purification of RNA from LCM samples. Notes describe the fine points of each operation, which can often mean the difference between success and failure. PMID:22639264

  15. Laser Balancing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mechanical Technology, Incorporated developed a fully automatic laser machining process that allows more precise balancing removes metal faster, eliminates excess metal removal and other operator induced inaccuracies, and provides significant reduction in balancing time. Manufacturing costs are reduced as a result.

  16. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.

    1977-01-01

    The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.

  17. Flow Visualization and Laser Velocimetry for Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr. (Editor); Foughner, J. T., Jr. (Editor)

    1982-01-01

    The need for flow visualization and laser velocimetry were discussed. The purpose was threefold: (1) provide a state-of-the-art overview; (2) provide a forum for industry, universities, and government agencies to address problems in developing useful and productive flow visualization and laser velocimetry measurement techniques; and (3) provide discussion of recent developments and applications of flow visualization and laser velocimetry measurement techniques and instrumentation systems for wind tunnels including the 0.3-Meter Transonic Cryogenic Tunnel.

  18. Workshop on scientific and industrial applications of free electron lasers

    SciTech Connect

    Difilippo, F.C. ); Perez, R.B. Tennessee Univ., Knoxville, TN )

    1990-05-01

    A Workshop on Scientific and Industrial Applications of Free Electron Lasers was organized to address potential uses of a Free Electron Laser in the infrared wavelength region. A total of 13 speakers from national laboratories, universities, and the industry gave seminars to an average audience of 30 persons during June 12 and 13, 1989. The areas covered were: Free Electron Laser Technology, Chemistry and Surface Science, Atomic and Molecular Physics, Condensed Matter, and Biomedical Applications, Optical Damage, and Optoelectronics.

  19. Laser spectroscopy applied to energy, environmental and medical research

    NASA Astrophysics Data System (ADS)

    Svanberg, S.

    1988-01-01

    Applications of laser spectroscopy to the fields of combustion diagnostics, environmental remote sensing, and medicine are discussed. The techniques emphasized are CARS and laser-induced fluorescence. The monitoring of atmospheric trace gases, the treatment of tumors, and the detection and characterization of atherosclerotic plaques are addressed.

  20. NASA Laser Light Scattering Advanced Technology Development Workshop, 1988

    NASA Technical Reports Server (NTRS)

    Meyer, William V. (Editor)

    1989-01-01

    The major objective of the workshop was to explore the capabilities of existing and prospective laser light scattering hardware and to assess user requirements and needs for a laser light scattering instrument in a reduced gravity environment. The workshop addressed experimental needs and stressed hardware development.