Science.gov

Sample records for addresses climate system

  1. [Keynote address: Climate change

    SciTech Connect

    Forrister, D.

    1994-12-31

    Broadly speaking, the climate issue is moving from talk to action both in the United States and internationally. While few nations have adopted strict controls or stiff new taxes, a number of them are developing action plans that are making clear their intention to ramp up activity between now and the year 2000... and beyond. There are sensible, economically efficient strategies to be undertaken in the near term that offer the possibility, in many countries, to avoid more draconian measures. These strategies are by-and-large the same measures that the National Academy of Sciences recommended in a 1991 report called, Policy Implications of Greenhouse Warming. The author thinks the Academy`s most important policy contribution was how it recommended the nations act in the face of uncertain science and high risks--that cost effective measures are adopted as cheap insurance... just as nations insure against other high risk, low certainty possibilities, like catastrophic health insurance, auto insurance, and fire insurance. This insurance theme is still right. First, the author addresses how the international climate change negotiations are beginning to produce insurance measures. Next, the author will discuss some of the key issues to watch in those negotiations that relate to longer-term insurance. And finally, the author will report on progress in the United States on the climate insurance plan--The President`s Climate Action Plan.

  2. Addressing Value and Belief Systems on Climate Literacy in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    McNeal, K. S.

    2012-12-01

    The southeast (SEUS; AL, AR, GA, FL, KY, LA, NC, SC, TN, E. TX) faces the greatest impacts as a result of climate change of any region in the U.S. which presents considerable and costly adaptation challenges. Paradoxically, people in the SEUS hold attitudes and perceptions that are more dismissive of climate change than those of any other region. An additional mismatch exists between the manner in which climate science is generally communicated and the underlying core values and beliefs held by a large segment of people in the SEUS. As a result, people frequently misinterpret and/or distrust information sources, inhibiting efforts to productively discuss and consider climate change and related impacts on human and environmental systems, and possible solutions and outcomes. The Climate Literacy Partnership in the Southeast (CLiPSE) project includes an extensive network of partners throughout the SEUS from faith, agriculture, culturally diverse, leisure, and K-20 educator communities that aim to address this educational need through a shared vision. CLiPSE has conducted a Climate Stewardship Survey (CSS) to determine the knowledge and perceptions of individuals in and beyond the CLiPSE network. The descriptive results of the CSS indicate that religion, predominantly Protestantism, plays a minor role in climate knowledge and perceptions. Likewise, political affiliation plays a minimal role in climate knowledge and perceptions between religions. However, when Protestants were broken out by political affiliation, statistically significant differences (t(30)=2.44, p=0.02) in knowledge related to the causes of climate change exist. Those Protestants affiliated with the Democratic Party (n=206) tended to maintain a statistically significant stronger knowledge of the causes of global climate change than their Republican counterparts. When SEUS educator (n=277) group was only considered, similar trends were evidenced, indicating that strongly held beliefs potentially

  3. Agenda to address climate change

    SciTech Connect

    1998-10-01

    This document looks at addressing climate change in the 21st century. Topics covered are: Responding to climate change; exploring new avenues in energy efficiency; energy efficiency and alternative energy; residential sector; commercial sector; industrial sector; transportation sector; communities; renewable energy; understanding forests to mitigate and adapt to climate change; the Forest Carbon budget; mitigation and adaptation.

  4. Professional Culture and Climate: Addressing Unconscious Bias

    NASA Astrophysics Data System (ADS)

    Knezek, Patricia

    2016-10-01

    Unconscious bias reflects expectations or stereotypes that influence our judgments of others (regardless of our own group). Everyone has unconscious biases. The end result of unconscious bias can be an accumulation of advantage or disadvantage that impacts the long term career success of individuals, depending on which biases they are subject to. In order to foster a professional culture and climate, being aware of these unconscious biases and mitigating against them is a first step. This is particularly important when judgements are needed, such as in cases for recruitment, choice of speakers for conferences, and even reviewing papers submitted for publication. This presentation will cover how unconscious bias manifests itself, what evidence exists to demonstrate it exists, and ways it can be addressed.

  5. Resources for Addressing Climate Change and Water

    EPA Pesticide Factsheets

    EPA produces guides and tools aimed to help water professionals adapt to climate change. Research done at EPA helps better understand climate change impacts. These items are meant to assist in effective adaptation to climate impacts in the water sector.

  6. Unmanned Aerial Systems as Part of a Multi-Component Assessment Strategy to Address Climate Change and Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Lange, Manfred; Vrekoussis, Mihalis; Sciare, Jean; Argyrides, Marios; Ioannou, Stelios; Keleshis, Christos

    2015-04-01

    Unmanned Aerial Systems (UAS) have been established as versatile tools for different applications, providing data and observations for atmospheric and Earth-Systems research. They offer an urgently needed link between in-situ ground based measurements and satellite remote sensing observations and are distinguished by significant versatility, flexibility and moderate operational costs. UAS have the proven potential to contribute to a multi-component assessment strategy that combines remote-sensing, numerical modelling and surface measurements in order to elucidate important atmospheric processes. This includes physical and chemical transformations related to ongoing climate change as well as issues linked to aerosol-cloud interactions and air quality. The distinct advantages offered by UAS comprise, to name but a few: (i) their ability to operate from altitudes of a few meters to up to a few kilometers; (ii) their capability to perform autonomously controlled missions, which provides for repeat-measurements to be carried out at precisely defined locations; (iii) their relative ease of operation, which enables flexible employment at short-term notice and (iv) the employment of more than one platform in stacked formation, which allows for unique, quasi-3D-observations of atmospheric properties and processes. These advantages are brought to bear in combining in-situ ground based observations and numerical modeling with UAS-based remote sensing in elucidating specific research questions that require both horizontally and vertically resolved measurements at high spatial and temporal resolutions. Employing numerical atmospheric modelling, UAS can provide survey information over spatially and temporally localized, focused areas of evolving atmospheric phenomena, as they become identified by the numerical models. Conversely, UAS observations offer urgently needed data for model verification and provide boundary conditions for numerical models. In this presentation, we will

  7. Regional Arctic System Model (RASM): A Tool to Address the U.S. Priorities and Advance Capabilities for Arctic Climate Modeling and Prediction

    NASA Astrophysics Data System (ADS)

    Maslowski, W.; Roberts, A.; Cassano, J. J.; Gutowski, W. J., Jr.; Nijssen, B.; Osinski, R.; Zeng, X.; Brunke, M.; Duvivier, A.; Hamman, J.; Hossainzadeh, S.; Hughes, M.; Seefeldt, M. W.

    2015-12-01

    The Arctic is undergoing some of the most coordinated rapid climatic changes currently occurring anywhere on Earth, including the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Earth System Models (ESMs) are in broad agreement with these changes, the rate of change in ESMs generally remains outpaced by observations. Reasons for that relate to a combination of coarse resolution, inadequate parameterizations, under-represented processes and a limited knowledge of physical interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the ESM limitations in simulating observed variability and trends in arctic surface climate. RASM is a high resolution, pan-Arctic coupled climate model with the sea ice and ocean model components configured at an eddy-permitting resolution of 1/12o and the atmosphere and land hydrology model components at 50 km resolution, which are all coupled at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled ESM, which due to the constraints from boundary conditions facilitates detailed comparisons with observational statistics that are not possible with ESMs. The overall goal of RASM is to address key requirements published in the Navy Arctic Roadmap: 2014-2030 and in the Implementation Plan for the National Strategy for the Arctic Region, regarding the need for advanced modeling capabilities for operational forecasting and strategic climate predictions through 2030. The main science objectives of RASM are to advance understanding and model representation of critical physical processes and feedbacks of importance to sea ice thickness and area distribution. RASM results are presented to quantify relative contributions by (i) resolved processes and feedbacks as well as (ii) sensitivity to space dependent sub-grid parameterizations to better

  8. Federal Collaborations Addressing Climate Change and Water

    EPA Pesticide Factsheets

    EPA works with other Federal Agencies to act on Climate Change. Together, these agencies can command action and coordinate efforts to help our nation adapt to climate change impacts. Collaborative works include executive initiatives and other partnerships.

  9. Addressing Climate Change in the Water Sector

    EPA Pesticide Factsheets

    Climate change is altering the water cycle and influencing water quality and availability. Water professionals need to understand the impacts of climate change on water, EPA’s response, and available tools to mitigate and adapt.

  10. CONTENT-ADDRESSABLE MEMORY SYSTEMS,

    DTIC Science & Technology

    The utility of content -addressable memories (CAM’s) within a general purpose computing system is investigated. Word cells within CAM may be...addressed by the character of all or a part of cell contents . Multimembered sets of word cells may be addressed simultaneously. The distributed logical...package is developed which allows simulation of CAM commands within job programs run on the IBM 7090 and derives tallies of execution times corresponding to a particular realization of a CAM system . (Author)

  11. Addressing climate challenges in developing countries

    NASA Astrophysics Data System (ADS)

    Tilmes, Simone; Monaghan, Andrew; Done, James

    2012-04-01

    Advanced Study Program/Early Career Scientist Assembly Workshop on Regional Climate Issues in Developing Countries; Boulder, Colorado, 19-22 October 2011 The Early Career Scientist Assembly (ECSA) and the Advanced Study Program of the National Center for Atmospheric Research (NCAR) invited 35 early-career scientists from nearly 20 countries to attend a 3-day workshop at the NCAR Mesa Laboratory prior to the World Climate Research Programme (WCRP) Open Science Conference in October 2011. The goal of the workshop was to examine a range of regional climate challenges in developing countries. Topics included regional climate modeling, climate impacts, water resources, and air quality. The workshop fostered new ideas and collaborations between early-career scientists from around the world. The discussions underscored the importance of establishing partnerships with scientists located in typically underrepresented countries to understand and account for the local political, economic, and cultural factors on which climate change is superimposed.

  12. Connectivity planning to address climate change.

    PubMed

    Nuñez, Tristan A; Lawler, Joshua J; McRae, Brad H; Pierce, D John; Krosby, Meade B; Kavanagh, Darren M; Singleton, Peter H; Tewksbury, Joshua J

    2013-04-01

    As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse-filter approach to identify broad corridors for movement between areas where human influence is low while simultaneously routing the corridors along present-day spatial gradients of temperature. We modified a cost-distance algorithm to model these corridors and tested the model with data on current land-use and climate patterns in the Pacific Northwest of the United States. The resulting maps identified a network of patches and corridors across which species may move as climates change. The corridors are likely to be robust to uncertainty in the magnitude and direction of future climate change because they are derived from gradients and land-use patterns. The assumptions we applied in our model simplified the stability of temperature gradients and species responses to climate change and land use, but the model is flexible enough to be tailored to specific regions by incorporating other climate variables or movement costs. When used at appropriate resolutions, our approach may be of value to local, regional, and continental conservation initiatives seeking to promote species movements in a changing climate. Planificación de Conectividad para Atender el Cambio Climático.

  13. Regional Actions to Address Climate Change Impacts on Water

    EPA Pesticide Factsheets

    EPA's ten regions work to address climate change on a local level, implementing regionally important solutions and working with stakeholders on the ground. Many regional partners work closely with EPA to better implement climate solutions

  14. The climate footprint: a practical tool to address climate change.

    PubMed

    Janse, T; Wiers, P

    2007-01-01

    Waternet supplies clean and safe drinking water to the homes of almost one million Amsterdam citizens, and also collects and treats the resulting wastewater, ensuring its safe discharge back into the water system. Climate change poses a growing challenge. Firstly Waternet is affected by the consequences of climate change, such as longer periods of drought and heavier bursts of rainfall. Secondly, the company also plays a role in causing climate change, as emissions from the Amsterdam water chain contribute to global warming. This paper aims to focus attention on mitigation as an inseparable part of adaptation-programmes. The Climate Footprint methodology is applied to the integrated Amsterdam water chain: from the point of withdrawing water from the surface/groundwater water system for drinking water production, to the point of returning the purified wastewater to the surface water/groundwater system. In-between, the water is pre-treated with chemicals, transported, purified by dune-filtration, again treated for drinking water quality, distributed over the area of Amsterdam, used in households and industries, collected from there by sewers and pumps, transported to purification plants and finally again treated with chemicals and purified to end with acceptable surface water quality. The whole process generates CO(2)-emissions in three different ways: * Sewage treatment transforms the remains of human food consumption into CO(2). These emissions do not originate from fossil fuels, but from food. They remain in a short carbon cycle and do not contribute to global warming. In fact, the sludge remaining from the purification plant is an important energy source. * Transport and purification processes require energy; this results in direct emissions e.g. in the case of fuel or natural gas use, and indirect emissions in the case of electricity. * The use of chemicals and materials for construction, transport systems, and all other facilities and services to keep the

  15. Addressing climate misinformation as an educational opportunity

    NASA Astrophysics Data System (ADS)

    Cook, J.

    2012-12-01

    A significant contributor to public confusion about climate change is the surplus of misinformation available on the Internet and in the mainstream media. However, psychological research into effective myth refutation reveals an unexpected opportunity in the face of this wave of misinformation. Experiments in higher education classrooms have shown that directly refuting misinformation is more effective in reducing the influence of myths than merely teaching the facts (Kowalski & Taylor 2009) and can facilitate teaching critical thinking skills (Bedford 2010). Refutation lessons are also shown to result in more cognitive engagement from students (Muller 2008). This presentation summarizes the psychological research on refutation and how it can be applied to climate education. Practical examples and resources are provided, empowering teachers to effectively refute climate myths in the classroom.

  16. Psychology's contributions to understanding and addressing global climate change.

    PubMed

    Swim, Janet K; Stern, Paul C; Doherty, Thomas J; Clayton, Susan; Reser, Joseph P; Weber, Elke U; Gifford, Robert; Howard, George S

    2011-01-01

    Global climate change poses one of the greatest challenges facing humanity in this century. This article, which introduces the American Psychologist special issue on global climate change, follows from the report of the American Psychological Association Task Force on the Interface Between Psychology and Global Climate Change. In this article, we place psychological dimensions of climate change within the broader context of human dimensions of climate change by addressing (a) human causes of, consequences of, and responses (adaptation and mitigation) to climate change and (b) the links between these aspects of climate change and cognitive, affective, motivational, interpersonal, and organizational responses and processes. Characteristics of psychology that cross content domains and that make the field well suited for providing an understanding of climate change and addressing its challenges are highlighted. We also consider ethical imperatives for psychologists' involvement and provide suggestions for ways to increase psychologists' contribution to the science of climate change.

  17. Climate change risk perception and communication: addressing a critical moment?

    PubMed

    Pidgeon, Nick

    2012-06-01

    Climate change is an increasingly salient issue for societies and policy-makers worldwide. It now raises fundamental interdisciplinary issues of risk and uncertainty analysis and communication. The growing scientific consensus over the anthropogenic causes of climate change appears to sit at odds with the increasing use of risk discourses in policy: for example, to aid in climate adaptation decision making. All of this points to a need for a fundamental revision of our conceptualization of what it is to do climate risk communication. This Special Collection comprises seven papers stimulated by a workshop on "Climate Risk Perceptions and Communication" held at Cumberland Lodge Windsor in 2010. Topics addressed include climate uncertainties, images and the media, communication and public engagement, uncertainty transfer in climate communication, the role of emotions, localization of hazard impacts, and longitudinal analyses of climate perceptions. Climate change risk perceptions and communication work is critical for future climate policy and decisions.

  18. Climate change in China and China's policies and actions for addressing climate change

    NASA Astrophysics Data System (ADS)

    Qin, D.; Huang, J.; Luo, Y.

    2010-12-01

    Since the first assessment report (FAR) of Inter-Governmental Panel on Climate Change (IPCC) in 1990, the international scientific community has made substantial progresses in climate change sciences. Changes in components of climate system, including the atmosphere, oceans and cryosphere, indicate that global warming is unequivocal. Instrumental records demonstrate that the global mean temperature has a significant increasing trend during the 20th century and in the latest 50 years the warming become faster. In the meantime, the global sea level has a strong increasing trend, as well as the snow coverage of Northern Hemisphere showed an obvious downward trend. Moreover, the global warming plays a key role in significantly affecting the climate system and social-economy on both global and regional scales, such as sea level rise, melting of mountain glaciers and ice sheets, desertification, deforestation, increase of weather extremes (typhoon, hurricane and rainstorm) and so on. The state of the art understanding of IPCC Fourth Assessment Report (AR4) was most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in the concentrations of anthropogenic greenhouse gases. Climate change issues, as a grave challenge to the sustainable development of the human society, have received ever greater attention from the international community. Deeply cognizant of the complexity and extensive influence of these issues and fully aware of the arduousness and urgency of the task of addressing climate change, the Chinese government is determined to address climate change in the process of pursuing sustainable development. The facts of climate change in China and its impacts, and China’s policies and actions for addressing climate change are introduced in this paper.

  19. Accelerating adaptation of natural resource management to address climate change.

    PubMed

    Cross, Molly S; McCarthy, Patrick D; Garfin, Gregg; Gori, David; Enquist, Carolyn A F

    2013-02-01

    Natural resource managers are seeking tools to help them address current and future effects of climate change. We present a model for collaborative planning aimed at identifying ways to adapt management actions to address the effects of climate change in landscapes that cross public and private jurisdictional boundaries. The Southwest Climate Change Initiative (SWCCI) piloted the Adaptation for Conservation Targets (ACT) planning approach at workshops in 4 southwestern U.S. landscapes. This planning approach successfully increased participants' self-reported capacity to address climate change by providing them with a better understanding of potential effects and guiding the identification of solutions. The workshops fostered cross-jurisdictional and multidisciplinary dialogue on climate change through active participation of scientists and managers in assessing climate change effects, discussing the implications of those effects for determining management goals and activities, and cultivating opportunities for regional coordination on adaptation of management plans. Facilitated application of the ACT framework advanced group discussions beyond assessing effects to devising options to mitigate the effects of climate change on specific species, ecological functions, and ecosystems. Participants addressed uncertainty about future conditions by considering more than one climate-change scenario. They outlined opportunities and identified next steps for implementing several actions, and local partnerships have begun implementing actions and conducting additional planning. Continued investment in adaptation of management plans and actions to address the effects of climate change in the southwestern United States and extension of the approaches used in this project to additional landscapes are needed if biological diversity and ecosystem services are to be maintained in a rapidly changing world.

  20. DAAS: Defense Automatic Addressing System.

    DTIC Science & Technology

    1985-04-01

    Optional Development. flOSS can be provided in the following two ways: a. Potential Scbscribers Use of Existing ADP System. If the PW country has an...series. (1) Features of the Turnkea estem. This menu driven system provides for easy system operation aW initial training. Another feature of the turnkey

  1. Design Criteria for Future Fuels and Related Power Systems Addressing the Impacts of Non-CO2 Pollutants on Human Health and Climate Change.

    PubMed

    Schauer, James Jay

    2015-01-01

    Concerns over the economics, supply chain, and emissions of greenhouse gases associated with the wide use of fossil fuels have led to increasing interest in developing alternative and renewable fuels for stationary power generation and transportation systems. Although there is considerable uncertainty regarding the economic and environmental impacts of alternative and renewable fuels, there is a great need for assessment of potential and emerging fuels to guide research priorities and infrastructure investment. Likewise, there is a great need to identify potential unintended adverse impacts of new fuels and related power systems before they are widely adopted. Historically, the environmental impacts of emerging fuels and power systems have largely focused on carbon dioxide emissions, often called the carbon footprint, which is used to assess impacts on climate change. Such assessments largely ignore the large impacts of emissions of other air pollutants. Given the potential changes in emissions of air pollutants associated with the large-scale use of new and emerging fuels and power systems, there is a great need to better guide efforts to develop new fuels and power systems that can avoid unexpected adverse impacts on the environment and human health. This review covers the nature of emissions, including the key components and impacts from the use of fuels, and the design criteria for future fuels and associated power systems to assure that the non-CO2 adverse impacts of stationary power generation and transportation are minimized.

  2. Accelerating Adaptation of Natural Resource Management to Address Climate Change

    PubMed Central

    Cross, Molly S; McCarthy, Patrick D; Garfin, Gregg; Gori, David; Enquist, Carolyn AF

    2013-01-01

    Abstract Natural resource managers are seeking tools to help them address current and future effects of climate change. We present a model for collaborative planning aimed at identifying ways to adapt management actions to address the effects of climate change in landscapes that cross public and private jurisdictional boundaries. The Southwest Climate Change Initiative (SWCCI) piloted the Adaptation for Conservation Targets (ACT) planning approach at workshops in 4 southwestern U.S. landscapes. This planning approach successfully increased participants’ self-reported capacity to address climate change by providing them with a better understanding of potential effects and guiding the identification of solutions. The workshops fostered cross-jurisdictional and multidisciplinary dialogue on climate change through active participation of scientists and managers in assessing climate change effects, discussing the implications of those effects for determining management goals and activities, and cultivating opportunities for regional coordination on adaptation of management plans. Facilitated application of the ACT framework advanced group discussions beyond assessing effects to devising options to mitigate the effects of climate change on specific species, ecological functions, and ecosystems. Participants addressed uncertainty about future conditions by considering more than one climate-change scenario. They outlined opportunities and identified next steps for implementing several actions, and local partnerships have begun implementing actions and conducting additional planning. Continued investment in adaptation of management plans and actions to address the effects of climate change in the southwestern United States and extension of the approaches used in this project to additional landscapes are needed if biological diversity and ecosystem services are to be maintained in a rapidly changing world. Acelerando la Adaptación del Manejo de Recursos Naturales para

  3. Addressing Air, Land & Water Nitrogen Issues under Changing Climate Trends & Variability

    EPA Science Inventory

    The climate of western U.S. dairy producing states is anticipated to change significantly over the next 50 to 75 years. A multimedia modeling system based upon the “nitrogen cascade” concept has been configured to address three aspects of sustainability (environmenta...

  4. Hidden benefits of electric vehicles for addressing climate change

    SciTech Connect

    Li, Canbing; Cao, Yijia; Zhang, Mi; Wang, Jianhui; Liu, Jianguo; Shi, Haiqing; Geng, Yinghui

    2015-03-19

    There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought by the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94°C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO₂ emissions by 10,686 tonnes.

  5. Hidden benefits of electric vehicles for addressing climate change.

    PubMed

    Li, Canbing; Cao, Yijia; Zhang, Mi; Wang, Jianhui; Liu, Jianguo; Shi, Haiqing; Geng, Yinghui

    2015-03-19

    There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought by the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94°C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO2 emissions by 10,686 tonnes.

  6. Hidden benefits of electric vehicles for addressing climate change

    DOE PAGES

    Li, Canbing; Cao, Yijia; Zhang, Mi; ...

    2015-03-19

    There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought bymore » the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94°C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO₂ emissions by 10,686 tonnes.« less

  7. Policy strategies to address sustainability of Alaskan boreal forests in response to a directionally changing climate.

    PubMed

    Chapin, F Stuart; Lovecraft, Amy L; Zavaleta, Erika S; Nelson, Joanna; Robards, Martin D; Kofinas, Gary P; Trainor, Sarah F; Peterson, Garry D; Huntington, Henry P; Naylor, Rosamond L

    2006-11-07

    Human activities are altering many factors that determine the fundamental properties of ecological and social systems. Is sustainability a realistic goal in a world in which many key process controls are directionally changing? To address this issue, we integrate several disparate sources of theory to address sustainability in directionally changing social-ecological systems, apply this framework to climate-warming impacts in Interior Alaska, and describe a suite of policy strategies that emerge from these analyses. Climate warming in Interior Alaska has profoundly affected factors that influence landscape processes (climate regulation and disturbance spread) and natural hazards, but has only indirectly influenced ecosystem goods such as food, water, and wood that receive most management attention. Warming has reduced cultural services provided by ecosystems, leading to some of the few institutional responses that directly address the causes of climate warming, e.g., indigenous initiatives to the Arctic Council. Four broad policy strategies emerge: (i) enhancing human adaptability through learning and innovation in the context of changes occurring at multiple scales; (ii) increasing resilience by strengthening negative (stabilizing) feedbacks that buffer the system from change and increasing options for adaptation through biological, cultural, and economic diversity; (iii) reducing vulnerability by strengthening institutions that link the high-latitude impacts of climate warming to their low-latitude causes; and (iv) facilitating transformation to new, potentially more beneficial states by taking advantage of opportunities created by crisis. Each strategy provides societal benefits, and we suggest that all of them be pursued simultaneously.

  8. Policy strategies to address sustainability of Alaskan boreal forests in response to a directionally changing climate

    PubMed Central

    Chapin, F. Stuart; Lovecraft, Amy L.; Zavaleta, Erika S.; Nelson, Joanna; Robards, Martin D.; Kofinas, Gary P.; Trainor, Sarah F.; Peterson, Garry D.; Huntington, Henry P.; Naylor, Rosamond L.

    2006-01-01

    Human activities are altering many factors that determine the fundamental properties of ecological and social systems. Is sustainability a realistic goal in a world in which many key process controls are directionally changing? To address this issue, we integrate several disparate sources of theory to address sustainability in directionally changing social–ecological systems, apply this framework to climate-warming impacts in Interior Alaska, and describe a suite of policy strategies that emerge from these analyses. Climate warming in Interior Alaska has profoundly affected factors that influence landscape processes (climate regulation and disturbance spread) and natural hazards, but has only indirectly influenced ecosystem goods such as food, water, and wood that receive most management attention. Warming has reduced cultural services provided by ecosystems, leading to some of the few institutional responses that directly address the causes of climate warming, e.g., indigenous initiatives to the Arctic Council. Four broad policy strategies emerge: (i) enhancing human adaptability through learning and innovation in the context of changes occurring at multiple scales; (ii) increasing resilience by strengthening negative (stabilizing) feedbacks that buffer the system from change and increasing options for adaptation through biological, cultural, and economic diversity; (iii) reducing vulnerability by strengthening institutions that link the high-latitude impacts of climate warming to their low-latitude causes; and (iv) facilitating transformation to new, potentially more beneficial states by taking advantage of opportunities created by crisis. Each strategy provides societal benefits, and we suggest that all of them be pursued simultaneously. PMID:17008403

  9. Public Address Systems. Specifications - Installation - Operation.

    ERIC Educational Resources Information Center

    Palmer, Fred M.

    Provisions for public address in new construction of campus buildings (specifications, installations, and operation of public address systems), are discussed in non-technical terms. Consideration is given to microphones, amplifiers, loudspeakers and the placement and operation of various different combinations. (FS)

  10. Climate system modeling program

    SciTech Connect

    1995-12-31

    The Climate System Modeling Project is a component activity of NSF's Climate Modeling, Analysis and Prediction Program, supported by the Atmospheric Sciences Program, Geosciences Directorate. Its objective is to accelerate progress toward reliable prediction of global and regional climate changes in the decades ahead. CSMP operates through workshops, support for post-docs and graduate students and other collaborative activities designed to promote interdisciplinary and strategic work in support of the overall objective (above) and specifically in three areas, (1) Causes of interdecadal variability in the climate system, (2) Interactions of regional climate forcing with global processes, and (3) Scientific needs of climate assessment.

  11. Address Systems in "The Plum Plum Pickers"

    ERIC Educational Resources Information Center

    Geuder, Patricia A.

    1975-01-01

    The address systems in Raymond Barrio's "The Plum Plum Pickers" imply sociolinguistic differences between the Chicano and the Anglo characters. The kinds of sociolinguistic situations, the number of dyadic patterns, and the quantity of the dyadic patterns strongly suggest the differences. (Author)

  12. Addressing the Complexity of the Earth System

    SciTech Connect

    Nobre, Carlos; Brasseur, Guy P.; Shapiro, Melvyn; Lahsen, Myanna; Brunet, Gilbert; Busalacchi, Antonio; Hibbard, Kathleen A.; Seitzinger, Sybil; Noone, Kevin; Ometto, Jean P.

    2010-10-01

    This paper highlights the role of the Earth-system biosphere and illustrates the complex: biosphere-atmosphere interactions in the Amazon Basin, changes in nitrogen cycling, ocean chemistry, and land use. It introduces three important requirements for accelerating the development and use of Earth system information. The first requirement is to develop Earth system analysis and prediction models that account for multi-scale physical, chemical and biological processes, including their interactions in the coupled atmosphere-ocean-land-ice system. The development of these models requires partnerships between academia, national research centers, and operational prediction facilities, and builds upon accomplishments in weather and climate predictions. They will highlight the regional aspects of global change, and include modules for water system, agriculture, forestry, energy, air quality, health, etc. The second requirement is to model the interactions between humans and the weather-climate-biogeochemical system. The third requirement is to introduce novel methodologies to account for societal drivers, impacts and feedbacks. This is a challenging endeavor requiring creative solutions and some compromising because human behavior cannot be fully represented within the framework of present-day physical prediction systems.

  13. EPA in Action: Addressing Climate Change Impacts to Water Resources

    EPA Pesticide Factsheets

    EPA takes actions to understand and react to the impacts of climate change in the water sector. Users can see Programs and Initiatives, Regional Actions, Planning and Management as well as Federal Collaborations happening throughout the Agency.

  14. Arctic Climate Systems Analysis

    SciTech Connect

    Ivey, Mark D.; Robinson, David G.; Boslough, Mark B.; Backus, George A.; Peterson, Kara J.; van Bloemen Waanders, Bart G.; Swiler, Laura Painton; Desilets, Darin Maurice; Reinert, Rhonda Karen

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  15. The Challenges and Potential of Nuclear Energy for Addressing Climate Change

    SciTech Connect

    Kim, Son H.; Edmonds, James A.

    2007-10-24

    The response to climate change and the stabilization of atmospheric greenhouse gas concentrations has major implications for the global energy system. Stabilization of atmospheric carbon dioxide (CO2) concentrations requires a peak and an indefinite decline of global CO2 emissions. Nuclear energy, along with other technologies, has the potential to contribute to the growing demand for energy without emitting CO2. Nuclear energy is of particular interest because of its global prevalence and its current significant contribution, nearly 20%, to the world’s electricity supply. We have investigated the value of nuclear energy in addressing climate change, and have explored the potential challenges for the rapid and large-scale expansion of nuclear energy as a response to climate change. The scope of this study is long-term and the modeling time frame extends out a century because the nature of nuclear energy and climate change dictate that perspective. Our results indicate that the value of the nuclear technology option for addressing climate change is denominated in trillions of dollars. Several-fold increases to the value of the nuclear option can be expected if there is limited availability of competing carbon-free technologies, particularly fossil-fuel based technologies that can capture and sequester carbon. Challenges for the expanded global use of nuclear energy include the global capacity for nuclear construction, proliferation, uranium availability, and waste disposal. While the economic costs of nuclear fuel and power are important, non-economic issues transcend the issues of costs. In this regard, advanced nuclear technologies and new vision for the global use of nuclear energy are important considerations for the future of nuclear power and climate change.

  16. A Quantum Annealing Computer Team Addresses Climate Change Predictability

    NASA Technical Reports Server (NTRS)

    Halem, M. (Principal Investigator); LeMoigne, J.; Dorband, J.; Lomonaco, S.; Yesha, Ya.; Simpson, D.; Clune, T.; Pelissier, C.; Nearing, G.; Gentine, P.; Fang, B.; Shehab, A.; Radov, Asen; Tikak, N.; Prouty, Roy; Harrison, Kenneth

    2016-01-01

    The near confluence of the successful launch of the Orbiting Carbon Observatory2 on July 2, 2014 and the acceptance on August 20, 2015 by Google, NASA Ames Research Center and USRA of a 1152 qubit D-Wave 2X Quantum Annealing Computer (QAC), offered an exceptional opportunity to explore the potential of this technology to address the scientific prediction of global annual carbon uptake by land surface processes. At UMBC,we have collected and processed 20 months of global Level 2 light CO2 data as well as fluorescence data. In addition we have collected ARM data at 2sites in the US and Ameriflux data at more than 20 stations. J. Dorband has developed and implemented a multi-hidden layer Boltzmann Machine (BM) algorithm on the QAC. Employing the BM, we are calculating CO2 fluxes by training collocated OCO-2 level 2 CO2 data with ARM ground station tower data to infer to infer measured CO2 flux data. We generate CO2 fluxes with a regression analysis using these BM derived weights on the level 2 CO2 data for three Ameriflux sites distinct from the ARM stations. P. Gentine has negotiated for the access of K34 Ameriflux data in the Amazon and is applying a neural net to infer the CO2 fluxes. N. Talik validated the accuracy of the BM performance on the QAC against a restricted BM implementation on the IBM Softlayer Cloud with the Nvidia co-processors utilizing the same data sets. G. Nearing and K. Harrison have extended the GSFC LIS model with the NCAR Noah photosynthetic parameterization and have run a 10 year global prediction of the net ecosystem exchange. C. Pellisier is preparing a BM implementation of the Kalman filter data assimilation of CO2 fluxes. At UMBC, R. Prouty is conducting OSSE experiments with the LISNoah model on the IBM iDataPlex to simulate the impact of CO2 fluxes to improve the prediction of global annual carbon uptake. J. LeMoigne and D. Simpson have developed a neural net image registration system that will be used for MODIS ENVI and will be

  17. Obama Presents Far-Reaching Climate Plan, Addresses Keystone Pipeline Proposal

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-07-01

    Stating that climate change "is a challenge that does not pause for partisan gridlock," U.S. President Barack Obama took matters into his own hands and presented a broad-based climate action plan on 25 June. The plan, which relies on existing administrative authority and does not require congressional approval, includes three primary objectives: cutting carbon pollution in the United States, preparing the nation for the impacts of climate change, and leading international efforts to address climate change.

  18. Pilot climate data system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A usable data base, the Pilot climate Data System (PCDS) is described. The PCDS is designed to be an interactive, easy-to-use, on-line generalized scientific information system. It efficiently provides uniform data catalogs; inventories, and access method, as well as manipulation and display tools for a large assortment of Earth, ocean and atmospheric data for the climate-related research community. Researchers can employ the PCDS to scan, manipulate, compare, display, and study climate parameters from diverse data sets. Software features, and applications of the PCDS are highlighted.

  19. Climate Observing Systems: Data System Challenges

    NASA Astrophysics Data System (ADS)

    Karl, T. R.

    2001-12-01

    Existing observing and data systems have provided considerable information about past climate variations and changes. The recent reports by the Intergovernmental Panel on Climate Change, the National Research Council, and the USGCRP National Assessment of Climate Variability and Change are testaments to a vast array of knowledge. These reports also expose some serious deficiencies in our ability to discern past climate variations and change which lead to substantial uncertainties in key climate state, climate feedback, and climate forcing variables. How significant are these uncertainties? For climate trends that have our highest confidence, like the change in mean global surface temperature, the 95 percent confidence intervals amount to about two-thirds of the calculated change. With such large uncertainties it is exceedingly difficult to discern accelerated changes. For other variables, especially variables related to climate feedbacks and forcings (with exceptions for long-lived and well-mixed greenhouse gases like CO2 or CH4) or climate and weather extremes, we often have little or no information to discern trends or cannot objectively assess confidence intervals. Do we know how to reduce existing uncertainties? First and foremost, a climate observation oversight and monitoring capability is needed that tracks the gathering of the data, the processing system, and the performance of the observations, especially time-dependent biases. An organized capability does not now exist, but could be developed at a new and/or existing centers. This center(s) should then have the means and influence to fix problems and be able to establish requirements for new in-situ and satellite observing including related data systems. Such a capability should complement the following: (1) Climate observations from both space-based and in-situ platforms that are taken in ways that address climate needs and adhere to the ten principles outlined by the NRC (1999 Adequacy of Climate

  20. Let the Games Begin: New Opportunities to Address Climate Change Communication, Education, and Decision Support

    NASA Astrophysics Data System (ADS)

    Rooney-varga, J. N.; Sterman, J.; Jones, A.; Johnston, E.; Rath, K.; Nease, J.

    2014-12-01

    A rapid transition to a low-carbon, climate-resilient society is not only possible, but could also bring many co-benefits for public health, economic wellbeing, social equity, and more. The science supporting an urgent need for such a transition has never been clearer. Yet, social science data are also clear: the public in the US (and many other similar developed economies) does not, on average, share this sense of urgency, nor have policymakers shown a willingness to put scientific evidence above the perceptions of their constituents. The gulf between scientific and public understanding of climate change has spurred research on climate change communication, learning, and decision-making, identifying barriers such as misconceptions and faulty mental models of the climate and energy systems; poor understanding of complex, dynamic systems generally; and affective and social barriers to learning and action. There is also a growing opportunity to address these barriers, through tools that rely on active learning, that are social, engaging (and even fun), and that are grounded in rigorous science. An increasing number of decision-support computer simulations are being developed, intended to make complex technical problems accessible to non-experts in an interactive format. At the same time, the use of scenario planning, role-playing games, and active learning approaches are gaining ground in policy and education spheres. Simulation-based role-playing games bring these approaches together and can provide powerful learning experiences: they offer the potential to compress time and reality; create experiences without requiring the 'real thing;' explore the consequences of our decisions that often unfold over decades; and open affective and social learning pathways. Here, we offer a perspective on the potential of these tools in climate change education, communication, and decision-support, and a brief demonstration of one tool we have developed, World Energy.

  1. WEDNESDAY: EPA Administrator McCarthy to Give Keynote Address at 2016 Climate Leadership Conference

    EPA Pesticide Factsheets

    SEATTLE - On Wednesday, March 9, 2016, U.S. Environmental Protection Agency Administrator Gina McCarthy will give the keynote address at the 2016 Climate Leadership Conference in Seattle. The conference calls national attention to exemplary leadersh

  2. General and Partial Equilibrium Modeling of Sectoral Policies to Address Climate Change in the United States

    SciTech Connect

    Pizer, William; Burtraw, Dallas; Harrington, Winston; Newell, Richard; Sanchirico, James; Toman, Michael

    2003-03-31

    This document provides technical documentation for work using detailed sectoral models to calibrate a general equilibrium analysis of market and non-market sectoral policies to address climate change. Results of this work can be found in the companion paper, "Modeling Costs of Economy-wide versus Sectoral Climate Policies Using Combined Aggregate-Sectoral Model".

  3. Addressing National Standards within a Task-Involving Motivational Climate

    ERIC Educational Resources Information Center

    Todorovich, John R.; Curtner-Smith, Matthew D.; Prusak, Keven; Model, Eric D.

    2005-01-01

    Educators and researchers interested in responding to the demands of politicians and citizens to improve the American educational system have responded with the creation of national and, often, state standards across subject areas. Physical education teachers and researchers who recognize the importance of physical education, and as part of an…

  4. Climate data management system

    SciTech Connect

    Drach, R

    1999-07-13

    The Climate Data Management System is an object-oriented data management system, specialized for organizing multidimensional, gridded data used in climate analysis and simulation. The building blocks of CDMS are variables, container classes, structural classes, and links. All gridded data stored in CDMS is associated with variables. The container objects group variables and structural objects. Variables are defined in terms of structural objects. Most CDMS objects can have attributes, which are scalar or one-dimensional metadata items. Attributes which are stored in the database, that is are persistent, are called external attributes. Some attributes are internal; they are associated with an object but do not appear explicitly in the database.

  5. Co-benefits of addressing climate change can motivate action around the world

    NASA Astrophysics Data System (ADS)

    Bain, Paul G.; Milfont, Taciano L.; Kashima, Yoshihisa; Bilewicz, Michał; Doron, Guy; Garðarsdóttir, Ragna B.; Gouveia, Valdiney V.; Guan, Yanjun; Johansson, Lars-Olof; Pasquali, Carlota; Corral-Verdugo, Victor; Aragones, Juan Ignacio; Utsugi, Akira; Demarque, Christophe; Otto, Siegmar; Park, Joonha; Soland, Martin; Steg, Linda; González, Roberto; Lebedeva, Nadezhda; Madsen, Ole Jacob; Wagner, Claire; Akotia, Charity S.; Kurz, Tim; Saiz, José L.; Schultz, P. Wesley; Einarsdóttir, Gró; Saviolidis, Nina M.

    2016-02-01

    Personal and political action on climate change is traditionally thought to be motivated by people accepting its reality and importance. However, convincing the public that climate change is real faces powerful ideological obstacles, and climate change is slipping in public importance in many countries. Here we investigate a different approach, identifying whether potential co-benefits of addressing climate change could motivate pro-environmental behaviour around the world for both those convinced and unconvinced that climate change is real. We describe an integrated framework for assessing beliefs about co-benefits, distinguishing social conditions (for example, economic development, reduced pollution or disease) and community character (for example, benevolence, competence). Data from all inhabited continents (24 countries; 6,196 participants) showed that two co-benefit types, Development (economic and scientific advancement) and Benevolence (a more moral and caring community), motivated public, private and financial actions to address climate change to a similar degree as believing climate change is important. Critically, relationships were similar for both convinced and unconvinced participants, showing that co-benefits can motivate action across ideological divides. These relationships were also independent of perceived climate change importance, and could not be explained by political ideology, age, or gender. Communicating co-benefits could motivate action on climate change where traditional approaches have stalled.

  6. Obama Calls for More Action on Climate Change During State of the Union Address

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-02-01

    President Barack Obama called for "meaningful progress" on climate change during his State of the Union address on 12 February, saying that "for the sake of our children and our future, we must do more to combat climate change." Noting that "the 12 hottest years on record have all come in the last 15," he said that there could be meaningful progress on the issue while also driving economic growth.

  7. 14 CFR 25.1423 - Public address system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Safety Equipment § 25.1423 Public address system. A public address system required by this chapter must— (a) Be powerable when the aircraft is in... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Public address system. 25.1423 Section...

  8. Targeted opportunities to address the climate-trade dilemma in China

    NASA Astrophysics Data System (ADS)

    Liu, Zhu; Davis, Steven J.; Feng, Kuishuang; Hubacek, Klaus; Liang, Sai; Anadon, Laura Diaz; Chen, Bin; Liu, Jingru; Yan, Jinyue; Guan, Dabo

    2016-02-01

    International trade has become the fastest growing driver of global carbon emissions, with large quantities of emissions embodied in exports from emerging economies. International trade with emerging economies poses a dilemma for climate and trade policy: to the extent emerging markets have comparative advantages in manufacturing, such trade is economically efficient and desirable. However, if carbon-intensive manufacturing in emerging countries such as China entails drastically more CO2 emissions than making the same product elsewhere, then trade increases global CO2 emissions. Here we show that the emissions embodied in Chinese exports, which are larger than the annual emissions of Japan or Germany, are primarily the result of China’s coal-based energy mix and the very high emissions intensity (emission per unit of economic value) in a few provinces and industry sectors. Exports from these provinces and sectors therefore represent targeted opportunities to address the climate-trade dilemma by either improving production technologies and decarbonizing the underlying energy systems or else reducing trade volumes.

  9. HVDC control developments - addressing system requirements

    SciTech Connect

    Hauth, R.L.; Patel, H.S.; Piwko, R.J.

    1984-01-01

    This article describes typical high voltage direct current (HVDC) control systems and some of the new developments in the control area. HVDC control systems are showing their flexible characteristics as demonstrated, for example, by the new modulation, torsional damping, and alternating current voltage and reactive power controllers. Extensive studies are conducted to design and integrate such controllers into HVDC systems and to assure against any detrimental interactions within the total control system. 8 figures.

  10. 46 CFR 121.610 - Public address systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Control and Internal Communications Systems § 121.610 Public address systems. (a... 46 Shipping 4 2011-10-01 2011-10-01 false Public address systems. 121.610 Section 121.610...

  11. 46 CFR 121.610 - Public address systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Control and Internal Communications Systems § 121.610 Public address systems. (a... 46 Shipping 4 2010-10-01 2010-10-01 false Public address systems. 121.610 Section 121.610...

  12. 46 CFR 184.610 - Public address systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Control and Internal Communications Systems § 184.610 Public address systems. (a) Except as noted in paragraphs (d) and (e) below, each vessel must be... 46 Shipping 7 2010-10-01 2010-10-01 false Public address systems. 184.610 Section 184.610...

  13. 46 CFR 184.610 - Public address systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Control and Internal Communications Systems § 184.610 Public address systems. (a) Except as noted in paragraphs (d) and (e) below, each vessel must be... 46 Shipping 7 2011-10-01 2011-10-01 false Public address systems. 184.610 Section 184.610...

  14. Policy Directions Addressing the Public Health Impact of Climate Change in South Korea: The Climate-change Health Adaptation and Mitigation Program.

    PubMed

    Shin, Yong Seung; Ha, Jongsik

    2012-01-01

    Climate change, caused by global warming, is increasingly recognized as a major threat to mankind's survival. Climate change concurrently has both direct and modifying influences on environmental, social, and public health systems undermining human health as a whole. Environmental health policy-makers need to make use of political and technological alternatives to address these ramifying effects. The objective of this paper is to review public health policy in Korea, as well as internationally, particularly as it relates to climate change health adaptation and mitigation programs (such as C-CHAMP of Korea), in order to assess and elicit directions for a robust environmental health policy that is adaptive to the health impacts of climate change. In Korea, comprehensive measures to prevent or mitigate overall health effects are limited, and the diffusion of responsibility among various government departments makes consistency in policy execution very difficult. This paper proposes integration, synergy, and utilization as the three core principles of policy direction for the assessment and adaptation to the health impacts of climate change. For specific action plans, we suggest policy making based on scientifically integrated health impact assessments and the prioritization of environmental factors in climate change; the development of practical and technological tools that support policy decisions by making their political implementation more efficient; and customized policy development that deals with the vulnerability of local communities.

  15. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.

    2015-12-01

    Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the

  16. 20% Wind Energy - Diversifying Our Energy Portfolio and Addressing Climate Change (Brochure)

    SciTech Connect

    Not Available

    2008-05-01

    This brochure describes the R&D efforts needed for wind energy to meet 20% of the U.S. electrical demand by 2030. In May 2008, DOE published its report, 20% Wind Energy by 2030, which presents an in-depth analysis of the potential for wind energy in the United States and outlines a potential scenario to boost wind electric generation from its current production of 16.8 gigawatts (GW) to 304 GW by 2030. According to the report, achieving 20% wind energy by 2030 could help address climate change by reducing electric sector carbon dioxide (CO2) emissions by 825 million metric tons (20% of the electric utility sector CO2 emissions if no new wind is installed by 2030), and it will enhance our nation's energy security by diversifying our electricity portfolio as wind energy is an indigenous energy source with stable prices not subject to fuel volatility. According to the report, increasing our nation's wind generation could also boost local rural economies and contribute to significant growth in manufacturing and the industry supply chain. Rural economies will benefit from a substantial increase in land use payments, tax benefits and the number of well-paying jobs created by the wind energy manufacturing, construction, and maintenance industries. Although the initial capital costs of implementing the 20% wind scenario would be higher than other generation sources, according to the report, wind energy offers lower ongoing energy costs than conventional generation power plants for operations, maintenance, and fuel. The 20% scenario could require an incremental investment of as little as $43 billion (net present value) more than a base-case no new wind scenario. This would represent less than 0.06 cent (6 one-hundredths of 1 cent) per kilowatt-hour of total generation by 2030, or roughly 50 cents per month per household. The report concludes that while achieving the 20% wind scenario is technically achievable, it will require enhanced transmission infrastructure

  17. The 2006 ACTER Presidential Address: The Premier Educational Delivery System

    ERIC Educational Resources Information Center

    Elliot, Jack

    2007-01-01

    In this address, ACTER President Jack Elliot states that Career and Technical Education (CTE) is the premier educational delivery system in the world. It addresses all learning styles by employing pedagogical strategies that embrace all of the multiple intelligence areas and incorporate the current knowledge in brain-based research. He discusses…

  18. A roadmap for climate change adaptation in Sweden's forests: addressing wicked problems using adaptive management

    NASA Astrophysics Data System (ADS)

    Rist, L.; Felton, A.; Samuelsson, L.; Marald, E.; Karlsson, B.; Johansson, U.; Rosvall, O.

    2013-12-01

    Climate change is expected to have significant direct and indirect effects on forest ecosystems. Forests will have to adapt not only to changes in mean climate variables but also to increased climatic variability and altered disturbance regimes. Rates of change will likely exceed many forests capabilities to naturally adapt and many of today's trees will be exposed to the climates of 2090. In Sweden the effects are already being seen and more severe impacts are expected in the future. Exacerbating the challenge posed by climate change, a large proportion of Sweden's forests are, as a consequence of dominant production goals, greatly simplified and thus potentially more vulnerable to the uncertainties and risks associated with climate change. This simplification also confers reduced adaptive capacity to respond to potential impacts. Furthermore, many adaptation measures themselves carry uncertainties and risks. Future changes and effects are thus uncertain, yet forest managers, policymakers, scientists and other stakeholders must act. Strategies that build social and ecological resilience in the face of multiple interacting unknowns and surprises are needed. Adaptive management aims to collect and integrate knowledge about how a managed system is likely to respond to alternative management schemes and changing environmental conditions within a continuous decision process. There have been suggestions that adaptive management is not well suited to the large complex uncertainties associated with climate change and associated adaptation measures. However, more recently it has been suggested that adaptive management can handle such wicked problems, given adequate resources and a suitable breakdown of the targeted uncertainties. Here we test this hypothesis by evaluating how an adaptive management process could be used to manage the uncertainties and risks associated with securing resilient, biodiverse and productive forests in Sweden in the face of climate change. We

  19. Addressing potential local adaptation in species distribution models: implications for conservation under climate change

    USGS Publications Warehouse

    Hällfors, Maria Helena; Liao, Jishan; Dzurisin, Jason D. K.; Grundel, Ralph; Hyvärinen, Marko; Towle, Kevin; Wu, Grace C.; Hellmann, Jessica J.

    2016-01-01

    Species distribution models (SDMs) have been criticized for involving assumptions that ignore or categorize many ecologically relevant factors such as dispersal ability and biotic interactions. Another potential source of model error is the assumption that species are ecologically uniform in their climatic tolerances across their range. Typically, SDMs to treat a species as a single entity, although populations of many species differ due to local adaptation or other genetic differentiation. Not taking local adaptation into account, may lead to incorrect range prediction and therefore misplaced conservation efforts. A constraint is that we often do not know the degree to which populations are locally adapted, however. Lacking experimental evidence, we still can evaluate niche differentiation within a species' range to promote better conservation decisions. We explore possible conservation implications of making type I or type II errors in this context. For each of two species, we construct three separate MaxEnt models, one considering the species as a single population and two of disjunct populations. PCA analyses and response curves indicate different climate characteristics in the current environments of the populations. Model projections into future climates indicate minimal overlap between areas predicted to be climatically suitable by the whole species versus population-based models. We present a workflow for addressing uncertainty surrounding local adaptation in SDM application and illustrate the value of conducting population-based models to compare with whole-species models. These comparisons might result in more cautious management actions when alternative range outcomes are considered.

  20. Strategies to address climate change in central and Eastern Euopean countries

    SciTech Connect

    Simeonova, K.

    1996-12-31

    The paper presents analyses based on information mainly from the National Communications of nine Central and Eastern European countries that are undertaking radical transition from centrally planned to market driven economics (EIT). It is designed primarily to provide an overview of the policies and measures to address climate change that have been implemented, or under implementation or planned. In order to better understand the objective of policies and measures and the way they have been implemented in EIT countries that analysis has been supplemented by a review of the national circumstances and overall policy contexts in EIT countries that are relevant to climate change policies and measures problems. Therefore, these issues will be discussed in the paper along with analysis of mitigation policies and measures by sector.

  1. Eliciting climate experts' knowledge to address model uncertainties in regional climate projections: a case study of Guanacaste, Northwest Costa Rica

    NASA Astrophysics Data System (ADS)

    Grossmann, I.; Steyn, D. G.

    2014-12-01

    Global general circulation models typically cannot provide the detailed and accurate regional climate information required by stakeholders for climate adaptation efforts, given their limited capacity to resolve the regional topography and changes in local sea surface temperature, wind and circulation patterns. The study region in Northwest Costa Rica has a tropical wet-dry climate with a double-peak wet season. During the dry season the central Costa Rican mountains prevent tropical Atlantic moisture from reaching the region. Most of the annual precipitation is received following the northward migration of the ITCZ in May that allows the region to benefit from moist southwesterly flow from the tropical Pacific. The wet season begins with a short period of "early rains" and is interrupted by the mid-summer drought associated with the intensification and westward expansion of the North Atlantic subtropical high in late June. Model projections for the 21st century indicate a lengthening and intensification of the mid-summer drought and a weakening of the early rains on which current crop cultivation practices rely. We developed an expert elicitation to systematically address uncertainties in the available model projections of changes in the seasonal precipitation pattern. Our approach extends an elicitation approach developed previously at Carnegie Mellon University. Experts in the climate of the study region or Central American climate were asked to assess the mechanisms driving precipitation during each part of the season, uncertainties regarding these mechanisms, expected changes in each mechanism in a warming climate, and the capacity of current models to reproduce these processes. To avoid overconfidence bias, a step-by-step procedure was followed to estimate changes in the timing and intensity of precipitation during each part of the season. The questions drew upon interviews conducted with the regions stakeholders to assess their climate information needs. This

  2. Building non-traditional collaborations to innovatively address climate-related scientific and management needs

    NASA Astrophysics Data System (ADS)

    Bamzai, A.; Mcpherson, R. A.

    2014-12-01

    The South Central Climate Science Center (SC-CSC) is one of eight regional centers formed by the U.S. Department of the Interior in order to provide decision makers with the science, tools, and information they need to address the impacts of climate variability and change on their areas of responsibility. The SC-CSC is operated through the U.S. Geological Survey, in partnership with a consortium led by the University of Oklahoma that also includes Texas Tech University, Oklahoma State University, Louisiana State University, the Chickasaw Nation, the Choctaw Nation of Oklahoma, and NOAA's Geophysical Fluid Dynamics Lab (GFDL). The SC-CSC is distinct from all other CSCs in that we have strategically included non-traditional collaborators directly within our governing consortium. The SC-CSC is the only CSC to include any Tribal nations amongst our consortium (the Chickasaw Nation and the Choctaw Nation of Oklahoma) and to employ a full-time tribal liaison. As a result and in partnership with Tribes, we are able to identify the unique challenges that the almost 70 federally recognized Tribes within our region face. We also can develop culturally sensitive research projects or outreach efforts that bridge western science and traditional knowledge to address their needs. In addition, the SC-CSC is the only CSC to include another federal institution (GFDL) amongst our consortium membership. GFDL is a world-leader in climate modeling and model interpretation. Partnering GFDL's expertise in the evaluation of climate models and downscaling methods with the SC-CSC's stakeholder-driven approach allows for the generation and dissemination of guidance documents and training to accompany the high quality datasets already in development. This presentation will highlight the success stories and co-benefits of the SC-CSC's collaborations with Tribal nations and with GFDL, as well as include information on how other partners can connect to our ongoing efforts.

  3. Addressing drought conditions under current and future climates in the Jordan River region

    NASA Astrophysics Data System (ADS)

    Törnros, T.; Menzel, L.

    2014-01-01

    The Standardized Precipitation-Evaporation Index (SPEI) was applied in order to address the drought conditions under current and future climates in the Jordan River region located in the southeastern Mediterranean area. In the first step, the SPEI was derived from spatially interpolated monthly precipitation and temperature data at multiple timescales: accumulated precipitation and monthly mean temperature were considered over a number of timescales - for example 1, 3, and 6 months. To investigate the performance of the drought index, correlation analyses were conducted with simulated soil moisture and the Normalized Difference Vegetation Index (NDVI) obtained from remote sensing. A comparison with the Standardized Precipitation Index (SPI), i.e., a drought index that does not incorporate temperature, was also conducted. The results show that the 6-month SPEI has the highest correlation with simulated soil moisture and best explains the interannual variation of the monthly NDVI. Hence, a timescale of 6 months is the most appropriate when addressing vegetation growth in the semi-arid region. In the second step, the 6-month SPEI was derived from three climate projections based on the Intergovernmental Panel on Climate Change emission scenario A1B. When comparing the period 2031-2060 with 1961-1990, it is shown that the percentage of time with moderate, severe and extreme drought conditions is projected to increase strongly. To address the impact of drought on the agricultural sector, the irrigation water demand during certain drought years was thereafter simulated with a hydrological model on a spatial resolution of 1 km. A large increase in the demand for irrigation water was simulated, showing that the agricultural sector is expected to become even more vulnerable to drought in the future.

  4. Addressing spatial scales and new mechanisms in climate impact ecosystem modeling

    NASA Astrophysics Data System (ADS)

    Poulter, B.; Joetzjer, E.; Renwick, K.; Ogunkoya, G.; Emmett, K.

    2015-12-01

    Climate change impacts on vegetation distributions are typically addressed using either an empirical approach, such as a species distribution model (SDM), or with process-based methods, for example, dynamic global vegetation models (DGVMs). Each approach has its own benefits and disadvantages. For example, an SDM is constrained by data and few parameters, but does not include adaptation or acclimation processes or other ecosystem feedbacks that may act to mitigate or enhance climate effects. Alternatively, a DGVM model includes many mechanisms relating plant growth and disturbance to climate, but simulations are costly to perform at high-spatial resolution and there remains large uncertainty on a variety of fundamental physical processes. To address these issues, here, we present two DGVM-based case studies where i) high-resolution (1 km) simulations are being performed for vegetation in the Greater Yellowstone Ecosystem using a biogeochemical, forest gap model, LPJ-GUESS, and ii) where new mechanisms for simulating tropical tree-mortality are being introduced. High-resolution DGVM model simulations require not only computing and reorganizing code but also a consideration of scaling issues on vegetation dynamics and stochasticity and also on disturbance and migration. New mechanisms for simulating forest mortality must consider hydraulic limitations and carbon reserves and their interactions on source-sink dynamics and in controlling water potentials. Improving DGVM approaches by addressing spatial scale challenges and integrating new approaches for estimating forest mortality will provide new insights more relevant for land management and possibly reduce uncertainty by physical processes more directly comparable to experimental and observational evidence.

  5. 46 CFR 184.610 - Public address systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Public address systems. 184.610 Section 184.610 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Control and Internal Communications Systems §...

  6. Civil-Military Collaboration to Address Adaptation to Climate Change in South America

    DTIC Science & Technology

    2011-03-01

    event, held at the Military School in Bogota , Colombia, July 26-27, 2010, included military and civilian officers from Colombia, Peru and Chile with...and industries on river systems and high-altitude water resources. Colombia’s neighbors are also likely to suffer dramatic effects from climate

  7. Supporting adaptation decisions to address climate related impacts and hazards in the Caribbean (the CARIWIG project)

    NASA Astrophysics Data System (ADS)

    Burton, Aidan

    2015-04-01

    Managers and policy makers from regional and national institutions in the Caribbean require knowledge of the likely impacts and hazards arising from the present and future climate that are specific to their responsibility and geographical range, and relevant to their planning time-horizons. Knowledge, experience and the political support to develop appropriate adaptation strategies are also required. However, the climate information available for the region is of limited use as: observational records are intermittent and typically of short duration; climate model projections of the weather suffer from scale and bias issues; and statistical downscaling to provide locally relevant unbiased climate change information remains sporadic. Tropical cyclone activity is a considerable sporadic hazard in the region and yet related weather information is limited to historic events. Further, there is a lack of guidance for managers and policy makers operating with very limited resources to utilize such information within their remit. The CARIWIG project (June 2012 - May 2015) will be presented, reflecting on stakeholder impact, best practice and lessons learned. This project seeks to address the climate service needs of the Caribbean region through a combination of capacity building and improved provision of climate information services. An initial workshop with regional-scale stakeholders initiated a dialogue to develop a realistic shared vision of the needed information services which could be provided by the project. Capacity building is then achieved on a number of levels: knowledge and expertise sharing between project partners; raising understanding and knowledge of resources that support national and regional institutions' adaptation decisions; developing case studies in key sectors to test and demonstrate the information services; training for stakeholder technical staff in the use of the provided services; the development of a support network within and out

  8. Near-Term Actions to Address Long-Term Climate Risk

    NASA Astrophysics Data System (ADS)

    Lempert, R. J.

    2014-12-01

    Addressing climate change requires effective long-term policy making, which occurs when reflecting on potential events decades or more in the future causes policy makers to choose near-term actions different than those they would otherwise pursue. Contrary to some expectations, policy makers do sometimes make such long-term decisions, but not as commonly and successfully as climate change may require. In recent years however, the new capabilities of analytic decision support tools, combined with improved understanding of cognitive and organizational behaviors, has significantly improved the methods available for organizations to manage longer-term climate risks. In particular, these tools allow decision makers to understand what near-term actions consistently contribute to achieving both short- and long-term societal goals, even in the face of deep uncertainty regarding the long-term future. This talk will describe applications of these approaches for infrastructure, water, and flood risk management planning, as well as studies of how near-term choices about policy architectures can affect long-term greenhouse gas emission reduction pathways.

  9. Safety nets can help address the risks to nutrition from increasing climate variability.

    PubMed

    Alderman, Harold

    2010-01-01

    Models of climate change predict increased variability of weather as well as changes in agro-ecology. The increased variability will pose special challenges for nutrition. This study reviews evidence on climate shocks and nutrition and estimates the economic consequences in terms of reduced schooling and economic productivity stemming from nutritional insults in childhood. Panel data covering up to 20 y indicate that that short-term climate shocks have long-term impacts on children that persist, often into their adult lives. Other studies document the potential for relief programs to offset these shocks providing that the programs can be implemented with flexible financing, rapid identification of those affected by the shock, and timely scale-up. The last of these presumes that programs are already in place with contingency plans drawn up. Arguably, direct food distribution, including that of ready-to-use therapeutic food, may be part of the overall strategy. Even if such programs are too expensive for sustainable widespread use in the prevention of malnutrition, scalable food distribution programs may be cost effective to address the heightened risk of malnutrition following weather-related shocks.

  10. Using Just in Time Teaching in a Global Climate Change Course to Address Misconceptions

    NASA Astrophysics Data System (ADS)

    Schuenemann, K. C.

    2013-12-01

    Just in Time Teaching (JiTT) is employed in an introductory Global Climate Change college course with the intention of addressing common misconceptions and climate myths. Students enter the course with a variety of prior knowledge and opinions on global warming, and JiTT can be used as a constructivist pedagogical approach to make use of this prior knowledge. Students are asked to watch a short video or do a reading, sometimes screen capture videos created by the professor as review of material from the previous class, a video available on the web from NASA or NOAA, for example, or a reading from an online article or their textbook. After the video or reading, students answer a question carefully designed to pry at a common misconception, or simply are asked for the 'muddiest point' that remains on the concept. This assignment is done the night before class using a web program. The program aggregates the answers in an organized way so the professor can use the answers to design the day's lesson to address common misconceptions or concerns students displayed in their answers, as well as quickly assign participation credit to students who completed the assignment. On the other hand, if students display that they have already mastered the material, the professor can confidently move on to the next concept. The JiTT pedagogical method personalizes each lecture period to the students in that particular class for maximum efficiency while catching and fixing misconceptions in a timely manner. This technique requires students to spend time with the material outside of class, acts as review of important concepts, and increases engagement in class due to the personalization of the course. Evaluation results from use of this technique will be presented. Examples of successful JiTT videos, questions, student answers, and techniques for addressing misconceptions during lecture will also be presented with the intention that instructors can easily apply this technique to their

  11. Focusing Events and Constrains on Policy Addressing Long-Term Climate Change Risks

    NASA Astrophysics Data System (ADS)

    O'Donovan, K.

    2014-12-01

    When policy makers are aware of immediate and long-term risks to communities, what do they do to plan for and mitigate the effects of climate change? This paper addresses that question in two ways. First, as an organizing framework it presents an overview of the empirical evidence on focusing events. Focusing events are defined as sudden, rare events that reveal harm or the potential for future harm that the general public and policy makers become aware of simultaneously. These large-scale events are typically natural and disasters, crisis, or technological accidents. This paper considers the empirical evidence of the relationship between focusing events, the harm revealed by the event and policy change aimed at reducing future risk of harm. Second, this paper reviews the case of flood mitigation policy in the United States from 1968 to 2008. It considers the ways in which policy makers have and have not integrated future flood risks into mitigation policy and planning, particularly after large-scale floods. It analyzes the political, intergovernmental, demographic and geographic factors that have promoted and constrained long-term flood mitigation policy. This paper concludes with a discussion of the meaning and implications of potential focusing events and constrains on policy for long-term climate change concerns.

  12. 46 CFR 184.610 - Public address systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... length, a battery powered bullhorn may serve as the public address system if audible throughout the accommodation spaces of the vessel during normal operating conditions. The bullhorn's batteries are to be continually maintained at a fully charged level by use of a battery charger or other means acceptable to...

  13. 46 CFR 184.610 - Public address systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... length, a battery powered bullhorn may serve as the public address system if audible throughout the accommodation spaces of the vessel during normal operating conditions. The bullhorn's batteries are to be continually maintained at a fully charged level by use of a battery charger or other means acceptable to...

  14. State - Level Regulation's Effectiveness in Addressing Global Climate Change and Promoting Solar Energy Deployment

    NASA Astrophysics Data System (ADS)

    Peterman, Carla Joy

    Paper 1, Local Solutions to Global Problems: Climate Change Policies and Regulatory Jurisdiction, considers the efficacy of various types of environmental regulations when they are applied locally to pollutants whose damages extend beyond the jurisdiction of the local regulators. Local regulations of a global pollutant may be ineffective if producers and consumers can avoid them by transacting outside the reach of the local regulator. In many cases, this may involve the physical relocation of the economic activity, a problem often referred to as "leakage." This paper highlights another way in which local policies can be circumvented: through the shuffling of who buys from whom. The paper maintains that the problems of reshuffling are exacerbated when the options for compliance with the regulations are more flexible. Numerical analyses is presented demonstrating that several proposed policies to limit greenhouse gas emissions from the California electricity sector may have very little effect on carbon emissions if they are applied only within that state. Paper 1 concludes that although local subsidies for energy efficiency, renewable electricity, and transportation biofuels constitute attempts to pick technology winners, they may be the only mechanisms that local jurisdictions, acting alone, have at their disposal to address climate change. Paper 2, Pass-Through of Solar PV Incentives to Consumers: The Early Years of California's Solar PV Incentives, examines the pass through of incentives to California solar PV system owners. The full post-subsidy price consumers pay for solar power is a key metric of the success of solar PV incentive programs and of overall PV market performance. This study examines the early years of California's most recent wave of distributed solar PV incentives (2000-2008) to determine the pass-through of incentives. Examination of this period is both intellectually and pragmatically important due to the high level of incentives provided and

  15. Cofiring fossil fuels with renewable energy in addressing global climate change and the Kyoto Protocol

    SciTech Connect

    Miller, C.L.; Hoppe, J.A.

    1998-12-31

    In addressing the issue of Global Climate Change, the use of renewable energy resources and energy efficiency has been traditionally touted as the most effective way to mitigate the production of greenhouse gases and to sequester carbon-based emissions resulting from the use of fossil fuels for the worldwide production of power. The goal set by the Kyoto Protocol of ``stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the atmosphere`` will not be met unless the predictions for world energy production based on the use of oil, gas and coal are considered in using renewable energy resources. The use of renewable energy in the US amounted to 7.4 quads in 1997 which was only 7.8% of total domestic gross energy demand. In the US alone the biomass renewable energy economically accessible resource base is estimated at 14 quads per year which can be considered for use in addressing predicted increases in electric power demand. In 1990 the biomass generated power was 3.1 quads in the US alone, and renewable energy accounted for 14.7% of the total world power production allowing for significant increases in the future. The most significant use of renewable energy other than the power sector is the use of biofuels (principally from wood) in the industrial sector which accounts for 21% of the total renewable demand of 7.432 quads in 1997.

  16. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  17. Selective Attention in Multi-Chip Address-Event Systems

    PubMed Central

    Bartolozzi, Chiara; Indiveri, Giacomo

    2009-01-01

    Selective attention is the strategy used by biological systems to cope with the inherent limits in their available computational resources, in order to efficiently process sensory information. The same strategy can be used in artificial systems that have to process vast amounts of sensory data with limited resources. In this paper we present a neuromorphic VLSI device, the “Selective Attention Chip” (SAC), which can be used to implement these models in multi-chip address-event systems. We also describe a real-time sensory-motor system, which integrates the SAC with a dynamic vision sensor and a robotic actuator. We present experimental results from each component in the system, and demonstrate how the complete system implements a real-time stimulus-driven selective attention model. PMID:22346689

  18. Selective attention in multi-chip address-event systems.

    PubMed

    Bartolozzi, Chiara; Indiveri, Giacomo

    2009-01-01

    Selective attention is the strategy used by biological systems to cope with the inherent limits in their available computational resources, in order to efficiently process sensory information. The same strategy can be used in artificial systems that have to process vast amounts of sensory data with limited resources. In this paper we present a neuromorphic VLSI device, the "Selective Attention Chip" (SAC), which can be used to implement these models in multi-chip address-event systems. We also describe a real-time sensory-motor system, which integrates the SAC with a dynamic vision sensor and a robotic actuator. We present experimental results from each component in the system, and demonstrate how the complete system implements a real-time stimulus-driven selective attention model.

  19. A WiFi Public Address System for Disaster Management

    PubMed Central

    Andrade, Nicholas; Palmer, Douglas A.; Lenert, Leslie A.

    2006-01-01

    The WiFi Bullhorn is designed to assist emergency workers in the event of a disaster situation by offering a rapidly configurable wireless public address system for disaster sites. The current configuration plays either pre recorded or custom recorded messages and utilizes 802.11b networks for communication. Units can be position anywhere wireless coverage exists to help manage crowds or to recall first responders from dangerous areas. PMID:17238466

  20. A WiFi public address system for disaster management.

    PubMed

    Andrade, Nicholas; Palmer, Douglas A; Lenert, Leslie A

    2006-01-01

    The WiFi Bullhorn is designed to assist emergency workers in the event of a disaster situation by offering a rapidly configurable wireless of public address system for disaster sites. The current configuration plays either pre recorded or custom recorded messages and utilizes 802.11b networks for communication. Units can be position anywhere wireless coverage exists to help manage crowds or to recall first responders from dangerous areas.

  1. Managing agricultural greenhouse gases: Coordinated agricultural research through GRACEnet to address our changing climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change presents numerous challenges to agriculture. Concurrent efforts to mitigate agricultural contributions to climate change while adapting to its projected consequences will be essential to ensure long-term sustainability and food security. To facilitate successful responses to ...

  2. A Prototype Climate Information System

    DTIC Science & Technology

    1993-01-01

    Access to the NCDS could also support some of the operational needs of naval bases, such as NEOC. 2. CLICOM CLICOM is a climatic data processing system...developed by the NCDC under a WMO contract (McGuirk and Llanso, 1989). CLICOM is designed primarily for use in developing countries, by personnel with...little technical training. CLICOM currently is used in 37 countries, including 35 sites in the USA. CLICOM software runs on an IBM PC and manuals

  3. Continental-Scale Stable Isotope Measurements at NEON to Address Ecological Processes Across Systems

    NASA Astrophysics Data System (ADS)

    Luo, H.; Goodman, K. J.; Hinckley, E. S.; West, J. B.; Williams, D. G.; Bowen, G. J.

    2013-12-01

    The National Ecological Observatory Network (NEON) is a national-scale research platform. The overarching goal of NEON is to enable understanding and forecasting of the impacts of climate change, land use change, and invasive species on aspects of continental-scale ecology (such as biodiversity, biogeochemistry, infectious diseases, ecohydrology, etc.). NEON focuses explicitly on questions that relate to grand challenges in environmental science, are relevant to large regions, and would otherwise be very difficult to address with traditional ecological approaches. The use of stable isotope approaches in ecological research has grown steadily during the last two decades. Stable isotopes at natural abundances in the environment trace and integrate the interaction between abiotic and biotic components across temporal and spatial scales. In this poster, we will present the NEON data products that incorporate stable isotope measurements in atmospheric, terrestrial, and aquatic ecosystems in North America. We further outline current questions in the natural sciences community and how these data products can be used to address continental-scale ecological questions, such as the ecological impacts of climate change, terrestrial-aquatic system linkages, land-atmosphere exchange, landscape ecohydrological processes, and linking biogeochemical cycles across systems. Specifically, we focus on the use of stable isotopes to evaluate water availability and residence times in terrestrial systems, as well as nutrient sources to terrestrial systems, and cycling across ecosystem boundaries.

  4. Application of an Integrated Assessment Model with state-level resolution for examining strategies for addressing air, climate and energy goals

    EPA Science Inventory

    The Global Climate Assessment Model (GCAM) is a global integrated assessment model used for exploring future scenarios and examining strategies that address air pollution, climate change, and energy goals. GCAM includes technology-rich representations of the energy, transportati...

  5. Educating with Resilience in Mind: Addressing Climate Change in Post-Sandy New York City

    ERIC Educational Resources Information Center

    Dubois, Bryce; E. Krasny, Marianne

    2016-01-01

    How educators adapt their programs following a climate related disturbance can provide insights into potential climate education practices. Therefore, we used semi-structured interviews to explore changes in environmental education practice in NYC following Hurricane Sandy. Educators adopted new language to reflect funding opportunities and…

  6. Making the climate part of the human world: Why addressing beliefs and biases is necessary part of effective climate change education

    NASA Astrophysics Data System (ADS)

    Donner, S. D.

    2009-12-01

    Efforts to raise public awareness and understanding of the social, cultural and economic consequences of climate change often encounter skepticism. The primary causes of this skepticism, whether in the form of a mild rejection of proposed policy responses or an outright rejection of the basic scientific findings, is often cited to be the poor framing of issues by the scientific community, the quality of science education or public science literacy, disinformation campaigns by representatives of the coal and gas industry, individual resistance to behavioral change, and the hyperactive nature of the modern information culture. However, the root cause may be that the weather and climate, and by association climate change, is viewed as independent of the sphere of human influence in ancient and modern societies. In this presentation, I will outline how long-standing human beliefs in the separation between the earth and the sky and the modern framing of climate change as an “environmental” issue are limiting efforts to education the public about the causes, effects and possible response to climate change. First, sociological research in the Pacific Islands (Fiji, Kiribati, Tuvalu) finds strong evidence that beliefs in divine control of the weather and climate limit public acceptance of human-induced climate change. Second, media analysis and polling data from North America supports the role of belief and provides further evidence that climate change is viewed as a threat to an “other” labeled “the environment”, rather than a threat to people or society. The consequences of these mental models of the climate can be an outright reject of scientific theory related to climate change, a milder distrust of climate change predictions, a lack of urgency about mitigation, and an underestimate of the effort required to adapt to climate change. In order to be effective, public education about climate change needs to directly address the two, critical beliefs held by

  7. Distributed photovoltaic systems - Addressing the utility interface issues

    NASA Astrophysics Data System (ADS)

    Firstman, S. I.; Vachtsevanos, G. J.

    This paper reviews work conducted in the United States on the impact of dispersed photovoltaic sources upon utility operations. The photovoltaic (PV) arrays are roof-mounted on residential houses and connected, via appropriate power conditioning equipment, to the utility grid. The presence of such small (4-6 Kw) dispersed generators on the distribution network raises questions of a technical, economic and institutional nature. After a brief identification of utility interface issues, the paper addresses such technical concerns as protection of equipment and personnel safety, power quality and utility operational stability. A combination of experimental and analytical approaches has been adopted to arrive at solutions to these problems. Problem areas, under various PV system penetration scenarios, are identified and conceptual designs of protection and control equipment and operating policies are developed so that system reliability is maintained while minimizing capital costs. It is hoped that the resolution of balance-of-system and grid interface questions will ascertain the economic viability of photovoltaic systems and assist in their widespread utilization in the future.

  8. Taming the Beast: Policy-based Solutions for Addressing Corporate Interference in Climate Policy Development

    NASA Astrophysics Data System (ADS)

    Grifo, F.

    2012-12-01

    Inappropriate corporate influence in science-based policy has been a persistent problem in the United States across multiple issue areas and through many administrations. Interference in climate change policy has been especially pervasive in recent years, with tremendous levels of corporate resources being utilized to spread misinformation on climate science and reduce and postpone regulatory action. Much of the influence exerted by these forces is concealed from public view. Better corporate disclosure laws would reveal who is influencing climate policy to policy makers, investors, and the public. Greater transparency in the political activity of corporate actors is needed to shed light on who is responsible for the misinformation campaigns clouding the discussion around climate change in the United States. Such transparency will empower diverse stakeholders to hold corporations accountable. Specific federal policy reforms can be made in order to guide the nation down a path of greater corporate accountability in climate change policy efforts.

  9. Future Earth -- New Approaches to address Climate Change and Sustainability in the MENA Region

    NASA Astrophysics Data System (ADS)

    Lange, Manfred; Abu Alhaija, Rana

    2016-04-01

    Interactions and feedbacks between rapidly increasing multiple pressures on water, energy and food security drive social-ecological systems at multiple scales towards critical thresholds in countries of the Eastern Mediterranean, the Middle East and North Africa (MENA Region). These pressures, including climate change, the growing demand on resources and resource degradation, urbanization and globalization, cause unprecedented challenges for countries and communities in the region. Responding to these challenges requires integrated science and a closer relationship with policy makers and stakeholders. Future Earth has been designed to respond to these urgent needs. In order to pursue such objectives, Future Earth is becoming the host organization for some 23 programs that were previously run under four global environmental change programmes, DIVERSITAS, the International Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme (IHDP) and the World Climate Research Programme (WCRP). Some further projects arose out of the Earth System Science Partnership (ESSP). It thus brings together a wide spectrum of expertise and knowledge that will be instrumental in tackling urgent problems in the MENA region and the wider Mediterranean Basin. Future Earth is being administered by a globally distributed secretariat that also includes a series of Regional Centers, which will be the nuclei for the development of new regional networks. The Cyprus Institute in Nicosia, Cyprus (CyI; www.cyi.ac.cy) is hosting the Regional Center for the MENA Region. The CyI is a non-profit research and post-graduate education institution with a strong scientific and technological orientation and a distinctive regional, Eastern Mediterranean scope. Cyprus at the crossroads of three continents and open to all nations in the region provides excellent conditions for advancing the research agenda of Future Earth in the MENA Region. Given the recent and ongoing major political

  10. Addressing Questions on Life in Terrestrial Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Hedlund, Brian P.; Li, Wen-Jun; Zhang, Chuanlun

    2013-09-01

    A binational research team met on the campus of Yunnan University in Kunming, China, to discuss recent progress and future plans to leverage binational support to address major questions on life in terrestrial geothermal systems. The symposium included about 90 faculty, postdocs, and students from China and about 30 faculty, postdocs, students, and high school teachers from the United States. The introductory session reviewed the progress of the Tengchong PIRE project funded by the U.S. National Science Foundation (NSF) Partnerships for International Research and Education (PIRE) program (OISE-0836450). It also introduced a new collaborative project funded as a Key Project of International Cooperation by the Chinese Ministry of Science and Technology (MOST, 2013DFA31980), which is the first project funded through a memorandum of understanding between NSF and MOST to promote China-U.S. collaboration.

  11. Connectivity and complex systems in geomorphology: addressing some key challenges

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald; Turnbull-Lloyd, Laura; Parsons, Anthony; Bracken, Louise; Keesstra, Saskia; Masselink, Rens

    2016-04-01

    "Connectivity thinking" and related concepts have a long history in geomorphology. Since the beginning of the 21st century connectivity research experienced a huge boom in geomorphology as geomorphologists started to develop new concepts on connectivity to better understand the complexity of geomorphic systems and system response to change. However, progress in the field of connectivity in geomorphology has mostly been developing in a parallel manner, resulting in a multiplicity of definitions, concepts and methodological approaches. Nevertheless, a set of common key challenges amongst the different connectivity concepts and approaches used to understand complex geomorphic systems are also evident. In the course of a theory think tank of the COST Action ES1306 (CONNECTEUR - Connecting European Connectivity Research) the following five different key challenges were detected (Turnbull et al., in prep.): (i) defining the fundamental unit, (ii) distinguishing between structural and functional boundaries, (iii) emergent behavior, (iv) memory effects, (v) measuring connectivity. In this presentation we will a) discuss how these key challenges are addressed and approached in connectivity research in geomorphology, b) evaluate ways in which cross-disciplinary advances may be made by exploring potential for a common toolbox approach to the study of connectivity.

  12. How to ensure that the results of climate risk analysis make a difference? - Experience from applied research addressing the challenges of climate change

    NASA Astrophysics Data System (ADS)

    Schneiderbauer, Stefan; Zebisch, Marc; Becker, Daniel; Pedoth, Lydia; Renner, Kathrin; Kienberger, Stefan

    2016-04-01

    Changing climate conditions may have beneficial or adverse effects on the social-ecological systems we are living in. In any case, the possible effects result from complex and interlinked physical and social processes embedded in these systems. Traditional research addresses these bio-physical and societal issues in a separate way. Therefore, in general, studies on risks related to climate change are still mono-disciplinary in nature with an increasing amount of work following a multi-disciplinary approach. The quality and usefulness of the results of such research for policy or decision making in practice may further be limited by study designs that do not acknowledge appropriately the significance of integrating or at least mixing qualitative and quantitative information and knowledge. Finally, the acceptance of study results - particularly when containing some kind of assessments - is often endangered by insufficient and / or late involvement of stakeholders and users. The above mentioned limitations have often been brought up in the recent past. However, despite that a certain consensus could be achieved in the last years recognising the need to tackle these issues, little progress has been made in terms of implementation within the context of (research) studies. This paper elaborates in detail on reasons that hamper the application of - interdisciplinary (i.e. natural and social science), - trans-disciplinary (i.e. co-production of knowledge) and - integrative (i.e. combining qualitative and quantitative approaches) work. It is based on the experience gained through a number of applied climate change vulnerability studies carried out within the context of various GIZ-financed development cooperation projects, a consultancy project for the German Environment Agency as well as the workshop series INQUIMUS, which tackles particularly the issues of mixing qualitative and quantitative research approaches. Potentials and constraints of possible attempts for

  13. EPA Programs and Initiatives Addressing Climate Change in the Water Sector

    EPA Pesticide Factsheets

    The National Water Program at EPA focusses on adapting our water resources to the impacts of climate change. Programs and Initiatives on this page work carefully, using current science and models to strengthen water infrastructure and resources.

  14. Douglas-fir plantations in Europe: a retrospective test of assisted migration to address climate change.

    PubMed

    Isaac-Renton, Miriam G; Roberts, David R; Hamann, Andreas; Spiecker, Heinrich

    2014-08-01

    We evaluate genetic test plantations of North American Douglas-fir provenances in Europe to quantify how tree populations respond when subjected to climate regime shifts, and we examined whether bioclimate envelope models developed for North America to guide assisted migration under climate change can retrospectively predict the success of these provenance transfers to Europe. The meta-analysis is based on long-term growth data of 2800 provenances transferred to 120 European test sites. The model was generally well suited to predict the best performing provenances along north-south gradients in Western Europe, but failed to predict superior performance of coastal North American populations under continental climate conditions in Eastern Europe. However, model projections appear appropriate when considering additional information regarding adaptation of Douglas-fir provenances to withstand frost and drought, even though the model partially fails in a validation against growth traits alone. We conclude by applying the partially validated model to climate change scenarios for Europe, demonstrating that climate trends observed over the last three decades warrant changes to current use of Douglas-fir provenances in plantation forestry throughout Western and Central Europe.

  15. Strengthening health information systems to address health equity challenges.

    PubMed Central

    Nolen, Lexi Bambas; Braveman, Paula; Dachs, J. Norberto W.; Delgado, Iris; Gakidou, Emmanuela; Moser, Kath; Rolfe, Liz; Vega, Jeanette; Zarowsky, Christina

    2005-01-01

    Special studies and isolated initiatives over the past several decades in low-, middle- and high-income countries have consistently shown inequalities in health among socioeconomic groups and by gender, race or ethnicity, geographical area and other measures associated with social advantage. Significant health inequalities linked to social (dis)advantage rather than to inherent biological differences are generally considered unfair or inequitable. Such health inequities are the main object of health development efforts, including global targets such as the Millennium Development Goals, which require monitoring to evaluate progress. However, most national health information systems (HIS) lack key information needed to assess and address health inequities, namely, reliable, longitudinal and representative data linking measures of health with measures of social status or advantage at the individual or small-area level. Without empirical documentation and monitoring of such inequities, as well as country-level capacity to use this information for effective planning and monitoring of progress in response to interventions, movement towards equity is unlikely to occur. This paper reviews core information requirements and potential databases and proposes short-term and longer term strategies for strengthening the capabilities of HIS for the analysis of health equity and discusses HIS-related entry points for supporting a culture of equity-oriented decision-making and policy development. PMID:16184279

  16. DOI Climate Science Centers--Regional science to address management priorities

    USGS Publications Warehouse

    O'Malley, Robin

    2012-01-01

    Our Nation's lands, waters, and ecosystems and the living and cultural resources they contain face myriad challenges from invasive species, the effects of changing land and water use, habitat fragmentation and degradation, and other influences. These challenges are compounded by increasing influences from a changing climate—higher temperatures, increasing droughts, floods, and wildfires, and overall increasing variability in weather and climate. The Department of the Interior (DOI) has established eight regional Climate Science Centers (CSC) (fig. 1) that will provide scientific information and tools to natural and cultural resource managers as they plan for conserving these resources in a changing world. The U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) is managing the CSCs on behalf of the DOI.

  17. SeaWiFS-2: an ocean color data continuity mission to address climate change

    NASA Astrophysics Data System (ADS)

    Hammann, M. Gregory; Puschell, Jeffery J.

    2009-08-01

    Existing ocean color sensors are near or beyond the end of their mission lives and there will likely be a gap in climate quality Environmental Data Records (EDRs) until planned missions are launched. GeoEye's OrbView2 satellite with the SeaWiFS sensor has provided a 11+ year climatology of global chlorophyll a and other EDRs important for climate change and global warming studies. Upcoming sensors will not provide sufficient accuracy to provide continuity for the EDR time series and global monitoring. A 'stop-gap' mission is required, and we propose using the existing spare SeaWiFS sensor and a dedicated mission.

  18. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2013-12-01

    The latest Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with newly available global observations. The traditional approach to climate model evaluation, which compares a single parameter at a time, identifies symptomatic model biases and errors but fails to diagnose the model problems. The model diagnosis process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. To address these challenges, we are developing a parallel, distributed web-service system that enables the physics-based multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation and (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, and (4) the calculation of difference between two variables. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use

  19. The Ancient Martian Climate System

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.

    2014-01-01

    Today Mars is a cold, dry, desert planet. The atmosphere is thin and liquid water is not stable. But there is evidence that very early in its history it was warmer and wetter. Since Mariner 9 first detected fluvial features on its ancient terrains researchers have been trying to understand what climatic conditions could have permitted liquid water to flow on the surface. Though the evidence is compelling, the problem is not yet solved. The main issue is coping with the faint young sun. During the period when warmer conditions prevailed 3.5-3.8 Gy the sun's luminosity was approximately 25% less than it is today. How can we explain the presence of liquid water on the surface of Mars under such conditions? A similar problem exists for Earth, which would have frozen over under a faint sun even though the evidence suggests otherwise. Attempts to solve the "Faint Young Sun Paradox" rely on greenhouse warming from an atmosphere with a different mass and composition than we see today. This is true for both Mars and Earth. However, it is not a straightforward solution. Any greenhouse theory must (a) produce the warming and rainfall needed, (b) have a plausible source for the gases required, (c) be sustainable, and (d) explain how the atmosphere evolved to its present state. These are challenging requirements and judging from the literature they have yet to be met. In this talk I will review the large and growing body of work on the early Mars climate system. I will take a holistic approach that involves many disciplines since our goal is to present an integrated view that touches on each of the requirements listed in the preceding paragraph. I will begin with the observational evidence, which comes from the geology, mineralogy, and isotopic data. Each of the data sets presents a consistent picture of a warmer and wetter past with a thicker atmosphere. How much warmer and wetter and how much thicker is a matter of debate, but conditions then were certainly different than

  20. Leading the Way: Tribal Colleges Prepare Students to Address Climate Change

    ERIC Educational Resources Information Center

    Sorensen, Barbara Ellen

    2011-01-01

    Across the United States, tribal people are noticing adverse changes in the natural world due to climate change--and these changes affect their cultures. Today, tribal colleges and universities (TCUs) are developing and delivering the education and research opportunities needed to produce the next generation of American Indian science,…

  1. Bringing Climate Change into the Life Science Classroom: Essentials, Impacts on Life, and Addressing Misconceptions

    ERIC Educational Resources Information Center

    Hawkins, Amy J.; Stark, Louisa A.

    2016-01-01

    Climate change is at the forefront of our cultural conversation about science, influencing everything from presidential debates to Leonardo DiCaprio's 2016 Oscar acceptance speech. The topic is becoming increasingly socially and scientifically relevant but is no closer to being resolved. Most high school students take a life science course but…

  2. Addressing Sexual Harassment: A Strategy for Changing the Climate in Higher Education.

    ERIC Educational Resources Information Center

    West, Ellen L.; And Others

    1994-01-01

    Discusses difficulties in effecting change in campus climates and describes Portland (Oregon) State University's (PSU) efforts to combat sexual harassment, and the creation of the PSU Sexual Harassment Resource Network. Defines sexual harassment and explains the response to the Resource Network's prevention strategies. (NB)

  3. Weather Climate Interactions and Extreme Events in the Climate System

    NASA Astrophysics Data System (ADS)

    Roundy, P. E.

    2015-12-01

    The most pronounced local impacts of climate change would occur in association with extreme weather events superimposed on the altered climate. Thus a major thrust of recent efforts in the climate community has been to assess how extreme regional events such as cold air outbreaks, heat waves, tropical cyclones, floods, droughts, and severe weather might change with the climate. Many of these types of events are poorly simulated in climate models because of insufficient spatial resolution and insufficient quality parameterization of sub grid scale convection and radiation processes. This talk summarizes examples selected from those discussed below of how weather and climate events can be interconnected so that the physics of natural climate and weather phenomena depend on each other, thereby complicating our ability to simulate extreme events. A major focus of the chapter is on the Madden Julian oscillation (MJO), which is associated with alternating eastward-moving planetary scale regions of enhanced and suppressed moist deep convection favoring warm pool regions in the tropics. The MJO modulates weather events around the world and influences the evolution of interannual climate variability. We first discuss how the MJO evolves together with the seasonal cycle, the El Niño/southern oscillation (ENSO), and the extratropical circulation, then continue with a case study illustration of how El Niño is intrinsically coupled to intraseasonal and synoptic weather events such as the MJO and westerly wind bursts. This interconnectedness in the system implies that modeling many types of regional extreme weather events requires more than simply downscaling coarse climate model signals to nested regional models because extreme outcomes in a region can depend on poorly simulated extreme weather in distant parts of the world. The authors hope that an improved understanding of these types of interactions between signals across scales of time and space will ultimately yield

  4. Building Partnerships and Research Collaborations to Address the Impacts of Arctic Change: The North Atlantic Climate Change Collaboration (NAC3)

    NASA Astrophysics Data System (ADS)

    Polk, J.; North, L. A.; Strenecky, B.

    2015-12-01

    Changes in Arctic warming influence the various atmospheric and oceanic patterns that drive Caribbean and mid-latitude climate events, including extreme events like drought, tornadoes, and flooding in Kentucky and the surrounding region. Recently, the establishment of the North Atlantic Climate Change Collaboration (NAC3) project at Western Kentucky University (WKU) in partnership with the University of Akureyri (UNAK), Iceland Arctic Cooperation Network (IACN), and Caribbean Community Climate Change Centre (CCCCC) provides a foundation from which to engage students in applied research from the local to global levels and more clearly understand the many tenets of climate change impacts in the Arctic within both a global and local community context. The NAC3 project encompasses many facets, including joint international courses, student internships, economic development, service learning, and applied research. In its first phase, the project has generated myriad outcomes and opportunities for bridging STEM disciplines with other fields to holistically and collaboratively address specific human-environmental issues falling under the broad umbrella of climate change. WKU and UNAK students desire interaction and exposure to other cultures and regions that are threatened by climate change and Iceland presents a unique opportunity to study influences such as oceanic processes, island economies, sustainable harvest of fisheries, and Arctic influences on climate change. The project aims to develop a model to bring partners together to conduct applied research on the complex subject of global environmental change, particularly in the Arctic, while simultaneously focusing on changing how we learn, develop community, and engage internationally to understand the impacts and find solutions.

  5. Climate Change Education in Earth System Science

    NASA Astrophysics Data System (ADS)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  6. Preparing teachers to address climate change with project-based instructional modules

    NASA Astrophysics Data System (ADS)

    Powers, S. E.; DeWaters, J.; Small, M.; Dhaniyala, S.

    2012-12-01

    Clarkson University's Project-Based Global Climate Change Education project funded by NASA has created and disseminated several instructional modules for middle and high school teachers. The modules were developed by a team of teachers and university students and faculty. Fundamental to these inquiry-based modules are questions about climate change or mitigation efforts, use of real-world data to explore historical climate changes, and review of IPCC model results to understand predictions of further changes over the next century. As an example, the Climate Connections module requires middle school students to investigate a geographic region, learn about the culture and likely carbon footprint, and then acquire and analyze data sets of historical and predicted temperature changes. The findings are then interpreted in relation to the impact of these changes on the region's culture. NOAA, NASA, IPCC and DOE databases are used extensively. The inquiry approach and core content included in these modules are well aligned with the new Framework for K-12 Science Education. The climate change science in these modules covers aspects of the disciplinary core subjects (dimension 3) and most of the cross cutting concepts (dimension 2). Our approach for inquiry and analysis are also authentic ways to include most of the science and engineering practices (dimension 1) included in the framework. Dissemination of the modules to teachers in New York State has been a joint effort by NYSERDA (New York State Energy Research and Development Authority) and Clarkson. Half-day and full-day workshops and week-long institutes provided opportunities to either introduce the modules and the basics of finding and using temperature data, or delve into the science concepts and integration of the modules into an instructional plan. A significant challenge has been identified by the workshop instructors - many science teachers lack the skills necessary to fully engage in the science and engineering

  7. Wind power: Addressing wildlife impacts, assessing effects on tourism, and examining the link between climate change perceptions and support

    NASA Astrophysics Data System (ADS)

    Lilley, Meredith Blaydes

    As the world's most rapidly growing source of energy, wind power has vast potential for mitigating climate change and advancing global environmental sustainability. Yet, the challenges facing wind energy remain both complex and substantial. Two such challenges are: 1) wildlife impacts; and 2) perceived negative effects on tourism. This dissertation examines these challenges in a multi-paper format, and also investigates the role that climate change perceptions play in garnering public support for wind power. The first paper assesses optimal approaches for addressing wind power's wildlife impacts. Comparative analysis reveals that avian mortality from turbines ranks far behind avian mortality from a number of other anthropogenic sources. Additionally, although bats have recently emerged as more vulnerable to wind turbines than birds, they are generally less federally protected. The Migratory Bird Treaty Act (MBTA) protects over 800 bird species, regardless of their threatened or endangered status. Moreover, it criminalizes the incidental take of birds without a permit and simultaneously grants no permits for such incidental take, thereby creating a legal conundrum for the wind industry. An examination of the legislative and case history of the MBTA, however, reveals that wind operators are not likely to be prosecuted for incidental take if they cooperate with the U.S. Fish & Wildlife Service (FWS) and take reasonable steps to reduce siting and operational impacts. Furthermore, this study's analysis reveals modest wildlife impacts from wind power, in comparison with numerous other energy sources. Scientific-research, legal, and policy recommendations are provided to update the present legal and regulatory regime under the MBTA and to minimize avian and bat impacts. For instance, FWS should: establish comprehensive federal guidelines for wind facility siting, permitting, monitoring, and mitigation; and promulgate regulations under the MBTA for the issuance of

  8. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    NASA Astrophysics Data System (ADS)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  9. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    PubMed

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  10. Climate Sensitivity of the Community Climate System Model, Version 4

    SciTech Connect

    Bitz, Cecilia M.; Shell, K. M.; Gent, P. R.; Bailey, D. A.; Danabasoglu, G.; Armour, K. C.; Holland, M. M.; Kiehl, J. T.

    2012-05-01

    Equilibrium climate sensitivity of the Community Climate System Model Version 4 (CCSM4) is 3.20°C for 1° horizontal resolution in each component. This is about a half degree Celsius higher than in the previous version (CCSM3). The transient climate sensitivity of CCSM4 at 1° resolution is 1.72°C, which is about 0.2°C higher than in CCSM3. These higher climate sensitivities in CCSM4 cannot be explained by the change to a preindustrial baseline climate. We use the radiative kernel technique to show that from CCSM3 to CCSM4, the global mean lapse-rate feedback declines in magnitude, and the shortwave cloud feedback increases. These two warming effects are partially canceled by cooling due to slight decreases in the global mean water-vapor feedback and longwave cloud feedback from CCSM3 to CCSM4. A new formulation of the mixed-layer, slab ocean model in CCSM4 attempts to reproduce the SST and sea ice climatology from an integration with a full-depth ocean, and it is integrated with a dynamic sea ice model. These new features allow an isolation of the influence of ocean dynamical changes on the climate response when comparing integrations with the slab ocean and full-depth ocean. The transient climate response of the full-depth ocean version is 0.54 of the equilibrium climate sensitivity when estimated with the new slab ocean model version for both CCSM3 and CCSM4. We argue the ratio is the same in both versions because they have about the same zonal mean pattern of change in ocean surface heat flux, which broadly resembles the zonal mean pattern of net feedback strength.

  11. Climate Sensitivity of the Community Climate System Model, Version 4

    DOE PAGES

    Bitz, Cecilia M.; Shell, K. M.; Gent, P. R.; ...

    2012-05-01

    Equilibrium climate sensitivity of the Community Climate System Model Version 4 (CCSM4) is 3.20°C for 1° horizontal resolution in each component. This is about a half degree Celsius higher than in the previous version (CCSM3). The transient climate sensitivity of CCSM4 at 1° resolution is 1.72°C, which is about 0.2°C higher than in CCSM3. These higher climate sensitivities in CCSM4 cannot be explained by the change to a preindustrial baseline climate. We use the radiative kernel technique to show that from CCSM3 to CCSM4, the global mean lapse-rate feedback declines in magnitude, and the shortwave cloud feedback increases. These twomore » warming effects are partially canceled by cooling due to slight decreases in the global mean water-vapor feedback and longwave cloud feedback from CCSM3 to CCSM4. A new formulation of the mixed-layer, slab ocean model in CCSM4 attempts to reproduce the SST and sea ice climatology from an integration with a full-depth ocean, and it is integrated with a dynamic sea ice model. These new features allow an isolation of the influence of ocean dynamical changes on the climate response when comparing integrations with the slab ocean and full-depth ocean. The transient climate response of the full-depth ocean version is 0.54 of the equilibrium climate sensitivity when estimated with the new slab ocean model version for both CCSM3 and CCSM4. We argue the ratio is the same in both versions because they have about the same zonal mean pattern of change in ocean surface heat flux, which broadly resembles the zonal mean pattern of net feedback strength.« less

  12. Using management to address vegetation stress related to land-use and climate change

    USGS Publications Warehouse

    Middleton, Beth A.; Boudell, Jere; Fisichelli, Nicholas

    2017-01-01

    While disturbances such as fire, cutting, and grazing can be an important part of the conservation of natural lands, some adjustments to management designed to mimic natural disturbance may be necessary with ongoing and projected climate change. Stressed vegetation that is incapable of regeneration will be difficult to maintain if adults are experiencing mortality, and/or if their early life-history stages depend on disturbance. A variety of active management strategies employing disturbance are suggested, including resisting, accommodating, or directing vegetation change by manipulating management intensity and frequency. Particularly if land-use change is the main cause of vegetation stress, amelioration of these problems using management may help vegetation resist change (e.g. strategic timing of water release if a water control structure is available). Managers could direct succession by using management to push vegetation toward a new state. Despite the historical effects of management, some vegetation change will not be controllable as climates shift, and managers may have to accept some of these changes. Nevertheless, proactive measures may help managers achieve important conservation goals in the future.

  13. Climate Change and Health on the U.S. Gulf Coast: Public Health Adaptation is Needed to Address Future Risks

    PubMed Central

    Petkova, Elisaveta P.; Ebi, Kristie L.; Culp, Derrin; Redlener, Irwin

    2015-01-01

    The impacts of climate change on human health have been documented globally and in the United States. Numerous studies project greater morbidity and mortality as a result of extreme weather events and other climate-sensitive hazards. Public health impacts on the U.S. Gulf Coast may be severe as the region is expected to experience increases in extreme temperatures, sea level rise, and possibly fewer but more intense hurricanes. Through myriad pathways, climate change is likely to make the Gulf Coast less hospitable and more dangerous for its residents, and may prompt substantial migration from and into the region. Public health impacts may be further exacerbated by the concentration of people and infrastructure, as well as the region’s coastal geography. Vulnerable populations, including the very young, elderly, and socioeconomically disadvantaged may face particularly high threats to their health and well-being. This paper provides an overview of potential public health impacts of climate variability and change on the Gulf Coast, with a focus on the region’s unique vulnerabilities, and outlines recommendations for improving the region’s ability to minimize the impacts of climate-sensitive hazards. Public health adaptation aimed at improving individual, public health system, and infrastructure resilience is urgently needed to meet the challenges climate change may pose to the Gulf Coast in the coming decades. PMID:26270669

  14. Climate Change and Health on the U.S. Gulf Coast: Public Health Adaptation is Needed to Address Future Risks.

    PubMed

    Petkova, Elisaveta P; Ebi, Kristie L; Culp, Derrin; Redlener, Irwin

    2015-08-11

    The impacts of climate change on human health have been documented globally and in the United States. Numerous studies project greater morbidity and mortality as a result of extreme weather events and other climate-sensitive hazards. Public health impacts on the U.S. Gulf Coast may be severe as the region is expected to experience increases in extreme temperatures, sea level rise, and possibly fewer but more intense hurricanes. Through myriad pathways, climate change is likely to make the Gulf Coast less hospitable and more dangerous for its residents, and may prompt substantial migration from and into the region. Public health impacts may be further exacerbated by the concentration of people and infrastructure, as well as the region's coastal geography. Vulnerable populations, including the very young, elderly, and socioeconomically disadvantaged may face particularly high threats to their health and well-being. This paper provides an overview of potential public health impacts of climate variability and change on the Gulf Coast, with a focus on the region's unique vulnerabilities, and outlines recommendations for improving the region's ability to minimize the impacts of climate-sensitive hazards. Public health adaptation aimed at improving individual, public health system, and infrastructure resilience is urgently needed to meet the challenges climate change may pose to the Gulf Coast in the coming decades.

  15. Identifying and Addressing Infrastructure Vulnerabilities Under Climate Change in Data-Scarce Regions: the Role of Conservation

    NASA Astrophysics Data System (ADS)

    Shortridge, J.; Guikema, S.

    2015-12-01

    Climate change is expected to have dramatic impacts on built infrastructure, particularly in the water resources sector where infrastructure tends to have long lifespans and performance is highly sensitive to climate conditions. However, adapting to water resources infrastructure to climate change is challenging due to the considerable uncertainty surrounding projections of future hydrologic conditions. This has prompted the development of a number of approaches aimed at supporting planning under "deep-uncertainty" which cannot be represented probabilistically. One such method is robust decision making (RDM), which uses simulation models to assess how systems perform over a wide range of future scenarios and identify vulnerable scenarios where system performance is unacceptable. With the Lake Tana basin in Ethiopia as a case study, we use an RDM analysis to assess the vulnerability of planned irrigation infrastructure to climate change and environmental uncertainties related to data limitations. We find that planned infrastructure is vulnerable not only to climate change, but also to poorly characterized environmental conditions today. This suggests areas for research that could provide important insights into the long-term sustainability and effectiveness of the planned projects. Additionally, we evaluate the degree to which methods such as irrigation efficiency and upstream land conservation can improve the long-term performance of the proposed infrastructure. In doing so, we demonstrate how robust decision frameworks can provide decision support in data-scarce regions where more complex modeling and analysis may be impractical.

  16. Climate change: Cropping system changes and adaptations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change impacts the life of every person; however, there is little comprehensive understanding of the direct and indirect effects of climate change on agriculture. Since our food, feed, fiber, and fruit is derived from agricultural systems, understanding the effects of changing temperature, p...

  17. Prototype Expert System for Climate Classification.

    ERIC Educational Resources Information Center

    Harris, Clay

    Many students find climate classification laborious and time-consuming, and through their lack of repetition fail to grasp the details of classification. This paper describes an expert system for climate classification that is being developed at Middle Tennessee State University. Topics include: (1) an introduction to the nature of classification,…

  18. Associations between Climate Change and Natural Systems in Australia.

    NASA Astrophysics Data System (ADS)

    Chambers, Lynda E.

    2006-02-01

    In the 2001 Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report numerous studies of processes and species associated with regional temperature change were listed for the Northern Hemisphere (107 in North America, 458 in Europe, and 14 in Asia), but only a handful of studies for the Southern Hemisphere and, sadly, none for Australia were included. This article looks at the progress that Australia has made in addressing these knowledge gaps during the last three years. The article highlights the need for a national approach to the study of the associations between climate change and natural systems and suggests ways in which this could be achieved.

  19. Effectiveness and Tradeoffs between Portfolios of Adaptation Strategies Addressing Future Climate and Socioeconomic Uncertainties in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Tansey, M. K.; Van Lienden, B.; Das, T.; Munevar, A.; Young, C. A.; Flores-Lopez, F.; Huntington, J. L.

    2013-12-01

    into a suite of decision support tools to assess the impacts of future socioeconomic-climate uncertainties on key performance metrics for the CVP, State Water Project and other Central Valley water management systems under current regulatory requirements. Four thematic portfolios consisting of regional and local adaptation strategies including changes in reservoir operations, increased water conservation, storage and conveyance were developed and simulated to evaluate their potential effectiveness in meeting delivery reliability, water quality, environmental, hydropower, GHG, urban and agricultural economic performance criteria. The results indicate that the portfolios exhibit a considerable range of effectiveness depending on the socioeconomic-climate scenario. For most criteria, the portfolios were more sensitive to climate projections than socioeconomic assumptions. However, the results demonstrate that important tradeoffs occur between portfolios depending on the performance criteria considered.

  20. Climate data system supports FIRE

    NASA Technical Reports Server (NTRS)

    Olsen, Lola M.; Iascone, Dominick; Reph, Mary G.

    1990-01-01

    The NASA Climate Data System (NCDS) at Goddard Space Flight Center is serving as the FIRE Central Archive, providing a centralized data holding and data cataloging service for the FIRE project. NCDS members are carrying out their responsibilities by holding all reduced observations and data analysis products submitted by individual principal investigators in the agreed upon format, by holding all satellite data sets required for FIRE, by providing copies of any of these data sets to FIRE investigators, and by producing and updating a catalog with information about the FIRE holdings. FIRE researchers were requested to provide their reduced data sets in the Standard Data Format (SDF) to the FIRE Central Archive. This standard format is proving to be of value. An improved SDF document is now available. The document provides an example from an actual FIRE SDF data set and clearly states the guidelines for formatting data in SDF. NCDS has received SDF tapes from a number of investigators. These tapes were analyzed and comments provided to the producers. One product which is now available is William J. Syrett's sodar data product from the Stratocumulus Intensive Field Observation. Sample plots from all SDF tapes submitted to the archive will be available to FSET members. Related cloud products are also available through NCDS. Entries describing the FIRE data sets are being provided for the NCDS on-line catalog. Detailed information for the Extended Time Observations is available in the general FIRE catalog entry. Separate catalog entries are being written for the Cirrus Intensive Field Observation (IFO) and for the Marine Stratocumulus IFO. Short descriptions of each FIRE data set will be installed into the NCDS Summary Catalog.

  1. Management system, organizational climate and performance relationships

    NASA Technical Reports Server (NTRS)

    Davis, B. D.

    1979-01-01

    Seven aerospace firms were investigated to determine if a relationship existed among management systems, organizational climate, and organization performance. Positive relationships were found between each of these variables, but a statistically significant relationship existed only between the management system and organizational climate. The direction and amount of communication and the degree of decentralized decision-making, elements of the management system, also had a statistically significant realtionship with organization performance.

  2. The Global Climate Observing System. French contribution

    NASA Astrophysics Data System (ADS)

    Juvanon-Du-Vachat, R.

    2010-09-01

    THE GLOBAL CLIMATE OBSERVING SYSTEM. FRENCH CONTRIBUTION Régis Juvanon du Vachat Société Météorologique de France, c/o D2I/MI, 1, Quai Branly 75007 Paris France is participating fully in the Global Climate Observing System (GCOS). It incorporates the following four components: meteorological and atmospheric, oceanic, terrestrial, spatial, which will be briefly presented, especially in relation with the monitoring of the climate. The presentation will give an overview of the general principles governing the GCOS system and particularly the concepts used to maintain efficiently this climate observing system for a long period of time ("from research networks to operational networks"). The presentation will cover all the four components of the GCOS system. The whole report has been published in the Fifth National Communication from France to the UNFCCC (United Nations Framework Convention on Climate Change). The presentation will give an overview of the different networks of these four domains devoted to the monitoring of climate and maintained by France and highlighting the strengths and weaknesses of this climate observing system.

  3. REVIEW OF THE POTENTIAL OF NUCLEAR HYDROGEN FOR ADDRESSING ENERGY SECURITY AND CLIMATE CHANGE

    SciTech Connect

    James E. O'Brien

    2010-06-01

    Nuclear energy has the potential to exert a major positive impact on energy security and climate change by coupling it to the transportation sector, primarily through hydrogen production. In the short term, this coupling will provide carbon-free hydrogen for upgrading increasingly lower quality petroleum resources such as oil sands, offsetting carbon emissions associated with steam methane reforming. In the intermediate term, nuclear hydrogen will be needed for large-scale production of infrastructure-compatible synthetic liquid fuels. In the long term, there is great potential for the use of hydrogen as a direct vehicle fuel, most likely in the form of light-duty pluggable hybrid hydrogen fuel cell vehicles. This paper presents a review of the potential benefits of large-scale nuclear hydrogen production for energy security (i.e. displacing imported petroleum) and reduction of greenhouse gas emissions. Lifecycle benefits of nuclear energy in this context are presented, with reference to recent major publications on this topic. The status of US and international nuclear hydrogen research programs are discussed. Industry progress toward consumer-grade hydrogen fuel cell vehicles are also be examined.

  4. Farmers' Options to Address Water Scarcity in a Changing Climate: Case Studies from two Basins in Mediterranean Chile

    NASA Astrophysics Data System (ADS)

    Roco, Lisandro; Poblete, David; Meza, Francisco; Kerrigan, George

    2016-12-01

    Irrigated agriculture in Mediterranean areas faces tremendous challenges because of its exposure to hydroclimatic variability, increasing competition for water from different sectors, and the possibility of a climatic change. In this context, efficient management of water resources emerges as a critical issue. This requires the adoption of technological innovations, investment in infrastructure, adequate institutional arrangements, and informed decision makers. To understand farmers' perceptions and their implementation of climate change adaptation strategies with regards to water management, primary information was captured in the Limarí and Maule river basins in Chile. Farmers identified stressors for agriculture; climate change, droughts, and lack of water appeared as the most relevant stressors compared to others productive, economic, and institutional factors; revealing a rising relevance of climate related factors. While most producers perceived climate changes in recent years (92.9 %), a significant proportion (61.1 %) claim to have experienced drought, whereas only a fraction (31.9 %) have implemented a strategy to deal with this situation. Identified actions were classified in four groups: investments for water accumulation, modernization of irrigation systems, rationalization of water use, and partnership activities. Using a multinomial logit model these strategies were related to socioeconomic and productive characteristics. Results show that gender and farm size are relevant for investments, implementation and improvement of irrigation systems. For all the strategies described, access to weather information was a relevant element. The study provides empirical evidence of a recent increase in the importance assigned to climate factors by producers and adaptation options that can be supported by agricultural policy.

  5. Farmers' Options to Address Water Scarcity in a Changing Climate: Case Studies from two Basins in Mediterranean Chile.

    PubMed

    Roco, Lisandro; Poblete, David; Meza, Francisco; Kerrigan, George

    2016-12-01

    Irrigated agriculture in Mediterranean areas faces tremendous challenges because of its exposure to hydroclimatic variability, increasing competition for water from different sectors, and the possibility of a climatic change. In this context, efficient management of water resources emerges as a critical issue. This requires the adoption of technological innovations, investment in infrastructure, adequate institutional arrangements, and informed decision makers. To understand farmers' perceptions and their implementation of climate change adaptation strategies with regards to water management, primary information was captured in the Limarí and Maule river basins in Chile. Farmers identified stressors for agriculture; climate change, droughts, and lack of water appeared as the most relevant stressors compared to others productive, economic, and institutional factors; revealing a rising relevance of climate related factors. While most producers perceived climate changes in recent years (92.9 %), a significant proportion (61.1 %) claim to have experienced drought, whereas only a fraction (31.9 %) have implemented a strategy to deal with this situation. Identified actions were classified in four groups: investments for water accumulation, modernization of irrigation systems, rationalization of water use, and partnership activities. Using a multinomial logit model these strategies were related to socioeconomic and productive characteristics. Results show that gender and farm size are relevant for investments, implementation and improvement of irrigation systems. For all the strategies described, access to weather information was a relevant element. The study provides empirical evidence of a recent increase in the importance assigned to climate factors by producers and adaptation options that can be supported by agricultural policy.

  6. Developing Cohesive Leadership Means Addressing All Parts of the System

    ERIC Educational Resources Information Center

    Fisher, Troyce

    2010-01-01

    In her role with the School Administrators of Iowa leading Iowa's leadership grant from The Wallace Foundation, the author works with a coalition of individuals and groups striving to implement a cohesive leadership system for school leaders. Efforts to create a cohesive leadership system in Iowa for the past nine years have resulted in many…

  7. NASA's Systems Engineering Approaches for Addressing Public Health Surveillance Requirements

    NASA Technical Reports Server (NTRS)

    Vann, Timi

    2003-01-01

    NASA's systems engineering has its heritage in space mission analysis and design, including the end-to-end approach to managing every facet of the extreme engineering required for successful space missions. NASA sensor technology, understanding of remote sensing, and knowledge of Earth system science, can be powerful new tools for improved disease surveillance and environmental public health tracking. NASA's systems engineering framework facilitates the match between facilitates the match between partner needs and decision support requirements in the areas of 1) Science/Data; 2) Technology; 3) Integration. Partnerships between NASA and other Federal agencies are diagrammed in this viewgraph presentation. NASA's role in these partnerships is to provide systemic and sustainable solutions that contribute to the measurable enhancement of a partner agency's disease surveillance efforts.

  8. Climate Change: Federal Efforts Under Way to Assess Water Infrastructure Vulnerabilities and Address Adaptation Challenges

    DTIC Science & Technology

    2013-11-01

    navigation, flood and coastal storm damage reduction, hydropower , and water supply, among other things. Established in 1902, Reclamation constructed...Adaptation infrastructure, including reservoirs, hydropower facilities, commercial inland waterways, harbors, and levee systems. In June 2011, in response...following: navigation, flood and coastal storm damage reduction, environment, hydropower , regulatory, recreation, emergency management, and water

  9. Marine and Human Systems: Addressing Multiple Scales and Multiple Stressors

    NASA Astrophysics Data System (ADS)

    Hofmann, E. E.; Bundy, A.; Chuenpagdee, R.; Maddison, L.; Svendsen, E.

    2015-12-01

    The Integrated Marine Biogeochemistry and Ecosystem Research (IMBER) project aims to develop a comprehensive understanding of, and predictive capacity of ocean responses to accelerating global change and the consequent effects on the Earth System and human society. Understanding the changing ecology and biogeochemistry of marine ecosystems and their sensitivity and resilience to multiple drivers, pressures and stressors is critical to developing responses that will help reduce the vulnerability of marine-dependent human communities. The cumulative pressure of anthropogenic activities on marine systems is already apparent and is projected to increase in the next decades. Policy- and decision-makers need assessments of the status and trends of marine habitats, species, and ecosystems to promote sustainable human activities in the marine environment, particularly in light of global environmental change and changing social systems and human pressures. The IMBER community recently undertook a synthesis and evaluation of approaches for ecosystem-based marine governance, integrated modeling of marine social-ecological systems, and the social and ecological consequences of changing marine ecosystems. The outcomes of this activity provide assessments of current understanding, indicate approaches needed to predict the effects of multiple stressors, at multiple scales, on marine ecosystems and dependent human populations, and highlight approaches for developing innovative societal responses to changing marine ecosystems.

  10. 14 CFR 121.318 - Public address system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of the crewmember interphone system required by § 121.319, except for handsets, headsets, microphones... seat, has a microphone which is readily accessible to the seated flight attendant, except that one microphone may serve more than one exit, provided the proximity of the exits allows unassisted...

  11. 14 CFR 121.318 - Public address system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of the crewmember interphone system required by § 121.319, except for handsets, headsets, microphones... seat, has a microphone which is readily accessible to the seated flight attendant, except that one microphone may serve more than one exit, provided the proximity of the exits allows unassisted...

  12. 14 CFR 121.318 - Public address system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of the crewmember interphone system required by § 121.319, except for handsets, headsets, microphones... seat, has a microphone which is readily accessible to the seated flight attendant, except that one microphone may serve more than one exit, provided the proximity of the exits allows unassisted...

  13. 14 CFR 25.1423 - Public address system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of operation within 3 seconds from the time a microphone is removed from its stowage. (c) Be... so that no unused, unstowed microphone will render the system inoperative. (e) Be capable of... passenger emergency exit which has an adjacent flight attendant seat, have a microphone which is...

  14. 14 CFR 25.1423 - Public address system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of operation within 3 seconds from the time a microphone is removed from its stowage. (c) Be... so that no unused, unstowed microphone will render the system inoperative. (e) Be capable of... passenger emergency exit which has an adjacent flight attendant seat, have a microphone which is...

  15. 14 CFR 121.318 - Public address system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of the crewmember interphone system required by § 121.319, except for handsets, headsets, microphones... seat, has a microphone which is readily accessible to the seated flight attendant, except that one microphone may serve more than one exit, provided the proximity of the exits allows unassisted...

  16. 14 CFR 25.1423 - Public address system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of operation within 3 seconds from the time a microphone is removed from its stowage. (c) Be... so that no unused, unstowed microphone will render the system inoperative. (e) Be capable of... passenger emergency exit which has an adjacent flight attendant seat, have a microphone which is...

  17. 14 CFR 25.1423 - Public address system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of operation within 3 seconds from the time a microphone is removed from its stowage. (c) Be... so that no unused, unstowed microphone will render the system inoperative. (e) Be capable of... passenger emergency exit which has an adjacent flight attendant seat, have a microphone which is...

  18. 14 CFR 121.318 - Public address system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of the crewmember interphone system required by § 121.319, except for handsets, headsets, microphones... seat, has a microphone which is readily accessible to the seated flight attendant, except that one microphone may serve more than one exit, provided the proximity of the exits allows unassisted...

  19. Addressing Modeling Challenges in Cyber-Physical Systems

    DTIC Science & Technology

    2011-03-04

    A. Lee and Eleftherios Matsikoudis. The semantics of dataflow with firing. In Grard Huet, Gordon Plotkin, Jean - Jacques Lévy, and Yves Bertot...Computer-Aided Design of Integrated Circuits and Systems, 20(3), 2001. [12] Luca P. Carloni, Roberto Passerone, Alessandro Pinto , and Alberto Sangiovanni...gst/fullpage.html?res= 9504EFDA1738F933A2575AC0A9679C8B63. 20 [15] Abhijit Davare, Douglas Densmore, Trevor Meyerowitz, Alessandro Pinto , Alberto

  20. Discrete Address Beacon System (DABS) Baseline Test and Evaluation.

    DTIC Science & Technology

    1980-04-01

    provides a method for performing a full loop system check. The CPME is permanently installed at a surveyed location within the, coverage pattern of one or...13 4 ATCRBS/DABS Performance as a Function of Signal Strength 27 5 Probability of Detection of Clear Air Targets for 29 ATCRBS/DABS Targets in ATCRBS...Only and ATCRBS and DABS Mixed Fruit Environments 6 Probability of Detection 31 7 ATCRBS Mode A-Code/DABS ID Reliability 32 8 Altitude Reliability 34

  1. Addressing Inpatient Glycaemic Control with an Inpatient Glucometry Alert System

    PubMed Central

    Seheult, J. N.; Pazderska, A.; Gaffney, P.; Fogarty, J.; Sherlock, M.; Gibney, J.; Boran, G.

    2015-01-01

    Background. Poor inpatient glycaemic control has a prevalence exceeding 30% and results in increased length of stay and higher rates of hospital complications and inpatient mortality. The aim of this study was to improve inpatient glycaemic control by developing an alert system to process point-of-care blood glucose (POC-BG) results. Methods. Microsoft Excel Macros were developed for the processing of daily glucometry data downloaded from the Cobas IT database. Alerts were generated according to ward location for any value less than 4 mmol/L (hypoglycaemia) or greater than 15 mmol/L (moderate-severe hyperglycaemia). The Diabetes Team provided a weekday consult service for patients flagged on the daily reports. This system was implemented for a 60-day period. Results. There was a statistically significant 20% reduction in the percentage of hyperglycaemic patient-day weighted values >15 mmol/L compared to the preimplementation period without a significant change in the percentage of hypoglycaemic values. The time-to-next-reading after a dysglycaemic POC-BG result was reduced by 14% and the time-to-normalization of a dysglycaemic result was reduced from 10.2 hours to 8.4 hours. Conclusion. The alert system reduced the percentage of hyperglycaemic patient-day weighted glucose values and the time-to-normalization of blood glucose. PMID:26290664

  2. Workshop Builds Strategies to Address Global Positioning System Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Fisher, Genene

    2011-01-01

    When we examine the impacts of space weather on society, do we really understand the risks? Can past experiences reliably predict what will happen in the future? As the complexity of technology increases, there is the potential for it to become more fragile, allowing for a single point of failure to bring down the entire system. Take the Global Positioning System (GPS) as an example. GPS positioning, navigation, and timing have become an integral part of daily life, supporting transportation and communications systems vital to the aviation, merchant marine, cargo, cellular phone, surveying, and oil exploration industries. Everyday activities such as banking, mobile phone operations, and even the control of power grids are facilitated by the accurate timing provided by GPS. Understanding the risks of space weather to GPS and the many economic sectors reliant upon it, as well as how to build resilience, was the focus of a policy workshop organized by the American Meteorological Society (AMS) and held on 13-14 October 2010 in Washington, D. C. The workshop brought together a select group of policy makers, space weather scientists, and GPS experts and users.

  3. Integrated wireless systems: The future has arrived (Keynote Address)

    NASA Astrophysics Data System (ADS)

    Rivoir, Roberto

    2005-06-01

    It is believed that we are just at the beginning with wireless, and that a new age is dawning for this breakthrough technology. Thanks to several years of industrial manufacturing in mass-market applications such as cellular phones, wireless technology has nowadays reached a level of maturity that, combined with other achievements arising from different fields, such as information technology, artificial intelligence, pervasive computing, science of new materials, and micro-electro-mechanical systems (MEMS), will enable the realization of a networked stream-flow of real-time information, that will accompany us in our daily life, in a total seamless, transparent fashion. As almost any application scenario will require the deployment of complex, miniaturized, almost "invisible" systems, operating with different wireless standards, hard technological challenges will have to be faced for designing and fabricating ultra-low-cost, reconfigurable, and multi-mode heterogeneous smart micro-devices. But ongoing, unending progresses on wireless technology keeps the promise of helping to solve important societal problems in the health-care, safety, security, industry, environment sectors, and in general opening the possibility for an improved quality of life at work, on travel, at home, practically "everywhere, anytime".

  4. Integrated Information Systems Across the Weather-Climate Continuum

    NASA Astrophysics Data System (ADS)

    Pulwarty, R. S.; Higgins, W.; Nierenberg, C.; Trtanj, J.

    2015-12-01

    The increasing demand for well-organized (integrated) end-to-end research-based information has been highlighted in several National Academy studies, in IPCC Reports (such as the SREX and Fifth Assessment) and by public and private constituents. Such information constitutes a significant component of the "environmental intelligence" needed to address myriad societal needs for early warning and resilience across the weather-climate continuum. The next generation of climate research in service to the nation requires an even more visible, authoritative and robust commitment to scientific integration in support of adaptive information systems that address emergent risks and inform longer-term resilience strategies. A proven mechanism for resourcing such requirements is to demonstrate vision, purpose, support, connection to constituencies, and prototypes of desired capabilities. In this presentation we will discuss efforts at NOAA, and elsewhere, that: Improve information on how changes in extremes in key phenomena such as drought, floods, and heat stress impact management decisions for resource planning and disaster risk reduction Develop regional integrated information systems to address these emergent challenges, that integrate observations, monitoring and prediction, impacts assessments and scenarios, preparedness and adaptation, and coordination and capacity-building. Such systems, as illustrated through efforts such as NIDIS, have strengthened the integration across the foundational research enterprise (through for instance, RISAs, Modeling Analysis Predictions and Projections) by increasing agility for responding to emergent risks. The recently- initiated Climate Services Information System, in support of the WMO Global Framework for Climate Services draws on the above models and will be introduced during the presentation.

  5. Addressing Human System Risks to Future Space Exploration

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Francisco, D. R.; Davis, J. R.

    2015-01-01

    NASA is contemplating future human exploration missions to destinations beyond low Earth orbit, including the Moon, deep-space asteroids, and Mars. While we have learned much about protecting crew health and performance during orbital space flight over the past half-century, the challenges of these future missions far exceed those within our current experience base. To ensure success in these missions, we have developed a Human System Risk Board (HSRB) to identify, quantify, and develop mitigation plans for the extraordinary risks associated with each potential mission scenario. The HSRB comprises research, technology, and operations experts in medicine, physiology, psychology, human factors, radiation, toxicology, microbiology, pharmacology, and food sciences. Methods: Owing to the wide range of potential mission characteristics, we first identified the hazards to human health and performance common to all exploration missions: altered gravity, isolation/confinement, increased radiation, distance from Earth, and hostile/closed environment. Each hazard leads to a set of risks to crew health and/or performance. For example the radiation hazard leads to risks of acute radiation syndrome, central nervous system dysfunction, soft tissue degeneration, and carcinogenesis. Some of these risks (e.g., acute radiation syndrome) could affect crew health or performance during the mission, while others (e.g., carcinogenesis) would more likely affect the crewmember well after the mission ends. We next defined a set of design reference missions (DRM) that would span the range of exploration missions currently under consideration. In addition to standard (6-month) and long-duration (1-year) missions in low Earth orbit (LEO), these DRM include deep space sortie missions of 1 month duration, lunar orbital and landing missions of 1 year duration, deep space journey and asteroid landing missions of 1 year duration, and Mars orbital and landing missions of 3 years duration. We then

  6. Regional Water System Vulnerabilities and Strengths for Unavoidable Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.; Palaniappan, M.; Christian-Smith, J.; Cooley, H.

    2011-12-01

    A wide range of options are available to help water systems prepare and adapt for unavoidable climate impacts, but these options vary depending on region, climatic conditions, economic status, and technical infrastructure in place. Drawing on case studies from the United States, India, and elsewhere, and from both urban and agricultural water systems, risks to water supply and quality are evaluated and summarized and categories of responses to help improve the effectiveness of adaptation policies are reviewed. Among the issues to be discussed are characteristics unique to developing country cities, such as the predominance of informal actors in the water sector. The formal, or government sector, which often exclusively manages water access and distribution in developed country cities, is only one among many players in the water sector in developing country cities. Informal access to water includes direct access by individuals through private groundwater systems, private water markets using vendors or sales of bottled water, and rainwater harvesting systems on individual homes. In this environment, with already existing pressures on water availability and use, the impacts of climate change on water will be strongly felt. This complicates planning for water supply and demand and risks increasing already prevalent water insecurity, especially for urban poor. In wealthier countries, any planning for water-related climate impacts tends to take the form of "business as usual" responses, such as efforts to expand supply with new infrastructure, manage demand through conservation programs, or simply put off addressing the problem to the next generation of managers and users. These approaches can be effective, but also risk missing unusual, non-linear, or threshold impacts. Examples of more informed and innovative efforts to substantively address climate change risks will be presented.

  7. Climate change impacts on food system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  8. The Community Climate System Model: CCSM3

    SciTech Connect

    Collins, W D; Blackmon, M; Bitz, C; Bonan, G; Bretherton, C S; Carton, J A; Chang, P; Doney, S; Hack, J J; Kiehl, J T; Henderson, T; Large, W G; McKenna, D; Santer, B D; Smith, R D

    2004-12-27

    A new version of the Community Climate System Model (CCSM) has been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for atmosphere and land and a 1-degree grid for ocean and sea-ice. The new system incorporates several significant improvements in the scientific formulation. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land-atmosphere fluxes, ocean mixed-layer processes, and sea-ice dynamics. There are significant improvements in the sea-ice thickness, polar radiation budgets, equatorial sea-surface temperatures, ocean currents, cloud radiative effects, and ENSO teleconnections. CCSM3 can produce stable climate simulations of millenial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean-atmosphere fluxes in western coastal regions, the spectrum of ENSO variability, the spatial distribution of precipitation in the Pacific and Indian Oceans, and the continental precipitation and surface air temperatures. We conclude with the prospects for extending CCSM to a more comprehensive model of the Earth's climate system.

  9. Climate Observing System Simulation Experiments: Understanding what we have and what we need

    NASA Astrophysics Data System (ADS)

    Weatherhead, E. C.

    2015-12-01

    Observations to monitor the climate and to support climate research are critical to advancing the science of climate change. Some parameters appear to be well monitored, while in other cases, our understanding is directly limited by the lack of quality observations. Detecting trends, attributing change and understanding climate feedbacks require a variety of observations. Making use of historical datasets, we can identify the most critical needs for continued and new observing systems. Decisions about accuracy, spatial resolution, and temporal frequency need to be made judiciously with a careful analysis of the requirements needed to specific scientific questions. This presentation will show initial results from comparing natural variability to the specific questions of detecting trends and addressing climate feedback questions. Combining the high resolution weather Observing System Simulation Exkperiments with the longer timescale needs of climate research, we can make responsible recommendations on future observing systems as well as identify the necessary continuation of existing observing systems.

  10. Urbanism, climate change and health: systems approaches to governance.

    PubMed

    Capon, Anthony G; Synnott, Emma S; Holliday, Sue

    2009-01-01

    Effective action on climate change health impacts and vulnerability will require systems approaches and integrated policy and planning responses from a range of government agencies. Similar responses are needed to address other complex problems, such as the obesity epidemic. Local government, with its focus on the governance of place, will have a key role in responding to these convergent agendas. Industry can also be part of the solution - indeed it must be, because it has a lead role in relevant sectors. Understanding the co-benefits for health of climate mitigation actions will strengthen the case for early action. There is a need for improved decision support tools to inform urban governance. These tools should be based on a systems approach and should incorporate a spatial perspective.

  11. Workshop 3 (synthesis): climate variability, water systems and management options.

    PubMed

    Connor, R; Kuylenstierna, J

    2004-01-01

    Addressing climate variability now will better prepare us for future impacts of climate change. Sustained, multi-stakeholder dialogue at local through national levels is an approach that will reach the widest audience, helped by tools that illustrate vulnerability such as the Climate Vulnerability Index. Integrated water resources management deals with managing for variability and change and is therefore highly appropriate for dealing with climate impacts.

  12. Climate change mitigation through livestock system transitions

    PubMed Central

    Havlík, Petr; Valin, Hugo; Herrero, Mario; Obersteiner, Michael; Schmid, Erwin; Rufino, Mariana C.; Mosnier, Aline; Thornton, Philip K.; Böttcher, Hannes; Conant, Richard T.; Frank, Stefan; Fritz, Steffen; Fuss, Sabine; Kraxner, Florian; Notenbaert, An

    2014-01-01

    Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y−1), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y−1. Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y−1 could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient—measured in “total abatement calorie cost”—than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes. PMID:24567375

  13. Climate change mitigation through livestock system transitions.

    PubMed

    Havlík, Petr; Valin, Hugo; Herrero, Mario; Obersteiner, Michael; Schmid, Erwin; Rufino, Mariana C; Mosnier, Aline; Thornton, Philip K; Böttcher, Hannes; Conant, Richard T; Frank, Stefan; Fritz, Steffen; Fuss, Sabine; Kraxner, Florian; Notenbaert, An

    2014-03-11

    Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y(-1)), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y(-1). Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y(-1) could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient--measured in "total abatement calorie cost"--than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes.

  14. Evaluation of the Australian Community Climate and Earth-System Simulator Chemistry-Climate Model

    NASA Astrophysics Data System (ADS)

    Stone, K. A.; Morgenstern, O.; Karoly, D. J.; Klekociuk, A. R.; French, W. J. R.; Abraham, N. L.; Schofield, R.

    2015-07-01

    Chemistry climate models are important tools for addressing interactions of composition and climate in the Earth System. In particular, they are used for assessing the combined roles of greenhouse gases and ozone in Southern Hemisphere climate and weather. Here we present an evaluation of the Australian Community Climate and Earth System Simulator-Chemistry Climate Model, focusing on the Southern Hemisphere and the Australian region. This model is used for the Australian contribution to the international Chemistry-Climate Model Initiative, which is soliciting hindcast, future projection and sensitivity simulations. The model simulates global total column ozone (TCO) distributions accurately, with a slight delay in the onset and recovery of springtime Antarctic ozone depletion, and consistently higher ozone values. However, October averaged Antarctic TCO from 1960 to 2010 show a similar amount of depletion compared to observations. A significant innovation is the evaluation of simulated vertical profiles of ozone and temperature with ozonesonde data from Australia, New Zealand and Antarctica from 38 to 90° S. Excess ozone concentrations (up to 26.4 % at Davis during winter) and stratospheric cold biases (up to 10.1 K at the South Pole) outside the period of perturbed springtime ozone depletion are seen during all seasons compared to ozonesondes. A disparity in the vertical location of ozone depletion is seen: centered around 100 hPa in ozonesonde data compared to above 50 hPa in the model. Analysis of vertical chlorine monoxide profiles indicates that colder Antarctic stratospheric temperatures (possibly due to reduced mid-latitude heat flux) are artificially enhancing polar stratospheric cloud formation at high altitudes. The models inability to explicitly simulated supercooled ternary solution may also explain the lack of depletion at lower altitudes. The simulated Southern Annular Mode (SAM) index compares well with ERA-Interim data. Accompanying these

  15. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    SciTech Connect

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  16. Diagnosing turnover times of carbon in terrestrial ecosystems to address global climate co-variability and for model evaluation

    NASA Astrophysics Data System (ADS)

    Carvalhais, Nuno; Thurner, Martin; Forkel, Matthias; Beer, Christian; Reichstein, Markus

    2016-04-01

    The response of the global terrestrial carbon cycle to climate change and the associated climate-carbon feedback has been shown to be highly uncertain. Ultimately this response depends on how carbon assimilation by vegetation changes relatively to the effective mean turnover time of carbon in vegetation and soils. Consequently, these turnover times of carbon are expected to depend on vegetation longevity and relative allocation to woody and non-woody biomass, and to litter and soil organic matter decomposition rates, which depend on climate variables, but also soil properties, biological activity and chemical composition of the litter. Data oriented estimates of whole ecosystem carbon turnover rates (τ) are based on global datasets of carbon stocks and fluxes and used to diagnose the co-variability of τ with climate. The overall mean global carbon turnover time estimated is 23 years (with 95% confidence intervals between 19 and 30 years), showing a strong spatial variability ranging from 15 years in equatorial regions to 255 years at latitudes north of 75°N. This latitudinal pattern reflects the expected dependencies of metabolic activity and ecosystem dynamics to temperature. However, a strong local correlation of τ with mean annual precipitation patterns is at least as prevalent as the expected effect of temperature on the global patterns of τ. The comparing between observation-based estimates of τ with current state-of-the-art Earth system models shows a consistent latitudinal pattern but a significant underestimation bias of ˜36% globally. Models consistently show a stronger association of τ to temperature and do not reproduce the observed association to mean annual precipitation in different latitudinal bands. A further breakdown of τ focusing on forest background mortality also shows contrasting regional patterns to those of global vegetation models, suggesting that the treatment of plant mortality may be overly simplistic in different model

  17. Shining India?: Assessing and addressing the risks from an unsustainable trajectory of climate, water, food, energy and income inequity

    NASA Astrophysics Data System (ADS)

    Lall, U.

    2012-12-01

    Climate and demographics are primary drivers of regional resource sustainability. In today's global economy, increasing trade has provided a mechanism to alleviate regional stresses. However, increasing regional income promotes consumption, aggravating regional and global resource pressures. South Asia, has the highest population density at a sub-continent scale. Given its monsoonal climate, and high intensity of agriculture it faces perhaps the most severe population weighted water stress in the world. Rapidly declining groundwater tables and the associated high energy use for pumping for irrigated agriculture translate into unsustainable energy imports and expenditure that contributed to the two largest blackouts in global history in summer 2012. Access to water has been progressively declining for both rural and urban populations for the last 3 decades. The increasing energy imports and poor grid reliability translate into limits to the growth of manufacturing and exports of goods and services. The growing income inequity within the population and across national borders, and the impacts of floods and droughts on access to water, food and energy collectively suggest a very high risk for social unrest and a conflict flashpoint. I present a scenario analysis that establishes this case for the emergence of internal and external strife in the region as an outcome of the current resource and natural disaster management policies in the region. Prospects for strategic policy changes for water and energy management and the design of a food procurement and distribution system that could lead to a better future are discussed.

  18. The climate system as a ticking clock

    SciTech Connect

    Kerr, R.A.

    1990-09-14

    Climate researchers are picking up a more or less regular 2-year beat to the global climate system - one that seems to be heard from every quarter. The most recently discovered example of this climatic ticking - and perhaps the most intriguing - comes from the very core of El Nino. Researchers have found that some aspects of this cycle of alternating warm and relatively cold waters along the equatorial Pacific have a tendency to repeat every 2 years. The overlying winds pulsate at the same pace, as do the globe-girdling effects of the El Nino cycle, from winter warmth in Alaska to heavy rains in Peru and drought in Australia. The climatic ticking in the tropical Pacific is hardly as reliable as the changing of the seasons. Sometimes it is muted, and occasionally it skips a beat. But some researchers nevertheless see hope of using it in the prediction of El Nino and its global effects. In any case, climate researchers are eager to determine what makes El Nino tick. The answer could be an underlying pacemaker of this crucial atmospheric cycle.

  19. Analysis of Connected Climate Systems via Deconvolution

    NASA Astrophysics Data System (ADS)

    Kazemzadeh-Atoufi, M. B.; Reischmann, E.; Rial, J. A.

    2015-12-01

    Deconvolution is a technique most often used in signal and image processing to remove the effects of a system's impulse response and recreate the input signal from a given output. In the context of paleoclimate, deconvolution by spectral division has been used to recover the climate system's impulse response, also known as its transfer function, given the δ18O time series record of the north pole as the input and the south as the output (or vice versa). The working hypothesis of polar synchronization justifies the use of deconvolution methods. Various regularization approaches and spectral analysis show a clear connection of millennial scale periodicity linking the polar climates over the past 100,000 years. Tests of spectral peak consistency across regularization factors and of peak validity indicate that the connection is a result of the data and is not an artifact of the method used. Deconvolution can be applied to other linearly connected climate systems including teleconnected systems. Sea surface temperature dipoles found in the North Atlantic Ocean basin, for example, also display potentially geographically linked features, and correlation between the dipoles themselves suggests synchronization of adjacent dipoles. Having identified this system of synchronized variations with linear phase relations, deconvolution methods can be used to investigate potential transfer functions across different scales.

  20. Online Mapping Systems for Climate Data Delivery

    NASA Astrophysics Data System (ADS)

    Gray, S. T.; Nicholson, C. M.; Bergantino, A. R.

    2009-12-01

    Online, map-based applications have experienced an explosion in popularity over the past decade. The success of these systems is largely due to their ability to provide a spatial framework data exploration, and for the visual context (e.g., satellite images) they offer. Here we detail the development of a new online mapping system for Wyoming that will serve as a portal for the delivery of weather, climate, and water-related data for users across the state. While capitalizing on the success of previous online mapping efforts, this new system also highlights the potential for additional applications and functionality. Known as the Wyoming Internet Map Server (WyoIMS), the system brings together real-time observations and summary products from multiple federal agencies (NOAA-NWS, NRCS, USGS) to provide “one-stop-shopping” for key climatic datasets. Likewise this system is providing a platform for data delivery, archiving, and QC/QA as part of a new statewide hydroclimatic monitoring network. Moving beyond the simple transfer of data, this system also allows users to access information from resources that include state libraries and various databases that contain information related to climate and water resources. Users can, for example, select individual counties, watersheds, irrigation districts, or municipalities and download a wide range of documents and reports specific to those locations. On the whole, WyoIMS has become a catalyst for the development of new climate-related products, and a foundation for decision support with applications in water resources, wildlife management, and agriculture.

  1. Addressing capability computing challenges of high-resolution global climate modelling at the Oak Ridge Leadership Computing Facility

    NASA Astrophysics Data System (ADS)

    Anantharaj, Valentine; Norman, Matthew; Evans, Katherine; Taylor, Mark; Worley, Patrick; Hack, James; Mayer, Benjamin

    2014-05-01

    During 2013, high-resolution climate model simulations accounted for over 100 million "core hours" using Titan at the Oak Ridge Leadership Computing Facility (OLCF). The suite of climate modeling experiments, primarily using the Community Earth System Model (CESM) at nearly 0.25 degree horizontal resolution, generated over a petabyte of data and nearly 100,000 files, ranging in sizes from 20 MB to over 100 GB. Effective utilization of leadership class resources requires careful planning and preparation. The application software, such as CESM, need to be ported, optimized and benchmarked for the target platform in order to meet the computational readiness requirements. The model configuration needs to be "tuned and balanced" for the experiments. This can be a complicated and resource intensive process, especially for high-resolution configurations using complex physics. The volume of I/O also increases with resolution; and new strategies may be required to manage I/O especially for large checkpoint and restart files that may require more frequent output for resiliency. It is also essential to monitor the application performance during the course of the simulation exercises. Finally, the large volume of data needs to be analyzed to derive the scientific results; and appropriate data and information delivered to the stakeholders. Titan is currently the largest supercomputer available for open science. The computational resources, in terms of "titan core hours" are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) and ASCR Leadership Computing Challenge (ALCC) programs, both sponsored by the U.S. Department of Energy (DOE) Office of Science. Titan is a Cray XK7 system, capable of a theoretical peak performance of over 27 PFlop/s, consists of 18,688 compute nodes, with a NVIDIA Kepler K20 GPU and a 16-core AMD Opteron CPU in every node, for a total of 299,008 Opteron cores and 18,688 GPUs offering a cumulative 560

  2. Pilot climate data system user's guide

    NASA Technical Reports Server (NTRS)

    Reph, M. G.; Treinish, L. A.; Bloch, L.

    1984-01-01

    Instructions for using the Pilot Climate Data System (PCDS), an interactive, scientific data management system for locating, obtaining, manipulating, and displaying climate-research data are presented. The PCDS currently provides this supoort for approximately twenty data sets. Figures that illustrate the terminal displays which a user sees when he/she runs the PCDS and some examples of the output from this system are included. The capabilities which are described in detail allow a user to perform the following: (1) obtain comprehensive descriptions of a number of climate parameter data sets and the associated sensor measurements from which they were derived; (2) obtain detailed information about the temporal coverage and data volume of data sets which are readily accessible via the PCDS; (3) extract portions of a data set using criteria such as time range and geographic location, and output the data to tape, user terminal, system printer, or online disk files in a special data-set-independent format; (4) access and manipulate the data in these data-set-independent files, performing such functions as combining the data, subsetting the data, and averaging the data; and (5) create various graphical representations of the data stored in the data-set-independent files.

  3. Network of Networks and the Climate System

    NASA Astrophysics Data System (ADS)

    Kurths, Jürgen; Boers, Niklas; Bookhagen, Bodo; Donges, Jonathan; Donner, Reik; Malik, Nishant; Marwan, Norbert; Stolbova, Veronika

    2013-04-01

    Network of networks is a new direction in complex systems science. One can find such networks in various fields, such as infrastructure (power grids etc.), human brain or Earth system. Basic properties and new characteristics, such as cross-degree, or cross-betweenness will be discussed. This allows us to quantify the structural role of single vertices or whole sub-networks with respect to the interaction of a pair of subnetworks on local, mesoscopic, and global topological scales. Next, we consider an inverse problem: Is there a backbone-like structure underlying the climate system? For this we propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system. This technique is then applied to 3-dimensional data of the climate system. We interpret different heights in the atmosphere as different networks and the whole as a network of networks. This approach enables us to uncover relations to global circulation patterns in oceans and atmosphere. The global scale view on climate networks offers promising new perspectives for detecting dynamical structures based on nonlinear physical processes in the climate system. This concept is applied to Indian Monsoon data in order to characterize the regional occurrence of strong rain events and its impact on predictability. References: Arenas, A., A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Phys. Reports 2008, 469, 93. Donges, J., Y. Zou, N. Marwan, and J. Kurths, Europhys. Lett. 2009, 87, 48007. Donner, R., Y. Zou, J. Donges, N. Marwan, and J. Kurths, Phys. Rev. E 2010, 81, 015101(R ). Mokhov, I. I., D. A. Smirnov, P. I. Nakonechny, S. S. Kozlenko, E. P. Seleznev, and J. Kurths, Geophys. Res. Lett. 2011, 38, L00F04. Malik, N., B. Bookhagen, N. Marwan, and J. Kurths, Climate Dynamics, 2012, 39, 971. Donges, J., H. Schultz, N. Marwan, Y. Zou, J. Kurths, Eur. J. Phys. B 2011, 84, 635-651. Donges, J., R. Donner, M. Trauth, N. Marwan, H.J. Schellnhuber, and J. Kurths

  4. Climate Outreach Using Regional Coastal Ocean Observing System Portals

    NASA Astrophysics Data System (ADS)

    Anderson, D. M.; Hernandez, D. L.; Wakely, A.; Bochenek, R. J.; Bickel, A.

    2015-12-01

    Coastal oceans are dynamic, changing environments affected by processes ranging from seconds to millennia. On the east and west coast of the U.S., regional observing systems have deployed and sustained a remarkable diverse array of observing tools and sensors. Data portals visualize and provide access to real-time sensor networks. Portals have emerged as an interactive tool for educators to help students explore and understand climate. Bringing data portals to outreach events, into classrooms, and onto tablets and smartphones enables educators to address topics and phenomena happening right now. For example at the 2015 Charleston Science Technology Engineering and Math (STEM) Festival, visitors navigated the SECOORA (Southeast Coastal Ocean Observing regional Association) data portal to view the real-time marine meteorological conditions off South Carolina. Map-based entry points provide an intuitive interface for most students, an array of time series and other visualizations depict many of the essential principles of climate science manifest in the coastal zone, and data down-load/ extract options provide access to the data and documentation for further inquiry by advanced users. Beyond the exposition of climate principles, the portal experience reveals remarkable technologies in action and shows how the observing system is enabled by the activity of many different partners.

  5. Variable temperature seat climate control system

    DOEpatents

    Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.

    1997-05-06

    A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.

  6. The Heartbeat of the Oligocene Climate System

    NASA Astrophysics Data System (ADS)

    Pälike, Heiko; Norris, Richard D.; Herrle, Jens O.; Wilson, Paul A.; Coxall, Helen K.; Lear, Caroline H.; Shackleton, Nicholas J.; Tripati, Aradhna K.; Wade, Bridget S.

    2006-12-01

    A 13-million-year continuous record of Oligocene climate from the equatorial Pacific reveals a pronounced “heartbeat” in the global carbon cycle and periodicity of glaciations. This heartbeat consists of 405,000-, 127,000-, and 96,000-year eccentricity cycles and 1.2-million-year obliquity cycles in periodically recurring glacial and carbon cycle events. That climate system response to intricate orbital variations suggests a fundamental interaction of the carbon cycle, solar forcing, and glacial events. Box modeling shows that the interaction of the carbon cycle and solar forcing modulates deep ocean acidity as well as the production and burial of global biomass. The pronounced 405,000-year eccentricity cycle is amplified by the long residence time of carbon in the oceans.

  7. Three Connected Climate Education Interactives: Carbon Cycle, Earth System Energy Flows, and Climate Change Impacts/Adaptations

    NASA Astrophysics Data System (ADS)

    Sussman, A.

    2015-12-01

    The Pacific Islands Climate Education Partnership (PCEP) serves the U.S. Affiliated Pacific Island (USAPI) Region. The international entities served by PCEP are the state of Hawai'i (USA); three Freely Associated States (the Federated States of Micronesia, the Republic of the Marshall Islands, and the Republic of Palau), and three Territories (Guam, Commonwealth of Northern Mariana Islands, and American Samoa). Funded by NSF, the PCEP aims to educate the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and focus on adaptation strategies that can increase resiliency with respect to climate change impacts. Unfortunately the vast majority of the science texts used in schools come from the US mainland and feature contexts that do not relate to the lives of Pacific island students. The curricular materials also tend to be older and to have very weak climate science content, especially with respect to tropical islands and climate change. In collaboration with public broadcast station WGBH, PCEP has developed three climate education interactives that sequentially provide an introduction to key climate change education concepts. The first in the series focuses on the global carbon cycle and connects increased atmospheric CO2 with rising global temperatures. The second analyzes Earth system energy flows to explain the key role of the increased greenhouse effect. The third focuses on four climate change impacts (higher temperatures, rising sea level, changes in precipitation, and ocean acidification), and adaptation strategies to increase resiliency of local ecosystems and human systems. While the interactives have a Pacific island visual and text perspective, they are broadly applicable for other education audiences. Learners can use the interactives to engage with the basic science concepts, and then apply the climate change impacts to their own contexts.

  8. Chemistry and Climate in Asia - An Earth System Modeling Project

    NASA Astrophysics Data System (ADS)

    Barth, M. C.; Emmons, L. K.; Massie, S. T.; Pfister, G.; Romero Lankao, P.; Lamarque, J.; Carmichael, G. R.

    2011-12-01

    Asia is one of the most highly populated and economically dynamic regions in the world, with much of the population located in growing mega-cities. It is a region with significant emissions of greenhouse gases, aerosols and other pollutants, which pose high health risks to urban populations. Emissions of these aerosols and gases increased drastically over the last decade due to economic growth and urbanization and are expected to rise further in the near future. As such, the continent plays a role in influencing climate change via its effluent of aerosols and gaseous pollutants. Asia is also susceptible to adverse climate change through interactions between aerosols and clouds, which potentially can have serious implications for freshwater resources. We are developing an integrated inter-disciplinary program to focus on Asia, its climate, air quality, and impact on humans that will include connections with hydrology, ecosystems, extreme weather events, and human health. The primary goal of this project is to create a team to identify key scientific questions and establish networks of specialists to create a plan for future studies to address these questions. A second goal is to establish research facilities and a framework for investigating chemistry and climate over Asia. These facilities include producing high resolution Earth System Model simulations that have been evaluated with meteorological and chemical measurements, producing high-resolution emission inventories, analyzing satellite data, and analyzing the vulnerability of humans to air quality and extreme natural events. In this presentation we will describe in more detail these activities and discuss a future workshop on the impact of chemistry in climate on air quality and human health.

  9. A phenomenographic study of the ability to address complex socio-technical systems via variation theory

    NASA Astrophysics Data System (ADS)

    Mendoza Garcia, John A.

    Sometimes engineers fail when addressing the inherent complexity of socio-technical systems because they lack the ability to address the complexity of socio-technical systems. Teaching undergraduate engineering students how to address complex socio-technical systems, has been an educational endeavor at different levels ranging from kindergarten to post-graduate education. The literature presents different pedagogical strategies and content to reach this goal. However, there are no existing empirically-based assessments guided by a learning theory. This may be because at the same time explanations of how the skill is developed are scarce. My study bridges this gap, and I propose a developmental path for the ability to address the complex socio-technical systems via Variation Theory, and according to the conceptual framework provided by Variation Theory, my research question was "What are the various ways in which engineers address complex socio-technical systems?" I chose the research approach of phenomenography to answer my research question. I also chose to use a blended approach, Marton's approach for finding the dimensions of variation, and the developmental approach (Australian) for finding a hierarchical relationship between the dimensions. Accordingly, I recruited 25 participants with different levels of experience with addressing complex socio-technical systems and asked them all to address the same two tasks: A design of a system for a county, and a case study in a manufacturing firm. My outcome space is a nona-dimensional (nine) developmental path for the ability to address the complexity in socio-technical systems, and I propose 9 different ways of experiencing the complexity of a socio-technical system. The findings of this study suggest that the critical aspects that are needed to address the complexity of socio-technical systems are: being aware of the use of models, the ecosystem around, start recognizing different boundaries, being aware of time as a

  10. Organizational Climate Assessment: a Systemic Perspective

    NASA Astrophysics Data System (ADS)

    Argentero, Piergiorgio; Setti, Ilaria

    A number of studies showed how the set up of an involving and motivating work environment represents a source for organizational competitive advantage: in this view organizational climate (OC) research occupies a preferred position in current I/O psychology. The present study is a review carried out to establish the breadth of the literature on the characteristics of OC assessment considered in a systemic perspective. An organization with a strong climate is a work environment whose members have similar understanding of the norms and practices and share the same expectations. OC should be considered as a sort of emergent entity and, as such, it can be studied only within a systemic perspective because it is linked with some organizational variables, in terms of antecedents (such as the organization's internal structure and its environmental features) and consequences (such as job performance, psychological well-being and withdrawal) of the climate itself. In particular, when employees have a positive view of their organizational environment, consistently with their values and interests, they are more likely to identify their personal goals with those of the organization and, in turn, to invest a greater effort to pursue them: the employees' perception of the organizational environment is positively related to the key outcomes such as job involvement, effort and performance. OC analysis could also be considered as an effective Organizational Development (OD) tool: in particular, the Survey Feedback, that is the return of the OC survey results, could be an effective instrument to assess the efficacy of specific OD programs, such as Team Building, TQM and Gainsharing. The present study is focused on the interest to investigate all possible variables which are potential moderators of the climate - outcome relationship: therefore future researches in the OC field should consider a great variety of organizational variables, considered in terms of antecedents and effects

  11. Climate change adaptation for the US National Wildlife Refuge System

    USGS Publications Warehouse

    Griffith, Brad; Scott, J. Michael; Adamcik, Robert S.; Ashe, Daniel; Czech, Brian; Fischman, Robert; Gonzalez, Patrick; Lawler, Joshua J.; McGuire, A. David; Pidgorna, Anna

    2009-01-01

    Since its establishment in 1903, the National Wildlife Refuge System (NWRS) has grown to 635 units and 37 Wetland Management Districts in the United States and its territories. These units provide the seasonal habitats necessary for migratory waterfowl and other species to complete their annual life cycles. Habitat conversion and fragmentation, invasive species, pollution, and competition for water have stressed refuges for decades, but the interaction of climate change with these stressors presents the most recent, pervasive, and complex conservation challenge to the NWRS. Geographic isolation and small unit size compound the challenges of climate change, but a combined emphasis on species that refuges were established to conserve and on maintaining biological integrity, diversity, and environmental health provides the NWRS with substantial latitude to respond. Individual symptoms of climate change can be addressed at the refuge level, but the strategic response requires system-wide planning. A dynamic vision of the NWRS in a changing climate, an explicit national strategic plan to implement that vision, and an assessment of representation, redundancy, size, and total number of units in relation to conservation targets are the first steps toward adaptation. This adaptation must begin immediately and be built on more closely integrated research and management. Rigorous projections of possible futures are required to facilitate adaptation to change. Furthermore, the effective conservation footprint of the NWRS must be increased through land acquisition, creative partnerships, and educational programs in order for the NWRS to meet its legal mandate to maintain the biological integrity, diversity, and environmental health of the system and the species and ecosystems that it supports.

  12. Climate change adaptation for the US National Wildlife Refuge System.

    PubMed

    Griffith, Brad; Scott, J Michael; Adamcik, Robert; Ashe, Daniel; Czech, Brian; Fischman, Robert; Gonzalez, Patrick; Lawler, Joshua; McGuire, A David; Pidgorna, Anna

    2009-12-01

    Since its establishment in 1903, the National Wildlife Refuge System (NWRS) has grown to 635 units and 37 Wetland Management Districts in the United States and its territories. These units provide the seasonal habitats necessary for migratory waterfowl and other species to complete their annual life cycles. Habitat conversion and fragmentation, invasive species, pollution, and competition for water have stressed refuges for decades, but the interaction of climate change with these stressors presents the most recent, pervasive, and complex conservation challenge to the NWRS. Geographic isolation and small unit size compound the challenges of climate change, but a combined emphasis on species that refuges were established to conserve and on maintaining biological integrity, diversity, and environmental health provides the NWRS with substantial latitude to respond. Individual symptoms of climate change can be addressed at the refuge level, but the strategic response requires system-wide planning. A dynamic vision of the NWRS in a changing climate, an explicit national strategic plan to implement that vision, and an assessment of representation, redundancy, size, and total number of units in relation to conservation targets are the first steps toward adaptation. This adaptation must begin immediately and be built on more closely integrated research and management. Rigorous projections of possible futures are required to facilitate adaptation to change. Furthermore, the effective conservation footprint of the NWRS must be increased through land acquisition, creative partnerships, and educational programs in order for the NWRS to meet its legal mandate to maintain the biological integrity, diversity, and environmental health of the system and the species and ecosystems that it supports.

  13. Climate Change and Infrastructure, Urban Systems, and Vulnerabilities

    SciTech Connect

    Wilbanks, Thomas J; Fernandez, Steven J

    2014-01-01

    This Technical Report on Climate Change and Infrastructure, Urban Systems, and Vulnerabilities has been prepared for the U.S. Department of Energy by the Oak Ridge National Laboratory in support of the U.S. National Climate Assessment (NCA). It is a summary of the currently existing knowledge base on its topic, nested within a broader framing of issues and questions that need further attention in the longer run. The report arrives at a number of assessment findings, each associated with an evaluation of the level of consensus on that issue within the expert community, the volume of evidence available to support that judgment, and the section of the report that provides an explanation for the finding. Cross-sectoral issues related to infrastructures and urban systems have not received a great deal of attention to date in research literatures in general and climate change assessments in particular. As a result, this technical report is breaking new ground as a component of climate change vulnerability and impact assessments in the U.S., which means that some of its assessment findings are rather speculative, more in the nature of propositions for further study than specific conclusions that are offered with a high level of confidence and research support. But it is a start in addressing questions that are of interest to many policymakers and stakeholders. A central theme of the report is that vulnerabilities and impacts are issues beyond physical infrastructures themselves. The concern is with the value of services provided by infrastructures, where the true consequences of impacts and disruptions involve not only the costs associated with the clean-up, repair, and/or replacement of affected infrastructures but also economic, social, and environmental effects as supply chains are disrupted, economic activities are suspended, and/or social well-being is threatened. Current knowledge indicates that vulnerability concerns tend to be focused on extreme weather events

  14. Waste Receiving and Processing (WRAP) Facility Public Address System Review Findings

    SciTech Connect

    HUMPHRYS, K.L.

    1999-11-03

    Public address system operation at the Waste Receiving and Processing (WRAP) facility was reviewed. The review was based on an Operational Readiness Review finding that public address performance was not adequate in parts of the WRAP facility. Several improvements were made to the WRAP Public Address (PA) system to correct the deficiencies noted. Speaker gain and position was optimized. A speech processor was installed to boost intelligibility in high noise areas. Additional speakers were added to improve coverage in the work areas. The results of this evaluation indicate that further PA system enhancements are not warranted. Additional speakers cannot compensate for the high background sound and high reverberation levels found in the work areas. Recommendations to improve PA system intelligibility include minor speaker adjustments, enhanced PA announcement techniques, and the use of sound reduction and abatement techniques where economically feasible.

  15. Raising Climate Literacy of K-12 Teachers with Datastreme Earth's Climate System

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Geer, I.; Weinbeck, R. S.; Mills, E. W.; Nugnes, K. A.

    2014-12-01

    The American Meteorological Society (AMS) DataStreme Project is a free professional development program for in-service K-12 teachers, in which they gain considerable subject matter content and confidence in Earth science instruction. DataStreme Atmosphere, Ocean, and Earth's Climate System (ECS) are offered each fall and spring semester by Local Implementation Teams (LITs) across the country in coordination with a team of AMS Education Program scientists and educators who develop instructional materials, provide logistical support to the LITs, and administer the project. The 3-member LITs mentor about 8 teachers and in some instances an emergency manager, per semester through a given DataStreme course. Teachers may receive 3 tuition-free graduate credits through State University of New York's The College at Brockport upon completion of each DataStreme course. DataStreme is in close alignment with A Framework for K-12 Science Education and the Next Generation Science Standards (NGSS). Investigating the scientific basis of the workings of Earth's atmosphere, ocean, and climate system follows the cross-cutting theme of the Framework and the NGSS and is the cornerstone of the DataStreme courses. In particular, DataStreme ECS explores the fundamental science of Earth's climate system and addresses the societal impacts relevant to today's teachers and students. The course utilizes resources from respected organizations, such as the IPCC and U.S. Global Change Research Program. Key to the NGSS is that students learn disciplinary core ideas in the context of science and engineering practices. In order for the students to learn in this way, the AMS believes that it is important to train the teachers in this context. DataStreme ECS emphasizes investigation of real-word and current NASA and NOAA data. Participants also are made aware of NASA's EdGCM, a research-grade Global Climate Model where they can explore various future climate scenarios in the same way that actual

  16. Assessing the impacts of climate change on natural resource systems

    SciTech Connect

    Frederick, K.D.; Rosenberg, N.J.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  17. Precambrian evolution of the climate system.

    PubMed

    Walker, J C

    1990-01-01

    Climate is an important environmental parameter of the early Earth, likely to have affected the origin and evolution of life, the composition and mineralogy of sedimentary rocks, and stable isotope ratios in sedimentary minerals. There is little observational evidence constraining Precambrian climates. Most of our knowledge is at present theoretical. Factors that must have affected the climate include reduced solar luminosity, enhanced rotation rate of the Earth, an area of land that probably increased with time, and biological evolution, particularly as it affected the composition of the atmosphere and the greenhouse effect. Cloud cover is a major uncertainty about the early Earth. Carbon dioxide and its greenhouse effect are the factors that have been most extensively studied. This paper presents a new examination of the biogeochemical cycles of carbon as they may have changed between an Archean Earth deficient in land, sedimentary rocks, and biological activity, and a Proterozoic Earth much like the modern Earth, but lacking terrestrial life and carbonate-secreting plankton. Results of a numerical simulation of this transition show how increasing biological activity could have drawn down atmospheric carbon dioxide by extracting sedimentary organic carbon from the system. Increasing area of continents could further have drawn down carbon dioxide by encouraging the accumulation of carbonate sediments. An attempt to develop a numerical simulation of the carbon cycles of the Precambrian raises questions about sources and sinks of marine carbon and alkalinity on a world without continents. More information is needed about sea-floor weathering processes.

  18. Tipping elements in the Earth's climate system

    SciTech Connect

    Lenton, T.M.; Held, H.; Lucht, W.; Rahmstorf, S.; Kriegler, E. |; Hall, J.W.; Schellnhuber, H.J. |

    2008-02-12

    The term 'tipping point' commonly refers to a critical threshold at which a tiny perturbation can qualitatively alter the state or development of a system. Here the authors introduce the term 'tipping element' to describe large-scale components of the Earth system that may pass a tipping point. They critically evaluate potential policy-relevant tipping elements in the climate system under anthropogenic forcing, drawing on the pertinent literature and a recent international workshop to compile a short list, and they assess where their tipping points lie. An expert elicitation is used to help rank their sensitivity to global warming and the uncertainty about the underlying physical mechanisms. Then the authors explain how, in principle, early warning systems could be established to detect the proximity of some tipping points.

  19. EDITORIAL: Dialog on Science and Policy to Address the Climate Crisis to conclude the International Association of Research Universities Climate Congress, Copenhagen, Denmark Dialog on Science and Policy to Address the Climate Crisis to conclude the International Association of Research Universities Climate Congress, Copenhagen, Denmark

    NASA Astrophysics Data System (ADS)

    Baer, Paul; Kammen, Daniel M.

    2009-06-01

    This is not the usual Editor-in-Chief letter, namely one that focuses on the accomplishments of the journal—and for ERL they have been numerous this year—but a recognition of the critical time that we are now in when it comes to addressing not only global climate change, but also the dialog between science and politics. In recognition of the many 'tipping points' that we now confront—ideally some of them positive social moments—as well as the clear scientific conclusion that environmental tipping points are points of long-lasting disruption, this paper takes a different form than I might have otherwise written. While the scientific body of knowledge around global environmental change mounts, so too, do the hopeful signs that change can happen. The election of Barack Obama is unquestionably one such sign, witnessed by the exceptional interest that his story has brought not only to US politics, but also to global views of the potential of the United States, as well as to the potential role of science and investigation in addressing pressing issues. In light of these inter-related issues, reproduced here—largely due to the efforts of Paul Baer to transcribe a remarkable conversation—is a dialog not only on the science of global warming and the potential set of means to address this issue, but also on the interaction between research, science and the political process. The dialog itself is sufficiently important that I will dispense with the usual discussion of the exciting recognition that ERL has received with an ISI rating (a factor rapidly increasing), the high levels of downloads of our papers (for some articles over 5000 and counting), and the many news and scientific publications picking up ERL articles (in recent days alone Science, Environmental Science and Technology, and The Economist). This conversation was the concluding plenary session of the 10-12 March International Association of Research Universities (IARU) Conference on Climate Change

  20. Carbon dioxide and climate. [Appendix includes names and addresses of the Principal Investigators for the research projects funded in FY1991

    SciTech Connect

    Not Available

    1991-10-01

    Global climate change is a serious environmental concern, and the US has developed An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO{sub 2} Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO{sub 2} concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration.

  1. Using climate regionalization to understand Climate Forecast System Version 2 (CFSv2) precipitation performance for the Conterminous United States (CONUS)

    NASA Astrophysics Data System (ADS)

    Regonda, Satish K.; Zaitchik, Benjamin F.; Badr, Hamada S.; Rodell, Matthew

    2016-06-01

    Dynamically based seasonal forecasts are prone to systematic spatial biases due to imperfections in the underlying global climate model (GCM). This can result in low-forecast skill when the GCM misplaces teleconnections or fails to resolve geographic barriers, even if the prediction of large-scale dynamics is accurate. To characterize and address this issue, this study applies objective climate regionalization to identify discrepancies between the Climate Forecast System Version 2 (CFSv2) and precipitation observations across the Contiguous United States (CONUS). Regionalization shows that CFSv2 1 month forecasts capture the general spatial character of warm season precipitation variability but that forecast regions systematically differ from observation in some transition zones. CFSv2 predictive skill for these misclassified areas is systematically reduced relative to correctly regionalized areas and CONUS as a whole. In these incorrectly regionalized areas, higher skill can be obtained by using a regional-scale forecast in place of the local grid cell prediction.

  2. Using Climate Regionalization to Understand Climate Forecast System Version 2 (CFSv2) Precipitation Performance for the Conterminous United States (CONUS)

    NASA Technical Reports Server (NTRS)

    Regonda, Satish K.; Zaitchik, Benjamin F.; Badr, Hamada S.; Rodell, Matthew

    2016-01-01

    Dynamically based seasonal forecasts are prone to systematic spatial biases due to imperfections in the underlying global climate model (GCM). This can result in low-forecast skill when the GCM misplaces teleconnections or fails to resolve geographic barriers, even if the prediction of large-scale dynamics is accurate. To characterize and address this issue, this study applies objective climate regionalization to identify discrepancies between the Climate Forecast SystemVersion 2 (CFSv2) and precipitation observations across the Contiguous United States (CONUS). Regionalization shows that CFSv2 1 month forecasts capture the general spatial character of warm season precipitation variability but that forecast regions systematically differ from observation in some transition zones. CFSv2 predictive skill for these misclassified areas is systematically reduced relative to correctly regionalized areas and CONUS as a whole. In these incorrectly regionalized areas, higher skill can be obtained by using a regional-scale forecast in place of the local grid cell prediction.

  3. Adapting to Climate Change on Western Public Lands: Addressing the Ecological Effects of Domestic, Wild, and Feral Ungulates

    NASA Astrophysics Data System (ADS)

    Beschta, Robert L.; Donahue, Debra L.; DellaSala, Dominick A.; Rhodes, Jonathan J.; Karr, James R.; O'Brien, Mary H.; Fleischner, Thomas L.; Deacon Williams, Cindy

    2013-02-01

    Climate change affects public land ecosystems and services throughout the American West and these effects are projected to intensify. Even if greenhouse gas emissions are reduced, adaptation strategies for public lands are needed to reduce anthropogenic stressors of terrestrial and aquatic ecosystems and to help native species and ecosystems survive in an altered environment. Historical and contemporary livestock production—the most widespread and long-running commercial use of public lands—can alter vegetation, soils, hydrology, and wildlife species composition and abundances in ways that exacerbate the effects of climate change on these resources. Excess abundance of native ungulates (e.g., deer or elk) and feral horses and burros add to these impacts. Although many of these consequences have been studied for decades, the ongoing and impending effects of ungulates in a changing climate require new management strategies for limiting their threats to the long-term supply of ecosystem services on public lands. Removing or reducing livestock across large areas of public land would alleviate a widely recognized and long-term stressor and make these lands less susceptible to the effects of climate change. Where livestock use continues, or where significant densities of wild or feral ungulates occur, management should carefully document the ecological, social, and economic consequences (both costs and benefits) to better ensure management that minimizes ungulate impacts to plant and animal communities, soils, and water resources. Reestablishing apex predators in large, contiguous areas of public land may help mitigate any adverse ecological effects of wild ungulates.

  4. Addressing whiteness in nursing education: the sociopolitical climate project at the University of Washington School of Nursing.

    PubMed

    Schroeder, Carole; Diangelo, Robin

    2010-01-01

    This article describes a project designed to change the climate of whiteness in academic nursing. Using an emancipatory, antiracist perspective from whiteness studies, we describe a project that helped faculty and staff to work together to challenge and begin to change the status quo of unnamed white privilege and racial injustice in nursing education.

  5. Adapting to climate change on Western public lands: addressing the ecological effects of domestic, wild, and feral ungulates.

    PubMed

    Beschta, Robert L; Donahue, Debra L; DellaSala, Dominick A; Rhodes, Jonathan J; Karr, James R; O'Brien, Mary H; Fleischner, Thomas L; Deacon Williams, Cindy

    2013-02-01

    Climate change affects public land ecosystems and services throughout the American West and these effects are projected to intensify. Even if greenhouse gas emissions are reduced, adaptation strategies for public lands are needed to reduce anthropogenic stressors of terrestrial and aquatic ecosystems and to help native species and ecosystems survive in an altered environment. Historical and contemporary livestock production-the most widespread and long-running commercial use of public lands-can alter vegetation, soils, hydrology, and wildlife species composition and abundances in ways that exacerbate the effects of climate change on these resources. Excess abundance of native ungulates (e.g., deer or elk) and feral horses and burros add to these impacts. Although many of these consequences have been studied for decades, the ongoing and impending effects of ungulates in a changing climate require new management strategies for limiting their threats to the long-term supply of ecosystem services on public lands. Removing or reducing livestock across large areas of public land would alleviate a widely recognized and long-term stressor and make these lands less susceptible to the effects of climate change. Where livestock use continues, or where significant densities of wild or feral ungulates occur, management should carefully document the ecological, social, and economic consequences (both costs and benefits) to better ensure management that minimizes ungulate impacts to plant and animal communities, soils, and water resources. Reestablishing apex predators in large, contiguous areas of public land may help mitigate any adverse ecological effects of wild ungulates.

  6. Classrooms for Children with Developmental Disabilities: Sound-Field and Public Address Amplification Systems Compared

    ERIC Educational Resources Information Center

    Leung, Stanley W. H.; McPherson, Bradley

    2006-01-01

    Background noise poses adverse effects on speech sounds and affects student learning, especially for children with developmental disabilities. Sound-field and public address amplification systems can help to solve this problem by amplifying speech sounds relative to background noise. This study surveyed school classrooms for children with special…

  7. [Research in social psychiatry - addressing future challenges of health- and social systems].

    PubMed

    Riedel-Heller, Steffi G

    2009-01-01

    Demographic change, limited financial resources and increasing social exclusion of individuals suffering chronic illness are major challenges for health and social systems in general and for psychiatry in particular. The paper analyses to what extent social psychiatric research currently addresses this challenges. Future perspectives are discussed, exploring the relationship of clinical neuroscience and social psychiatry.

  8. 33 CFR 149.675 - What are the requirements for the public address system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What are the requirements for the public address system? 149.675 Section 149.675 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF.... Medical Treatment Rooms...

  9. Addressing Disaster Risk Management and Adaptation to Climate Change in the Context of Sustainable Development in Africa

    NASA Astrophysics Data System (ADS)

    Osman Elasha, B. M. E.

    2015-12-01

    The IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) demonstrates that an extreme event which used to occur infrequently and perceived today as abnormal will be tomorrow's 'normal' weather. For example the drought events in the African Sahel which once came every decade could now come every couple of years bringing a new challenge and leading to severe disturbances and rapid environmental changes. The report identified and analyzed the problems associated with extreme climatic events, and examined how human responses to these events and the consequent disasters could contribute to adaptation objectives, and how adaptation to climate change could become better integrated with Disasters Risk Management (DRM) practices. Moreover, a number of studies explored the linkages and interactions between disasters and development and clearly demonstrates how the exposure to extremes and vulnerability to climate change can hinder development efforts, emphasizing the need for much smarter development and economic policies that consider managing disaster risk and implement adaptation measures as main components of sustainable development. The proposed presentation will provide an overview of findings from IPCC reports and other studies and will draw on existing experiences and lessons learned to explore the linkages between disaster risk management, adaptation and economic development in Africa. It will also shed light on some of the regional and global interventions which aim at mitigating the impacts of extremes and disasters in African countries characterized by high exposure & vulnerability and low adaptive capacity. It concludes by highlighting the need for broader cooperation and partnership between development partners and agencies working on disaster risk management & climate change adaptation including the private sector, bilateral and multilateral agencies in order to ensure sustainable development.

  10. NASA's climate data system primer, version 1.2

    NASA Technical Reports Server (NTRS)

    Closs, James W.; Reph, Mary G.; Olsen, Lola M.

    1989-01-01

    This is a beginner's manual for NASA's Climate Data System (NCDS), an interactive scientific information management system that allows one to locate, access, manipulate, and display climate-research data. Additional information on the use of the system is available from the system itself.

  11. Processes in Decadal Climate Variability and their Incorporation into a Decadal Climate Prediction System

    NASA Astrophysics Data System (ADS)

    Proemmel, K.; Cubasch, U.; Vamborg, F.

    2012-12-01

    The quality of decadal climate predictions rests fundamentally on the ability of the forecast models realistically to simulate climate and its variability, in particular at decadal timescales. The new German research project "MiKlip - Decadal Predictions" (http://www.fona-miklip.de/en/) aims to develop a system for climate predictions for up to a decade ahead that can then be applied by an operational agency such as the German Meteorological Service DWD. This climate prediction system is based on the MPI-M Earth System Model (MPI-ESM) from the Max Planck Institute for Meteorology in Germany. Different aspects of decadal climate predictions are considered in MiKlip like initialisation strategies, the predictive skill on the regional scale with focus on Europe and Africa and the systematic evaluation of the prediction system. Another part of MiKlip deals with the incorporation of those processes in climate models that are important for the realistic representation of decadal climate variability, and the understanding of the important processes in the numerical prediction system. Processes that have the potential to improve decadal climate predictions are related to e.g. Arctic sea ice, atmospheric chemistry, large volcanic eruptions, atmosphere-ocean coupling, stratosphere and land-atmosphere interaction. The work dealing with the processes can be categorized into assessing the effects of enhanced resolution and of advanced parameterizations and numerics, investigating mechanisms of decadal variability, improvement of existing system components and coupling of additional climate subsystems.

  12. Continental Heat Gain in the Global Climate System

    NASA Astrophysics Data System (ADS)

    Smerdon, J. E.; Beltrami, H.; Pollack, H. N.; Huang, S.

    2001-12-01

    Observed increases in 20th century surface-air temperatures are one consequence of a net energy flux into all major components of the Earth climate system including the atmosphere, ocean, cryosphere, and lithosphere. Levitus et al. [2001] have estimated the heat gained by the atmosphere, ocean and cryosphere as 18.2x1022 J, 6.6x1021 J, and 8.1x1021 J, respectively, over the past half-century. However the heat gain of the lithosphere via a heat flux across the solid surface of the continents (30% of the Earth's surface) was not addressed in the Levitus analysis. Here we calculate that final component of Earth's changing energy budget, using ground-surface temperature reconstructions for the continents [Huang et al., 2000]. These reconstructions have shown a warming of at least 0.5 K in the 20th century and were used to determine the flux estimates presented here. In the last half-century, the interval of time considered by Levitus et al., there was an average flux of 40 mW/m2 across the land surface into the subsurface, leading to 9.2x1021 J absorbed by the ground. This amount of heat is significantly less than the energy transferred into the oceans, but of the same magnitude as the energy absorbed by the atmosphere or cryosphere. The heat inputs into all the major components of the climate system - atmosphere, ocean, cryosphere, lithosphere - conservatively sum to more than 20x1022 J during the last half-century, and reinforce the conclusion that the warming in this interval has been truly global. Huang, S., Pollack, H.N., and Shen, P.-Y. 2000. Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature. 403. 756-758 Levitus, S., Antonov, J., Wang, J., Delworth, T. L., Dixon, K. and Broccoli, A. 2001. Anthropogenic warming of the Earth's climate system. Science, 292, 267-270

  13. Orbital Noise in the Earth System and Climate Fluctuations

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Frequency noise in the variations of the Earth's obliquity (tilt) can modulate the insolation signal for climate change. Including this frequency noise effect on the incoming solar radiation, we have applied an energy balance climate model to calculate the climate fluctuations for the past one million years. Model simulation results are in good agreement with the geologically observed paleoclimate data. We conclude that orbital noise in the Earth system may be the major cause of the climate fluctuation cycles.

  14. The Mars climate for a photovoltaic system operation

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.

    1989-01-01

    Detailed information on the climatic conditions on Mars are very desirable for the design of photovoltaic systems for establishing outposts on the Martian surface. The distribution of solar insolation (global, direct and diffuse) and ambient temperature is addressed. This data are given at the Viking lander's locations and can also be used, to a first approximation, for other latitudes. The insolation data is based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation. The ambient temperature (diurnal and yearly distribution) is based on direct measurements with a thermocouple at 1.6 m above the ground at the Viking lander locations. The insolation and ambient temperature information are short term data. New information about Mars may be forthcoming in the future from new analysis of previously collected data or from future flight missions. The Mars climate data for photovoltaic system operation will thus be updated accordingly.

  15. Developing a Pilot Indicator System for U.S. Climate Changes, Impacts, Vulnerabilities, and Responses

    NASA Astrophysics Data System (ADS)

    Kenney, M. A.; Janetos, A.; Arndt, D. S.; Pouyat, R. V.; Aicher, R.; Lloyd, A.; Malik, O.; Reyes, J. J.; Anderson, S. M.

    2014-12-01

    The National Climate Indicators System is being developed as part of sustained assessment activities associated with the U.S. National Climate Assessment (NCA). The NCA is conducted under the U.S. Global Change Research Program, which is required to provide a report to Congress every 4 years. The National Climate Indicators System is a set of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information. The Indicators System will address questions important to multiple audiences including (but not limited to) nonscientists (e.g., Congress, U.S. citizens, students), resource managers, and state and municipal planners in a conceptually unified framework. The physical, ecological, and societal indicators will be scalable, to provide information for indicators at national, state, regional, and local scales. The pilot system is a test of the Indicators System for evaluation purposes to assess the readiness of indicators and usability of the system. The National Climate Indicator System has developed a pilot given the recommendations of over 150+ scientists and practitioners and 14 multidisciplinary teams, including, for example, greenhouse gases, forests, grasslands, water, human health, oceans and coasts, and energy. The pilot system of indicators includes approximately 20 indicators that are already developed, scientifically vetted, and implementable immediately. Specifically, the pilot indicators include a small set of global climate context indicators, which provide context for the national or regional indicators, as well as a set of nationally important U.S. natural system and human sector indicators. The purpose of the pilot is to work with stakeholder communities to evaluate the system and the individual indicators using a robust portfolio of evaluation studies, which

  16. Use of ARM Data to address the Climate Change Further Development and Applications of A Multi-scale Modeling Framework

    SciTech Connect

    David A. Randall; Marat Khairoutdinov

    2007-12-14

    The Colorado State University (CSU) Multi-scale Modeling Framework (MMF) is a new type of general circulation model (GCM) that replaces the conventional parameterizations of convection, clouds and boundary layer with a cloud-resolving model (CRM) embedded into each grid column. The MMF that we have been working with is a “super-parameterized” version of the Community Atmosphere Model (CAM). As reported in the publications listed below, we have done extensive work with the model. We have explored the MMF’s performance in several studies, including an AMIP run and a CAPT test, and we have applied the MMF to an analysis of climate sensitivity.

  17. Polish country study to address climate change: Strategies of the GHG`s emission reduction and adaptation of the Polish economy to the changed climate. Final report

    SciTech Connect

    1996-01-01

    The Polish Country Study Project was initiated in 1992 as a result of the US Country Study Initiative whose objective was to grant the countries -- signatories of the United Nations` Framework Convention on Climate Change -- assistance that will allow them to fulfill their obligations in terms of greenhouse gases (GHG`s) inventory, preparation of strategies for the reduction of their emission, and adapting their economies to the changed climatic conditions. In February 1993, in reply to the offer from the United States Government, the Polish Government expressed interest in participation in this program. The Study proposal, prepared by the Ministry of Environmental Protection, Natural Resources and Forestry was presented to the US partner. The program proposal assumed implementation of sixteen elements of the study, encompassing elaboration of scenarios for the strategy of mission reduction in energy sector, industry, municipal management, road transport, forestry, and agriculture, as well as adaptations to be introduced in agriculture, forestry, water management, and coastal management. The entire concept was incorporated in macroeconomic strategy scenarios. A complementary element was the elaboration of a proposal for economic and legal instruments to implement the proposed strategies. An additional element was proposed, namely the preparation of a scenario of adapting the society to the expected climate changes.

  18. Solar Powered Automobile Interior Climate Control System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor)

    2003-01-01

    There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.

  19. Seeing through the Smoke: A collaborative, multidisciplinary effort to address the interplay between wildfire, climate, air quality, and health

    NASA Astrophysics Data System (ADS)

    Brey, S. J.; Fischer, E. V.; Pierce, J. R.; Ford, B.; Lassman, W.; Pfister, G.; Volckens, J.; Gan, R.; Magzamen, S.; Barnes, E. A.

    2015-12-01

    Exposure to wildfire smoke plumes represents an episodic, uncertain, and potentially growing threat to public health in the western United States. The area burned by wildfires in this region has increased over recent decades, and the future of fires within this region is largely unknown. Future fire emissions are intimately linked to future meteorological conditions, which are uncertain due to the variability of climate model outputs and differences between representative concentration pathways (RCP) scenarios. We know that exposure to wildfire smoke is harmful, particularly for vulnerable populations. However the literature on the heath effects of wildfire smoke exposure is thin, particularly when compared to the depth of information we have on the effects of exposure to smoke of anthropogenic origin. We are exploring the relationships between climate, fires, air quality and public health through multiple interdisciplinary collaborations. We will present several examples from these projects including 1) an analysis of the influence of fire on ozone abundances over the United States, and 2) efforts to use a high-resolution weather forecasting model to nail down exposure within specific smoke plumes. We will also highlight how our team works together. This discussion will include examples of the university structure that facilitates our current collaborations, and the lessons we have learned by seeking stakeholder input to make our science more useful.

  20. Addressing healthcare.

    PubMed

    Daly, Rich

    2013-02-11

    Though President Barack Obama has rarely made healthcare references in his State of the Union addresses, health policy experts are hoping he changes that strategy this year. "The question is: Will he say anything? You would hope that he would, given that that was the major issue he started his presidency with," says Dr. James Weinstein, left, of the Dartmouth-Hitchcock health system.

  1. The Community Climate System Model Version 4

    SciTech Connect

    Gent, Peter R.; Danabasoglu, Gokhan; Donner, Leo J.; Holland, Marika M.; Hunke, Elizabeth C.; Jayne, Steve R.; Lawrence, David M.; Neale, Richard; Rasch, Philip J.; Vertenstein, Mariana; Worley, Patrick; Yang, Zong-Liang; Zhang, Minghua

    2011-10-01

    The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all the CCSM components, and documents fully coupled pre-industrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1{sup o} results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4{sup o} resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in the CCSM4 producing El Nino/Southern Oscillation variability with a much more realistic frequency distribution than the CCSM3, although the amplitude is too large compared to observations. They also improve the representation of the Madden-Julian Oscillation, and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the deep ocean density structure, especially in the North Atlantic. Changes to the CCSM4 land component lead to a much improved annual cycle of water storage, especially in the tropics. The CCSM4 sea ice component uses much more realistic albedos than the CCSM3, and the Arctic sea ice concentration is improved in the CCSM4. An ensemble of 20th century simulations runs produce an excellent match to the observed September Arctic sea ice extent from 1979 to 2005. The CCSM4 ensemble mean increase in globally-averaged surface temperature between 1850 and 2005 is larger than the observed increase by about 0.4 C. This is consistent with the fact that the CCSM4 does not include a representation of the indirect effects of aerosols, although other factors may come into play. The CCSM4 still has significant biases, such as the mean precipitation distribution in the tropical Pacific Ocean, too much low cloud in the Arctic, and the latitudinal distributions of short-wave and long-wave cloud forcings.

  2. Weakening of atmospheric information flow in a warming climate in the Community Climate System Model

    NASA Astrophysics Data System (ADS)

    Deng, Yi; Ebert-Uphoff, Imme

    2014-01-01

    We introduce a new perspective of climate change by revealing the changing characteristics of atmospheric information flow in a warming climate. The key idea is to interpret large-scale atmospheric dynamical processes as information flow around the globe and to identify the pathways of this information flow using a climate network based on causal discovery and graphical models. We construct such networks using the daily geopotential height data from the Community Climate System Model Version 4.0 (CCSM4.0)'s 20th century climate simulation and 21st century climate projection. We show that in the CCSM4.0 model under enhanced greenhouse gases (GHGs) forcing, prominent midlatitude information pathways in the midtroposphere weaken and shift poleward, while major tropical information pathways start diminishing. Averaged over the entire Northern Hemisphere, the atmospheric information flow weakens. The implications of this weakening for the interconnectivity among different geographical locations and for the intrinsic predictability of the atmosphere are discussed.

  3. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2014-12-01

    We have developed a cloud-enabled web-service system that empowers physics-based, multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks. The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the observational datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation, (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs, and (3) ECMWF reanalysis outputs for several environmental variables in order to supplement observational datasets. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, (4) the calculation of difference between two variables, and (5) the conditional sampling of one physical variable with respect to another variable. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA will be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. In order to support 30+ simultaneous users during the school, we have deployed CMDA to the Amazon cloud environment. The cloud-enabled CMDA will provide each student with a virtual machine while the user interaction with the system will remain the same

  4. Teaching Earth System Science Using Climate Educational Modules Based on NASA and NOAA Resources

    NASA Astrophysics Data System (ADS)

    Ramirez, P. C.; LaDochy, S.; Patzert, W. C.; Willis, J. K.

    2011-12-01

    The Earth System Science Education Alliance (ESSEA) recently developed a set of climate related educational modules to be used by K-12 teachers. These modules incorporate recent NASA and NOAA resources in Earth Science education. In the summer of 2011, these modules were tested by in-service teachers in courses held at several college campuses. At California State University, Los Angeles, we reviewed two climate modules: The Great Ocean Conveyer Belt and Abrupt Climate Change (http://essea.strategies.org/module.php?module_id=148) and Sulfur Dioxide: Its Role in Climate Change (http://essea.strategies.org/module.php?module_id=168). For each module, 4-6 teachers formed a cohort to complete assignments and unit assessments and to evaluate the effectiveness of the module for use in their classroom. Each module presented the teachers with a task that enabled them to research and better understand the science behind the climate related topic. For The Great Ocean Conveyer Belt, teachers are tasked with evaluating the impacts of the slowing or stopping of the thermohaline circulation on climate. In the same module teachers are charged with determining the possibilities of an abrupt climate shift during this century such as happened in the past. For the Sulfur Dioxide module teachers investigated the climate implications of the occurrence of several major volcanic eruptions within a short time period, as well as the feasibility of using sulfates to geoengineer climate change. In completing module assignments, teachers must list what they already know about the topic as well as formulate questions that still need to be addressed. Teachers then model the related interactions between spheres comprising the earth system (atmosphere-lithosphere, for example) to evaluate possible environmental impacts. Finally, teachers applied their research results to create lesson plans for their students. At a time when climate change and global warming are important topics in science

  5. Quantification of the uncertainty in estimates of climate system properties due to differences in available reconstructions of historical data

    NASA Astrophysics Data System (ADS)

    Forest, C. E.; Libardoni, A.; Sokolov, A. P.

    2013-12-01

    Climate models of intermediate complexity have been used extensively to help determine climate system properties because of their efficiency and ability to easily adjust key climate system components. By comparing model output over a wide range of possible states of the climate with observations, probability distributions for climate system properties can be derived. Observational data for a number of climate variables are available, and in many cases multiple reconstructions are available for the same variable. This study first evaluates how differences in the estimated historical trends of upper-air temperatures translate into uncertainty in estimates of three climate system properties: climate sensitivity, the rate of ocean heat uptake, and net aerosol forcing. These results build upon previous work that explored similar estimates associated with trends in surface temperatures and ocean heat content. Also addressed in this study is quantifying uncertainties in the estimates of the three properties associated with how surface temperature observations are used in the estimation process. Other studies have estimated climate parameters using only global mean surface temperature trends. It is shown here that estimates of all parameters are dependent upon the spatial variation of surface temperature trends. In particular, lower estimates of climate sensitivity are shown to be inconsistent with most observational data sources when using latitude-dependent surface trends. Low climate sensitivity is also shown to lead to inconsistent patterns in ocean heat uptake. These results will be presented in the context of recent investigations using data from previous work by the authors.

  6. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    USGS Publications Warehouse

    McGuire, A.D.; Chapin, F. S.; Walsh, J.E.; Wirth, C.; ,

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  7. Teaching Scales in the Climate System: An example of interdisciplinary teaching and learning

    NASA Astrophysics Data System (ADS)

    Baehr, Johanna; Behrens, Jörn; Brüggemann, Michael; Frisius, Thomas; Glessmer, Mirjam S.; Hartmann, Jens; Hense, Inga; Kaleschke, Lars; Kutzbach, Lars; Rödder, Simone; Scheffran, Jürgen

    2016-04-01

    Climate change is commonly regarded as one of 21st century's grand challenges that needs to be addressed by conducting integrated research combining natural and social sciences. To meet this need, how to best train future climate researchers should be reconsidered. Here, we present our experience from a team-taught semester-long course with students of the international master program "Integrated Climate System Sciences" (ICSS) at the University of Hamburg, Germany. Ten lecturers with different backgrounds in physical, mathematical, biogeochemical and social sciences accompanied by a researcher trained in didactics prepared and regularly participated in a course which consisted of weekly classes. The foundation of the course was the use of the concept of 'scales' - climate varying on different temporal and spatial scales - by developing a joint definition of 'scales in the climate system' that is applicable in the natural sciences and in the social sciences. By applying this interdisciplinary definition of 'scales' to phenomena from all components of the climate system and the socio-economic dimensions, we aimed for an integrated description of the climate system. Following the concept of research-driven teaching and learning and using a variety of teaching techniques, the students designed their own scale diagram to illustrate climate-related phenomena in different disciplines. The highlight of the course was the presentation of individually developed scale diagrams by every student with all lecturers present. Based on the already conducted course, we currently re-design the course concept to be teachable by a similarly large group of lecturers but with alternating presence in class. With further refinement and also a currently ongoing documentation of the teaching material, we will continue to use the concept of 'scales' as a vehicle for teaching an integrated view of the climate system.

  8. Water Information System Platforms Addressing Critical Societal Needs in the Mena Region

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Kfouri, Claire; Peters, Mark

    2012-01-01

    The MENA region includes 18 countries, the occupied Palestinian territories and Western Sahara. However, the region of interest for this study has a strategic interest in countries adjacent to the Mediterranean Sea, which includes, Morocco, Tunisia, Egypt, Lebanon and Jordan. The 90% of the water in the MENA region is used for the agriculture use. By the end of this century. this region is projected to experience an increase of 3 C to 5 C in mean temperatures and a 20% decline in precipitation (lPCC, 2007). Due to lower precipitation, water run-off is projected to drop by 20% to 30% in most of MENA by 2050 Reduced stream flow and groundwater recharge might lead to a reduction in water supply of 10% or greater by 2050. Therefore, per IPCC projections in temperature rise and precipitation decline in the region, the scarcity of water will become more acute with population growth, and rising demand of food in the region. Additionally, the trans boundary water issues will continue to plague the region in terms of sharing data for better management of water resources. Such pressing issues have brought The World Bank, USAID and NASA to jointly collaborate for establishing integrated, modern, up to date NASA developed capabilities for countries in the MENA region for addressing water resource issues and adapting to climate change impacts for improved decision making and societal benefit. This initiative was launched in October 2011 and is schedule to be completed by the end of2015.

  9. Discrete Address Beacon System (DABS) Software System Reliability Modeling and Prediction.

    DTIC Science & Technology

    1981-06-01

    19004 DT-A.3.Tef e.0-OW8 , ... t 13. Tyeo Sat ~ n-v d e ed_ 12 Spon soring Agency Name and Address U.S. Department of Transportation Final / / [’’ -4...Model 36 12 Surveillance Module - Reliability Growth Model 39 B-1 DABS Trouble Report/Change Proposal 49 B-2 DABS Trouble Report/Change Proposal Update...Surveillance Module - Reliability Data Summary 38 12 Summary of Software Reliability Predictions 42 13 Summary of Module Critical Error Rates 43 iii I

  10. Series-connected shaded modules to address partial shading conditions in SPV systems

    NASA Astrophysics Data System (ADS)

    Pareek, Smita; Dahiya, Ratna

    2016-03-01

    With the progress of technology and reduced cost of PV cells, the PV systems are being installed in many countries, including India. Even though this method of power generation has sufficient potential but its effective utilization is still lacking. This is because the output power of PV cells depends on many factors like insolation, temperature, climate conditions prevailing nearby, aging, using modules from different technologies/manufacturers or partial shading conditions. Among these factors, partial shading causes major reduction in output power despite the size of PV systems. As a result, the produced power is lower than the expected value. The connection of modules to each other has great impact on output power if they are prone to partial shading conditions. In this paper, PV arrays are investigated under partial shading conditions. The results show that partial shading losses can be minimized by connecting shaded modules in series rather than in parallel.

  11. An Integrated Survey System for Addressing Abuse and Misconduct Toward Air Force Trainees During Basic Military Training

    DTIC Science & Technology

    2015-01-01

    An Integrated Survey System for Addressing Abuse and Misconduct Toward Air Force Trainees During Basic Military Training Kirsten M. Keller, Laura...00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE An Integrated Survey System for Addressing Abuse and Misconduct Toward Air Force Trainees During...RAND Project AIR FORCE to help develop an integrated survey system to help address abuse and misconduct toward trainees in the BMT environment. This

  12. Pilot climate data system: User's guide for charts subsystem

    NASA Technical Reports Server (NTRS)

    Noll, C. E.

    1984-01-01

    The use of the Pilot Climate Data System's (PCDS) CHARTS Subsystem is described. This facility is an interactive software system for the graphical production and enhancement of text and viewgraph displays.

  13. Extending Climate Analytics-As to the Earth System Grid Federation

    NASA Astrophysics Data System (ADS)

    Tamkin, G.; Schnase, J. L.; Duffy, D.; McInerney, M.; Nadeau, D.; Li, J.; Strong, S.; Thompson, J. H.

    2015-12-01

    We are building three extensions to prior-funded work on climate analytics-as-a-service that will benefit the Earth System Grid Federation (ESGF) as it addresses the Big Data challenges of future climate research: (1) We are creating a cloud-based, high-performance Virtual Real-Time Analytics Testbed supporting a select set of climate variables from six major reanalysis data sets. This near real-time capability will enable advanced technologies like the Cloudera Impala-based Structured Query Language (SQL) query capabilities and Hadoop-based MapReduce analytics over native NetCDF files while providing a platform for community experimentation with emerging analytic technologies. (2) We are building a full-featured Reanalysis Ensemble Service comprising monthly means data from six reanalysis data sets. The service will provide a basic set of commonly used operations over the reanalysis collections. The operations will be made accessible through NASA's climate data analytics Web services and our client-side Climate Data Services (CDS) API. (3) We are establishing an Open Geospatial Consortium (OGC) WPS-compliant Web service interface to our climate data analytics service that will enable greater interoperability with next-generation ESGF capabilities. The CDS API will be extended to accommodate the new WPS Web service endpoints as well as ESGF's Web service endpoints. These activities address some of the most important technical challenges for server-side analytics and support the research community's requirements for improved interoperability and improved access to reanalysis data.

  14. Importance of anthropogenic climate impact, sampling error and urban development in sewer system design.

    PubMed

    Egger, C; Maurer, M

    2015-04-15

    Urban drainage design relying on observed precipitation series neglects the uncertainties associated with current and indeed future climate variability. Urban drainage design is further affected by the large stochastic variability of precipitation extremes and sampling errors arising from the short observation periods of extreme precipitation. Stochastic downscaling addresses anthropogenic climate impact by allowing relevant precipitation characteristics to be derived from local observations and an ensemble of climate models. This multi-climate model approach seeks to reflect the uncertainties in the data due to structural errors of the climate models. An ensemble of outcomes from stochastic downscaling allows for addressing the sampling uncertainty. These uncertainties are clearly reflected in the precipitation-runoff predictions of three urban drainage systems. They were mostly due to the sampling uncertainty. The contribution of climate model uncertainty was found to be of minor importance. Under the applied greenhouse gas emission scenario (A1B) and within the period 2036-2065, the potential for urban flooding in our Swiss case study is slightly reduced on average compared to the reference period 1981-2010. Scenario planning was applied to consider urban development associated with future socio-economic factors affecting urban drainage. The impact of scenario uncertainty was to a large extent found to be case-specific, thus emphasizing the need for scenario planning in every individual case. The results represent a valuable basis for discussions of new drainage design standards aiming specifically to include considerations of uncertainty.

  15. Addressing the limits to adaptation across four damage--response systems

    EPA Science Inventory

    Our ability to adapt to climate change is not boundless, and previous modeling shows that capacity limited adaptation will play a policy-significant role in future decisions about climate change. These limits are delineated by capacity thresholds, after which climate damages beg...

  16. Practices Changes in the Child Protection System to Address the Needs of Parents With Cognitive Disabilities

    PubMed Central

    Azar, Sandra T.; Maggi, Mirella C.; Proctor, Stephon Nathanial

    2016-01-01

    Parents with cognitive disabilities (PCD) are over-represented in the child protection system. However, the current state of the child protection system is not well prepared for working with them. Biases that exist against their parenting, the need for accommodations in assessment and intervention practices, and specific training in staff and cross systems barriers need to be addressed. This paper argues for changes that will ensure such parents are more effectively served and that child protection staff and contract providers are better equipped to work with them. Specific changes are discussed in assessment and intervention practices. These changes will require human capacity building and organizational restructuring. Although empirically based behavioral approaches with PCD will be emphasized, recent empirical work suggests that social information processing and neurocognitive problems occur in PCD. Approaches to working with such problems are emerging and must also be considered and integrated into a blueprint for change. PMID:27610050

  17. Systems and capacity to address noncommunicable diseases in low- and middle-income countries.

    PubMed

    Ali, Mohammed K; Rabadán-Diehl, Cristina; Flanigan, John; Blanchard, Claire; Narayan, K M Venkat; Engelgau, Michael

    2013-04-17

    Noncommunicable diseases (NCDs) are increasingly getting attention from different forums, including media outlets, health agencies, and the public and private sectors. Progress is being made in addressing NCDs, though more slowly in low- and middle-income countries (LMICs) as compared with high-income settings. Here, we offer an analysis of the challenges faced in LMICs. We discuss realistic strategies to understand and develop capacity needs (workforce, finances, and infrastructure) and systems (institutions and processes) to sustainably optimize NCD prevention and care in LMICs.

  18. A National Program for Analysis of the Climate System

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Arkin, Phil; Kalnay, Eugenia; Laver, James; Trenberth, Kevin

    2002-01-01

    Perhaps the single greatest roadblock to fundamental advances in our understanding of climate variability and climate change is the lack of robust and unbiased long-term global observations of the climate system. Such observations are critical for the identification and diagnosis of climate variations, and provide the constraints necessary for developing and validating climate models. The first generation of reanalysis efforts, by using fixed analysis systems, eliminated the artificial climate signals that occurred in analyses generated at the operational numerical weather prediction centers. These datasets are now widely used by the scientific community in a variety of applications including atmosphere-ocean interactions, seasonal prediction, climate monitoring, the hydrological cycle, and a host of regional and other diagnostic studies. These reanalyses, however, had problems that made them sub-optimal or even unusable for some applications. Perhaps the most serious problem for climate applications was that, while the assimilation system remained fixed, changes in the observing systems did produce spurious changes in the perceived climate. The first generation reanalysis products also exposed problems with physical consistency of the products and the accurate representation of physical processes in the climate system. Examples are bias in the estimates of ocean surface fluxes, and inadequate representation of polar hydrology. In this talk, I will describe some initial plans for a national program on reananlysis. The program is envisioned to be part of an on-going activity to maintain, improve, and reprocess our record of climate observations. I will discuss various issues affecting the quality of reanalyses, with a special focus on those relevant to the ocean.

  19. SUITS/SWUSV: a small-size mission to address solar spectral variability, space weather and solar-climate relations

    NASA Astrophysics Data System (ADS)

    Damé, Luc; Keckhut, Philippe; Hauchecorne, Alain; Meftah, Mustapha; Bekki, Slimane

    2016-07-01

    We present the SUITS/SWUSV microsatellite mission investigation: "Solar Ultraviolet Influence on Troposphere/Stratosphere, a Space Weather & Ultraviolet Solar Variability" mission. SUITS/SWUSV was developed to determine the origins of the Sun's activity, understand the flaring process (high energy flare characterization) and onset of CMEs (forecasting). Another major objective is to determine the dynamics and coupling of Earth's atmosphere and its response to solar variability (in particular UV) and terrestrial inputs. It therefore includes the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging) the solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance measures from 170 to 400 nm). The mission is proposed on a sun-synchronous polar orbit 18h-6h (for almost constant observing) and proposes a 7 instruments model payload of 65 kg - 65 W with: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200-220 nm Herzberg continuum) imaging (sources of variability); SOLSIM (Solar Spectral Irradiance Monitor), a spectrometer with 0.65 nm spectral resolution from 170 to 340 nm; SUPR (Solar Ultraviolet Passband Radiometers), with UV filter radiometers at Lyman-Alpha, Herzberg, MgII index, CN bandhead and UV bands coverage up to 400 nm; HEBS (High Energy Burst Spectrometers), a large energy coverage (a few tens of keV to a few hundreds of MeV) instrument to characterize large flares; EPT-HET (Electron-Proton Telescope - High Energy Telescope), measuring electrons, protons, and heavy ions over a large energy range; ERBO (Earth Radiative Budget and Ozone) NADIR oriented; and a vector magnetometer. Complete accommodation of the payload has been performed on a PROBA type platform very nicely. Heritage is important both for instruments (SODISM and PREMOS on PICARD, LYRA on PROBA-2, SOLSPEC on ISS

  20. Applying "Climate" system to teaching basic climatology and raising public awareness of climate change issues

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Okladnikov, Igor; Titov, Alexander; Gordov, Evgeny

    2016-04-01

    While there is a strong demand for innovation in digital learning, available training programs in the environmental sciences have no time to adapt to rapid changes in the domain content. A joint group of scientists and university teachers develops and implements an educational environment for new learning experiences in basics of climatic science and its applications. This so-called virtual learning laboratory "Climate" contains educational materials and interactive training courses developed to provide undergraduate and graduate students with profound understanding of changes in regional climate and environment. The main feature of this Laboratory is that students perform their computational tasks on climate modeling and evaluation and assessment of climate change using the typical tools of the "Climate" information-computational system, which are usually used by real-life practitioners performing such kind of research. Students have an opportunity to perform computational laboratory works using information-computational tools of the system and improve skills of their usage simultaneously with mastering the subject. We did not create an artificial learning environment to pass the trainings. On the contrary, the main purpose of association of the educational block and computational information system was to familiarize students with the real existing technologies for monitoring and analysis of data on the state of the climate. Trainings are based on technologies and procedures which are typical for Earth system sciences. Educational courses are designed to permit students to conduct their own investigations of ongoing and future climate changes in a manner that is essentially identical to the techniques used by national and international climate research organizations. All trainings are supported by lectures, devoted to the basic aspects of modern climatology, including analysis of current climate change and its possible impacts ensuring effective links between

  1. An approach to addressing governance from a health system framework perspective.

    PubMed

    Mikkelsen-Lopez, Inez; Wyss, Kaspar; de Savigny, Don

    2011-12-02

    As countries strive to strengthen their health systems in resource constrained contexts, policy makers need to know how best to improve the performance of their health systems. To aid these decisions, health system stewards should have a good understanding of how health systems operate in order to govern them appropriately. While a number of frameworks for assessing governance in the health sector have been proposed, their application is often hindered by unrealistic indicators or they are overly complex resulting in limited empirical work on governance in health systems. This paper reviews contemporary health sector frameworks which have focused on defining and developing indicators to assess governance in the health sector. Based on these, we propose a simplified approach to look at governance within a common health system framework which encourages stewards to take a systematic perspective when assessing governance. Although systems thinking is not unique to health, examples of its application within health systems has been limited. We also provide an example of how this approach could be applied to illuminate areas of governance weaknesses which are potentially addressable by targeted interventions and policies. This approach is built largely on prior literature, but is original in that it is problem-driven and promotes an outward application taking into consideration the major health system building blocks at various levels in order to ensure a more complete assessment of a governance issue rather than a simple input-output approach. Based on an assessment of contemporary literature we propose a practical approach which we believe will facilitate a more comprehensive assessment of governance in health systems leading to the development of governance interventions to strengthen system performance and improve health as a basic human right.

  2. A Systems Perspective on Responses to Climate Change

    EPA Science Inventory

    The science of climate change integrates many scientific fields to explain and predict the complex effects of greenhouse gas concentrations on the planet’s energy balance, weather patterns, and ecosystems as well as economic and social systems. A changing climate requires respons...

  3. Organizational Climate, Services, and Outcomes in Child Welfare Systems

    ERIC Educational Resources Information Center

    Glisson, Charles; Green, Philip

    2011-01-01

    Objective: This study examines the association of organizational climate, casework services, and youth outcomes in child welfare systems. Building on preliminary findings linking organizational climate to youth outcomes over a 3-year follow-up period, the current study extends the follow-up period to 7 years and tests main, moderating and…

  4. Gauging the System: Trends in School Climate Measurement and Intervention

    ERIC Educational Resources Information Center

    O'Malley, Meagan; Katz, Kristin; Renshaw, Tyler L.; Furlong, Michael J.

    2011-01-01

    Researchers and educators are giving increasing scrutiny to systems-level constructs that contribute to safe, supportive, and effective schools, including school climate. School climate is a multifaceted construct that is commonly conceptualized as school community members' subjective experiences of the structural and contextual elements of a…

  5. Using Systems Approaches to Address Challenges for Clinical Implementation of Pharmacogenomics

    PubMed Central

    Karnes, Jason H; Van Driest, Sara; Bowton, Erica A; Weeke, Peter E; Mosley, Jonathan D; Peterson, Josh F; Denny, Joshua C

    2014-01-01

    Many genetic variants have been shown to affect drug response through changes in drug efficacy and likelihood of adverse effects. Much of pharmacogenomic science has focused on discovering and clinically implementing single gene variants with large effect sizes. Given the increasing complexities of drug responses and their variability, a systems approach may be enabling for discovery of new biology in this area. Further, systems approaches may be useful in addressing challenges in moving these data to clinical implementation, including creation of predictive models of drug response phenotypes, improved clinical decision-making through complex biological models, improving strategies for integrating genomics into clinical practice, and evaluating the impact of implementation programs on public health. PMID:24319008

  6. The 21st century Museum Climatic Monitoring System

    NASA Astrophysics Data System (ADS)

    Liu, W.-S.

    2015-08-01

    Technology has provided us work convenience and shaped our quality of life; it has enabled an unprecedented level of access to knowledge by flipping screen of a hand-held electronic device without going elsewhere but stay connected wireless communication. This kind of technology has been broadly acquired at museums in Hong Kong for preserving their valuable collections. Similar gadget was applied on the monitoring system to record climatic conditions of museum's stores and galleries. Sensors have been equipped with chips for the wireless transmission of RH/Temp, without installation of any conduit or LAN lines. Useful and important data will then be grouped into a packet format for efficient delivery. As long as the static IP address of the target workstation has been set, data can be accurately retrieved from one place to another via commercially available browsers, such as: Firefox or Internet Explorer, even on hand-held electronic devices. This paper will discuss the detail of this system, its pros and cons in comparison with the old model. After all, the new technology is highly significant in supporting the current needs and the future developments of the museum service.

  7. 76 FR 2369 - Priorities for Addressing Risks to the Reliability of the Bulk-Power System; Notice of Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... Energy Regulatory Commission Priorities for Addressing Risks to the Reliability of the Bulk- Power System... related to reliability of the Bulk-Power System, including priorities for addressing risks to reliability.... The conference will be Webcast. Anyone with Internet access who desires to listen to this event can...

  8. The effects of a public address system on the off-task behavior of elementary physical education students.

    PubMed Central

    Ryan, Stu; Ormond, Tom; Imwold, Charles; Rotunda, Rob J

    2002-01-01

    The purpose of this study was to determine the effects of teacher feedback delivered via a public address system on the off-task behavior of elementary-school physical education students. A multiple baseline design across three classes was used in this investigation. Results indicated a consistent decline in off-task behavior when the public address feedback system was used. PMID:12365746

  9. A personal perspective on modelling the climate system

    PubMed Central

    Palmer, T. N.

    2016-01-01

    Given their increasing relevance for society, I suggest that the climate science community itself does not treat the development of error-free ab initio models of the climate system with sufficient urgency. With increasing levels of difficulty, I discuss a number of proposals for speeding up such development. Firstly, I believe that climate science should make better use of the pool of post-PhD talent in mathematics and physics, for developing next-generation climate models. Secondly, I believe there is more scope for the development of modelling systems which link weather and climate prediction more seamlessly. Finally, here in Europe, I call for a new European Programme on Extreme Computing and Climate to advance our ability to simulate climate extremes, and understand the drivers of such extremes. A key goal for such a programme is the development of a 1 km global climate system model to run on the first exascale supercomputers in the early 2020s. PMID:27274686

  10. System's flips in climate-related energy (CRE) systems

    NASA Astrophysics Data System (ADS)

    Ramos, Maria-Helena; Creutin, Jean-Dominique; Engeland, Kolbjørn; François, Baptiste; Renard, Benjamin

    2014-05-01

    Several modern environmental questions invite to explore the complex relationships between natural phenomena and human behaviour at a range of space and time scales. This usually involves a number of cause-effect (causal) relationships, linking actions and events. In lay terms, 'effect' can be defined as 'what happened' and 'cause', 'why something happened.' In a changing world or merely moving from one scale to another, shifts in perspective are expected, bringing some phenomena into the foreground and putting others to the background. Systems can thus flip from one set of causal structures to another in response to environmental perturbations and human innovations or behaviors, for instance, as space-time signatures are modified. The identification of these flips helps in better understanding and predicting how societies and stakeholders react to a shift in perspective. In this study, our motivation is to investigate possible consequences of the shift to a low carbon economy in terms of socio-technico systems' flips. The focus is on the regional production of Climate-Related Energy (CRE) (hydro-, wind- and solar-power). We search for information on historic shifts that may help defining the forcing conditions of abrupt changes and extreme situations. We identify and present a series of examples in which we try to distinguish the various tipping points, thresholds, breakpoints and regime shifts that are characteristic of complex systems in the CRE production domain. We expect that with these examples our comprehension of the question will be enriched, providing us the elements needed to better validate modeling attempts, to predict and manage flips of complex CRE production systems. The work presented is part of the FP7 project COMPLEX (Knowledge based climate mitigation systems for a low carbon economy; http://www.complex.ac.uk/).

  11. Addressing Impacts of Geomagnetic Disturbances on the North American Bulk Power System

    NASA Astrophysics Data System (ADS)

    Rollison, Eric; Moura, John; Lauby, Mark

    2011-08-01

    In a joint report issued in June 2010, the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy (DOE) identified geomagnetic disturbances as a high-impact, low-frequency (HILF) event risk to bulk power system reliability. The potential impact of geomagnetic disturbance events has gained renewed attention as recent studies have suggested that solar storms may be more severe and reach lower geographic latitudes than formerly expected and can affect bulk power system reliability. The most well known power system experience with geomagnetic disturbances in North America was the 13-14 March 1989 storm, which led to the collapse of the Hydro-Québec system in the early morning hours of 13 March 1989, lasting approximately 9 hours. NERC is actively addressing a range of HILF event risks to bulk power system reliability through the efforts of four of its task forces: Geomagnetic Disturbance, Spare Equipment Database, Cyber and Physical Attack, and Severe Impact Resilience. These task forces operate under the direction of three NERC committees: Planning, Operating, and Critical Infrastructure Protection. The NERC Geomagnetic Disturbance Task Force (GMDTF), which was established in September 2010, is charged with investigating the implications of geomagnetic disturbances to the reliability of bulk power systems and developing solutions to help mitigate these risks. The objective of these efforts is to develop models to better understand the nature and effects of coronal mass ejections (CMEs), the vulnerabilities of equipment, bulk power system design considerations, our ability to reduce the operational and real-time impacts of geomagnetic disturbances on the bulk power system, and restoration methods, as well as to inventory long-lead-time equipment. For more information on the current activities of the GMDTF, please visit: www.nerc.com/filez/gmdtf.html

  12. Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system

    PubMed Central

    Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic

    2014-01-01

    The finite resolution of general circulation models of the coupled atmosphere–ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere–ocean climate system in operational forecast mode, and the latest seasonal forecasting system—System 4—has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981–2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden–Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid

  13. Addressing Neuroplastic Changes in Distributed Areas of the Nervous System Associated With Chronic Musculoskeletal Disorders.

    PubMed

    Pelletier, René; Higgins, Johanne; Bourbonnais, Daniel

    2015-11-01

    Present interventions utilized in musculoskeletal rehabilitation are guided, in large part, by a biomedical model where peripheral structural injury is believed to be the sole driver of the disorder. There are, however, neurophysiological changes across different areas of the peripheral and central nervous systems, including peripheral receptors, dorsal horn of the spinal cord, brain stem, sensorimotor cortical areas, and the mesolimbic and prefrontal areas associated with chronic musculoskeletal disorders, including chronic low back pain, osteoarthritis, and tendon injuries. These neurophysiological changes appear not only to be a consequence of peripheral structural injury but also to play a part in the pathophysiology of chronic musculoskeletal disorders. Neurophysiological changes are consistent with a biopsychosocial formulation reflecting the underlying mechanisms associated with sensory and motor findings, psychological traits, and perceptual changes associated with chronic musculoskeletal conditions. These changes, therefore, have important implications in the clinical manifestation, pathophysiology, and treatment of chronic musculoskeletal disorders. Musculoskeletal rehabilitation professionals have at their disposal tools to address these neuroplastic changes, including top-down cognitive-based interventions (eg, education, cognitive-behavioral therapy, mindfulness meditation, motor imagery) and bottom-up physical interventions (eg, motor learning, peripheral sensory stimulation, manual therapy) that induce neuroplastic changes across distributed areas of the nervous system and affect outcomes in patients with chronic musculoskeletal disorders. Furthermore, novel approaches such as the use of transcranial direct current stimulation and repetitive transcranial magnetic stimulation may be utilized to help renormalize neurological function. Comprehensive treatment addressing peripheral structural injury as well as neurophysiological changes occurring across

  14. DataStreme Earth's Climate System: Building a Climate Literate Society through Effective Partnerships

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Geer, I. W.; Weinbeck, R. S.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    Effective partnerships are key to increasing climate and overall environmental literacy. Financial support from NSF, NASA, and NOAA has allowed the American Meteorological Society (AMS) to offer DataStreme courses for almost 20 years. DataStreme Atmosphere, Ocean, and Earth's Climate System (ECS) are offered each fall and spring semester by Local Implementation Teams (LITs) across the country in coordination with AMS Education Program scientists and educators who develop instructional materials, provide logistical support to the LITs, and administer the project. A long-standing partnership with State University of New York's The College at Brockport gives teachers the opportunity to receive 3 tuition-free graduate credits upon successful completion of each DataStreme course and construction of a Plan of Action for educational peer-training. DataStreme ECS investigates the fundamental science of Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. The course provides participants with the knowledge to make informed climate decisions. In fact, according to a recent three-year study conducted by AMS, 98% of DataStreme ECS participants reported an increase in environmental literacy as a result of the course. DataStreme Atmosphere, Ocean, and ECS content has been improved because of AMS partnerships with NOAA and NASA. Specifically, hundreds of NASA and NOAA scientists and faculty from numerous institutions both domestic and abroad have contributed and reviewed DataStreme ECS content. Additional collaborations with Consortium for Ocean Leadership and the U.S. Ice Drilling Program greatly improved the course's paleoclimate content. Looking ahead, the Climate Resilience Toolkit from NOAA's Climate Program Office will further bolster the course this fall. These partnerships have resulted in a powerful, content-rich climate science course for K-12 teachers, building the foundation to a climate literate society.

  15. Residential Dehumidification Systems Research for Hot-Humid Climates

    SciTech Connect

    2005-02-01

    Twenty homes were tested and monitored in the hot-humid climate of Houston, Texas, to evaluate the humidity control performance and operating cost of six integrated dehumidification and ventilation systems.

  16. Simulating microbial systems: addressing model uncertainty/incompleteness via multiscale and entropy methods.

    PubMed

    Singharoy, A; Joshi, H; Cheluvaraja, S; Miao, Y; Brown, D; Ortoleva, P

    2012-01-01

    Most systems of interest in the natural and engineering sciences are multiscale in character. Typically available models are incomplete or uncertain. Thus, a probabilistic approach is required. We present a deductive multiscale approach to address such problems, focusing on virus and cell systems to demonstrate the ideas. There is usually an underlying physical model, all factors in which (e.g., particle masses, charges, and force constants) are known. For example, the underlying model can be cast in terms of a collection of N-atoms evolving via Newton's equations. When the number of atoms is 10(6) or more, these physical models cannot be simulated directly. However, one may only be interested in a coarse-grained description, e.g., in terms of molecular populations or overall system size, shape, position, and orientation. The premise of this chapter is that the coarse-grained equations should be derived from the underlying model so that a deductive calibration-free methodology is achieved. We consider a reduction in resolution from a description for the state of N-atoms to one in terms of coarse-grained variables. This implies a degree of uncertainty in the underlying microstates. We present a methodology for modeling microbial systems that integrates equations for coarse-grained variables with a probabilistic description of the underlying fine-scale ones. The implementation of our strategy as a general computational platform (SimEntropics™) for microbial modeling and prospects for developments and applications are discussed.

  17. Agro-climatic adaptation of cropping systems under climate change in Shanghai

    NASA Astrophysics Data System (ADS)

    Liang, Zhuoran; Gu, Tingting; Tian, Zhan; Zhong, Honglin; Liang, Yuqi

    2015-09-01

    Climate change affects the heat and water resources required by agriculture, thus shifting cropping rotation and intensity. Shanghai is located in the Taihu Lake basin, a transition zone for various cropping systems. In the basin, moderate climate changes can cause major shifts in cropping intensity and rotation. In the present study, we integrated observational climate data, one regional climate model, land use maps, and agricultural statistics to analyze the relationship between heat resources and multi-cropping potential in Shanghai. The results of agro-climatic assessment showed that climate change over the past 50 years has significantly enhanced regional agroclimatic resources, rendering a shift from double cropping to triple cropping possible. However, a downward trend is evident in the actual multi-cropping index, caused principally by the increasing costs of farming and limitations in the supply of labor. We argue that improving the utilization rate of the enhanced agro-climatic resources is possible by introducing new combinations of cultivars, adopting more laborsaving technologies, and providing incentives to farmers.

  18. Effective target binarization method for linear timed address-event vision system

    NASA Astrophysics Data System (ADS)

    Xu, Jiangtao; Zou, Jiawei; Yan, Shi; Gao, Zhiyuan

    2016-06-01

    This paper presents an effective target binarization method for a linear timed address-event (TAE) vision system. In the preprocessing phase, TAE data are processed by denoising, thinning, and edge connection methods sequentially to obtain the denoised- and clear-event contours. Then, the object region will be confirmed by an event-pair matching method. Finally, the image open and close operations of morphology methods are introduced to remove the artifacts generated by event-pair mismatching. Several degraded images were processed by our method and some traditional binarization methods, and the experimental results are provided. As compared with other methods, the proposed method performs efficiently on extracting the target region and gets satisfactory binarization results from object images with low-contrast and nonuniform illumination.

  19. Potential effects of the introduction of the discrete address beacon system data link on air/ground information transfer problems

    NASA Technical Reports Server (NTRS)

    Grayson, R. L.

    1981-01-01

    This study of Aviation Safety Reporting System reports suggests that benefits should accure from implementation of discrete address beacon system data link. The phase enhanced terminal information system service is expected to provide better terminal information than present systems by improving currency and accuracy. In the exchange of air traffic control messages, discrete address insures that only the intended recipient receives and acts on a specific message. Visual displays and printer copy of messages should mitigate many of the reported problems associated with voice communications. The problems that remain unaffected include error in addressing the intended recipient and messages whose content is wrong but are otherwise correct as to format and reasonableness.

  20. INTRODUCTION: Focus on Climate Engineering: Intentional Intervention in the Climate System

    NASA Astrophysics Data System (ADS)

    2009-12-01

    Geoengineering techniques for countering climate change have been receiving much press recently as a `Plan B' if a global deal to tackle climate change is not agreed at the COP15 negotiations in Copenhagen this December. However, the field is controversial as the methods may have unforeseen consequences, potentially making temperatures rise in some regions or reducing rainfall, and many aspects remain under-researched. This focus issue of Environmental Research Letters is a collection of research articles, invited by David Keith, University of Calgary, and Ken Caldeira, Carnegie Institution, that present and evaluate different methods for engineering the Earth's climate. Not only do the letters in this issue highlight various methods of climate engineering but they also detail the arguments for and against climate engineering as a concept. Further reading Focus on Geoengineering at http://environmentalresearchweb.org/cws/subject/tag=geoengineering IOP Conference Series: Earth and Environmental Science is an open-access proceedings service available at www.iop.org/EJ/journal/ees Focus on Climate Engineering: Intentional Intervention in the Climate System Contents Modification of cirrus clouds to reduce global warming David L Mitchell and William Finnegan Climate engineering and the risk of rapid climate change Andrew Ross and H Damon Matthews Researching geoengineering: should not or could not? Martin Bunzl Of mongooses and mitigation: ecological analogues to geoengineering H Damon Matthews and Sarah E Turner Toward ethical norms and institutions for climate engineering research David R Morrow, Robert E Kopp and Michael Oppenheimer On the possible use of geoengineering to moderate specific climate change impacts Michael C MacCracken The impact of geoengineering aerosols on stratospheric temperature and ozone P Heckendorn, D Weisenstein, S Fueglistaler, B P Luo, E Rozanov, M Schraner, L W Thomason and T Peter The fate of the Greenland Ice Sheet in a geoengineered

  1. Quantifying the increasing sensitivity of power systems to climate variability

    NASA Astrophysics Data System (ADS)

    Bloomfield, H. C.; Brayshaw, D. J.; Shaffrey, L. C.; Coker, P. J.; Thornton, H. E.

    2016-12-01

    Large quantities of weather-dependent renewable energy generation are expected in power systems under climate change mitigation policies, yet little attention has been given to the impact of long term climate variability. By combining state-of-the-art multi-decadal meteorological records with a parsimonious representation of a power system, this study characterises the impact of year-to-year climate variability on multiple aspects of the power system of Great Britain (including coal, gas and nuclear generation), demonstrating why multi-decadal approaches are necessary. All aspects of the example system are impacted by inter-annual climate variability, with the impacts being most pronounced for baseload generation. The impacts of inter-annual climate variability increase in a 2025 wind-power scenario, with a 4-fold increase in the inter-annual range of operating hours for baseload such as nuclear. The impacts on peak load and peaking-plant are comparably small. Less than 10 years of power supply and demand data are shown to be insufficient for providing robust power system planning guidance. This suggests renewable integration studies—widely used in policy, investment and system design—should adopt a more robust approach to climate characterisation.

  2. Coastal upwelling systems under changing climate and high CO2

    NASA Astrophysics Data System (ADS)

    Lachkar, Z.; Gruber, N.; Plattner, G.-K.; Hauri, C.

    2009-04-01

    Eastern Boundary Current Upwelling Systems (EBUS) are major oceanographic ecosystems that are well known for high productivity and for playing an important role in the marine carbon cycle. EBUS are particularly sensitive to human-induced climate change, such as potential shifts in the distribution and the magnitude of upwelling-favorable winds, as well as ocean acidification from rising atmospheric CO2 concentration. However, neither the biological response to changes in wind forcing nor the extent to which coastal waters might become exposed to undersaturated waters due to a shoaling of the CaCO3 saturation horizon are currently well understood. The fact that local environmental and physical conditions substantially vary from one EBUS to another further complicates the story. To address the vulnerability of different EBUS, we investigate the magnitude and effect of ocean acidification and the impacts of changes in upwelling favorable winds on the productivity by conducting eddy-resolving simulations with the Regional Oceanic Modeling System - ROMS -- coupled to a nitrogen based Nutrient-Phytoplankton-Detritus-Zooplankton (NPDZ) biogeochemical model including a representation of the marine carbon cycle for two of the four major EBUS, namely the California and the Canary Current Systems. We examine how potential changes in wind stress will affect the productivity in both upwelling systems and explore past, present and future changes in pH, CaCO3 saturation horizons, and other biogeochemical and ecological processes in response to elevated atmospheric CO2. A particular focus of our analyses is on the rate of change and on the timing when critical thresholds will be passed in the different EBUS.

  3. Motivated recall in the service of the economic system: The case of anthropogenic climate change.

    PubMed

    Hennes, Erin P; Ruisch, Benjamin C; Feygina, Irina; Monteiro, Christopher A; Jost, John T

    2016-06-01

    The contemporary political landscape is characterized by numerous divisive issues. Unlike many other issues, however, much of the disagreement about climate change centers not on how best to take action to address the problem, but on whether the problem exists at all. Psychological studies indicate that, to the extent that sustainability initiatives are seen as threatening to the socioeconomic system, individuals may downplay environmental problems in order to defend and protect the status quo. In the current research, participants were presented with scientific information about climate change and later asked to recall details of what they had learned. Individuals who were experimentally induced (Study 1) or dispositionally inclined (Studies 2 and 3) to justify the economic system misremembered the evidence to be less serious, and this was associated with increased skepticism. However, when high system justifiers were led to believe that the economy was in a recovery, they recalled climate change information to be more serious than did those assigned to a control condition. When low system justifiers were led to believe that the economy was in recession, they recalled the information to be less serious (Study 3). These findings suggest that because system justification can impact information processing, simply providing the public with scientific evidence may be insufficient to inspire action to mitigate climate change. However, linking environmental information to statements about the strength of the economic system may satiate system justification needs and break the psychological link between proenvironmental initiatives and economic risk. (PsycINFO Database Record

  4. The impacts of climate change in coastal marine systems.

    PubMed

    Harley, Christopher D G; Randall Hughes, A; Hultgren, Kristin M; Miner, Benjamin G; Sorte, Cascade J B; Thornber, Carol S; Rodriguez, Laura F; Tomanek, Lars; Williams, Susan L

    2006-02-01

    Anthropogenically induced global climate change has profound implications for marine ecosystems and the economic and social systems that depend upon them. The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature. However, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex. For example, changes in ocean chemistry may be more important than changes in temperature for the performance and survival of many organisms. Ocean circulation, which drives larval transport, will also change, with important consequences for population dynamics. Furthermore, climatic impacts on one or a few 'leverage species' may result in sweeping community-level changes. Finally, synergistic effects between climate and other anthropogenic variables, particularly fishing pressure, will likely exacerbate climate-induced changes. Efforts to manage and conserve living marine systems in the face of climate change will require improvements to the existing predictive framework. Key directions for future research include identifying key demographic transitions that influence population dynamics, predicting changes in the community-level impacts of ecologically dominant species, incorporating populations' ability to evolve (adapt), and understanding the scales over which climate will change and living systems will respond.

  5. Climate Change Impact Assessments for International Market Systems (CLIMARK)

    NASA Astrophysics Data System (ADS)

    Winkler, J. A.; Andresen, J.; Black, J.; Bujdoso, G.; Chmielewski, F.; Kirschke, D.; Kurlus, R.; Liszewska, M.; Loveridge, S.; Niedzwiedz, T.; Nizalov, D.; Rothwell, N.; Tan, P.; Ustrnul, Z.; von Witzke, H.; Zavalloni, C.; Zhao, J.; Zhong, S.

    2012-12-01

    The vast majority of climate change impact assessments evaluate how local or regional systems and processes may be affected by a future climate. Alternative strategies that extend beyond the local or regional scale are needed when assessing the potential impacts of climate change on international market systems, including agricultural commodities. These industries have multiple production regions that are distributed worldwide and are likely to be differentially impacted by climate change. Furthermore, for many industries and market systems, especially those with long-term climate-dependent investments, temporal dynamics need to be incorporated into the assessment process, including changing patterns of international trade, consumption and production, and evolving adaptation strategies by industry stakeholder groups. A framework for conducting climate change assessments for international market systems, developed as part of the CLIMARK (Climate Change and International Markets) project is outlined, and progress toward applying the framework for an impact assessment for the international tart cherry industry is described. The tart cherry industry was selected for analysis in part because tart cherries are a perennial crop requiring long-term investments by the producer. Components of the project include the preparation of fine resolution climate scenarios, evaluation of phenological models for diverse production regions, the development of a yield model for tart cherry production, new methods for incorporating individual decision making and adaptation options into impact assessments, and modification of international trade models for use in impact studies. Innovative aspects of the project include linkages between model components and evaluation of the mega-uncertainty surrounding the assessment outcomes. Incorporation of spatial and temporal dynamics provides a more comprehensive evaluation of climate change impacts and an assessment product of potentially greater

  6. Developing a National Climate Indicators System to Track Climate Changes, Impacts, Vulnerabilities, and Preparedness

    NASA Astrophysics Data System (ADS)

    Kenney, M. A.; Janetos, A. C.; Arndt, D.; Chen, R. S.; Pouyat, R.; Anderson, S. M.

    2013-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. Part of the vision, which is now under development, for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks, Atmospheric Composition, Physical Climate Variability and Change, Sectors and Resources of Concern, and Adaptation and Mitigation Responses. This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at spatial

  7. Organizational Reward Systems: Implications for Climate.

    DTIC Science & Technology

    1982-09-01

    engage in behaviors that lead to desired reinforcements produces learned helplessness and reduced effort ( Seligman , 1975). Thus, clarity about...Climate 35 Schrauger, J. S. Responses to evaluation as a function of initial self- perceptions. Psychological Bulletin, 1975, 82, 581-596. Seligman , M...Dorothy Benson, Linda Dutton, Deborah Main, and Barbara Olson for their assistance. LIST l/Mandatory LIST 2/ONR Field (continued) Defense Technical

  8. Comments on Current Space Systems Observing the Climate

    NASA Astrophysics Data System (ADS)

    Fisk, L. A.

    2016-07-01

    The Global Climate Observing System (GCOS), which was established in 1992, has been effective in specifying the observations needed for climate studies, and advocating that these observations be made. As a result, there are essential climate variables being observed, particularly from space, and these have formed the basis for our ever-improving models of how the Earth system functions and the human impact on it. We cannot conclude, however, that the current observing system in space is adequate. Climate change is accelerating, and we need to ensure that our observations capture, with completeness and with proper resolution and cadence, the most important changes. Perhaps of most significance, we need to use observations from space to guide the mitigation and adaptation strategies on which at last our civilization seems prepared to embark. And we need to use our observations to educate particularly policy makers on the reality of climate change, so that none deny the need to act. COSPAR is determined to play its part in highlighting the need to strengthen the climate observing system and notably its research component. This is being accomplished through events like the present roundtable, through the work of its Scientific Commission A, its Task Group on GEO (where COSPAR is serving as a member of its Program Board), and by promoting among space agencies and policy-makers the recently released scientific roadmap on Integrated Earth System Science for the period 2016-2025.

  9. Investigations of the Climate System Response to Climate Engineering in a Hierarchy of Models

    NASA Astrophysics Data System (ADS)

    McCusker, Kelly E.

    Global warming due to anthropogenic emissions of greenhouse gases is causing negative impacts on diverse ecological and human systems around the globe, and these impacts are projected to worsen as climate continues to warm. In the absence of meaningful greenhouse gas emissions reductions, new strategies have been proposed to engineer the climate, with the aim of preventing further warming and avoiding associated climate impacts. We investigate one such strategy here, falling under the umbrella of `solar radiation management', in which sulfate aerosols are injected into the stratosphere. We use a global climate model with a coupled mixed-layer depth ocean and with a fully-coupled ocean general circulation model to simulate the stabilization of climate by balancing increasing carbon dioxide with increasing stratospheric sulfate concentrations. We evaluate whether or not severe climate impacts, such as melting Arctic sea ice, tropical crop failure, or destabilization of the West Antarctic ice sheet, could be avoided. We find that while tropical climate emergencies might be avoided by use of stratospheric aerosol injections, avoiding polar emergencies cannot be guaranteed due to large residual climate changes in those regions, which are in part due to residual atmospheric circulation anomalies. We also find that the inclusion of a fully-coupled ocean is important for determining the regional climate response because of its dynamical feedbacks. The efficacy of stratospheric sulfate aerosol injections, and solar radiation management more generally, depends on its ability to be maintained indefinitely, without interruption from a variety of possible sources, such as technological failure, a breakdown in global cooperation, lack of funding, or negative unintended consequences. We next consider the scenario in which stratospheric sulfate injections are abruptly terminated after a multi- decadal period of implementation while greenhouse gas emissions have continued unabated

  10. Developing a System of National Climate Assessment Indicators to Track Climate Change Impacts, Vulnerabilities, and Preparedness

    NASA Astrophysics Data System (ADS)

    Janetos, A. C.; Kenney, M. A.; Chen, R. S.; Arndt, D.

    2012-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years (http://globalchange.gov/what-we-do/assessment/). Part of the vision for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks Atmospheric Composition Physical Climate Variability and Change Sectors and Resources of Concern Adaptation and Mitigation Responses This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at

  11. System Dynamics to Climate-Driven Water Budget Analysis in the Eastern Snake Plains Aquifer

    NASA Astrophysics Data System (ADS)

    Ryu, J.; Contor, B.; Wylie, A.; Johnson, G.; Allen, R. G.

    2010-12-01

    Climate variability, weather extremes and climate change continue to threaten the sustainability of water resources in the western United States. Given current climate change projections, increasing temperature is likely to modify the timing, form, and intensity of precipitation events, which consequently affect regional and local hydrologic cycles. As a result, drought, water shortage, and subsequent water conflicts may become an increasing threat in monotone hydrologic systems in arid lands, such as the Eastern Snake Plain Aquifer (ESPA). The ESPA, in particular, is a critical asset in the state of Idaho. It is known as the economic lifeblood for more than half of Idaho’s population so that water resources availability and aquifer management due to climate change is of great interest, especially over the next few decades. In this study, we apply system dynamics as a methodology with which to address dynamically complex problems in ESPA’s water resources management. Aquifer recharge and discharge dynamics are coded in STELLA modeling system as input and output, respectively to identify long-term behavior of aquifer responses to climate-driven hydrological changes.

  12. Aerosol-cloud interactions in the South-East Atlantic: knowledge gaps, planned observations to address them, and implications for global climate change modeling

    NASA Astrophysics Data System (ADS)

    Redemann, Jens; Wood, Robert; Zuidema, Paquita; Haywood, James; Luna, Bernadette; Abel, Steven

    2015-04-01

    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical Stratocumulus (Sc) cloud decks in the world. The stratocumulus "climate radiators" are critical to the regional and global climate system. They interact with dense layers of BB aerosols that initially overlay the cloud deck, but later subside and are mixed into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects. As emphasized in the latest IPCC report, the global representation of these aerosol-cloud interaction processes in climate models is one of the largest uncertainty in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling, and describe planned field campaigns in the region. Specifically, we describe the scientific objectives and implementation of the following four synergistic, international research activities aimed at providing a process-level understanding of aerosol-cloud interactions over the SE Atlantic: 1) ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS), a five-year investigation between 2015 and 2019 with three Intensive Observation Periods (IOP), recently funded by the NASA Earth-Venture Suborbital Program, 2) CLARIFY-2016 (CLoud-Aerosol-Radiation Interactions and Forcing: Year 2016), a comprehensive observational and modeling programme funded by the UK's Natural Environment Research Council (NERC), and supported by the UK Met Office. 3) LASIC (Layered Atlantic Smoke Interactions with Clouds), a funded

  13. Aerosol-Cloud Interactions in the South-East Atlantic: Knowledge Gaps, Planned Observations to Address Them, and Implications for Global Climate Change Modeling

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Wood, R.; Zuidema, P.; Haywood, J.; Luna, B.; Abel, S.

    2015-01-01

    Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical Stratocumulus (Sc) cloud decks in the world. The stratocumulus "climate radiators" are critical to the regional and global climate system. They interact with dense layers of BB aerosols that initially overlay the cloud deck, but later subside and are mixed into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects. As emphasized in the latest IPCC report, the global representation of these aerosol-cloud interaction processes in climate models is one of the largest uncertainty in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling, and describe planned field campaigns in the region. Specifically, we describe the scientific objectives and implementation of the following four synergistic, international research activities aimed at providing a process-level understanding of aerosol-cloud interactions over the SE Atlantic: 1) ORACLES (Observations of Aerosols above Clouds and their interactions), a five-year investigation between 2015 and 2019 with three Intensive Observation Periods (IOP), recently funded by the NASA Earth-Venture Suborbital Program, 2) CLARIFY-2016 (Cloud-Aerosol-Radiation Interactions and Forcing: Year 2016), a comprehensive observational and modeling programme funded by the UK's Natural Environment Research Council (NERC), and supported by the UK Met Office. 3) LASIC (Layered Atlantic Smoke Interactions with Clouds), a funded

  14. Climate and Energy-Water-Land System Interactions Technical Report to the U.S. Department of Energy in Support of the National Climate Assessment

    SciTech Connect

    Skaggs, Richard; Hibbard, Kathleen A.; Frumhoff, Peter; Lowry, Thomas; Middleton, Richard; Pate, Ron; Tidwell, Vincent C.; Arnold, J. G.; Averyt, Kristen; Janetos, Anthony C.; Izaurralde, Roberto C.; Rice, Jennie S.; Rose, Steven K.

    2012-03-01

    This report provides a framework to characterize and understand the important elements of climate and energy-water-land (EWL) system interactions. It identifies many of the important issues, discusses our understanding of those issues, and presents a long-term research program research needs to address the priority scientific challenges and gaps in our understanding. Much of the discussion is organized around two discrete case studies with the broad themes of (1) extreme events and (2) regional intercomparisons. These case studies help demonstrate unique ways in which energy-water-land interactions can occur and be influenced by climate.

  15. Institutional misfit and environmental change: A systems approach to address ocean acidification.

    PubMed

    Ekstrom, Julia A; Crona, Beatrice I

    2017-01-15

    Emerging environmental threats often lack sufficient governance to address the full extent of the problem. An example is ocean acidification which is a growing concern in fishing and aquaculture economies worldwide, but has remained a footnote in environmental policy at all governance levels. However, existing legal jurisdictions do account for some aspects of the system relating to ocean acidification and these may be leveraged to support adapting to and mitigating ocean acidification. We refine and apply a methodological framework that helps objectively evaluate governance, from a social-ecological systems perspective. We assess how well a set of extant US institutions fits with the social-ecological interactions pertinent to ocean acidification. The assessment points to measured legal gaps, for which we evaluate the government authorities most appropriate to help fill these gaps. The analysis is conducted on United State federal statutes and regulations. Results show quantitative improvement of institutional fit over time (2006 to 2013), but a substantial number of measured legal gaps persist especially around acknowledging local sources of acidification and adaptation strategies to deal with or avoid impacts. We demonstrate the utility of this framework to evaluate the governance surrounding any emerging environmental threat as a first step to guiding the development of jurisdictionally realistic solutions.

  16. Arctic melt ponds and energy balance in the climate system

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  17. Climate information for public health: the role of the IRI climate data library in an integrated knowledge system.

    PubMed

    del Corral, John; Blumenthal, M Benno; Mantilla, Gilma; Ceccato, Pietro; Connor, Stephen J; Thomson, Madeleine C

    2012-09-01

    Public health professionals are increasingly concerned about the potential impact of climate variability and change on health outcomes. Protecting public health from the vagaries of climate requires new working relationships between the public health sector and the providers of climate data and information. The Climate Information for Public Health Action initiative at the International Research Institute for Climate and Society (IRI) is designed to increase the public health community's capacity to understand, use and demand appropriate climate data and climate information to mitigate the public health impacts of the climate. Significant challenges to building the capacity of health professionals to use climate information in research and decision-making include the difficulties experienced by many in accessing relevant and timely quality controlled data and information in formats that can be readily incorporated into specific analysis with other data sources. We present here the capacities of the IRI climate data library and show how we have used it to build an integrated knowledge system in the support of the use of climate and environmental information in climate-sensitive decision-making with respect to health. Initiated as an aid facilitating exploratory data analysis for climate scientists, the IRI climate data library has emerged as a powerful tool for interdisciplinary researchers focused on topics related to climate impacts on society, including health.

  18. Examining How Web Designers' Activity Systems Address Accessibility: Activity Theory as a Guide

    ERIC Educational Resources Information Center

    Russell, Kyle

    2014-01-01

    While accessibility of information technologies is often acknowledged as important, it is frequently not well addressed in practice. The purpose of this study was to examine the work of web developers and content managers to explore why and how accessibility is or is not addressed as an objective as websites are planned, built and maintained.…

  19. Addressing the systems-based practice requirement with health policy content and educational technology.

    PubMed

    Nagler, Alisa; Andolsek, Kathryn; Dossary, Kristin; Schlueter, Joanne; Schulman, Kevin

    2010-01-01

    Duke University Hospital Office of Graduate Medical Education and Duke University's Fuqua School of Business collaborated to offer a Health Policy lecture series to residents and fellows across the institution, addressing the "Systems-based Practice" competency.During the first year, content was offered in two formats: live lecture and web/podcast. Participants could elect the modality which was most convenient for them. In Year Two, the format was changed so that all content was web/podcast and a quarterly live panel discussion was led by module presenters or content experts. Lecture evaluations, qualitative focus group feedback, and post-test data were analyzed.A total of 77 residents and fellows from 8 (of 12) Duke Graduate Medical Education departments participated. In the first year, post-test results were the same for those who attended the live lectures and those who participated via web/podcast. A greater number of individuals participated in Year Two. Participants from both years expressed the need for health policy content in their training programs. Participants in both years valued a hybrid format for content delivery, recognizing a desire for live interaction with the convenience of accessing web/podcasts at times and locations convenient for them. A positive unintended consequence of the project was participant networking with residents and fellows from other specialties.

  20. Systems approach to address incivility and disruptive behaviors in health-care organizations.

    PubMed

    Holloway, Elizabeth; Kusy, Mitchell

    2011-01-01

    In response to the growing evidence that disruptive behaviors within health-care teams constitute a major threat to the quality of care, the Joint Commission on Accreditation of Healthcare Organization (JCAHO; Joint Commission Resources, 2008) has a new leadership standard that addresses disruptive and inappropriate behaviors effective January 1, 2009. For professionals who work in human resources and organization development, these standards represent a clarion call to design and implement evidence-based interventions to create health-care communities of respectful engagement that have zero tolerance for disruptive, uncivil, and intimidating behaviors by any professional. In this chapter, we will build an evidence-based argument that sustainable change must include organizational, team, and individual strategies across all professionals in the organization. We will then describe an intervention model--Toxic Organization Change System--that has emerged from our own research on toxic behaviors in the workplace (Kusy & Holloway, 2009) and provide examples of specific strategies that we have used to prevent and ameliorate toxic cultures.

  1. Socio-Ecohydrologic Agents And Services: Integrating Human And Natural Components To Address Coupled System Resilience

    NASA Astrophysics Data System (ADS)

    Pavao-zuckerman, M.; Pope, A.; Chan, D.; Curl, K.; Gimblett, H. R.; Hough, M.; House-Peters, L.; Lee, R.; Scott, C. A.

    2012-12-01

    Riparian corridors in arid regions are highly valued for their relative scarcity, and because healthy riparian systems support high levels of biodiversity, can meet human demand for water and water-related resources and functions. Our team is taking a transdiciplinary social-ecological systems approach to assessing riparian corridor resilience in two watersheds (the San Pedro River in USA and Mexico, and the Rio San Miguel in Mexico) through a project funded by the NSF CNH program ("Strengthening Resilience of Arid Region Riparian Corridors"). Multiple perspectives are integrated in the project, including hydrology, ecology, institutional dynamics, and decision making (at the level of both policy and individual choice), as well as the perspectives of various stakeholder groups and individuals in the watersheds. Here we discuss initial findings that center around linking changes in ecohydrology and livelihoods related to decisions in response to climatic, ecological, and social change. The research team is implementing two approaches to integrate the disparate disciplines participating in the research (and the varied perspectives among the stakeholders in this binational riparian context): (1) ecosystem service assessment, and (2) agent based model simulation. We are developing an ecosystem service perspective that provides a bridge between ecological dynamics in the landscape and varied stakeholder perspectives on the implications of ecohydrology for well-being (economic, cultural, ecological). Services are linked on one hand to the spatial patterns of traits of individuals within species (allowing a more predictive application of ecosystem services as they vary with community change in time), and to stakeholder perspectives (facilitating integration of ecosystem services into our understanding of decision making processes) in a case study in the San Pedro River National Conservation Area. The agent- based model (ABM) approach incorporates the influence of human

  2. Addressing security, collaboration, and usability with tactical edge mobile devices and strategic cloud-based systems

    NASA Astrophysics Data System (ADS)

    Graham, Christopher J.

    2012-05-01

    Success in the future battle space is increasingly dependent on rapid access to the right information. Faced with a shrinking budget, the Government has a mandate to improve intelligence productivity, quality, and reliability. To achieve increased ISR effectiveness, leverage of tactical edge mobile devices via integration with strategic cloud-based infrastructure is the single, most likely candidate area for dramatic near-term impact. This paper discusses security, collaboration, and usability components of this evolving space. These three paramount tenets outlined below, embody how mission information is exchanged securely, efficiently, with social media cooperativeness. Tenet 1: Complete security, privacy, and data integrity, must be ensured within the net-centric battle space. This paper discusses data security on a mobile device, data at rest on a cloud-based system, authorization and access control, and securing data transport between entities. Tenet 2: Lack of collaborative information sharing and content reliability jeopardizes mission objectives and limits the end user capability. This paper discusses cooperative pairing of mobile devices and cloud systems, enabling social media style interaction via tagging, meta-data refinement, and sharing of pertinent data. Tenet 3: Fielded mobile solutions must address usability and complexity. Simplicity is a powerful paradigm on mobile platforms, where complex applications are not utilized, and simple, yet powerful, applications flourish. This paper discusses strategies for ensuring mobile applications are streamlined and usable at the tactical edge through focused features sets, leveraging the power of the back-end cloud, minimization of differing HMI concepts, and directed end-user feedback.teInput=

  3. Is there a Climate Network - A Backbone of the Climate System? (Invited)

    NASA Astrophysics Data System (ADS)

    Kurths, J.

    2010-12-01

    We consider an inverse problem: Is there a backbone-like structure underlying the climate system? For this we propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system. This technique is then applied to reanalysis and model surface air temperature data. Parameters of this network, as betweenness centrality, uncover relations to global circulation patterns in oceans and atmosphere. We especially study the role of hubs and of long range connections, called teleconnections, in the flows of energy and matter in the climate system. The global scale view on climate networks offers promising new perspectives for detecting dynamical structures based on nonlinear physical processes in the climate system. References Arenas, A., A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Phys. Reports 2008, 469, 93. Donges, J., Y. Zou, N. Marwan, and J. Kurths, Europ. Phys. J. ST 2009, 174, 157-179. Donges, J., Y. Zou, N. Marwan, and J. Kurths, Europhys. Lett. 2009, 87, 48007. Nawrath, J. et al., Phys. Rev. Lett. 2010, 104, 038701. Donner, R., Y. Zou, J. Donges, N. Marwan, and J. Kurths, Phys. Rev. E 2010, 81, 015101(R ).

  4. Incorporating climate-system and carbon-cycle uncertainties in integrated assessments of climate change. (Invited)

    NASA Astrophysics Data System (ADS)

    Rogelj, J.; McCollum, D. L.; Reisinger, A.; Knutti, R.; Riahi, K.; Meinshausen, M.

    2013-12-01

    The field of integrated assessment draws from a large body of knowledge across a range of disciplines to gain robust insights about possible interactions, trade-offs, and synergies. Integrated assessment of climate change, for example, uses knowledge from the fields of energy system science, economics, geophysics, demography, climate change impacts, and many others. Each of these fields comes with its associated caveats and uncertainties, which should be taken into account when assessing any results. The geophysical system and its associated uncertainties are often represented by models of reduced complexity in integrated assessment modelling frameworks. Such models include simple representations of the carbon-cycle and climate system, and are often based on the global energy balance equation. A prominent example of such model is the 'Model for the Assessment of Greenhouse Gas Induced Climate Change', MAGICC. Here we show how a model like MAGICC can be used for the representation of geophysical uncertainties. Its strengths, weaknesses, and limitations are discussed and illustrated by means of an analysis which attempts to integrate socio-economic and geophysical uncertainties. These uncertainties in the geophysical response of the Earth system to greenhouse gases remains key for estimating the cost of greenhouse gas emission mitigation scenarios. We look at uncertainties in four dimensions: geophysical, technological, social and political. Our results indicate that while geophysical uncertainties are an important factor influencing projections of mitigation costs, political choices that delay mitigation by one or two decades a much more pronounced effect.

  5. Mars: A Planet with a Dynamic Climate System (Invited)

    NASA Astrophysics Data System (ADS)

    Haberle, R. M.

    2013-12-01

    Mars is a well-observed planet. Since the 1960s orbiters, landers, rovers, and earth-based telescopic observations show that its climate system is dynamic. Its dynamic nature, largely the result of atmosphere-surface interactions, is most obvious in the seasonal cycles of dust, water, and carbon dioxide that define the planet's climate system. These cycles are linked through the global circulation and MGS, Odyssey, Phoenix, MER, Mars Express, MRO, and now MSL have continuously observed them at Mars for the past 16 years. Their observations show that while the seasonal cycles are largely annually repeatable, there are interannual variations. Planet-encircling dust storms, for example, are quasi-triennial and originate over a broader range of seasons and locations than previously thought. Water moves from pole-to-pole each year in a largely, but not precisely, repeatable pattern that suggests but does not demand non-polar surface reservoirs. And the seasonal CO2 polar caps grow and retreat in a very predictable way with only minor deviations from year-to-year in spite of significant differences in atmospheric dust content. These behaviors suggest a complicated but robust coupled system in which these cycles interact to produce the greatest interannual variability in the dust cycle and least variability in the CO2 cycle. The nature of these interactions is the subject of ongoing research, but clouds, both water ice and CO2 ice, now appear to play a bigger role than believed at the end of the 20th century. There may also be some long-term trends in these cycles as there is evidence from imaging data, for example, that the south polar residual cap may not be stable on decadal to centennial time scales. On even longer time scales, the discovery of as much as 5 mb global equivalent of buried CO2 ice near the south pole, the detection of vast quantities of subsurface water ice at very shallow depths in midlatitudes of both hemispheres, and the presence of remnant glacial

  6. Mars: A Planet with a Dynamic Climate System

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.

    2013-01-01

    Mars is a well-observed planet. Since the 1960s orbiters, landers, rovers, and earth-based telescopic observations show that its climate system is dynamic. Its dynamic nature, largely the result of atmosphere-surface interactions, is most obvious in the seasonal cycles of dust, water, and carbon dioxide that define the planet's climate system. These cycles are linked through the global circulation and MGS, Odyssey, Phoenix, MER, Mars Express, MRO, and now MSL have continuously observed them at Mars for the past 16 years. Their observations show that while the seasonal cycles are largely annually repeatable, there are interannual variations. Planet-encircling dust storms, for example, are quasi-triennial and originate over a broader range of seasons and locations than previously thought. Water moves from pole-to-pole each year in a largely, but not precisely, repeatable pattern that suggests but does not demand non-polar surface reservoirs. And the seasonal CO2 polar caps grow and retreat in a very predictable way with only minor deviations from year-to-year in spite of significant differences in atmospheric dust content. These behaviors suggest a complicated but robust coupled system in which these cycles interact to produce the greatest interannual variability in the dust cycle and least variability in the CO2 cycle. The nature of these interactions is the subject of ongoing research, but clouds, both water ice and CO2 ice, now appear to play a bigger role than believed at the end of the 20th century. There may also be some long-term trends in these cycles as there is evidence from imaging data, for example, that the south polar residual cap may not be stable on decadal to centennial time scales. On even longer time scales, the discovery of as much as 5 mb global equivalent of buried CO2 ice near the south pole, the detection of vast quantities of subsurface water ice at very shallow depths in midlatitudes of both hemispheres, and the presence of remnant glacial

  7. An Automated Method to Identify Mesoscale Convective Complexes in the Regional Climate Model Evaluation System

    NASA Astrophysics Data System (ADS)

    Whitehall, K. D.; Jenkins, G. S.; Mattmann, C. A.; Waliser, D. E.; Kim, J.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Whittell, J.; Zimdars, P. A.

    2012-12-01

    Mesoscale convective complexes (MCCs) are large (2 - 3 x 105 km2) nocturnal convectively-driven weather systems that are generally associated with high precipitation events in short durations (less than 12hrs) in various locations through out the tropics and midlatitudes (Maddox 1980). These systems are particularly important for climate in the West Sahel region, where the precipitation associated with them is a principal component of the rainfall season (Laing and Fritsch 1993). These systems occur on weather timescales and are historically identified from weather data analysis via manual and more recently automated processes (Miller and Fritsch 1991, Nesbett 2006, Balmey and Reason 2012). The Regional Climate Model Evaluation System (RCMES) is an open source tool designed for easy evaluation of climate and Earth system data through access to standardized datasets, and intrinsic tools that perform common analysis and visualization tasks (Hart et al. 2011). The RCMES toolkit also provides the flexibility of user-defined subroutines for further metrics, visualization and even dataset manipulation. The purpose of this study is to present a methodology for identifying MCCs in observation datasets using the RCMES framework. TRMM 3 hourly datasets will be used to demonstrate the methodology for 2005 boreal summer. This method promotes the use of open source software for scientific data systems to address a concern to multiple stakeholders in the earth sciences. A historical MCC dataset provides a platform with regards to further studies of the variability of frequency on various timescales of MCCs that is important for many including climate scientists, meteorologists, water resource managers, and agriculturalists. The methodology of using RCMES for searching and clipping datasets will engender a new realm of studies as users of the system will no longer be restricted to solely using the datasets as they reside in their own local systems; instead will be afforded rapid

  8. Modeling lakes and reservoirs in the climate system

    USGS Publications Warehouse

    MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L. N.; Fang, X.; Gal, G.; Jo, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; MacIntyre, S.; Marsh, P.; Melack, J.; Mooij, W.M.; Peeters, F.; Quesada, A.; Schladow, S.G.; Schmid, M.; Spence, C.; Stokes, S.L.

    2009-01-01

    Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere-land surface-lake climate models that could be used for both of these types of study simultaneously do not presently exist, though there are many applications that would benefit from such models. It is argued here that current understanding of physical and biogeochemical processes in freshwater systems is sufficient to begin to construct such models, and a path forward is proposed. The largest impediment to fully representing lakes in the climate system lies in the handling of lakes that are too small to be explicitly resolved by the climate model, and that make up the majority of the lake-covered area at the resolutions currently used by global and regional climate models. Ongoing development within the hydrological sciences community and continual improvements in model resolution should help ameliorate this issue.

  9. Rainwater catchment system design using simulated future climate data

    NASA Astrophysics Data System (ADS)

    Wallace, Corey D.; Bailey, Ryan T.; Arabi, Mazdak

    2015-10-01

    Rainwater harvesting techniques are used worldwide to augment potable water supply, provide water for small-scale irrigation practices, increase rainwater-use efficiency for sustained crop growth in arid and semi-arid regions, decrease urban stormwater flow volumes, and in general to relieve dependency on urban water resources cycles. A number of methods have been established in recent years to estimate reliability of rainwater catchment systems (RWCS) and thereby properly size the components (roof catchment area, storage tank size) of the system for a given climatic region. These methods typically use historical or stochastically-generated rainfall patterns to quantify system performance and optimally size the system, with the latter accounting for possible rainfall scenarios based on statistical relationships of historical rainfall patterns. To design RWCS systems that can sustainably meet water demand under future climate conditions, this paper introduces a method that employs climatic data from general circulation models (GCMs) to develop a suite of catchment area vs. storage size design curves that capture uncertainty in future climate scenarios. Monthly rainfall data for the 2010-2050 time period is statistically downscaled to daily values using a Markov chain algorithm, with results used only from GCMs that yield rainfall patterns that are statistically consistent with historical rainfall patterns. The process is demonstrated through application to two climatic regions of the Federated States of Micronesia (FSM) in the western Pacific, wherein the majority of the population relies on rainwater harvesting for potable water supply. Through the use of design curves, communities can provide household RWCS that achieve a certain degree of storage reliability. The method described herein can be applied generally to any geographic region. It can be used to first, assess the future performance of existing household systems; and second, to design or modify systems

  10. Web Enabled Collaborative Climate Visualization in the Earth System Grid

    SciTech Connect

    Kendall, Wesley; Glatter, Markus; Huang, Jian; Hoffman, Forrest M; Bernholdt, David E

    2008-01-01

    The recent advances in high performance computing, storage and networking technologies have enabled fundamental changes in current climate research. While sharing datasets and results is already common practice in climate modeling, direct sharing of the analysis and visualization process is also becoming feasible. We report our efforts to develop a capability, coupled with the Earth System Grid (ESG), for sharing an entire executable workspace of visualization among collaborators. Evolutionary history of visualizations of research findings can also be captured and shared. The data intensive nature of the visualization system requires using several advanced techniques of visualization and parallel computing. With visualization clients implemented through standard web browsers, however, the ensuing complexity is made transparent to end-users. We demonstrate the efficacy of our system using cutting edge climate datasets.

  11. Climate observing system studies: An element of the NASA Climate Research Program: Workshop report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Plans for NASA's efforts in climatology were discussed. Targets for a comprehensive observing system for the early 1990's were considered. A program to provide useful data in the near and mid-term, and a program to provide for a feasibility assessment of instruments and methods for the development of a long-term system were discussed. Climate parameters that cannot be measured from space were identified. Long-term calibration, intercomparison, standards, and ground truth were discussed.

  12. An early warning system for high climate sensitivity? (Invited)

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, R.

    2010-12-01

    The scientific case for the clear and present danger of global warming has been unassailable at least since the release of the Charney Report more than thirty years ago, if not longer. While prompt action to begin decarbonizing energy systems could still head off much of the potential warming, it is distinctly possible that emissions will continue unabated in the coming decades, leading to a doubling or more of pre-industrial carbon dioxide concentrations. At present, we are in the unenviable position of not even knowing how bad things will get if this scenario comes to pass, because of the uncertainty in climate sensitivity. If climate sensitivity is high, then the consequences will be dire, perhaps even catastrophic. As the world continues to warm in response to continued carbon dioxide emissions, will we at least be able to monitor the climate and provide an early warning that the planet is on a high-sensitivity track, if such turns out to be the case? At what point will we actually know the climate sensitivity? It has long been recognized that the prime contributor to uncertainty in climate sensitivity is uncertainty in cloud feedbacks. Study of paleoclimate and climate of the past century has not been able to resolve which models do cloud feedback most correctly, because of uncertainties in radiative forcing. In this talk, I will discuss monitoring requirements, and analysis techniques, that might have the potential to determine which climate models most faithfully represent climate feedbacks, and thus determine which models provide the best estimate of climate sensitivity. The endeavor is complicated by the distinction between transient climate response and equilibrium climate sensitivity. I will discuss the particular challenges posed by this issue, particularly in light of recent indications that the pattern of ocean heat storage may lead to different cloud feedbacks in the transient warming stage than apply once the system has reached equilibrium. Apart

  13. Effects of changes in climate on landscape and regional processes, and feedbacks to the climate system.

    PubMed

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus; Schaphoff, Sibyll; Sitch, Stephen

    2004-11-01

    Biological and physical processes in the Arctic system operate at various temporal and spatial scales to impact large-scale feedbacks and interactions with the earth system. There are four main potential feedback mechanisms between the impacts of climate change on the Arctic and the global climate system: albedo, greenhouse gas emissions or uptake by ecosystems, greenhouse gas emissions from methane hydrates, and increased freshwater fluxes that could affect the thermohaline circulation. All these feedbacks are controlled to some extent by changes in ecosystem distribution and character and particularly by large-scale movement of vegetation zones. Indications from a few, full annual measurements of CO2 fluxes are that currently the source areas exceed sink areas in geographical distribution. The little available information on CH4 sources indicates that emissions at the landscape level are of great importance for the total greenhouse balance of the circumpolar North. Energy and water balances of Arctic landscapes are also important feedback mechanisms in a changing climate. Increasing density and spatial expansion of vegetation will cause a lowering of the albedo and more energy to be absorbed on the ground. This effect is likely to exceed the negative feedback of increased C sequestration in greater primary productivity resulting from the displacements of areas of polar desert by tundra, and areas of tundra by forest. The degradation of permafrost has complex consequences for trace gas dynamics. In areas of discontinuous permafrost, warming, will lead to a complete loss of the permafrost. Depending on local hydrological conditions this may in turn lead to a wetting or drying of the environment with subsequent implications for greenhouse gas fluxes. Overall, the complex interactions between processes contributing to feedbacks, variability over time and space in these processes, and insufficient data have generated considerable uncertainties in estimating the net

  14. Convocation address.

    PubMed

    Kakodkar, A

    1999-07-01

    This convocation addressed by Dr. Anil Kakodkar focuses on the challenges faced by graduating students. In his speech, he emphasized the high level of excellence achieved by the industrial sector; however, he noted that there has been a loss of initiative in maximizing value addition, which was worsened by an increasing population pressure. In facing a stiff competition in the external and domestic markets, it is imperative to maximize value addition within the country in a competitive manner and capture the highest possible market share. To achieve this, high-quality human resources are central. Likewise, family planning programs should become more effective and direct available resources toward national advantage. To boost the domestic market, he suggests the need to search for strengths to achieve leadership position in those areas. First, an insight into the relationship between the lifestyles and the needs of our people and the natural resource endowment must be gained. Second, remodeling of the education system must be undertaken to prepare the people for adding the necessary innovative content in our value addition activities. Lastly, Dr. Kakodkar emphasizes the significance of developing a strong bond between parents and children to provide a sound foundation and allow the education system to grow upon it.

  15. Guiding Climate Change Adaptation Within Vulnerable Natural Resource Management Systems

    NASA Astrophysics Data System (ADS)

    Bardsley, Douglas K.; Sweeney, Susan M.

    2010-05-01

    Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making.

  16. Operating Water Resources Systems Under Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Ahmad, S.

    2002-12-01

    Population and industrial growth has resulted in intense demands on the quantity and quality of water resources worldwide. Moreover, climate change/variability is making a growing percentage of the earth's population vulnerable to extreme weather events (drought and flood). The 1996 Saguenay flood, 1997 Red River flood, the 1998 ice storm, and recent droughts in prairies are few examples of extreme weather events in Canada. Rising economic prosperity, growth in urban population, aging infrastructure, and a changing climate are increasing the vulnerability of Canadians to even more serious impacts. This growing threat can seriously undermine the social and economic viability of the country. Our ability to understand the impacts of climate change/variability on water quantity, quality, and its distribution in time and space can prepare us for sustainable management of this precious resource. The sustainability of water resources, over the medium to long-term, is critically dependent on the ability to manage (plan and operate) water resource systems under a more variable and perhaps warmer future climate. Studying the impacts of climate change/variability on water resources is complex and challenging. It is further complicated by the fact that impacts vary with time and are different at different locations. This study deals with the impacts of climate change/variability on water resources in a portion of the Red River Basin in Canada, both in terms of change in quantity and spatial-temporal distribution. A System Dynamics model is developed to describe the operation of the Shellmouth Reservoir located on the Red River in Canada. The climate data from Canadian Global Coupled Model, CGCM1 is used. The spatial system dynamics approach, based on distributed parameter control theory, is used to model the impacts of climate change/variability on water resources in time and space. A decision support system is developed to help reservoir operators and decision makers in

  17. DESYCO: a Decision Support System to provide climate services for coastal stakeholders dealing with climate change impacts.

    NASA Astrophysics Data System (ADS)

    Torresan, S.; Gallina, V.; Giannini, V.; Rizzi, J.; Zabeo, A.; Critto, A.; Marcomini, A.

    2012-04-01

    At the international level climate services are recognized as innovative tools aimed at providing and distributing climate data and information according to the needs of end-users. Furthermore, needs-based climate services are extremely effective to manage climate risks and take advantage of the opportunities associated with climate change impacts. To date, climate services are mainly related to climate models that supply climate data (e.g. temperature, precipitations) at different spatial and time scales. However, there is a significant gap of tools aimed at providing information about risks and impacts induced by climate change and allowing non-expert stakeholders to use both climate-model and climate-impact data. DESYCO is a GIS-Decision Support System aimed at the integrated assessment of multiple climate change impacts on vulnerable coastal systems (e.g. beaches, river deltas, estuaries and lagoons, wetlands, agricultural and urban areas). It is an open source software that manages different input data (e.g. raster or shapefiles) coming from climate models (e.g. global and regional climate projections) and high resolution impact models (e.g. hydrodynamic, hydrological and biogeochemical simulations) in order to provide hazard, exposure, susceptibility, risk and damage maps for the identification and prioritization of hot-spot areas and to provide a basis for the definition of coastal adaptation and management strategies. Within the CLIM-RUN project (FP7) DESYCO is proposed as an helpful tool to bridge the gap between climate data and stakeholder needs and will be applied to the coastal area of the North Adriatic Sea (Italy) in order to provide climate services for local authorities involved in coastal zone management. Accordingly, a first workshop was held in Venice (Italy) with coastal authorities, climate experts and climate change risk experts, in order to start an iterative exchange of information about the knowledge related to climate change, climate

  18. Taming Typhon: Advancing Climate Literacy by Coordinating Federal Earth System Science Education Investments Through the U.S. Climate Change Science Program

    NASA Astrophysics Data System (ADS)

    Karsten, J. L.; Niepold, F.; Wei, M.; Waple, A. M.

    2008-12-01

    Thirteen Federal agencies in the United States invest in research, communication, and education activities related to climate and global change. The U.S. Climate Change Science Program (CCSP) works to integrate the research activities of these different agencies, with oversight from the Office of Science and Technology Policy, the Council on Environmental Quality, the National Economic Council and the Office of Management and Budget. The CCSP is the result of a Presidential initative in 2001 to build on the Global Change Research Program, which exists as a result of the Global Change Research Act of 1990. This initiative was to shift the focus of the Program from 'discovery and characterization' to 'differentiation and strategy investigation.' With this shift, CCSP's focus is now on evaluating optimal strategies for addressing climate change risks, improving coordination among the Federal agencies, communicating research results to all stakeholders (including national policy leaders and local resource managers), and improving public debate and decision-making related to global change. Implicit to these activities is the need to educate the general public about the science of climate change and its consequences, as well as coordinate Federal investments related to climate change education. This is no small task, given the variety of missions and approaches of the participating agencies. Recognizing that its Communications Interagency Working Group (CIWG) does not have the expertise or focus to adequately address issues related to science education, the CCSP recently established an ad-hoc Education Interagency Working Group (EIWG), comprising representatives from all 13 agencies, that will work closely with the CIWG to enhance education goals. Its mission is to advance literacy in climate and related sciences and increase informed decision making for the Nation. The EIWG envisions that its primary activities in the near-term will be focused on establishing: (1) a

  19. ARCAS (ACACIA Regional Climate-data Access System) -- a Web Access System for Climate Model Data Access, Visualization and Comparison

    NASA Astrophysics Data System (ADS)

    Hakkarinen, C.; Brown, D.; Callahan, J.; hankin, S.; de Koningh, M.; Middleton-Link, D.; Wigley, T.

    2001-05-01

    A Web-based access system to climate model output data sets for intercomparison and analysis has been produced, using the NOAA-PMEL developed Live Access Server software as host server and Ferret as the data serving and visualization engine. Called ARCAS ("ACACIA Regional Climate-data Access System"), and publicly accessible at http://dataserver.ucar.edu/arcas, the site currently serves climate model outputs from runs of the NCAR Climate System Model for the 21st century, for Business as Usual and Stabilization of Greenhouse Gas Emission scenarios. Users can select, download, and graphically display single variables or comparisons of two variables from either or both of the CSM model runs, averaged for monthly, seasonal, or annual time resolutions. The time length of the averaging period, and the geographical domain for download and display, are fully selectable by the user. A variety of arithmetic operations on the data variables can be computed "on-the-fly", as defined by the user. Expansions of the user-selectable options for defining analysis options, and for accessing other DOD-compatible ("Distributed Ocean Data System-compatible") data sets, residing at locations other than the NCAR hardware server on which ARCAS operates, are planned for this year. These expansions are designed to allow users quick and easy-to-operate web-based access to the largest possible selection of climate model output data sets available throughout the world.

  20. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    SciTech Connect

    Maslowski, Wieslaw

    2016-10-17

    This project aims to develop, apply and evaluate a regional Arctic System model (RASM) for enhanced decadal predictions. Its overarching goal is to advance understanding of the past and present states of arctic climate and to facilitate improvements in seasonal to decadal predictions. In particular, it will focus on variability and long-term change of energy and freshwater flows through the arctic climate system. The project will also address modes of natural climate variability as well as extreme and rapid climate change in a region of the Earth that is: (i) a key indicator of the state of global climate through polar amplification and (ii) which is undergoing environmental transitions not seen in instrumental records. RASM will readily allow the addition of other earth system components, such as ecosystem or biochemistry models, thus allowing it to facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts. As such, RASM is expected to become a foundation for more complete Arctic System models and part of a model hierarchy important for improving climate modeling and predictions.

  1. Couplings between changes in the climate system and biogeochemistry

    SciTech Connect

    Menon, Surabi; Denman, Kenneth L.; Brasseur , Guy; Chidthaisong, Amnat; Ciais, Philippe; Cox, Peter M.; Dickinson, Robert E.; Hauglustaine, Didier; Heinze, Christoph; Holland, Elisabeth; Jacob , Daniel; Lohmann, Ulrike; Ramachandran, Srikanthan; Leite da Silva Dias, Pedro; Wofsy, Steven C.; Zhang, Xiaoye

    2007-10-01

    The Earth's climate is determined by a number of complex connected physical, chemical and biological processes occurring in the atmosphere, land and ocean. The radiative properties of the atmosphere, a major controlling factor of the Earth's climate, are strongly affected by the biophysical state of the Earth's surface and by the atmospheric abundance of a variety of trace constituents. These constituents include long-lived greenhouse gases (LLGHGs) such as carbon dioxide (CO{sub 2}), methane (CH{sub 4}) and nitrous oxide (N{sub 2}O), as well as other radiatively active constituents such as ozone and different types of aerosol particles. The composition of the atmosphere is determined by processes such as natural and anthropogenic emissions of gases and aerosols, transport at a variety of scales, chemical and microphysical transformations, wet scavenging and surface uptake by the land and terrestrial ecosystems, and by the ocean and its ecosystems. These processes and, more generally the rates of biogeochemical cycling, are affected by climate change, and involve interactions between and within the different components of the Earth system. These interactions are generally nonlinear and may produce negative or positive feedbacks to the climate system. An important aspect of climate research is to identify potential feedbacks and assess if such feedbacks could produce large and undesired responses to perturbations resulting from human activities. Studies of past climate evolution on different time scales can elucidate mechanisms that could trigger nonlinear responses to external forcing. The purpose of this chapter is to identify the major biogeochemical feedbacks of significance to the climate system, and to assess current knowledge of their magnitudes and trends. Specifically, this chapter will examine the relationships between the physical climate system and the land surface, the carbon cycle, chemically reactive atmospheric gases and aerosol particles. It also

  2. A satellite view of aerosols in the climate system

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Boucher, Olivier

    2002-01-01

    Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.

  3. A satellite view of aerosols in the climate system.

    PubMed

    Kaufman, Yoram J; Tanré, Didier; Boucher, Olivier

    2002-09-12

    Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.

  4. Phase Synchronization in Coupled Complex Systems - From Neuroscience to Climate

    NASA Astrophysics Data System (ADS)

    Kurths, Juergen

    2001-03-01

    The phenomenon of phase synchronization, especially in weakly coupled complex systems will be explained. Next it will be discussed how to identify epochs of phase synchronization in noisy data. In the second part I will demonstrate the potential of this approach for some examples from natural systems; in particular for brain and muscle activity of Parkinsonian patients, cardio-respiratory interactions in humans and rats and for a chaotically forced climate system.

  5. A Standardized Evaluation System for Decadal Climate Prediction

    NASA Astrophysics Data System (ADS)

    Kadow, C.; Cubasch, U.

    2012-12-01

    The evaluation of decadal prediction systems is a scientific challenge as well as a technical challenge in the climate research. The major project MiKlip (www.fona-miklip.de) for medium-term climate prediction funded by the Federal Ministry of Education and Research in Germany (BMBF) has the aim to create a model system that can provide reliable decadal forecasts on climate and weather. The model system to be developed will be novel in several aspects, with great challenges for the methodology development. This concerns especially the determination of the initial conditions, the inclusion into the model of processes relevant to decadal predictions, the increase of the spatial resolution through regionalisation, the improvement or adjustment of statistical post-processing, and finally the synthesis and validation of the entire model system. Therefore, a standardized evaluation system will be part of the MiKlip system to validate it - developed by the project 'Integrated data and evaluation system for decadal scale prediction' (INTEGRATION). The presentation gives an overview of the different linkages of such a project, shows the different development stages and gives an outlook for users and possible end users in climate service. The technical interface combines all projects inside of MiKlip and invites them to participate in a common evaluation system. The system design and the validation strategy from a standalone tool in the beginning to a user friendly web based system using GRID technologies to an integrated part of the operational MiKlip system for industry and society will give the opportunity to enhance the MiKlip strategy. First results of different possibilities of such a system will be shown to present the scientific background through Taylor diagrams, ensemble skill scores and e.g. climatological means to show the usability and possibilities of MiKlip and the INTEGRATION project.

  6. President's Address

    PubMed Central

    Craig, Maurice

    1928-01-01

    Conditions which experience has proved conducive to mental disturbance considered.—Suggestions as to their treatment.—A weakened inhibition, rather than any positive condition, is probably the most important factor in the production of the exhaustion psycho-neuroses or psychoses. This view is supported by the prophylactic value of giving for prolonged periods small doses of bromide to hypersensitive children or to highly-strung persons exposed to stress or tropical climate, etc.—Pavlov's work on the conditioned reflexes in dogs quoted in support of the author's clinical experience: Pavlov states that bromides should not be regarded as sedatives, diminishing the excitability of the central nervous system, but as simply regulating the nervous system by strengthening the intensity of internal inhibition. This agrees with the author's clinical experience, as small doses of bromide taken regularly over a period of many years do not diminish the mental powers but in fact increase them. Question of sleeplessness considered with regard to the way in which sedatives act. Most of these do not act as so-called “sleeping draughts”; research may ultimately show that their action is to strengthen a weakened inhibition and that sleep is only a secondary benefit.—Value of sedatives before and after surgical operation. Importance of toxæmia in the production of mental disorder; insomnia often precedes a toxic process and permits it to become active. The theory of weakened inhibition explains many problems; e.g., why certain brilliant children or adults break down and why at first there is no interference with their normal mental activity which only becomes involved as sleep and other bodily functions become affected; why a toxæmia may affect the nervous system of certain people; why a breakdown may follow over-stimulation or occur with advancing years; why some persons relapse when certain treatment is discontinued; why treatment should at times be continuous, and why

  7. Addressing Special Education Inequity through Systemic Change: Contributions of Ecologically Based Organizational Consultation

    ERIC Educational Resources Information Center

    Sullivan, Amanda L.; Artiles, Alfredo J.; Hernandez-Saca, David I.

    2015-01-01

    Since the inception of special education, scholars and practitioners have been concerned about the disproportionate representation of students from culturally and linguistically diverse backgrounds among students identified with disabilities. Professional efforts to address this disproportionality have encompassed a range of targets, but scholars…

  8. The anthroposphere as an anticipatory system: Open questions on steering the climate.

    PubMed

    Scolozzi, Rocco; Geneletti, Davide

    2017-02-01

    Climate change research and action counteracting it affect everyone and would involve cross-societal transformations reshaping the anthroposphere in its entirety. Scrutinizing climate-related science and policies, we recognize attempts to steer the evolution of climate according to expected (or modelled) futures. Such attempts would turn the anthroposphere into a large "anticipatory system", in which human society seeks to anticipate and, possibly, to govern climate dynamics. The chief aim of this discussion paper is to open a critical debate on the climate change paradigm (CCP) drawing on a strategic and systemic framework grounded in the concept of anticipatory system sensu Rosen (1991). The proposed scheme is ambitiously intended to turn an intricate issue into a complex but structured problem that is to say, to make such complexity clear and manageable. This framework emerges from concepts borrowed from different scientific fields (including future studies and system dynamics) and its background lies in a simple quantitative literature overview, relying upon a broad level of analysis. The proposed framework will assist researchers and policy makers in thinking of CCP in terms of an anticipatory system, and in disentangling its interrelated (and sometimes intricate) aspects. In point of fact, several strategic questions related to CCP were not subjected to an adequate transdisciplinary discussion: what are the interplays between physical processes and social-political interventions, who is the observer (what he/she is looking for), and which paradigm is being used (or who defines the desirable future). The proposed scheme allows to structure such various topics in an arrangement which is easier to communicate, highlighting the linkages in between, and making them intelligible and open to verification and discussion. Furthermore, ideally developments will help scientists and policy makers address the strategic gaps between the evidence-based climatological

  9. Addressing Climate Change Adaptation in Regional Transportation Plans in California: A Guide and Online Visualization Tool for Planners to Incorporate Risks of Climate Change Impacts in Policy and Decision-Making

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tucker, K.; DeFlorio, J.

    2012-12-01

    for the strategy framework. The strategy framework for MPOs and RTPAs is used to: 1) Assess the relative risks to their transportation system infrastructure and services of different climate stressors (sea level rise, temperature changes, snow melt, precipita¬tion changes, flooding, extreme weather events); 2) Conduct an asset inventory and vulnerability assessment of existing infrastructure; 3) Prioritize segments and facilities for adaptation action; 4) Identify appropriate and cost-effective adaptation strategies; and 5) Incorporate climate impact considerations into future long-range transportation planning and investment decisions. This framework complements the broader planning and investment processes that MPOs and RTPAs already manage. It recognizes the varying capacities and resources among MPOs and RTPAs and provide methods that can be used by organizations seeking to conduct in-depth analysis or a more sketch-level assessment.

  10. Controls on the Archean climate system investigated with a global climate model.

    PubMed

    Wolf, E T; Toon, O B

    2014-03-01

    The most obvious means of resolving the faint young Sun paradox is to invoke large quantities of greenhouse gases, namely, CO2 and CH4. However, numerous changes to the Archean climate system have been suggested that may have yielded additional warming, thus easing the required greenhouse gas burden. Here, we use a three-dimensional climate model to examine some of the factors that controlled Archean climate. We examine changes to Earth's rotation rate, surface albedo, cloud properties, and total atmospheric pressure following proposals from the recent literature. While the effects of increased planetary rotation rate on surface temperature are insignificant, plausible changes to the surface albedo, cloud droplet number concentrations, and atmospheric nitrogen inventory may each impart global mean warming of 3-7 K. While none of these changes present a singular solution to the faint young Sun paradox, a combination can have a large impact on climate. Global mean surface temperatures at or above 288 K could easily have been maintained throughout the entirety of the Archean if plausible changes to clouds, surface albedo, and nitrogen content occurred.

  11. Improving Our Fundamental Understanding of the Role of Aerosol Cloud Interactions in the Climate System

    NASA Technical Reports Server (NTRS)

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; Coe, Hugh; DeMott, Paul J.; Dunlea, Edward J.; Feingold, Graham; Ghan, Steven; Guenther, Alex B.; Kahn, Ralph; Kraucunas, Ian; Kreidenweis, Sonia M.; Molina, Mario J.; Nenes, Athanasios; Penner, Joyce E.; Prather, Kimberly A.; Ramanathan, V.; Ramaswamy, Venkatachalam; Rasch, Philip J.; Ravishankara, A. R.; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert

    2016-01-01

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

  12. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system.

    PubMed

    Seinfeld, John H; Bretherton, Christopher; Carslaw, Kenneth S; Coe, Hugh; DeMott, Paul J; Dunlea, Edward J; Feingold, Graham; Ghan, Steven; Guenther, Alex B; Kahn, Ralph; Kraucunas, Ian; Kreidenweis, Sonia M; Molina, Mario J; Nenes, Athanasios; Penner, Joyce E; Prather, Kimberly A; Ramanathan, V; Ramaswamy, Venkatachalam; Rasch, Philip J; Ravishankara, A R; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert

    2016-05-24

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

  13. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system

    DOE PAGES

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; ...

    2016-05-24

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from pre-industrial time. General Circulation Models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions but significant challengesmore » exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. Lastly, we suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.« less

  14. Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system

    PubMed Central

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; Coe, Hugh; DeMott, Paul J.; Dunlea, Edward J.; Feingold, Graham; Ghan, Steven; Guenther, Alex B.; Kraucunas, Ian; Molina, Mario J.; Nenes, Athanasios; Penner, Joyce E.; Prather, Kimberly A.; Ramanathan, V.; Ramaswamy, Venkatachalam; Rasch, Philip J.; Ravishankara, A. R.; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert

    2016-01-01

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol−cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol−cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol−cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty. PMID:27222566

  15. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system

    SciTech Connect

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; Coe, Hugh; DeMott, Paul J.; Dunlea, Edward J.; Feingold, Graham; Ghan, Steven; Guenther, Alex B.; Kahn, Ralph; Kraucunas, Ian; Kreidenweis, Sonia M.; Molina, Mario J.; Nenes, Athanasios; Penner, Joyce E.; Prather, Kimberly A.; Ramanathan, V.; Ramaswamy, Venkatachalam; Rasch, Philip J.; Ravishankara, A. R.; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert

    2016-05-24

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from pre-industrial time. General Circulation Models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. Lastly, we suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

  16. Understanding Student Cognition about Complex Earth System Processes Related to Climate Change

    NASA Astrophysics Data System (ADS)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Dutta, S.; Templeton, M. C.; Geroux, J.; Blakeney, G. A.

    2011-12-01

    The Earth's climate system includes complex behavior and interconnections with other Earth spheres that present challenges to student learning. To better understand these unique challenges, we have conducted experiments with high-school and introductory level college students to determine how information pertaining to the connections between the Earth's atmospheric system and the other Earth spheres (e.g., hydrosphere and cryosphere) are processed. Specifically, we include psychomotor tests (e.g., eye-tracking) and open-ended questionnaires in this research study, where participants were provided scientific images of the Earth (e.g., global precipitation and ocean and atmospheric currents), eye-tracked, and asked to provide causal or relational explanations about the viewed images. In addition, the students engaged in on-line modules (http://serc.carleton.edu/eslabs/climate/index.html) focused on Earth system science as training activities to address potential cognitive barriers. The developed modules included interactive media, hands-on lessons, links to outside resources, and formative assessment questions to promote a supportive and data-rich learning environment. Student eye movements were tracked during engagement with the materials to determine the role of perception and attention on understanding. Students also completed a conceptual questionnaire pre-post to determine if these on-line curriculum materials assisted in their development of connections between Earth's atmospheric system and the other Earth systems. The pre-post results of students' thinking about climate change concepts, as well as eye-tracking results, will be presented.

  17. The Soft Underbelly of System Change: The Role of Leadership and Organizational Climate in Turnover during Statewide Behavioral Health Reform.

    PubMed

    Aarons, Gregory A; Sommerfeld, David H; Willging, Cathleen E

    2011-01-01

    This study examined leadership, organizational climate, staff turnover intentions, and voluntary turnover during a large-scale statewide behavioral health system reform. The initial data collection occurred nine months after initiation of the reform with a follow-up round of data collected 18 months later. A self-administered structured assessment was completed by 190 participants (administrators, support staff, providers) employed by 14 agencies. Key variables included leadership, organizational climate, turnover intentions, turnover, and reform-related financial stress ("low" versus "high") experienced by the agencies. Analyses revealed that positive leadership was related to a stronger empowering climate in both high and low stress agencies. However, the association between more positive leadership and lower demoralizing climate was evident only in high stress agencies. For both types of agencies empowering climate was negatively associated with turnover intentions, and demoralizing climate was associated with stronger turnover intentions. Turnover intentions were positively associated with voluntary turnover. Results suggest that strong leadership is particularly important in times of system and organizational change and may reduce poor climate associated with turnover intentions and turnover. Leadership and organizational context should be addressed to retain staff during these periods of systemic change.

  18. The Soft Underbelly of System Change: The Role of Leadership and Organizational Climate in Turnover during Statewide Behavioral Health Reform

    PubMed Central

    Aarons, Gregory A.; Sommerfeld, David H.; Willging, Cathleen E.

    2011-01-01

    This study examined leadership, organizational climate, staff turnover intentions, and voluntary turnover during a large-scale statewide behavioral health system reform. The initial data collection occurred nine months after initiation of the reform with a follow-up round of data collected 18 months later. A self-administered structured assessment was completed by 190 participants (administrators, support staff, providers) employed by 14 agencies. Key variables included leadership, organizational climate, turnover intentions, turnover, and reform-related financial stress (“low” versus “high”) experienced by the agencies. Analyses revealed that positive leadership was related to a stronger empowering climate in both high and low stress agencies. However, the association between more positive leadership and lower demoralizing climate was evident only in high stress agencies. For both types of agencies empowering climate was negatively associated with turnover intentions, and demoralizing climate was associated with stronger turnover intentions. Turnover intentions were positively associated with voluntary turnover. Results suggest that strong leadership is particularly important in times of system and organizational change and may reduce poor climate associated with turnover intentions and turnover. Leadership and organizational context should be addressed to retain staff during these periods of systemic change. PMID:22229021

  19. Community Climate System Model (CCSM) Experiments and Output Data

    DOE Data Explorer

    The National Center for Atmospheric Research (NCAR) created the first version of the Community Climate Model (CCM) in 1983 as a global atmosphere model. It was improved in 1994 when NCAR, with support from the National Science Foundation (NSF), developed and incorporated a Climate System Model (CSM) that included atmosphere, land surface, ocean, and sea ice. As the capabilities of the model grew, so did interest in its applications and changes in how it would be managed. A workshop in 1996 set the future management structure, marked the beginning of the second phase of the model, a phase that included full participation of the scientific community, and also saw additional financial support, including support from the Department of Energy. In recognition of these changes, the model was renamed to the Community Climate System Model (CCSM). It began to function as a model with the interactions of land, sea, and air fully coupled, providing computer simulations of Earth's past climate, its present climate, and its possible future climate. The CCSM website at http://www2.cesm.ucar.edu/ describes some of the research that has been done since then: A 300-year run has been performed using the CSM, and results from this experiment have appeared in a special issue of theJournal of Climate, 11, June, 1998. A 125-year experiment has been carried out in which carbon dioxide was described to increase at 1% per year from its present concentration to approximately three times its present concentration. More recently, the Climate of the 20th Century experiment was run, with carbon dioxide and other greenhouse gases and sulfate aerosols prescribed to evolve according to our best knowledge from 1870 to the present. Three scenarios for the 21st century were developed: a "business as usual" experiment, in which greenhouse gases are assumed to increase with no economic constraints; an experiment using the Intergovernmental Panel on Climate Change (IPCC) Scenario A1; and a "policy

  20. The Milankovitch theory and climate sensitivity. I - Equilibrium climate model solutions for the present surface conditions. II - Interaction between the Northern Hemisphere ice sheets and the climate system

    NASA Technical Reports Server (NTRS)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1988-01-01

    A seasonal climate model was developed to test the climate sensitivity and, in particular, the Milankovitch (1941) theory. Four climate model versions were implemented to investigate the range of uncertainty in the parameterizations of three basic feedback mechanisms: the ice albedo-temperature, the outgoing long-wave radiation-temperature, and the eddy transport-meridional temperature gradient. It was found that the differences between the simulation of the present climate by the four versions were generally small, especially for annually averaged results. The climate model was also used to study the effect of growing/shrinking of a continental ice sheet, bedrock sinking/uplifting, and sea level changes on the climate system, taking also into account the feedback effects on the climate of the building of the ice caps.

  1. Designing a new cropping system for high productivity and sustainable water usage under climate change

    PubMed Central

    Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2017-01-01

    The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) –summer maize system. The M-M system improved yield by 14–31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr−1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions. PMID:28155860

  2. Designing a new cropping system for high productivity and sustainable water usage under climate change.

    PubMed

    Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2017-02-03

    The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) -summer maize system. The M-M system improved yield by 14-31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr(-1)). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions.

  3. Designing a new cropping system for high productivity and sustainable water usage under climate change

    NASA Astrophysics Data System (ADS)

    Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2017-02-01

    The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) –summer maize system. The M-M system improved yield by 14–31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr‑1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions.

  4. The UC-LLNL Regional Climate System Model

    SciTech Connect

    Miller, N.L.; Kim, Jinwon

    1996-09-01

    The UC-LLNL Regional Climate System Model has been under development since 1991. The unique system simulates climate from the global scale down to the watershed catchment scale, and consists of data pre- and post- processors, and four model components. The four model components are (1) a mesoscale atmospheric simulation model, (2) a soil-plant-snow model, (3) a watershed hydrology-riverflow model, and (4) a suite of crop response models. The first three model components have been coupled, and the system includes two-way feedbacks between the soil-plant-snow model and the mesoscale atmospheric simulation model. This three-component version of RCSM has been tested, validated, and successfully used for operational quantitative precipitation forecasts and seasonal water resource studies over the southwestern US. We are currently implementation and validating the fourth component, the Decision Support system for Agrotechnology Transfer (DSSAT). A description of the UC-LLNL RCSM and some recent results are presented.

  5. GPS: Actions Needed to Address Ground System Development Problems and User Equipment Production Readiness

    DTIC Science & Technology

    2015-09-01

    review the status of OCX development and DOD’s efforts to field M- code signal capability. This report addresses (1) the extent to which DOD is...meeting cost, schedule, and performance requirements for OCX; (2) the progress DOD is making in delivering M- code capable MGUE by the end of fiscal year...2017; and (3) the challenges DOD faces in synchronizing the development of GPS III, OCX, and MGUE to deploy M- code . To conduct this work, GAO

  6. Earth System Grid II, Turning Climate Datasets into Community Resources

    SciTech Connect

    Middleton, Don

    2006-08-01

    The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects, we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.

  7. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    SciTech Connect

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich

    2016-12-01

    Aerosols of biological origin play a vital role in the Earth system, particularly in the in-teractions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The actual formation, abundance, composition, and effects of biological aerosols and the atmospheric microbi-ome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research and highlights recent advances in terms of bioaerosol identification, characterization, transport, and transfor-mation processes, as well as their interactions with climate, health, and ecosystems, focus-ing on the role bioaerosols play in the Earth system.

  8. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich

    2016-12-01

    Aerosols of biological origin play a vital role in the Earth system, particularly in the interactions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The sources, abundance, composition, and effects of biological aerosols and the atmospheric microbiome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research, highlights recent advances, and outlines future perspectives in terms of bioaerosol identification, characterization, transport, and transformation processes, as well as their interactions with climate, health, and ecosystems, focusing on the role bioaerosols play in the Earth system.

  9. Economic Value of an Advanced Climate Observing System

    NASA Astrophysics Data System (ADS)

    Wielicki, B. A.; Cooke, R.; Young, D. F.; Mlynczak, M. G.

    2013-12-01

    Scientific missions increasingly need to show the monetary value of knowledge advances in budget-constrained environments. For example, suppose a climate science mission promises to yield decisive information on the rate of human caused global warming within a shortened time frame. How much should society be willing to pay for this knowledge today? The US interagency memo on the social cost of carbon (SCC) creates a standard yardstick for valuing damages from carbon emissions. We illustrate how value of information (VOI) calculations can be used to monetize the relative value of different climate observations. We follow the SCC, setting uncertainty in climate sensitivity to a truncated Roe and Baker (2007) distribution, setting discount rates of 2.5%, 3% and 5%, and using one of the Integrated Assessment Models sanctioned in SCC (DICE, Nordhaus 2008). We consider three mitigation scenarios: Business as Usual (BAU), a moderate mitigation response DICE Optimal, and a strong response scenario (Stern). To illustrate results, suppose that we are on the BAU emissions scenario, and that we would switch to the Stern emissions path if we learn with 90% confidence that the decadal rate of temperature change reaches or exceeds 0.2 C/decade. Under the SCC assumptions, the year in which this happens, if it happens, depends on the uncertain climate sensitivity and on the emissions path. The year in which we become 90% certain that it happens depends, in addition, on our Earth observations, their accuracy, and their completeness. The basic concept is that more accurate observations can shorten the time for societal decisions. The economic value of the resulting averted damages depends on the discount rate, and the years in which the damages occur. A new climate observation would be economically justified if the net present value (NPV) of the difference in averted damages, relative to the existing systems, exceeds the NPV of the system costs. Our results (Cooke et al. 2013

  10. A systems-based approach to transform climate education in the U.S. Affiliated Pacific islands (USAPI)

    NASA Astrophysics Data System (ADS)

    Sussman, A.; Fletcher, C. H.; Sachs, J. P.

    2011-12-01

    The USAPI has a population of about 1,800,000 people spread across 4.9 million square miles of the Pacific Ocean. The Pacific Islands are characterized by a multitude of indigenous cultures and languages. English is the common language of instruction in all jurisdictions, but is not the language spoken at home for most students outside of Hawai'i. Many USAPI students live considerably below the poverty line. The Pacific Island region is projected to experience some of the most profound negative impacts considerably sooner than other regions. Funded by the National Science Foundation, the Pacific Islands Climate Education Partnership (PCEP) aims to educate the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and honor indigenous cultures. Students and citizens within the region will have the knowledge and skills to advance their and our understanding of climate change, and to adapt to its impacts. PCEP has developed a regional network, tools, and an emerging plan to systemically transform K-14 climate education in the USAPI. More than 50 organizations and networks have joined the partnership. These partners include all of the region's state departments of education, major universities, and community colleges, and a wide range of local partners, particularly conservation organizations. One of PCEP's major tools is general, multidisciplinary K-14 climate science education framework that organizes major underlying concepts and skills within appropriate grade-span progressions. This framework is based largely upon prior national science and climate literacy work and the National Research Council's recent document "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas." The PCEP climate education framework has an Earth System Science foundation that is directly applicable in all locations, and it also has orientations that are

  11. Precambrian evolution of the climate system

    NASA Technical Reports Server (NTRS)

    Walker, James C. G.

    1990-01-01

    This paper presents a new examination of the biogeochemical cycles of carbon as they may have changed between an Archean Earth deficient in land, sedimentary rocks, and biological activity, and a Proterozoic Earth much like the modern Earth, but lacking terrestrial life and carbonate-secreting plankton. Results of a numerical simulation of this transition show how increasing biological activity could have drawn down atmospheric carbon dioxide by extracting sedimentary organic carbon from the system. Increasing area of continents could further have drawn down carbon dioxide by encouraging the accumulation of carbonate sediments. An attempt to develop a numerical simulation of the carbon cycles of the Precambrian raises questions about sources and sinks of marine carbon and alkalinity on a world without continents. More information is needed about sea-floor weathering processes.

  12. NASA's Earth Observing System: The Transition from Climate Monitoring to Climate Change Prediction

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Herring, David D.

    1998-01-01

    Earth's 4.5 billion year history is a study in change. Natural geological forces have been rearranging the surface features and climatic conditions of our planet since its beginning. There is scientific evidence that some of these natural changes have not only led to mass extinctions of species (e.g., dinosaurs), but have also severely impacted human civilizations. For instance, there is evidence that a relatively sudden climate change caused a 300-year drought that contributed to the downfall of Akkadia, one of the most powerful empires in the Middle-East region around 2200 BC. More recently, the "little ice age" from 1200-1400 AD forced the Vikings to abandon Greenland when temperatures there dropped by about 1.5 C, rendering it too difficult to grow enough crops to sustain the population. Today, there is compelling scientific evidence that human activities have attained the magnitude of a geological force and are speeding up the rate of global change. For example, carbon dioxide levels have risen 30 percent since the industrial revolution and about 40 percent of the world's land surface has been transformed by humans. We don't understand the cause-and-effect relationships among Earth's land, ocean, and atmosphere well enough to predict what, if any, impacts these rapid changes will have on future climate conditions. We need to make many measurements all over the world, over a long period of time, in order to assemble the information needed to construct accurate computer models that will enable us to forecast climate change. In 1988, the Earth System Sciences Committee, sponsored by NASA, issued a report calling for an integrated, long-term strategy for measuring the vital signs of Earth's climate system. The report urged that the measurements must all be intimately coupled with focused process studies, they must facilitate development of Earth system models, and they must be stored in an information system that ensures open access to consistent, long-term data

  13. Assessing the Use of School Public Address Systems to Deliver Nutrition Messages to Children: Shape Up Somerville--Audio Adventures

    ERIC Educational Resources Information Center

    Folta, Sara C.; Goldberg, Jeanne P.; Economos, Christina; Bell, Rick; Landers, Stewart; Hyatt, Raymond

    2006-01-01

    Given the current childhood obesity epidemic, it is especially important to find effective ways to promote healthful foods to children. School public address (PA) systems represent an inexpensive and a replicable way of reaching children with health messages. To test the effectiveness of this channel, messages were created to promote 2 dried bean…

  14. Media Literacy Education from Kindergarten to College: A Comparison of How Media Literacy Is Addressed across the Educational System

    ERIC Educational Resources Information Center

    Schmidt, Hans C.

    2013-01-01

    This study of media literacy education at all levels of the educational system considered faculty perceptions of student media literacy competencies, the extent to which media literacy is addressed in class, and the extent to which faculty members consider media literacy education to be important. Data suggest that despite the research and policy…

  15. Teaching climate change: A 16-year record of introducing undergraduates to the fundamentals of the climate system and its complexities

    NASA Astrophysics Data System (ADS)

    Winckler, G.; Pfirman, S. L.; Hays, J. D.; Schlosser, P.; Ting, M.

    2011-12-01

    Responding to climate change challenges in the near and far future, will require a wide range of knowledge, skills and a sense of the complexities involved. Since 1995, Columbia University and Barnard College have offered an undergraduate class that strives to provide students with some of these skills. The 'Climate System' course is a component of the three-part 'Earth Environmental Systems' series and provides the fundamentals needed for understanding the Earth's climate system and its variability. Being designed both for science majors and non-science majors, the emphasis of the course is on basic physical explanations, rather than mathematical derivations of the laws that govern the climate system. The course includes lectures, labs and discussion. Laboratory exercises primarily explore the climate system using global datasets, augmented by hands-on activities. Course materials are available for public use at http://eesc.columbia.edu/courses/ees/climate/camel_modules/ and http://ncseonline.org/climate/cms.cfm?id=3783. In this presentation we discuss the experiences, challenges and future demands of conveying the science of the Earth's Climate System and the risks facing the planet to a wide spectrum of undergraduate students, many of them without a background in the sciences. Using evaluation data we reflect how the course, the students, and the faculty have evolved over the past 16 years as the earth warmed, pressures for adaptation planning and mitigation measures increased, and public discourse became increasingly polarized.

  16. Climate balance of biogas upgrading systems

    SciTech Connect

    Pertl, A.; Mostbauer, P.; Obersteiner, G.

    2010-01-15

    One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO{sub 2}.

  17. Does the public deserve free access to climate system science?

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivo

    2010-05-01

    Some time ago it was the lack of public access to medical research data that really stirred the issue and gave inertia for legislation and a new publishing model that puts tax payer-funded medical research in the hands of those who fund it. In today's age global climate change has become the biggest socio-economic challenge, and the same argument resonates: climate affects us all and the publicly-funded science quantifying it should be freely accessible to all stakeholders beyond academic research. Over the last few years the ‘Open Access' movement to remove as much as possible subscription, and other on-campus barriers to academic research has rapidly gathered pace, but despite significant progress, the climate system sciences are not among the leaders in providing full access to their publications and data. Beyond the ethical argument, there are proven and tangible benefits for the next generation of climate researchers to adapt the way their output is published. Through the means provided by ‘open access', both data and ideas can gain more visibility, use and citations for the authors, but also result in a more rapid exchange of knowledge and ideas, and ultimately progress towards a sought solution. The presentation will aim to stimulate discussion and seek progress on the following questions: Should free access to climate research (& data) be mandatory? What are the career benefits of using ‘open access' for young scientists? What means and methods should, or could, be incorporated into current European graduate training programmes in climate research, and possible ways forward?

  18. Interdisciplinary MSc and Doctoral Education in Climate System Science at the University of Hamburg

    NASA Astrophysics Data System (ADS)

    Dilly, Oliver; Stammer, Detlef; Pfeiffer, Eva-Maria

    2010-05-01

    Modern education in climate system sciences is based on a number of disciplines such as meteorology, geophysics, oceanography, geosciences and also economics and social sciences. Facts across these disciplines are required to address the faced key issues related to climate change effectively. Climate experts need to have profound knowledge that can only be achieved in interdisciplinary MSc and PhD programs. In Europe, graduate students who completed a BSc degree are typically proceeding with MSc programs to increase knowledge and qualification. Afterwards, the participation in a doctoral program may follow. Many doctoral programs include courses supporting disciplinary methodological and scientific background in particular. Those courses derive either from advanced MSc programs or specific trainings. Typically, interdisciplinary exchange is difficult to achieve at any stage of disciplinary graduate programs. Recent developments showed the need to educate climate experts in interdisciplinary MSc programs in climate system sciences for both researchers and professionals outside the university. The University of Hamburg offers an interdisciplinary 2-yr MSc program in Integrated System Sciences with 120 ECTS (30 compulsory, 90 eligible) in English language. If the MSc student decides to proceed with a PhD thesis, he/she may not necessarily complete the MSc program but may start to work on a specific and disciplinary doctoral thesis for 3 years. Each doctoral student is guided by an advisory panel (AP) which meets at least bi-annually. The AP consists of a Principal Advisor, a Co-Advisor and a Chair of the panel who come from neighboring disciplines. The structured doctoral program with only 12 CPs includes interdisciplinary compulsory courses and tailor-made eligible expert courses. Summer schools and soft skill courses add to both MSc and doctoral programs. Accordingly, the new graduate school concepts in climate system sciences at the University of Hamburg supports

  19. On Prediction and Predictability of the Arctic Climate System

    NASA Astrophysics Data System (ADS)

    Maslowski, W.; Clement Kinney, J.; Roberts, A.; Higgins, M.; Osinski, R.; Cassano, J. J.; Craig, A.; Gutowski, W. J.; Lettenmaier, D. P.; Lipscomb, W. H.; Tulaczyk, S. M.; Zeng, X.

    2012-12-01

    Arctic sea ice is a key indicator of the state of Earth's climate because of both its sensitivity to warming and its role in amplifying climate change. However, the current system-level understanding and representation of critical arctic processes and feedbacks in state-of-the-art Earth System Models (EaSMs) is still inadequate. This becomes increasingly critical as the perennial and total summer sea ice cover continues its accelerated decline that started in the late 1990s. Growing evidence suggests that the shrinking Arctic ice pack affects pan-Arctic atmospheric and oceanic circulation, snow cover, the Greenland ice sheet, permafrost and vegetation. Such changes could have significant ramifications for global sea level, the global surface energy and moisture budget, atmospheric and oceanic circulations, geosphere-biosphere feedbacks, as well as affecting native coastal communities, and international commerce. We evaluate available results from CMIP5 models against limited observations for their skill in representing recent decadal variability of Arctic sea ice area, thickness, drift and export. We also intercompare results from CMIP5 models with selected CMIP3 models and a hierarchy of regional ice-ocean and fully coupled climate models to demonstrate possible gains or outstanding limitations in representing past and present climate variability in the Arctic. Some of the limitations we have diagnosed in the CMIP3 family of models include: northward oceanic heat fluxes and their interface with the atmosphere, distribution of sea ice area and thickness, variability of sea ice volume in the Arctic Ocean, and freshwater (both solid and liquid) export into the North Atlantic. We argue that the ability of global models to realistically reproduce the above processes affecting recent warming and sea ice melt in the Arctic Ocean distorts predictability of EaSMs and limits the accuracy of their future arctic and global climate predictions. To better understand the past

  20. Feedbacks between climate, CO2 and N2O quantified by a fully coupled Earth system model

    NASA Astrophysics Data System (ADS)

    Kracher, D.; Reick, C. H.

    2013-12-01

    Climate change is evoked by an anthropogenic increase of green house gases (GHG) in the atmosphere, induced by direct emissions from industrial processes or indirectly due to human impacts on ecosystems. Those indirect GHG emissions are strongly influenced by climatic conditions implying several feedback loops in the climate - carbon (C) - nitrogen (N) system. In our study we aim at quantifying the climate - nitrous oxide (N2O) feedback strength in comparison to other feedback mechanisms by applying an Earth system model with explicit representation of interactive N2O in the atmosphere-land-ocean system. Beside the feedbacks emerging due to the temperature sensitivity of biogenic CO2 and N2O emissions, another feedback addressed arises from additional inter-linkages between climate and C and N cycles. Future increased atmospheric CO2 leads to enhanced primary productivity ('CO2 fertilization') causing changes in N availability in the different land and ocean ecosystems. As N2O emissions are driven by availability of N, increased atmospheric CO2 concentrations will impact the climate system also via modifications in N2O emissions. Those changes in N2O emissions will feed back to the climate and will hence also modify the natural biogenic release of CO2 into the atmosphere. This and other associated feedbacks are quantified by applying MPI-ESM, the Earth system model of the Max Planck Institute for Meteorology in Hamburg. MPI-ESM is an atmosphere and ocean global circulation model with model components for land and ocean biogeochemistry. For both CO2 and N2O, land-atmosphere and ocean-atmosphere exchange as well as atmospheric transport are simulated explicitly. Hence, different feedback components in the climate-C-N system can be quantified by cutting artificially single feedback pathways in the model.

  1. Climate Considerations Of The Electricity Supply Systems In Industries

    NASA Astrophysics Data System (ADS)

    Asset, Khabdullin; Zauresh, Khabdullina

    2014-12-01

    The study is focused on analysis of climate considerations of electricity supply systems in a pellet industry. The developed analysis model consists of two modules: statistical data of active power losses evaluation module and climate aspects evaluation module. The statistical data module is presented as a universal mathematical model of electrical systems and components of industrial load. It forms a basis for detailed accounting of power loss from the voltage levels. On the basis of the universal model, a set of programs is designed to perform the calculation and experimental research. It helps to obtain the statistical characteristics of the power losses and loads of the electricity supply systems and to define the nature of changes in these characteristics. Within the module, several methods and algorithms for calculating parameters of equivalent circuits of low- and high-voltage ADC and SD with a massive smooth rotor with laminated poles are developed. The climate aspects module includes an analysis of the experimental data of power supply system in pellet production. It allows identification of GHG emission reduction parameters: operation hours, type of electrical motors, values of load factor and deviation of standard value of voltage.

  2. Data management support for selected climate data sets using the climate data access system

    NASA Technical Reports Server (NTRS)

    Reph, M. G.

    1983-01-01

    The functional capabilities of the Goddard Space Flight Center (GSFC) Climate Data Access System (CDAS), an interactive data storage and retrieval system, and the archival data sets which this system manages are discussed. The CDAS manages several climate-related data sets, such as the First Global Atmospheric Research Program (GARP) Global Experiment (FGGE) Level 2-b and Level 3-a data tapes. CDAS data management support consists of three basic functions: (1) an inventory capability which allows users to search or update a disk-resident inventory describing the contents of each tape in a data set, (2) a capability to depict graphically the spatial coverage of a tape in a data set, and (3) a data set selection capability which allows users to extract portions of a data set using criteria such as time, location, and data source/parameter and output the data to tape, user terminal, or system printer. This report includes figures that illustrate menu displays and output listings for each CDAS function.

  3. The exponential eigenmodes of the carbon-climate system

    NASA Astrophysics Data System (ADS)

    Raupach, M. R.

    2012-09-01

    Several basic ratios describing the carbon-climate system are observed to adopt relatively steady values. Examples include the CO2 airborne fraction (the fraction of the total anthropogenic CO2 emission flux that accumulates in the atmosphere) and the ratio T/QE of warming (T) to cumulative total CO2 emissions (QE). This paper explores the reason for such near-constancy in the past, and its likely limitations in future. The contemporary carbon-climate system is often approximated as a first-order linear system, for example in response-function descriptions. All such linear systems have exponential eigenfunctions in time (an eigenfunction being one that, if applied to the system as a forcing, produces a response of the same shape). This implies that, if the carbon-climate system is idealised as a linear system (Lin) forced by exponentially growing CO2 emissions (Exp), then all ratios among fluxes and perturbation state variables are constant. Important cases are the CO2 airborne fraction (AF), the cumulative airborne fraction (CAF), other CO2 partition fractions and cumulative partition fractions into land and ocean stores, the CO2 sink uptake rate (kS, the combined land and ocean CO2 sink flux per unit excess atmospheric CO2), and the ratio T/QE. Further, the AF and the CAF are equal. The Lin and Exp idealisations apply approximately (but not exactly) to the carbon-climate system in the period from the start of industrialisation (nominally 1750) to the present, consistent with the observed near-constancy of the AF, CAF and T/QE in this period. A nonlinear carbon-climate model is used to explore how the likely future breakdown of both the Lin and Exp idealisations will cause the AF, CAF and kS to depart significantly from constancy, in ways that depend on CO2 emissions scenarios. However, T/QE remains approximately constant in typical scenarios, because of compensating interactions between emissions trajectories, carbon-cycle dynamics and non-CO2 gases. This theory

  4. The GLOBE Carbon Cycle Project: Using a systems approach to understand carbon and the Earth's climate system

    NASA Astrophysics Data System (ADS)

    Silverberg, S. K.; Ollinger, S. V.; Martin, M. E.; Gengarelly, L. M.; Schloss, A. L.; Bourgeault, J. L.; Randolph, G.; Albrechtova, J.

    2009-12-01

    National Science Content Standards identify systems as an important unifying concept across the K-12 curriculum. While this standard exists, there is a recognized gap in the ability of students to use a systems thinking approach in their learning. In a similar vein, both popular media as well as some educational curricula move quickly through climate topics to carbon footprint analyses without ever addressing the nature of carbon or the carbon cycle. If students do not gain a concrete understanding of carbon’s role in climate and energy they will not be able to successfully tackle global problems and develop innovative solutions. By participating in the GLOBE Carbon Cycle project, students learn to use a systems thinking approach, while at the same time, gaining a foundation in the carbon cycle and it's relation to climate and energy. Here we present the GLOBE Carbon Cycle project and materials, which incorporate a diverse set of activities geared toward upper middle and high school students with a variety of learning styles. A global carbon cycle adventure story and game let students see the carbon cycle as a complete system, while introducing them to systems thinking concepts including reservoirs, fluxes and equilibrium. Classroom photosynthesis experiments and field measurements of schoolyard vegetation brings the global view to the local level. And the use of computer models at varying levels of complexity (effects on photosynthesis, biomass and carbon storage in global biomes, global carbon cycle) not only reinforces systems concepts and carbon content, but also introduces students to an important scientific tool necessary for understanding climate change.

  5. Modeling Feedbacks Between Water and Vegetation in the Climate System

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Not only is water essential for life on earth, but life itself affects the global hydrologic cycle and consequently the climate of the planet. Whether the global feedbacks between life and the hydrologic cycle tend to stabilize the climate system about some equilibrium level is difficult to assess. We use a global climate model to examine how the presence of vegetation can affect the hydrologic cycle in a particular region. A control for the present climate is compared with a model experiment in which the Sahara Desert is replaced by vegetation in the form of trees and shrubs common to the Sahel region. A second model experiment is designed to identify the separate roles of two different effects of vegetation, namely the modified albedo and the presence of roots that can extract moisture from deeper soil layers. The results show that the presence of vegetation leads to increases in precipitation and soil moisture in western Sahara. In eastern Sahara, the changes are less clear. The increase in soil moisture is greater when the desert albedo is replaced by the vegetation albedo than when both the vegetation albedo and roots are added. The effect of roots is to withdraw water from deeper layers during the dry season. One implication of this study is that the insertion of vegetation into the Sahara modifies the hydrologic cycle so that the vegetation is more likely to persist than initially.

  6. Power Grids and Climate Information: supporting transmission system operators

    NASA Astrophysics Data System (ADS)

    De Felice, Matteo; Alessandri, Andrea; Catalano, Franco

    2015-04-01

    The activities of electricity transmission system operators (TSO) may be affected by weather conditions and for this reason the availability of accurate information about past and future states can be useful for power grids management. ENEA is supporting TERNA (Italian TSO) since 2012 providing them weather and climate information related to electricity demand and renewable energies management. The first task has been an assessment on the use of weather and climate information to predict electricity demand at short (1-5 days) and long (1-3 months) time scales. The second task was focused on the possibility to estimate and predict the electricity production coming from photovoltaic (PV) using different data sources (satellite, reanalysis, weather stations, climate models). The outcome of this collaboration has been two-fold: i) we had the occasion to evaluate the "quality" of weather/climate information considering power grid operational aspects and ii) more challenging questions, not considered at the beginning, have been raised, providing further interesting research goals.

  7. The Role of the Nitrogen Cycle in the Climate System

    NASA Astrophysics Data System (ADS)

    Holland, E. A.

    2007-12-01

    The Fourth Assessment Report of Intergovernmental Panel on Climate Change was released earlier this year and has generated world-wide attention This was the first Working Group 1 report to take an explicit look at the global nitrogen cycle and how changes in the N cycle have impacted the climate system. The Working Group 1 report states the following: "Global atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased markedly as a result of human activities since 1750 and now far exceed pre-industrial values determined from ice cores spanning many thousands of years. It is very likely that the increase in the combined radiative forcing from carbon dioxide, methane and nitrous oxide has been at least six times faster between1960 to 1999 than over any 40 year period during the two 50 millennia prior to the year 1800. " Changes to the cycling of reactive nitrogen, not the stable atmospheric N2, play an important role in the climate system. The most obvious is the rise in the atmospheric abundance of nitrous oxide since 1750. Nitrous oxide is an important atmospheric tracer that allows us to track global changes to the nitrogen cycle. Nitrogen plays a role in many other aspects of the climate system that are not immediately obvious. Biologically available nitrogen is required for carbon uptake which helps fuel both oceanic and terrestrial carbon uptake. Without the nitrogen fueled carbon uptake, the air-borne fraction of the carbon dioxide released from fossil fuel combustion will increase according to the first coupled climate, carbon and nitrogen simulations done with the NCAR Community Climate System Model (CCSM). NOx (NO+NO2) is one of the necessary precursors for ozone formation that has increased more than thirty eight percent since the pre-industrial era. Understanding the role of sources other than fossil fuel emissions, including soil NOx emissions and lightning formation of NOx are important to understanding ozone formation. Recent

  8. The Aerosol-Monsoon Climate System of Asia

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kyu-Myong, Kim

    2012-01-01

    In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated

  9. A Multimedia Adaptive Tutoring System for Mathematics That Addresses Cognition, Metacognition and Affect

    ERIC Educational Resources Information Center

    Arroyo, Ivon; Woolf, Beverly Park; Burelson, Winslow; Muldner, Kasia; Rai, Dovan; Tai, Minghui

    2014-01-01

    This article describes research results based on multiple years of experimentation and real-world experience with an adaptive tutoring system named Wayang Outpost. The system represents a novel adaptive learning technology that has shown successful outcomes with thousands of students, and provided teachers with valuable information about students'…

  10. Linkages between the Urban Environment and Earth's Climate System

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Jin, Menglin

    2003-01-01

    Urbanization is one of the extreme cases of land use change. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025 60% of the world s population will live in cities (UNFP, 1999). Though urban areas are local in scale, human activity in urban environments has impacts at local, to global scale by changing atmospheric composition; impacting components of the water cycle; and modifying the carbon cycle 2nd ecosystems. For example, urban dwellers are undoubtedly familiar with "high" ozone pollution days, flash flooding in city streets, or heat stress on summer days. However, our understanding of urbanization on the total Earth-climate system is incomplete. Better understanding of how the Earth s weather, oceans, and land work together and the influence of the urban environment on this climate system is critical. This paper highlights some of the major and current issues involving interactions between urban environments and the Earth's climate system. It also captures some of the most current thinking and findings of the authors and key experts in the field.

  11. Precipitation Measurements From Space: Workshop report. An element of the climate observing system study

    NASA Technical Reports Server (NTRS)

    Atlas, D. (Editor); Thiele, O. W. (Editor)

    1981-01-01

    Global climate, agricultural uses for precipitation information, hydrological uses for precipitation, severe thunderstorms and local weather, global weather are addressed. Ground truth measurement, visible and infrared techniques, microwave radiometry and hybrid precipitation measurements, and spaceborne radar are discussed.

  12. Addressing fundamental architectural challenges of an activity-based intelligence and advanced analytics (ABIAA) system

    NASA Astrophysics Data System (ADS)

    Yager, Kevin; Albert, Thomas; Brower, Bernard V.; Pellechia, Matthew F.

    2015-06-01

    The domain of Geospatial Intelligence Analysis is rapidly shifting toward a new paradigm of Activity Based Intelligence (ABI) and information-based Tipping and Cueing. General requirements for an advanced ABIAA system present significant challenges in architectural design, computing resources, data volumes, workflow efficiency, data mining and analysis algorithms, and database structures. These sophisticated ABI software systems must include advanced algorithms that automatically flag activities of interest in less time and within larger data volumes than can be processed by human analysts. In doing this, they must also maintain the geospatial accuracy necessary for cross-correlation of multi-intelligence data sources. Historically, serial architectural workflows have been employed in ABIAA system design for tasking, collection, processing, exploitation, and dissemination. These simpler architectures may produce implementations that solve short term requirements; however, they have serious limitations that preclude them from being used effectively in an automated ABIAA system with multiple data sources. This paper discusses modern ABIAA architectural considerations providing an overview of an advanced ABIAA system and comparisons to legacy systems. It concludes with a recommended strategy and incremental approach to the research, development, and construction of a fully automated ABIAA system.

  13. Cultivating a Network For Messaging About Climate Change Across an Urban System

    NASA Astrophysics Data System (ADS)

    Wertheim, J.

    2014-12-01

    Currently, some of the most promising efforts to address climate change are taking place at the scale of cities and municipalities. Large urban areas host an active population of organizations working to influence local environmental policies more rigorous than those at the state and national level. The composition of these groups is broadening as impacts of climate change are being recognized as relevant to more sectors within urban systems, from health centers to community leaders, leading more organizations to consider how they can raise awareness and gain support for their needs. The National Geographic Society, as part of the National Science Foundation (NSF)-funded Climate and Urban Systems Partnership (CUSP), has convened a pilot "community of practice" (CoP) consisting of organizations working at the local level in Washington, DC to communicate with audiences, from the general public to local government agencies, about ways that climate change is predicted to affect the city and what can be done about it. The purpose of the CoP was initially to help these groups coordinate their activities, share knowledge and resources, and to create a platform for ongoing collaborative learning. While the CoP is still evolving, it is clear that it has potential to provide even deeper and more meaningful support to these groups' efforts. Developing effective messaging about climate change across an urban system depends on the valuable insight these groups have into their audience's interests, beliefs, and knowledge, but it also requires a set of competencies that few members of the CoP hold. As conveners of the CoP, we have identified and prioritized those competencies and are developing a process for training CoP members to apply their expertise to implement empirically-based best practices in climate change messaging, public communication, and integration of data and visualizations. The process of training the group has the potential to both create a CoP that becomes a

  14. Status of Civil Judicial Consent Decrees Addressing Combined Sewer Systems (CSOs)

    EPA Pesticide Factsheets

    Tracking table of civil consent decrees for combined sewer systems (CSOs). This supports the National Enforcement Initiative (NEI) for Keeping Raw Sewage and Contaminated Stormwater Out of Our Nation's Waters.

  15. A Possible Approach for Addressing Neglected Human Factors Issues of Systems Engineering

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher W.; Holloway, C. Michael

    2011-01-01

    The increasing complexity of safety-critical applications has led to the introduction of decision support tools in the transportation and process industries. Automation has also been introduced to support operator intervention in safety-critical applications. These innovations help reduce overall operator workload, and filter application data to maximize the finite cognitive and perceptual resources of system operators. However, these benefits do not come without a cost. Increased computational support for the end-users of safety-critical applications leads to increased reliance on engineers to monitor and maintain automated systems and decision support tools. This paper argues that by focussing on the end-users of complex applications, previous research has tended to neglect the demands that are being placed on systems engineers. The argument is illustrated through discussing three recent accidents. The paper concludes by presenting a possible strategy for building and using highly automated systems based on increased attention by management and regulators, improvements in competency and training for technical staff, sustained support for engineering team resource management, and the development of incident reporting systems for infrastructure failures. This paper represents preliminary work, about which we seek comments and suggestions.

  16. Environmentally responsive material to address human-system interaction in the automotive cockpit

    NASA Astrophysics Data System (ADS)

    Rehkopf, Jackie D.; Barbat, Saeed D.; Goldman, Neil M.; Samus, Marsha A.; Gold, Harris

    2001-06-01

    There is significant human-system interaction in an automotive cockpit, and for particular components this interaction can be ever-present while being transient in nature. It is envisioned that environmentally responsive materials can be used in some components to accommodate personal and transient differences in the desired human-system interaction. Systems containing responsive gels have been developed to provide user activation and adjustment of the physical properties of a particular interior automotive component. Proprietary reverse viscosification gel formulations were developed that are thermally responsive. Formulations were modified to adjust the dynamic modulus and viscosity in terms of magnitude, amount of change over the viscosification transition, and the temperature over which the transition occurs. Changes in the physical properties of two orders of magnitude and more were achieved over a narrow transition region. Preliminary human factors assessment indicates that this order of magnitude of change is desirable. As the system of responsive gel, encapsulating material and activation mechanism is developed further, additional human factors studies will refine the desired physical properties and thermal activation mechanism. Ultimately, this system will have to perform over the broad range of temperatures imposed on interior automotive components and exhibit long-term durability chemically, physically and mechanically.

  17. Engineered muscle systems having individually addressable distributed muscle actuators controlled by optical stimuli.

    PubMed

    Neal, Devin; Asada, H Harry

    2013-01-01

    A multi degree-of-freedom system using live skeletal muscles as actuators is presented. Millimeter-scale, optically excitable 3D skeletal muscle strips are created by culturing genetically coded precursory muscle cells that are activated with light: optogenetics. These muscle bio-actuators are networked together to create a distributed actuator system. Unlike traditional mechanical systems where fixed axis joints are rotated with electric motors, the new networked muscle bio-actuators can activate loads having no fixed joint. These types of loads include shoulders, the mouth, and the jaw. The optogenetic approach offers high spatiotemporal resolution for precise control of muscle activation, and opens up the possibility to activate hundreds of interconnected muscles in a spatiotemporally coordinated manner. In this work, we explore the design of robotic systems composed of multiple light-activated live muscular actuator units. We describe and compare massively parallel and highly serial/networked distributions of these building-block actuator units. We have built functional fundamental prototypes and present experimental results to demonstrate the feasibility of the construction of larger scale muscle systems.

  18. Climate Ocean Modeling on a Beowulf Class System

    NASA Technical Reports Server (NTRS)

    Cheng, B. N.; Chao, Y.; Wang, P.; Bondarenko, M.

    2000-01-01

    With the growing power and shrinking cost of personal computers. the availability of fast ethernet interconnections, and public domain software packages, it is now possible to combine them to build desktop parallel computers (named Beowulf or PC clusters) at a fraction of what it would cost to buy systems of comparable power front supercomputer companies. This led as to build and assemble our own sys tem. specifically for climate ocean modeling. In this article, we present our experience with such a system, discuss its network performance, and provide some performance comparison data with both HP SPP2000 and Cray T3E for an ocean Model used in present-day oceanographic research.

  19. Design of a photovoltaic system for a temperate climate all-electric residence

    NASA Astrophysics Data System (ADS)

    Mehalick, E. M.; Tully, G. F.; Johnson, J.; Truncellito, N.; Schaeffer, R.

    1982-01-01

    A photovoltaic system was developed and integrated into a single story residence having low space conditioning loads typical of a temperate climate similar to Santa Maria, CA. The design addresses the residential market segment of low energy consuming houses with limited roof area availability; in fact the garage roof is used for the array. The array size to meet the requirements of this type of house covers 40 square m with a rated power output of 4.3 kW at NOCT conditions. A flexible array installation is presented which can be implemented as an integral mount or a stand-off mount depending on the homeowner preference. A 4 kW utility-tied inverter is used in the power conversion subsystem, representative of currently available hardware. The system provides feedback of excess energy to the utility which is the most promising approach for grid-connected residential systems in the mid 1980's.

  20. Probing the biology of dry biological systems to address the basis of seed longevity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drying cells reduces molecular mobility and slows chemical and physical reactions. As a result, dry biological systems deteriorate slowly. The time course of deterioration in a population of living cells often follows a sigmoidal pattern in which aging is occurring but no changes to viability are ...

  1. Addressing Substance Abuse Treatment Needs of Parents Involved with the Child Welfare System

    ERIC Educational Resources Information Center

    Oliveros, Arazais; Kaufman, Joan

    2011-01-01

    The goal of this paper is to synthesize available data to help guide policy and programmatic initiatives for families with substance abuse problems who are involved with the child welfare system, and identify gaps in the research base preventing further refinement of practices in this area. To date, Family Treatment Drug Court and newly developed…

  2. DOD Business Systems Modernization: Further Actions Needed to Address Challenges and Improve Accountability

    DTIC Science & Technology

    2013-05-01

    Compliance and Requirements Traceability AF-IPPS Air Force Integrated Personnel and Pay System BPR business process reengineering BEA business...updated its BPR guidance in late September 2012 to include actions to be taken to review supporting documentation on selected investments

  3. Clicker Lessons: Assessing and Addressing Student Responses to Audience Response Systems

    ERIC Educational Resources Information Center

    Pelton, Tim; Pelton, Leslee Francis; Sanseverino, Mary

    2008-01-01

    This project began in response to a perceived need to assess students' perceptions with respect to the emerging use of audience response systems (clickers) in several mid- to large-size undergraduate courses at the University of Victoria. We developed and validated a "Clicker Use Survey" to gather students' opinions with respect to…

  4. 14 CFR 135.150 - Public address and crewmember interphone systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... interphone system required by paragraph (b) of this section, except for handsets, headsets, microphones... seat, has a microphone which is readily accessible to the seated flight attendant, except that one microphone may serve more than one exit, provided the proximity of the exits allows unassisted...

  5. 14 CFR 135.150 - Public address and crewmember interphone systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... interphone system required by paragraph (b) of this section, except for handsets, headsets, microphones... seat, has a microphone which is readily accessible to the seated flight attendant, except that one microphone may serve more than one exit, provided the proximity of the exits allows unassisted...

  6. 14 CFR 135.150 - Public address and crewmember interphone systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... interphone system required by paragraph (b) of this section, except for handsets, headsets, microphones... seat, has a microphone which is readily accessible to the seated flight attendant, except that one microphone may serve more than one exit, provided the proximity of the exits allows unassisted...

  7. 14 CFR 135.150 - Public address and crewmember interphone systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... interphone system required by paragraph (b) of this section, except for handsets, headsets, microphones... seat, has a microphone which is readily accessible to the seated flight attendant, except that one microphone may serve more than one exit, provided the proximity of the exits allows unassisted...

  8. 14 CFR 135.150 - Public address and crewmember interphone systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... interphone system required by paragraph (b) of this section, except for handsets, headsets, microphones... seat, has a microphone which is readily accessible to the seated flight attendant, except that one microphone may serve more than one exit, provided the proximity of the exits allows unassisted...

  9. Collaborative Group Learning and Knowledge Building to Address Information Systems Project Failure

    ERIC Educational Resources Information Center

    Angelo, Raymond

    2011-01-01

    Approximately half of the information systems (IS) projects implemented each year are considered failures. These failed projects cost billions of dollars annually. Failures can be due to projects being delivered late, over-budget, abandoned after significant time and resource investment, or failing to achieve desired results. More often than not,…

  10. Addressing Indigenous (ICT) Approaches in South-East Asian Learning Systems

    ERIC Educational Resources Information Center

    Amato, Silvia

    2013-01-01

    Purpose: The purpose of this paper is to provide a structural overview about indigenous approaches to learning in South East Asian countries, with a particular reference to education initiatives that have been operating in this region; and especially to investigate information and communication technologies (ICT) systems, in combination with…

  11. Moving Forward? Addressing the Needs of Young At-Risk Students in the Dutch Education System

    ERIC Educational Resources Information Center

    van der Aalsvoort, Geerdina M.

    2007-01-01

    Inclusive education in the Dutch education system has achieved new meaning in the last decade or so. Until 1998, the Netherlands recognized 19 types of special education. Then, two Educational Acts were passed, in 1998 and 2003, that decreased the types of special education by including measures to enhance inclusion of students with special…

  12. Parallelizing Climate Data Management System, version 3 (CDMS3)

    NASA Astrophysics Data System (ADS)

    Nadeau, D.; Williams, D. N.; Painter, J.; Doutriaux, C.

    2015-12-01

    The Climate Data Management System is an object-oriented data management system, specialized for organizing multidimensional, gridded data used in climate analyses for data observation and simulation. The basic unit of computation in CDMS3 is the variable, which consist of a multidimensional array that represents climate information in four dimensions corresponding to: time, pressure levels, latitudes, and longitudes. As model become more precise in their computation, the volume of data generated becomes bigger and difficult to handle due to the limit of computational resources. Model today can produce data a time frequency of one hourly, three hourly, or six hourly for spatial footprint close to satellite data used run models. The amount of time for scientists to analyze the data and retrieve useful information is more and more unmanageable. Parallelizing libraries such as CMDS3 would ease the burden of working with such big datasets. Multiple approaches of parallelizing are possible. The most obvious one is embarrassingly parallel or pleasingly parallel programming where each computer node processes one file at a time. A more challenging approach is to send a piece of the data to each node for computation and each node will save the results at its right place in a file as a slab of data. This is possible with Hierarchical Data Format 5 (HDF5) using the Message Passing Interface (MPI). A final approach would be the use of Open Multi-Processing API (OpenMP) where a master thread is split in multiple threads for different sections of the main code. Each method has its advantages and disadvantages. This poster bring to light each benefit of these methods and seek to find an optimal solution to compute climate data analyses in a efficient fashion using one or a mixtures of these parallelized methods.

  13. Land Use and Climate Impacts on Fluvial Systems (LUCIFS): A PAGES - Focus 4 (PHAROS) research activity

    NASA Astrophysics Data System (ADS)

    Dearing, John; Hoffmann, Thomas

    2010-05-01

    LUCIFS is a global research program which is concerned with understanding past interactions between climate, human activity and fluvial systems. Its focus is on evaluating the geomorphic impact of humans on landscapes, with a strong emphasis on geomorphological and sedimentological perspectives on mid- to long-term man-landscape interactions. Of particular relevance are aspects of sediment redistribution systems such as non-linear behaviour, the role of system configuration, scale effects, and emergent properties Over the last decade the LUCIFS program has been investigating both contemporary and long-term river response to global change with the principal aims of i)quantifying land use and climate change impacts of river-borne fluxes of water, sediment, C, N and P; ii) identification of key controls on these fluxes at the catchment scale; and iii) identification of the feedback on both human society and biogeochemical cycles of long-term changes in the fluxes of these materials The major scientific tasks of the LUCIFS-program are: • synthesising results of regional case studies • identify regional gaps and encouraging new case studies • addressing research gaps and formulating new research questions • organising workshops and conferences In this paper we present the LUCIFS program within the new PAGES structure. LUCIFS is located in the Focus 4 (PHAROS) dealing with how a knowledge of human-climate-ecosystem interactions in the past can help inform understanding and management today. In conjunction with the other working groups HITE (Human Impacts on Terrestrial Ecosystems), LIMPACS (Human Impacts on Lake Ecosystems) and IHOPE (Integrated History of People on Earth) PHAROS aims to compare regional-scale reconstructions of environmental and climatic processes using natural archives, documentary and instrumental data, with evidence of past human activity obtained from historical, paleoecological and archaeological records.

  14. Methane leakage from evolving petroleum systems: Masses, rates and inferences for climate feedback

    NASA Astrophysics Data System (ADS)

    Berbesi, L. A.; di Primio, R.; Anka, Z.; Horsfield, B.; Wilkes, H.

    2014-02-01

    The immense mass of organic carbon contained in sedimentary systems, currently estimated at 1.56×1010 Tg (Des Marais et al., 1992), bears the potential of affecting global climate through the release of thermally or biologically generated methane to the atmosphere. Here we investigate the potential of naturally-occurring gas leakage, controlled by petroleum generation and degradation as a forcing mechanism for climate at geologic time scales. We addressed the potential methane contributions to the atmosphere during the evolution of petroleum systems in two different, petroliferous geological settings: the Western Canada Sedimentary Basin (WCSB) and the Central Graben area of the North Sea. Besides 3D numerical simulation, different types of mass balance and theoretical approaches were applied depending on the data available and the processes taking place in each basin. In the case of the WCSB, we estimate maximum thermogenic methane leakage rates in the order of 10-2-10-3 Tg/yr, and maximum biogenic methane generation rates of 10-2 Tg/yr. In the case of the Central Graben, maximum estimates for thermogenic methane leakage are in the order in 10-3 Tg/yr. Extrapolation of our results to a global scale suggests that, at least as a single process, thermal gas generation in hydrocarbon kitchen areas would not be able to influence climate, although it may contribute to a positive feedback. Conversely, only the sudden release of subsurface methane accumulations, formed over geologic timescales, can possibly allow for petroleum systems to exert an effect on climate.

  15. Research strategies for addressing uncertainties

    USGS Publications Warehouse

    Busch, David E.; Brekke, Levi D.; Averyt, Kristen; Jardine, Angela; Welling, Leigh; Garfin, Gregg; Jardine, Angela; Merideth, Robert; Black, Mary; LeRoy, Sarah

    2013-01-01

    Research Strategies for Addressing Uncertainties builds on descriptions of research needs presented elsewhere in the book; describes current research efforts and the challenges and opportunities to reduce the uncertainties of climate change; explores ways to improve the understanding of changes in climate and hydrology; and emphasizes the use of research to inform decision making.

  16. Girls in the juvenile justice system: leave no girl's health un-addressed.

    PubMed

    Guthrie, Barbara J; Hoey, Erin; Ravoira, LaWanda; Kintner, Eileen

    2002-12-01

    Despite an increase in middle to older aged adolescent females' early contact with the juvenile justice system, inadequate health care remains a concern. This descriptive study surveyed the physical and mental health needs of 130 self-selected, nonrandomized girls aged 12 to 18 years, with a mean age of 15.42 years (SD, 1.24), who were involved with a juvenile justice diversional program located in a southeastern region of the United States. Findings revealed early initiation of sexual-related activities (mean age, 13.9 years; SD, 1.49) and substance use (mean age, 12.9 years; SD, 1.53). The data suggest an increasing need for pediatric nurses, and in particular advanced practice nurses, to provide gender-responsive health care and health promotion services to early middle-childhood females in the juvenile justice system.

  17. San Diego Healthy Weight Collaborative: a systems approach to address childhood obesity.

    PubMed

    Serpas, Shaila; Brandstein, Kendra; McKennett, Marianne; Hillidge, Sharon; Zive, Michelle; Nader, Philip R

    2013-01-01

    A collaborative approach to identify opportunities for interactions between multiple systems is an important model for childhood obesity prevention. This paper describes a process aligning multiple partners in primary care, public health, university research, schools, and community organizations. Jointly implemented strategies in a Latino underserved community included: (1) building an effective and sustainable collaborative team; (2) disseminating a healthy weight message across sectors; (3) assessing weight status and healthy weight plans in primary care, school, and early childhood settings; and (4) implementing policy changes to support healthy eating and physical activity. The process and lessons learned were analyzed so other communities can utilize a systems approach to develop culturally appropriate interventions tailored to a specific community.

  18. A manual for addressing ineffectiveness within a Corrective Action System and driving on-time dispositions

    NASA Astrophysics Data System (ADS)

    Mallari, Lawrence Anthony Castro

    This project proposes a manual specifically for remedying an ineffective Corrective Action Request System for Company ABC by providing dispositions within the company's quality procedure. A Corrective Action Request System is a corrective action tool that provides a means for employees to engage in the process improvement, problem elimination cycle. At Company ABC, Corrective Action Recommendations (CARs) are not provided with timely dispositions; CARs are being ignored due to a lack of training and awareness of Company ABC's personnel and quality procedures. In this project, Company ABC's quality management software database is scrutinized to identify the number of delinquent, non-dispositioned CARs in 2014. These CARs are correlated with the number of nonconformances generated for the same issue while the CAR is still open. Using secondary data, the primary investigator finds that nonconformances are being remediated at the operational level. However, at the administrative level, CARS are being ignored and forgotten.

  19. Identifying and Addressing Stakeholder Interests in Design Science Research: An Analysis Using Critical Systems Heuristics

    NASA Astrophysics Data System (ADS)

    Venable, John R.

    This paper utilises the Critical Systems Heuristics (CSH) framework developed by Werner Ulrich to critically consider the stakeholders and design goals that should be considered as relevant by researchers conducing Design Science Research (DSR). CSH provides a philosophically and theoretically grounded framework and means for critical consideration of the choices of stakeholders considered to be relevant to any system under design consideration. The paper recommends that legitimately undertaken DSR should include witnesses to represent the interests of the future consumers of the outcomes of DSR, i.e., the future clients, decision makers, professionals, and other non-included stakeholders in the future use of the solution technologies to be invented in DSR. The paper further discusses options for how witnesses might be included, who should be witnessed for and obstacles to implementing the recommendations.

  20. Aquatics Systems Branch: transdisciplinary research to address water-related environmental problems

    USGS Publications Warehouse

    Dong, Quan; Walters, Katie D.

    2015-01-01

    The Aquatic Systems Branch at the Fort Collins Science Center is a group of scientists dedicated to advancing interdisciplinary science and providing science support to solve water-related environmental issues. Natural resource managers have an increasing need for scientific information and stakeholders face enormous challenges of increasing and competing demands for water. Our scientists are leaders in ecological flows, riparian ecology, hydroscape ecology, ecosystem management, and contaminant biology. The Aquatic Systems Branch employs and develops state-of-the-science approaches in field investigations, laboratory experiments, remote sensing, simulation and predictive modeling, and decision support tools. We use the aquatic experimental laboratory, the greenhouse, the botanical garden and other advanced facilities to conduct unique research. Our scientists pursue research on the ground, in the rivers, and in the skies, generating and testing hypotheses and collecting quantitative information to support planning and design in natural resource management and aquatic restoration.

  1. F-35 Sustainment: DOD Needs a Plan to Address Risks Related to Its Central Logistics System

    DTIC Science & Technology

    2016-04-01

    planning, supply-chain management , maintenance, and other processes. The F-35 program is approaching several key milestones: the Air Force and...Air Vehicle Data/Health CAPE Office of the Director for Cost Assessment and Program Evaluation CMMS Computerized Maintenance Management ...Office of the Secretary of Defense SCM Supply Chain Management SOU Standard Operating Unit TMS Training Management System This is a work

  2. Policy Options to Address Crucial Communication Gaps in the Incident Command System

    DTIC Science & Technology

    2012-09-01

    California Department of Forestry and Fire Protection COML Communications Unit Leader COMT Communication Technician EBRPD East Bay Regional Parks...Laguna Fire 1970 - One of California’s Worst Wildfires.” Available at http://www.cccarto.com/cal_wildfire/laguna/fire.html, Accessed August 10, 2012...NIMS - The Evolution of the National Incident Management System.” Fire Rescue Magazine, August 2011. 15 compatibility, and department emergency

  3. Can We Better Address the Siting of Hazard Division 1.3 Systems

    DTIC Science & Technology

    2010-07-01

    American Petroleum Institute standard API 521 (Reference 22). These include (1) 15.97 kW/m2 for heat flux on structures where operators are not likely...The Hague, Dutch Ministry of Housing, Physical Planning, and Environment, 1990.) 22. American Petroleum Institute . Guide for Pressure-Relieving...and Depressurizing Systems. American Petroleum Institute , Washington, D.C., 1997, API 521. 23. Quest Consultants, Inc. Worst-Case Consequence

  4. Tailored Educational Approaches for Consumer Health (TEACH): a model system for addressing health communication.

    PubMed

    Cohn, Wendy F; Pannone, Aaron; Schubart, Jane; Lyman, Jason; Kinzie, Mable; Broshek, Donna K; Guterbock, Thomas M; Hartman, David; Mick, David; Bolmey, Armando; Garson, Arthur T

    2006-01-01

    The Consumer Health Education Institute (CHEDI) has developed a model system to improve the quality and effectiveness of patient education and health communication. Through assessment of characteristics and preferences, segmentation into groups and matching with the appropriate materials, we have demonstrated that patients and health consumers have different health information needs and preferences which show promise as a basis for selecting or designing the most appropriate materials or programs.

  5. Spring-Based Helmet System Support Prototype to Address Aircrew Neck Strain

    DTIC Science & Technology

    The Royal Canadian Air Force Griffon helicopter aircrew are known to have extremely high incidence of chronic, debilitating neck pain. Fischer et al...2013) identified that unbalanced moments due to head-borne equipment (i.e. helmet with NVG ) were a particular concern since the current solution was...to add more weight (battery pack and counterweight (CW)) as a counterbalancing force. Three concepts were proposed to improve the helmet- NVG system

  6. Intersects between Land, Energy, Water and the Climate System

    NASA Astrophysics Data System (ADS)

    Hibbard, K. A.; Skaggs, R.; Wilson, T.

    2012-12-01

    Climate change affects water, and land resources, and with growing human activity, each of these sectors relies increasingly on the others for critical resources. Events such as drought across the South Central U.S. during 2011 demonstrate that climatic impacts within each of these sectors can cascade through interactions between sectors. Energy, water, and land resources are each vulnerable to impacts on either of the other two sectors. For example, energy systems inherently require land and water. Increased electricity demands to contend with climate change can impose additional burdens on overly subscribed water resources. Within this environment, energy systems compete for water with agriculture, human consumption, and other needs. In turn, climate driven changes in landscape attributes and land use affect water quality and availability as well as energy demands. Diminishing water quality and availability impose additional demands for energy to access and purify water, and for land to store and distribute water. In some situations, interactions between water, energy, and land resources make options for reducing greenhouse gas emissions vulnerable to climate change. Energy options such as solar power or biofuel use can reduce net greenhouse gas emissions as well as U.S. dependence on foreign resources. As a result, the U.S. is expanding renewable energy systems. Advanced technology such as carbon dioxide capture with biofuels may offer a means of removing CO2 from the atmosphere. But as with fossil fuels, renewable energy sources can impose significant demands for water and land. For example, solar power mayrequire significant land to site facilities and water for cooling or to produce steam. Raising crops to produce biofuels uses arable land and water that might otherwise be available for food production. Thus, warmer and drier climate can compromise these renewable energy resources, and drought can stress water supplies creating competition between energy

  7. Climate-based health monitoring systems for eco-climatic conditions associated with infectious diseases.

    PubMed

    Pinzon, E; Wilson, J M; Tucker, C J

    2005-09-01

    Despite a century of confidence and optimism in modern medicine and technology inspired by their often successful prevention and control efforts, infectious diseases remain an omnipresent, conspicuous major challenge to public health. Effective detection and control of infectious diseases require predictive and proactive efficient methods that provide early warning of an epidemic activity. Of particular relevance to these efforts is linking information at the landscape and coarser scales to data at the scale of the epidemic activity. In recent years, landscape epidemiology has used satellite remote sensing and geographic information systems as the technology capable of providing, from local to global scales, spatial and temporal climatic patterns that may influence the intensity of a vector-borne disease and predicts risk conditions associated with an epidemic. This article provides a condensed, and selective look at classical material and recent research about remote sensing and GIS (geographic information system) applications in public health.

  8. Addressing the Challenges of Anomaly Detection for Cyber Physical Energy Grid Systems

    SciTech Connect

    Ferragut, Erik M; Laska, Jason A; Melin, Alexander M; Czejdo, Bogdan

    2013-01-01

    The consolidation of cyber communications networks and physical control systems within the energy smart grid introduces a number of new risks. Unfortunately, these risks are largely unknown and poorly understood, yet include very high impact losses from attack and component failures. One important aspect of risk management is the detection of anomalies and changes. However, anomaly detection within cyber security remains a difficult, open problem, with special challenges in dealing with false alert rates and heterogeneous data. Furthermore, the integration of cyber and physical dynamics is often intractable. And, because of their broad scope, energy grid cyber-physical systems must be analyzed at multiple scales, from individual components, up to network level dynamics. We describe an improved approach to anomaly detection that combines three important aspects. First, system dynamics are modeled using a reduced order model for greater computational tractability. Second, a probabilistic and principled approach to anomaly detection is adopted that allows for regulation of false alerts and comparison of anomalies across heterogeneous data sources. Third, a hierarchy of aggregations are constructed to support interactive and automated analyses of anomalies at multiple scales.

  9. Application of fuzzy system theory in addressing the presence of uncertainties

    SciTech Connect

    Yusmye, A. Y. N.; Goh, B. Y.; Adnan, N. F.; Ariffin, A. K.

    2015-02-03

    In this paper, the combinations of fuzzy system theory with the finite element methods are present and discuss to deal with the uncertainties. The present of uncertainties is needed to avoid for prevent the failure of the material in engineering. There are three types of uncertainties, which are stochastic, epistemic and error uncertainties. In this paper, the epistemic uncertainties have been considered. For the epistemic uncertainty, it exists as a result of incomplete information and lack of knowledge or data. Fuzzy system theory is a non-probabilistic method, and this method is most appropriate to interpret the uncertainty compared to statistical approach when the deal with the lack of data. Fuzzy system theory contains a number of processes started from converting the crisp input to fuzzy input through fuzzification process and followed by the main process known as mapping process. The term mapping here means that the logical relationship between two or more entities. In this study, the fuzzy inputs are numerically integrated based on extension principle method. In the final stage, the defuzzification process is implemented. Defuzzification is an important process to allow the conversion of the fuzzy output to crisp outputs. Several illustrative examples are given and from the simulation, the result showed that propose the method produces more conservative results comparing with the conventional finite element method.

  10. Atmospheric planetary boundary layer feedback in climate system and triggering of climate change at high latitudes

    NASA Astrophysics Data System (ADS)

    Esau, I.; Zilitinkevich, S.

    2009-04-01

    Recent publications have revealed that modern, state-of-the-art climate-change models (CCMs) are not sensitive enough to reproduce some fine features of the observed changes in the surface air temperature (SAT) especially at high latitudes. We propose that this problem results from inaccurate representation of the very shallow long-lived stable (LS) and conventionally neutral (CN) atmospheric planetary boundary layers (PBLs) typical of high latitudes, especially of Polar regions. LS and CN PBLs, not yet included in the context of climate modelling, are almost an order of magnitude shallower than mid-latitudinal nocturnal stable (NS) and truly neutral (TN) PBLs, which are the only concern of the traditional theory of stable PBLs. In is only natural that factually observed shallow PBLs respond to thermal impacts (e.g. to the changes in the surface heat balance) much stronger than much deeper PBLs reproduced by the current PBL schemes. In this paper we investigate analytically the PBL feedback in climate system for all known kinds of PBL: stable (distinguishing between NS and LS), neutral (distinguishing between TN and CN) and also convective). Besides very high sensitivity of LS PBLs, quite consistent with the observed variability in SAT, our analyses reveal that in some specific conditions global warming could cause "strange cases" of local cooling. We also obtained analytically that the daily minimum temperatures are more sensitive to the global warming than the daily maximum temperatures, which, at least partially, explains such observed phenomena as asymmetry in the diurnal temperature trends and almost global reduction of the diurnal temperature range.

  11. Whole Neuraxis Irradiation to Address Central Nervous System Relapse in High-Risk Neuroblastoma

    SciTech Connect

    Croog, Victoria J.; Kramer, Kim; Cheung, Nai-Kong V.; Kushner, Brian H.; Modak, Shakeel; Souweidane, Mark M.; Wolden, Suzanne L.

    2010-11-01

    Background: As systemic control of high-risk neuroblastoma (NB) has improved, relapse in the central nervous system (CNS) is an increasingly recognized entity that carries a grim prognosis. This study describes the use of craniospinal irradiation (CSI) for CNS relapse and compares outcomes to patients who received focal radiotherapy (RT). Methods: A retrospective query identified 29 children with NB treated at Memorial Sloan-Kettering Cancer Center since 1987 who received RT for CNS relapse. At CNS relapse, 16 patients received CSI (median dose, 2160cGy), and 13 received focal RT. Of those who underwent CSI, 14 (88%) received intra-Ommaya (IO) radioimmunotherapy (RIT); one patient in the non-CSI cohort received IO-RIT. Results: Patient characteristics were similar between the groups. Time to CNS relapse was 20 and 17 months for the CSI and non-CSI cohorts, respectively. At a median follow-up of 28 months, 12 patients (75%) in the CSI group are alive without CNS disease, including two patients with isolated skeletal relapse. Another patient is alive without disease after a brain relapse was retreated with RT. Three patients died-one with no NB at autopsy, one of CNS disease, and one of systemic disease. The two patients who died of NB did not receive IO-RIT. All 13 patients in the non-CSI cohort died at a median of 8.8 months. Conclusions: Low-dose CSI together with IO-RIT provides durable CNS remissions and improved survival compared with focal RT and conventional therapies. Further evaluation of long-term NB survivors after CSI is warranted to determine the treatment consequences for this cohort.

  12. Addressing substance abuse treatment needs of parents involved with the child welfare system.

    PubMed

    Oliveros, Arazais; Kaufman, Joan

    2011-01-01

    The goal of this paper is to synthesize available data to help guide policy and programmatic initiatives for families with substance abuse problems who are involved with the child welfare system, and identify gaps in the research base preventing further refinement of practices in this area. To date, Family Treatment Drug Court and newly developed home-based substance abuse treatment interventions appear the most effective at improving substance abuse treatment initiation and completion in child welfare populations. Research is needed to compare the efficacy of these two approaches, and examine cost and child well-being indicators in addition to substance abuse treatment and child welfare outcomes.

  13. Spatial variability of the response to climate change in regional groundwater systems -- examples from simulations in the Deschutes Basin, Oregon

    USGS Publications Warehouse

    Waibel, Michael S.; Gannett, Marshall W.; Chang, Heejun; Hulbe, Christina L.

    2013-01-01

    We examine the spatial variability of the response of aquifer systems to climate change in and adjacent to the Cascade Range volcanic arc in the Deschutes Basin, Oregon using downscaled global climate model projections to drive surface hydrologic process and groundwater flow models. Projected warming over the 21st century is anticipated to shift the phase of precipitation toward more rain and less snow in mountainous areas in the Pacific Northwest, resulting in smaller winter snowpack and in a shift in the timing of runoff to earlier in the year. This will be accompanied by spatially variable changes in the timing of groundwater recharge. Analysis of historic climate and hydrologic data and modeling studies show that groundwater plays a key role in determining the response of stream systems to climate change. The spatial variability in the response of groundwater systems to climate change, particularly with regard to flow-system scale, however, has generally not been addressed in the literature. Here we simulate the hydrologic response to projected future climate to show that the response of groundwater systems can vary depending on the location and spatial scale of the flow systems and their aquifer characteristics. Mean annual recharge averaged over the basin does not change significantly between the 1980s and 2080s climate periods given the ensemble of global climate models and emission scenarios evaluated. There are, however, changes in the seasonality of groundwater recharge within the basin. Simulation results show that short-flow-path groundwater systems, such as those providing baseflow to many headwater streams, will likely have substantial changes in the timing of discharge in response changes in seasonality of recharge. Regional-scale aquifer systems with flow paths on the order of many tens of kilometers, in contrast, are much less affected by changes in seasonality of recharge. Flow systems at all spatial scales, however, are likely to reflect

  14. Idaho National Laboratory/Nuclear Power Industry Strategic Plan for Light Water Reactor Research and Development An Industry-Government Partnership to Address Climate Change and Energy Security

    SciTech Connect

    Electric Power Research

    2007-11-01

    The dual issues of energy security and climate change mitigation are driving a renewed debate over how to best provide safe, secure, reliable and environmentally responsible electricity to our nation. The combination of growing energy demand and aging electricity generation infrastructure suggests major new capacity additions will be required in the years ahead.

  15. Electrical addressing of confined quantum systems for quasiclassical computation and finite state logic machines.

    PubMed

    Remacle, F; Heath, J R; Levine, R D

    2005-04-19

    Conduction spectroscopy measures the current I through a nanosystem as a function of the voltage V between two electrodes. The differential conductance, dI/dV, has peaks that can be assigned to resonance conditions with different electronic levels of the system. Between these increments, the current has roughly constant plateaus. We discuss how measurements of the current vs. voltage can be used to perform Boolean operations and hence construct finite state logic machines and combinational circuits. The inputs to the device are the source-drain voltage, including its sign, and a gate voltage applied in a manner analogous to optical Stark spectroscopy. As simple examples, we describe a two-state set-reset machine (a machine whose output depends on the input and also on its present state) and a full adder circuit (a circuit that requires three inputs and provides two outputs).

  16. Don't blame patients, engage them: transforming health systems to address health literacy.

    PubMed

    Frosch, Dominick L; Elwyn, Glyn

    2014-01-01

    The passage of the Patient Protection and Affordable Care Act is affirming a new era for health care delivery in the United States, with an increased focus on patient engagement. The field of health literacy has important contributions to make, and there are opportunities to achieve much more synergy between these seemingly different perspectives. Systems need to be designed in a user-centered way that is responsive to patients at all levels of health literacy. Similarly, strategies are needed to ensure that patients are supported to become engaged, at the level they desire, instead of the status quo, in which patients are rarely actively empowered and encouraged to engage in health care decisions, where preferences are rarely elicited, and where there is a lack of interest in how their life circumstances shape their priorities.

  17. Predictability of the Seasonal Climate Associated with ENSO in NCEP Climate Forecast System

    NASA Astrophysics Data System (ADS)

    Zhang, Q.

    2005-05-01

    The predictability of seasonal climate associated with ENSO is studied for NCEP Climate Forecast System (CFS) 23-year retrospective forecasts. Warm-minus-cold composites of the lead 1-6 month sea surface temperature (SST) anomalies show an ENSO-like horse-shoes pattern in the tropical Pacific, comparable with observation. There is a corresponding increased precipitation band along the equator near the dateline extending eastward to the South American coast, as well as the less precipitation over the Maritime Continents and off-equatorial western Pacific. Extended empirical orthogonal function (EEOF) analysis of the SST anomaly recovers ENSO -like dominant mode in the tropics for all seasons. Identification of patterns that optimize the signal-to-noise ratio is obtained by linear regression of the ensemble means on the principal component (PC) time series of SST. The optimized height patterns for boreal winter and spring are similar, although the winter response over the northern extratropics is somewhat weaker. Some subtle changes in amplitude are found in difference of leading initial conditions. The signal-to-noise ratio is significantly greater than unity in the Tropics (all seasons), the northern Pacific and continental North America subtropics (boreal winter and spring), and the southern Pacific subtropics (boreal fall).

  18. A New Paradigm for Assessing the Role of Agriculture in the Climate System and in Climate Change

    NASA Technical Reports Server (NTRS)

    Pielke, Roger A., Sr.; Adegoke, Jimmy O.; Chase, Thomas N.; Marshall, Curtis H.; Matsui, Toshihisa; Niyogi, Dev

    2007-01-01

    This paper discusses the diverse climate forcings that impact agricultural systems, and contrasts the current paradigm of using global models downscaled to agricultural areas (a top-down approach) with a new paradigm that first assesses the vulnerability of agricultural activities to the spectrum of environmental risk including climate (a bottom-up approach). To illustrate the wide spectrum of climate forcings, regional climate forcings are presented including land-use/land-cover change and the influence of aerosols on radiative and biogeochemical fluxes and cloud/precipitation processes, as well as how these effects can be teleconnected globally. Examples are presented of the vulnerability perspective, along with a small survey of the perceived drought impacts in a local area, in which a wide range of impacts for the same precipitation deficits are found. This example illustrates why agricultural assessments of risk to climate change and variability and of other environmental risks should start with a bottom-up perspective.

  19. Climatic controls on arid continental basin margin systems

    NASA Astrophysics Data System (ADS)

    Gough, Amy; Clarke, Stuart; Richards, Philip; Milodowski, Antoni

    2016-04-01

    Alluvial fans are both dominant and long-lived within continental basin margin systems. As a result, they commonly interact with a variety of depositional systems that exist at different times in the distal extent of the basin as the basin evolves. The deposits of the distal basin often cycle between those with the potential to act as good aquifers and those with the potential to act as good aquitards. The interactions between the distal deposits and the basin margin fans can have a significant impact upon basin-scale fluid flow. The fans themselves are commonly considered as relatively homogeneous, but their sedimentology is controlled by a variety of factors, including: 1) differing depositional mechanisms; 2) localised autocyclic controls; 3) geometrical and temporal interactions with deposits of the basin centre; and, 4) long-term allocyclic climatic variations. This work examines the basin margin systems of the Cutler Group sediments of the Paradox Basin, western U.S.A and presents generalised facies models for the Cutler Group alluvial fans as well as for the zone of interaction between these fans and the contemporaneous environments in the basin centre, at a variety of scales. Small-scale controls on deposition include climate, tectonics, base level and sediment supply. It has been ascertained that long-term climatic alterations were the main control on these depositional systems. Models have been constructed to highlight how both long-term and short-term alterations in the climatic regime can affect the sedimentation in the basin. These models can be applied to better understand similar, but poorly exposed, alluvial fan deposits. The alluvial fans of the Brockram Facies, northern England form part of a once-proposed site for low-level nuclear waste decommissioning. As such, it is important to understand the sedimentology, three-dimensional geometry, and the proposed connectivity of the deposits from the perspective of basin-scale fluid flow. The developed

  20. Assessment of climate change effects on Canada's National Park system.

    PubMed

    Suffling, Roger; Scott, Daniel

    2002-03-01

    To estimate the magnitude of climate change anticipated for Canada's 38 National Parks (NPs) and Park Reserves, seasonal temperature and precipitation scenarios were constructed for 2050 and 2090 using the Canadian Centre for Climate Modelling and Analysis (CCCma) coupled model (CGCM1). For each park, we assessed impacts on physical systems, species, ecosystems and people. Important, widespread changes relate to marine and freshwater hydrology, glacial balance, waning permafrost, increased natural disturbance, shorter ice season, northern and upward altitudinal species and biome shifts, and changed visitation patterns. Other changes are regional (e.g., combined East coast subsidence and sea level rise increase coastal erosion and deposition, whereas, on the Pacific coast, tectonic uplift negates sea level rise). Further predictions concern individual parks (e.g., Unique fens of Bruce Peninsular NP will migrate lakewards with lowered water levels, but structural regulation of Lake Huron for navigation and power generation would destroy the fens). Knowledge gaps are the most important findings. For example: we could not form conclusions about glacial mass balance, or its effects on rivers and fjords. Likewise, for the East Coast Labrador Current we could neither estimate temperature and salinity effects of extra iceberg formation, nor the further effects on marine food chains, and breeding park seabirds. We recommend 1) Research on specific large knowledge gaps; 2) Climate change information exchange with protected area agencies in other northern countries; and 3) incorporating climate uncertainty into park plans and management. We discuss options for a new park management philosophy in the face of massive change and uncertainty.

  1. Understanding the systemic nature of cities to improve health and climate change mitigation.

    PubMed

    Chapman, Ralph; Howden-Chapman, Philippa; Capon, Anthony

    2016-09-01

    Understanding cities comprehensively as systems is a costly challenge and is typically not feasible for policy makers. Nevertheless, focusing on some key systemic characteristics of cities can give useful insights for policy to advance health and well-being outcomes. Moreover, if we take a coevolutionary systems view of cities, some conventional assumptions about the nature of urban development (e.g. the growth in private vehicle use with income) may not stand up. We illustrate this by examining the coevolution of urban transport and land use systems, and institutional change, giving examples of policy implications. At a high level, our concern derives from the need to better understand the dynamics of urban change, and its implications for health and well-being. At a practical level, we see opportunities to use stylised findings about urban systems to underpin policy experiments. While it is now not uncommon to view cities as systems, policy makers appear to have made little use so far of a systems approach to inform choice of policies with consequences for health and well-being. System insights can be applied to intelligently anticipate change - for example, as cities are subjected to increasing natural system reactions to climate change, they must find ways to mitigate and adapt to it. Secondly, systems insights around policy cobenefits are vital for better informing horizontal policy integration. Lastly, an implication of system complexity is that rather than seeking detailed, 'full' knowledge about urban issues and policies, cities would be well advised to engage in policy experimentation to address increasingly urgent health and climate change issues.

  2. Moonrise: Sampling the South Pole-Aitken Basin to Address Problems of Solar System Significance

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Jolliff, B. L.; Korotev, R. L.; Shearer, C. K.

    2016-01-01

    A mission to land in the giant South Pole-Aitken (SPA) Basin on the Moon's southern farside and return a sample to Earth for analysis is a high priority for Solar System Science. Such a sample would be used to determine the age of the SPA impact; the chronology of the basin, including the ages of basins and large impacts within SPA, with implications for early Solar System dynamics and the magmatic history of the Moon; the age and composition of volcanic rocks within SPA; the origin of the thorium signature of SPA with implications for the origin of exposed materials and thermal evolution of the Moon; and possibly the magnetization that forms a strong anomaly especially evident in the northern parts of the SPA basin. It is well known from studies of the Apollo regolith that rock fragments found in the regolith form a representative collection of many different rock types delivered to the site by the impact process (Fig. 1). Such samples are well documented to contain a broad suite of materials that reflect both the local major rock formations, as well as some exotic materials from far distant sources. Within the SPA basin, modeling of the impact ejection process indicates that regolith would be dominated by SPA substrate, formed at the time of the SPA basin-forming impact and for the most part moved around by subsequent impacts. Consistent with GRAIL data, the SPA impact likely formed a vast melt body tens of km thick that took perhaps several million years to cool, but that nonetheless represents barely an instant in geologic time that should be readily apparent through integrated geochronologic studies involving multiple chronometers. It is anticipated that a statistically significant number of age determinations would yield not only the age of SPA but also the age of several prominent nearby basins and large craters within SPA. This chronology would provide a contrast to the Imbrium-dominated chronology of the nearside Apollo samples and an independent test of

  3. Data Visualization and Analysis for Climate Studies using NASA Giovanni Online System

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Leptoukh, Gregory; Lloyd, Steven

    2008-01-01

    With many global earth observation systems and missions focused on climate systems and the associated large volumes of observational data available for exploring and explaining how climate is changing and why, there is an urgent need for climate services. Giovanni, the NASA GES DISC Interactive Online Visualization ANd ANalysis Infrastructure, is a simple to use yet powerful tool for analysing these data for research on global warming and climate change, as well as for applications to weather. air quality, agriculture, and water resources,

  4. Addressing health system barriers to access to and use of skilled delivery services: perspectives from Ghana.

    PubMed

    Ganle, John Kuumuori; Fitzpatrick, Raymond; Otupiri, Easmon; Parker, Michael

    2016-10-01

    Poor access to and use of skilled delivery services have been identified as a major contributory factor to poor maternal and newborn health in sub-Saharan African countries, including Ghana. However, many previous studies that examine norms of childbirth and care-seeking behaviours have focused on identifying the norms of non-use of services, rather than factors, that can promote service use. Based on primary qualitative research with a total of 185 expectant and lactating mothers, and 20 healthcare providers in six communities in Ghana, this paper reports on strategies that can be used to overcome health system barriers to the use of skilled delivery services. The strategies identified include expansion and redistribution of existing maternal health resources and infrastructure, training of more skilled maternity caregivers, instituting special programmes to target women most in need, improving the quality of maternity care services provided, improving doctor-patient relationships in maternity wards, promotion of choice, protecting privacy and patient dignity in maternity wards and building partnerships with traditional birth attendants and other non-state actors. The findings suggest the need for structural changes to maternity clinics and routine nursing practices, including an emphasis on those doctor-patient relational practices that positively influence women's healthcare-seeking behaviours. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Lameness detection challenges in automated milking systems addressed with partial least squares discriminant analysis.

    PubMed

    Garcia, E; Klaas, I; Amigo, J M; Bro, R; Enevoldsen, C

    2014-12-01

    Lameness causes decreased animal welfare and leads to higher production costs. This study explored data from an automatic milking system (AMS) to model on-farm gait scoring from a commercial farm. A total of 88 cows were gait scored once per week, for 2 5-wk periods. Eighty variables retrieved from AMS were summarized week-wise and used to predict 2 defined classes: nonlame and clinically lame cows. Variables were represented with 2 transformations of the week summarized variables, using 2-wk data blocks before gait scoring, totaling 320 variables (2 × 2 × 80). The reference gait scoring error was estimated in the first week of the study and was, on average, 15%. Two partial least squares discriminant analysis models were fitted to parity 1 and parity 2 groups, respectively, to assign the lameness class according to the predicted probability of being lame (score 3 or 4/4) or not lame (score 1/4). Both models achieved sensitivity and specificity values around 80%, both in calibration and cross-validation. At the optimum values in the receiver operating characteristic curve, the false-positive rate was 28% in the parity 1 model, whereas in the parity 2 model it was about half (16%), which makes it more suitable for practical application; the model error rates were, 23 and 19%, respectively. Based on data registered automatically from one AMS farm, we were able to discriminate nonlame and lame cows, where partial least squares discriminant analysis achieved similar performance to the reference method.

  6. Potential enhancements to addressing programmatic risk in the tank waste remediation system (TWRS) program

    SciTech Connect

    Brothers, A.; Fassbender, L.; Bilyard, G.; Levine, L.

    1996-04-01

    Pacific Northwest National Laboratory (PNNL) conducted a Tank Waste Remediation System (TWRS) Risk Management methodology development task. The objective of this task was to develop risk management methodology focused on (1) the use of programmatic risk information in making TWRS architecture selection decisions and (2) the identification/evaluation/selection of TWRS risk-handling actions. Methods for incorporating programmatic risk/uncertainty estimates into trade studies are provided for engineers/analysts. Methods for identifying, evaluating, and selecting risk-handling actions are provided for managers. The guidance provided in this report is designed to help decision-makers make difficult judgments. Current approaches to architecture selection decisions and identification/evaluation/selection of risk-handling actions are summarized. Three categories of sources of programmatic risk (parametric, external, and organizational) are examined. Multiple analytical approaches are presented to enhance the current alternative generation and analysis (AGA) and risk-handling procedures. Appendix A describes some commercially available risk management software tools and Appendix B provides a brief introduction to quantification of risk attitudes. The report provides three levels of analysis for enhancing the AGA Procedure: (1) qualitative discussion coupled with estimated uncertainty ranges for scores in the alternatives-by-criteria matrix; (2) formal elicitation of probability distributions for the alternative scores; and (3) a formal, more structured, comprehensive risk analysis. A framework is also presented for using the AGA programmatic risk analysis results in making better decisions. The report also presents two levels of analysis for evaluation and selection of risk-handling actions: (1) qualitative analysis and judgmental rankings of alternative actions, and (2) Simple Multi-Attribute Rating Technique (SMART).

  7. Climate Model Datasets on Earth System Grid II (ESG II)

    DOE Data Explorer

    Earth System Grid (ESG) is a project that combines the power and capacity of supercomputers, sophisticated analysis servers, and datasets on the scale of petabytes. The goal is to provide a seamless distributed environment that allows scientists in many locations to work with large-scale data, perform climate change modeling and simulation,and share results in innovative ways. Though ESG is more about the computing environment than the data, still there are several catalogs of data available at the web site that can be browsed or search. Most of the datasets are restricted to registered users, but several are open to any access.

  8. Inaugural address

    NASA Astrophysics Data System (ADS)

    Joshi, P. S.

    2014-03-01

    From jets to cosmos to cosmic censorship P S Joshi Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India E-mail: psj@tifr.res.in 1. Introduction At the outset, I should like to acknowledge that part of the title above, which tries to capture the main flavour of this meeting, and has been borrowed from one of the plenary talks at the conference. When we set out to make the programme for the conference, we thought of beginning with observations on the Universe, but then we certainly wanted to go further and address deeper questions, which were at the very foundations of our inquiry, and understanding on the nature and structure of the Universe. I believe, we succeeded to a good extent, and it is all here for you in the form of these Conference Proceedings, which have been aptly titled as 'Vishwa Mimansa', which could be possibly translated as 'Analysis of the Universe'! It is my great pleasure and privilege to welcome you all to the ICGC-2011 meeting at Goa. The International Conference on Gravitation and Cosmology (ICGC) series of meetings are being organized by the Indian Association for General Relativity and Gravitation (IAGRG), and the first such meeting was planned and conducted in Goa in 1987, with subsequent meetings taking place at a duration of about four years at various locations in India. So, it was thought appropriate to return to Goa to celebrate the 25 years of the ICGC meetings. The recollections from that first meeting have been recorded elsewhere here in these Proceedings. The research and teaching on gravitation and cosmology was initiated quite early in India, by V V Narlikar at the Banares Hindu University, and by N R Sen in Kolkata in the 1930s. In course of time, this activity grew and gained momentum, and in early 1969, at the felicitation held for the 60 years of V V Narlikar at a conference in Ahmedabad, P C Vaidya proposed the formation of the IAGRG society, with V V Narlikar being the first President. This

  9. Impact of climate change on electricity systems and markets

    NASA Astrophysics Data System (ADS)

    Chandramowli, Shankar N.

    Climate change poses a serious threat to human welfare. There is now unequivocal scientific evidence that human actions are the primary cause of climate change. The principal climate forcing factor is the increasing accumulation of atmospheric carbon dioxide (CO2) due to combustion of fossil fuels for transportation and electricity generation. Generation of electricity account for nearly one-third of the greenhouse (GHG) emissions globally (on a CO2-equivalent basis). Any kind of economy-wide mitigation or adaptation effort to climate change must have a prominent focus on the electric power sector. I have developed a capacity expansion model for the power sector called LP-CEM (Linear Programming based Capacity Expansion Model). LP-CEM incorporates both the long-term climate change effects and the state/regional-level macroeconomic trends. This modeling framework is demonstrated for the electric power system in the Northeast region of United States. Some of the methodological advances introduced in this research are: the use of high-resolution temperature projections in a power sector capacity expansion model; the incorporation of changes in sectoral composition of electricity demand over time; the incorporation of the effects of climate change and variability on both the demand and supply-side of power sector using parameters estimated in the literature; and an inter-model coupling link with a macroeconomic model to account for price elasticity of demand and other effects on the broader macro-economy. LP-CEM-type models can be of use to state/regional level policymakers to plan for future mitigation and adaptation measures for the electric power sector. From the simulation runs, it is shown that scenarios with climate change effects and with high economic growth rates have resulted in higher capacity addition, optimal supply costs, wholesale/retail prices and total ratepayers' costs. LP-CEM is also adapted to model the implications of the proposed Clean Power Plan

  10. Managing Risks? Early Warning Systems for Climate Change

    NASA Astrophysics Data System (ADS)

    Sitati, A. M.; Zommers, Z. A.; Habilov, M.

    2014-12-01

    Early warning systems are a tool with which to minimize risks posed by climate related hazards. Although great strides have been made in developing early warning systems most deal with one hazard, only provide short-term warnings and do not reach the most vulnerable. This presentation will review research results of the United Nations Environment Programme's CLIM-WARN project. The project seeks to identify how governments can better communicate risks by designing multi-hazard early warning systems that deliver actionable warnings across timescales. Household surveys and focus group discussions were conducted in 36 communities in Kenya, Ghana and Burkina Faso in order to identify relevant climate related hazards, current response strategies and early warning needs. Preliminary results show significant variability in both risks and needs within and between countries. For instance, floods are more frequent in rural western parts of Kenya. Droughts are frequent in the north while populations in urban areas face a range of hazards - floods, droughts, disease outbreaks - that sometimes occur simultaneously. The majority of the rural population, especially women, the disabled and the elderly, do not have access to modern media such as radio, television, or internet. While 55% of rural populace never watches television, 64% of urban respondents watch television on a daily basis. Communities have different concepts of how to design warning systems. It will be a challenge for national governments to create systems that accommodate such diversity yet provide standard quality of service to all. There is a need for flexible and forward-looking early warning systems that deliver broader information about risks. Information disseminated through the system could not only include details of hazards, but also long-term adaptation options, general education, and health information, thus increasingly both capabilities and response options.

  11. Climate models and model evaluation

    SciTech Connect

    Gates, W.L.

    1994-12-31

    This brief overview addresses aspects of the nature, uses, evaluation and limitations of climate models. A comprehensive global modeling capability has been achieved only for the physical climate system, which is characterized by processes that serve to transport and exchange momentum, heat and moisture within and between the atmosphere, ocean and land surface. The fundamental aim of climate modeling, and the justification for the use of climate models, is the need to achieve a quantitative understanding of the operation of the climate system and to exploit any potential predictability that may exist.

  12. Climate-induced tree mortality: Earth system consequences

    USGS Publications Warehouse

    Adams, Henry D.; Macalady, Alison K.; Breshears, David D.; Allen, Craig D.; Stephenson, Nathan L.; Saleska, Scott; Huxman, Travis E.; McDowell, Nathan G.

    2010-01-01

    One of the greatest uncertainties in global environmental change is predicting changes in feedbacks between the biosphere and the Earth system. Terrestrial ecosystems and, in particular, forests exert strong controls on the global carbon cycle and influence regional hydrology and climatology directly through water and surface energy budgets [Bonan, 2008; Chapin et al., 2008].According to new research, tree mortality associated with elevated temperatures and drought has the potential to rapidly alter forest ecosystems, potentially affecting feedbacks to the Earth system [Allen et al., 2010]. Several lines of recent research demonstrate how tree mortality rates in forests may be sensitive to climate change—particularly warming and drying. This emerging consequence of global change has important effects on Earth system processes (Figure 1).

  13. PERSPECTIVE: On the verge of dangerous anthropogenic interference with the climate system?

    NASA Astrophysics Data System (ADS)

    Kriegler, Elmar

    2007-03-01

    The recent publication of the summary for policy makers by Working Group I of the Intergovernmental Panel on Climate Change (IPCC) [1] has injected a renewed sense of urgency to address climate change. It is therefore timely to review the notion of preventing 'dangerous anthropogenic interference with the climate system' as put forward in the United Nations Framework Convention on Climate Change (UNFCCC). The article by Danny Harvey in this issue [2] offers a fresh perspective by rephrasing the concept of 'dangerous interference' as a problem of risk assessment. As Harvey points out, identification of 'dangerous interference' does not require us to know with certainty that future climate change will be dangerous—an impossible task given that our knowledge about future climate change includes uncertainty. Rather, it requires the assertion that interference would lead to a significant probability of dangerous climate change beyond some risk tolerance, and therefore would pose an unacceptable risk. In his article [2], Harvey puts this idea into operation by presenting a back-of-the-envelope calculation to identify allowable CO2 concentrations under uncertainty about climate sensitivity to anthropogenic forcing and the location of a temperature threshold beyond which dangerous climate change will occur. Conditional on his assumptions, Harvey delivers an interesting result. With the current atmospheric CO2 concentration exceeding 380 ppm, a forcing contribution from other greenhouse gases adding an approximate 100 110 ppm CO2 equivalent on top of it, and a global dimming effect of aerosols that roughly compensates for this contribution (albeit still subject to considerable uncertainty) ([1], figures SPM-1 and 2), we are on the verge of or even committed to dangerous interference with the climate system if we (1) set the risk tolerance for experiencing dangerous climate change to 1% and (2) allocate at least 5% probability to the belief that climate sensitivity is 4

  14. Recent trends in energy flows through the Arctic climate system

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Haimberger, Leo

    2016-04-01

    While Arctic climate change can be diagnosed in many parameters, a comprehensive assessment of long-term changes and low frequency variability in the coupled Arctic energy budget still remains challenging due to the complex physical processes involved and the lack of observations. Here we draw on strongly improved observational capabilities of the past 15 years and employ observed radiative fluxes from CERES along with state-of-the-art atmospheric as well as coupled ocean-ice reanalyses to explore recent changes in energy flows through the Arctic climate system. Various estimates of ice volume and ocean heat content trends imply that the energy imbalance of the Arctic climate system was >1 Wm-2 during the 2000-2015 period, where most of the extra heat warmed the ocean and a comparatively small fraction was used to melt sea ice. The energy imbalance was partly fed by enhanced oceanic heat transports into the Arctic, especially in the mid 2000s. Seasonal trends of net radiation show a very clear signal of the ice-albedo feedback. Stronger radiative energy input during summer means increased seasonal oceanic heat uptake and accelerated sea ice melt. In return, lower minimum sea ice extent and higher SSTs lead to enhanced heat release from the ocean during fall season. These results are consistent with modeling studies finding an enhancement of the annual cycle of surface energy exchanges in a warming Arctic. Moreover, stronger heat fluxes from the ocean to the atmosphere in fall tend to warm the arctic boundary layer and reduce meridional temperature gradients, thereby reducing atmospheric energy transports into the polar cap. Although the observed results are a robust finding, extended high-quality datasets are needed to reliably separate trends from low frequency variability.

  15. The Indonesian Throughflow and the Global Climate System.

    NASA Astrophysics Data System (ADS)

    Schneider, Niklas

    1998-04-01

    The role of the Indonesian Throughflow in the global climate system is investigated with a coupled ocean-atmosphere model by contrasting simulations with realistic throughflow and closed Indonesian passages.The Indonesian Throughflow affects the oceanic circulation and thermocline depth around Australia and in the Indian Ocean as described in previous studies and explained by Sverdrup transports. An open throughflow thereby increases surface temperatures in the eastern Indian ocean, reduces temperatures in the equatorial Pacific, and shifts the warm pool and centers of deep convection in the atmosphere to the west. This control on sea surface temperature and deep convection affects atmospheric pressure in the entire Tropics and, via atmospheric teleconnections, in the midlatitudes. As a result, surface wind stress in the entire Tropics changes and meridional and zonal gradients of the tropical thermocline and associated currents increase in the Pacific and decrease in the Indian Ocean. The response includes an acceleration of the equatorial undercurrent in the Pacific, and a deceleration in the Indian Ocean. Thus the Indonesian Throughflow exerts significant control over the global climate in general and the tropical climate in particular.Changes of surface fluxes in the Pacific warm pool region are consistent with the notion that shading by clouds, rather than increases of evaporation, limit highest surface temperatures in the open ocean of the western Pacific. In the marginal seas of the Pacific and in the Indian Ocean no such relationship is found. The feedback of the throughflow transport and its wind forcing is negative and suggests that this interplay cannot excite growing solution or lead to self-sustained oscillations of the ocean-atmosphere system.

  16. Opening Address

    NASA Astrophysics Data System (ADS)

    Yamada, T.

    2014-12-01

    Ladies and Gentlemen, it is my great honor and pleasure to present an opening address of the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3). On the behalf of the organizing committee, I certainly welcome all your visits to KGU Kannai Media Center belonging to Kanto Gakuin University, and stay in Yokohama. In particular, to whom come from abroad more than 17 countries, I would appreciate your participations after long long trips from your homeland to Yokohama. The first international workshop on "State of the Art in Nuclear Cluster Physics", called SOTANCP, was held in Strasbourg, France, in 2008, and the second one was held in Brussels, Belgium, in 2010. Then the third workshop is now held in Yokohama. In this period, we had the traditional 10th cluster conference in Debrecen, Hungary, in 2012. Thus we have the traditional cluster conference and SOTANCP, one after another, every two years. This obviously shows our field of nuclear cluster physics is very active and flourishing. It is for the first time in about 10 years to hold the international workshop on nuclear cluster physics in Japan, because the last cluster conference held in Japan was in Nara in 2003, about 10 years ago. The president in Nara conference was Prof. K. Ikeda, and the chairpersons were Prof. H. Horiuchi and Prof. I. Tanihata. I think, quite a lot of persons in this room had participated at the Nara conference. Since then, about ten years passed. So, this workshop has profound significance for our Japanese colleagues. The subjects of this workshop are to discuss "the state of the art in nuclear cluster physics" and also discuss the prospect of this field. In a couple of years, we saw significant progresses of this field both in theory and in experiment, which have brought better and new understandings on the clustering aspects in stable and unstable nuclei. I think, the concept of clustering has been more important than ever. This is true also in the

  17. Presidential address.

    PubMed

    Vohra, U

    1993-07-01

    The Secretary of India's Ministry of Health and Family Welfare serves as Chair of the Executive Council of the International Institute for Population Sciences in Bombay. She addressed its 35th convocation in 1993. Global population stands at 5.43 billion and increases by about 90 million people each year. 84 million of these new people are born in developing countries. India contributes 17 million new people annually. The annual population growth rate in India is about 2%. Its population size will probably surpass 1 billion by the 2000. High population growth rates are a leading obstacle to socioeconomic development in developing countries. Governments of many developing countries recognize this problem and have expanded their family planning programs to stabilize population growth. Asian countries that have done so and have completed the fertility transition include China, Japan, Singapore, South Korea, and Thailand. Burma, Malaysia, North Korea, Sri Lanka, and Vietnam have not yet completed the transition. Afghanistan, Bangladesh, Iran, Nepal, and Pakistan are half-way through the transition. High population growth rates put pressure on land by fragmenting finite land resources, increasing the number of landless laborers and unemployment, and by causing considerable rural-urban migration. All these factors bring about social stress and burden civic services. India has reduced its total fertility rate from 5.2 to 3.9 between 1971 and 1991. Some Indian states have already achieved replacement fertility. Considerable disparity in socioeconomic development exists among states and districts. For example, the states of Bihar, Madhya Pradesh, Rajasthan, and Uttar Pradesh have female literacy rates lower than 27%, while that for Kerala is 87%. Overall, infant mortality has fallen from 110 to 80 between 1981 and 1990. In Uttar Pradesh, it has fallen from 150 to 98, while it is at 17 in Kerala. India needs innovative approaches to increase contraceptive prevalence rates

  18. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    SciTech Connect

    Sharma, Anuj; Mathur, Jyotirmay; Bhandari, Mahabir S

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  19. Application of global weather and climate model output to the design and operation of wind-energy systems

    SciTech Connect

    Curry, Judith

    2015-05-21

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatory environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.

  20. Welcome Address

    NASA Astrophysics Data System (ADS)

    Kiku, H.

    2014-12-01

    Ladies and Gentlemen, It is an honor for me to present my welcome address in the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3), as the president of Kanto Gakuin University. Particularly to those from abroad more than 17 countries, I am very grateful for your participation after long long trips from your home to Yokohama. On the behalf of the Kanto Gakuin University, we certainly welcome your visit to our university and stay in Yokohama. First I would like to introduce Kanto Gakuin University briefly. Kanto Gakuin University, which is called KGU, traces its roots back to the Yokohama Baptist Seminary founded in 1884 in Yamate, Yokohama. The seminary's founder was Albert Arnold Bennett, alumnus of Brown University, who came to Japan from the United States to establish a theological seminary for cultivating and training Japanese missionaries. Now KGU is a major member of the Kanto Gakuin School Corporation, which is composed of two kindergartens, two primary schools, two junior high schools, two senior high schools as well as KGU. In this university, we have eight faculties with graduate school including Humanities, Economics, Law, Sciences and Engineering, Architecture and Environmental Design, Human and Environmental Studies, Nursing, and Law School. Over eleven thousands students are currently learning in our university. By the way, my major is the geotechnical engineering, and I belong to the faculty of Sciences and Engineering in my university. Prof. T. Yamada, here, is my colleague in the same faculty. I know that the nuclear physics is one of the most active academic fields in the world. In fact, about half of the participants, namely, more than 50 scientists, come from abroad in this conference. Moreover, I know that the nuclear physics is related to not only the other fundamental physics such as the elementary particle physics and astrophysics but also chemistry, medical sciences, medical cares, and radiation metrology

  1. Application of the global Land-Potential Knowledge System (LandPKS) mobile apps to land degradation, restoration and climate change adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Combatting land degradation, promoting restoration and adapting to climate change all require an understanding of land potential. A global Land-Potential Knowledge System (LandPKS) is being developed that will address many of these limitations using an open source approach designed to allow anyone w...

  2. Building integration of photovoltaic systems in cold climates

    NASA Astrophysics Data System (ADS)

    Athienitis, Andreas K.; Candanedo, José A.

    2010-06-01

    This paper presents some of the research activities on building-integrated photovoltaic (BIPV) systems developed by the Solar and Daylighting Laboratory at Concordia University. BIPV systems offer considerable advantages as compared to stand-alone PV installations. For example, BIPV systems can play a role as essential components of the building envelope. BIPV systems operate as distributed power generators using the most widely available renewable source. Since BIPV systems do not require additional space, they are especially appropriate for urban environments. BIPV/Thermal (BIPV/T) systems may use exterior air to extract useful heat from the PV panels, cooling them and thereby improving their electric performance. The recovered thermal energy can then be used for space heating and domestic hot water (DHW) heating, supporting the utilization of BIVP/T as an appropriate technology for cold climates. BIPV and BIPV/T systems are the subject of several ongoing research and demonstration projects (in both residential and commercial buildings) led by Concordia University. The concept of integrated building design and operation is at the centre of these efforts: BIPV and BIPV/T systems must be treated as part of a comprehensive strategy taking into account energy conservation measures, passive solar design, efficient lighting and HVAC systems, and integration of other renewable energy systems (solar thermal, heat pumps, etc.). Concordia Solar Laboratory performs fundamental research on heat transfer and modeling of BIPV/T systems, numerical and experimental investigations on BIPV and BIPV/T in building energy systems and non-conventional applications (building-attached greenhouses), and the design and optimization of buildings and communities.

  3. The earth radiation budget satellite system for climate research

    NASA Technical Reports Server (NTRS)

    Woerner, C. V.; Cooper, J. E.; Harrison, E. F.

    1978-01-01

    The mission implications of providing earth radiation budget data for climate studies have been thoroughly studied. The results of these studies indicate the need for a multisensor, multisatellite system consisting of high and midinclination orbits. To meet this need, NASA and NOAA are planning a joint Earth Radiation Budget Satellite System (ERBSS) composed of instruments on two of NOAA's near-polar Sun-synchronous TIROS-N/NOAA A through G series of operational satellites and on an NASA midinclination satellite of the Applications Explorer Mission (AEM) type referred to as ERBS-A/AEM. This paper describes the scientific objectives of ERBSS, the associated data analysis methods, mission analysis (sampling), and instrument definition.

  4. Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model.

    PubMed

    Ammann, Caspar M; Joos, Fortunat; Schimel, David S; Otto-Bliesner, Bette L; Tomas, Robert A

    2007-03-06

    The potential role of solar variations in modulating recent climate has been debated for many decades and recent papers suggest that solar forcing may be less than previously believed. Because solar variability before the satellite period must be scaled from proxy data, large uncertainty exists about phase and magnitude of the forcing. We used a coupled climate system model to determine whether proxy-based irradiance series are capable of inducing climatic variations that resemble variations found in climate reconstructions, and if part of the previously estimated large range of past solar irradiance changes could be excluded. Transient simulations, covering the published range of solar irradiance estimates, were integrated from 850 AD to the present. Solar forcing as well as volcanic and anthropogenic forcing are detectable in the model results despite internal variability. The resulting climates are generally consistent with temperature reconstructions. Smaller, rather than larger, long-term trends in solar irradiance appear more plausible and produced modeled climates in better agreement with the range of Northern Hemisphere temperature proxy records both with respect to phase and magnitude. Despite the direct response of the model to solar forcing, even large solar irradiance change combined with realistic volcanic forcing over past centuries could not explain the late 20th century warming without inclusion of greenhouse gas forcing. Although solar and volcanic effects appear to dominate most of the slow climate variations within the past thousand years, the impacts of greenhouse gases have dominated since the second half of the last century.

  5. Media communication strategies for climate-friendly lifestyles - Addressing middle and lower class consumers for social-cultural change via Entertainment-Education

    NASA Astrophysics Data System (ADS)

    Lubjuhn, S.; Pratt, N.

    2009-11-01

    This paper argues that Entertainment-Education (E-E) is a striking communication strategy for reaching middle and lower socio-economic classes with climate-friendly lifestyle messages. On the international level (e.g. in the US and the Netherlands) E-E approaches are being theoretically grounded, whereas in Germany they are not yet. Therefore further theoretical discussion and mapping of E-E approaches is central for future research. As a first step towards providing further theoretical foundations for E-E in the field of sustainability, the authors suggest a threefold mapping of E-E approaches. The threefold mapping of E-E approaches for communicating climate-friendly lifestyles to middle and lower class consumers is based on recent results from academic research and practical developments on the media market. The commonalities among the three is that they all promote pro-sustainability messages in an affective-orientated rather than cognitive-orientated, factual manner. Differences can be found in: the sender of the sustainability message, the targeted consumer groups and the media approach in use. Based on this, the paper draws the conclusion that two new paths for further research activities in the field of Entertainment-Education can be proposed: (1) Improving the existing approaches in practice by using theoretical foundation from the E-E field. This comprises at its core (A) to do formative, process and summative effect research on the messages and (B) to use E-E theory from the field of social psychology, sociology and communication science for further improvement and (2) Generating new E-E theories by analyzing the existing practical approaches in the media to communicate climate change.

  6. A global empirical system for probabilistic seasonal climate prediction

    NASA Astrophysics Data System (ADS)

    Eden, J. M.; van Oldenborgh, G. J.; Hawkins, E.; Suckling, E. B.

    2015-12-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961-2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño-Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.

  7. An empirical system for probabilistic seasonal climate prediction

    NASA Astrophysics Data System (ADS)

    Eden, Jonathan; van Oldenborgh, Geert Jan; Hawkins, Ed; Suckling, Emma

    2016-04-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961-2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño-Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.

  8. Policy Options for Addressing Health System and Human Resources for Health Crisis in Liberia Post-Ebola Epidemic

    PubMed Central

    Budy, Fidel C.T.

    2015-01-01

    Qualified healthcare workers within an effective health system are critical in promoting and achieving greater health outcomes such as those espoused in the Millennium Development Goals. Liberia is currently struggling with the effects of a brutal 14-year long civil war that devastated health infrastructures and caused most qualified health workers to flee and settle in foreign countries. The current output of locally trained health workers is not adequate for the tasks at hand. The recent Ebola Virus Disease (EVD) exposed the failings of the Liberian healthcare system. There is limited evidence of policies that could be replicated in Liberia to encourage qualified diaspora Liberian health workers to return and contribute to managing the phenomenon. This paper reviews the historical context for the human resources for health crisis in Liberia; it critically examines two context-specific health policy options to address the crisis, and recommends reverse brain drain as a policy option to address the immediate and critical crisis facing the health care sector in Liberia. PMID:27622002

  9. Policy Options for Addressing Health System and Human Resources for Health Crisis in Liberia Post-Ebola Epidemic.

    PubMed

    Budy, Fidel C T

    2015-01-01

    Qualified healthcare workers within an effective health system are critical in promoting and achieving greater health outcomes such as those espoused in the Millennium Development Goals. Liberia is currently struggling with the effects of a brutal 14-year long civil war that devastated health infrastructures and caused most qualified health workers to flee and settle in foreign countries. The current output of locally trained health workers is not adequate for the tasks at hand. The recent Ebola Virus Disease (EVD) exposed the failings of the Liberian healthcare system. There is limited evidence of policies that could be replicated in Liberia to encourage qualified diaspora Liberian health workers to return and contribute to managing the phenomenon. This paper reviews the historical context for the human resources for health crisis in Liberia; it critically examines two context-specific health policy options to address the crisis, and recommends reverse brain drain as a policy option to address the immediate and critical crisis facing the health care sector in Liberia.

  10. Potential Of Light Pipes System In Malaysian Climate

    NASA Astrophysics Data System (ADS)

    Abd Kadir, Aslila; Hakim Ismail, Lokman; Kasim, Narimah; Kaamin, Masiri

    2016-11-01

    Light-pipes system are simple structures that allow the transmission of daylight from the outside to the inside of a room. It is a practical application in many buildings where daylight cannot reach due to building design and limited facade to placing windows. Since roof is the element directly exposed to the sunlight, light pipes system could be introduced. This paper examines the illumination levels obtained using light pipes system under Malaysia climate conditions. A light-pipe system that was installed in a test room located in Batu Pahat. Indoor illuminance distributions and concurrent outdoor illuminance were monitored at a 30 minutes interval for 5 days. The results indicated that the amount of daylight penetrated into the building are varied with less than 150lux in the early morning and late evening, and maximum at over 350lux in the noon and early afternoon. The average internal illuminance levels offer by light pipe system met the MS 1525:2007 recommendation for application in Malaysian buildings. These findings indicated that the light pipe system has a potential as a tool for introducing daylight indoors in Malaysia.

  11. Change in Water Cycle- Important Issue on Climate Earth System

    NASA Astrophysics Data System (ADS)

    Singh, Pratik

    Change in Water Cycle- Important Issue on Climate Earth System PRATIK KUMAR SINGH1 1BALDEVRAM MIRDHA INSTITUTE OF TECHNOLOGY,JAIPUR (RAJASTHAN) ,INDIA Water is everywhere on Earth and is the only known substance that can naturally exist as a gas, liquid, and solid within the relatively small range of air temperatures and pressures found at the Earth's surface.Changes in the hydrological cycle as a consequence of climate and land use drivers are expected to play a central role in governing a vast range of environmental impacts.Earth's climate will undergo changes in response to natural variability, including solar variability, and to increasing concentrations of green house gases and aerosols.Further more, agreement is widespread that these changes may profoundly affect atmospheric water vapor concentrations, clouds and precipitation patterns.As we know that ,a warmer climate, directly leading to increased evaporation, may well accelerate the hydrological cycle, resulting in an increase in the amount of moisture circulating through the atmosphere.The Changing Water Cycle programmer will develop an integrated, quantitative understanding of the changes taking place in the global water cycle, involving all components of the earth system, improving predictions for the next few decades of regional precipitation, evapotranspiration, soil moisture, hydrological storage and fluxes.The hydrological cycle involves evaporation, transpiration, condensation, precipitation, and runoff. NASA's Aqua satellite will monitor many aspects of the role of water in the Earth's systems, and will do so at spatial and temporal scales appropriate to foster a more detailed understanding of each of the processes that contribute to the hydrological cycle. These data and the analyses of them will nurture the development and refinement of hydrological process models and a corresponding improvement in regional and global climate models, with a direct anticipated benefit of more accurate weather and

  12. Decomposing the meridional heat transport in the climate system

    NASA Astrophysics Data System (ADS)

    Yang, Haijun; Li, Qing; Wang, Kun; Sun, Yu; Sun, Daoxun

    2015-05-01

    The meridional heat transport (MHT) in the climate system is investigated using a state-of-the-art coupled climate model (CESM1.0). This work decomposes the MHT and studies their physics in detail. The meridional ocean heat transport (OHT) can be decomposed into the contributions from the Euler mean circulation, bolus circulation, sub-mesoscale circulation and dissipation. The Euler mean heat transport dominates the total OHT in most latitudes, except that in the Southern Ocean (40-50°S) where the OHT is determined by the eddy-induced circulation and dissipation. In the Indo-Pacific the OHT is fulfilled by the wind-driven circulation, which dominates the total global OHT in the tropics. In the Atlantic the OHT is carried by both the wind-driven circulation and the thermohaline circulation, and the latter dominates the total OHT in the mid-high latitudes. The meridional atmosphere heat transport consists of the dry static energy (DSE) and latent energy (LE) transport. In the tropics the LE transport is equatorward and compensates partially the poleward DSE transport. In the extratropics, the LE and DSE are poleward and reinforce one another, both of which are dominated by the eddy components. The LE transport can be considered as the "joint air-sea mode" since the ocean controls the moisture supply. It can be also precisely obtained from the evaporation minus precipitation over the ocean and thus this work quantifies the individual ocean basin contributions to the LE transport.

  13. Integrated web system of geospatial data services for climate research

    NASA Astrophysics Data System (ADS)

    Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander

    2016-04-01

    Georeferenced datasets are currently actively used for modeling, interpretation and forecasting of climatic and ecosystem changes on different spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their huge size (up to tens terabytes for a single dataset) a special software supporting studies in the climate and environmental change areas is required. An approach for integrated analysis of georefernced climatological data sets based on combination of web and GIS technologies in the framework of spatial data infrastructure paradigm is presented. According to this approach a dedicated data-processing web system for integrated analysis of heterogeneous georeferenced climatological and meteorological data is being developed. It is based on Open Geospatial Consortium (OGC) standards and involves many modern solutions such as object-oriented programming model, modular composition, and JavaScript libraries based on GeoExt library, ExtJS Framework and OpenLayers software. This work is supported by the Ministry of Education and Science of the Russian Federation, Agreement #14.613.21.0037.

  14. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  15. Mainstreaming of Climate Change into the Ghanaian Tertiary Educational System

    NASA Astrophysics Data System (ADS)

    Nyarko, B. K.

    2013-12-01

    The impact of Climate Change has a far-reaching implication for economies and people living in the fragile Regions of Africa analysts project that by 2020, between 75 million and 250 million people will be exposed various forms of Climate Change Stresses. Education as a key strategy identified under Agenda 21 has been incorporated into the efforts of various educational institutions as a means of mitigating climate change and enhancing sustainability. Climate Change education offers many opportunities and benefits for educators, researchers, learners, and for wider society, but there are also many challenges, which can hinder the successful mainstreaming of climate change education. The study aims at understanding barriers for Climate Change Education in selected tertiary institutions in Ghana. The study was conducted among Geoscience Departments of the 7 main public universities of Ghana. The transcript analysis identified issues that hinders the mainstreaming of Climate Change, these includes existing levels of knowledge and understanding of the concept of climate change, appreciating the threshold concepts, ineffective teaching of Climate Change and some Departments are slow in embracing Climate Change as a discipline. Hence to develop strategies to mainstream climate change education it is important to recognise that increasing the efficiency and delivery of Climate Change education requires greater attention and coordination of activities and updating the educators knowledge and skill's. Various Ministries should be challenged to develop and integrate climate change into education policies. In the design of curriculum, there is a need to integrate Climate Change Education into curricula without compromising already overstretched programmes of study. There is a need to encourage and enhance innovative teaching approaches such as Problem-based learning (PBL) is an approach that challenges students to learn through engagement in a real problem. Institutions and

  16. Results of a Loran-C flight test using an absolute data reference. [vhf monirange navigation system and discrete address beacon system

    NASA Technical Reports Server (NTRS)

    Fischer, J. P.

    1981-01-01

    A closed circuit flight test was conducted using VORs and NDBs as reference points. The Loran-C data collected during the flight was then compared against a reference provided by a discrete address beacon system facility. Information on the equipment configuration in the aircraft, the flight procedure, and the results obtained are presented.

  17. Nonlinear problems of complex natural systems: Sun and climate dynamics.

    PubMed

    Bershadskii, A

    2013-01-13

    The universal role of the nonlinear one-third subharmonic resonance mechanism in generation of strong fluctuations in complex natural dynamical systems related to global climate is discussed using wavelet regression detrended data. The role of the oceanic Rossby waves in the year-scale global temperature fluctuations and the nonlinear resonance contribution to the El Niño phenomenon have been discussed in detail. The large fluctuations in the reconstructed temperature on millennial time scales (Antarctic ice core data for the past 400,000 years) are also shown to be dominated by the one-third subharmonic resonance, presumably related to the Earth's precession effect on the energy that the intertropical regions receive from the Sun. The effects of galactic turbulence on the temperature fluctuations are also discussed.

  18. Politics and technology in health information systems development: a discourse analysis of conflicts addressed in a systems design group.

    PubMed

    Irestig, Magnus; Timpka, Toomas

    2008-02-01

    Different types of disagreements must be managed during the development of health information systems. This study examines the antagonisms discussed during the design of an information system for 175,000 users in a public health context. Discourse analysis methods were used for data collection and analysis. Three hundred and twenty-six conflict events were identified from four design meetings and divided into 16 categories. There were no differences regarding the types of conflicts that the different participants brought into the design discussions. Instead, conflict occurrence was primarily affected by the agendas that set the stage for examinations and debates. The results indicate that the selection of design method and the structure used for the meetings are important factors for the manner in which conflicts are brought into consideration during health information system design. Further studies comparing participatory and non-participatory information system design practices in health service settings are warranted.

  19. Addressing System Integration Issues Required for the Developmente of Distributed Wind-Hydrogen Energy Systems: Final Report

    SciTech Connect

    Mann, M.D; Salehfar, H.; Harrison, K.W.; Dale, N.; Biaku, C.; Peters, A.J.; Hernandez-Pacheco: E.

    2008-04-01

    Wind generated electricity is a variable resource. Hydrogen can be generated as an energy storage media, but is costly. Advancements in power electronics and system integration are needed to make a viable system. Therefore, the long-term goal of the efforts at the University of North Dakota is to merge wind energy, hydrogen production, and fuel cells to bring emission-free and reliable power to commercial viability. The primary goals include 1) expand system models as a tool to investigate integration and control issues, 2) examine long-term effects of wind-electrolysis performance from a systematic perspective, and 3) collaborate with NREL and industrial partners to design, integrate, and quantify system improvements by implementing a single power electronics package to interface wild AC to PEM stack DC requirements. This report summarizes the accomplishments made during this project.

  20. New and improved proteomics technologies for understanding complex biological systems: Addressing a grand challenge in the life sciences

    PubMed Central

    Hood, Leroy E.; Omenn, Gilbert S.; Moritz, Robert L.; Aebersold, Ruedi; Yamamoto, Keith R.; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2014-01-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14–15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development. PMID:22807061

  1. New and improved proteomics technologies for understanding complex biological systems: addressing a grand challenge in the life sciences.

    PubMed

    Hood, Leroy E; Omenn, Gilbert S; Moritz, Robert L; Aebersold, Ruedi; Yamamoto, Keith R; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2012-09-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14-15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development.

  2. The Influence of Climate Change in Active Convergent Systems

    NASA Astrophysics Data System (ADS)

    Scarselli, S.; Simpson, G. H.; Allen, P. A.; Minelli, G.

    2006-12-01

    The link between tectonics, surface erosion, and climate in the evolution of mountain belts has been observed in several natural systems (Sinclair & Allen, 1992; Norris & Cooper, 1997; Pavlis et al., 1997; Willett et al., 2006) and numerous theoretical and applied studies have been carried out in the last several years ( Willett et al., 2002; Simpson, 2004 a, c). This relation is particularly sensitive in active convergent orogenic wedges where the efficiency of surface mass transport and climatic change controls the spatial distribution of deformation and sedimentation and degree of crustal thickening (Beaumont et al., 1992; Willett, 1999; Simpson, 2006). This study focus on the effect of climatic changes, leading to palaeogeographic changes, in an active convergent system. In particular, the effects produced by relative sea-level changes and efficiency of the erosional processes have been tested using a two dimensional mechanical model (Simpson, 2006). The model is suited to study deformation, erosion and sedimentation in fold-thrust belts and foreland basins. Two effects of the relative sea-level changes, and in particular in the case of the relative sea-level drop occurring during deformation, can be potentially important for the mechanical behavior of the surrounding crust. Firstly, gravitational water loads above the deforming rocks could be decreased. Secondly, the replacement of submarine with subaerial conditions could probably increase erosion rates, especially within the river system. Both effects would tend to amplify local deformation rates leading to a major pulse of deformation (Simpson, 2006) and to the formation of complex three dimensional deformation patterns (Simpson, 2004). Finally, this model has been used to evaluate the effect of the Messinian salinity crisis in the Mediterranean basin and in particular in the Northern Apennines evolution (Italy). References: Beaumont, C.; Fullsack, P. & Hamilton J., (1992). In: Thrust Tectonics (Ed by K

  3. Test Plan for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; Hair, Jason; McAndrew, Brendan; Daw, Adrian; Jennings, Donald; Rabin, Douglas

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change. One of the major objectives of CLARREO is to advance the accuracy of SI traceable absolute calibration at infrared and reflected solar wavelengths. This advance is required to reach the on-orbit absolute accuracy required to allow climate change observations to survive data gaps while remaining sufficiently accurate to observe climate change to within the uncertainty of the limit of natural variability. While these capabilities exist at NIST in the laboratory, there is a need to demonstrate that it can move successfully from NIST to NASA and/or instrument vendor capabilities for future spaceborne instruments. The current work describes the test plan for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches , alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The end result of efforts with the SOLARIS CDS will be an SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climate-quality data collections. The CLARREO mission addresses the need to observe high-accuracy, long-term climate change trends and advance the accuracy of SI traceable absolute calibration. The current work describes the test plan for the SOLARIS which is the calibration demonstration

  4. Individual addressing of trapped {sup 171}Yb{sup +} ion qubits using a microelectromechanical systems-based beam steering system

    SciTech Connect

    Crain, S.; Mount, E.; Baek, S.; Kim, J.

    2014-11-03

    The ability to individually manipulate the increasing number of qubits is one of the many challenges towards scalable quantum information processing with trapped ions. Using micro-mirrors fabricated with micro-electromechanical systems technology, we focus laser beams on individual ions in a linear chain and steer the focal point in two dimensions. We demonstrate sequential single qubit gates on multiple {sup 171}Yb{sup +} qubits and characterize the gate performance using quantum state tomography. Our system features negligible crosstalk to neighboring ions (<3×10{sup −4}), and switching speed comparable to typical single qubit gate times (<2 μs)

  5. Do we need to change the legislation to a system of presumed consent to address organ shortage?

    PubMed

    Simillis, Constantinos

    2010-04-01

    Organ transplantation significantly improves the health, quality of life and life-expectancy of people whose organs have failed. Most patients in the UK cannot enjoy the benefits of a transplant because of an extreme shortage of organs. This paper demonstrates the magnitude of the problem of organ shortage and identifies possible causes. The current UK legislation regarding consent to organ transplantation is analysed and compared with other jurisdictions. The hypothesis of changing the legislation to a system of presumed consent in order to address the organ shortage is explored. The main issues surrounding a change in the legislation are considered, and the effects on society and the individual are discussed. This paper argues that there is not enough convincing evidence to support a change in the legislation to a system of presumed consent at this time. Instead, an increase in organ donations could be achieved by improving the effectiveness of the current system of organ donation, and by improving the public's awareness and understanding of organ transplantation issues.

  6. 'Green' Submarine Cable Systems for Ocean/Climate Monitoring and Disaster Warning

    NASA Astrophysics Data System (ADS)

    Barnes, C. R.; Butler, R.; Howe, B. M.; Bueti, M. C.

    2013-12-01

    A recent joint initiative between three UN agencies is proposing to develop trans-ocean mini-observatories to measure changing seafloor ocean observables. A Joint Task Force (JTF), established in 2012 by the International Telecommunication Union (ITU), the World Meteorological Organization (WMO) and the Intergovernmental Oceanographic Commission (IOC) of UNESCO, is examining novel uses for submarine telecommunication cables. With ITU secretariat support, the JTF is developing a strategy and roadmap that could lead to enabling the availability of modified 'green' submarine cable systems equipped with scientific sensors (such as temperature, pressure and acceleration) for climate monitoring and disaster risk reduction (particularly tsunamis). If successful and needing support from industry and regulatory bodies, a wide network of mini-observatories could be established at many places across the world's ocean floors to measure these important parameters accurately over several decades. The initiative addresses two main issues: a) the need for sustained climate-quality data from the sparsely observed deep oceans and continental slopes but extending into coastal waters; and b) the desire to increase the reliability and integrity of the global tsunami warning networks. Presently, plans are being developed to launch a pilot project with the active involvement of cable industry players and existing ocean observatory researchers.

  7. Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases.

    PubMed

    Mellor, Jonathan E; Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-04-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies.

  8. Planning for climate change: the need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases

    PubMed Central

    Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-01-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies. PMID:26799810

  9. Pilot system on extreme climate monitoring and early warning for long range forecast in Korea

    NASA Astrophysics Data System (ADS)

    Cho, K.; Park, B. K.; E-hyung, P.; Gong, Y.; Kim, H. K.; Park, S.; Min, S. K.; Yoo, H. D.

    2015-12-01

    Recently, extreme weather/climate events such as heat waves, flooding/droughts etc. have been increasing in frequency and intensity under climate change over the world. Also, they can have substantial impacts on ecosystem and human society (agriculture, health, and economy) of the affected regions. According to future projections of climate, extreme weather and climate events in Korea are expected to occure more frequently with stronger intensity over the 21st century. For the better long range forecast, it is also fundamentally ruquired to develop a supporting system in terms of extreme weather and climate events including forequency and trend. In this context, the KMA (Korea Meteorological Administration) has recently initiated a development of the extreme climate monintoring and early warning system for long range forecast, which consists of three sub-system components; (1) Real-time climate monitoring system, (2) Ensemble prediction system, and (3) Mechanism analysis and display system for climate extremes. As a first step, a pilot system has been designed focusing on temperature extremes such heat waves and cold snaps using daily, monthly and seasonal observations and model prediction output on the global, regional and national levels. In parallel, the skills of the KMA long range prediction system are being evaluated comprehensively for weather and climate extremes, for which varous case studies are conducted to better understand the observed variations of extrem climates and responsible mechanisms and also to assess predictability of the ensemble prediction system for extremes. Details in the KMA extreme climate monitoring and early warning system will be intorduced and some preliminary results will be discussed for heat/cold waves in Korea.

  10. A novel convolution-based approach to address ionization chamber volume averaging effect in model-based treatment planning systems

    NASA Astrophysics Data System (ADS)

    Barraclough, Brendan; Li, Jonathan G.; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua

    2015-08-01

    The ionization chamber volume averaging effect is a well-known issue without an elegant solution. The purpose of this study is to propose a novel convolution-based approach to address the volume averaging effect in model-based treatment planning systems (TPSs). Ionization chamber-measured beam profiles can be regarded as the convolution between the detector response function and the implicit real profiles. Existing approaches address the issue by trying to remove the volume averaging effect from the measurement. In contrast, our proposed method imports the measured profiles directly into the TPS and addresses the problem by reoptimizing pertinent parameters of the TPS beam model. In the iterative beam modeling process, the TPS-calculated beam profiles are convolved with the same detector response function. Beam model parameters responsible for the penumbra are optimized to drive the convolved profiles to match the measured profiles. Since the convolved and the measured profiles are subject to identical volume averaging effect, the calculated profiles match the real profiles when the optimization converges. The method was applied to reoptimize a CC13 beam model commissioned with profiles measured with a standard ionization chamber (Scanditronix Wellhofer, Bartlett, TN). The reoptimized beam model was validated by comparing the TPS-calculated profiles with diode-measured profiles. Its performance in intensity-modulated radiation therapy (IMRT) quality assurance (QA) for ten head-and-neck patients was compared with the CC13 beam model and a clinical beam model (manually optimized, clinically proven) using standard Gamma comparisons. The beam profiles calculated with the reoptimized beam model showed excellent agreement with diode measurement at all measured geometries. Performance of the reoptimized beam model was comparable with that of the clinical beam model in IMRT QA. The average passing rates using the reoptimized beam model increased substantially from 92.1% to

  11. Linking Student Achievement and Teacher Science Content Knowledge about Climate Change: Ensuring the Nations 3 Million Teachers Understand the Science through an Electronic Professional Development System

    NASA Astrophysics Data System (ADS)

    Niepold, F.; Byers, A.

    2009-12-01

    The scientific complexities of global climate change, with wide-ranging economic and social significance, create an intellectual challenge that mandates greater public understanding of climate change research and the concurrent ability to make informed decisions. The critical need for an engaged, science literate public has been repeatedly emphasized by multi-disciplinary entities like the Intergovernmental Panel on Climate Change (IPCC), the National Academies (Rising Above the Gathering Storm report), and the interagency group responsible for the recently updated Climate Literacy: The Essential Principles of Climate Science. There is a clear need for an American public that is climate literate and for K-12 teachers confident in teaching relevant science content. A key goal in the creation of a climate literate society is to enhance teachers’ knowledge of global climate change through a national, scalable, and sustainable professional development system, using compelling climate science data and resources to stimulate inquiry-based student interest in science, technology, engineering, and mathematics (STEM). This session will explore innovative e-learning technologies to address the limitations of one-time, face-to-face workshops, thereby adding significant sustainability and scalability. The resources developed will help teachers sift through the vast volume of global climate change information and provide research-based, high-quality science content and pedagogical information to help teachers effectively teach their students about the complex issues surrounding global climate change. The Learning Center is NSTA's e-professional development portal to help the nations teachers and informal educators learn about the scientific complexities of global climate change through research-based techniques and is proven to significantly improve teacher science content knowledge.

  12. Climate change in the South American Monsoon System: present climate and CMIP5 projections

    NASA Astrophysics Data System (ADS)

    Jones, C.; Carvalho, L. V.

    2013-05-01

    The South American Monsoon System (SAMS) is the most important climatic feature in South America. This study focuses on the large-scale characteristics of the SAMS: seasonal amplitudes, onset and demise dates and durations. Changes in the SAMS are investigated with the gridded precipitation, CFSR reanalyses and fifth phase of the Coupled Model Intercomparison Project (CMIP5) simulations for two scenarios ("historical" and high emission representative concentration pathways "rcp8.5"). Qualitative comparisons with a previous study indicate that some CMIP5 models have significantly improved their representation of the SAMS relative to their CMIP3 versions. Some models exhibit persistent deficiencies in simulating the SAMS. The observations and CMIP5 model simulations (historical experiment) consistently show statistically significant trends indicating the SAMS has larger seasonal amplitudes, early onsets, late demises and longer durations in recent decades. Future changes in the SAMS are analyzed with six CMIP5 model simulations of the rcp8.5 high emission scenario. All simulations unquestionably show significant increases in seasonal amplitudes, early onsets and late demises of the SAMS. The simulations for this scenario project a 30% increase in the amplitude from the current level by 2045-2050. In addition, the rcp8.5 scenario projects an ensemble mean decrease of 14-day in the onset and 17-day increase in the demise date of the SAMS by 2045-2050. The results additionally indicate lack of spatial agreement in model projections of changes in total wet season precipitation over South America during 2070-100. The CMIP5 projections analyzed here suggest increases in total monsoon precipitation over southeast Brazil, Uruguay and northern Argentina

  13. Summertime wind climate in Yerevan: valley wind systems

    NASA Astrophysics Data System (ADS)

    Gevorgyan, Artur

    2017-03-01

    1992-2014 wind climatology analysis in Yerevan is presented with particular focus given to the summertime thermally induced valley wind systems. Persistence high winds are observed in Yerevan during July-August months when the study region is strongly affected by a heat-driven plain-plateau circulation. The local valley winds arrive in Yerevan in the evening hours, generally, from 1500 to 1800 UTC, leading to rapid enhancement of wind speeds and dramatic changes in wind direction. Valley-winds significantly impact the local climate of Yerevan, which is a densely populated city. These winds moderate evening temperatures after hot and dry weather conditions observed during summertime afternoons. On the other hand, valley winds result in significantly higher nocturnal temperatures and more frequent occurrence of warm nights (tn90p) in Yerevan due to stronger turbulent mixing of boundary layer preventing strong surface cooling and temperature drop in nighttime and morning hours. The applied WRF-ARW limited area model is able to simulate the key features of the observed spatial pattern of surface winds in Armenia associated with significant terrain channeling, wind curls, etc. By contrast, ECMWF EPS global model fails to capture mesoscale and local wind systems over Armenia. However, the results of statistical verification of surface winds in Yerevan showed that substantial biases are present in WRF 18-h wind forecasts, as well as, the temporal variability of observed surface winds is not reproduced adequately in WRF-ARW model.

  14. Assessing the use of school public address systems to deliver nutrition messages to children: Shape up Somerville--audio adventures.

    PubMed

    Folta, Sara C; Goldberg, Jeanne P; Economos, Christina; Bell, Rick; Landers, Stewart; Hyatt, Raymond

    2006-11-01

    Given the current childhood obesity epidemic, it is especially important to find effective ways to promote healthful foods to children. School public address (PA) systems represent an inexpensive and a replicable way of reaching children with health messages. To test the effectiveness of this channel, messages were created to promote 2 dried bean (legume) dishes that had been added to the school lunch menu. Six elementary schools were pair matched, and 1 school from each pair was randomly chosen to play the messages. The impact of the intervention on choice of the 2 new entrees was assessed. Results indicate that for all schools combined, choice was not significantly affected. However, compared to their matched control schools, choice was significantly higher in the school that received the highest dose of the intervention and was significantly lower in the school that received the lowest dose. Choice was not changed in the school that received an intermediate dose. These results suggest that PA systems show promise as an effective and appropriate communications channel but only in schools that are able to play messages frequently.

  15. Regional Arctic System Model (RASM): A Tool to Advance Understanding and Prediction of Arctic Climate Change at Process Scales

    NASA Astrophysics Data System (ADS)

    Maslowski, W.; Roberts, A.; Osinski, R.; Brunke, M.; Cassano, J. J.; Clement Kinney, J. L.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J., Jr.; Hamman, J.; Hughes, M.; Nijssen, B.; Zeng, X.

    2014-12-01

    The Arctic is undergoing rapid climatic changes, which are some of the most coordinated changes currently occurring anywhere on Earth. They are exemplified by the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Global Climate and Global Earth System Models (GC/ESMs) are in broad agreement with these changes, the rate of change in the GC/ESMs remains outpaced by observations. Reasons for that stem from a combination of coarse model resolution, inadequate parameterizations, unrepresented processes and a limited knowledge of physical and other real world interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the GC/ESM limitations in simulating observed seasonal to decadal variability and trends in the sea ice cover and climate. RASM is a high resolution, fully coupled, pan-Arctic climate model that uses the Community Earth System Model (CESM) framework. It uses the Los Alamos Sea Ice Model (CICE) and Parallel Ocean Program (POP) configured at an eddy-permitting resolution of 1/12° as well as the Weather Research and Forecasting (WRF) and Variable Infiltration Capacity (VIC) models at 50 km resolution. All RASM components are coupled via the CESM flux coupler (CPL7) at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled earth system model, which due to the additional constraints from lateral boundary conditions and nudging within a regional model domain facilitates detailed comparisons with observational statistics that are not possible with GC/ESMs. In this talk, we will emphasize the utility of RASM to understand sensitivity to variable parameter space, importance of critical processes, coupled feedbacks and ultimately to reduce uncertainty in arctic climate change projections.

  16. A Test of Climate Change Refugia in Montane Meadow Systems

    NASA Astrophysics Data System (ADS)

    Morelli, T.; Maher, S. P.; Moritz, C.; Beissinger, S. R.

    2013-12-01

    Climate change refugia, areas on the landscape buffered from recent shifts in temperature and precipitation patterns, are potentially important to understand population responses to anthropogenic climate change. With funding from the California Landscape Conservation Cooperative and the National Science Foundation, we used occupancy and genetic data to test the climate change refugia concept. Specifically, we estimated connectivity between Sierra Nevada meadows based on features such as topography and hydrology and determined the amount of change that meadows experienced during the 20th century. We then examined fine-scale population genetic structure across the California range of a montane meadow specialist, the Belding's ground squirrel (Urocitellus beldingi). We found distinctive genetic structure across the state as well as within the smaller geographic area of the central Sierra Nevada. Genetic diversity between survey sites predicted climate change refugia and population persistence supported hypothetical landscape connectivity. Our results highlight an important tool in climate change adaptation, given the limited resources available to land managers.

  17. Long term prospective of the Seine River system: confronting climatic and direct anthropogenic changes.

    PubMed

    Ducharne, A; Baubion, C; Beaudoin, N; Benoit, M; Billen, G; Brisson, N; Garnier, J; Kieken, H; Lebonvallet, S; Ledoux, E; Mary, B; Mignolet, C; Poux, X; Sauboua, E; Schott, C; Théry, S; Viennot, P

    2007-04-01

    To explore the evolution of a human impacted river, the Seine (France), over the 21st century, three driving factors were examined: climate, agriculture, and point source inputs of domestic and industrial origin. Three future scenarios were constructed, by modification of a baseline representative of recent conditions. A climate change scenario, based on simulations by a general circulation model driven by the SRES-A2 scenario of radiative forcing, accounts for an average warming of +3.3 degrees C over the watershed and marked winter increase and summer decrease in precipitation. To illustrate a possible reduction in nitrate pollution from agricultural origin, a scenario of good agricultural practices was considered, introducing catch crops and a 20% decrease in nitrogen fertilisation. Future point source pollution was estimated following the assumptions embedded in scenario SRES-A2 regarding demographic, economic and technologic changes, leading to reductions of 30 to 75% compared to 2000, depending on the pollutants. Four models, addressing separate components of the river system (agronomical model, hydrogeological model, land surface model and water quality model), were used to analyse the relative impact of these scenarios on water quality, in light of their impact on hydrology and crop production. The first-order driving factor of water quality over the 21st century is the projected reduction of point source pollution, inducing a noticeable decrease in eutrophication and oxygen deficits downstream from Paris. The impact of climate change on these terms is driven by the warming of the water column. It enhances algal growth in spring and the loss factors responsible for phytoplankton mortality in late summer (grazers and viruses). In contrast, increased seasonal contrasts in river discharge have a negligible impact on river water quality, as do the changes in riverine nitrate concentration, which never gets limiting. The latter changes have a similar magnitude

  18. System for routing messages in a vertex symmetric network by using addresses formed from permutations of the transmission line indicees

    DOEpatents

    Faber, Vance; Moore, James W.

    1992-01-01

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs .GAMMA..sub.d (k) with degree d, diameter k, and (d+1)!/(d-k+1)! processors for each d.gtoreq.k and .GAMMA..sub.d (k,-1) with degree 3-1, diameter k+1, and (d+1)!/(d-k+1)! processors for each d.gtoreq.k.gtoreq.4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network .GAMMA..sub.d (k,-1) is provided, no processor has a channel connected to form an edge in a direction .delta..sub.1. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations.

  19. Aligning Leadership Across Systems and Organizations to Develop Strategic Climate to for Evidence-Based Practice Implementation

    PubMed Central

    Aarons, Gregory A.; Farahnak, Lauren R.; Ehrhart, Mark G.; Sklar, Marisa

    2015-01-01

    There has been a growing impetus to bridge the gap between basic science discovery, development of evidence-based practices (EBPs) and their availability and delivery in order to improve public health impact of such practices. In seeking to capitalize on factors that support implementation and sustainment of EBPs, it is important to consider that healthcare is delivered within the outer context of public health systems, and the inner context of healthcare organizations and workgroups. Leaders have a key role in determining the nature of system and organizational context. This article will addresses the role of leadership across levels in developing strategic climate for EBP implementation within the outer (i.e., system) and inner (i.e., organization, work group) contexts of healthcare. Within the framework of Edgar Schein’s “climate embedding mechanisms,” we describe strategies that leaders at the system, organization, and work group levels can consider and apply to develop a strategic climates that support the implementation and sustainment of EBP in healthcare and allied healthcare settings. PMID:24641560

  20. Aligning leadership across systems and organizations to develop a strategic climate for evidence-based practice implementation.

    PubMed

    Aarons, Gregory A; Ehrhart, Mark G; Farahnak, Lauren R; Sklar, Marisa

    2014-01-01

    There has been a growing impetus to bridge the gap between basic science discovery, development of evidence-based practices (EBPs), and the availability and delivery of EBPs in order to improve the public health impact of such practices. To capitalize on factors that support implementation and sustainment of EBPs, it is important to consider that health care is delivered within the outer context of public health systems and the inner context of health care organizations and work groups. Leaders play a key role in determining the nature of system and organizational contexts. This article addresses the role of leadership and actions that leaders can take at and across levels in developing a strategic climate for EBP implementation within the outer (i.e., system) and inner (i.e., organization, work group) contexts of health care. Within the framework of Edgar Schein's "climate embedding mechanisms," we describe strategies that leaders at the system, organization, and work group levels can consider and apply to develop strategic climates that support the implementation and sustainment of EBP in health care and allied health care settings.

  1. Sensitivity of proxies on non-linear interactions in the climate system

    NASA Astrophysics Data System (ADS)

    Schultz, Johannes; Beck, Christoph; Menz, Gunter; Neuwirth, Burkhard; Ohlwein, Christian; Philipp, Andreas

    2016-04-01

    To understand natural and anthropogenic induced processes, feedbacks, trends, and dynamics in the climate system, it is essential to consider longer timescales. In this context, annually resolved tree-ring data are often used to reconstruct past temperature or precipitation variability as well as atmospheric or oceanic indices. Due to the interrelation of processes at different spatiotemporal scales in the climate system (micro, local, meso, synoptic and global scale), it is even possible to use proxies - such as tree rings - which react to micro/local climate conditions, to reconstruct phenomena on the global scale of the climate system such as the Pacific Decadal Oscillation (PDO) or the North Atlantic Oscillation (NAO). The dependencies between tree-ring chronologies and climate parameters are not always stable over time and trees growing under temperate climate conditions are often sensitive to different climate parameters. Consequently, for climate reconstructions trees are often used which grow under extreme environmental conditions. We utilized nine weather-/circulation-type classifications in combination with two tree-ring datasets to assess weather-type sensitivity across the Northern Atlantic region. Our results demonstrate that nonstationarities in superordinate space and time scales of the climate system (here synoptic to global scale NAO, AMO) can affect the climate sensitivity of tree-rings for phenomena in subordinate levels of the climate system (here weather-types, meso- to synoptic scale). This scale bias effect, has the capability to impact even large multiproxy networks and the ability of these networks to provide information about past climate conditions. The results - recently published in Scientific Reports - indicate that more research is needed to understand how processes or phenomena on different space-/time scales of the climate system interact. They show that the role of non-linear interactions in the climate system which can lead to

  2. 76 FR 7187 - Priorities for Addressing Risks to the Reliability of the Bulk-Power System; Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... protecting against sophisticated and fast-moving threats? What role do you expect Smart Grid to play in the... grid reliability under Smart Grid applications? If not, how should NERC address these issues? c. Will Smart Grid applications have non-cyber reliability implications that need to be addressed? d. What...

  3. Content Addressable Memory Project

    DTIC Science & Technology

    1990-11-01

    The Content Addressable M1-emory Project consists of the development of several experimental software systems on an AMT Distributed Array Processor...searching (database) compiler algorithms memory management other systems software) Linear C is an unlovely hybrid language which imports the CAM...memory from AMT’s operating system for the DAP; how- ever, other than this limitation, the memory management routines work exactly as their C counterparts

  4. Computing and Systems Applied in Support of Coordinated Energy, Environmental, and Climate Planning

    EPA Science Inventory

    This talk focuses on how Dr. Loughlin is applying Computing and Systems models, tools and methods to more fully understand the linkages among energy systems, environmental quality, and climate change. Dr. Loughlin will highlight recent and ongoing research activities, including: ...

  5. How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems.

    PubMed

    E Birch, A Nicholas; Begg, Graham S; Squire, Geoffrey R

    2011-06-01

    Drivers behind food security and crop protection issues are discussed in relation to food losses caused by pests. Pests globally consume food estimated to feed an additional one billion people. Key drivers include rapid human population increase, climate change, loss of beneficial on-farm biodiversity, reduction in per capita cropped land, water shortages, and EU pesticide withdrawals under policies relating to 91/414 EEC. IPM (Integrated Pest Management) will be compulsory for all EU agriculture by 2014 and is also being widely adopted globally. IPM offers a 'toolbox' of complementary crop- and region-specific crop protection solutions to address these rising pressures. IPM aims for more sustainable solutions by using complementary technologies. The applied research challenge now is to reduce selection pressure on single solution strategies, by creating additive/synergistic interactions between IPM components. IPM is compatible with organic, conventional, and GM cropping systems and is flexible, allowing regional fine-tuning. It reduces pests below economic thresholds utilizing key 'ecological services', particularly biocontrol. A recent global review demonstrates that IPM can reduce pesticide use and increase yields of most of the major crops studied. Landscape scale 'ecological engineering', together with genetic improvement of new crop varieties, will enhance the durability of pest-resistant cultivars (conventional and GM). IPM will also promote compatibility with semiochemicals, biopesticides, precision pest monitoring tools, and rapid diagnostics. These combined strategies are urgently needed and are best achieved via multi-disciplinary research, including complex spatio-temporal modelling at farm and landscape scales. Integrative and synergistic use of existing and new IPM technologies will help meet future food production needs more sustainably in developed and developing countries, in an era of reduced pesticide availability. Current IPM research gaps are

  6. The MIT Integrated Global System Model: A facility for Assessing and Communicating Climate Change Uncertainty (Invited)

    NASA Astrophysics Data System (ADS)

    Prinn, R. G.

    2013-12-01

    The world is facing major challenges that create tensions between human development and environmental sustenance. In facing these challenges, computer models are invaluable tools for addressing the need for probabilistic approaches to forecasting. To illustrate this, I use the MIT Integrated Global System Model framework (IGSM; http://globalchange.mit.edu ). The IGSM consists of a set of coupled sub-models of global economic and technological development and resultant emissions, and physical, dynamical and chemical processes in the atmosphere, land, ocean and ecosystems (natural and managed). Some of the sub-models have both complex and simplified versions available, with the choice of which version to use being guided by the questions being addressed. Some sub-models (e.g.urban air pollution) are reduced forms of complex ones created by probabilistic collocation with polynomial chaos bases. Given the significant uncertainties in the model components, it is highly desirable that forecasts be probabilistic. We achieve this by running 400-member ensembles (Latin hypercube sampling) with different choices for key uncertain variables and processes within the human and natural system model components (pdfs of inputs estimated by model-observation comparisons, literature surveys, or expert elicitation). The IGSM has recently been used for probabilistic forecasts of climate, each using 400-member ensembles: one ensemble assumes no explicit climate mitigation policy and others assume increasingly stringent policies involving stabilization of greenhouse gases at various levels. These forecasts indicate clearly that the greatest effect of these policies is to lower the probability of extreme changes. The value of such probability analyses for policy decision-making lies in their ability to compare relative (not just absolute) risks of various policies, which are less affected by the earth system model uncertainties. Given the uncertainties in forecasts, it is also clear that

  7. Future prospects for prophylactic immune stimulation in crustacean aquaculture - the need for improved metadata to address immune system complexity.

    PubMed

    Hauton, Chris; Hudspith, Meggie; Gunton, Laetitia

    2015-02-01

    Future expansion of the crustacean aquaculture industry will be required to ensure global food security. However, this expansion must ensure: (a) that natural resources (including habitat use and fish meal) are sustainably exploited, (b) that the socio-economic development of producing nations is safeguarded, and (c) that the challenge presented by crustacean diseases is adequately met. Conventionally, the problem of disease in crustacean aquaculture has been addressed through prophylactic administration of stimulants, additives or probiotics. However, these approaches have been questioned both experimentally and philosophically. In this review, we argue that real progress in the field of crustacean immune stimulants has now slowed, with only incremental advances now being made. We further contend that an overt focus on the immune effector response has been misguided. In light of the wealth of new data reporting immune system complexity, a more refined approach is necessary - one that must consider the important role played by pattern recognition proteins. In support of this more refined approach, there is now a much greater requirement for the reporting of essential metadata. We propose a broad series of recommendations regarding the 'Minimum Information required to support a Stimulant Assessment experiment' (MISA guidelines) to foster new progression within the field.

  8. Climate and Soil Interactions in the Context of Climate, Water, Ecosystems and Food Systems

    NASA Astrophysics Data System (ADS)

    Hatfield, J.

    2015-12-01

    Soil as source of ecosystem services is a major component of climate resilience. Two of the critical ecosystem services derived from soil are water and nutrient cycling. High quality soils improve the capacity to absorb and retain precipitation leading to enhanced water availability to plants which increases climate resilience. The trend towards increasing variability in precipitation requires that the soil be capable of maintaining infiltration rates under extreme precipitation events. Climate resilience will occur when crop productivity is stabilized under more variable climate regimes and dependent upon having adequate soil water supplies to each crop. There is a direct relationship between soil quality and crop productivity and as the soil resource is degraded there is a greater gap between attainable and actual productivity of crop. As the soil is improved there is enhanced nutrient cycling which in turn increases nutrient availability to the crop and food security. Soil becomes the foundation of sustainable ecosystems and enhancing the quality of soil will have a benefit to food and water resources. Improving the soil will benefit humankind through multiple impacts on water, food, and ecosystems.

  9. Climate Change Education on Public Health Consequences and Impacts to the Human System - An Interdisciplinary Approach to Promoting Climate Literacy

    NASA Astrophysics Data System (ADS)

    Matiella Novak, M.; Paxton, L. J.

    2012-12-01

    - someone not like you. On the other hand, public health impacts are felt by millions and lead to very high costs and those impacts are something with which most people have direct experiences. We will discuss, for example, how climate change can be framed as a cost/benefit problem by looking at the long term costs of increase in disease and illness such as the startling trends in childhood asthma. Changes in water availability, and water and air quality, will result from a warming climate, with measureable consequences for public health: disease spread, food and water security, respiratory health, etc. By integrating this information with education efforts, society, educators and decision makers will have a better understanding of how climate change affects the human system, and what decisions can be made at the individual and community levels to mitigate and adapt to climate change. We will show how this can be achieved.

  10. Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean

    NASA Astrophysics Data System (ADS)

    Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.

    2011-12-01

    Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling

  11. System and Method for Providing a Climate Data Analytic Services Application Programming Interface Distribution Package

    NASA Technical Reports Server (NTRS)

    Schnase, John L. (Inventor); Duffy, Daniel Q. (Inventor); Tamkin, Glenn S. (Inventor)

    2016-01-01

    A system, method and computer-readable storage devices for providing a climate data analytic services application programming interface distribution package. The example system can provide various components. The system provides a climate data analytic services application programming interface library that enables software applications running on a client device to invoke the capabilities of a climate data analytic service. The system provides a command-line interface that provides a means of interacting with a climate data analytic service by issuing commands directly to the system's server interface. The system provides sample programs that call on the capabilities of the application programming interface library and can be used as templates for the construction of new client applications. The system can also provide test utilities, build utilities, service integration utilities, and documentation.

  12. Building Climate Resilience in the Blue Nile/Abay Highlands: A Role for Earth System Sciences

    PubMed Central

    Zaitchik, Benjamin F.; Simane, Belay; Habib, Shahid; Anderson, Martha C.; Ozdogan, Mutlu; Foltz, Jeremy D.

    2012-01-01

    The Blue Nile (Abay) Highlands of Ethiopia are characterized by significant interannual climate variability, complex topography and associated local climate contrasts, erosive rains and erodible soils, and intense land pressure due to an increasing population and an economy that is almost entirely dependent on smallholder, low-input agriculture. As a result, these highland zones are highly vulnerable to negative impacts of climate variability. As patterns of variability and precipitation intensity alter under anthropogenic climate change, there is concern that this vulnerability will increase, threatening economic development and food security in the region. In order to overcome these challenges and to enhance sustainable development in the context of climate change, it is necessary to establish climate resilient development strategies that are informed by best-available Earth System Science (ESS) information. This requirement is complicated by the fact that climate projections for the Abay Highlands contain significant and perhaps irreducible uncertainties. A critical challenge for ESS, then, is to generate and to communicate meaningful information for climate resilient development in the context of a highly uncertain climate forecast. Here we report on a framework for applying ESS to climate resilient development in the Abay Highlands, with a focus on the challenge of reducing land degradation. PMID:22470302

  13. Building climate resilience in the Blue Nile/Abay Highlands: a role for Earth system sciences.

    PubMed

    Zaitchik, Benjamin F; Simane, Belay; Habib, Shahid; Anderson, Martha C; Ozdogan, Mutlu; Foltz, Jeremy D

    2012-02-01

    The Blue Nile (Abay) Highlands of Ethiopia are characterized by significant interannual climate variability, complex topography and associated local climate contrasts, erosive rains and erodible soils, and intense land pressure due to an increasing population and an economy that is almost entirely dependent on smallholder, low-input agriculture. As a result, these highland zones are highly vulnerable to negative impacts of climate variability. As patterns of variability and precipitation intensity alter under anthropogenic climate change, there is concern that this vulnerability will increase, threatening economic development and food security in the region. In order to overcome these challenges and to enhance sustainable development in the context of climate change, it is necessary to establish climate resilient development strategies that are informed by best-available Earth System Science (ESS) information. This requirement is complicated by the fact that climate projections for the Abay Highlands contain significant and perhaps irreducible uncertainties. A critical challenge for ESS, then, is to generate and to communicate meaningful information for climate resilient development in the context of a highly uncertain climate forecast. Here we report on a framework for applying ESS to climate resilient development in the Abay Highlands, with a focus on the challenge of reducing land degradation.

  14. The aerosol-monsoon climate system of Asia: A new paradigm

    NASA Astrophysics Data System (ADS)

    Lau, William K. M.

    2016-02-01

    This commentary is based on a series of recent lectures on aerosol-monsoon interactions I gave at the Beijing Normal University in August 2015. A main theme of the lectures is on a new paradigm of "An Aerosol-Monsoon-Climate-System", which posits that aerosol, like rainfall, cloud, and wind, is an integral component of the monsoon climate system, influencing monsoon weather and climate on all timescales. Here, salient issues discussed in my lectures and my personal perspective regarding interactions between atmospheric dynamics and aerosols from both natural and anthropogenic sources are summarized. My hope is that under this new paradigm, we can break down traditional disciplinary barriers, advance a deeper understanding of weather and climate in monsoon regions, as well as entrain a new generation of geoscientists to strive for a sustainable future for one of the most complex and challenging human-natural climate sub-system of the earth.

  15. Progress Report 2008: A Scalable and Extensible Earth System Model for Climate Change Science

    SciTech Connect

    Drake, John B; Worley, Patrick H; Hoffman, Forrest M; Jones, Phil

    2009-01-01

    This project employs multi-disciplinary teams to accelerate development of the Community Climate System Model (CCSM), based at the National Center for Atmospheric Research (NCAR). A consortium of eight Department of Energy (DOE) National Laboratories collaborate with NCAR and the NASA Global Modeling and Assimilation Office (GMAO). The laboratories are Argonne (ANL), Brookhaven (BNL) Los Alamos (LANL), Lawrence Berkeley (LBNL), Lawrence Livermore (LLNL), Oak Ridge (ORNL), Pacific Northwest (PNNL) and Sandia (SNL). The work plan focuses on scalablity for petascale computation and extensibility to a more comprehensive earth system model. Our stated goal is to support the DOE mission in climate change research by helping ... To determine the range of possible climate changes over the 21st century and beyond through simulations using a more accurate climate system model that includes the full range of human and natural climate feedbacks with increased realism and spatial resolution.

  16. Simulation of Climate Change Impacts on Wheat-Fallow Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural system simulation models are predictive tools for assessing climate change impacts on crop production. In this study, RZWQM2 that contains the DSSAT 4.0-CERES model was evaluated for simulating climate change impacts on wheat growth. The model was calibrated and validated using data fro...

  17. Farm simulation can help adapt dairy production systems to climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change is affecting the production of feed on dairy farms. Warming climates also affect the performance of dairy cattle and the interactions between feed production and animal performance. Process level simulation of dairy production systems provides a tool for whole-farm evaluation of the e...

  18. Recent Advances in Regional Climate System Modeling and ClimateChange Analyses of Extreme Heat

    SciTech Connect

    Miller, Norman L.

    2004-09-24

    During the period May 2003 to May 2004, there were two CEC/PIER funded primary research activities by the Atmosphere and Ocean Sciences Group/Earth Science Division at LBNL. These activities are the implementation and testing of the National Center for Atmospheric Research Community Land Model (CLM) into MM5, and the analysis of extreme heat days under a new set of climate simulations. The new version of MM5,MM5-CLM, has been tested for a 90 day snowmelt period in the northwestern U.S. Results show that this new code upgrade, as compared to the MM5-NOAH, has improved snowmelt, temperature, and precipitation when compared to observations. These are due in part to a subgrid scheme,advanced snow processes, and advanced vegetation. The climate change analysis is the upper and lower IPCC Special Report on Emission Scenarios, representing fossil fuel intensive and energy conserving future emission scenarios, and medium and low sensitivity Global Climate Models. Results indicate that California cities will see increases in the number of heat wave and temperature threshold days from two to six times.These results may be viewed as potential outcomes based on today's decisions on emissions.

  19. Avoiding dangerous climate change

    SciTech Connect

    Hans Joachim Schellnhuber; Wolfgang Cramer; Nebojsa Nakicenovic; Tom Wigley; Gary Yohe

    2006-02-15

    In 2005 the UK Government hosted the Avoiding Dangerous Climate Change conference to take an in-depth look at the scientific issues associated with climate change. This volume presents the most recent findings from the leading international scientists that attended the conference. The topics addressed include critical thresholds and key vulnerabilities of the climate system, impacts on human and natural systems, socioeconomic costs and benefits of emissions pathways, and technological options for meeting different stabilisation levels of greenhouse gases in the atmosphere. Contents are: Foreword from Prime Minister Tony Blair; Introduction from Rajendra Pachauri, Chairman of the IPCC; followed by 41 papers arranged in seven sections entitled: Key Vulnerabilities of the Climate System and Critical Thresholds; General Perspectives on Dangerous Impacts; Key Vulnerabilities for Ecosystems and Biodiversity; Socio-Economic Effects; Regional Perspectives; Emission Pathways; and Technological Options. Four papers have been abstracted separately for the Coal Abstracts database.

  20. Climate impact on groundwater systems: the past is the key to the future

    NASA Astrophysics Data System (ADS)

    van der Ploeg, Martine; Cendón, Dioni; Haldorsen, Sylvi; Chen, Jinyao; Gurdak, Jason; Tujchneider, Ofelia; Vaikmäe, Rein; Purtschert, Roland; Chkir Ben Jemâa, Najiba

    2013-04-01

    important focus, little attention has been given to groundwater as a potential record of past climate variations. A groundwater system's history is vital to forecast its vulnerability under future and potentially adverse climatic changes. By processing groundwater information from vast regions and different continents, recharge and palaeoclimate can be correlated at a global scale. To successfully evaluate the sustainability of groundwater resources, "the past is the key to the future". To address the identified lack of palaeoclimatic data available from groundwater studies, a global collaboration has been set-up in 2011 called Groundwater@Global Palaeoclimate Signals (www.gw-gps.com), and has already more than 70 participants from 5 continents. Since 2012 G@GPS receives seed funding to support meetings by the International Geoscience Programme, the International Union for Quaternary Research and UNESCO-GRAPHIC International Hydrologic Project. This collaboration targets groundwater basins on five continents —Africa, America, Asia, Australia, Europe — containing vast groundwater resources with an estimated dependence of tens of millions of people. We will present G@GPS, show examples from groundwater basins, and discuss possibilities to integrate groundwater information from these basins. References Cartwright, I. et al. 2007. Consraining modern and historical recharge from bore hydrographs, 3H, 14C, and chloride concentrations: Applications to dual-porosity aquifers in dryland salinity areas, Murray Basin, Australia. J. Hydrol. 332: 69-92. Clark, I. and P. Fritz. 1997. Environmental isotopes in hydrogeology, Lewis Publishers. Collon, P. et al. 2000. 81Kr in the Great Artesian Basin, Australia: a new method for dating very old groundwater. Earth and Planetary Science Letters 182: 103-113. Currell, M. J. et al. 2010. Recharge history and controls on groundwater quality in the Yuncheng Basin, north China, J. Hydrol. 385: 216-229. Davison, M. R. and P. L. Airey. 1982. The

  1. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic using a High-Resolution Regional Arctic Climate System Model

    SciTech Connect

    Lettenmaier, Dennis P

    2013-04-08

    Primary activities are reported in these areas: climate system component studies via one-way coupling experiments; development of the Regional Arctic Climate System Model (RACM); and physical feedback studies focusing on changes in Arctic sea ice using the fully coupled model.

  2. Emergent dynamics of the climate-economy system in the Anthropocene.

    PubMed

    Kellie-Smith, Owen; Cox, Peter M

    2011-03-13

    Global CO(2) emissions are understood to be the largest contributor to anthropogenic climate change, and have, to date, been highly correlated with economic output. However, there is likely to be a negative feedback between climate change and human wealth: economic growth is typically associated with an increase in CO(2) emissions and global warming, but the resulting climate change may lead to damages that suppress economic growth. This climate-economy feedback is assumed to be weak in standard climate change assessments. When the feedback is incorporated in a transparently simple model it reveals possible emergent behaviour in the coupled climate-economy system. Formulae are derived for the critical rates of growth of global CO(2) emissions that cause damped or long-term boom-bust oscillations in human wealth, thereby preventing a soft landing of the climate-economy system. On the basis of this model, historical rates of economic growth and decarbonization appear to put the climate-economy system in a potentially damaging oscillatory regime.

  3. Climate and energy: A comparative assessment of the Satellite Power System (SPS) and alternative energy technologies

    NASA Astrophysics Data System (ADS)

    Kellermeyer, D. A.

    1980-01-01

    The potential effects of five energy technologies on global, regional, and local climate are assessed. The energy technologies examined are coal combustion, light water nuclear reactors, satellite power systems, terrestrial photovoltaics, and fusion. The assessment focuses on waste heat rejection, production of particulate aerosols, and emission of carbon dioxide. The current state of climate modeling and long range climate prediction introduces considerable uncertainty into the assessment, but it may be concluded that waste heat will not produce detectable changes in global climate until world energy use increases 100fold, although minor effects on local weather may occur now; that carbon dioxide from coal combustion in the US alone accounts for about 30% of the current increase in global atmospheric CO2 which may, by about 2050 increase world temperature 2to 3 C, with pronounced effects on world climate; and that rocket exhaust from numerous launches during construction of a satellite power system may affect the upper atmosphere, with uncertain consequences.

  4. Climate Change and Global Food Security: Food Access, Utilization, and the US Food System

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Antle, J. M.; Backlund, P. W.; Carr, E. R.; Easterling, W. E.; Walsh, M.; Ammann, C. M.; Attavanich, W.; Barrett, C. B.; Bellemare, M. F.; Dancheck, V.; Funk, C.; Grace, K.; Ingram, J. S. I.; Jiang, H.; Maletta, H.; Mata, T.; Murray, A.; Ngugi, M.; Ojima, D. S.; O'Neill, B. C.; Tebaldi, C.

    2015-12-01

    This paper will summarize results from the USDA report entitled 'Climate change, Global Food Security and the U.S. Food system'. The report focuses on the impact of climate change on global food security, defined as "when all people at all times have physical, social, and economic access to sufficient, safe, and nutritious food to meet their dietary needs and food preferences for an active and healthy life". The assessment brought together authors and contributors from twenty federal, academic, nongovernmental, intergovernmental, and private organizations in four countries to identify climate change effects on food security through 2100, and analyze the U.S.'s likely connections with that world. This talk will describe how climate change will likely affect food access and food utilization, and summarize how the U.S. food system contributes to global food security, and will be affected by climate change.

  5. Sensitivity of proxies on non-linear interactions in the climate system

    PubMed Central

    Schultz, Johannes A.; Beck, Christoph; Menz, Gunter; Neuwirth, Burkhard; Ohlwein, Christian; Philipp, Andreas

    2015-01-01

    Recent climate change is affecting the earth system to an unprecedented extent and intensity and has the potential to cause severe ecological and socioeconomic consequences. To understand natural and anthropogenic induced processes, feedbacks, trends, and dynamics in the climate system, it is also essential to consider longer timescales. In this context, annually resolved tree-ring data are often used to reconstruct past temperature or precipitation variability as well as atmospheric or oceanic indices such as the North Atlantic Oscillation (NAO) or the Atlantic Multidecadal Oscillation (AMO). The aim of this study is to assess weather-type sensitivity across the Northern Atlantic region based on two tree-ring width networks. Our results indicate that nonstationarities in superordinate space and time scales of the climate system (here synoptic- to global scale, NAO, AMO) can affect the climate sensitivity of tree-rings in subordinate levels of the system (here meso- to synoptic scale, weather-types). This scale bias effect has the capability to impact even large multiproxy networks and the ability of these networks to provide information about past climate conditions. To avoid scale biases in climate reconstructions, interdependencies between the different scales in the climate system must be considered, especially internal ocean/atmosphere dynamics. PMID:26686001

  6. Sensitivity of proxies on non-linear interactions in the climate system.

    PubMed

    Schultz, Johannes A; Beck, Christoph; Menz, Gunter; Neuwirth, Burkhard; Ohlwein, Christian; Philipp, Andreas

    2015-12-21

    Recent climate change is affecting the earth system to an unprecedented extent and intensity and has the potential to cause severe ecological and socioeconomic consequences. To understand natural and anthropogenic induced processes, feedbacks, trends, and dynamics in the climate system, it is also essential to consider longer timescales. In this context, annually resolved tree-ring data are often used to reconstruct past temperature or precipitation variability as well as atmospheric or oceanic indices such as the North Atlantic Oscillation (NAO) or the Atlantic Multidecadal Oscillation (AMO). The aim of this study is to assess weather-type sensitivity across the Northern Atlantic region based on two tree-ring width networks. Our results indicate that nonstationarities in superordinate space and time scales of the climate system (here synoptic- to global scale, NAO, AMO) can affect the climate sensitivity of tree-rings in subordinate levels of the system (here meso- to synoptic scale, weather-types). This scale bias effect has the capability to impact even large multiproxy networks and the ability of these networks to provide information about past climate conditions. To avoid scale biases in climate reconstructions, interdependencies between the different scales in the climate system must be considered, especially internal ocean/atmosphere dynamics.

  7. Risk assessment of climate systems for national security.

    SciTech Connect

    Backus, George A.; Boslough, Mark Bruce Elrick; Brown, Theresa Jean; Cai, Ximing; Conrad, Stephen Hamilton; Constantine, Paul G; Dalbey, Keith R.; Debusschere, Bert J.; Fields, Richard; Hart, David Blaine; Kalinina, Elena Arkadievna; Kerstein, Alan R.; Levy, Michael; Lowry, Thomas Stephen; Malczynski, Leonard A.; Najm, Habib N.; Overfelt, James Robert; Parks, Mancel Jordan; Peplinski, William J.; Safta, Cosmin; Sargsyan, Khachik; Stubblefield, William Anthony; Taylor, Mark A.; Tidwell, Vincent Carroll; Trucano, Timothy Guy; Villa, Daniel L.

    2012-10-01

    Climate change, through drought, flooding, storms, heat waves, and melting Arctic ice, affects the production and flow of resource within and among geographical regions. The interactions among governments, populations, and sectors of the economy require integrated assessment based on risk, through uncertainty quantification (UQ). This project evaluated the capabilities with Sandia National Laboratories to perform such integrated analyses, as they relate to (inter)national security. The combining of the UQ results from climate models with hydrological and economic/infrastructure impact modeling appears to offer the best capability for national security risk assessments.

  8. The Role of Snow and Ice in the Climate System

    SciTech Connect

    Barry, Roger

    2007-12-19

    Global snow and ice cover (the 'cryosphere') plays a major role in global climate and hydrology through a range of complex interactions and feedbacks, the best known of which is the ice - albedo feedback. Snow and ice cover undergo marked seasonal and long term changes in extent and thickness. The perennial elements - the major ice sheets and permafrost - play a role in present-day regional and local climate and hydrology, but the large seasonal variations in snow cover and sea ice are of importance on continental to hemispheric scales. The characteristics of these variations, especially in the Northern Hemisphere, and evidence for recent trends in snow and ice extent are discussed.

  9. The Role of Snow and Ice in the Climate System

    ScienceCinema

    Barry, Roger G.

    2016-07-12

    Global snow and ice cover (the 'cryosphere') plays a major role in global climate and hydrology through a range of complex interactions and feedbacks, the best known of which is the ice - albedo feedback. Snow and ice cover undergo marked seasonal and long term changes in extent and thickness. The perennial elements - the major ice sheets and permafrost - play a role in present-day regional and local climate and hydrology, but the large seasonal variations in snow cover and sea ice are of importance on continental to hemispheric scales. The characteristics of these variations, especially in the Northern Hemisphere, and evidence for recent trends in snow and ice extent are discussed.

  10. Potential Economic Benefits of Adapting Agricultural Production Systems to Future Climate Change

    NASA Astrophysics Data System (ADS)

    Prato, Tony; Zeyuan, Qiu; Pederson, Gregory; Fagre, Dan; Bengtson, Lindsey E.; Williams, Jimmy R.

    2010-03-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960-2005) and future climate period (2006-2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs to

  11. Potential economic benefits of adapting agricultural production systems to future climate change

    USGS Publications Warehouse

    Fagre, Daniel B.; Pederson, Gregory; Bengtson, Lindsey E.; Prato, Tony; Qui, Zeyuan; Williams, Jimmie R.

    2010-01-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960–2005) and future climate period (2006–2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting

  12. Potential economic benefits of adapting agricultural production systems to future climate change.

    PubMed

    Prato, Tony; Zeyuan, Qiu; Pederson, Gregory; Fagre, Dan; Bengtson, Lindsey E; Williams, Jimmy R

    2010-03-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960-2005) and future climate period (2006-2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO(2) emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs

  13. Influence of Sea Ice on Arctic Marine Sulfur Biogeochemistry in the Community Climate System Model

    SciTech Connect

    Deal, Clara; Jin, Meibing

    2013-06-30

    Global climate models (GCMs) have not effectively considered how responses of arctic marine ecosystems to a warming climate will influence the global climate system. A key response of arctic marine ecosystems that may substantially influence energy exchange in the Arctic is a change in dimethylsulfide (DMS) emissions, because DMS emissions influence cloud albedo. This response is closely tied to sea ice through its impacts on marine ecosystem carbon and sulfur cycling, and the ice-albedo feedback implicated in accelerated arctic warming. To reduce the uncertainty in predictions from coupled climate simulations, important model components of the climate system, such as feedbacks between arctic marine biogeochemistry and climate, need to be reasonably and realistically modeled. This research first involved model development to improve the representation of marine sulfur biogeochemistry simulations to understand/diagnose the control of sea-ice-related processes on the variability of DMS dynamics. This study will help build GCM predictions that quantify the relative current and possible future influences of arctic marine ecosystems on the global climate system. Our overall research objective was to improve arctic marine biogeochemistry in the Community Climate System Model (CCSM, now CESM). Working closely with the Climate Ocean Sea Ice Model (COSIM) team at Los Alamos National Laboratory (LANL), we added 1 sea-ice algae and arctic DMS production and related biogeochemistry to the global Parallel Ocean Program model (POP) coupled to the LANL sea ice model (CICE). Both CICE and POP are core components of CESM. Our specific research objectives were: 1) Develop a state-of-the-art ice-ocean DMS model for application in climate models, using observations to constrain the most crucial parameters; 2) Improve the global marine sulfur model used in CESM by including DMS biogeochemistry in the Arctic; and 3) Assess how sea ice influences DMS dynamics in the arctic marine

  14. Physical Impacts of Climate Change on the Western US Electricity System: A Scoping Study

    SciTech Connect

    Coughlin, Katie; Goldman, Charles

    2008-12-01

    This paper presents an exploratory study of the possible physical impacts of climate change on the electric power system, and how these impacts could be incorporated into resource planning in the Western United States. While many aspects of climate change and energy have been discussed in the literature, there has not yet been a systematic review of the relationship between specific physical effects and the quantitative analyses that are commonly used in planning studies. The core of the problem is to understand how the electric system is vulnerable to physical weather risk, and how to make use of information from climate models to characterize the way these risks may evolve over time, including a treatment of uncertainty. In this paper, to provide the necessary technical background in climate science, we present an overview of the basic physics of climate and explain some of the methodologies used in climate modeling studies, particularly the importance of emissions scenarios. We also