Science.gov

Sample records for addresses system conformance

  1. Variable addressability imaging systems

    NASA Astrophysics Data System (ADS)

    Kubala, Kenneth Scott

    The use of variable addressability for creating an optimum human-machine interface is investigated. Current wide field optical systems present more information to the human visual system than it has the capacity to perceive. The axial resolution, and/or the field of view can be increased by minimizing the difference between what the eye can perceive and what the system presents. The variable addressability function was developed through the use of a human factors experiment that characterized the position of the eye during the simulated use of a binocular system. Applying the variable addressability function to a conventional optical design required the development of a new metric for evaluating the expected performance of the variable addressability system. The new metric couples psycho-visual data and traditional optical data in order to specify the required performance of the variable addressability system. A non-linear mapping of the pixels is required in order to have the system work most efficiently with the human visual system, while also compensating for eye motion. The non-linear mapping function, which is the backbone of the variable addressability technique, can be created using optical distortion. The lens and system design is demonstrated in two different spectral bands. One of the designs was fabricated, tested, and assembled into a prototype. Through a second human factors study aimed at measuring performance, the variable addressability prototype was directly compared to a uniform addressability prototype, quantifying the difference in performance for the two prototypes. The human factors results showed that the variable addressability prototype provided better resolution 13% of the time throughout the experiment, but was 15% slower in use than the uniform addressability prototype.

  2. Addressing the Role of Conformational Diversity in Protein Structure Prediction.

    PubMed

    Palopoli, Nicolas; Monzon, Alexander Miguel; Parisi, Gustavo; Fornasari, Maria Silvina

    2016-01-01

    Computational modeling of tertiary structures has become of standard use to study proteins that lack experimental characterization. Unfortunately, 3D structure prediction methods and model quality assessment programs often overlook that an ensemble of conformers in equilibrium populates the native state of proteins. In this work we collected sets of publicly available protein models and the corresponding target structures experimentally solved and studied how they describe the conformational diversity of the protein. For each protein, we assessed the quality of the models against known conformers by several standard measures and identified those models ranked best. We found that model rankings are defined by both the selected target conformer and the similarity measure used. 70% of the proteins in our datasets show that different models are structurally closest to different conformers of the same protein target. We observed that model building protocols such as template-based or ab initio approaches describe in similar ways the conformational diversity of the protein, although for template-based methods this description may depend on the sequence similarity between target and template sequences. Taken together, our results support the idea that protein structure modeling could help to identify members of the native ensemble, highlight the importance of considering conformational diversity in protein 3D quality evaluations and endorse the study of the variability of the native structure for a meaningful biological analysis. PMID:27159429

  3. Addressing the Role of Conformational Diversity in Protein Structure Prediction

    PubMed Central

    Parisi, Gustavo; Fornasari, Maria Silvina

    2016-01-01

    Computational modeling of tertiary structures has become of standard use to study proteins that lack experimental characterization. Unfortunately, 3D structure prediction methods and model quality assessment programs often overlook that an ensemble of conformers in equilibrium populates the native state of proteins. In this work we collected sets of publicly available protein models and the corresponding target structures experimentally solved and studied how they describe the conformational diversity of the protein. For each protein, we assessed the quality of the models against known conformers by several standard measures and identified those models ranked best. We found that model rankings are defined by both the selected target conformer and the similarity measure used. 70% of the proteins in our datasets show that different models are structurally closest to different conformers of the same protein target. We observed that model building protocols such as template-based or ab initio approaches describe in similar ways the conformational diversity of the protein, although for template-based methods this description may depend on the sequence similarity between target and template sequences. Taken together, our results support the idea that protein structure modeling could help to identify members of the native ensemble, highlight the importance of considering conformational diversity in protein 3D quality evaluations and endorse the study of the variability of the native structure for a meaningful biological analysis. PMID:27159429

  4. Conformational Transitions in Molecular Systems

    NASA Astrophysics Data System (ADS)

    Bachmann, M.; Janke, W.

    2008-11-01

    Proteins are the "work horses" in biological systems. In almost all functions specific proteins are involved. They control molecular transport processes, stabilize the cell structure, enzymatically catalyze chemical reactions; others act as molecular motors in the complex machinery of molecular synthetization processes. Due to their significance, misfolds and malfunctions of proteins typically entail disastrous diseases, such as Alzheimer's disease and bovine spongiform encephalopathy (BSE). Therefore, the understanding of the trinity of amino acid composition, geometric structure, and biological function is one of the most essential challenges for the natural sciences. Here, we glance at conformational transitions accompanying the structure formation in protein folding processes.

  5. Laser addressed holographic memory system

    NASA Technical Reports Server (NTRS)

    Gange, R. A.; Wagle, E. M.; Steinmetz, C. C.

    1973-01-01

    Holographic recall and storage system uses red-lipid microcrystalline wax as storage medium. When laser beam strikes wax, its energy heats point of incidence enough to pass wax through transition temperature. Holograph image can then be written or erased in softened wax.

  6. Public Address Systems. Specifications - Installation - Operation.

    ERIC Educational Resources Information Center

    Palmer, Fred M.

    Provisions for public address in new construction of campus buildings (specifications, installations, and operation of public address systems), are discussed in non-technical terms. Consideration is given to microphones, amplifiers, loudspeakers and the placement and operation of various different combinations. (FS)

  7. Simulating Massive Conformation Changes within Polypeptide Systems

    NASA Astrophysics Data System (ADS)

    Singh, Jaspinder Paul

    In this dissertation I employ all-atom structure based models with stable energy basins to several existing and novel polypeptide systems (postulated conformation changes of the mammalian prion protein and structurally dual proteins). The common themes are finding unfolding and refolding pathways between highly dissimilar protein structures as a means of understanding exactly how and why a protein may misfold. The modeling is based on the energy funnel landscape theory of protein conformation space. The principle of minimal frustration is considered as the model includes parameters which vary the roughness of the landscape and give rise to off-pathway misfoldings. The dual basin model is applied to the C-terminal (residues 166-226) of the mammalian prion protein. One basin represents the known alpha-helical (aH) structure while the other represents the same residues in a lefthanded beta-helical (LHBH) conformation. The LHBH structure has been proposed to help describe one class of in vitro grown fibrils, as well as possibly self-templating the conversion of normal cellular prion protein to the infectious form. Yet, it is unclear how the protein may make this global rearrangement. Our results demonstrate that the conformation changes are not strongly limited by large-scale geometry modification and that there may exist an overall preference for the LHBH conformation. Furthermore, our model presents novel intermediate trapping conformations with twisted LHBH structure. Polypeptides that display structural duality have primary structures that can give rise to different potential native conformations. We apply the structure-based all-atom model to a leucine zipper protein template with a stable aH structure that has been shown in experiment to switch to a β hairpin structure when exposed to a low-pH environment. We show that the model can be used to perform large-scale temperature-dependent conformational switching by simulating this switching behavior. We augmented

  8. Address Systems in "The Plum Plum Pickers"

    ERIC Educational Resources Information Center

    Geuder, Patricia A.

    1975-01-01

    The address systems in Raymond Barrio's "The Plum Plum Pickers" imply sociolinguistic differences between the Chicano and the Anglo characters. The kinds of sociolinguistic situations, the number of dyadic patterns, and the quantity of the dyadic patterns strongly suggest the differences. (Author)

  9. Conformal invariance and Hamilton Jacobi theory for dissipative systems

    NASA Technical Reports Server (NTRS)

    Kiehn, R. M.

    1975-01-01

    For certain dissipative systems, a comparison can be made between the Hamilton-Jacobi theory and the conformal invariance of action theory. The two concepts are not identical, but the conformal action theory covers the Hamilton-Jacobi theory.

  10. Improving reservoir conformance using gelled polymer systems

    SciTech Connect

    Green, D.W.; Willhite, G.P.

    1993-04-09

    The general objectives are to (1) to identify and develop gelled polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) to determine the performance of these systems in bulk and in porous media, and (3) to develop methods to predict the capability of these systems to recover oil from petroleum reservoirs. This work focuses on three types of gel systems - an aqueous polysaccharide (KUSPI) system that gels as a function of pH, the chromium-based system where polyacrylamide and xanthan are crosslinked by CR(III) and an organic crosslinked system. Development of the KUSPI system and evaluation and identification of a suitable organic crosslinked system will be done. The laboratory research is directed at the fundamental understanding of the physics and chemistry of the gelation process in bulk form and in porous media. This knowledge will be used to develop conceptual and mathematical models of the gelation process. Mathematical models will then be extended to predict the performance of gelled polymer treatments in oil reservoirs. Accomplishments for this period are presented for the following tasks: development and selection of gelled polymer systems, physical and chemical characterization of gel systems; and mathematical modeling of gel systems.

  11. Pilot Non-Conformance to Alerting System Commands

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Hansman, R. John

    1997-01-01

    Instances of pilot non-conformance to alerting system commands have been identified in previous studies. Pilot non-conformance changes the final behavior of the system, and therefore may reduce actual performance from that anticipated. A simulator study has examined pilot non-conformance, using the task of collision avoidance during closely spaced parallel approaches as a case study. Consonance between the display and the alerting system was found to significantly improve subject agreement with automatic alerts. Based on these results, a more general discussion of the factors involved in pilot conformance is given, and design guidelines for alerting systems are given.

  12. 46 CFR 121.610 - Public address systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SYSTEMS AND EQUIPMENT Control and Internal Communications Systems § 121.610 Public address systems. (a) Except as noted in paragraph (d) below, each vessel must be equipped with a public address system. (b) On... 46 Shipping 4 2011-10-01 2011-10-01 false Public address systems. 121.610 Section 121.610...

  13. 46 CFR 121.610 - Public address systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SYSTEMS AND EQUIPMENT Control and Internal Communications Systems § 121.610 Public address systems. (a) Except as noted in paragraph (d) below, each vessel must be equipped with a public address system. (b) On... 46 Shipping 4 2012-10-01 2012-10-01 false Public address systems. 121.610 Section 121.610...

  14. 46 CFR 121.610 - Public address systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SYSTEMS AND EQUIPMENT Control and Internal Communications Systems § 121.610 Public address systems. (a) Except as noted in paragraph (d) below, each vessel must be equipped with a public address system. (b) On... 46 Shipping 4 2010-10-01 2010-10-01 false Public address systems. 121.610 Section 121.610...

  15. 46 CFR 121.610 - Public address systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SYSTEMS AND EQUIPMENT Control and Internal Communications Systems § 121.610 Public address systems. (a) Except as noted in paragraph (d) below, each vessel must be equipped with a public address system. (b) On... 46 Shipping 4 2014-10-01 2014-10-01 false Public address systems. 121.610 Section 121.610...

  16. 46 CFR 121.610 - Public address systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SYSTEMS AND EQUIPMENT Control and Internal Communications Systems § 121.610 Public address systems. (a) Except as noted in paragraph (d) below, each vessel must be equipped with a public address system. (b) On... 46 Shipping 4 2013-10-01 2013-10-01 false Public address systems. 121.610 Section 121.610...

  17. Addressing the Complexity of the Earth System

    SciTech Connect

    Nobre, Carlos; Brasseur, Guy P.; Shapiro, Melvyn; Lahsen, Myanna; Brunet, Gilbert; Busalacchi, Antonio; Hibbard, Kathleen A.; Seitzinger, Sybil; Noone, Kevin; Ometto, Jean P.

    2010-10-01

    This paper highlights the role of the Earth-system biosphere and illustrates the complex: biosphere-atmosphere interactions in the Amazon Basin, changes in nitrogen cycling, ocean chemistry, and land use. It introduces three important requirements for accelerating the development and use of Earth system information. The first requirement is to develop Earth system analysis and prediction models that account for multi-scale physical, chemical and biological processes, including their interactions in the coupled atmosphere-ocean-land-ice system. The development of these models requires partnerships between academia, national research centers, and operational prediction facilities, and builds upon accomplishments in weather and climate predictions. They will highlight the regional aspects of global change, and include modules for water system, agriculture, forestry, energy, air quality, health, etc. The second requirement is to model the interactions between humans and the weather-climate-biogeochemical system. The third requirement is to introduce novel methodologies to account for societal drivers, impacts and feedbacks. This is a challenging endeavor requiring creative solutions and some compromising because human behavior cannot be fully represented within the framework of present-day physical prediction systems.

  18. Using Student Response Systems ("Clickers") to Combat Conformity and Shyness

    ERIC Educational Resources Information Center

    Stowell, Jeffrey R.; Oldham, Terrah; Bennett, Dan

    2010-01-01

    This study addressed how trait levels of classroom shyness can influence conformity when students answer opinion questions in different ways. "We recruited 128 introductory psychology students to indicate their opinion on 50 controversial questions by raising their hand or anonymously pressing a button on a keypad ("clicker")". Compared to…

  19. 46 CFR 184.610 - Public address systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Control and Internal Communications Systems § 184.610 Public address systems. (a) Except as noted in paragraphs (d) and (e) below, each vessel must be... 46 Shipping 7 2011-10-01 2011-10-01 false Public address systems. 184.610 Section 184.610...

  20. 46 CFR 184.610 - Public address systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Control and Internal Communications Systems § 184.610 Public address systems. (a) Except as noted in paragraphs (d) and (e) below, each vessel must be... 46 Shipping 7 2013-10-01 2013-10-01 false Public address systems. 184.610 Section 184.610...

  1. 46 CFR 184.610 - Public address systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Control and Internal Communications Systems § 184.610 Public address systems. (a) Except as noted in paragraphs (d) and (e) below, each vessel must be... 46 Shipping 7 2012-10-01 2012-10-01 false Public address systems. 184.610 Section 184.610...

  2. 46 CFR 184.610 - Public address systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Control and Internal Communications Systems § 184.610 Public address systems. (a) Except as noted in paragraphs (d) and (e) below, each vessel must be... 46 Shipping 7 2014-10-01 2014-10-01 false Public address systems. 184.610 Section 184.610...

  3. 46 CFR 184.610 - Public address systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Control and Internal Communications Systems § 184.610 Public address systems. (a) Except as noted in paragraphs (d) and (e) below, each vessel must be... 46 Shipping 7 2010-10-01 2010-10-01 false Public address systems. 184.610 Section 184.610...

  4. 14 CFR 121.318 - Public address system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... passengers unless it is equipped with a public address system which— (a) Is capable of operation independent... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Public address system. 121.318 Section 121...) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS...

  5. Conformal Laplace superintegrable systems in 2D: polynomial invariant subspaces

    NASA Astrophysics Data System (ADS)

    Escobar-Ruiz, M. A.; Miller, Willard, Jr.

    2016-07-01

    2nd-order conformal superintegrable systems in n dimensions are Laplace equations on a manifold with an added scalar potential and 2n-1 independent 2nd order conformal symmetry operators. They encode all the information about Helmholtz (eigenvalue) superintegrable systems in an efficient manner: there is a 1-1 correspondence between Laplace superintegrable systems and Stäckel equivalence classes of Helmholtz superintegrable systems. In this paper we focus on superintegrable systems in two-dimensions, n = 2, where there are 44 Helmholtz systems, corresponding to 12 Laplace systems. For each Laplace equation we determine the possible two-variate polynomial subspaces that are invariant under the action of the Laplace operator, thus leading to families of polynomial eigenfunctions. We also study the behavior of the polynomial invariant subspaces under a Stäckel transform. The principal new results are the details of the polynomial variables and the conditions on parameters of the potential corresponding to polynomial solutions. The hidden gl 3-algebraic structure is exhibited for the exact and quasi-exact systems. For physically meaningful solutions, the orthogonality properties and normalizability of the polynomials are presented as well. Finally, for all Helmholtz superintegrable solvable systems we give a unified construction of one-dimensional (1D) and two-dimensional (2D) quasi-exactly solvable potentials possessing polynomial solutions, and a construction of new 2D PT-symmetric potentials is established.

  6. Locality of Gravitational Systems from Entanglement of Conformal Field Theories.

    PubMed

    Lin, Jennifer; Marcolli, Matilde; Ooguri, Hirosi; Stoica, Bogdan

    2015-06-01

    The Ryu-Takayanagi formula relates the entanglement entropy in a conformal field theory to the area of a minimal surface in its holographic dual. We show that this relation can be inverted for any state in the conformal field theory to compute the bulk stress-energy tensor near the boundary of the bulk spacetime, reconstructing the local data in the bulk from the entanglement on the boundary. We also show that positivity, monotonicity, and convexity of the relative entropy for small spherical domains between the reduced density matrices of any state and of the ground state of the conformal field theory are guaranteed by positivity conditions on the bulk matter energy density. As positivity and monotonicity of the relative entropy are general properties of quantum systems, this can be interpreted as a derivation of bulk energy conditions in any holographic system for which the Ryu-Takayanagi prescription applies. We discuss an information theoretical interpretation of the convexity in terms of the Fisher metric.

  7. FUS: a system to simulate conformational changes in biological macromolecules.

    PubMed

    Major, F; Feldmann, R; Lapalme, G; Cedergren, R

    1988-11-01

    In order to study the dynamics of protein and nucleic acid conformations, a molecular folding-unfolding system (FUS written in Lisp) has been developed. Secondary structure features of protein and nucleic acids are graphically represented by cubes in a modified 'Blocks World' paradigm. Modeling of protein and nucleic acid unfolding (denaturation) and folding of their three-dimensional structure is possible by the use of high level 'block' operators which allow displacement of these structural features in space. Due to the flexible nature of this program, FUS is a useful tool for the rapid evaluation of user-defined rules governing conformational changes. The use of FUS to unfold three common proteins (prealbumin, flavodoxin and triose phosphate isomerase) and a tRNA is presented. PMID:3208178

  8. Selective Attention in Multi-Chip Address-Event Systems

    PubMed Central

    Bartolozzi, Chiara; Indiveri, Giacomo

    2009-01-01

    Selective attention is the strategy used by biological systems to cope with the inherent limits in their available computational resources, in order to efficiently process sensory information. The same strategy can be used in artificial systems that have to process vast amounts of sensory data with limited resources. In this paper we present a neuromorphic VLSI device, the “Selective Attention Chip” (SAC), which can be used to implement these models in multi-chip address-event systems. We also describe a real-time sensory-motor system, which integrates the SAC with a dynamic vision sensor and a robotic actuator. We present experimental results from each component in the system, and demonstrate how the complete system implements a real-time stimulus-driven selective attention model. PMID:22346689

  9. A WiFi public address system for disaster management.

    PubMed

    Andrade, Nicholas; Palmer, Douglas A; Lenert, Leslie A

    2006-01-01

    The WiFi Bullhorn is designed to assist emergency workers in the event of a disaster situation by offering a rapidly configurable wireless of public address system for disaster sites. The current configuration plays either pre recorded or custom recorded messages and utilizes 802.11b networks for communication. Units can be position anywhere wireless coverage exists to help manage crowds or to recall first responders from dangerous areas.

  10. The importance of systems thinking to address obesity.

    PubMed

    Finegood, Diane T

    2012-01-01

    Obesity is clearly a complex problem for both the individual and for society. Complex or 'wicked' problems have common characteristics such as heterogeneity, nonlinearity, interdependence, and self-organization. As such they require solutions appropriate for complex problems, rather than a reductionist search for the causes. 'Systems thinking' provides new ways to consider how to collectively address complex societal problems like obesity, where biology interacts with social, cultural and built environmental factors in infinite permutations and combinations. The systems that give rise to the obesity epidemic function at multiple levels, and there are important interactions between these levels. At any given level, individual actors and organizations matter and system function is optimized when individual and organizational capacity to respond is well matched to the complexity of individual tasks. Providing system supports to help networks of individuals become 'communities of practice' and 'systems of influence' may also help to accelerate the pace of effective action against obesity. Research efforts need to move away from the relentless search for the specific isolated causes of obesity and focus on solutions that have been shown to work in addressing other 'wicked' problems.

  11. Conformal, Transparent Printed Antenna Developed for Communication and Navigation Systems

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1999-01-01

    Conformal, transparent printed antennas have advantages over conventional antennas in terms of space reuse and aesthetics. Because of their compactness and thin profile, these antennas can be mounted on video displays for efficient integration in communication systems such as palmtop computers, digital telephones, and flat-panel television displays. As an array of multiple elements, the antenna subsystem may save weight by reusing space (via vertical stacking) on photovoltaic arrays or on Earth-facing sensors. Also, the antenna could go unnoticed on automobile windshields or building windows, enabling satellite uplinks and downlinks or other emerging high-frequency communications.

  12. Distributed photovoltaic systems - Addressing the utility interface issues

    NASA Astrophysics Data System (ADS)

    Firstman, S. I.; Vachtsevanos, G. J.

    This paper reviews work conducted in the United States on the impact of dispersed photovoltaic sources upon utility operations. The photovoltaic (PV) arrays are roof-mounted on residential houses and connected, via appropriate power conditioning equipment, to the utility grid. The presence of such small (4-6 Kw) dispersed generators on the distribution network raises questions of a technical, economic and institutional nature. After a brief identification of utility interface issues, the paper addresses such technical concerns as protection of equipment and personnel safety, power quality and utility operational stability. A combination of experimental and analytical approaches has been adopted to arrive at solutions to these problems. Problem areas, under various PV system penetration scenarios, are identified and conceptual designs of protection and control equipment and operating policies are developed so that system reliability is maintained while minimizing capital costs. It is hoped that the resolution of balance-of-system and grid interface questions will ascertain the economic viability of photovoltaic systems and assist in their widespread utilization in the future.

  13. Connectivity and complex systems in geomorphology: addressing some key challenges

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald; Turnbull-Lloyd, Laura; Parsons, Anthony; Bracken, Louise; Keesstra, Saskia; Masselink, Rens

    2016-04-01

    "Connectivity thinking" and related concepts have a long history in geomorphology. Since the beginning of the 21st century connectivity research experienced a huge boom in geomorphology as geomorphologists started to develop new concepts on connectivity to better understand the complexity of geomorphic systems and system response to change. However, progress in the field of connectivity in geomorphology has mostly been developing in a parallel manner, resulting in a multiplicity of definitions, concepts and methodological approaches. Nevertheless, a set of common key challenges amongst the different connectivity concepts and approaches used to understand complex geomorphic systems are also evident. In the course of a theory think tank of the COST Action ES1306 (CONNECTEUR - Connecting European Connectivity Research) the following five different key challenges were detected (Turnbull et al., in prep.): (i) defining the fundamental unit, (ii) distinguishing between structural and functional boundaries, (iii) emergent behavior, (iv) memory effects, (v) measuring connectivity. In this presentation we will a) discuss how these key challenges are addressed and approached in connectivity research in geomorphology, b) evaluate ways in which cross-disciplinary advances may be made by exploring potential for a common toolbox approach to the study of connectivity.

  14. Strengthening health information systems to address health equity challenges.

    PubMed Central

    Nolen, Lexi Bambas; Braveman, Paula; Dachs, J. Norberto W.; Delgado, Iris; Gakidou, Emmanuela; Moser, Kath; Rolfe, Liz; Vega, Jeanette; Zarowsky, Christina

    2005-01-01

    Special studies and isolated initiatives over the past several decades in low-, middle- and high-income countries have consistently shown inequalities in health among socioeconomic groups and by gender, race or ethnicity, geographical area and other measures associated with social advantage. Significant health inequalities linked to social (dis)advantage rather than to inherent biological differences are generally considered unfair or inequitable. Such health inequities are the main object of health development efforts, including global targets such as the Millennium Development Goals, which require monitoring to evaluate progress. However, most national health information systems (HIS) lack key information needed to assess and address health inequities, namely, reliable, longitudinal and representative data linking measures of health with measures of social status or advantage at the individual or small-area level. Without empirical documentation and monitoring of such inequities, as well as country-level capacity to use this information for effective planning and monitoring of progress in response to interventions, movement towards equity is unlikely to occur. This paper reviews core information requirements and potential databases and proposes short-term and longer term strategies for strengthening the capabilities of HIS for the analysis of health equity and discusses HIS-related entry points for supporting a culture of equity-oriented decision-making and policy development. PMID:16184279

  15. Pilot Non-Conformance to Alerting System Commands

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy

    1997-01-01

    This research project examined the effects of consonance between cockpit displays and alerting system as a technique to encourage pilots to conform to alerting system commands. An experiment used the task of collision avoidance during closely spaced parallel approaches as a case study, building upon previous experiments which identified instances of non-conformance and conflicts between the alerting criteria preferred by pilots, compared to that used by alerting systems. Using a workstation based, part-task simulator, each of 45 subjects completed 45 experiment runs. In each run, the subjects were told they were flying an approach. Their primary task was to keep their wings level despite turbulence through the use of a sidestick. The sidestick commands did not affect the path of the aircraft, however, so that consistent approach paths were be followed. Their secondary task was to indicate when an aircraft on a parallel approach is blundering towards them, as evidenced by the traffic display. Subjects were asked to press different buttons indicating whether they feel an avoidance maneuver is required by the traffic situation or not. At the completion of each run, subjects were asked to rate their confidence in their decision and, if appropriate, to rate the timeliness of automatic alerts when had been given. Three different automatic alert conditions were tested. The "No Automatic Alerts Given" condition is self-explanatory. In the "Automatic Alerts Based on NTZ Criteria" condition, an automatic alert was given when the NTZ criteria was triggered; this criteria is consistent with subject reactions in other studies, in which subjects were found to react, on average, when the other aircraft was 1350 min to the side of the own aircraft. In the "Automatic Alerts Based on MIT Criteria" condition, an automatic alert was given when the MIT criteria was triggered; this criteria was developed by Carpenter and Kuchar for parallel approaches to have better performance, at the

  16. Strength and conformance testing of a GCL used in a solid waste landfill lining system

    SciTech Connect

    Merrill, K.S.; O`Brien, A.J.

    1997-11-01

    This paper describes strength and conformance tests conducted on a Bentomat ST geosynthetic clay liner (GCL) used in a composite lining system for the Cells 4 and 5 expansion of the Anchorage Regional Landfill in Anchorage, Alaska. The Cells 4 and 5 lining system included use of an 80-mil, high-density polyethylene (HDPE) liner overlying a GCL on both the sideslopes and base of the cells. The use of this lining system in a Seismic Zone 4 area on relatively steep side slopes required careful evaluation of both internal shear strength of the GCL and interface friction between the GCL and textured HDPE. Laboratory tests were carried out to evaluate both peak and residual GCL internal strengths at normal loads up to 552 kiloPascals (80 pounds per square inch). Laboratory tests also were conducted to evaluate the interface strength between the GCL and Serrot box and point textured HDPE. Interface strengths between both woven and nonwoven sides of the GCL and the textured HDPE were evaluated. Considerations related to use of peak or residual strengths for various interim stability cases are described in this paper. Stability analyses using stress-dependent interface and internal strengths for the GCL are addressed. The quality assurance and conformance testing program adopted for the project on GCL is discussed also.

  17. DNA conformational behavior and compaction in biomimetic systems: Toward better understanding of DNA packaging in cell.

    PubMed

    Zinchenko, Anatoly

    2016-06-01

    In a living cell, long genomic DNA is strongly compacted and exists in the environment characterized by a dense macromolecular crowding, high concentrations of mono- and divalent cations, and confinement of ca. 10μm size surrounded by a phospholipid membrane. Experimental modelling of such complex biological system is challenging but important to understand spatiotemporal dynamics and functions of the DNA in cell. The accumulated knowledge about DNA condensation/compaction in conditions resembling those in the real cell can be eventually used to design and construct partly functional "artificial cells" having potential applications in drug delivery systems, gene therapy, and production of synthetic cells. In this review, I would like to overview the past progress in our understanding of the DNA conformational behavior and, in particular, DNA condensation/compaction phenomenon and its relation to the DNA biological activity. This understanding was gained by designing relevant experimental models mimicking DNA behavior in the environment of living cell. Starting with a brief summary of classic experimental systems to study DNA condensation/compaction, in later parts, I highlight recent experimental methodologies to address the effects of macromolecular crowding and nanoscale and microscale confinements on DNA conformation dynamics. All the studies are discussed in the light of their relevance to DNA behavior in living cells, and future prospects of the field are outlined. PMID:26976700

  18. DNA conformational behavior and compaction in biomimetic systems: Toward better understanding of DNA packaging in cell.

    PubMed

    Zinchenko, Anatoly

    2016-06-01

    In a living cell, long genomic DNA is strongly compacted and exists in the environment characterized by a dense macromolecular crowding, high concentrations of mono- and divalent cations, and confinement of ca. 10μm size surrounded by a phospholipid membrane. Experimental modelling of such complex biological system is challenging but important to understand spatiotemporal dynamics and functions of the DNA in cell. The accumulated knowledge about DNA condensation/compaction in conditions resembling those in the real cell can be eventually used to design and construct partly functional "artificial cells" having potential applications in drug delivery systems, gene therapy, and production of synthetic cells. In this review, I would like to overview the past progress in our understanding of the DNA conformational behavior and, in particular, DNA condensation/compaction phenomenon and its relation to the DNA biological activity. This understanding was gained by designing relevant experimental models mimicking DNA behavior in the environment of living cell. Starting with a brief summary of classic experimental systems to study DNA condensation/compaction, in later parts, I highlight recent experimental methodologies to address the effects of macromolecular crowding and nanoscale and microscale confinements on DNA conformation dynamics. All the studies are discussed in the light of their relevance to DNA behavior in living cells, and future prospects of the field are outlined.

  19. Design of fixed correctors used in conformal optical system based on diffractive optical elements.

    PubMed

    Zhang, Wang; Zuo, Baojun; Chen, Shouqian; Xiao, Haosu; Fan, Zhigang

    2013-01-20

    A conformal dome was designed and the aberration characteristics of the dome were analyzed using Zernike aberration theory. By deriving the equation used to correct Zernike aberrations, the phase coefficients and the phase orders of diffractive optical elements (DOEs) used to correct primary Zernike aberrations were obtained. DOEs were simulated to correct the aberrations of the conformal dome by using optical design software, and the aberrations of the conformal dome decreased dramatically. Finally, a complete cooled conformal optical system was designed. The results show that the number of the fixed corrector's elements decreases by using DOEs, and the optical system has better imaging quality.

  20. Secondary reconstruction of severe contracted eye socket using modified ocular conformer-drainage tube system.

    PubMed

    Li, Jin; Lin, Ming; Ge, Shengfang; Fan, Xianqun

    2012-07-01

    Eye socket reconstruction has been previously reported; however, few reports address reconstruction in cases of socket contracture after graft failure. This is a retrospective observational case study of 42 patients who had previously undergone eye socket reconstruction after posttraumatic enucleation owing to severe thermal or chemical injury, and each of whom presented with a severe contracted eye socket. Patients underwent free skin grafts and the placement of a modified ocular conformer-drainage tube system. Eye sockets of adequate size were created in the 42 patients. Three patients presented with gradual extrusion of the eye prosthesis due to recurrent contraction of the inferior fornix after treatment. These patients agreed to further operative procedures 6 months after secondary reconstruction surgery, which resulted in mild upward tilting of the eye prosthesis without extrusion. The prosthetic eyes fit well in all of the secondary reconstructed sockets using this technique. Our studies suggest that the modified ocular conformer-drainage tube system can efficiently control infection after secondary reconstruction of the posttraumatic contracted socket and may result in less shrinkage of skin grafts.

  1. Pilot Non-Conformance to Alerting System Commands During Closely Spaced Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Hansman, R. John

    1997-01-01

    Pilot non-conformance to alerting system commands has been noted in general and to a TCAS-like collision avoidance system in a previous experiment. This paper details two experiments studying collision avoidance during closely-spaced parallel approaches in instrument meteorological conditions (IMC), and specifically examining possible causal factors of, and design solutions to, pilot non-conformance.

  2. Pilot Non-Conformance to Alerting System Commands During Closely Spaced Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy Ruth; Hansman, R. John; Corker, Kevin (Technical Monitor)

    1997-01-01

    Cockpit alerting systems monitor potentially hazardous situations, both inside and outside the aircraft. When a hazard is projected to occur, the alerting system displays alerts and/or command decisions to the pilot. However, pilots have been observed to not conform to alerting system commands by delaying their response or by not following the automatic commands exactly. This non-conformance to the automatic alerting system can reduce its benefit. Therefore, a need exists to understand the causes and effects of pilot non-conformance in order to develop automatic alerting systems whose commands the pilots are more likely to follow. These considerations were examined through flight simulator evaluations of the collision avoidance task during closely spaced parallel approaches. This task provided a useful case-study because the effects of non-conformance can be significant, given the time-critical nature of the task. A preliminary evaluation of alerting systems identified non-conformance in over 40% of the cases and a corresponding drop in collision avoidance performance. A follow-on experiment found subjects' alerting and maneuver selection criteria were consistent with different strategies than those used by automatic systems, indicating the pilot may potentially disagree with the alerting system if the pilot attempts to verify automatic alerts and commanded avoidance maneuvers. A final experiment found supporting automatic alerts with the explicit display of its underlying criteria resulted in more consistent subject reactions. In light of these experimental results, a general discussion of pilot non-conformance is provided. Contributing factors in pilot non-conformance include a lack of confidence in the automatic system and mismatches between the alerting system's commands and the pilots' own decisions based on the information available to them. The effects of non-conformance on system performance are discussed. Possible methods of reconciling mismatches are

  3. Developing Cohesive Leadership Means Addressing All Parts of the System

    ERIC Educational Resources Information Center

    Fisher, Troyce

    2010-01-01

    In her role with the School Administrators of Iowa leading Iowa's leadership grant from The Wallace Foundation, the author works with a coalition of individuals and groups striving to implement a cohesive leadership system for school leaders. Efforts to create a cohesive leadership system in Iowa for the past nine years have resulted in many…

  4. The Future of Systems Aeronomy in Addressing New Science Frontiers

    NASA Astrophysics Data System (ADS)

    Kozyra, J. U.; Paxton, L. J.; Ridley, A.

    2005-12-01

    The future will see a new era in our ability to characterize the state of the sun-Earth system using the SEC Great Observatory, new electronic data handling and data mining technologies, high-performance sun-to-Earth models, new techniques for assimilation of sparse data, and the development of innovative worldwide research tools through integration of ground-based observing sites. The time has come to pull these developing capabilities together into an investigation that seeks to understand aeronomy at a higher level than has previously been possible. Systems Aeronomy is a study of this global system behavior but, more than that, it investigates the large-scale systems-level features that result from elemental processes, like ion-neutral coupling, plasma drifts or radiative cooling. Currently the TIMED mission is making important contributions in identifying and characterizing the "building block" processes that change, evolve and combine to form the system response. Systems Aeronomy must have observational, theoretical and computational components to succeed. One of the key requirements is the ability to capture global data sets and integrate them into a coherent picture of the ITM system and its relationship to geospace. Success requires enhanced coordination between operating satellites throughout the sun-Earth system, new techniques for creating global maps from networks of ground-based and satellite-based sensors, and a new level of international cooperation leveraging off IPY2007, IHY2007, eGY2007, CAWSES, ICESTAR, and other planned worldwide programs. Twenty years down the road, Systems Aeronomy will provide the foundation for understanding planetary atmospheres, significantly extend the range of useful space weather prediction, and provide an important approach for investigating the impacts of anthropogenic and climatological changes in the ITM and on the geospace system as a whole.

  5. NASA's Systems Engineering Approaches for Addressing Public Health Surveillance Requirements

    NASA Technical Reports Server (NTRS)

    Vann, Timi

    2003-01-01

    NASA's systems engineering has its heritage in space mission analysis and design, including the end-to-end approach to managing every facet of the extreme engineering required for successful space missions. NASA sensor technology, understanding of remote sensing, and knowledge of Earth system science, can be powerful new tools for improved disease surveillance and environmental public health tracking. NASA's systems engineering framework facilitates the match between facilitates the match between partner needs and decision support requirements in the areas of 1) Science/Data; 2) Technology; 3) Integration. Partnerships between NASA and other Federal agencies are diagrammed in this viewgraph presentation. NASA's role in these partnerships is to provide systemic and sustainable solutions that contribute to the measurable enhancement of a partner agency's disease surveillance efforts.

  6. Marine and Human Systems: Addressing Multiple Scales and Multiple Stressors

    NASA Astrophysics Data System (ADS)

    Hofmann, E. E.; Bundy, A.; Chuenpagdee, R.; Maddison, L.; Svendsen, E.

    2015-12-01

    The Integrated Marine Biogeochemistry and Ecosystem Research (IMBER) project aims to develop a comprehensive understanding of, and predictive capacity of ocean responses to accelerating global change and the consequent effects on the Earth System and human society. Understanding the changing ecology and biogeochemistry of marine ecosystems and their sensitivity and resilience to multiple drivers, pressures and stressors is critical to developing responses that will help reduce the vulnerability of marine-dependent human communities. The cumulative pressure of anthropogenic activities on marine systems is already apparent and is projected to increase in the next decades. Policy- and decision-makers need assessments of the status and trends of marine habitats, species, and ecosystems to promote sustainable human activities in the marine environment, particularly in light of global environmental change and changing social systems and human pressures. The IMBER community recently undertook a synthesis and evaluation of approaches for ecosystem-based marine governance, integrated modeling of marine social-ecological systems, and the social and ecological consequences of changing marine ecosystems. The outcomes of this activity provide assessments of current understanding, indicate approaches needed to predict the effects of multiple stressors, at multiple scales, on marine ecosystems and dependent human populations, and highlight approaches for developing innovative societal responses to changing marine ecosystems.

  7. Workshop Builds Strategies to Address Global Positioning System Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Fisher, Genene

    2011-01-01

    When we examine the impacts of space weather on society, do we really understand the risks? Can past experiences reliably predict what will happen in the future? As the complexity of technology increases, there is the potential for it to become more fragile, allowing for a single point of failure to bring down the entire system. Take the Global Positioning System (GPS) as an example. GPS positioning, navigation, and timing have become an integral part of daily life, supporting transportation and communications systems vital to the aviation, merchant marine, cargo, cellular phone, surveying, and oil exploration industries. Everyday activities such as banking, mobile phone operations, and even the control of power grids are facilitated by the accurate timing provided by GPS. Understanding the risks of space weather to GPS and the many economic sectors reliant upon it, as well as how to build resilience, was the focus of a policy workshop organized by the American Meteorological Society (AMS) and held on 13-14 October 2010 in Washington, D. C. The workshop brought together a select group of policy makers, space weather scientists, and GPS experts and users.

  8. Integrated wireless systems: The future has arrived (Keynote Address)

    NASA Astrophysics Data System (ADS)

    Rivoir, Roberto

    2005-06-01

    It is believed that we are just at the beginning with wireless, and that a new age is dawning for this breakthrough technology. Thanks to several years of industrial manufacturing in mass-market applications such as cellular phones, wireless technology has nowadays reached a level of maturity that, combined with other achievements arising from different fields, such as information technology, artificial intelligence, pervasive computing, science of new materials, and micro-electro-mechanical systems (MEMS), will enable the realization of a networked stream-flow of real-time information, that will accompany us in our daily life, in a total seamless, transparent fashion. As almost any application scenario will require the deployment of complex, miniaturized, almost "invisible" systems, operating with different wireless standards, hard technological challenges will have to be faced for designing and fabricating ultra-low-cost, reconfigurable, and multi-mode heterogeneous smart micro-devices. But ongoing, unending progresses on wireless technology keeps the promise of helping to solve important societal problems in the health-care, safety, security, industry, environment sectors, and in general opening the possibility for an improved quality of life at work, on travel, at home, practically "everywhere, anytime".

  9. Addressing Human System Risks to Future Space Exploration

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Francisco, D. R.; Davis, J. R.

    2015-01-01

    NASA is contemplating future human exploration missions to destinations beyond low Earth orbit, including the Moon, deep-space asteroids, and Mars. While we have learned much about protecting crew health and performance during orbital space flight over the past half-century, the challenges of these future missions far exceed those within our current experience base. To ensure success in these missions, we have developed a Human System Risk Board (HSRB) to identify, quantify, and develop mitigation plans for the extraordinary risks associated with each potential mission scenario. The HSRB comprises research, technology, and operations experts in medicine, physiology, psychology, human factors, radiation, toxicology, microbiology, pharmacology, and food sciences. Methods: Owing to the wide range of potential mission characteristics, we first identified the hazards to human health and performance common to all exploration missions: altered gravity, isolation/confinement, increased radiation, distance from Earth, and hostile/closed environment. Each hazard leads to a set of risks to crew health and/or performance. For example the radiation hazard leads to risks of acute radiation syndrome, central nervous system dysfunction, soft tissue degeneration, and carcinogenesis. Some of these risks (e.g., acute radiation syndrome) could affect crew health or performance during the mission, while others (e.g., carcinogenesis) would more likely affect the crewmember well after the mission ends. We next defined a set of design reference missions (DRM) that would span the range of exploration missions currently under consideration. In addition to standard (6-month) and long-duration (1-year) missions in low Earth orbit (LEO), these DRM include deep space sortie missions of 1 month duration, lunar orbital and landing missions of 1 year duration, deep space journey and asteroid landing missions of 1 year duration, and Mars orbital and landing missions of 3 years duration. We then

  10. Random countable alphabet conformal iterated function systems satisfying the transversality condition

    NASA Astrophysics Data System (ADS)

    Urbański, Mariusz

    2016-03-01

    Dealing with with countable (finite and infinite alike) alphabet random conformal iterated function systems with overlaps, we formulate appropriate transversality conditions and then prove the relevant, in such a context, the Moran-Bowen formula which determines the Hausdorff dimension of random limit sets in dynamical terms. We also provide large classes of examples of such random systems satisfying the transversality condition.

  11. Conformity with the HIRF Environment Applied to Avionic System

    NASA Astrophysics Data System (ADS)

    Tristant, F.; Rotteleur, J. P.; Moreau, J. P.

    2012-05-01

    This paper presents the qualification and certification methodology applied to the avionic system for the HIRF and Lightning environment. Several versions of this system are installed in our legacy Falcon with different variations. The paper presents the compliance process taking into account the criticality and the complexity of the system, its installation, the level of exposition for EM environment and some solutions used by Dassault Aviation to demonstrate the compliance process.

  12. Design and analysis of a conformal patch antenna for a wearable breast hyperthermia treatment system

    NASA Astrophysics Data System (ADS)

    Curto, Sergio; Ramasamy, Manoshika; Suh, Minyoung; Prakash, Punit

    2015-03-01

    To overcome the limitations of currently available clinical hyperthermia systems which are based on rigid waveguide antennas, a wearable microwave hyperthermia system is presented. A light wearable system can improve patient comfort and be located in close proximity to the breast, thereby enhancing energy deposition and reducing power requirements. The objective of this work was to design and assess the feasibility of a conformal patch antenna element of an array system to be integrated into a wearable hyperthermia bra. The feasibility of implementing antennas with silver printed ink technology on flexible substrates was evaluated. A coupled electromagnetic-bioheat transfer solver and a hemispheric heterogeneous numerical breast phantom were used to design and optimize a 915 MHz patch antenna. The optimization goals were device miniaturization, operating bandwidth, enhanced energy deposition pattern in targets, and reduced Efield back radiation. The antenna performance was evaluated for devices incorporating a hemispheric conformal groundplane and a rectangular groundplane configuration. Simulated results indicated a stable -10 dB return loss bandwidth of 88 MHz for both the conformal and rectangular groundplane configurations. Considering applied power levels restricted to 15 W, treatment volumes (T>410C) and depth from the skin surface were 11.32 cm3 and 27.94 mm, respectively, for the conformal groundplane configuration, and 2.79 cm3 and 19.72 mm, respectively, for the rectangular groundplane configuration. E-field back-radiation reduced by 85.06% for the conformal groundplane compared to the rectangular groundplane configuration. A prototype antenna with rectangular groundplane was fabricatd and experimentally evaluated. The groundplane was created by printing silver ink (Metalon JS-B25P) on polyethylene terephthalate (PET) film surface. Experiments revealed stable antenna performance for power levels up to 15.3 W. In conclusion, the proposed patch antenna with

  13. A Digitally Addressable Random-Access Image Selector and Random-Access Audio System.

    ERIC Educational Resources Information Center

    Bitzer, Donald L.; And Others

    The requirements of PLATO IV, a computer based education system at the University of Illinois, have led to the development of an improved, digitally addressable, random access image selector and a digitally addressable, random access audio device. Both devices utilize pneumatically controlled mechanical binary adders to position the mecahnical…

  14. Conformance testing strategies for DICOM protocols in a heterogenous communications system

    NASA Astrophysics Data System (ADS)

    Meyer, Ralph; Hewett, Andrew J.; Cordonnier, Emmanuel; Piqueras, Joachim; Jensch, Peter F.

    1995-05-01

    The goal of the DICOM standard is to define a standard network interface and data model for imaging devices from various vendors. It shall facilitate the development and integration of information systems and picture archiving and communication systems (PACS) in a networked environment. Current activities in Oldenburg, Germany include projects to establish cooperative work applications for radiological purposes, comprising (joined) text, data, signal and image communications, based on narrowband ISDN and ATM communication for regional and Pan European applications. In such a growing and constantly changing environment it is vital to have a solid and implementable plan to bring standards in operation. A communication standard alone cannot ensure interoperability between different vendor implementations. Even DICOM does not specify implementation-specific requirements nor does it specify a testing procedure to assess an implementation's conformance to the standard. The conformance statements defined in the DICOM standard only allow a user to determine which optional components are supported by the implementation. The goal of our work is to build a conformance test suite for DICOM. Conformance testing can aid to simplify and solve problems with multivendor systems. It will check a vendor's implementation against the DICOM standard and state the found subset of functionality. The test suite will be built in respect to the ISO 9646 Standard (OSI-Conformance Testing Methodology and Framework) which is a standard devoted to the subject of conformance testing implementations of Open Systems Interconnection (OSI) standards. For our heterogeneous communication environments we must also consider ISO 9000 - 9004 (quality management and quality assurance) to give the users the confidence in evolving applications.

  15. Effect of substituents and structural modification on conformational equilibrium in bis-quinolizidine system

    NASA Astrophysics Data System (ADS)

    Wysocka, Waleria; Brukwicki, Tadeusz; Włodarczak, Jacek

    2012-06-01

    On the basis of literature interpretation of 13C NMR and 1H NMR spectra of bis-quinolizidine alkaloids, the values of free enthalpy ΔG of conformational equilibria of those compounds were calculated. The results were analysed together with the X-ray and DFT data to discuss the effects of different substituents attached to the sparteine system in various positions as well as the effects of structural modifications on conformational equilibria. The measure of the effect was expressed by ΔΔG value, defined as the difference in ΔG of the compound under consideration and its parent compound without a given substituent.

  16. Is DNA a nonlinear dynamical system where solitary conformational waves are possible?

    PubMed

    Yakushevich, L V

    2001-09-01

    DNA is considered as a nonlinear dynamical system in which solitary conformational waves can be excited. The history of the approach, the main results, and arguments in favour and against are presented. Perspectives are discussed pertaining to studies of DNA's nonlinear properties. PMID:11568475

  17. Conformational analysis of a polyconjugated protein-binding ligand by joint quantum chemistry and polarizable molecular mechanics. Addressing the issues of anisotropy, conjugation, polarization, and multipole transferability.

    PubMed

    Goldwaser, Elodie; de Courcy, Benoit; Demange, Luc; Garbay, Christiane; Raynaud, Françoise; Hadj-Slimane, Reda; Piquemal, Jean-Philip; Gresh, Nohad

    2014-11-01

    We investigate the conformational properties of a potent inhibitor of neuropilin-1, a protein involved in cancer processes and macular degeneration. This inhibitor consists of four aromatic/conjugated fragments: a benzimidazole, a methylbenzene, a carboxythiourea, and a benzene-linker dioxane, and these fragments are all linked together by conjugated bonds. The calculations use the SIBFA polarizable molecular mechanics procedure. Prior to docking simulations, it is essential to ensure that variations in the ligand conformational energy upon rotations around its six main-chain torsional bonds are correctly represented (as compared to high-level ab initio quantum chemistry, QC). This is done in two successive calibration stages and one validation stage. In the latter, the minima identified following independent stepwise variations of each of the six main-chain torsion angles are used as starting points for energy minimization of all the torsion angles simultaneously. Single-point QC calculations of the minimized structures are then done to compare their relative energies ΔE conf to the SIBFA ones. We compare three different methods of deriving the multipoles and polarizabilities of the central, most critical moiety of the inhibitor: carboxythiourea (CTU). The representation that gives the best agreement with QC is the one that includes the effects of the mutual polarization energy E pol between the amide and thioamide moieties. This again highlights the critical role of this contribution. The implications and perspectives of these findings are discussed.

  18. 14 CFR 135.150 - Public address and crewmember interphone systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... equipped with— (a) A public address system which— (1) Is capable of operation independent of the crewmember... of this chapter. (b) A crewmember interphone system which— (1) Is capable of operation independent of... systems. 135.150 Section 135.150 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT...

  19. Non-Noether symmetries of Hamiltonian systems with conformable fractional derivatives

    NASA Astrophysics Data System (ADS)

    Lin-Li, Wang; Jing-Li, Fu

    2016-01-01

    In this paper, we present the fractional Hamilton’s canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. Firstly, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton’s canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results. Project supported by the National Natural Science Foundation of China (Grant Nos. 11272287 and 11472247), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13097), and the Key Science and Technology Innovation Team Project of Zhejiang Province, China (Grant No. 2013TD18).

  20. Addressing Two-Level Systems Variably Coupled to an Oscillating Field

    NASA Astrophysics Data System (ADS)

    Navon, Nir; Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Almog, Ido; Ozeri, Roee

    2013-08-01

    We propose a simple method to spectrally resolve an array of identical two-level systems coupled to an inhomogeneous oscillating field. The addressing protocol uses a dressing field with a spatially dependent coupling to the atoms. We validate this scheme experimentally by realizing single-spin addressing of a linear chain of trapped ions that are separated by ˜3μm, dressed by a laser field that is resonant with the micromotion sideband of a narrow optical transition.

  1. Nano-Positioning System for Structural Analysis of Functional Homomeric Proteins in Multiple Conformations

    PubMed Central

    Hyde, H. Clark; Sandtner, Walter; Vargas, Ernesto; Dagcan, Alper; Robertson, Janice L.; Roux, Benoit; Correa, Ana M.; Bezanilla, Francisco

    2012-01-01

    SUMMARY Proteins may undergo multiple conformational changes required for their function. One strategy used to estimate target site positions in unknown structural conformations involves single-pair resonance energy transfer (RET) distance measurements. However, interpretation of inter-residue distances is difficult when applied to three-dimensional structural rearrangements, especially in homomeric systems. We developed a novel method using inverse trilateration/triangulation to map target sites within a homomeric protein in all defined states with simultaneous functional recordings. The procedure accounts for probe diffusion to accurately determine the three-dimensional position and confidence region of lanthanide LRET donors attached to a target site (one/subunit), relative to a single fluorescent acceptor placed in a static site. As a first application, the method is used to determine the position of a functional voltage-gated potassium channel’s voltage sensor. Our results verify the crystal structure relaxed conformation and report on the resting and active conformations for which crystal structures are not available. PMID:23063010

  2. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Canan; Shi, Yan; Joe, Pauline; Ghaffari, Roozbeh; Balooch, Guive; Usgaonkar, Karan; Gur, Onur; Tran, Phat L.; Crosby, Jessi R.; Meyer, Marcin; Su, Yewang; Chad Webb, R.; Tedesco, Andrew S.; Slepian, Marvin J.; Huang, Yonggang; Rogers, John A.

    2015-07-01

    Mechanical assessment of soft biological tissues and organs has broad relevance in clinical diagnosis and treatment of disease. Existing characterization methods are invasive, lack microscale spatial resolution, and are tailored only for specific regions of the body under quasi-static conditions. Here, we develop conformal and piezoelectric devices that enable in vivo measurements of soft tissue viscoelasticity in the near-surface regions of the epidermis. These systems achieve conformal contact with the underlying complex topography and texture of the targeted skin, as well as other organ surfaces, under both quasi-static and dynamic conditions. Experimental and theoretical characterization of the responses of piezoelectric actuator-sensor pairs laminated on a variety of soft biological tissues and organ systems in animal models provide information on the operation of the devices. Studies on human subjects establish the clinical significance of these devices for rapid and non-invasive characterization of skin mechanical properties.

  3. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics.

    PubMed

    Dagdeviren, Canan; Shi, Yan; Joe, Pauline; Ghaffari, Roozbeh; Balooch, Guive; Usgaonkar, Karan; Gur, Onur; Tran, Phat L; Crosby, Jessi R; Meyer, Marcin; Su, Yewang; Chad Webb, R; Tedesco, Andrew S; Slepian, Marvin J; Huang, Yonggang; Rogers, John A

    2015-07-01

    Mechanical assessment of soft biological tissues and organs has broad relevance in clinical diagnosis and treatment of disease. Existing characterization methods are invasive, lack microscale spatial resolution, and are tailored only for specific regions of the body under quasi-static conditions. Here, we develop conformal and piezoelectric devices that enable in vivo measurements of soft tissue viscoelasticity in the near-surface regions of the epidermis. These systems achieve conformal contact with the underlying complex topography and texture of the targeted skin, as well as other organ surfaces, under both quasi-static and dynamic conditions. Experimental and theoretical characterization of the responses of piezoelectric actuator-sensor pairs laminated on a variety of soft biological tissues and organ systems in animal models provide information on the operation of the devices. Studies on human subjects establish the clinical significance of these devices for rapid and non-invasive characterization of skin mechanical properties. PMID:25985458

  4. Field theoretical Lie symmetry analysis: The Möbius group, exact solutions of conformal autonomous systems, and predictive model-building

    NASA Astrophysics Data System (ADS)

    Christodoulides, Kyriakos

    2014-07-01

    We study single and coupled first-order differential equations (ODEs) that admit symmetries with tangent vector fields, which satisfy the N-dimensional Cauchy-Riemann equations. In the two-dimensional case, classes of first-order ODEs which are invariant under Möbius transformations are explored. In the N dimensional case we outline a symmetry analysis method for constructing exact solutions for conformal autonomous systems. A very important aspect of this work is that we propose to extend the traditional technical usage of Lie groups to one that could provide testable predictions and guidelines for model-building and model-validation. The Lie symmetries in this paper are constrained and classified by field theoretical considerations and their phenomenological implications. Our results indicate that conformal transformations are appropriate for elucidating a variety of linear and nonlinear systems which could be used for, or inspire, future applications. The presentation is pragmatic and it is addressed to a wide audience.

  5. Near-infrared compressive line sensing imaging system using individually addressable laser diode array

    NASA Astrophysics Data System (ADS)

    Ouyang, Bing; Hou, Weilin; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.; Gong, Sue; Britton, Walter

    2015-05-01

    The compressive line sensing (CLS) active imaging system was proposed and validated through a series of test-tank experiments. As an energy-efficient alternative to the traditional line-scan serial image, the CLS system will be highly beneficial for long-duration surveillance missions using unmanned, power-constrained platforms such as unmanned aerial or underwater vehicles. In this paper, the application of an active spatial light modulator (SLM), the individually addressable laser diode array, in a CLS imaging system is investigated. In the CLS context, active SLM technology can be advantageous over passive SLMs such as the digital micro-mirror device. Initial experimental results are discussed.

  6. Fabrication and Characterization of a Conformal Skin-like Electronic System for Quantitative, Cutaneous Wound Management.

    PubMed

    Lee, Woosik; Kwon, Ohjin; Lee, Dong Sup; Yeo, Woon-Hong

    2015-09-02

    Recent advances in the development of electronic technologies and biomedical devices offer opportunities for non-invasive, quantitative assessment of cutaneous wound healing on the skin. Existing methods, however, still rely on visual inspections through various microscopic tools and devices that normally include high-cost, sophisticated systems and require well trained personnel for operation and data analysis. Here, we describe methods and protocols to fabricate a conformal, skin-like electronics system that enables conformal lamination to the skin surface near the wound tissues, which provides recording of high fidelity electrical signals such as skin temperature and thermal conductivity. The methods of device fabrication provide details of step-by-step preparation of the microelectronic system that is completely enclosed with elastomeric silicone materials to offer electrical isolation. The experimental study presents multifunctional, biocompatible, waterproof, reusable, and flexible/stretchable characteristics of the device for clinical applications. Protocols of clinical testing provide an overview and sequential process of cleaning, testing setup, system operation, and data acquisition with the skin-like electronics, gently mounted on hypersensitive, cutaneous wound and contralateral tissues on patients.

  7. Fabrication and Characterization of a Conformal Skin-like Electronic System for Quantitative, Cutaneous Wound Management.

    PubMed

    Lee, Woosik; Kwon, Ohjin; Lee, Dong Sup; Yeo, Woon-Hong

    2015-01-01

    Recent advances in the development of electronic technologies and biomedical devices offer opportunities for non-invasive, quantitative assessment of cutaneous wound healing on the skin. Existing methods, however, still rely on visual inspections through various microscopic tools and devices that normally include high-cost, sophisticated systems and require well trained personnel for operation and data analysis. Here, we describe methods and protocols to fabricate a conformal, skin-like electronics system that enables conformal lamination to the skin surface near the wound tissues, which provides recording of high fidelity electrical signals such as skin temperature and thermal conductivity. The methods of device fabrication provide details of step-by-step preparation of the microelectronic system that is completely enclosed with elastomeric silicone materials to offer electrical isolation. The experimental study presents multifunctional, biocompatible, waterproof, reusable, and flexible/stretchable characteristics of the device for clinical applications. Protocols of clinical testing provide an overview and sequential process of cleaning, testing setup, system operation, and data acquisition with the skin-like electronics, gently mounted on hypersensitive, cutaneous wound and contralateral tissues on patients. PMID:26381652

  8. A prognostic scoring system for locoregional control in nasopharyngeal carcinoma following conformal radiotherapy

    SciTech Connect

    Cheng, S.H.; Tsai, S.Y.; Horng, C.-F.; Yen, K.L.; Jian, James J.; Chan, Kwan-Yee; Lin, C.-Y.; Terng, S.-D.; Tsou, M.-H.; Chu, N.-M.; Chen, H.-H.; Hsieh, C.-I.; Tan, T.-D.; Chen, P.-L.; Chung, Y.L.; Huang, Andrew T. |

    2006-11-15

    Purpose: This study established a prognostic scoring system for nasopharyngeal carcinoma (NPC), which estimates the probability of locoregional (LR) control following definitive conformal radiotherapy. Methods and Materials: Patients with nondisseminated NPC at initial presentation (n = 630) were enrolled in this study. All patients had magnetic resonance imaging of the head and neck and were treated with conformal radiotherapy. Among them, 93% had concurrent chemotherapy, and 76% had postradiation chemotherapy. The extent of the primary tumor, age at diagnosis, primary tumor size, tumor and nodal classification, histology, and serum lactate dehydrogenase (LDH) level before treatment were included in the analysis for building a prognostic scoring system. The end point for this study was LR control. Results: The prognostic score was defined as the number of adverse prognostic factors present at diagnosis. Four factors had similarly independent prognostic effects (hazard ratio, 2.0-2.6): age >40 years, histologic WHO type I-II, serum LDH level {>=}410 U/L, and involvement of two or more sites of the following anatomic structures, i.e., sphenoid floor, clivus marrow, clivus cortex, prevertebral muscles, and petrous bone. The score predicted the 5-year probability of LR control as follows: 0 (15% of the patients), 100%; 1 (42% of the patients), 93%; 2 (29% of the patients), 83%; 3 or higher (13% of the patients), 71%. Conclusion: This scoring system is useful in the decision-making for individual patients and the design of clinical trials to improve LR control for advanced-stage NPC.

  9. Improving reservoir conformance using gelled polymer systems. Third quarterly report, March 25, 1993--June 24, 1993

    SciTech Connect

    Green, D.W.; Willhite, G.P.; Buller, C.; McCool, S.; Vossoughi, S.; Michnick, M.

    1993-07-01

    The general objectives are to (1) to identify and develop gelled polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) to determine the performance of these systems in bulk and in porous media, and (3) to develop methods to predict the capability of these systems to recover oil from petroleum reservoirs. This work focuses on three types of gel systems - an aqueous polysaccharide (KUSP1) system that gels as a function of pH, the chromium-based system where polyacrylamide and xanthan are crosslinked by CR(III) and an organic crosslinked system. Development of the KUSP1 system and evaluation and identification of a suitable organic crosslinked system will be done. The laboratory research is directed at the fundamental understanding of the physics and chemistry of the gelation process in bulk form and in porous media. This knowledge will be used to develop conceptual and mathematical models of the gelation process. Mathematical models will then be extended to predict the performance of gelled polymer treatments in oil reservoirs. Accomplishments for this quarter are presented for the following tasks: development and selection of gelled polymer systems; physical and chemical characterization of gel systems; mechanism of in situ gelation; and mathematical modelling of gel systems.

  10. An investigation of conformable antennas for the astronaut backpack communication system

    NASA Technical Reports Server (NTRS)

    Long, Stuart A.; Jackson, David R.; Williams, Jeffery T.; Wilton, Donald R.

    1988-01-01

    During periods of extravehicular activity it is obviously important that communication and telemetry systems continue to function independently of the astronaut. A system of antennas must therefore be designed that will provide the necessary isotropic coverage using circular polarization over both the transmit and receive frequency bands. To avoid the inherent physical limitations to motion that would be incurred with any sort of protruding antenna, it is necessary that the radiator be essentially flush-mounted or conformable to the structure on which it is attached. Several individual antenna elements are needed for the desired coverage. Both the particular elements chosen and their location determine the ultimate radiation pattern of the overall system. For these reasons a two-fold research plan was undertaken. First, individual elements were investigated and designed. Then various mounting locations were considered and the radiation patterns were predicted taking into account the effects of the astronaut's backpack.

  11. Continental-Scale Stable Isotope Measurements at NEON to Address Ecological Processes Across Systems

    NASA Astrophysics Data System (ADS)

    Luo, H.; Goodman, K. J.; Hinckley, E. S.; West, J. B.; Williams, D. G.; Bowen, G. J.

    2013-12-01

    The National Ecological Observatory Network (NEON) is a national-scale research platform. The overarching goal of NEON is to enable understanding and forecasting of the impacts of climate change, land use change, and invasive species on aspects of continental-scale ecology (such as biodiversity, biogeochemistry, infectious diseases, ecohydrology, etc.). NEON focuses explicitly on questions that relate to grand challenges in environmental science, are relevant to large regions, and would otherwise be very difficult to address with traditional ecological approaches. The use of stable isotope approaches in ecological research has grown steadily during the last two decades. Stable isotopes at natural abundances in the environment trace and integrate the interaction between abiotic and biotic components across temporal and spatial scales. In this poster, we will present the NEON data products that incorporate stable isotope measurements in atmospheric, terrestrial, and aquatic ecosystems in North America. We further outline current questions in the natural sciences community and how these data products can be used to address continental-scale ecological questions, such as the ecological impacts of climate change, terrestrial-aquatic system linkages, land-atmosphere exchange, landscape ecohydrological processes, and linking biogeochemical cycles across systems. Specifically, we focus on the use of stable isotopes to evaluate water availability and residence times in terrestrial systems, as well as nutrient sources to terrestrial systems, and cycling across ecosystem boundaries.

  12. Rural system addresses social, economic needs. Cooperation, education, and advocacy revitalize a region's healthcare delivery.

    PubMed

    Rheinecker, P

    1992-01-01

    In recent years leaders at Presentation Health System (PHS), Sioux Falls, SD, have expanded their mission to help strengthen local communities economically and socially. PHS now offers support to rural leaders in business, politics, and healthcare through its Center for Rural Health and Economic Development. In addition, educational outreach coordinators have created programs that address the needs of the entire rural community. To establish an effective network of services in the region, two of the system's tertiary care hospitals are collaborating to provide emergency helicopter service. These larger facilities also extend outreach services to rural hospitals and clinics. PHS assists rural hospitals in grant writing and in adapting to changing government reimbursement rules. In addition, the healthcare system coordinates a group purchasing program and a debt collection agency. An important voice for its region's healthcare needs, PHS has worked with the state of South Dakota to address problems and concerns about emergency medical services. The system also publishes Report, a quarterly newsletter that keeps rural residents abreast of healthcare issues affecting them. Two years ago, PHS's Center for Rural Health and Economic Development sponsored its first Invitational Rural Health Leadership Conference. These annual conferences bring together leaders to examine ways to improve rural healthcare delivery by strengthening the social and economic fabric of rural communities. PMID:10119539

  13. OSI Conformance Testing for Bibliographic Applications.

    ERIC Educational Resources Information Center

    Arbez, Gilbert; Swain, Leigh

    1990-01-01

    Describes the development of Open Systems Interconnection (OSI) conformance testing sites, conformance testing tools, and conformance testing services. Discusses related topics such as interoperability testing, arbitration testing, and international harmonization of conformance testing. A glossary is included. (24 references) (SD)

  14. Improving reservoir conformance using gelled polymer systems. Annual report, September 25, 1994--September 24, 1995

    SciTech Connect

    Green, D.W.; Willhite, G.P.

    1996-05-01

    The objectives of the research program are to (1) identify and develop polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focused on four types of gel systems -- KUSP1 systems which contain an aqueous polysaccharide designated KUSP1, phenolic-aldehyde systems composed of resorcinol and formaldehyde, colloidal-dispersion systems composed of polyacrylamide and aluminum citrate, and a chromium-based system where polyacrylamide is crosslinked by chromium(III). Gelation behavior of the resorcinol-formaldehyde systems and the KUSP1-borate system was examined. Size distributions of aggregates that form in the polyacrylamide-aluminum colloidal-dispersion gel system were determined. Permeabilities to brine of several rock materials were significantly reduced by gel treatments using the KUSP1 polymer-ester (monoethylphthalate) system, the KUSP1 polymer-boric acid system, and the sulfomethylated resorcinol-formaldehyde system. The KUSP1 polymer-ester system and the sulfomethylated resorcinol-formaldehyde system were also shown to significantly reduce the permeability to super-critical carbon dioxide. A mathematical model was developed to simulate the behavior of a chromium redox-polyacrylamide gel system that is injected through a wellbore into a multi-layer reservoir in which crossflow between layers is allowed. The model describes gelation kinetics and filtration of pre-gel aggregates in the reservoir. Studies using the model demonstrated the effect filtration of gel aggregates has on the placement of gel systems in layered reservoirs.

  15. Practices Changes in the Child Protection System to Address the Needs of Parents With Cognitive Disabilities

    PubMed Central

    Azar, Sandra T.; Maggi, Mirella C.; Proctor, Stephon Nathanial

    2016-01-01

    Parents with cognitive disabilities (PCD) are over-represented in the child protection system. However, the current state of the child protection system is not well prepared for working with them. Biases that exist against their parenting, the need for accommodations in assessment and intervention practices, and specific training in staff and cross systems barriers need to be addressed. This paper argues for changes that will ensure such parents are more effectively served and that child protection staff and contract providers are better equipped to work with them. Specific changes are discussed in assessment and intervention practices. These changes will require human capacity building and organizational restructuring. Although empirically based behavioral approaches with PCD will be emphasized, recent empirical work suggests that social information processing and neurocognitive problems occur in PCD. Approaches to working with such problems are emerging and must also be considered and integrated into a blueprint for change. PMID:27610050

  16. Practices Changes in the Child Protection System to Address the Needs of Parents With Cognitive Disabilities

    PubMed Central

    Azar, Sandra T.; Maggi, Mirella C.; Proctor, Stephon Nathanial

    2016-01-01

    Parents with cognitive disabilities (PCD) are over-represented in the child protection system. However, the current state of the child protection system is not well prepared for working with them. Biases that exist against their parenting, the need for accommodations in assessment and intervention practices, and specific training in staff and cross systems barriers need to be addressed. This paper argues for changes that will ensure such parents are more effectively served and that child protection staff and contract providers are better equipped to work with them. Specific changes are discussed in assessment and intervention practices. These changes will require human capacity building and organizational restructuring. Although empirically based behavioral approaches with PCD will be emphasized, recent empirical work suggests that social information processing and neurocognitive problems occur in PCD. Approaches to working with such problems are emerging and must also be considered and integrated into a blueprint for change.

  17. Improving reservoir conformance using gelled polymer systems. Final report, September 25, 1992--July 31, 1996

    SciTech Connect

    Green, D.W.; Willhite, G.P.; Buller, C.; McCool, S.; Vossoughi, S.; Michnick, M.

    1997-06-01

    The objectives of the research program were to (1) identify and develop polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focused on four types of gel systems--KUSP1 systems that contain an aqueous polysaccharide designated KUSP1, phenolic-aldehyde systems composed of resorcinol and formaldehyde, colloidal-dispersion systems composed of polyacrylamide and aluminum citrate, and a chromium-based system where polyacrylamide is crosslinked by chromium(III). Gelation behavior of the resorcinol-formaldehyde systems and the KUSP1-borate system was examined. Size distributions of aggregates that form in the polyacrylamide-aluminum colloidal-dispersion gel system were determined. Permeabilities to brine of several rock materials were significantly reduced by gel treatments using the KUSP1 polymer-ester (monoethyl phthalate) system, the KUSP1 polymer-boric acid system, and the sulfomethylated resorcinol-formaldehyde system were also shown to significantly reduce the permeability to supercritical carbon dioxide. A mathematical model was developed to simulate the behavior of a chromium redox-polyacrylamide gel system that is injected through a wellbore into a multi-layer reservoir in which crossflow between layers is allowed. The model describes gelation kinetics and filtration of pre-gel aggregates in the reservoir. Studies using the model demonstrated the effect filtration of gel aggregates has on the placement of gel systems in layered reservoirs.

  18. Identification of manganese as a toxicant in a groundwater treatment system: Addressing naturally occurring toxicants

    SciTech Connect

    Goodfellow, W. Jr.; Sohn, V.; Richey, M.; Yost, J.

    1995-12-31

    Effluent from a groundwater remediation system at a bulk oil storage and distribution terminal has been chronically toxic to Ceriodaphnia dubia. The remediation system was designed in response to a hydrocarbon plume in the area of the terminal. The remediation system consists of a series of groundwater recovery wells and groundwater intercept trench systems with groundwater treatment and phased-separated hydrocarbon recovery systems. The groundwater treatment and petroleum recovery systems consist of oil/water separators, product recovery tanks, air strippers, filters, and carbon adsorption units. The characteristics of this effluent are low total suspended solids, total dissolved solids, and hardness concentrations as well as meeting stringent NPDES permit requirements for lead, copper, zinc, mercury, total petroleum hydrocarbons, and BTEX. Additional priority pollutant evaluations revealed no compounds of concern. Performance of a Toxicity identification Evaluation (TIE) indicated that manganese was the principle toxicant in the effluent. Manganese is a naturally occurring constituent in this groundwater source and is not added to the treatment system. This paper will present the results of the TIE with a discussion of treatability/control options for manganese control at this facility. Recommendations for addressing naturally occurring toxicants that are not a result of the facility`s operations will also be presented.

  19. Addressing healthcare.

    PubMed

    Daly, Rich

    2013-02-11

    Though President Barack Obama has rarely made healthcare references in his State of the Union addresses, health policy experts are hoping he changes that strategy this year. "The question is: Will he say anything? You would hope that he would, given that that was the major issue he started his presidency with," says Dr. James Weinstein, left, of the Dartmouth-Hitchcock health system. PMID:23487896

  20. An approach to addressing governance from a health system framework perspective

    PubMed Central

    2011-01-01

    As countries strive to strengthen their health systems in resource constrained contexts, policy makers need to know how best to improve the performance of their health systems. To aid these decisions, health system stewards should have a good understanding of how health systems operate in order to govern them appropriately. While a number of frameworks for assessing governance in the health sector have been proposed, their application is often hindered by unrealistic indicators or they are overly complex resulting in limited empirical work on governance in health systems. This paper reviews contemporary health sector frameworks which have focused on defining and developing indicators to assess governance in the health sector. Based on these, we propose a simplified approach to look at governance within a common health system framework which encourages stewards to take a systematic perspective when assessing governance. Although systems thinking is not unique to health, examples of its application within health systems has been limited. We also provide an example of how this approach could be applied to illuminate areas of governance weaknesses which are potentially addressable by targeted interventions and policies. This approach is built largely on prior literature, but is original in that it is problem-driven and promotes an outward application taking into consideration the major health system building blocks at various levels in order to ensure a more complete assessment of a governance issue rather than a simple input-output approach. Based on an assessment of contemporary literature we propose a practical approach which we believe will facilitate a more comprehensive assessment of governance in health systems leading to the development of governance interventions to strengthen system performance and improve health as a basic human right. PMID:22136318

  1. Nuclear decontamination technology evaluation to address contamination of a municipal water system

    SciTech Connect

    McFee, J.; Langsted, J.; Young, M.; Porcon, J.; Day, E.

    2007-07-01

    The US Environmental Protection Agency (EPA) and US Department of Homeland Security (DHS) are considering the impact and recovery from contamination of municipal water systems, including intentional contamination of those systems. Industrial chemicals, biological agents, drugs, pesticides, chemical warfare agents, and radionuclides all could be introduced into a municipal water system to create detrimental health effects and disrupt a community. Although unintentional, the 1993 cryptosporidium contamination of the Milwaukee WS water system resulted in 100 fatalities and disrupted the city for weeks. Shaw Environmental and Infrastructure Inc, (Shaw), as a subcontractor on a DHS contract with Michael Baker Jr., Inc., was responsible for evaluation of the impact and recovery from radionuclide contamination in a municipal water system distribution system. Shaw was tasked to develop a matrix of nuclear industry decontamination technologies and evaluate applicability to municipal water systems. Shaw expanded the evaluation to include decontamination methods commonly used in the drinking water supply. The matrix compared all technologies for implementability, effectiveness, and cost. To address the very broad range of contaminants and contamination scenarios, Shaw bounded the problem by identification of specific contaminant release scenario(s) for specific water system architecture(s). A decontamination technology matrix was developed containing fifty-nine decontamination technologies potentially applicable to the water distribution system piping, pumps, tanks, associated equipment, and/or contaminated water. Qualitatively, the majority of the nuclear industry decontamination technologies were eliminated from consideration due to implementability concerns. However, inclusion of the municipal water system technologies supported recommendations that combined the most effective approaches in both industries. (authors)

  2. Using Systems Approaches to Address Challenges for Clinical Implementation of Pharmacogenomics

    PubMed Central

    Karnes, Jason H; Van Driest, Sara; Bowton, Erica A; Weeke, Peter E; Mosley, Jonathan D; Peterson, Josh F; Denny, Joshua C

    2014-01-01

    Many genetic variants have been shown to affect drug response through changes in drug efficacy and likelihood of adverse effects. Much of pharmacogenomic science has focused on discovering and clinically implementing single gene variants with large effect sizes. Given the increasing complexities of drug responses and their variability, a systems approach may be enabling for discovery of new biology in this area. Further, systems approaches may be useful in addressing challenges in moving these data to clinical implementation, including creation of predictive models of drug response phenotypes, improved clinical decision-making through complex biological models, improving strategies for integrating genomics into clinical practice, and evaluating the impact of implementation programs on public health. PMID:24319008

  3. Improving reservoir conformance using gelled polymer systems. Annual report, September 15, 1993--September 24, 1994

    SciTech Connect

    Green, D.W.; Willhite, G.P.

    1995-07-01

    The objectives of the research program are to (1) identify and develop polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focuses on three types of aqueous gel systems - a polysaccharide (KUSP1) that gels as a function of pH, a polyacrylamide-chromium(III) system and a polyacrylamide-aluminum citrate system. This report describes work conducted during the second year of a three-year program. Progress was made in the utilization of KUSP1 as a gelling agent. It was shown that gels can be formed in situ in porous media using CO{sub 2} or ester hydrolysis to lower pH. An ester was identified that could be used in field-scale operations. It was determined that KUSP1 will form strong gels when ortho boric acid is added to the system. It was also determined, in cooperation with Abbott Laboratories, that KUSP1 can be produced on a commercial scale. Rheological studies showed that shear rate significantly affects gelation time and gel strength. The effect of rock-fluid interactions at alkaline conditions was examined experimentally and through mathematical modeling. A model was developed that treats non-equilibrium conditions and this is an improvement over previously published models.

  4. Improving reservoir conformance using gelled polymer systems. Annual report, September 25, 1992--September 24, 1993

    SciTech Connect

    Green, D.W.; Willhite, G.P.

    1994-08-01

    The general objectives of the research program are to (1) identify and develop gelled polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focuses on three types of gel systems-an aqueous polysaccharide (KUSPI) that gels as a function of pH, polyacrylamide or xanthan crosslinked by CR(III) and a polyacrylamide-aluminum citrate system. Work to date has focused primarily on development of a database, selection of systems, and work to characterize the gel/polymer physical properties and kinetics. The use of ester hydrolysis to control the rate of pH change of a gel system has been investigated and this approach to gel-time control shows promise. Extensive kinetic data were taken on the uptake of CR(III) oligomers by polyacrylamide. A model was developed which describes very well the monomer uptake rates. The model described the dimer uptake data less well and the trimer uptake data poorly. Studies of the flow and gelation in rock materials have been initiated. A mathematical model of rock-fluid interaction during flow of high pH solutions has been developed.

  5. Large system change challenges: addressing complex critical issues in linked physical and social domains

    NASA Astrophysics Data System (ADS)

    Waddell, Steve; Cornell, Sarah; Hsueh, Joe; Ozer, Ceren; McLachlan, Milla; Birney, Anna

    2015-04-01

    Most action to address contemporary complex challenges, including the urgent issues of global sustainability, occurs piecemeal and without meaningful guidance from leading complex change knowledge and methods. The potential benefit of using such knowledge is greater efficacy of effort and investment. However, this knowledge and its associated tools and methods are under-utilized because understanding about them is low, fragmented between diverse knowledge traditions, and often requires shifts in mindsets and skills from expert-led to participant-based action. We have been engaged in diverse action-oriented research efforts in Large System Change for sustainability. For us, "large" systems can be characterized as large-scale systems - up to global - with many components, of many kinds (physical, biological, institutional, cultural/conceptual), operating at multiple levels, driven by multiple forces, and presenting major challenges for people involved. We see change of such systems as complex challenges, in contrast with simple or complicated problems, or chaotic situations. In other words, issues and sub-systems have unclear boundaries, interact with each other, and are often contradictory; dynamics are non-linear; issues are not "controllable", and "solutions" are "emergent" and often paradoxical. Since choices are opportunity-, power- and value-driven, these social, institutional and cultural factors need to be made explicit in any actionable theory of change. Our emerging network is sharing and building a knowledge base of experience, heuristics, and theories of change from multiple disciplines and practice domains. We will present our views on focal issues for the development of the field of large system change, which include processes of goal-setting and alignment; leverage of systemic transitions and transformation; and the role of choice in influencing critical change processes, when only some sub-systems or levels of the system behave in purposeful ways

  6. Addressing Impacts of Geomagnetic Disturbances on the North American Bulk Power System

    NASA Astrophysics Data System (ADS)

    Rollison, Eric; Moura, John; Lauby, Mark

    2011-08-01

    In a joint report issued in June 2010, the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy (DOE) identified geomagnetic disturbances as a high-impact, low-frequency (HILF) event risk to bulk power system reliability. The potential impact of geomagnetic disturbance events has gained renewed attention as recent studies have suggested that solar storms may be more severe and reach lower geographic latitudes than formerly expected and can affect bulk power system reliability. The most well known power system experience with geomagnetic disturbances in North America was the 13-14 March 1989 storm, which led to the collapse of the Hydro-Québec system in the early morning hours of 13 March 1989, lasting approximately 9 hours. NERC is actively addressing a range of HILF event risks to bulk power system reliability through the efforts of four of its task forces: Geomagnetic Disturbance, Spare Equipment Database, Cyber and Physical Attack, and Severe Impact Resilience. These task forces operate under the direction of three NERC committees: Planning, Operating, and Critical Infrastructure Protection. The NERC Geomagnetic Disturbance Task Force (GMDTF), which was established in September 2010, is charged with investigating the implications of geomagnetic disturbances to the reliability of bulk power systems and developing solutions to help mitigate these risks. The objective of these efforts is to develop models to better understand the nature and effects of coronal mass ejections (CMEs), the vulnerabilities of equipment, bulk power system design considerations, our ability to reduce the operational and real-time impacts of geomagnetic disturbances on the bulk power system, and restoration methods, as well as to inventory long-lead-time equipment. For more information on the current activities of the GMDTF, please visit: www.nerc.com/filez/gmdtf.html

  7. Renyi entanglement entropies of descendant states in critical systems with boundaries: conformal field theory and spin chains

    NASA Astrophysics Data System (ADS)

    Taddia, Luca; Ortolani, Fabio; Pálmai, Tamás

    2016-09-01

    We discuss the Renyi entanglement entropies of descendant states in critical one-dimensional systems with boundaries, that map to boundary conformal field theories in the scaling limit. We unify the previous conformal-field-theory approaches to describe primary and descendant states in systems with both open and closed boundaries. We provide universal expressions for the first two descendants in the identity family. We apply our technique to critical systems belonging to different universality classes with non-trivial boundary conditions that preserve conformal invariance, and find excellent agreement with numerical results obtained for finite spin chains. We also demonstrate that entanglement entropies are a powerful tool to resolve degeneracy of higher excited states in critical lattice models.

  8. Addressing Neuroplastic Changes in Distributed Areas of the Nervous System Associated With Chronic Musculoskeletal Disorders.

    PubMed

    Pelletier, René; Higgins, Johanne; Bourbonnais, Daniel

    2015-11-01

    Present interventions utilized in musculoskeletal rehabilitation are guided, in large part, by a biomedical model where peripheral structural injury is believed to be the sole driver of the disorder. There are, however, neurophysiological changes across different areas of the peripheral and central nervous systems, including peripheral receptors, dorsal horn of the spinal cord, brain stem, sensorimotor cortical areas, and the mesolimbic and prefrontal areas associated with chronic musculoskeletal disorders, including chronic low back pain, osteoarthritis, and tendon injuries. These neurophysiological changes appear not only to be a consequence of peripheral structural injury but also to play a part in the pathophysiology of chronic musculoskeletal disorders. Neurophysiological changes are consistent with a biopsychosocial formulation reflecting the underlying mechanisms associated with sensory and motor findings, psychological traits, and perceptual changes associated with chronic musculoskeletal conditions. These changes, therefore, have important implications in the clinical manifestation, pathophysiology, and treatment of chronic musculoskeletal disorders. Musculoskeletal rehabilitation professionals have at their disposal tools to address these neuroplastic changes, including top-down cognitive-based interventions (eg, education, cognitive-behavioral therapy, mindfulness meditation, motor imagery) and bottom-up physical interventions (eg, motor learning, peripheral sensory stimulation, manual therapy) that induce neuroplastic changes across distributed areas of the nervous system and affect outcomes in patients with chronic musculoskeletal disorders. Furthermore, novel approaches such as the use of transcranial direct current stimulation and repetitive transcranial magnetic stimulation may be utilized to help renormalize neurological function. Comprehensive treatment addressing peripheral structural injury as well as neurophysiological changes occurring across

  9. Constructing Surrogate Models of Complex Systems with Enhanced Sparsity: Quantifying the Influence of Conformational Uncertainty in Biomolecular Solvation

    DOE PAGES

    Lei, Huan; Yang, Xiu; Zheng, Bin; Lin, Guang; Baker, Nathan A.

    2015-11-05

    Biomolecules exhibit conformational fluctuations near equilibrium states, inducing uncertainty in various biological properties in a dynamic way. We have developed a general method to quantify the uncertainty of target properties induced by conformational fluctuations. Using a generalized polynomial chaos (gPC) expansion, we construct a surrogate model of the target property with respect to varying conformational states. We also propose a method to increase the sparsity of the gPC expansion by defining a set of conformational “active space” random variables. With the increased sparsity, we employ the compressive sensing method to accurately construct the surrogate model. We demonstrate the performance ofmore » the surrogate model by evaluating fluctuation-induced uncertainty in solvent-accessible surface area for the bovine trypsin inhibitor protein system and show that the new approach offers more accurate statistical information than standard Monte Carlo approaches. Further more, the constructed surrogate model also enables us to directly evaluate the target property under various conformational states, yielding a more accurate response surface than standard sparse grid collocation methods. In particular, the new method provides higher accuracy in high-dimensional systems, such as biomolecules, where sparse grid performance is limited by the accuracy of the computed quantity of interest. Finally, our new framework is generalizable and can be used to investigate the uncertainty of a wide variety of target properties in biomolecular systems.« less

  10. Constructing Surrogate Models of Complex Systems with Enhanced Sparsity: Quantifying the Influence of Conformational Uncertainty in Biomolecular Solvation

    SciTech Connect

    Lei, Huan; Yang, Xiu; Zheng, Bin; Lin, Guang; Baker, Nathan A.

    2015-11-05

    Biomolecules exhibit conformational fluctuations near equilibrium states, inducing uncertainty in various biological properties in a dynamic way. We have developed a general method to quantify the uncertainty of target properties induced by conformational fluctuations. Using a generalized polynomial chaos (gPC) expansion, we construct a surrogate model of the target property with respect to varying conformational states. We also propose a method to increase the sparsity of the gPC expansion by defining a set of conformational “active space” random variables. With the increased sparsity, we employ the compressive sensing method to accurately construct the surrogate model. We demonstrate the performance of the surrogate model by evaluating fluctuation-induced uncertainty in solvent-accessible surface area for the bovine trypsin inhibitor protein system and show that the new approach offers more accurate statistical information than standard Monte Carlo approaches. Further more, the constructed surrogate model also enables us to directly evaluate the target property under various conformational states, yielding a more accurate response surface than standard sparse grid collocation methods. In particular, the new method provides higher accuracy in high-dimensional systems, such as biomolecules, where sparse grid performance is limited by the accuracy of the computed quantity of interest. Finally, our new framework is generalizable and can be used to investigate the uncertainty of a wide variety of target properties in biomolecular systems.

  11. Constructing Surrogate Models of Complex Systems with Enhanced Sparsity: Quantifying the influence of conformational uncertainty in biomolecular solvation

    SciTech Connect

    Lei, Huan; Yang, Xiu; Zheng, Bin; Baker, Nathan A.

    2015-11-05

    Biomolecules exhibit conformational fluctuations near equilibrium states, inducing uncertainty in various biological properties in a dynamic way. We have developed a general method to quantify the uncertainty of target properties induced by conformational fluctuations. Using a generalized polynomial chaos (gPC) expansion, we construct a surrogate model of the target property with respect to varying conformational states. We also propose a method to increase the sparsity of the gPC expansion by defining a set of conformational “active space” random variables. With the increased sparsity, we employ the compressive sensing method to accurately construct the surrogate model. We demonstrate the performance of the surrogate model by evaluating fluctuation-induced uncertainty in solvent-accessible surface area for the bovine trypsin inhibitor protein system and show that the new approach offers more accurate statistical information than standard Monte Carlo approaches. Further more, the constructed surrogate model also enables us to directly evaluate the target property under various conformational states, yielding a more accurate response surface than standard sparse grid collocation methods. In particular, the new method provides higher accuracy in high-dimensional systems, such as biomolecules, where sparse grid performance is limited by the accuracy of the computed quantity of interest. Our new framework is generalizable and can be used to investigate the uncertainty of a wide variety of target properties in biomolecular systems.

  12. CONSTRUCTING SURROGATE MODELS OF COMPLEX SYSTEMS WITH ENHANCED SPARSITY: QUANTIFYING THE INFLUENCE OF CONFORMATIONAL UNCERTAINTY IN BIOMOLECULAR SOLVATION*

    PubMed Central

    Lei, H.; Yang, X.; Zheng, B.; Lin, G.; Baker, N. A.

    2015-01-01

    Biomolecules exhibit conformational fluctuations near equilibrium states, inducing uncertainty in various biological properties in a dynamic way. We have developed a general method to quantify the uncertainty of target properties induced by conformational fluctuations. Using a generalized polynomial chaos (gPC) expansion, we construct a surrogate model of the target property with respect to varying conformational states. To alleviate the high-dimensionality of the corresponding stochastic space, we propose a method to increase the sparsity of the gPC expansion by defining a set of conformational “active space” random variables. With the increased sparsity, we employ the compressive sensing method to accurately construct the surrogate model. We demonstrate the performance of the surrogate model by evaluating fluctuation-induced uncertainty in solvent-accessible surface area for the bovine trypsin inhibitor protein system and show that the new approach offers more accurate statistical information than standard Monte Carlo approaches. Furthermore, the constructed surrogate model also enables us to directly evaluate the target property under various conformational states, yielding a more accurate response surface than standard sparse grid collocation methods. In particular, the new method provides higher accuracy in high-dimensional systems, such as biomolecules, where sparse grid performance is limited by the accuracy of the computed quantity of interest. Our new framework is generalizable and can be used to investigate the uncertainty of a wide variety of target properties in biomolecular systems. PMID:26766929

  13. Effective target binarization method for linear timed address-event vision system

    NASA Astrophysics Data System (ADS)

    Xu, Jiangtao; Zou, Jiawei; Yan, Shi; Gao, Zhiyuan

    2016-06-01

    This paper presents an effective target binarization method for a linear timed address-event (TAE) vision system. In the preprocessing phase, TAE data are processed by denoising, thinning, and edge connection methods sequentially to obtain the denoised- and clear-event contours. Then, the object region will be confirmed by an event-pair matching method. Finally, the image open and close operations of morphology methods are introduced to remove the artifacts generated by event-pair mismatching. Several degraded images were processed by our method and some traditional binarization methods, and the experimental results are provided. As compared with other methods, the proposed method performs efficiently on extracting the target region and gets satisfactory binarization results from object images with low-contrast and nonuniform illumination.

  14. Potential effects of the introduction of the discrete address beacon system data link on air/ground information transfer problems

    NASA Technical Reports Server (NTRS)

    Grayson, R. L.

    1981-01-01

    This study of Aviation Safety Reporting System reports suggests that benefits should accure from implementation of discrete address beacon system data link. The phase enhanced terminal information system service is expected to provide better terminal information than present systems by improving currency and accuracy. In the exchange of air traffic control messages, discrete address insures that only the intended recipient receives and acts on a specific message. Visual displays and printer copy of messages should mitigate many of the reported problems associated with voice communications. The problems that remain unaffected include error in addressing the intended recipient and messages whose content is wrong but are otherwise correct as to format and reasonableness.

  15. Effect of different flooring systems on claw conformation of dairy cows.

    PubMed

    Telezhenko, E; Bergsten, C; Magnusson, M; Nilsson, C

    2009-06-01

    The effect of different flooring surfaces in walking and standing areas on claw conformation, claw horn growth, and wear was studied in 2 experiments during 2 consecutive housing seasons in a research dairy herd of 170 cows. In experiment 1, the flooring systems tested were solid rubber mats, mastic asphalt with and without rubber-matted feed-stalls, and aged concrete slats. In experiment 2, slatted concrete flooring was compared with slatted rubber flooring. The cows were introduced to the respective flooring systems in early lactation and their claws were trimmed before the exposure period. Toe length, toe angle, sole concavity, and claw width, as well as claw growth and wear rates were recorded for lateral and medial claws of the left hind limb. Claw asymmetry calculations were based on these claw measurements and on differences in sole protrusion between lateral and medial soles. Asphalt floors caused shorter toe length and steeper toe angle. They also increased wear on rear claws (5.30 +/- 0.31 and 5.95 +/- 0.33 mm/mo for lateral and medial claw, respectively; LSM +/- SE) and horn growth rate (5.12 +/- 0.36 and 5.83 +/- 0.31 mm/mo of lateral and medial claws, respectively). Rubber mats instead of asphalt in walking areas reduced wear (1.36 +/- 0.19 and 2.02 +/- 0.20 mm/mo for lateral and medial claw, respectively) and claw growth (3.83 +/- 0.23 and 3.94 +/- 0.17 mm/mo for lateral and medial claw, respectively). Rubber-matted feed-stalls together with asphalt walkways decreased claw wear (3.29 +/- 0.31 and 4.10 +/- 0.32 mm/mo for lateral and medial claw, respectively). The concavity of claw soles was reduced on asphalt, especially in the lateral rear claws. Rubber matting in feed-stalls prevented loss of sole concavity compared with asphalt. Claw asymmetry did not differ between flooring systems. While different access to abrasive flooring affected claw conformation, there was no evidence that flooring system influenced the disproportion between lateral and

  16. Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Staeckel transform and 3D classification theory

    SciTech Connect

    Kalnins, E.G.; Kress, J.M.; Miller, W. Jr.

    2006-04-15

    This article is one of a series that lays the groundwork for a structure and classification theory of second order superintegrable systems, both classical and quantum, in conformally flat spaces. In the first part of the article we study the Staeckel transform (or coupling constant metamorphosis) as an invertible mapping between classical superintegrable systems on different three-dimensional spaces. We show first that all superintegrable systems with nondegenerate potentials are multiseparable and then that each such system on any conformally flat space is Staeckel equivalent to a system on a constant curvature space. In the second part of the article we classify all the superintegrable systems that admit separation in generic coordinates. We find that there are eight families of these systems.

  17. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Beck, R.; Arnold, J.; Gasch, M.; Stackpole, M.; Wercinski, R.; Venkatapathy, E.; Fan, W.; Thornton, J; Szalai, C.

    2012-01-01

    interest. The entry environment is not always guaranteed with a direct entry, and improving the entry systems robustness to a variety of environmental conditions could aid in reaching more varied landing sites. The National Research Council (NRC) Space Technology Roadmaps and Priorities report highlights six challenges and they are: 1) Mass to Surface, 2) Surface Access, 3) Precision Landing, 4) Surface Hazard Detection and Avoidance, 5) Safety and Mission Assurance, and 6) Affordability. In order for NASA to meet these challenges, the report recommends immediate focus on Rigid and Flexible Thermal Protection Systems. Rigid TPS systems such as Avcoat or SLA are honeycomb based and PICA is in the form of tiles. The honeycomb systems is manufactured using techniques that require filling of each (3/8 cell) by hand and within a limited amount of time once the ablative compound is mixed, all of the cells have to be filled and the entire heat-shield has to be cured. The tile systems such as PICA pose a different challenge as the mechanical strength characteristic and the manufacturing limitations require large number of small tiles with gap-fillers between the tiles. Recent investments in flexible ablative systems have given rise to the potential for conformal ablative TPS> A conformal TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials.

  18. Computational Recipe for Efficient Description of Large-Scale Conformational Changes in Biomolecular Systems.

    PubMed

    Moradi, Mahmoud; Tajkhorshid, Emad

    2014-07-01

    Characterizing large-scale structural transitions in biomolecular systems poses major technical challenges to both experimental and computational approaches. On the computational side, efficient sampling of the configuration space along the transition pathway remains the most daunting challenge. Recognizing this issue, we introduce a knowledge-based computational approach toward describing large-scale conformational transitions using (i) nonequilibrium, driven simulations combined with work measurements and (ii) free energy calculations using empirically optimized biasing protocols. The first part is based on designing mechanistically relevant, system-specific reaction coordinates whose usefulness and applicability in inducing the transition of interest are examined using knowledge-based, qualitative assessments along with nonequilirbrium work measurements which provide an empirical framework for optimizing the biasing protocol. The second part employs the optimized biasing protocol resulting from the first part to initiate free energy calculations and characterize the transition quantitatively. Using a biasing protocol fine-tuned to a particular transition not only improves the accuracy of the resulting free energies but also speeds up the convergence. The efficiency of the sampling will be assessed by employing dimensionality reduction techniques to help detect possible flaws and provide potential improvements in the design of the biasing protocol. Structural transition of a membrane transporter will be used as an example to illustrate the workings of the proposed approach.

  19. Examining How Web Designers' Activity Systems Address Accessibility: Activity Theory as a Guide

    ERIC Educational Resources Information Center

    Russell, Kyle

    2014-01-01

    While accessibility of information technologies is often acknowledged as important, it is frequently not well addressed in practice. The purpose of this study was to examine the work of web developers and content managers to explore why and how accessibility is or is not addressed as an objective as websites are planned, built and maintained.…

  20. Systems approach to address incivility and disruptive behaviors in health-care organizations.

    PubMed

    Holloway, Elizabeth; Kusy, Mitchell

    2011-01-01

    In response to the growing evidence that disruptive behaviors within health-care teams constitute a major threat to the quality of care, the Joint Commission on Accreditation of Healthcare Organization (JCAHO; Joint Commission Resources, 2008) has a new leadership standard that addresses disruptive and inappropriate behaviors effective January 1, 2009. For professionals who work in human resources and organization development, these standards represent a clarion call to design and implement evidence-based interventions to create health-care communities of respectful engagement that have zero tolerance for disruptive, uncivil, and intimidating behaviors by any professional. In this chapter, we will build an evidence-based argument that sustainable change must include organizational, team, and individual strategies across all professionals in the organization. We will then describe an intervention model--Toxic Organization Change System--that has emerged from our own research on toxic behaviors in the workplace (Kusy & Holloway, 2009) and provide examples of specific strategies that we have used to prevent and ameliorate toxic cultures.

  1. A content addressable memory for use in CEBAF's CLAS detector level 2 triggering system

    SciTech Connect

    R.F. Hodson; D.C. Doughty, Jr.; D.C. Allgood; S.A. Campbell; W.C. Wilson; M.H. Bickley

    1996-06-01

    A collaboration of researchers from CEBAF, CNU and NASA is designing a 256-32 specialized Content Addressable Memory (CAM) for the level 2 triggering system in CEBAF's CLAS detector. These integrated circuits will find tracks and the momentum and angle of each track within 2 microseconds of an event. The custom CAM can operate as conventional memory, performing read and write operations, and can additionally perform independent byte compare operations across all words simultaneously. It is this compare feature which makes these CAMs attractive for identifying tracks passing through drift chambers by linking together segment number triplets within the CAM. Simulations have indicated that less than 16 k triplets need to be stored for each sector of the detector. This implies the level 2 triggering can be performed with 64 CAM chips per sector, or 384 total. Each data channel into a sector CAM array is buffered in a FIFO and is designed to handle aggregate data rates up to 750 Mbs for three channels (one channel/superlayer). The architecture of the level 2 trigger and details of the CAM chip design are discussed along with a performance report on our prototype CAMs

  2. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions:An Overview of the Technology Maturation Effort

    NASA Technical Reports Server (NTRS)

    Beck, Robin A S.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Prabhu, Dinesh K.; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

    2013-01-01

    The Office of Chief Technologist, NASA identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. The National Research Council (NRC) Space Technology Roadmaps and Priorities report highlights six challenges and they are: Mass to Surface, Surface Access, Precision Landing, Surface Hazard Detection and Avoidance, Safety and Mission Assurance, and Affordability. In order for NASA to meet these challenges, the report recommends immediate focus on Rigid and Flexible Thermal Protection Systems. Rigid TPS systems such as Avcoat or SLA are honeycomb based and PICA is in the form of tiles. The honeycomb systems are manufactured using techniques that require filling of each (38 cell) by hand, and in a limited amount of time all of the cells must be filled and the heatshield must be cured. The tile systems such as PICA pose a different challenge as the low strain-to-failure and manufacturing size limitations require large number of small tiles with gap-fillers between the tiles. Recent investments in flexible ablative systems have given rise to the potential for conformal ablative TPS. A conformal TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials. The high strain-to-failure nature of the conformal ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. By reducing the overall part count, the cost of installation (based on cost comparisons between blanket

  3. Addressing security, collaboration, and usability with tactical edge mobile devices and strategic cloud-based systems

    NASA Astrophysics Data System (ADS)

    Graham, Christopher J.

    2012-05-01

    Success in the future battle space is increasingly dependent on rapid access to the right information. Faced with a shrinking budget, the Government has a mandate to improve intelligence productivity, quality, and reliability. To achieve increased ISR effectiveness, leverage of tactical edge mobile devices via integration with strategic cloud-based infrastructure is the single, most likely candidate area for dramatic near-term impact. This paper discusses security, collaboration, and usability components of this evolving space. These three paramount tenets outlined below, embody how mission information is exchanged securely, efficiently, with social media cooperativeness. Tenet 1: Complete security, privacy, and data integrity, must be ensured within the net-centric battle space. This paper discusses data security on a mobile device, data at rest on a cloud-based system, authorization and access control, and securing data transport between entities. Tenet 2: Lack of collaborative information sharing and content reliability jeopardizes mission objectives and limits the end user capability. This paper discusses cooperative pairing of mobile devices and cloud systems, enabling social media style interaction via tagging, meta-data refinement, and sharing of pertinent data. Tenet 3: Fielded mobile solutions must address usability and complexity. Simplicity is a powerful paradigm on mobile platforms, where complex applications are not utilized, and simple, yet powerful, applications flourish. This paper discusses strategies for ensuring mobile applications are streamlined and usable at the tactical edge through focused features sets, leveraging the power of the back-end cloud, minimization of differing HMI concepts, and directed end-user feedback.teInput=

  4. Addressing Value and Belief Systems on Climate Literacy in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    McNeal, K. S.

    2012-12-01

    The southeast (SEUS; AL, AR, GA, FL, KY, LA, NC, SC, TN, E. TX) faces the greatest impacts as a result of climate change of any region in the U.S. which presents considerable and costly adaptation challenges. Paradoxically, people in the SEUS hold attitudes and perceptions that are more dismissive of climate change than those of any other region. An additional mismatch exists between the manner in which climate science is generally communicated and the underlying core values and beliefs held by a large segment of people in the SEUS. As a result, people frequently misinterpret and/or distrust information sources, inhibiting efforts to productively discuss and consider climate change and related impacts on human and environmental systems, and possible solutions and outcomes. The Climate Literacy Partnership in the Southeast (CLiPSE) project includes an extensive network of partners throughout the SEUS from faith, agriculture, culturally diverse, leisure, and K-20 educator communities that aim to address this educational need through a shared vision. CLiPSE has conducted a Climate Stewardship Survey (CSS) to determine the knowledge and perceptions of individuals in and beyond the CLiPSE network. The descriptive results of the CSS indicate that religion, predominantly Protestantism, plays a minor role in climate knowledge and perceptions. Likewise, political affiliation plays a minimal role in climate knowledge and perceptions between religions. However, when Protestants were broken out by political affiliation, statistically significant differences (t(30)=2.44, p=0.02) in knowledge related to the causes of climate change exist. Those Protestants affiliated with the Democratic Party (n=206) tended to maintain a statistically significant stronger knowledge of the causes of global climate change than their Republican counterparts. When SEUS educator (n=277) group was only considered, similar trends were evidenced, indicating that strongly held beliefs potentially

  5. Evolution of a filmless digital imaging and communications in medicine-conformant picture archiving and communications system: design issues and lessons learned over the last 3 years.

    PubMed

    Henri, C J; Cox, R D; Rubin, R; Bret, P M; Couch, G G

    1999-05-01

    This presentation describes our experience and lessons learned over the first 3 years of developing and operating a filmless picture archiving and communications system (PACS) for all computed tomography (CT), magnetic resonance (MR), ultrasound, and nuclear medicine studies in our hospital. The PACS conforms to the Digital Imaging and Communications in Medicine (DICOM) standard and includes a sophisticated Worldwide Web (WWW)-based interface to complement the regular DICOM services. The PACS has undergone many design modifications from its inception, which have addressed performance, functionality, support, and maintenance issues. The lessons we have learned through making these modifications are described here and may prove to be helpful to anyone planning to deploy a PACS of their own.

  6. Conformal Ablative Thermal Protection Systems (CA-TPS) for Venus and Saturn Backshells

    NASA Technical Reports Server (NTRS)

    Beck, R.; Gasch, M.; Stackpoole, M.; Wilder, M.; Boghozian, T.; Chavez-Garcia, J.; Prabhu, Dinesh; Kazemba, Cole D.; Venkatapathy, E.

    2016-01-01

    This poster provides an overview of the work performed to date on the Conformal Ablative TPS (CA-TPS) element of the TPSM project out of GCDP. Under this element, NASA is developing improved ablative TPS materials based on flexible felt for reinforcement rather than rigid reinforcements. By replacing the reinforcements with felt, the resulting materials have much higher strain-to-failure and are much lower in thermal conductivity than their rigid counterparts. These characteristics should allow for larger tile sizes, direct bonding to aeroshells and even lower weight TPS. The conformal phenolic impregnated carbon felt (C-PICA) is a candidate for backshell TPS for both Venus and Saturn entry vehicles.

  7. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    SciTech Connect

    Jorge Gabitto; Maria Barrufet

    2005-08-01

    Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by the independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report was performed by Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures, the work done on recovery experiments on core rocks, and computer simulations. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results

  8. Addressing Special Education Inequity through Systemic Change: Contributions of Ecologically Based Organizational Consultation

    ERIC Educational Resources Information Center

    Sullivan, Amanda L.; Artiles, Alfredo J.; Hernandez-Saca, David I.

    2015-01-01

    Since the inception of special education, scholars and practitioners have been concerned about the disproportionate representation of students from culturally and linguistically diverse backgrounds among students identified with disabilities. Professional efforts to address this disproportionality have encompassed a range of targets, but scholars…

  9. Gramicidin conformational studies with mixed-chain unsaturated phospholipid bilayer systems

    SciTech Connect

    Cox, K.J.; Ho, Cojen; Lombardi, J.V.; Stubbs, C.D. )

    1992-02-04

    The transition of gramicidin from a nonchannel to a channel form was investigated using mixed-chain phosphatidylcholine lipid bilayers. Gramicidin and phospholipids were codispersed, after removal of the solvents chloroform/methanol or trifluoroethanol which resulted in nonchannel and channel conformations, respectively, as confirmed using circular dichroism (CD). The fluorescence emission maxima of the nonchannel form were shifted toward shorter wavelengths by heating at 60C (for 0-12 h), which converted it to a channel form, again as confirmed by CD. The channel form did not respond to heat treatment. Heat treatment also increased the fluorescence anisotropy of the nonchannel gramicidin tryptophans. The rate of transition from the nonchannel to channel conformation was found to be faster is phosphatidylethanolamine was present in combination with phosphatidylcholine compared to phosphatidylcholine alone. Using the fluorescence anisotropy of the membrane lipid probe, 1,6-diphenyl-1,3,5-hexatriene, it was also shown that the motional properties of the surrounding lipid acyl chains differed for the channel and nonchannel gramicidin conformations. The possibility that lipids tending to favor the hexagonal phase (H{sub II}) would enhance the rate of the nonchannel to channel transition was supported by {sup 31}P NMR which revealed the presence of some H{sub II} lipids in the channel preparations. The results of this study suggest that gramicidin may serve as a useful model for similar conformational transitions in other more complex membrane proteins.

  10. Triaspartate: a model system for conformationally flexible DDD motifs in proteins.

    PubMed

    Duitch, Laura; Toal, Siobhan; Measey, Thomas J; Schweitzer-Stenner, Reinhard

    2012-05-01

    Understanding the interactions that govern turn formation in the unfolded state of proteins is necessary for a complete picture of the role that these turns play in both normal protein folding and functionally relevant yet disordered linear motifs. It is still unclear, however, whether short peptides can adopt stable turn structures in aqueous environments in the absence of any nonlocal interactions. To explore the effect that nearest-neighbor interactions and the local peptide environment have on the turn-forming capability of individual amino acid residues in short peptides, we combined vibrational (IR, Raman, and VCD), UV-CD, and (1)H NMR spectroscopies in order to probe the conformational ensemble of the central aspartic acid residue of the triaspartate peptide (DDD). The study was motivated by the recently discovered turn propensities of aspartic acid in GDG (Hagarman; et al. Chem.-Eur. J. 2011, 17, 6789). We investigated the DDD peptide under both acidic and neutral conditions in order to elucidate the effect that side-chain protonation has on the conformational propensity of the central aspartic acid residue. Amide I' profiles were analyzed in terms of two-dimensional Gaussian distributions representing conformational subdistributions in Ramachandran space. Interestingly, our results show that while the protonated form of the DDD peptide samples various turn-like conformations similar to GDG, deprotonation of the peptide eliminates this propensity for turns, causing the fully ionized peptide to exclusively sample pPII and β-strand-like structures. To further explore the factors stabilizing these more extended conformations in fully ionized DDD, we analyzed the temperature dependence of both the UV-CD spectrum and the (3)J(H(N),H(α)) coupling constants of the two amide protons (N- and C-terminal) in terms of a simple two-state (pPII-β) thermodynamic model. Thus, we were able to obtain the enthalpic and entropic differences between the pPII and

  11. System and method for forming synthetic protein crystals to determine the conformational structure by crystallography

    DOEpatents

    Craig, George D.; Glass, Robert; Rupp, Bernhard

    1997-01-01

    A method for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10.sup.6 V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved.

  12. System and method for forming synthetic protein crystals to determine the conformational structure by crystallography

    DOEpatents

    Craig, G.D.; Glass, R.; Rupp, B.

    1997-01-28

    A method is disclosed for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10{sup 6}V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved. 2 figs.

  13. Media Literacy Education from Kindergarten to College: A Comparison of How Media Literacy Is Addressed across the Educational System

    ERIC Educational Resources Information Center

    Schmidt, Hans C.

    2013-01-01

    This study of media literacy education at all levels of the educational system considered faculty perceptions of student media literacy competencies, the extent to which media literacy is addressed in class, and the extent to which faculty members consider media literacy education to be important. Data suggest that despite the research and policy…

  14. Assessing the Use of School Public Address Systems to Deliver Nutrition Messages to Children: Shape Up Somerville--Audio Adventures

    ERIC Educational Resources Information Center

    Folta, Sara C.; Goldberg, Jeanne P.; Economos, Christina; Bell, Rick; Landers, Stewart; Hyatt, Raymond

    2006-01-01

    Given the current childhood obesity epidemic, it is especially important to find effective ways to promote healthful foods to children. School public address (PA) systems represent an inexpensive and a replicable way of reaching children with health messages. To test the effectiveness of this channel, messages were created to promote 2 dried bean…

  15. Arcjet Testing of Advanced Conformal Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Beck, Robin; Agrawal, Parul

    2014-01-01

    A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL. The compliant (high strain to failure) nature of the conformable ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. In May of 2013 the CA250 project executed an arcjet test series in the Ames IHF facility to evaluate a phenolic-based conformal system (named Conformal-PICA) over a range of test conditions from 40-400Wcm2. The test series consisted of four runs in the 13-inch diameter nozzle. Test models were based on SPRITE configuration (a 55-deg sphere cone), as it was able to provide a combination of required heat flux, pressure and shear within a single entry. The preliminary in-depth TC data acquired during that test series allowed a mid-fidelity thermal response model for conformal-PICA to be created while testing of seam models began to address TPS attachment and joining of multiple segments for future fabrication of large-scale aeroshells. Discussed in this paper are the results.

  16. The Johns Hopkins Address Registration System (JHARS): Anatomy of an Application.

    ERIC Educational Resources Information Center

    Cyzyk, Mark

    2003-01-01

    Describes the registration system at Johns Hopkins University, Maryland, which allows centralized administration and self-signup for access to the Hopkins network. Reception of the system has been overwhelmingly positive. (SLD)

  17. Bax: Addressed to kill.

    PubMed

    Renault, Thibaud T; Manon, Stéphen

    2011-09-01

    The pro-apoptototic protein Bax (Bcl-2 Associated protein X) plays a central role in the mitochondria-dependent apoptotic pathway. In healthy mammalian cells, Bax is essentially cytosolic and inactive. Following a death signal, the protein is translocated to the outer mitochondrial membrane, where it promotes a permeabilization that favors the release of different apoptogenic factors, such as cytochrome c. The regulation of Bax translocation is associated to conformational changes that are under the control of different factors. The evidences showing the involvement of different Bax domains in its mitochondrial localization are presented. The interactions between Bax and its different partners are described in relation to their ability to promote (or prevent) Bax conformational changes leading to mitochondrial addressing and to the acquisition of the capacity to permeabilize the outer mitochondrial membrane. PMID:21641962

  18. Addressing Concerns.

    ERIC Educational Resources Information Center

    Cronin, Greg; Helmig, Mary; Kaplan, Bill; Kosch, Sharon

    2002-01-01

    Four camp directors discuss how the September 11 tragedy and current world events will affect their camps. They describe how they are addressing safety concerns, working with parents, cooperating with outside agencies, hiring and screening international staff, and revising emergency plans. Camps must continue to offer community and support to…

  19. A Multimedia Adaptive Tutoring System for Mathematics That Addresses Cognition, Metacognition and Affect

    ERIC Educational Resources Information Center

    Arroyo, Ivon; Woolf, Beverly Park; Burelson, Winslow; Muldner, Kasia; Rai, Dovan; Tai, Minghui

    2014-01-01

    This article describes research results based on multiple years of experimentation and real-world experience with an adaptive tutoring system named Wayang Outpost. The system represents a novel adaptive learning technology that has shown successful outcomes with thousands of students, and provided teachers with valuable information about…

  20. Addressing fundamental architectural challenges of an activity-based intelligence and advanced analytics (ABIAA) system

    NASA Astrophysics Data System (ADS)

    Yager, Kevin; Albert, Thomas; Brower, Bernard V.; Pellechia, Matthew F.

    2015-06-01

    The domain of Geospatial Intelligence Analysis is rapidly shifting toward a new paradigm of Activity Based Intelligence (ABI) and information-based Tipping and Cueing. General requirements for an advanced ABIAA system present significant challenges in architectural design, computing resources, data volumes, workflow efficiency, data mining and analysis algorithms, and database structures. These sophisticated ABI software systems must include advanced algorithms that automatically flag activities of interest in less time and within larger data volumes than can be processed by human analysts. In doing this, they must also maintain the geospatial accuracy necessary for cross-correlation of multi-intelligence data sources. Historically, serial architectural workflows have been employed in ABIAA system design for tasking, collection, processing, exploitation, and dissemination. These simpler architectures may produce implementations that solve short term requirements; however, they have serious limitations that preclude them from being used effectively in an automated ABIAA system with multiple data sources. This paper discusses modern ABIAA architectural considerations providing an overview of an advanced ABIAA system and comparisons to legacy systems. It concludes with a recommended strategy and incremental approach to the research, development, and construction of a fully automated ABIAA system.

  1. Addressing the crush of sampling. [technology programs for space information systems

    NASA Technical Reports Server (NTRS)

    Olstad, W. B.; Holcomb, L. B.; Rubin, B.

    1980-01-01

    An overall space information system involves sensing, processing, analyzing, and distributing space-acquired information. These systems may be partitioned into the spacecraft segment, the wideband space-to-ground communication segment, and the ground-based data analysis and distribution segment. The paper discusses NASA's advanced technology programs aimed at providing improved sensors and on-board data systems. Advances in charge-transfer devices, lasers, and microwave technologies will be responsible for major improvements in NASA's sensing and detection capabilities for future missions. These improvements will result in a future data crush that will amplify the data management problem.

  2. Water Information System Platforms Addressing Critical Societal Needs in the Mena Region

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Kfouri, Claire; Peters, Mark

    2012-01-01

    The MENA region includes 18 countries, the occupied Palestinian territories and Western Sahara. However, the region of interest for this study has a strategic interest in countries adjacent to the Mediterranean Sea, which includes, Morocco, Tunisia, Egypt, Lebanon and Jordan. The 90% of the water in the MENA region is used for the agriculture use. By the end of this century. this region is projected to experience an increase of 3 C to 5 C in mean temperatures and a 20% decline in precipitation (lPCC, 2007). Due to lower precipitation, water run-off is projected to drop by 20% to 30% in most of MENA by 2050 Reduced stream flow and groundwater recharge might lead to a reduction in water supply of 10% or greater by 2050. Therefore, per IPCC projections in temperature rise and precipitation decline in the region, the scarcity of water will become more acute with population growth, and rising demand of food in the region. Additionally, the trans boundary water issues will continue to plague the region in terms of sharing data for better management of water resources. Such pressing issues have brought The World Bank, USAID and NASA to jointly collaborate for establishing integrated, modern, up to date NASA developed capabilities for countries in the MENA region for addressing water resource issues and adapting to climate change impacts for improved decision making and societal benefit. This initiative was launched in October 2011 and is schedule to be completed by the end of2015.

  3. Substrate-Linked Conformational Change in the Periplasmic Component of a Cu(I)/Ag(I) Efflux System

    SciTech Connect

    Bagai, I.; Liu, W.; Rensing, C.; Blackburn, N.J.; McEvoy, M.M.

    2009-06-02

    Gram-negative bacteria utilize dual membrane resistance nodulation division-type efflux systems to export a variety of substrates. These systems contain an essential periplasmic component that is important for assembly of the protein complex. We show here that the periplasmic protein CusB from the Cus copper/silver efflux system has a critical role in Cu(I) and Ag(I) binding. Isothermal titration calorimetry experiments demonstrate that one Ag(I) ion is bound per CusB molecule with high affinity. X-ray absorption spectroscopy data indicate that the metal environment is an all-sulfur 3-coordinate environment. Candidates for the metal-coordinating residues were identified from sequence analysis, which showed four conserved methionine residues. Mutations of three of these methionine residues to isoleucine resulted in significant effects on CusB metal binding in vitro. Cells containing these CusB variants also show a decrease in their ability to grow on copper-containing plates, indicating an important functional role for metal binding by CusB. Gel filtration chromatography demonstrates that upon binding metal, CusB undergoes a conformational change to a more compact structure. Based on these structural and functional effects of metal binding, we propose that the periplasmic component of resistance nodulation division-type efflux systems plays an active role in export through substrate-linked conformational changes.

  4. A Possible Approach for Addressing Neglected Human Factors Issues of Systems Engineering

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher W.; Holloway, C. Michael

    2011-01-01

    The increasing complexity of safety-critical applications has led to the introduction of decision support tools in the transportation and process industries. Automation has also been introduced to support operator intervention in safety-critical applications. These innovations help reduce overall operator workload, and filter application data to maximize the finite cognitive and perceptual resources of system operators. However, these benefits do not come without a cost. Increased computational support for the end-users of safety-critical applications leads to increased reliance on engineers to monitor and maintain automated systems and decision support tools. This paper argues that by focussing on the end-users of complex applications, previous research has tended to neglect the demands that are being placed on systems engineers. The argument is illustrated through discussing three recent accidents. The paper concludes by presenting a possible strategy for building and using highly automated systems based on increased attention by management and regulators, improvements in competency and training for technical staff, sustained support for engineering team resource management, and the development of incident reporting systems for infrastructure failures. This paper represents preliminary work, about which we seek comments and suggestions.

  5. A chimera grid scheme. [multiple overset body-conforming mesh system for finite difference adaptation to complex aircraft configurations

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Dougherty, F. C.; Benek, J. A.

    1983-01-01

    A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.

  6. Addressing parents' concerns: do multiple vaccines overwhelm or weaken the infant's immune system?

    PubMed

    Offit, Paul A; Quarles, Jessica; Gerber, Michael A; Hackett, Charles J; Marcuse, Edgar K; Kollman, Tobias R; Gellin, Bruce G; Landry, Sarah

    2002-01-01

    Recent surveys found that an increasing number of parents are concerned that infants receive too many vaccines. Implicit in this concern is that the infant's immune system is inadequately developed to handle vaccines safely or that multiple vaccines may overwhelm the immune system. In this review, we will examine the following: 1) the ontogeny of the active immune response and the ability of neonates and young infants to respond to vaccines; 2) the theoretic capacity of an infant's immune system; 3) data that demonstrate that mild or moderate illness does not interfere with an infant's ability to generate protective immune responses to vaccines; 4) how infants respond to vaccines given in combination compared with the same vaccines given separately; 5) data showing that vaccinated children are not more likely to develop infections with other pathogens than unvaccinated children; and 6) the fact that infants actually encounter fewer antigens in vaccines today than they did 40 or 100 years ago.

  7. Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system.

    PubMed

    Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic

    2014-06-28

    The finite resolution of general circulation models of the coupled atmosphere-ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere-ocean climate system in operational forecast mode, and the latest seasonal forecasting system--System 4--has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981-2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden-Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid

  8. Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system.

    PubMed

    Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic

    2014-06-28

    The finite resolution of general circulation models of the coupled atmosphere-ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere-ocean climate system in operational forecast mode, and the latest seasonal forecasting system--System 4--has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981-2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden-Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid

  9. Experimental system for real-time assessment of potential changes in protein conformation induced by electromagnetic fields.

    PubMed

    Beyer, Christian; Christen, Philipp; Jelesarov, Ilian; Fröhlich, Jürg

    2013-09-01

    A novel experimental system to distinguish between potential thermal and non-thermal effects of electromagnetic fields (EMFs) on the conformational equilibrium and folding kinetics of proteins is presented. The system comprises an exposure chamber installed within the measurement compartment of a spectropolarimeter and allows real-time observation of the circular dichroism (CD) signal of the protein during EMF exposure. An optical temperature probe monitors the temperature of the protein solution at the site of irradiation. The electromagnetic, thermal, and fluid-dynamic behavior of the system is characterized by numerical and experimental means. The number of repeated EMF on/off cycles needed for achieving a certain detection limit is determined on the basis of the experimentally assessed precision of the CD measurements. The isolated thermosensor protein GrpE of the Hsp70 chaperone system of Eschericha coli serves as the test protein. Long-term experiments show high thermal reproducibility as well as thermal stability of the experimental setup.

  10. Probing the biology of dry biological systems to address the basis of seed longevity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drying cells reduces molecular mobility and slows chemical and physical reactions. As a result, dry biological systems deteriorate slowly. The time course of deterioration in a population of living cells often follows a sigmoidal pattern in which aging is occurring but no changes to viability are ...

  11. Is robustness of stochastic uncertain systems related to information theory and statistical mechanics? (Keynote Address)

    NASA Astrophysics Data System (ADS)

    Charalambous, Charalambos D.; Kyprianou, Andreas

    2005-05-01

    Fifty years ago, when Claude Shannon was developing the Mathematical Theory of Communications, for reliable data transmission, which evolved into the subject of information theory, another discipline was developing dealing with Feedback Control of Dynamical System, which evolved into a scientific subject dealing with decision, stability, and optimization. More recently, a separate discipline dealing with robustness of uncertain systems was born in response to the codification of high performance and reliability in the presence of modeling uncertainties. In principle, robustness in dynamical systems is captured through power dissipation via induced norms and dynamic games, while reliable data transmission is captured through measures of information via entropy, relative entropy, and certain laws of Large Deviations theory. The main ingredient in Large Deviations is the rate functional (or action functional in the classical mechanics terminology), often identified through the Cramer or Legendre-Fenchel Transform. On the other hand, robustness of stochastic uncertain systems is currently under development, using information theoretic as well as statistical mechanics concepts, such as, partition functions, free energy, relative entropy, and entropy rate functional. This lecture will summarize certain connections between fundamental concepts of robustness, information theory, and statistical mechanics, and possibly make future projections into the convergence of these disciplines.

  12. KEYNOTE ADDRESS: The role of standards in the emerging optical digital data disk storage systems market

    NASA Astrophysics Data System (ADS)

    Bainbridge, Ross C.

    1984-09-01

    The Institute for Computer Sciences and Technology at the National Bureau of Standards is pleased to cooperate with the International Society for Optical Engineering and to join with the other distinguished organizations in cosponsoring this conference on applications of optical digital data disk storage systems.

  13. Addressing Indigenous (ICT) Approaches in South-East Asian Learning Systems

    ERIC Educational Resources Information Center

    Amato, Silvia

    2013-01-01

    Purpose: The purpose of this paper is to provide a structural overview about indigenous approaches to learning in South East Asian countries, with a particular reference to education initiatives that have been operating in this region; and especially to investigate information and communication technologies (ICT) systems, in combination with…

  14. Addressing Substance Abuse Treatment Needs of Parents Involved with the Child Welfare System

    ERIC Educational Resources Information Center

    Oliveros, Arazais; Kaufman, Joan

    2011-01-01

    The goal of this paper is to synthesize available data to help guide policy and programmatic initiatives for families with substance abuse problems who are involved with the child welfare system, and identify gaps in the research base preventing further refinement of practices in this area. To date, Family Treatment Drug Court and newly developed…

  15. Collaborative Group Learning and Knowledge Building to Address Information Systems Project Failure

    ERIC Educational Resources Information Center

    Angelo, Raymond

    2011-01-01

    Approximately half of the information systems (IS) projects implemented each year are considered failures. These failed projects cost billions of dollars annually. Failures can be due to projects being delivered late, over-budget, abandoned after significant time and resource investment, or failing to achieve desired results. More often than not,…

  16. Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system

    PubMed Central

    Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic

    2014-01-01

    The finite resolution of general circulation models of the coupled atmosphere–ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere–ocean climate system in operational forecast mode, and the latest seasonal forecasting system—System 4—has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981–2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden–Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid

  17. A manual for addressing ineffectiveness within a Corrective Action System and driving on-time dispositions

    NASA Astrophysics Data System (ADS)

    Mallari, Lawrence Anthony Castro

    This project proposes a manual specifically for remedying an ineffective Corrective Action Request System for Company ABC by providing dispositions within the company's quality procedure. A Corrective Action Request System is a corrective action tool that provides a means for employees to engage in the process improvement, problem elimination cycle. At Company ABC, Corrective Action Recommendations (CARs) are not provided with timely dispositions; CARs are being ignored due to a lack of training and awareness of Company ABC's personnel and quality procedures. In this project, Company ABC's quality management software database is scrutinized to identify the number of delinquent, non-dispositioned CARs in 2014. These CARs are correlated with the number of nonconformances generated for the same issue while the CAR is still open. Using secondary data, the primary investigator finds that nonconformances are being remediated at the operational level. However, at the administrative level, CARS are being ignored and forgotten.

  18. Refocusing health care systems to address both individual care and population health.

    PubMed

    Green, L W

    1994-04-01

    Population health depends on a qualitatively different set of investigative methods, decision-making procedures, and assignment of responsibility for action than those applied in the health care systems of Canada today. The focus shifts from a major preoccupation with acute and curative medicine to a greater concern with disease prevention and health promotion, from health outcomes as ends in themselves to quality of life concerns defined not just by the individual but also by the community. To achieve this refocusing, the health care system must decentralize the decision-making processes from provincial to regional and community levels, reorient the medical schools and hospitals from their increasingly global orientation to a greater role in the promotion of health in their own communities, and engage a broader range of disciplines and non-medical groups in partnerships and coalitions for health research and action.

  19. Aquatics Systems Branch: transdisciplinary research to address water-related environmental problems

    USGS Publications Warehouse

    Dong, Quan; Walters, Katie D.

    2015-01-01

    The Aquatic Systems Branch at the Fort Collins Science Center is a group of scientists dedicated to advancing interdisciplinary science and providing science support to solve water-related environmental issues. Natural resource managers have an increasing need for scientific information and stakeholders face enormous challenges of increasing and competing demands for water. Our scientists are leaders in ecological flows, riparian ecology, hydroscape ecology, ecosystem management, and contaminant biology. The Aquatic Systems Branch employs and develops state-of-the-science approaches in field investigations, laboratory experiments, remote sensing, simulation and predictive modeling, and decision support tools. We use the aquatic experimental laboratory, the greenhouse, the botanical garden and other advanced facilities to conduct unique research. Our scientists pursue research on the ground, in the rivers, and in the skies, generating and testing hypotheses and collecting quantitative information to support planning and design in natural resource management and aquatic restoration.

  20. Series-connected shaded modules to address partial shading conditions in SPV systems

    NASA Astrophysics Data System (ADS)

    Pareek, Smita; Dahiya, Ratna

    2016-03-01

    With the progress of technology and reduced cost of PV cells, the PV systems are being installed in many countries, including India. Even though this method of power generation has sufficient potential but its effective utilization is still lacking. This is because the output power of PV cells depends on many factors like insolation, temperature, climate conditions prevailing nearby, aging, using modules from different technologies/manufacturers or partial shading conditions. Among these factors, partial shading causes major reduction in output power despite the size of PV systems. As a result, the produced power is lower than the expected value. The connection of modules to each other has great impact on output power if they are prone to partial shading conditions. In this paper, PV arrays are investigated under partial shading conditions. The results show that partial shading losses can be minimized by connecting shaded modules in series rather than in parallel.

  1. Identifying and Addressing Stakeholder Interests in Design Science Research: An Analysis Using Critical Systems Heuristics

    NASA Astrophysics Data System (ADS)

    Venable, John R.

    This paper utilises the Critical Systems Heuristics (CSH) framework developed by Werner Ulrich to critically consider the stakeholders and design goals that should be considered as relevant by researchers conducing Design Science Research (DSR). CSH provides a philosophically and theoretically grounded framework and means for critical consideration of the choices of stakeholders considered to be relevant to any system under design consideration. The paper recommends that legitimately undertaken DSR should include witnesses to represent the interests of the future consumers of the outcomes of DSR, i.e., the future clients, decision makers, professionals, and other non-included stakeholders in the future use of the solution technologies to be invented in DSR. The paper further discusses options for how witnesses might be included, who should be witnessed for and obstacles to implementing the recommendations.

  2. Addressing the Challenges of Anomaly Detection for Cyber Physical Energy Grid Systems

    SciTech Connect

    Ferragut, Erik M; Laska, Jason A; Melin, Alexander M; Czejdo, Bogdan

    2013-01-01

    The consolidation of cyber communications networks and physical control systems within the energy smart grid introduces a number of new risks. Unfortunately, these risks are largely unknown and poorly understood, yet include very high impact losses from attack and component failures. One important aspect of risk management is the detection of anomalies and changes. However, anomaly detection within cyber security remains a difficult, open problem, with special challenges in dealing with false alert rates and heterogeneous data. Furthermore, the integration of cyber and physical dynamics is often intractable. And, because of their broad scope, energy grid cyber-physical systems must be analyzed at multiple scales, from individual components, up to network level dynamics. We describe an improved approach to anomaly detection that combines three important aspects. First, system dynamics are modeled using a reduced order model for greater computational tractability. Second, a probabilistic and principled approach to anomaly detection is adopted that allows for regulation of false alerts and comparison of anomalies across heterogeneous data sources. Third, a hierarchy of aggregations are constructed to support interactive and automated analyses of anomalies at multiple scales.

  3. Application of fuzzy system theory in addressing the presence of uncertainties

    SciTech Connect

    Yusmye, A. Y. N.; Goh, B. Y.; Adnan, N. F.; Ariffin, A. K.

    2015-02-03

    In this paper, the combinations of fuzzy system theory with the finite element methods are present and discuss to deal with the uncertainties. The present of uncertainties is needed to avoid for prevent the failure of the material in engineering. There are three types of uncertainties, which are stochastic, epistemic and error uncertainties. In this paper, the epistemic uncertainties have been considered. For the epistemic uncertainty, it exists as a result of incomplete information and lack of knowledge or data. Fuzzy system theory is a non-probabilistic method, and this method is most appropriate to interpret the uncertainty compared to statistical approach when the deal with the lack of data. Fuzzy system theory contains a number of processes started from converting the crisp input to fuzzy input through fuzzification process and followed by the main process known as mapping process. The term mapping here means that the logical relationship between two or more entities. In this study, the fuzzy inputs are numerically integrated based on extension principle method. In the final stage, the defuzzification process is implemented. Defuzzification is an important process to allow the conversion of the fuzzy output to crisp outputs. Several illustrative examples are given and from the simulation, the result showed that propose the method produces more conservative results comparing with the conventional finite element method.

  4. Conformal Ablative Thermal Protection Systems (CA-TPS) for Venus and Saturn Backshells

    NASA Technical Reports Server (NTRS)

    Beck, R.; Gasch, M.; Stackpoole, M.; Wilder, M.; Boghozian, T.; Chavez-Garcia, J.; Prabhu, D.; Kazemba, C.; Venkatapathy, E.

    2015-01-01

    The new conformal ablator C-PICA, which was developed under STMD GCD, is an optimal candidate for use on the backshells for high velocity entry vehicles at both Venus and Saturn. The material has been tested at heat fluxes up to 400 Wcm2 in shear and over 1800 Wcm2 and 1.5 atm in stagnation with good results. C-PICA has similar density to PICA, but shows half the thermal penetration and similar recession at the same conditions, allowing for a lighter weight TPS to be flown. This poster for VEXAG will show the progress made in the development of the material and why it should be considered for use.

  5. Socio-Ecohydrologic Agents And Services: Integrating Human And Natural Components To Address Coupled System Resilience

    NASA Astrophysics Data System (ADS)

    Pavao-zuckerman, M.; Pope, A.; Chan, D.; Curl, K.; Gimblett, H. R.; Hough, M.; House-Peters, L.; Lee, R.; Scott, C. A.

    2012-12-01

    Riparian corridors in arid regions are highly valued for their relative scarcity, and because healthy riparian systems support high levels of biodiversity, can meet human demand for water and water-related resources and functions. Our team is taking a transdiciplinary social-ecological systems approach to assessing riparian corridor resilience in two watersheds (the San Pedro River in USA and Mexico, and the Rio San Miguel in Mexico) through a project funded by the NSF CNH program ("Strengthening Resilience of Arid Region Riparian Corridors"). Multiple perspectives are integrated in the project, including hydrology, ecology, institutional dynamics, and decision making (at the level of both policy and individual choice), as well as the perspectives of various stakeholder groups and individuals in the watersheds. Here we discuss initial findings that center around linking changes in ecohydrology and livelihoods related to decisions in response to climatic, ecological, and social change. The research team is implementing two approaches to integrate the disparate disciplines participating in the research (and the varied perspectives among the stakeholders in this binational riparian context): (1) ecosystem service assessment, and (2) agent based model simulation. We are developing an ecosystem service perspective that provides a bridge between ecological dynamics in the landscape and varied stakeholder perspectives on the implications of ecohydrology for well-being (economic, cultural, ecological). Services are linked on one hand to the spatial patterns of traits of individuals within species (allowing a more predictive application of ecosystem services as they vary with community change in time), and to stakeholder perspectives (facilitating integration of ecosystem services into our understanding of decision making processes) in a case study in the San Pedro River National Conservation Area. The agent- based model (ABM) approach incorporates the influence of human

  6. Whole Neuraxis Irradiation to Address Central Nervous System Relapse in High-Risk Neuroblastoma

    SciTech Connect

    Croog, Victoria J.; Kramer, Kim; Cheung, Nai-Kong V.; Kushner, Brian H.; Modak, Shakeel; Souweidane, Mark M.; Wolden, Suzanne L.

    2010-11-01

    Background: As systemic control of high-risk neuroblastoma (NB) has improved, relapse in the central nervous system (CNS) is an increasingly recognized entity that carries a grim prognosis. This study describes the use of craniospinal irradiation (CSI) for CNS relapse and compares outcomes to patients who received focal radiotherapy (RT). Methods: A retrospective query identified 29 children with NB treated at Memorial Sloan-Kettering Cancer Center since 1987 who received RT for CNS relapse. At CNS relapse, 16 patients received CSI (median dose, 2160cGy), and 13 received focal RT. Of those who underwent CSI, 14 (88%) received intra-Ommaya (IO) radioimmunotherapy (RIT); one patient in the non-CSI cohort received IO-RIT. Results: Patient characteristics were similar between the groups. Time to CNS relapse was 20 and 17 months for the CSI and non-CSI cohorts, respectively. At a median follow-up of 28 months, 12 patients (75%) in the CSI group are alive without CNS disease, including two patients with isolated skeletal relapse. Another patient is alive without disease after a brain relapse was retreated with RT. Three patients died-one with no NB at autopsy, one of CNS disease, and one of systemic disease. The two patients who died of NB did not receive IO-RIT. All 13 patients in the non-CSI cohort died at a median of 8.8 months. Conclusions: Low-dose CSI together with IO-RIT provides durable CNS remissions and improved survival compared with focal RT and conventional therapies. Further evaluation of long-term NB survivors after CSI is warranted to determine the treatment consequences for this cohort.

  7. Addressing substance abuse treatment needs of parents involved with the child welfare system.

    PubMed

    Oliveros, Arazais; Kaufman, Joan

    2011-01-01

    The goal of this paper is to synthesize available data to help guide policy and programmatic initiatives for families with substance abuse problems who are involved with the child welfare system, and identify gaps in the research base preventing further refinement of practices in this area. To date, Family Treatment Drug Court and newly developed home-based substance abuse treatment interventions appear the most effective at improving substance abuse treatment initiation and completion in child welfare populations. Research is needed to compare the efficacy of these two approaches, and examine cost and child well-being indicators in addition to substance abuse treatment and child welfare outcomes.

  8. Addressing geometric nonlinearities with cantilever microelectromechanical systems: Beyond the Duffing model

    NASA Astrophysics Data System (ADS)

    Collin, E.; Bunkov, Yu. M.; Godfrin, H.

    2010-12-01

    We report on low-temperature measurements performed on microelectromechanical systems driven deeply into the nonlinear regime. The materials are kept in their elastic domain while the observed nonlinearity is purely of geometrical origin. Two techniques are used, harmonic drive and free decay. For each case, we present an analytic theory fitting the data. The harmonic drive is fit with a modified Lorentzian line shape obtained from an extended version of Landau and Lifshitz’s nonlinear theory. The evolution in the time domain is fit with an amplitude-dependent frequency decaying function derived from the Lindstedt-Poincaré theory of nonlinear differential equations. The technique is perfectly generic and can be straightforwardly adapted to any mechanical device made of ideally elastic constituents, and which can be reduced to a single degree of freedom, for an experimental definition of its nonlinear dynamics equation.

  9. How Do Integrated Health Care Systems Address Racial and Ethnic Disparities in Colon Cancer?

    PubMed Central

    Rhoads, Kim F.; Patel, Manali I.; Ma, Yifei; Schmidt, Laura A.

    2015-01-01

    Purpose Colorectal cancer (CRC) disparities have persisted over the last two decades. CRC is a complex disease requiring multidisciplinary care from specialists who may be geographically separated. Few studies have assessed the association between integrated health care system (IHS) CRC care quality, survival, and disparities. The purpose of this study was to determine if exposure to an IHS positively affects quality of care, risk of mortality, and disparities. Patients and Methods This retrospective secondary-data analysis study, using the California Cancer Registry linked to state discharge abstracts of patients treated for colon cancer (2001 to 2006), compared the rates of National Comprehensive Cancer Network (NCCN) guideline–based care, the hazard of mortality, and racial/ethnic disparities in an IHS versus other settings. Results More than 30,000 patient records were evaluated. The IHS had overall higher rates of adherence to NCCN guidelines. Propensity score–matched Cox models showed an independent and protective association between care in the IHS and survival (hazard ratio [HR], 0.87; 95% CI, 0.85 to 0.90). This advantage persisted across stage groups. Black race was associated with increased hazard of mortality in all other settings (HR, 1.15; 95% CI, 1.04 to 1.27); however, there was no disparity within the IHS for any minority group (P > .11 for all groups) when compared with white race. Conclusion The IHS delivered higher rates of evidence-based care and was associated with lower 5-year mortality. Racial/ethnic disparities in survival were absent in the IHS. Integrated systems may serve as the cornerstone for developing accountable care organizations poised to improve cancer outcomes and eliminate disparities under health care reform. PMID:25624437

  10. Permit compliance system (PCS) facility address and permit information file national listing of major facilities (for microcomputers). Data file

    SciTech Connect

    1996-06-01

    The Permit Compliance System (PCS) is an Environmental Protection Agency (EPA) national computerized management information system that records water-discharge permit data on more than 64,000 wastewater treatment facilities nationwide. This system automates entry, updating, and retrieval of National Pollutant Discharge Elimination System (NPDES) data and tracks permit issuance, permit limits, monitoring data, and other data pertaining to facilities regulated under NPDES. The Permit Compliance System (PCS) Facility Address and Permit Information File contains primary mailing address information as well as permit number, facility type, and cognizant official for all active NPDES permitted facilities, general facility and permit events (e.g., issuance and expiration dates, types of ownership code, SIC code, and location including longitude and latitude) for all active NPDES permitted facilities for the most recent year. There are approximately 49,000 industrial facilities and 15,000 municipal facilities regulated by NPDES. This data is updated twice a year. The diskette contains only major facilities which are facilities having a design or actual flow of one million gallons per day or greater, a service population of 10,000 or greater, or a significant impact on water quality, i.e., with a potential for toxic discharge, located close to a drinking water intake, discharging into stressed receiving waters, or requiring advanced treatment. Approximately 7100 permits are issued to major facilities. Municipal and non-municipal facilities not meeting the above requirements are categorized as minor.

  11. Moonrise: Sampling the South Pole-Aitken Basin to Address Problems of Solar System Significance

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Jolliff, B. L.; Korotev, R. L.; Shearer, C. K.

    2016-01-01

    A mission to land in the giant South Pole-Aitken (SPA) Basin on the Moon's southern farside and return a sample to Earth for analysis is a high priority for Solar System Science. Such a sample would be used to determine the age of the SPA impact; the chronology of the basin, including the ages of basins and large impacts within SPA, with implications for early Solar System dynamics and the magmatic history of the Moon; the age and composition of volcanic rocks within SPA; the origin of the thorium signature of SPA with implications for the origin of exposed materials and thermal evolution of the Moon; and possibly the magnetization that forms a strong anomaly especially evident in the northern parts of the SPA basin. It is well known from studies of the Apollo regolith that rock fragments found in the regolith form a representative collection of many different rock types delivered to the site by the impact process (Fig. 1). Such samples are well documented to contain a broad suite of materials that reflect both the local major rock formations, as well as some exotic materials from far distant sources. Within the SPA basin, modeling of the impact ejection process indicates that regolith would be dominated by SPA substrate, formed at the time of the SPA basin-forming impact and for the most part moved around by subsequent impacts. Consistent with GRAIL data, the SPA impact likely formed a vast melt body tens of km thick that took perhaps several million years to cool, but that nonetheless represents barely an instant in geologic time that should be readily apparent through integrated geochronologic studies involving multiple chronometers. It is anticipated that a statistically significant number of age determinations would yield not only the age of SPA but also the age of several prominent nearby basins and large craters within SPA. This chronology would provide a contrast to the Imbrium-dominated chronology of the nearside Apollo samples and an independent test of

  12. Stereotactic Radiotherapy of Central Nervous System and Head and Neck Lesions, Using a Conformal Intensity-Modulated Radiotherapy System (Peacock™ System)

    PubMed Central

    Ammirati, Mario; Bernardo, Antonio; Ramsinghani, Nilam; Yakoob, Richard; Al-Ghazi, Matthew; Kuo, Jeffrey; Ammirati, Giuseppe

    2001-01-01

    The objective of this article is to evaluate single-fraction or fractionated stereotactic radiotherapy of central nervous system (CNS) and head and neck lesions using intensity-modulated radiotherapy (IMRT) with a commercially available system (Peacock™, Nomos Corporation, Sewickley, PA). This system allows tomotherapeutic delivery of intensity-modulated radiation, that is, the slice-by-slice treatment of the volume of interest with an intensity-modulated beam, making the delivery of highly conformal radiation to the target possible in both single or multiple fractions mode. During an 18-month period, 43 (21 males and 22 females) patients were treated, using a removable cranial screw-fixation device. Ages ranged from 10 to 77 years (mean, 52.2; median, 53.5). Intra- and extra-axial lesions, including head and neck malignancies and spine metastases, were treated. Clinical target volume ranged from 0.77 to 195 cm3 (mean, 47.8; median, 29.90). The dose distribution was normalized to the maximum and was prescribed, in most cases, at the 80% or 90% isodose line (range, 65 to 96%; median, 85%; mean, 83.4%) and ranged from 14 to 80 Gy (mean, 48; median, 50). The number of fractions ranged from 1 to 40 (mean, 23; median, 25). In all but one patient, 90% of the prescription isodose line covered 100% of the clinical target volume. The heterogeneity index (the ratio between the maximum radiation dose and the prescribed dose) ranged between 1.0 and 1.50, whereas the conformity index (the ratio between the volume encompassed by the prescription isodose line and the clinical target volume) ranged between 1.0 and 4.5. There were no complications related to the radiation treatment. With a median follow-up of 6 months, more than 70% of our patients showed decreased lesion size. Stereotactic IMRT of CNS and head and neck lesions can be delivered safely and accurately. The Peacock system delivers stereotactic radiation in single or multiple fractions and has no volume limitations

  13. Lameness detection challenges in automated milking systems addressed with partial least squares discriminant analysis.

    PubMed

    Garcia, E; Klaas, I; Amigo, J M; Bro, R; Enevoldsen, C

    2014-12-01

    Lameness causes decreased animal welfare and leads to higher production costs. This study explored data from an automatic milking system (AMS) to model on-farm gait scoring from a commercial farm. A total of 88 cows were gait scored once per week, for 2 5-wk periods. Eighty variables retrieved from AMS were summarized week-wise and used to predict 2 defined classes: nonlame and clinically lame cows. Variables were represented with 2 transformations of the week summarized variables, using 2-wk data blocks before gait scoring, totaling 320 variables (2 × 2 × 80). The reference gait scoring error was estimated in the first week of the study and was, on average, 15%. Two partial least squares discriminant analysis models were fitted to parity 1 and parity 2 groups, respectively, to assign the lameness class according to the predicted probability of being lame (score 3 or 4/4) or not lame (score 1/4). Both models achieved sensitivity and specificity values around 80%, both in calibration and cross-validation. At the optimum values in the receiver operating characteristic curve, the false-positive rate was 28% in the parity 1 model, whereas in the parity 2 model it was about half (16%), which makes it more suitable for practical application; the model error rates were, 23 and 19%, respectively. Based on data registered automatically from one AMS farm, we were able to discriminate nonlame and lame cows, where partial least squares discriminant analysis achieved similar performance to the reference method. PMID:25282423

  14. Potential enhancements to addressing programmatic risk in the tank waste remediation system (TWRS) program

    SciTech Connect

    Brothers, A.; Fassbender, L.; Bilyard, G.; Levine, L.

    1996-04-01

    Pacific Northwest National Laboratory (PNNL) conducted a Tank Waste Remediation System (TWRS) Risk Management methodology development task. The objective of this task was to develop risk management methodology focused on (1) the use of programmatic risk information in making TWRS architecture selection decisions and (2) the identification/evaluation/selection of TWRS risk-handling actions. Methods for incorporating programmatic risk/uncertainty estimates into trade studies are provided for engineers/analysts. Methods for identifying, evaluating, and selecting risk-handling actions are provided for managers. The guidance provided in this report is designed to help decision-makers make difficult judgments. Current approaches to architecture selection decisions and identification/evaluation/selection of risk-handling actions are summarized. Three categories of sources of programmatic risk (parametric, external, and organizational) are examined. Multiple analytical approaches are presented to enhance the current alternative generation and analysis (AGA) and risk-handling procedures. Appendix A describes some commercially available risk management software tools and Appendix B provides a brief introduction to quantification of risk attitudes. The report provides three levels of analysis for enhancing the AGA Procedure: (1) qualitative discussion coupled with estimated uncertainty ranges for scores in the alternatives-by-criteria matrix; (2) formal elicitation of probability distributions for the alternative scores; and (3) a formal, more structured, comprehensive risk analysis. A framework is also presented for using the AGA programmatic risk analysis results in making better decisions. The report also presents two levels of analysis for evaluation and selection of risk-handling actions: (1) qualitative analysis and judgmental rankings of alternative actions, and (2) Simple Multi-Attribute Rating Technique (SMART).

  15. Molecular and environmental factors governing non-covalent bonding interactions and conformations of phosphorous functionalized γ-cyclodextrin hydrate systems.

    PubMed

    Ivanova, Bojidarka; Spiteller, Michael

    2016-06-01

    Recent strategies in molecular drugs-design shift efforts to nanomedicine. Large supra-molecular inclusion systems are implemented as therapeutics. The sophistication of design is based on major advances of cyclodextrins (CDs) as host molecules. They are friendly towards biological environment. CDs have good (bio)compatibility as well. CDs can form host-guest macromolecular systems incorporating small molecules with suitable shapes due to non-covalent interactions. Innovative strategies yield to polymeric nano-particles; micelles; linear polymers and/or CDs-functionalized dendrimeric nanostructures; nanofibers as well as hydrogels. Attractive are phosphorous containing (bio)matrerials, having high selectivity toward biological active molecules. The non-covalent interactions in aquatic CD-systems contribute to stability of host-guest systems under physiological conditions, determining conformational preferences of host-CD macromolecule and guest small molecular template. In this paper we have reported complementation application of mass spectrometric (MS) and quantum chemical analysis of phosphorous chemically substituted γ-cyclodextrin hydrates γ-CDPO/nH2O (n ∊ [0-14]), studying neutral and polynegatively charged molecules as an effort to describe realistic a representative scale of physiological conditions. The binding affinity and molecular conformations are discussed. The 250 neutral and charged systems (γ-CDPOHm/nH2O, n ∊ [10][0,14], m ∊ [0,15], γ-CDPOH-8/nH2O.8Na(+), and γ-CDPOH-16/nH2O.16Na(+)) in four main domains of non-covalent hydrogen bonding interactions are studied. PMID:26944657

  16. Conformable seal

    DOEpatents

    Neef, W.S.; Lambert, D.R.

    1982-08-10

    Sealing apparatus and method, comprising first and second surfaces or membranes, at least one of which surfaces is deformable, placed in proximity to one another. Urging means cause these surfaces to contact one another in a manner such that the deformable surface deforms to conform to the geometry of the other surface, thereby creating a seal. The seal is capable of undergoing multiple cycles of sealing and unsealing.

  17. Inaugural address

    NASA Astrophysics Data System (ADS)

    Joshi, P. S.

    2014-03-01

    From jets to cosmos to cosmic censorship P S Joshi Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India E-mail: psj@tifr.res.in 1. Introduction At the outset, I should like to acknowledge that part of the title above, which tries to capture the main flavour of this meeting, and has been borrowed from one of the plenary talks at the conference. When we set out to make the programme for the conference, we thought of beginning with observations on the Universe, but then we certainly wanted to go further and address deeper questions, which were at the very foundations of our inquiry, and understanding on the nature and structure of the Universe. I believe, we succeeded to a good extent, and it is all here for you in the form of these Conference Proceedings, which have been aptly titled as 'Vishwa Mimansa', which could be possibly translated as 'Analysis of the Universe'! It is my great pleasure and privilege to welcome you all to the ICGC-2011 meeting at Goa. The International Conference on Gravitation and Cosmology (ICGC) series of meetings are being organized by the Indian Association for General Relativity and Gravitation (IAGRG), and the first such meeting was planned and conducted in Goa in 1987, with subsequent meetings taking place at a duration of about four years at various locations in India. So, it was thought appropriate to return to Goa to celebrate the 25 years of the ICGC meetings. The recollections from that first meeting have been recorded elsewhere here in these Proceedings. The research and teaching on gravitation and cosmology was initiated quite early in India, by V V Narlikar at the Banares Hindu University, and by N R Sen in Kolkata in the 1930s. In course of time, this activity grew and gained momentum, and in early 1969, at the felicitation held for the 60 years of V V Narlikar at a conference in Ahmedabad, P C Vaidya proposed the formation of the IAGRG society, with V V Narlikar being the first President. This

  18. Probabilistic model-based methodology for the conformational study of cyclic systems: application to copper complexes double-bridged by phosphate and related ligands.

    PubMed

    Kessler, M; Pérez, J; Bueso, M C; García, L; Pérez, E; Serrano, J L; Carrascosa, R

    2007-12-01

    A methodology for the conformational study of cyclic systems through the statistical analysis of torsion angles is presented. It relies on a combination of different methods based on a probabilistic model which takes into account the topological symmetry of the structures. This methodology is applied to copper complexes double-bridged by phosphate and related ligands. Structures from the Cambridge Structural Database (CSD) are analyzed and the chair, boat-chair and boat conformations are identified as the most frequent conformations. The output of the methodology also provides information about distortions from the ideal conformations, the most frequent being: chair <--> twist-chair, chair <--> twist-boat-chair and boat <--> twist-boat. Molecular mechanics calculations identify these distortions as energetically accessible pathways.

  19. Protein stability and conformational rearrangements in lipid bilayers: linear gramicidin, a model system.

    PubMed Central

    Cotten, M; Xu, F; Cross, T A

    1997-01-01

    The replacement of four tryptophans in gramicidin A by four phenylalanines (gramicidin M) causes no change in the molecular fold of this dimeric peptide in a low dielectric isotropic organic solvent, but the molecular folds are dramatically different in a lipid bilayer environment. The indoles of gramicidin A interact with the anisotropic bilayer environment to induce a change in the molecular fold. The double-helical fold of gramicidin M, as opposed to the single-stranded structure of gramicidin A, is not compatible with ion conductance. Gramicidin A/gramicidin M hybrid structures have also been prepared, and like gramicidin M homodimers, these dimeric hybrids appear to have a double-helical fold, suggesting that a couple of indoles are being buried in the bilayer interstices. To achieve this equilibrium structure (i.e., minimum energy conformation), incubation at 68 degrees C for 2 days is required. Kinetically trapped metastable structures may be more common in lipid bilayers than in an aqueous isotropic environment. Structural characterizations in the bilayers were achieved with solid-state NMR-derived orientational constraints from uniformly aligned lipid bilayer samples, and characterizations in organic solvents were accomplished by solution NMR. Images FIGURE 2 FIGURE 3 FIGURE 5 PMID:9251781

  20. Conformational equilibria in butane-1,4-diol: a benchmark of a prototypical system with strong intramolecular H-bonds.

    PubMed

    Kozuch, Sebastian; Bachrach, Steven M; Martin, Jan M L

    2014-01-01

    Explicitly correlated CCSD(T) valence basis limit relative energies were obtained for the 65 conformers of butane-1,4-diol, a prototypical system with a strong internal hydrogen bond. The performance of a variety of ab initio and DFT methods (with and without empirical dispersion corrections) was assessed in detail. Consideration of all pairwise conformer energies provides a performance gauge for both H-bonds and van der Waals interactions, aside from internal strain of angles and bonds. In the post-HF realm, it was found that SCS(MI)CCSD-F12/cc-pVDZ-F12 can be a cost-effective alternative to CCSD(T)/CBS, almost without any loss in accuracy. In the DFT arena, the double-hybrid DSD-PBEP86-D3BJ surpasses the accuracy of all other methods (except for SCS(MI)CCSD, but at a small fraction of its cost). Several hybrid functionals provide an acceptable accuracy with the def2-QZVP basis set, especially BMK, M06, LC-ωPBE-D3, and TPSS0-D3. With the more modest 6-311+G(d,p) basis set, the H-bonds are far from basis set completeness and, due to error compensation, the inclusion of a dispersion correction is generally counterproductive. Some functionals that represent "Pauling points" at this level are LC-ωPBE, TPSS0, B1B95, BMK, TPSSh, PBE0, TPSS, and ωB97X. PMID:24328111

  1. Monoclonal antibodies that bind the renal Na/sup +//glucose symport system. 2. Stabilization of an active conformation

    SciTech Connect

    Wu, J.S.R.; Lever, J.E.

    1987-09-08

    Conformation-dependent fluorescein isothiocyanate (FITC) labeling of the pig renal Na/sup +//glucose symporter was investigated with specific monoclonal antibodies (MAb's). When renal brush border membranes were pretreated with phenyl isothiocyanate (PITC), washed, and then treated at neutral pH with FITC in the presence of transporter substrates Na/sup +/ and glucose, most of the incorporated fluorescence was associated with a single peak after resolution by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apparent molecular mass of the FITC-labeled species ranged from 79 to 92 kDa. Labeling of this peak was specifically reduced by 70% if Na/sup +/ and glucose were omitted. Na/sup +/ could not be replaced by K/sup +/, Rb/sup +/, or Li/sup +/. FITC labeling of this peak was also stimulated after incubation of membranes with MAb's known to influence high-affinity phlorizin binding, and stimulation was synergistically increased when MAb's were added in the presence of Na/sup +/ and glucose. Substrate-induced or MAb-induced labeling correlated with inactivation of Na/sup +/-dependent phlorizin binding. MAb's recognized an antigen of 75 kDa in the native membranes whereas substrate-induced FITC labeling was accompanied by loss of antigen recognition and protection from proteolysis. These findings are consistent with a model in which MAb's stabilize a Na/sup +/-induced active conformer of the Na/sup +//glucose symport system.

  2. Secondary Education Systemic Issues: Addressing Possible Contributors to a Leak in the Science Education Pipeline and Potential Solutions

    NASA Astrophysics Data System (ADS)

    Young, Hollie

    2005-06-01

    To maintain the legacy of cutting edge scientific innovation in the United States our country must address the many pressing issues facing science education today. One of the most important issues relating to science education is the under-representation of African Americans and Hispanics in the science, technology, and engineering workforce. Foreshadowing such under-representation in the workforce are the disproportionately low rates of African American and Hispanic students attaining college degrees in science and related fields. Evidence suggests disparate systemic factors in secondary science education are contributing to disproportionately low numbers of African American and Hispanic students in the science education pipeline. The present paper embarks on a critical analysis of the issue by elucidating some of the systemic factors within secondary education that contribute to the leak in the science education pipeline. In addition, this review offers a synthesis and explication of some of the policies and programs being implemented to address disparate systemic factors in secondary schools. Finally, recommendations are offered regarding potential mechanisms by which disparities may be alleviated.

  3. Addressing the epidemiologic transition in the former Soviet Union: strategies for health system and public health reform in Russia.

    PubMed Central

    Tulchinsky, T H; Varavikova, E A

    1996-01-01

    OBJECTIVES. This paper reviews Russia's health crisis, financing, and organization and public health reform needs. METHODS. The structure, policy, supply of services, and health status indicators of Russia's health system are examined. RESULTS. Longevity is declining; mortality rates from cardiovascular diseases and trauma are high and rising; maternal and infant mortality are high. Vaccine-preventable diseases have reappeared in epidemic form. Nutrition status is problematic. CONCLUSIONS. The crisis relates to Russia's economic transition, but it also goes deep into the former Soviet health system. The epidemiologic transition from a predominance of infectious to noninfectious diseases was addressed by increasing the quantity of services. The health system lacked mechanisms for epidemiologic or economic analysis and accountability to the public. Policy and funding favored hospitals over ambulatory care and individual routine checkups over community-oriented preventive approaches. Reform since 1991 has centered on national health insurance and decentralized management of services. A national health strategy to address fundamental public health problems is recommended. PMID:8604754

  4. Opening Address

    NASA Astrophysics Data System (ADS)

    Yamada, T.

    2014-12-01

    Ladies and Gentlemen, it is my great honor and pleasure to present an opening address of the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3). On the behalf of the organizing committee, I certainly welcome all your visits to KGU Kannai Media Center belonging to Kanto Gakuin University, and stay in Yokohama. In particular, to whom come from abroad more than 17 countries, I would appreciate your participations after long long trips from your homeland to Yokohama. The first international workshop on "State of the Art in Nuclear Cluster Physics", called SOTANCP, was held in Strasbourg, France, in 2008, and the second one was held in Brussels, Belgium, in 2010. Then the third workshop is now held in Yokohama. In this period, we had the traditional 10th cluster conference in Debrecen, Hungary, in 2012. Thus we have the traditional cluster conference and SOTANCP, one after another, every two years. This obviously shows our field of nuclear cluster physics is very active and flourishing. It is for the first time in about 10 years to hold the international workshop on nuclear cluster physics in Japan, because the last cluster conference held in Japan was in Nara in 2003, about 10 years ago. The president in Nara conference was Prof. K. Ikeda, and the chairpersons were Prof. H. Horiuchi and Prof. I. Tanihata. I think, quite a lot of persons in this room had participated at the Nara conference. Since then, about ten years passed. So, this workshop has profound significance for our Japanese colleagues. The subjects of this workshop are to discuss "the state of the art in nuclear cluster physics" and also discuss the prospect of this field. In a couple of years, we saw significant progresses of this field both in theory and in experiment, which have brought better and new understandings on the clustering aspects in stable and unstable nuclei. I think, the concept of clustering has been more important than ever. This is true also in the

  5. Convocation address.

    PubMed

    Ghatowar, P S

    1993-07-01

    The Union Deputy Minister of Health and Family Welfare in India addressed the 35th convocation of the International Institute for Population Sciences in Bombay in 1993. Officials in developing countries have been concerned about population growth for more than 30 years and have instituted policies to reduce population growth. In the 1960s, population growth in developing countries was around 2.5%, but today it is about 2%. Despite this decline, the world will have 1 billion more individuals by the year 2001. 95% of these new people will be born in developing countries. India's population size is so great that India does not have the time to wait for development to reduce population growth. Population needs to be viewed as an integrated part of overall development, since it is linked to poverty, illiteracy, environmental damage, gender issues, and reproductive health. Despite a large population size, India has made some important advancements in health and family planning. For example, India has reduced population growth (to 2.14% annually between 1981-1991), infant mortality, and its birth rate. It has increased the contraceptive use rate and life expectancy. Its southern states have been more successful at achieving demographic goals than have the northern states. India needs to implement efforts to improve living conditions, to change attitudes and perceptions about small families and contraception, and to promote family planning acceptance earlier among young couples. Improvement of living conditions is especially important in India, since almost 33% of the people live in poverty. India needs to invest in nutrition, health, and education. The mass media and nongovernmental organizations need to create population awareness and demand for family planning services. Improvement in women's status accelerates fertility decline, as has happened in Kerala State. The government needs to facilitate generation of jobs. Community participation is needed for India to achieve

  6. Conformable, Low Level Light Therapy platform

    NASA Astrophysics Data System (ADS)

    Jablonski, Michal; Bossuyt, Frederick; Vanfleteren, Jan; Vervust, Thomas; De Smet, Herbert

    2014-05-01

    Well-being applications demand unobtrusive treatment methods in order to reach user acceptance. In the field of light therapy this needs to be carefully addressed because, in most cases, light treatment system size has to be significant with respect to human body scale. At the same time we observe the push to make wearable devices that deliver the treatment on the go. Once scaled up, standard flexible electronics (FPC) fail to conform to body curvatures leading to decrease in comfort. A solution to this problem demands new or modified methods for fabrication of the electronic circuits that fulfill the conformability demand (flexing, but also stretching). Application of Stretchable Molded Interconnect (SMI) technology, that attempts to address these demands, will be discussed. The unique property of SMI is that its manufacturing draws mainly from standard PCB and FCB technologies to inherit the reliability and conductivity. At the same time, however, it allows soft, flexible and stretchable circuits with biomimetic haptics and high optical efficiency. In this work a demonstrator device for blue light therapy of RSI is presented that illustrates the strengths as well as challenges ahead of conformable light circuits. We report system electro-optical efficiency, possible irradiance levels within skin thermal comfort and efficiency under cyclic, tensile stretching deformation.

  7. Welcome Address

    NASA Astrophysics Data System (ADS)

    Kiku, H.

    2014-12-01

    Ladies and Gentlemen, It is an honor for me to present my welcome address in the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3), as the president of Kanto Gakuin University. Particularly to those from abroad more than 17 countries, I am very grateful for your participation after long long trips from your home to Yokohama. On the behalf of the Kanto Gakuin University, we certainly welcome your visit to our university and stay in Yokohama. First I would like to introduce Kanto Gakuin University briefly. Kanto Gakuin University, which is called KGU, traces its roots back to the Yokohama Baptist Seminary founded in 1884 in Yamate, Yokohama. The seminary's founder was Albert Arnold Bennett, alumnus of Brown University, who came to Japan from the United States to establish a theological seminary for cultivating and training Japanese missionaries. Now KGU is a major member of the Kanto Gakuin School Corporation, which is composed of two kindergartens, two primary schools, two junior high schools, two senior high schools as well as KGU. In this university, we have eight faculties with graduate school including Humanities, Economics, Law, Sciences and Engineering, Architecture and Environmental Design, Human and Environmental Studies, Nursing, and Law School. Over eleven thousands students are currently learning in our university. By the way, my major is the geotechnical engineering, and I belong to the faculty of Sciences and Engineering in my university. Prof. T. Yamada, here, is my colleague in the same faculty. I know that the nuclear physics is one of the most active academic fields in the world. In fact, about half of the participants, namely, more than 50 scientists, come from abroad in this conference. Moreover, I know that the nuclear physics is related to not only the other fundamental physics such as the elementary particle physics and astrophysics but also chemistry, medical sciences, medical cares, and radiation metrology

  8. Policy Options for Addressing Health System and Human Resources for Health Crisis in Liberia Post-Ebola Epidemic

    PubMed Central

    Budy, Fidel C.T.

    2015-01-01

    Qualified healthcare workers within an effective health system are critical in promoting and achieving greater health outcomes such as those espoused in the Millennium Development Goals. Liberia is currently struggling with the effects of a brutal 14-year long civil war that devastated health infrastructures and caused most qualified health workers to flee and settle in foreign countries. The current output of locally trained health workers is not adequate for the tasks at hand. The recent Ebola Virus Disease (EVD) exposed the failings of the Liberian healthcare system. There is limited evidence of policies that could be replicated in Liberia to encourage qualified diaspora Liberian health workers to return and contribute to managing the phenomenon. This paper reviews the historical context for the human resources for health crisis in Liberia; it critically examines two context-specific health policy options to address the crisis, and recommends reverse brain drain as a policy option to address the immediate and critical crisis facing the health care sector in Liberia. PMID:27622002

  9. Policy Options for Addressing Health System and Human Resources for Health Crisis in Liberia Post-Ebola Epidemic

    PubMed Central

    Budy, Fidel C.T.

    2015-01-01

    Qualified healthcare workers within an effective health system are critical in promoting and achieving greater health outcomes such as those espoused in the Millennium Development Goals. Liberia is currently struggling with the effects of a brutal 14-year long civil war that devastated health infrastructures and caused most qualified health workers to flee and settle in foreign countries. The current output of locally trained health workers is not adequate for the tasks at hand. The recent Ebola Virus Disease (EVD) exposed the failings of the Liberian healthcare system. There is limited evidence of policies that could be replicated in Liberia to encourage qualified diaspora Liberian health workers to return and contribute to managing the phenomenon. This paper reviews the historical context for the human resources for health crisis in Liberia; it critically examines two context-specific health policy options to address the crisis, and recommends reverse brain drain as a policy option to address the immediate and critical crisis facing the health care sector in Liberia.

  10. Policy Options for Addressing Health System and Human Resources for Health Crisis in Liberia Post-Ebola Epidemic.

    PubMed

    Budy, Fidel C T

    2015-01-01

    Qualified healthcare workers within an effective health system are critical in promoting and achieving greater health outcomes such as those espoused in the Millennium Development Goals. Liberia is currently struggling with the effects of a brutal 14-year long civil war that devastated health infrastructures and caused most qualified health workers to flee and settle in foreign countries. The current output of locally trained health workers is not adequate for the tasks at hand. The recent Ebola Virus Disease (EVD) exposed the failings of the Liberian healthcare system. There is limited evidence of policies that could be replicated in Liberia to encourage qualified diaspora Liberian health workers to return and contribute to managing the phenomenon. This paper reviews the historical context for the human resources for health crisis in Liberia; it critically examines two context-specific health policy options to address the crisis, and recommends reverse brain drain as a policy option to address the immediate and critical crisis facing the health care sector in Liberia. PMID:27622002

  11. Policy Options for Addressing Health System and Human Resources for Health Crisis in Liberia Post-Ebola Epidemic.

    PubMed

    Budy, Fidel C T

    2015-01-01

    Qualified healthcare workers within an effective health system are critical in promoting and achieving greater health outcomes such as those espoused in the Millennium Development Goals. Liberia is currently struggling with the effects of a brutal 14-year long civil war that devastated health infrastructures and caused most qualified health workers to flee and settle in foreign countries. The current output of locally trained health workers is not adequate for the tasks at hand. The recent Ebola Virus Disease (EVD) exposed the failings of the Liberian healthcare system. There is limited evidence of policies that could be replicated in Liberia to encourage qualified diaspora Liberian health workers to return and contribute to managing the phenomenon. This paper reviews the historical context for the human resources for health crisis in Liberia; it critically examines two context-specific health policy options to address the crisis, and recommends reverse brain drain as a policy option to address the immediate and critical crisis facing the health care sector in Liberia.

  12. A Portable Low-Power Harmonic Radar System and Conformal Tag for Insect Tracking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harmonic radar systems provide an effective modality for tracking insect behavior. This paper presents a harmonic radar system proposed to track the migration of the Emerald Ash Borer (EAB). The system offers a unique combination of portability, low power and small tag design. It is comprised of a...

  13. Conformal inflation coupled to matter

    SciTech Connect

    Brax, Philippe

    2014-05-01

    We formulate new conformal models of inflation and dark energy which generalise the Higgs-Dilaton scenario. We embed these models in unimodular gravity whose effect is to break scale invariance in the late time Universe. In the early Universe, inflation occurs close to a maximum of both the scalar potential and the scalar coupling to the Ricci scalar in the Jordan frame. At late times, the dilaton, which decouples from the dynamics during inflation, receives a potential term from unimodular gravity and leads to the acceleration of the Universe. We address two central issues in this scenario. First we show that the Damour-Polyalov mechanism, when non-relativistic matter is present prior to the start of inflation, sets the initial conditions for inflation at the maximum of the scalar potential. We then show that conformal invariance implies that matter particles are not coupled to the dilaton in the late Universe at the classical level. When fermions acquire masses at low energy, scale invariance is broken and quantum corrections induce a coupling between the dilaton and matter which is still small enough to evade the gravitational constraints in the solar system.

  14. Presidential address.

    PubMed

    Shunglu, V K

    1994-07-01

    Rapid and substantial population growth in India is hampering development. Family welfare programs in the country during the last four years have not met population reduction goals. The decentralization of political and administrative power in relevant programs, however, will help the country attain its goal of replacement fertility. To that end, the 73rd and 74th amendments to the constitution have recently been enacted to help decentralize power to people at the village, intermediate, and district levels. The participation of the people is essential for success. State ministers of health must begin assigning management of the rural health care systems to the Panchayats. Population policy has changed so that family planning is now provided within the broader context of maternal and child health care, emphasizing voluntarism and informed choice among contraceptive methods and popular participation. The speaker laments the decline of male participation in family planning and calls for high priority to be given to developing fertility regulation methods for men as well as identifying factors which prohibit male participation. The country's unbalanced female to male sex ratio and interstate and inter-district variations in social parameters which have a bearing upon population growth rates also merit attention. Investing in human resources is crucial to the success of population programs. Financing has therefore increased for poverty alleviation programs and other social sector programs.

  15. Politics and technology in health information systems development: a discourse analysis of conflicts addressed in a systems design group.

    PubMed

    Irestig, Magnus; Timpka, Toomas

    2008-02-01

    Different types of disagreements must be managed during the development of health information systems. This study examines the antagonisms discussed during the design of an information system for 175,000 users in a public health context. Discourse analysis methods were used for data collection and analysis. Three hundred and twenty-six conflict events were identified from four design meetings and divided into 16 categories. There were no differences regarding the types of conflicts that the different participants brought into the design discussions. Instead, conflict occurrence was primarily affected by the agendas that set the stage for examinations and debates. The results indicate that the selection of design method and the structure used for the meetings are important factors for the manner in which conflicts are brought into consideration during health information system design. Further studies comparing participatory and non-participatory information system design practices in health service settings are warranted.

  16. Addressing System Integration Issues Required for the Developmente of Distributed Wind-Hydrogen Energy Systems: Final Report

    SciTech Connect

    Mann, M.D; Salehfar, H.; Harrison, K.W.; Dale, N.; Biaku, C.; Peters, A.J.; Hernandez-Pacheco: E.

    2008-04-01

    Wind generated electricity is a variable resource. Hydrogen can be generated as an energy storage media, but is costly. Advancements in power electronics and system integration are needed to make a viable system. Therefore, the long-term goal of the efforts at the University of North Dakota is to merge wind energy, hydrogen production, and fuel cells to bring emission-free and reliable power to commercial viability. The primary goals include 1) expand system models as a tool to investigate integration and control issues, 2) examine long-term effects of wind-electrolysis performance from a systematic perspective, and 3) collaborate with NREL and industrial partners to design, integrate, and quantify system improvements by implementing a single power electronics package to interface wild AC to PEM stack DC requirements. This report summarizes the accomplishments made during this project.

  17. Welcome address

    NASA Astrophysics Data System (ADS)

    Yasuoka, Hiroshi

    2003-07-01

    overview of fields they are involved in. The topic of the present symposium is ‘advances in f-electron phenomena’. I will not go into detail about the importance of this field, because the Chairman of the organizing committee, Professor Russ Walstedt will tell you the outline later. Nevertheless, let me emphasize that the scientific subjects discussed at this symposium, namely the fundamental properties of f-electrons, are playing a crucial role in understanding the exotic effects of rare earth and actinide compounds such as magnetic and multi polar ordering, quantum critical phenomena and unconventional superconductivity. These are quite fascinating topics and I expect a variety of hot discussions throughout this symposium. Finally, I would like to thank our president, Dr S Saito, for allowing us to hold this symposium and for help with financial sponsorship. My special gratitude goes also to the Physical Society of Japan and the Atomic Energy Society of Japan for their endorsement. I would like to close my speech by expressing my sincere wishes for the success of the symposium and for all participants to discover new opportunities in the still growing area of research on the f-electron systems. Thank you very much for your attention.

  18. New and improved proteomics technologies for understanding complex biological systems: Addressing a grand challenge in the life sciences

    PubMed Central

    Hood, Leroy E.; Omenn, Gilbert S.; Moritz, Robert L.; Aebersold, Ruedi; Yamamoto, Keith R.; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2014-01-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14–15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development. PMID:22807061

  19. New and improved proteomics technologies for understanding complex biological systems: addressing a grand challenge in the life sciences.

    PubMed

    Hood, Leroy E; Omenn, Gilbert S; Moritz, Robert L; Aebersold, Ruedi; Yamamoto, Keith R; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2012-09-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14-15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development.

  20. Individual addressing of trapped {sup 171}Yb{sup +} ion qubits using a microelectromechanical systems-based beam steering system

    SciTech Connect

    Crain, S.; Mount, E.; Baek, S.; Kim, J.

    2014-11-03

    The ability to individually manipulate the increasing number of qubits is one of the many challenges towards scalable quantum information processing with trapped ions. Using micro-mirrors fabricated with micro-electromechanical systems technology, we focus laser beams on individual ions in a linear chain and steer the focal point in two dimensions. We demonstrate sequential single qubit gates on multiple {sup 171}Yb{sup +} qubits and characterize the gate performance using quantum state tomography. Our system features negligible crosstalk to neighboring ions (<3×10{sup −4}), and switching speed comparable to typical single qubit gate times (<2 μs)

  1. Towards conformal loop quantum gravity

    NASA Astrophysics Data System (ADS)

    H-T Wang, Charles

    2006-03-01

    A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity.

  2. A Personal Health Record System for Diabetes Care Conforming to the ISO 16527 Interoperability Requirements.

    PubMed

    Cerón, Jesús D; Gómez, Guillermo A; López, Diego M; González, Carolina; Blobel, Bernd

    2014-01-01

    A Personal Health Record (PHR) is a health information repository controlled and managed directly by a patient or his/her custodian, or a person interested in his/her own health. PHR System's adoption and compliance with international standards is foremost important because it can help to meet international, national, regional or institutional interoperability and portability policies. In this paper, an interoperable PHR System for supporting the control of type 2 diabetes mellitus is proposed, which meets the mandatory interoperability requirements proposed in the Personal Health Record System Functional Model standard (ISO 16527). After performing a detailed analysis of different applications and platforms for the implementation of electronic Personal Health Records, the adaptation of the Indivo Health open source platform was completed. Interoperability functions were added to this platform by integrating the Mirth Connect platform. The assessment of the platform's interoperability capabilities was carried out by a group of experts, who verified the interoperability requirements proposed in the ISO 16527 standard.

  3. Role of Systemic Therapy in the Development of Lung Sequelae After Conformal Radiotherapy in Breast Cancer Patients

    SciTech Connect

    Varga, Zoltan; Cserhati, Adrienn; Kelemen, Gyoengyi; Boda, Krisztina; Thurzo, Laszlo; Kahan, Zsuzsanna

    2011-07-15

    Purpose: To analyze the risk of radiogenic lung damage in breast cancer patients after conformal radiotherapy and different forms of systemic treatment. Methods and Materials: In 328 patients receiving sequential taxane-based chemotherapy, concomitant hormone therapy (tamoxifen or aromatase inhibitors), or no adjuvant systemic therapy, symptomatic and asymptomatic lung sequelae were prospectively evaluated via the detection of visible CT abnormalities, 3 months or 1 year after the completion of the radiotherapy. Results: Significant positive associations were detected between the development of both pneumonitis and fibrosis of Grade 1 and patient age, ipsilateral mean lung dose, volume of the ipsilateral lung receiving 20 Gy, and irradiation of the regional lymph nodes. In multivariate analysis, age and mean lung dose proved to be independent predictors of early (odds ratio [OR] = 1.035, 95% confidence interval [CI] 1.011-1.061 and OR = 1.113, 95% CI 1.049-1.181, respectively) and late (OR = 1.074, 95% CI 1.042-1.107 and OR = 1.207, 95% CI 1.124-1.295, respectively) radiogenic lung damage, whereas the role of systemic therapy was significant in the development of Grade 1 lung fibrosis (p = 0.01). Among the various forms of systemic therapy, tamoxifen increased the risk of late lung sequelae (OR = 2.442, 95% CI 1.120-5.326, p = 0.025). No interaction was demonstrated between the administration of systemic therapy and the other above-mentioned parameters as regards the risk of radiogenic lung damage. Conclusions: Our analyses demonstrate the independent role of concomitant tamoxifen therapy in the development of radiogenic lung fibrosis but do not suggest such an effect for the other modes of systemic treatment.

  4. The conformal bootstrap

    NASA Astrophysics Data System (ADS)

    Poland, David; Simmons-Duffin, David

    2016-06-01

    The conformal bootstrap was proposed in the 1970s as a strategy for calculating the properties of second-order phase transitions. After spectacular success elucidating two-dimensional systems, little progress was made on systems in higher dimensions until a recent renaissance beginning in 2008. We report on some of the main results and ideas from this renaissance, focusing on new determinations of critical exponents and correlation functions in the three-dimensional Ising and O(N) models.

  5. A novel convolution-based approach to address ionization chamber volume averaging effect in model-based treatment planning systems.

    PubMed

    Barraclough, Brendan; Li, Jonathan G; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua

    2015-08-21

    The ionization chamber volume averaging effect is a well-known issue without an elegant solution. The purpose of this study is to propose a novel convolution-based approach to address the volume averaging effect in model-based treatment planning systems (TPSs). Ionization chamber-measured beam profiles can be regarded as the convolution between the detector response function and the implicit real profiles. Existing approaches address the issue by trying to remove the volume averaging effect from the measurement. In contrast, our proposed method imports the measured profiles directly into the TPS and addresses the problem by reoptimizing pertinent parameters of the TPS beam model. In the iterative beam modeling process, the TPS-calculated beam profiles are convolved with the same detector response function. Beam model parameters responsible for the penumbra are optimized to drive the convolved profiles to match the measured profiles. Since the convolved and the measured profiles are subject to identical volume averaging effect, the calculated profiles match the real profiles when the optimization converges. The method was applied to reoptimize a CC13 beam model commissioned with profiles measured with a standard ionization chamber (Scanditronix Wellhofer, Bartlett, TN). The reoptimized beam model was validated by comparing the TPS-calculated profiles with diode-measured profiles. Its performance in intensity-modulated radiation therapy (IMRT) quality assurance (QA) for ten head-and-neck patients was compared with the CC13 beam model and a clinical beam model (manually optimized, clinically proven) using standard Gamma comparisons. The beam profiles calculated with the reoptimized beam model showed excellent agreement with diode measurement at all measured geometries. Performance of the reoptimized beam model was comparable with that of the clinical beam model in IMRT QA. The average passing rates using the reoptimized beam model increased substantially from 92.1% to

  6. A novel convolution-based approach to address ionization chamber volume averaging effect in model-based treatment planning systems

    NASA Astrophysics Data System (ADS)

    Barraclough, Brendan; Li, Jonathan G.; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua

    2015-08-01

    The ionization chamber volume averaging effect is a well-known issue without an elegant solution. The purpose of this study is to propose a novel convolution-based approach to address the volume averaging effect in model-based treatment planning systems (TPSs). Ionization chamber-measured beam profiles can be regarded as the convolution between the detector response function and the implicit real profiles. Existing approaches address the issue by trying to remove the volume averaging effect from the measurement. In contrast, our proposed method imports the measured profiles directly into the TPS and addresses the problem by reoptimizing pertinent parameters of the TPS beam model. In the iterative beam modeling process, the TPS-calculated beam profiles are convolved with the same detector response function. Beam model parameters responsible for the penumbra are optimized to drive the convolved profiles to match the measured profiles. Since the convolved and the measured profiles are subject to identical volume averaging effect, the calculated profiles match the real profiles when the optimization converges. The method was applied to reoptimize a CC13 beam model commissioned with profiles measured with a standard ionization chamber (Scanditronix Wellhofer, Bartlett, TN). The reoptimized beam model was validated by comparing the TPS-calculated profiles with diode-measured profiles. Its performance in intensity-modulated radiation therapy (IMRT) quality assurance (QA) for ten head-and-neck patients was compared with the CC13 beam model and a clinical beam model (manually optimized, clinically proven) using standard Gamma comparisons. The beam profiles calculated with the reoptimized beam model showed excellent agreement with diode measurement at all measured geometries. Performance of the reoptimized beam model was comparable with that of the clinical beam model in IMRT QA. The average passing rates using the reoptimized beam model increased substantially from 92.1% to

  7. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    SciTech Connect

    Jorge Gabitto; Maria Barrufet

    2004-08-01

    Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report is performed jointly by, Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures and the work done on recovery experiments on core rocks. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results do not show a

  8. Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application

    PubMed Central

    Wu, Kai; Zhan, Yaohui; Zhang, Cheng; Wu, Shaolong; Li, Xiaofeng

    2015-01-01

    We propose an architecture of conformal metal-semiconductor-metal (MSM) device for hot-electron photodetection by asymmetrical alignment of the semiconductor barrier relative to the Fermi level of metals and strong energy localization through plasmonic resonances. Compared with the conventional grating design, the multi-layered grating system under conformal configuration is demonstrated to possess both optical and electrical advantages for high-sensitivity hot-electron photodetection. Finite-element simulation reveals that a strong and highly asymmetrical optical absorption (top metal absorption >99%) can be realized under such a conformal arrangement. An analytical probability-based electrical simulation verifies the strong unidirectional photocurrent, by taking advantage of the extremely high net absorption and a low metal/semiconductor barrier height, and predicts that the corresponding photoresponsivity can be ~3 times of that based on the conventional grating design in metal-insulator-metal (MIM) configuration. PMID:26387836

  9. Deciphering the Interplay among Multisite Phosphorylation, Interaction Dynamics, and Conformational Transitions in a Tripartite Protein System

    PubMed Central

    2016-01-01

    Multisite phosphorylation is a common pathway to regulate protein function, activity, and interaction pattern in vivo, but routine biochemical analysis is often insufficient to identify the number and order of individual phosphorylation reactions and their mechanistic impact on the protein behavior. Here, we integrate complementary mass spectrometry (MS)-based approaches to characterize a multisite phosphorylation-regulated protein system comprising Polo-like kinase 1 (Plk1) and its coactivators Aurora kinase A (Aur-A) and Bora, the interplay of which is essential for mitotic entry after DNA damage-induced cell cycle arrest. Native MS and cross-linking–MS revealed that Aur-A/Bora-mediated Plk1 activation is accompanied by the formation of Aur-A/Bora and Plk1/Bora heterodimers. We found that the Aur-A/Bora interaction is independent of the Bora phosphorylation state, whereas the Plk1/Bora interaction is dependent on extensive Bora multisite phosphorylation. Bottom-up and top-down proteomics analyses showed that Bora multisite phosphorylation proceeds via a well-ordered sequence of site-specific phosphorylation reactions, whereby we could reveal the involvement of up to 16 phosphorylated Bora residues. Ion mobility spectrometry–MS demonstrated that this multisite phosphorylation primes a substantial structural rearrangement of Bora, explaining the interdependence between extensive Bora multisite phosphorylation and Plk1/Bora complex formation. These results represent a first benchmark of our multipronged MS strategy, highlighting its potential to elucidate the mechanistic and structural implications of multisite protein phosphorylation. PMID:27504491

  10. Conformable wearable systems comprising organic electronics on foil for well being and healthcare (presentation video)

    NASA Astrophysics Data System (ADS)

    de Kok, Margreet M.

    2014-10-01

    Integration of electronics into materials and objects that have not been functionalized with electronics before, open up extensive possibilities to support mankind. By adding intelligence and/or operating power to materials in close skin contact like clothing, furniture or bandages the health of people can be monitored or even improved. Foil based electronics are interesting components to be integrated as they are thin, large area and cost effective available components Our developed technology of printed electronic structures to which components are reliably bonded, fulfills the promise. We have integrated these components into textiles and built wearable encapsulated products with foil based electronics. Foil components with organic and inorganic LEDs are interconnected and laminated onto electronic textiles by using conductive adhesives to bond the contact pads of the component to conductive yarns in the textile. Modelling and reliability testing under dynamic circumstances provided important insights in order to optimise the technology. The design of the interconnection and choice of conductive adhesive / underfill and lamination contributed to the durability of the system. Transition zones from laminated foil to textile are engineered to withstand dynamic use. As an example of a product, we have realized an electronic wristband that is encapsulated in rubber and has a number of sensor functionalities integrated on stretchable electronic circuits based on Cu and Ag. The encapsulation with silicone or polyurethanes was performed such, that charging and sensor/skin contacts are possible while simultaneously protecting the electronics from mechanical and environmental stresses.

  11. System for routing messages in a vertex symmetric network by using addresses formed from permutations of the transmission line indicees

    DOEpatents

    Faber, Vance; Moore, James W.

    1992-01-01

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs .GAMMA..sub.d (k) with degree d, diameter k, and (d+1)!/(d-k+1)! processors for each d.gtoreq.k and .GAMMA..sub.d (k,-1) with degree 3-1, diameter k+1, and (d+1)!/(d-k+1)! processors for each d.gtoreq.k.gtoreq.4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network .GAMMA..sub.d (k,-1) is provided, no processor has a channel connected to form an edge in a direction .delta..sub.1. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations.

  12. Future prospects for prophylactic immune stimulation in crustacean aquaculture - the need for improved metadata to address immune system complexity.

    PubMed

    Hauton, Chris; Hudspith, Meggie; Gunton, Laetitia

    2015-02-01

    Future expansion of the crustacean aquaculture industry will be required to ensure global food security. However, this expansion must ensure: (a) that natural resources (including habitat use and fish meal) are sustainably exploited, (b) that the socio-economic development of producing nations is safeguarded, and (c) that the challenge presented by crustacean diseases is adequately met. Conventionally, the problem of disease in crustacean aquaculture has been addressed through prophylactic administration of stimulants, additives or probiotics. However, these approaches have been questioned both experimentally and philosophically. In this review, we argue that real progress in the field of crustacean immune stimulants has now slowed, with only incremental advances now being made. We further contend that an overt focus on the immune effector response has been misguided. In light of the wealth of new data reporting immune system complexity, a more refined approach is necessary - one that must consider the important role played by pattern recognition proteins. In support of this more refined approach, there is now a much greater requirement for the reporting of essential metadata. We propose a broad series of recommendations regarding the 'Minimum Information required to support a Stimulant Assessment experiment' (MISA guidelines) to foster new progression within the field.

  13. Holographic content addressable storage

    NASA Astrophysics Data System (ADS)

    Chao, Tien-Hsin; Lu, Thomas; Reyes, George

    2015-03-01

    We have developed a Holographic Content Addressable Storage (HCAS) architecture. The HCAS systems consists of a DMD (Digital Micromirror Array) as the input Spatial Light Modulator (SLM), a CMOS (Complementary Metal-oxide Semiconductor) sensor as the output photodetector and a photorefractive crystal as the recording media. The HCAS system is capable of performing optical correlation of an input image/feature against massive reference data set stored in the holographic memory. Detailed system analysis will be reported in this paper.

  14. Stabilizing the boat conformation of cyclohexane rings

    SciTech Connect

    Dasgupta, S.; Goddard, W.A. III; Moldowan, J.M.; Carlson, R.M.K.; Goddard, W.A. III.

    1995-06-21

    In calculating the energetics for various conformers of the A, B, and C series of hopanoid hydrocarbons present in mature oil reservoirs, we find that the B series prefers the boat conformation (by 1.3-2.5 kcal/mol) for the D cyclohexane ring. We analyze the structural elements responsible for stabilizing this boat conformation, identify the key features, and illustrate how one might stabilize boat conformations of other systems. 5 refs., 3 figs., 2 tabs.

  15. Development of a Micro-Computed Tomography-Based Image-Guided Conformal Radiotherapy System for Small Animals

    SciTech Connect

    Zhou Hu; Rodriguez, Manuel; Haak, Fred van den; Nelson, Geoffrey; Jogani, Rahil

    2010-09-01

    Purpose: To report on the physical aspects of a system in which radiotherapy functionality was added to a micro-computed tomography (microCT) scanner, to evaluate the accuracy of this instrument, and to and demonstrate the application of this technology for irradiating tumors growing within the lungs of mice. Methods and Materials: A GE eXplore RS120 microCT scanner was modified by the addition of a two-dimensional subject translation stage and a variable aperture collimator. Quality assurance protocols for these devices, including measurement of translation stage positioning accuracy, collimator aperture accuracy, and collimator alignment with the X-ray beam, were devised. Use of this system for image-guided radiotherapy was assessed by irradiation of a solid water phantom as well as of two mice bearing spontaneous MYC-induced lung tumors. Radiation damage was assessed ex vivo by immunohistochemical detection of {gamma}H2AX foci. Results: The positioning error of the translation stage was found to be <0.05 mm, whereas after alignment of the collimator with the X-ray axis through adjustment of its displacement and rotation, the collimator aperture error was <0.1 mm measured at isocenter. Computed tomography image-guided treatment of a solid water phantom demonstrated target localization accuracy to within 0.1 mm. Gamma-H2AX foci were detected within irradiated lung tumors in mice, with contralateral lung tissue displaying background staining. Conclusions: Addition of radiotherapy functionality to a microCT scanner is an effective means of introducing image-guided radiation treatments into the preclinical setting. This approach has been shown to facilitate small-animal conformal radiotherapy while leveraging existing technology.

  16. Engaging sub-national governments in addressing health equities: challenges and opportunities in China's health system reform.

    PubMed

    Brixi, Hana; Mu, Yan; Targa, Beatrice; Hipgrave, David

    2013-12-01

    China's current health system reform (HSR) is striving to resolve deep inequities in health outcomes. Achieving this goal is difficult not only because of continuously increasing income disparities in China but also because of weaknesses in healthcare financing and delivery at the local level. We explore to what extent sub-national governments, which are largely responsible for health financing in China, are addressing health inequities. We describe the recent trend in health inequalities in China, and analyse government expenditure on health in the context of China's decentralization and intergovernmental model to assess whether national, provincial and sub-provincial public resource allocations and local government accountability relationships are aligned with this goal. Our analysis reveals that government expenditure on health at sub-national levels, which accounts for ∼90% of total government expenditure on health, is increasingly regressive across provinces, and across prefectures within provinces. Increasing inequity in public expenditure at sub-national levels indicates that resources and responsibilities at sub-national levels in China are not well aligned with national priorities. China's HSR would benefit from complementary measures to improve the governance and financing of public service delivery. We discuss the existing weaknesses in local governance and suggest possible approaches to better align the responsibilities and capacity of sub-national governments with national policies, standards, laws and regulations, therefore ensuring local-level implementation and enforcement. Drawing on China's institutional framework and ongoing reform pilots, we present possible approaches to: (1) consolidate key health financing responsibilities at the provincial level and strengthen the accountability of provincial governments, (2) define targets for expenditure on primary health care, outputs and outcomes for each province and (3) use independent sources to

  17. Conformal complementarity maps

    NASA Astrophysics Data System (ADS)

    Barbón, José L. F.; Rabinovici, Eliezer

    2013-12-01

    We study quantum cosmological models for certain classes of bang/crunch singularities, using the duality between expanding bubbles in AdS with a FRW interior cosmology and perturbed CFTs on de Sitter space-time. It is pointed out that horizon complementarity in the AdS bulk geometries is realized as a conformal transformation in the dual deformed CFT. The quantum version of this map is described in full detail in a toy model involving conformal quantum mechanics. In this system the complementarity map acts as an exact duality between eternal and apocalyptic Hamiltonian evolutions. We calculate the commutation relation between the Hamiltonians corresponding to the different frames. It vanishes only on scale invariant states.

  18. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2004-09-30

    ) using combinations of high and low molecular weight (Mw) polymers, (5) using secondary crosslinking reactions, (6) injecting un-hydrated polymer particles, and (7) incorporating particulates. All of these methods showed promise in some aspects, but required performance improvements in other aspects. All materials investigated to date showed significant performance variations with fracture width. High pressure gradients and limited distance of penetration are common problems in tight fractures. Gravity segregation and low resistance to breaching are common problems in wide fractures. These will be key issues to address in future work. Although gels can exhibit disproportionate permeability reduction in fractures, the levels of permeability reduction for oil flow are too high to allow practical exploitation in most circumstances. In contrast, disproportionate permeability reduction provided by gels that form in porous rock (adjacent to the fractures) has considerable potential in fractured systems.

  19. Flexible ligand docking using conformational ensembles.

    PubMed Central

    Lorber, D. M.; Shoichet, B. K.

    1998-01-01

    Molecular docking algorithms suggest possible structures for molecular complexes. They are used to model biological function and to discover potential ligands. A present challenge for docking algorithms is the treatment of molecular flexibility. Here, the rigid body program, DOCK, is modified to allow it to rapidly fit multiple conformations of ligands. Conformations of a given molecule are pre-calculated in the same frame of reference, so that each conformer shares a common rigid fragment with all other conformations. The ligand conformers are then docked together, as an ensemble, into a receptor binding site. This takes advantage of the redundancy present in differing conformers of the same molecule. The algorithm was tested using three organic ligand protein systems and two protein-protein systems. Both the bound and unbound conformations of the receptors were used. The ligand ensemble method found conformations that resembled those determined in X-ray crystal structures (RMS values typically less than 1.5 A). To test the method's usefulness for inhibitor discovery, multi-compound and multi-conformer databases were screened for compounds known to bind to dihydrofolate reductase and compounds known to bind to thymidylate synthase. In both cases, known inhibitors and substrates were identified in conformations resembling those observed experimentally. The ligand ensemble method was 100-fold faster than docking a single conformation at a time and was able to screen a database of over 34 million conformations from 117,000 molecules in one to four CPU days on a workstation. PMID:9568900

  20. Conformal operators in QCD

    SciTech Connect

    Makeenko, Y.M.

    1981-03-01

    Utilizing the properties of the representations of the conformal group, we obtain new expressions for the conformal operators composed of spinor or scalar fields of arbitrary dimension in terms of Jacobi polynomials. These expressions generalize the known formulas in terms of Gegenbauer polynomials. Using the conformal Ward identities, we prove the multiplicative renormalizability of conformal operators in the leading logarithmic approximation.

  1. A study on quantitative analysis of field size and dose by using gating system in 4D conformal radiation treatment

    NASA Astrophysics Data System (ADS)

    Ji, Youn-Sang; Dong, Kyung-Rae; Kim, Chang-Bok; Chung, Woon-Kwan; Cho, Jae-Hwan; Lee, Hae-Kag

    2012-10-01

    This study evaluated the gating-based 4-D conformal radiation therapy (4D-CT) treatment planning by a comparison with the common 3-D conformal radiation therapy (3D-CT) treatment planning and examined the change in treatment field size and dose to the tumors and adjacent normal tissues because an unnecessary dose is also included in the 3-D treatment planning for the radiation treatment of tumors in the chest and abdomen. The 3D-CT and gating-based 4D-CT images were obtained from patients who had undergone radiation treatment for chest and abdomen tumors in the oncology department. After establishing a treatment plan, the CT treatment and planning system were used to measure the change in field size for analysis. A dose volume histogram (DVH) was used to calculate the appropriate dose to planning target volume (PTV) tumors and adjacent normal tissue. The difference in the treatment volume of the chest was 0.6 and 0.83 cm on the X- and Y-axis, respectively, for the gross tumor volume (GTV). Accordingly, the values in the 4D-CT treatment planning were smaller and the dose was more concentrated by 2.7% and 0.9% on the GTV and clinical target volume (CTV), respectively. The normal tissues in the surrounding normal tissues were reduced by 3.0%, 7.2%, 0.4%, 1.7%, 2.6% and 0.2% in the bronchus, chest wall, esophagus, heart, lung and spinal cord, respectively. The difference in the treatment volume of the abdomen was 0.72 cm on the X-axis and 0.51 cm on the Y-axis for the GTV; and 1.06 cm on the X-axis and 1.85 cm on the Y-axis for the PTV. Therefore, the values in the 4D-CT treatment planning were smaller. The dose was concentrated by 6.8% and 4.3% on the GTV and PTV, respectively, whereas the adjacent normal tissues in the cord, Lt. kidney, Rt. kidney, small bowels and whole liver were reduced by 3.2%, 4.2%, 1.5%, 6.2% and 12.7%, respectively. The treatment field size was smaller in volume in the case of the 4D-CT treatment planning. In the DVH, the 4D-CT treatment

  2. Conformational stability of apoflavodoxin.

    PubMed Central

    Genzor, C. G.; Beldarraín, A.; Gómez-Moreno, C.; López-Lacomba, J. L.; Cortijo, M.; Sancho, J.

    1996-01-01

    Flavodoxins are alpha/beta proteins that mediate electron transfer reactions. The conformational stability of apoflavodoxin from Anaboena PCC 7119 has been studied by calorimetry and urea denaturation as a function of pH and ionic strength. At pH > 12, the protein is unfolded. Between pH 11 and pH 6, the apoprotein is folded properly as judged from near-ultraviolet (UV) circular dichroism (CD) and high-field 1H NMR spectra. In this pH interval, apoflavodoxin is a monomer and its unfolding by urea or temperature follows a simple two-state mechanism. The specific heat capacity of unfolding for this native conformation is unusually low. Near its isoelectric point (3.9), the protein is highly insoluble. At lower pH values (pH 3.5-2.0), apoflavodoxin adopts a conformation with the properties of a molten globule. Although apoflavodoxin at pH 2 unfolds cooperatively with urea in a reversible fashion and the fluorescence and far-UV CD unfolding curves coincide, the transition midpoint depends on the concentration of protein, ruling out a simple two-state process at acidic pH. Apoflavodoxin constitutes a promising system for the analysis of the stability and folding of alpha/beta proteins and for the study of the interaction between apoflavoproteins and their corresponding redox cofactors. PMID:8819170

  3. Theoretical in-Solution Conformational/Tautomeric Analyses for Chain Systems with Conjugated Double Bonds Involving Nitrogen(s)

    PubMed Central

    Nagy, Peter I.

    2015-01-01

    Conformational/tautomeric transformations for X=CH–CH=Y structures (X = CH2, O, NH and Y = NH) have been studied in the gas phase, in dichloromethane and in aqueous solutions. The paper is a continuation of a former study where s-cis/s-trans conformational equilibria were predicted for analogues. The s-trans conformation is preferred for the present molecules in the gas phase on the basis of its lowest internal free energy as calculated at the B97D/aug-cc-pvqz and CCSD(T)CBS (coupled-cluster singles and doubles with non-iterative triples extrapolated to the complete basis set) levels. Transition state barriers are of 29–36 kJ/mol for rotations about the central C–C bonds. In solution, an s-trans form is still favored on the basis of its considerably lower internal free energy compared with the s-cis forms as calculated by IEF-PCM (integral-equation formalism of the polarizable continuum dielectric solvent model) at the theoretical levels indicated. A tetrahydrate model in the supermolecule/continuum approach helped explore the 2solute-solvent hydrogen bond pattern. The calculated transition state barrier for rotation about the C–C bond decreased to 27 kJ/mol for the tetrahydrate. Considering explicit solvent models, relative solvation free energies were calculated by means of the free energy perturbation method through Monte Carlo simulations. These calculated values differ remarkably from those by the PCM approach in aqueous solution, nonetheless the same prevalent conformation was predicted by the two methods. Aqueous solution structure-characteristics were determined by Monte Carlo. Equilibration of conformers/tautomers through water-assisted double proton-relay is discussed. This mechanism is not viable, however, in non-protic solvents where the calculated potential of mean force curve does not predict remarkable solute dimerization and subsequent favorable orientation. PMID:25984602

  4. Secondary Education Systemic Issues: Addressing Possible Contributors to a Leak in the Science Education Pipeline and Potential Solutions

    ERIC Educational Resources Information Center

    Young, Hollie

    2005-01-01

    To maintain the legacy of cutting edge scientific innovation in the United States our country must address the many pressing issues facing science education today. One of the most important issues relating to science education is the under-representation of African Americans and Hispanics in the science, technology, and engineering workforce.…

  5. 76 FR 7187 - Priorities for Addressing Risks to the Reliability of the Bulk-Power System; Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... Trent Franks, U.S. House of Representatives. 10:35 a.m. Introductions; Commissioner Cheryl LaFleur... protecting against sophisticated and fast-moving threats? What role do you expect Smart Grid to play in the... grid reliability under Smart Grid applications? If not, how should NERC address these issues? c....

  6. A Concept Space Approach to Addressing the Vocabulary Problem in Scientific Information Retrieval: An Experiment on the Worm Community System.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Ng, Tobun D.; Martinez, Joanne; Schatz, Bruce R.

    1997-01-01

    Presents an algorithmic approach to addressing the vocabulary problem in scientific information retrieval and information sharing, using the molecular biology domain as an example. A cognitive study and a follow-up document retrieval study were conducted using first a conjoined fly-worm thesaurus and then an actual worm database and the conjoined…

  7. Conformal mechanics

    SciTech Connect

    Gonera, Joanna

    2013-08-15

    The SL(2,R) invariant Hamiltonian systems are discussed within the framework of the orbit method. It is shown that both the dynamics and the symmetry transformations are globally well-defined on phase space. The flexibility in the choice of the time variable and the Hamiltonian function described in the paper by de Alfaro et al. [Nuovo Cimento 34A (1976) 569] is related to the nontrivial global structure of 1+0-dimensional space–time. The operational definition of time is discussed.

  8. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions: An Update of the Technology Maturation Effort

    NASA Technical Reports Server (NTRS)

    Beck, R.; Arnold, J.; Gasch, M.; Stackpoole, M.; Venkatapathy, E.

    2014-01-01

    This presentation will update the community on the development of conformal ablative TPS. As described at IPPW-10, in FY12, the CA-TPS element focused on establishing materials requirements based on MSL-type and COTS Low Earth orbit (LEO) conditions (q 250 Wcm2) to develop and deliver a conformal ablative TPS. This involved downselecting, manufacturing and testing two of the best candidate materials, demonstrating uniform infiltration of resins into baseline 2-cm thick carbon felt, selecting a primary conformal material formulation based on novel arc jet and basic material properties testing, developing and demonstrating instrumentation for felt-based materials and, based on the data, developing a low fidelity material response model so that the conformal ablator TPS thickness for missions could be established. In addition, the project began to develop Industry Partnerships. Since the nominal thickness of baseline carbon felts was only 2-cm, a partnership with a rayon felt developer was made in order to upgrade equipment, establish the processes required and attempt to manufacture 10-cm thick white goods. A partnership with a processing house was made to develop the methodology to carbonize large pieces of the white goods into 7.5-cm thick carbon felt.In FY13, more advanced testing and modeling of the downselected conformal material was performed. Material thermal properties tests and structural properties tests were performed. The first 3 and 4-point bend tests were performed on the conformal ablator as well as PICA for comparison and the conformal ablator had outstanding behavior compared to PICA. Arc jet testing was performed with instrumented samples of both the conformal ablator and standard PICA at heating rates ranging from 40 to 400 Wcm2 and shear as high as 600 Pa. The results from these tests showed a remarkable improvement in the thermal penetration through the conformal ablator when compared to PICAs response. The data from these tests were used to

  9. Leaf growth is conformal

    NASA Astrophysics Data System (ADS)

    Alim, Karen; Armon, Shahaf; Shraiman, Boris I.; Boudaoud, Arezki

    2016-10-01

    Growth pattern dynamics lie at the heart of morphogenesis. Here, we investigate the growth of plant leaves. We compute the conformal transformation that maps the contour of a leaf at a given stage onto the contour of the same leaf at a later stage. Based on the mapping we predict the local displacement field in the leaf blade and find it to agree with the experimentally measured displacement field to 92%. This approach is applicable to any two-dimensional system with locally isotropic growth, enabling the deduction of the whole growth field just from observation of the tissue contour.

  10. Leaf growth is conformal.

    PubMed

    Alim, Karen; Armon, Shahaf; Shraiman, Boris I; Boudaoud, Arezki

    2016-01-01

    Growth pattern dynamics lie at the heart of morphogenesis. Here, we investigate the growth of plant leaves. We compute the conformal transformation that maps the contour of a leaf at a given stage onto the contour of the same leaf at a later stage. Based on the mapping we predict the local displacement field in the leaf blade and find it to agree with the experimentally measured displacement field to 92%. This approach is applicable to any two-dimensional system with locally isotropic growth, enabling the deduction of the whole growth field just from observation of the tissue contour. PMID:27597439

  11. Conformationally-restricted amino acid analogues bearing a distal sulfonic acid show selective inhibition of system x(c)(-) over the vesicular glutamate transporter.

    PubMed

    Etoga, Jean-Louis G; Ahmed, S Kaleem; Patel, Sarjubhai; Bridges, Richard J; Thompson, Charles M

    2010-04-15

    A panel of amino acid analogs and conformationally-restricted amino acids bearing a sulfonic acid were synthesized and tested for their ability to preferentially inhibit the obligate cysteine-glutamate transporter system x(c)(-) versus the vesicular glutamate transporter (VGLUT). Several promising candidate molecules were identified: R/S-4-[4'-carboxyphenyl]-phenylglycine, a biphenyl substituted analog of 4-carboxyphenylglycine and 2-thiopheneglycine-5-sulfonic acid both of which reduced glutamate uptake at system x(c)(-) by 70-75% while having modest to no effect on glutamate uptake at VGLUT.

  12. Scale invariance vs conformal invariance

    NASA Astrophysics Data System (ADS)

    Nakayama, Yu

    2015-03-01

    In this review article, we discuss the distinction and possible equivalence between scale invariance and conformal invariance in relativistic quantum field theories. Under some technical assumptions, we can prove that scale invariant quantum field theories in d = 2 space-time dimensions necessarily possess the enhanced conformal symmetry. The use of the conformal symmetry is well appreciated in the literature, but the fact that all the scale invariant phenomena in d = 2 space-time dimensions enjoy the conformal property relies on the deep structure of the renormalization group. The outstanding question is whether this feature is specific to d = 2 space-time dimensions or it holds in higher dimensions, too. As of January 2014, our consensus is that there is no known example of scale invariant but non-conformal field theories in d = 4 space-time dimensions under the assumptions of (1) unitarity, (2) Poincaré invariance (causality), (3) discrete spectrum in scaling dimensions, (4) existence of scale current and (5) unbroken scale invariance in the vacuum. We have a perturbative proof of the enhancement of conformal invariance from scale invariance based on the higher dimensional analogue of Zamolodchikov's c-theorem, but the non-perturbative proof is yet to come. As a reference we have tried to collect as many interesting examples of scale invariance in relativistic quantum field theories as possible in this article. We give a complementary holographic argument based on the energy-condition of the gravitational system and the space-time diffeomorphism in order to support the claim of the symmetry enhancement. We believe that the possible enhancement of conformal invariance from scale invariance reveals the sublime nature of the renormalization group and space-time with holography. This review is based on a lecture note on scale invariance vs conformal invariance, on which the author gave lectures at Taiwan Central University for the 5th Taiwan School on Strings and

  13. A quantitative measure for protein conformational heterogeneity

    PubMed Central

    Lyle, Nicholas; Das, Rahul K.; Pappu, Rohit V.

    2013-01-01

    Conformational heterogeneity is a defining characteristic of proteins. Intrinsically disordered proteins (IDPs) and denatured state ensembles are extreme manifestations of this heterogeneity. Inferences regarding globule versus coil formation can be drawn from analysis of polymeric properties such as average size, shape, and density fluctuations. Here we introduce a new parameter to quantify the degree of conformational heterogeneity within an ensemble to complement polymeric descriptors. The design of this parameter is guided by the need to distinguish between systems that couple their unfolding-folding transitions with coil-to-globule transitions and those systems that undergo coil-to-globule transitions with no evidence of acquiring a homogeneous ensemble of conformations upon collapse. The approach is as follows: Each conformation in an ensemble is converted into a conformational vector where the elements are inter-residue distances. Similarity between pairs of conformations is quantified using the projection between the corresponding conformational vectors. An ensemble of conformations yields a distribution of pairwise projections, which is converted into a distribution of pairwise conformational dissimilarities. The first moment of this dissimilarity distribution is normalized against the first moment of the distribution obtained by comparing conformations from the ensemble of interest to conformations drawn from a Flory random coil model. The latter sets an upper bound on conformational heterogeneity thus ensuring that the proposed measure for intra-ensemble heterogeneity is properly calibrated and can be used to compare ensembles for different sequences and across different temperatures. The new measure of conformational heterogeneity will be useful in quantitative studies of coupled folding and binding of IDPs and in de novo sequence design efforts that are geared toward controlling the degree of heterogeneity in unbound forms of IDPs. PMID:24089719

  14. Real-time earthquake alert system for the greater San Francisco Bay Area: a prototype design to address operational issues

    SciTech Connect

    Harben, P.E.; Jarpe, S.; Hunter, S.

    1996-05-29

    This paper describes a prototype for this EAS (real time) in the Bay area. Approach is pragmatic, attempting to establish a prototype system at a low cost and quickly. A real-time warning system can protect the public and mitigate earthquake damage. The proposed system is a distributed network of real-time strong-motion monitoring stations that telemetered data in real time to a central analysis facility which could transmit earthquake parameter information to an area before elastic wave energy arrived. Upgrades and issues that should be resolved before an operational EAS can be established, are listed.

  15. Conformational analysis of small molecules: NMR and quantum mechanics calculations.

    PubMed

    Tormena, Cláudio F

    2016-08-01

    This review deals with conformational analysis in small organic molecules, and describes the stereoelectronic interactions responsible for conformational stability. Conformational analysis is usually performed using NMR spectroscopy through measurement of coupling constants at room or low temperature in different solvents to determine the populations of conformers in solution. Quantum mechanical calculations are used to address the interactions responsible for conformer stability. The conformational analysis of a large number of small molecules is described, using coupling constant measurements in different solvents and at low temperature, as well as recent applications of through-space and through-hydrogen bond coupling constants JFH as tools for the conformational analysis of fluorinated molecules. Besides NMR parameters, stereoelectronic interactions such as conjugative, hyperconjugative, steric and intramolecular hydrogen bond interactions involved in conformational preferences are discussed.

  16. Conformational analysis of small molecules: NMR and quantum mechanics calculations.

    PubMed

    Tormena, Cláudio F

    2016-08-01

    This review deals with conformational analysis in small organic molecules, and describes the stereoelectronic interactions responsible for conformational stability. Conformational analysis is usually performed using NMR spectroscopy through measurement of coupling constants at room or low temperature in different solvents to determine the populations of conformers in solution. Quantum mechanical calculations are used to address the interactions responsible for conformer stability. The conformational analysis of a large number of small molecules is described, using coupling constant measurements in different solvents and at low temperature, as well as recent applications of through-space and through-hydrogen bond coupling constants JFH as tools for the conformational analysis of fluorinated molecules. Besides NMR parameters, stereoelectronic interactions such as conjugative, hyperconjugative, steric and intramolecular hydrogen bond interactions involved in conformational preferences are discussed. PMID:27573182

  17. Evaluation of the sustainability of contrasted pig farming systems: development of a market conformity tool for pork products based on technological quality traits.

    PubMed

    Gonzàlez, J; Gispert, M; Gil, M; Hviid, M; Dourmad, J Y; de Greef, K H; Zimmer, C; Fàbrega, E

    2014-12-01

    A market conformity tool, based on technological meat quality parameters, was developed within the Q-PorkChains project, to be included in a global sustainability evaluation of pig farming systems. The specific objective of the market conformity tool was to define a scoring system based on the suitability of meat to elaborate the main pork products, according to their market shares based on industry requirements, in different pig farming systems. The tool was based on carcass and meat quality parameters that are commonly used for the assessment of technological quality, which provide representative and repeatable data and are easily measurable. They were the following: cold carcass weight; lean meat percentage; minimum subcutaneous back fat depth at m. gluteus medius level, 45 postmortem and ultimate pH (measured at 24-h postmortem) in m. longissimus lumborum and semimembranosus; meat colour; drip losses and intramuscular fat content in a m. longissimus sample. Five categories of pork products produced at large scale in Europe were considered in the study: fresh meat, cooked products, dry products, specialties and other meat products. For each of the studied farming systems, the technological meat quality requirements, as well as the market shares for each product category within farming system, were obtained from the literature and personal communications from experts. The tool resulted in an overall conformity score that enabled to discriminate among systems according to the degree of matching of the achieved carcass and meat quality with the requirements of the targeted market. In order to improve feasibility, the tool was simplified by selecting ultimate pH at m. longissimus or semimembranosus, minimum fat thickness measured at the left half carcass over m. gluteus medius and intramuscular fat content in a m. longissimus sample as iceberg indicators. The overall suitability scores calculated by using both the complete and the reduced tools presented good

  18. Evaluation of the sustainability of contrasted pig farming systems: development of a market conformity tool for pork products based on technological quality traits.

    PubMed

    Gonzàlez, J; Gispert, M; Gil, M; Hviid, M; Dourmad, J Y; de Greef, K H; Zimmer, C; Fàbrega, E

    2014-12-01

    A market conformity tool, based on technological meat quality parameters, was developed within the Q-PorkChains project, to be included in a global sustainability evaluation of pig farming systems. The specific objective of the market conformity tool was to define a scoring system based on the suitability of meat to elaborate the main pork products, according to their market shares based on industry requirements, in different pig farming systems. The tool was based on carcass and meat quality parameters that are commonly used for the assessment of technological quality, which provide representative and repeatable data and are easily measurable. They were the following: cold carcass weight; lean meat percentage; minimum subcutaneous back fat depth at m. gluteus medius level, 45 postmortem and ultimate pH (measured at 24-h postmortem) in m. longissimus lumborum and semimembranosus; meat colour; drip losses and intramuscular fat content in a m. longissimus sample. Five categories of pork products produced at large scale in Europe were considered in the study: fresh meat, cooked products, dry products, specialties and other meat products. For each of the studied farming systems, the technological meat quality requirements, as well as the market shares for each product category within farming system, were obtained from the literature and personal communications from experts. The tool resulted in an overall conformity score that enabled to discriminate among systems according to the degree of matching of the achieved carcass and meat quality with the requirements of the targeted market. In order to improve feasibility, the tool was simplified by selecting ultimate pH at m. longissimus or semimembranosus, minimum fat thickness measured at the left half carcass over m. gluteus medius and intramuscular fat content in a m. longissimus sample as iceberg indicators. The overall suitability scores calculated by using both the complete and the reduced tools presented good

  19. Real-time earthquake alert system for the greater San Francisco Bay Area: a prototype design to address operational issues

    SciTech Connect

    Harben, P.E.; Jarpe, S.; Hunter, S.

    1996-12-10

    The purpose of the earthquake alert system (EAS) is to outrun the seismic energy released in a large earthquake using a geographically distributed network of strong motion sensors that telemeter data to a rapid CPU-processing station, which then issues an area-wide warning to a region before strong motion will occur. The warning times involved are short, from 0 to 30 seconds or so; consequently, most responses must be automated. The San Francisco Bay Area is particularly well suited for an EAS because (1) large earthquakes have relatively shallow hypocenters (10- to 20-kilometer depth), giving favorable ray-path geometries for larger warning times than deeper from earthquakes, and (2) the active faults are few in number and well characterized, which means far fewer geographically distributed strong motion sensors are (about 50 in this region). An EAS prototype is being implemented in the San Francisco Bay Area. The system consists of four distinct subsystems: (1) a distributed strong motion seismic network, (2) a central processing station, (3) a warning communications system and (4) user receiver and response systems. We have designed a simple, reliable, and inexpensive strong motion monitoring station that consists of a three-component Analog Devices ADXLO5 accelerometer sensing unit, a vertical component weak motion sensor for system testing, a 16-bit digitizer with multiplexing, and communication output ports for RS232 modem or radio telemetry. The unit is battery-powered and will be sited in fire stations. The prototype central computer analysis system consists of a PC dam-acquisition platform that pipes the incoming strong motion data via Ethernet to Unix-based workstations for dam processing. Simple real-time algorithms, particularly for magnitude estimation, are implemented to give estimates of the time since the earthquake`s onset its hypocenter location, its magnitude, and the reliability of the estimate. These parameters are calculated and transmitted

  20. A Domain Analysis Model for eIRB Systems: Addressing the Weak Link in Clinical Research Informatics

    PubMed Central

    He, Shan; Narus, Scott P.; Facelli, Julio C.; Lau, Lee Min; Botkin, Jefferey R.; Hurdle, John F.

    2014-01-01

    Institutional Review Boards (IRBs) are a critical component of clinical research and can become a significant bottleneck due to the dramatic increase, in both volume and complexity of clinical research. Despite the interest in developing clinical research informatics (CRI) systems and supporting data standards to increase clinical research efficiency and interoperability, informatics research in the IRB domain has not attracted much attention in the scientific community. The lack of standardized and structured application forms across different IRBs causes inefficient and inconsistent proposal reviews and cumbersome workflows. These issues are even more prominent in multi-institutional clinical research that is rapidly becoming the norm. This paper proposes and evaluates a domain analysis model for electronic IRB (eIRB) systems, paving the way for streamlined clinical research workflow via integration with other CRI systems and improved IRB application throughput via computer-assisted decision support. PMID:24929181

  1. Quantifying and Addressing the DOE Material Reactivity Requirements with Analysis and Testing of Hydrogen Storage Materials & Systems

    SciTech Connect

    Khalil, Y. F.

    2012-04-30

    The objective of this project is to examine safety aspects of candidate hydrogen storage materials and systems being developed in the DOE Hydrogen Program. As a result of this effort, the general DOE safety target will be given useful meaning by establishing a link between the characteristics of new storage materials and the satisfaction of safety criteria. This will be accomplished through the development and application of formal risk analysis methods, standardized materials testing, chemical reactivity characterization, novel risk mitigation approaches and subscale system demonstration. The project also will collaborate with other DOE and international activities in materials based hydrogen storage safety to provide a larger, highly coordinated effort.

  2. A Systems Thinking Framework for Assessing and Addressing Malaria Locally: An Alternative to the Globalization of Anti-Malaria Policies

    ERIC Educational Resources Information Center

    Willis, Derek W.

    2010-01-01

    This dissertation analyzes a decision system that was used in the early 1900s in the Federated Malay States (FMS) by Malcolm Watson in order to make anti-malaria program recommendations to decision makers in a wide range of ecological settings. Watson's recommendations to decision makers throughout the FMS led to a dramatic suppression of malaria…

  3. Addressing the Needs of Youth with Disabilities in the Juvenile Justice System: The Current Status of Evidence-Based Research.

    ERIC Educational Resources Information Center

    Mears, Daniel P.; Aron, Laudan; Bernstein, Jenny

    This report summarizes the state of knowledge about children and youth with disabilities at risk of delinquency or already involved with the juvenile justice system. It reviews the existing research as well as perspectives of service providers, administrators, policy makers, and advocates. Following an executive summary and introductory chapter,…

  4. Logarithmic conformal field theory

    NASA Astrophysics Data System (ADS)

    Gainutdinov, Azat; Ridout, David; Runkel, Ingo

    2013-12-01

    Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more

  5. Fabrication challenges associated with conformal optics

    NASA Astrophysics Data System (ADS)

    Schaefer, John; Eichholtz, Richard A.; Sulzbach, Frank C.

    2001-09-01

    A conformal optic is typically an optical window that conforms smoothly to the external shape of a system platform to improve aerodynamics. Conformal optics can be on-axis, such as an ogive missile dome, or off-axis, such as in a free form airplane wing. A common example of conformal optics is the automotive head light window that conforms to the body of the car aerodynamics and aesthetics. The unusual shape of conformal optics creates tremendous challenges for design, manufacturing, and testing. This paper will discuss fabrication methods that have been successfully demonstrated to produce conformal missile domes and associated wavefront corrector elements. It will identify challenges foreseen with more complex free-form configurations. Work presented in this paper was directed by the Precision Conformal Optics Consortium (PCOT). PCOT is comprised of both industrial and academic members who teamed to develop and demonstrate conformal optical systems suitable for insertion into future military programs. The consortium was funded under DARPA agreement number MDA972-96-9-08000.

  6. Opportunity, risk, and success recognizing, addressing, and balancing multiple factors crucial to the success of a project management system deployed to support multi-lateral decommissioning programs

    SciTech Connect

    Funk, Greg; Longsworth, Paul

    2007-07-01

    This paper addresses the factors involved in effectively implementing a world-class program/project management information system funded by multiple nations. Along with many other benefits, investing in and utilizing such systems improves delivery and drive accountability for major expenditures. However, there are an equally large number of impediments to developing and using such systems. To be successful, the process requires a dynamic combining of elements and strategic sequencing of initiatives. While program/project-management systems involve information technologies, software and hardware, they represent only one element of the overall system.. Technology, process, people and knowledge must all be integrated and working in concert with one another to assure a fully capable system. Major system implementations occur infrequently, and frequently miss established targets in relatively small organizations (with the risk increasing with greater complexity). The European Bank of Reconstruction (EBRD) is midway through just such an implementation. The EBRD is using funds from numerous donor countries to sponsor development of an overarching program management system. The system will provide the Russian Federation with the tools to effectively manage prioritizing, planning, and physically decommissioning assets{sub i}n northwest Russia to mitigate risks associated the Soviet era nuclear submarine program. Project-management delivery using world-class techniques supported by aligned systems has been proven to increase the probability of delivering on-time and on-budget, assuring those funding such programs optimum value for money. However, systems deployed to manage multi-laterally funded projects must be developed with appropriate levels of consideration given to unique aspects such as: accommodation of existing project management methods, consideration for differences is management structures and organizational behaviors, incorporation of unique strengths, and

  7. Using Models to Address Misconceptions in Size and Scale Related to the Earth, Moon, Solar System, and Universe

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; Lebofsky, N. R.; McCarthy, D. W.; Higgins, M. L.; Salthouse, K.; Canizo, T. L.

    2012-10-01

    Many children and adults have misconceptions about space-related concepts such as size and distance: Earth-Moon size and distance, distances between the planets, distances to the stars (including the Sun), etc. Unfortunately, when images are used to illustrate common phenomena, such as Moon phases and seasons, they may do a good job of explaining the phenomenon, but may reinforce other misconceptions. For topics such as phases and seasons, scale (size and distance) can easily lead to confusion and reinforce misconceptions. For example, when showing Moon phases, the Moon is usually represented as large relative to the Earth and the true relative distance cannot be easily shown. Similarly, when showing the tilt of the Earth’s axis as the reason for the seasons, the Earth is usually almost as large as the Sun and the distance between them is usually only a few times Earth’s diameter.What lessons have we learned? It is critical with any model to engage the participants: if at all possible, everyone should participate. A critical part of any modeling needs to be a discussion, involving the participants, of the limitations of the model: what is modeled accurately and what is not? This helps to identify and rectify misconceptions and helps to avoid creating new ones. The activities highlighted on our poster represent programs and collaborations that date back more than two decades: The University of Arizona, Tucson Unified School District, Science Center of Inquiry, Girl Scouts of Southern Arizona, and the Planetary Science Institute. Examples of activities that we will present on our poster include: •Earth/Moon size and distance •Macramé model of the Solar System •Human orrery and tabletop orrery •3-D nature of the constellations •Comparing our Solar System to other planetary systems •Origin of the Universe: scale of time and distance

  8. Testing a discrete choice experiment including duration to value health states for large descriptive systems: addressing design and sampling issues.

    PubMed

    Bansback, Nick; Hole, Arne Risa; Mulhern, Brendan; Tsuchiya, Aki

    2014-08-01

    There is interest in the use of discrete choice experiments that include a duration attribute (DCETTO) to generate health utility values, but questions remain on its feasibility in large health state descriptive systems. This study examines the stability of DCETTO to estimate health utility values from the five-level EQ-5D, an instrument with depicts 3125 different health states. Between January and March 2011, we administered 120 DCETTO tasks based on the five-level EQ-5D to a total of 1799 respondents in the UK (each completed 15 DCETTO tasks on-line). We compared models across different sample sizes and different total numbers of observations. We found the DCETTO coefficients were generally consistent, with high agreement between individual ordinal preferences and aggregate cardinal values. Keeping the DCE design and the total number of observations fixed, subsamples consisting of 10 tasks per respondent with an intermediate sized sample, and 15 tasks with a smaller sample provide similar results in comparison to the whole sample model. In conclusion, we find that the DCETTO is a feasible method for developing values for larger descriptive systems such as EQ-5D-5L, and find evidence supporting important design features for future valuation studies that use the DCETTO.

  9. A perfusion bioreactor system efficiently generates cell‐loaded bone substitute materials for addressing critical size bone defects

    PubMed Central

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne‐Wistrand, Anna; Walles, Heike

    2015-01-01

    Abstract Critical size bone defects and non‐union fractions are still challenging to treat. Cell‐loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor‐made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L‐lactide‐co‐caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans. PMID:26011163

  10. A perfusion bioreactor system efficiently generates cell-loaded bone substitute materials for addressing critical size bone defects.

    PubMed

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne-Wistrand, Anna; Walles, Heike; Hansmann, Jan

    2015-09-01

    Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide-co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans.

  11. A perfusion bioreactor system efficiently generates cell-loaded bone substitute materials for addressing critical size bone defects.

    PubMed

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne-Wistrand, Anna; Walles, Heike; Hansmann, Jan

    2015-09-01

    Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide-co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans. PMID:26011163

  12. Unmanned Aerial Systems as Part of a Multi-Component Assessment Strategy to Address Climate Change and Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Lange, Manfred; Vrekoussis, Mihalis; Sciare, Jean; Argyrides, Marios; Ioannou, Stelios; Keleshis, Christos

    2015-04-01

    Unmanned Aerial Systems (UAS) have been established as versatile tools for different applications, providing data and observations for atmospheric and Earth-Systems research. They offer an urgently needed link between in-situ ground based measurements and satellite remote sensing observations and are distinguished by significant versatility, flexibility and moderate operational costs. UAS have the proven potential to contribute to a multi-component assessment strategy that combines remote-sensing, numerical modelling and surface measurements in order to elucidate important atmospheric processes. This includes physical and chemical transformations related to ongoing climate change as well as issues linked to aerosol-cloud interactions and air quality. The distinct advantages offered by UAS comprise, to name but a few: (i) their ability to operate from altitudes of a few meters to up to a few kilometers; (ii) their capability to perform autonomously controlled missions, which provides for repeat-measurements to be carried out at precisely defined locations; (iii) their relative ease of operation, which enables flexible employment at short-term notice and (iv) the employment of more than one platform in stacked formation, which allows for unique, quasi-3D-observations of atmospheric properties and processes. These advantages are brought to bear in combining in-situ ground based observations and numerical modeling with UAS-based remote sensing in elucidating specific research questions that require both horizontally and vertically resolved measurements at high spatial and temporal resolutions. Employing numerical atmospheric modelling, UAS can provide survey information over spatially and temporally localized, focused areas of evolving atmospheric phenomena, as they become identified by the numerical models. Conversely, UAS observations offer urgently needed data for model verification and provide boundary conditions for numerical models. In this presentation, we will

  13. Recommendations for Implementing Policy, Systems, and Environmental Improvements to Address Chronic Diseases in Asian Americans, Native Hawaiians, and Pacific Islanders

    PubMed Central

    Tepporn, Ed; Kwon, Simona; Rideout, Catlin; Patel, Shilpa; Chung, Marianne; Bautista, Roxanna; Trinh-Shevrin, Chau; Ko-Chin, Kathy

    2014-01-01

    Emphasis has increased recently on disseminating high-impact, population-wide strategies for the prevention of chronic diseases. However, such strategies are typically not effective at reaching Asian Americans, Native Hawaiians, Pacific Islanders, or other underserved communities. The objectives of this article were to 1) present the methods of the Strategies to Reach and Implement the Vision of Health Equity program in which 15 community-based organizations in the United States and the Pacific region implemented evidence-based policy, systems, and environmental improvements in their local communities and 2) provide recommendations for using these tailored approaches in other communities and geographic locations. Further support is needed for organizations in tailoring these types of population-wide strategies. Implementing population health improvements should be adapted to maximize effectiveness to decrease chronic diseases in these populations and ultimately eliminate racial/ethnic health disparities. PMID:25412025

  14. Addressing the Challenges of Diverse Knowledge Systems through Landscape Analysis: A Case Study in the Murray-Darling Basin, Australia

    NASA Astrophysics Data System (ADS)

    Lynch, A. H.; Griggs, D.; Joachim, L.; Heider, C.

    2014-12-01

    The Barmah-Millewa region of the Murray-Darling Basin is the heart of the Traditional Lands of the Yorta Yorta people. Management of water and ecosystem services in the region is governed by a wide array of sometimes inconsistent legislation and policies with differing rules, management focus and plans, and permitting and allocation procedures. Geographic information systems are a common framework for the integration of Indigenous knowledge and insights into natural resources management. But only with appropriate collection, management and database design protocols in place can geodatabase development and analysis support the effective and respectful participation of the Yorta Yorta community in management of this ecologically, economically and culturally important region. Here we describe the knowledge collection and protection protocols that were applied to develop the integrated geodatabase. We present approaches to generating meaningful guidance for water managers on the cultural implications of water allocation decisions.

  15. How much detail and accuracy is required in plant growth sub-models to address questions about optimal management strategies in agricultural systems?

    PubMed Central

    Renton, Michael

    2011-01-01

    Background and aims Simulations that integrate sub-models of important biological processes can be used to ask questions about optimal management strategies in agricultural and ecological systems. Building sub-models with more detail and aiming for greater accuracy and realism may seem attractive, but is likely to be more expensive and time-consuming and result in more complicated models that lack transparency. This paper illustrates a general integrated approach for constructing models of agricultural and ecological systems that is based on the principle of starting simple and then directly testing for the need to add additional detail and complexity. Methodology The approach is demonstrated using LUSO (Land Use Sequence Optimizer), an agricultural system analysis framework based on simulation and optimization. A simple sensitivity analysis and functional perturbation analysis is used to test to what extent LUSO's crop–weed competition sub-model affects the answers to a number of questions at the scale of the whole farming system regarding optimal land-use sequencing strategies and resulting profitability. Principal results The need for accuracy in the crop–weed competition sub-model within LUSO depended to a small extent on the parameter being varied, but more importantly and interestingly on the type of question being addressed with the model. Only a small part of the crop–weed competition model actually affects the answers to these questions. Conclusions This study illustrates an example application of the proposed integrated approach for constructing models of agricultural and ecological systems based on testing whether complexity needs to be added to address particular questions of interest. We conclude that this example clearly demonstrates the potential value of the general approach. Advantages of this approach include minimizing costs and resources required for model construction, keeping models transparent and easy to analyse, and ensuring the model

  16. A hybrid approach for addressing ring flexibility in 3D database searching.

    PubMed

    Sadowski, J

    1997-01-01

    A hybrid approach for flexible 3D database searching is presented that addresses the problem of ring flexibility. It combines the explicit storage of up to 25 multiple conformations of rings, with up to eight atoms, generated by the 3D structure generator CORINA with the power of a torsional fitting technique implemented in the 3D database system UNITY. A comparison with the original UNITY approach, using a database with about 130,000 entries and five different pharmacophore queries, was performed. The hybrid approach scored, on an average, 10-20% more hits than the reference run. Moreover, specific problems with unrealistic hit geometries produced by the original approach can be excluded. In addition, the influence of the maximum number of ring conformations per molecule was investigated. An optimal number of 10 conformations per molecule is recommended.

  17. Content addressable memory project

    NASA Technical Reports Server (NTRS)

    Hall, Josh; Levy, Saul; Smith, D.; Wei, S.; Miyake, K.; Murdocca, M.

    1991-01-01

    The progress on the Rutgers CAM (Content Addressable Memory) Project is described. The overall design of the system is completed at the architectural level and described. The machine is composed of two kinds of cells: (1) the CAM cells which include both memory and processor, and support local processing within each cell; and (2) the tree cells, which have smaller instruction set, and provide global processing over the CAM cells. A parameterized design of the basic CAM cell is completed. Progress was made on the final specification of the CPS. The machine architecture was driven by the design of algorithms whose requirements are reflected in the resulted instruction set(s). A few of these algorithms are described.

  18. Acceleration of dormant storage effects to address the reliability of silicon surface micromachined Micro-Electro-Mechanical Systems (MEMS).

    SciTech Connect

    Cox, James V.; Candelaria, Sam A.; Dugger, Michael Thomas; Duesterhaus, Michelle Ann; Tanner, Danelle Mary; Timpe, Shannon J.; Ohlhausen, James Anthony; Skousen, Troy J.; Jenkins, Mark W.; Jokiel, Bernhard, Jr.; Walraven, Jeremy Allen; Parson, Ted Blair

    2006-06-01

    Qualification of microsystems for weapon applications is critically dependent on our ability to build confidence in their performance, by predicting the evolution of their behavior over time in the stockpile. The objective of this work was to accelerate aging mechanisms operative in surface micromachined silicon microelectromechanical systems (MEMS) with contacting surfaces that are stored for many years prior to use, to determine the effects of aging on reliability, and relate those effects to changes in the behavior of interfaces. Hence the main focus was on 'dormant' storage effects on the reliability of devices having mechanical contacts, the first time they must move. A large number ({approx}1000) of modules containing prototype devices and diagnostic structures were packaged using the best available processes for simple electromechanical devices. The packaging processes evolved during the project to better protect surfaces from exposure to contaminants and water vapor. Packages were subjected to accelerated aging and stress tests to explore dormancy and operational environment effects on reliability and performance. Functional tests and quantitative measurements of adhesion and friction demonstrated that the main failure mechanism during dormant storage is change in adhesion and friction, precipitated by loss of the fluorinated monolayer applied after fabrication. The data indicate that damage to the monolayer can occur at water vapor concentrations as low as 500 ppm inside the package. The most common type of failure was attributed to surfaces that were in direct contact during aging. The application of quantitative methods for monolayer lubricant analysis showed that even though the coverage of vapor-deposited monolayers is generally very uniform, even on hidden surfaces, locations of intimate contact can be significantly depleted in initial concentration of lubricating molecules. These areas represent defects in the film prone to adsorption of water or

  19. CONSENSUS AND CONFORMITY.

    ERIC Educational Resources Information Center

    ALLEN, VERNON L.; LEVINE, JOHN M.

    IN THIS STUDY, PROFESSOR ALLEN EMPLOYS TWO METHODS OF BREAKING GROUP CONSENSUS, AND HE MEASURES THE EFFECTS ON THE RESPONSES OF COLLEGE SUBJECTS TO BOTH OBJECTIVE AND SUBJECTIVE STIMULI. THE RESULTS SUGGEST THE NEED FOR MODIFICATION OF EXISTING THEORIES OF CONFORMITY BEHAVIOR. IN ADDITION, THESE RESULTS EMPHASIZE THE DIFFERENCES IN CONFORMITY OF…

  20. Density functional theory study of the conformation and optical properties of hybrid Au(n)-dithienylethene systems (n = 3, 19, 25).

    PubMed

    Fihey, Arnaud; Kloss, Benedikt; Perrier, Aurélie; Maurel, François

    2014-07-01

    We present a theoretical study of Aun-dithienylethene hybrid systems (n = 3, 19, 25), where the organic molecule is covalently linked to a nanometer-scaled gold nanoparticle (NP). We aim at gaining insights on the optical properties of such photochromic devices and proposing a size-limited gold aggregate model able to recover the optical properties of the experimental system. We thus present a DFT-based calculation scheme to model the ground-state (conformation, energetic parameters) and excited-state properties (UV-visible absorption spectra) of this type of hybrid systems. Within this framework, the structural parameters (adsorption site, orientation, and internal structure of the photochrome) are found to be slightly dependent on the size/shape of the gold aggregate. The influence of the gold fragment on the optical properties of the resulting hybrid system is then discussed with the help of TD-DFT combined with an analysis of the virtual orbitals involved in the photochromic transitions. We show that, for the open hybrid isomer, the number of gold atoms is the key parameter to recover the photoactive properties that are experimentally observed. On the contrary, for hybrid closed systems, the three-dimensional structure of the metallic aggregate is of high impact. We thus conclude that Au25 corresponds to the most appropriate fragment to model nanometer-sized NP-DTE hybrid device. PMID:24912128

  1. Density functional theory study of the conformation and optical properties of hybrid Au(n)-dithienylethene systems (n = 3, 19, 25).

    PubMed

    Fihey, Arnaud; Kloss, Benedikt; Perrier, Aurélie; Maurel, François

    2014-07-01

    We present a theoretical study of Aun-dithienylethene hybrid systems (n = 3, 19, 25), where the organic molecule is covalently linked to a nanometer-scaled gold nanoparticle (NP). We aim at gaining insights on the optical properties of such photochromic devices and proposing a size-limited gold aggregate model able to recover the optical properties of the experimental system. We thus present a DFT-based calculation scheme to model the ground-state (conformation, energetic parameters) and excited-state properties (UV-visible absorption spectra) of this type of hybrid systems. Within this framework, the structural parameters (adsorption site, orientation, and internal structure of the photochrome) are found to be slightly dependent on the size/shape of the gold aggregate. The influence of the gold fragment on the optical properties of the resulting hybrid system is then discussed with the help of TD-DFT combined with an analysis of the virtual orbitals involved in the photochromic transitions. We show that, for the open hybrid isomer, the number of gold atoms is the key parameter to recover the photoactive properties that are experimentally observed. On the contrary, for hybrid closed systems, the three-dimensional structure of the metallic aggregate is of high impact. We thus conclude that Au25 corresponds to the most appropriate fragment to model nanometer-sized NP-DTE hybrid device.

  2. Performance of Conformable Ablators in Aerothermal Environments

    NASA Technical Reports Server (NTRS)

    Thornton, J.; Fan, W.; Skokova, K.; Stackpoole, M.; Beck, R.; Chavez-Garcia, J.

    2012-01-01

    Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICAs performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.

  3. Conformational Sampling of Peptides in Cellular Environments☆

    PubMed Central

    Tanizaki, Seiichiro; Clifford, Jacob; Connelly, Brian D.; Feig, Michael

    2008-01-01

    Abstract Biological systems provide a complex environment that can be understood in terms of its dielectric properties. High concentrations of macromolecules and cosolvents effectively reduce the dielectric constant of cellular environments, thereby affecting the conformational sampling of biomolecules. To examine this effect in more detail, the conformational preference of alanine dipeptide, poly-alanine, and melittin in different dielectric environments is studied with computer simulations based on recently developed generalized Born methodology. Results from these simulations suggest that extended conformations are favored over α-helical conformations at the dipeptide level at and below dielectric constants of 5–10. Furthermore, lower-dielectric environments begin to significantly stabilize helical structures in poly-alanine at ɛ = 20. In the more complex peptide melittin, different dielectric environments shift the equilibrium between two main conformations: a nearly fully extended helix that is most stable in low dielectrics and a compact, V-shaped conformation consisting of two helices that is preferred in higher dielectric environments. An additional conformation is only found to be significantly populated at intermediate dielectric constants. Good agreement with previous studies of different peptides in specific, less-polar solvent environments, suggest that helix stabilization and shifts in conformational preferences in such environments are primarily due to a reduced dielectric environment rather than specific molecular details. The findings presented here make predictions of how peptide sampling may be altered in dense cellular environments with reduced dielectric response. PMID:17905846

  4. Addressing psychiatric comorbidity.

    PubMed

    Woody, G E; McLellan, A T; O'Brien, C P; Luborsky, L

    1991-01-01

    Research studies indicate that addressing psychiatric comorbidity can improve treatment for selected groups of substance-abusing patients. However, the chances for implementing the necessary techniques on a large scale are compromised by the absence of professional input and guidance within programs. This is especially true in public programs, which treat some of the most disadvantaged, disturbed, and socially destructive individuals in the entire mental health system. One starting point for upgrading the level of knowledge and training of staff members who work in this large treatment system could be to develop a better and more authoritative information dissemination network. Such a system exists in medicine; physicians are expected to read appropriate journals and to guide their treatment decisions using the data contained in the journals. Standards of practice and methods for modifying current practice are within the tradition of reading new facts, studying old ones, and comparing treatment outcome under different conditions with what is actually being done. No such general system of information-gathering or -sharing exists, particularly in public treatment programs. One of the most flagrant examples of this "educational shortfall" can be found among those methadone programs that adamantly insist on prescribing no more than 30 to 35 mg/day for all patients, in spite of the overwhelming evidence that these dose levels generally are inadequate. In some cases, program directors are unaware of studies that have shown the relationship between dose and outcome. In other cases, they are aware of the studies but do not modify their practices accordingly. This example of inadequate dosing is offered as an example of one situation that could be improved by adherence to a system of authoritative and systematic information dissemination. Many issues in substance abuse treatment do not lend themselves to information dissemination as readily as that of methadone dosing

  5. Addressing the complexity of chronic obstructive pulmonary disease: from phenotypes and biomarkers to scale-free networks, systems biology, and P4 medicine.

    PubMed

    Agusti, Alvar; Sobradillo, Patricia; Celli, Bartolomé

    2011-05-01

    Chronic obstructive pulmonary disease (COPD) is a complex disease at the clinical, cellular, and molecular levels. However, its diagnosis, assessment, and therapeutic management are based almost exclusively on the severity of airflow limitation. A better understanding of the multiple dimensions of COPD and its relationship to other diseases is very relevant and of high current interest. Recent theoretical (scale-free networks), technological (high-throughput technology, biocomputing), and analytical improvements (systems biology) provide tools capable of addressing the complexity of COPD. The information obtained from the integrated use of those techniques will be eventually incorporated into routine clinical practice. This review summarizes our current knowledge in this area and offers an insight into the elements needed to progress toward an integrated, multilevel view of COPD based on the novel scientific strategy of systems biology and its potential clinical derivative, P4 medicine (Personalized, Predictive, Preventive, and Participatory).

  6. Assemblies of Conformal Tanks

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2009-01-01

    Assemblies of tanks having shapes that conform to each other and/or conform to other proximate objects have been investigated for use in storing fuels and oxidizers in small available spaces in upper stages of spacecraft. Such assemblies might also prove useful in aircraft, automobiles, boats, and other terrestrial vehicles in which space available for tanks is limited. The basic concept of using conformal tanks to maximize the utilization of limited space is not new in itself: for example, conformal tanks are used in some automobiles to store windshield -washer liquid and coolant that overflows from radiators. The novelty of the present development lies in the concept of an assembly of smaller conformal tanks, as distinguished from a single larger conformal tank. In an assembly of smaller tanks, it would be possible to store different liquids in different tanks. Even if the same liquid were stored in all the tanks, the assembly would offer an advantage by reducing the mechanical disturbance caused by sloshing of fuel in a single larger tank: indeed, the requirement to reduce sloshing is critical in some applications. The figure shows a prototype assembly of conformal tanks. Each tank was fabricated by (1) copper plating a wax tank mandrel to form a liner and (2) wrapping and curing layers of graphite/epoxy composite to form a shell supporting the liner. In this case, the conformal tank surfaces are flat ones where they come in contact with the adjacent tanks. A band of fibers around the outside binds the tanks together tightly in the assembly, which has a quasi-toroidal shape. For proper functioning, it would be necessary to maintain equal pressure in all the tanks.

  7. Addressing the social determinants of health through health system strengthening and inter-sectoral convergence: the case of the Indian National Rural Health Mission

    PubMed Central

    Prasad, Amit Mohan; Chakraborty, Gautam; Yadav, Sajjan Singh; Bhatia, Salima

    2013-01-01

    Background At the turn of the 21st century, India was plagued by significant rural–urban, inter-state and inter-district inequities in health. For example, in 2004, the infant mortality rate (IMR) was 24 points higher in rural areas compared to urban areas. To address these inequities, to strengthen the rural health system (a major determinant of health in itself) and to facilitate action on other determinants of health, India launched the National Rural Health Mission (NRHM) in April 2005. Methods Under the NRHM, Rs. 666 billion (US$12.1 billion) was invested in rural areas from April 2005 to March 2012. There was also a substantially higher allocation for 18 high-focus states and 264 high-focus districts, identified on the basis of poor health and demographic indicators. Other determinants of health, especially nutrition and decentralized action, were addressed through mechanisms like State/District Health Missions, Village Health, Sanitation and Nutrition Committees, and Village Health and Nutrition Days. Results Consequently, in bigger high-focus states, rural IMR fell by 15.6 points between 2004 and 2011, as compared to 9 points in urban areas. Similarly, the maternal mortality rate in high-focus states declined by 17.9% between 2004–2006 and 2007–2009 compared to 14.6% in other states. Conclusion The article, on the basis of the above approaches employed under NRHM, proposes the NRHM model to ‘reduce health inequities and initiate action on SDH’. PMID:23458089

  8. Anticholinergic substances: A single consistent conformation

    PubMed Central

    Pauling, Peter; Datta, Narayandas

    1980-01-01

    An interactive computer-graphics analysis of 24 antagonists of acetylcholine at peripheral autonomic post-ganglionic (muscarinic) nervous junctions and at similar junctions in the central nervous system, the crystal structures of which are known, has led to the determination of a single, consistent, energetically favorable conformation for all 24 substances, although their observed crystal structure conformations vary widely. The absolute configuration and the single, consistent (ideal) conformation of the chemical groups required for maximum anticholinergic activity are described quantitatively. Images PMID:16592775

  9. Regional Arctic System Model (RASM): A Tool to Address the U.S. Priorities and Advance Capabilities for Arctic Climate Modeling and Prediction

    NASA Astrophysics Data System (ADS)

    Maslowski, W.; Roberts, A.; Cassano, J. J.; Gutowski, W. J., Jr.; Nijssen, B.; Osinski, R.; Zeng, X.; Brunke, M.; Duvivier, A.; Hamman, J.; Hossainzadeh, S.; Hughes, M.; Seefeldt, M. W.

    2015-12-01

    The Arctic is undergoing some of the most coordinated rapid climatic changes currently occurring anywhere on Earth, including the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Earth System Models (ESMs) are in broad agreement with these changes, the rate of change in ESMs generally remains outpaced by observations. Reasons for that relate to a combination of coarse resolution, inadequate parameterizations, under-represented processes and a limited knowledge of physical interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the ESM limitations in simulating observed variability and trends in arctic surface climate. RASM is a high resolution, pan-Arctic coupled climate model with the sea ice and ocean model components configured at an eddy-permitting resolution of 1/12o and the atmosphere and land hydrology model components at 50 km resolution, which are all coupled at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled ESM, which due to the constraints from boundary conditions facilitates detailed comparisons with observational statistics that are not possible with ESMs. The overall goal of RASM is to address key requirements published in the Navy Arctic Roadmap: 2014-2030 and in the Implementation Plan for the National Strategy for the Arctic Region, regarding the need for advanced modeling capabilities for operational forecasting and strategic climate predictions through 2030. The main science objectives of RASM are to advance understanding and model representation of critical physical processes and feedbacks of importance to sea ice thickness and area distribution. RASM results are presented to quantify relative contributions by (i) resolved processes and feedbacks as well as (ii) sensitivity to space dependent sub-grid parameterizations to better

  10. SU-C-204-05: Simulations of a Portal Imaging System for Conformal and Intensity Modulated Fast Neutron Therapy

    SciTech Connect

    James, S St.; Argento, D; Stewart, R

    2015-06-15

    Purpose: The University of Washington Medical Center offers neutron therapy for the palliative and definitive treatment of selected cancers. In vivo field verification has the potential to improve the safe and effective delivery of neutron therapy. We propose a portal imaging method that relies on the creation of positron emitting isotopes (11C and 15O) through (n, 2n) reactions with a PMMA plate placed below the patient. After field delivery, the plate is retrieved from the vault and imaged using a reader that detects annihilation photons. The spatial pattern of activity produced in the PMMA plate provides information to reconstruct the neutron fluence map needed to confirm treatment delivery. Methods: We used MCNP to simulate the accumulation of 11C activity in a slab of PMMA 2 mm thick, and GATE was used to simulate the sensitivity and spatial resolution of a prototype imaging system. BGO crystal thicknesses of 1 cm, 2 cm and 3 cm were simulated with detector separations of 2 cm. Crystal pitches of 2 mm and 4 mm were evaluated. Back-projection of the events was used to create a planar image. The spatial resolution was taken to be the FWHM of the reconstructed point source image. Results: The system sensitivity for a point source in the center of the field of view was found to range from 58% for 1 cm thick BGO with 2 mm crystal pitch to 74% for the 3 cm thick BGO crystals with 4 mm crystal pitch. The spatial resolution at the center of the field of view was found to be 1.5 mm for the system with 2 mm crystal pitch and 2.8 mm for the system with the 4 mm crystal pitch. Conclusion: BGO crystals with 4 mm crystal pitch and 3 cm length would offer the best sensitivity reader.

  11. Addressivity in cogenerative dialogues

    NASA Astrophysics Data System (ADS)

    Hsu, Pei-Ling

    2014-03-01

    Ashraf Shady's paper provides a first-hand reflection on how a foreign teacher used cogens as culturally adaptive pedagogy to address cultural misalignments with students. In this paper, Shady drew on several cogen sessions to showcase his journey of using different forms of cogens with his students. To improve the quality of cogens, one strategy he used was to adjust the number of participants in cogens. As a result, some cogens worked and others did not. During the course of reading his paper, I was impressed by his creative and flexible use of cogens and at the same time was intrigued by the question of why some cogens work and not others. In searching for an answer, I found that Mikhail Bakhtin's dialogism, especially the concept of addressivity, provides a comprehensive framework to address this question. In this commentary, I reanalyze the cogen episodes described in Shady's paper in the light of dialogism. My analysis suggests that addressivity plays an important role in mediating the success of cogens. Cogens with high addressivity function as internally persuasive discourse that allows diverse consciousnesses to coexist and so likely affords productive dialogues. The implications of addressivity in teaching and learning are further discussed.

  12. Tunable diastereoselection of biased rigid systems by Lewis acid induced conformational effects: a rationalization of the vinylation of cyclic nitrones en route to polyhydroxylated pyrrolidines.

    PubMed

    Delso, Ignacio; Marca, Eduardo; Mannucci, Vanni; Tejero, Tomás; Goti, Andrea; Merino, Pedro

    2010-08-23

    The diastereofacial selection in addition reactions to biased rigid systems can be modulated by the action of Lewis acids. As an example, the stereoselectivity of the nucleophilic addition of vinyl magnesium bromide (VMB) to cyclic nitrones in the presence of diethylaluminum chloride (DEAC) shows a strong dependence on the temperature and the carbon substituent adjacent at the reaction center; it is remarkable that whereas a high selectivity is obtained at higher temperatures, in the presence of DEAC, a trend to invert the stereochemical course of the reaction is observed at lower temperatures, provided the substituent at C3 of the pyrrolidine ring allows delivery of the vinyl moiety. This behavior and difference in selectivity is to be attributed to the high conformational barriers of the intermediate nitrone-DEAC-VMB complex. A clear inversion of the selectivity is observed at -78 degrees C for the reaction of the nitrone protected as an O-methyl derivative. The present study provides a rationalization for the stereocontrolled addition of nucleophiles to rigid systems (cyclic nitrones).

  13. Structure and Conformational Dynamics of DMPC/Dicationic Surfactant and DMPC/Dicationic Surfactant/DNA Systems

    PubMed Central

    Pietralik, Zuzanna; Krzysztoń, Rafał; Kida, Wojciech; Andrzejewska, Weronika; Kozak, Maciej

    2013-01-01

    Amphiphilic dicationic surfactants, known as gemini surfactants, are currently studied for gene delivery purposes. The gemini surfactant molecule is composed of two hydrophilic “head” groups attached to hydrophobic chains and connected via molecular linker between them. The influence of different concentrations of 1,5-bis (1-imidazolilo-3- decyloxymethyl) pentane chloride (gemini surfactant) on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers with and without the presence of DNA was investigated using Fourier transformed infrared (FTIR) and circular dichroism (CD) spectroscopies, small angle scattering of synchrotron radiation and differential scanning calorimetry. With increasing concentration of surfactant in DMPC/DNA systems, a disappearance of pretransition and a decrease in the main phase transition enthalpy and temperature were observed. The increasing intensity of diffraction peaks as a function of surfactant concentration also clearly shows the ability of the surfactant to promote the organisation of lipid bilayers in the multilayer lamellar phase. PMID:23571492

  14. Controlling complex networks with conformity behavior

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Wen; Nie, Sen; Wang, Wen-Xu; Wang, Bing-Hong

    2015-09-01

    Controlling complex networks accompanied by common conformity behavior is a fundamental problem in social and physical science. Conformity behavior that individuals tend to follow the majority in their neighborhood is common in human society and animal communities. Despite recent progress in understanding controllability of complex networks, the existent controllability theories cannot be directly applied to networks associated with conformity. Here we propose a simple model to incorporate conformity-based decision making into the evolution of a network system, which allows us to employ the exact controllability theory to explore the controllability of such systems. We offer rigorous theoretical results of controllability for representative regular networks. We also explore real networks in different fields and some typical model networks, finding some interesting results that are different from the predictions of structural and exact controllability theory in the absence of conformity. We finally present an example of steering a real social network to some target states to further validate our controllability theory and tools. Our work offers a more realistic understanding of network controllability with conformity behavior and can have potential applications in networked evolutionary games, opinion dynamics and many other complex networked systems.

  15. Logarithmic conformal field theory

    NASA Astrophysics Data System (ADS)

    Gainutdinov, Azat; Ridout, David; Runkel, Ingo

    2013-12-01

    Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more

  16. Letter Report to Address Comments on the Closure Report for Corrective Action Unit 224: Decon Pad and Septic Systems, Nevada Test Site, Nevada, Revision 0, March 2008

    SciTech Connect

    NSTec Environmental Restoration

    2008-03-17

    The Closure Report (CR) for Corrective Action Unit (CAU) 224, Decon Pad and Septic Systems, was approved by the Nevada Department of Environmental Protection (NDEP) on November 01, 2007. The approval letter contained the following two comments: Comment 1--For 06-05-01, 06-17-04, 06-23-01 provide evidence that the 6 inch VCP pipe originating from building CP-2 is no longer active and sealed to prevent possible future contamination. Comment 2--For the area that includes 06-03-01, provide evidence that active lines are no longer feeding the North and South lagoons and have been sealed to prevent possible future contamination. To address these comments, closure documentation was reviewed, and site visits were conducted to locate and document the areas of concern. Additional fieldwork was conducted in March 2008 to seal the lines and openings described in the two comments. Photographs were taken of the closed drains and lines to document that the NDEP comments were adequately addressed and potential inadvertent discharge to the environment has been eliminated. Investigation and closure documentation was reviewed to identify the locations of potential drains, lines, and other features that could receive and/or transmit liquid. Based on the investigation findings and subsequent closure activities, no openings, distribution boxes, or other features (excluding known floor drains at CP-2) that could receive liquid were found at the CP-2 location (Figure 1), and potential manholes for the north and south sewage lagoons were identified for Corrective Action Site (CAS) 06-03-01 (Figure 2). The distribution box identified in Figure 1 was not located during the investigation and was assumed to have been previously removed.

  17. Charged conformal Killing spinors

    SciTech Connect

    Lischewski, Andree

    2015-01-15

    We study the twistor equation on pseudo-Riemannian Spin{sup c}-manifolds whose solutions we call charged conformal Killing spinors (CCKSs). We derive several integrability conditions for the existence of CCKS and study their relations to spinor bilinears. A construction principle for Lorentzian manifolds admitting CCKS with nontrivial charge starting from CR-geometry is presented. We obtain a partial classification result in the Lorentzian case under the additional assumption that the associated Dirac current is normal conformal and complete the classification of manifolds admitting CCKS in all dimensions and signatures ≤5 which has recently been initiated in the study of supersymmetric field theories on curved space.

  18. Application of heteronuclear couplings to conformational analysis of oligonucleotides

    SciTech Connect

    Zhu, G.; Live, D.; Bax, A.

    1994-12-01

    The value of vicinal coupling constants extracted from NMR spectra in deducing torsion angles for conformational analysis is well recognized. Due to the abundance of protons, their couplings have been mostly widely used. In many instances, couplings between protons and other nuclei may be a valuable complement to proton-proton couplings or, in some instances, may be the only coupling available to characterize the torsion angle about a bond. Recently, heteronuclear couplings have been used to great benefit in studies of isotopically enriched proteins, and this general approach has been extended to peptides at natural abundance. The possibility of using this approach to study oligonucleotides is also attractive but has not as yet been widely exploited. With the development of strategies for labeling such molecules, particularly RNAs, this may become an important component in conformational analysis. For DNA, labeling is less accessible, but sufficient quantities of unlabeled material are readily available for measuring these couplings at natural abundance. We chose several DNA systems to explore the usefulness of heteronuclear couplings in addressing the sugar conformation and the glycosidic torsion angle. Intensities of cross peaks in long-range HMQC experiments can be related to the couplings. Crosspeaks involving H1{prime} and C1{prime} atoms have been emphasized because of the superior shift dispersion at these positions between sugar protons and carbon atoms. Results will be shown for the self-complementary Dickerson duplex dodecamer sequence d(CGCGAATTCGCG) and for d(GGTCGG), which dimerizes to form a G-tetrad structure incorporating both syn and anti base orientations. The couplings provide a clear discrimination between presence of C3{prime}-endo and C2{prime}-endo conformations of the sugars and syn and anti bases arrangements.

  19. Conformal Ablative Thermal Protection System for Small and Large Scale Missions: Approaching TRL 6 for Planetary and Human Exploration Missions and TRL 9 for Small Probe Missions

    NASA Technical Reports Server (NTRS)

    Beck, R. A. S.; Gasch, M. J.; Milos, F. S.; Stackpoole, M. M.; Smith, B. P.; Switzer, M. R.; Venkatapathy, E.; Wilder, M. C.; Boghhozian, T.; Chavez-Garcia, J. F.

    2015-01-01

    In 2011, NASAs Aeronautics Research Mission Directorate (ARMD) funded an effort to develop an ablative thermal protection system (TPS) material that would have improved properties when compared to Phenolic Impregnated Carbon Ablator (PICA) and AVCOAT. Their goal was a conformal material, processed with a flexible reinforcement that would result in similar or better thermal characteristics and higher strain-to-failure characteristics that would allow for easier integration on flight aeroshells than then-current rigid ablative TPS materials. In 2012, NASAs Space Technology Mission Directorate (STMD) began funding the maturation of the best formulation of the game changing conformal ablator, C-PICA. Progress has been reported at IPPW over the past three years, describing C-PICA with a density and recession rates similar to PICA, but with a higher strain-to-failure which allows for direct bonding and no gap fillers, and even more important, with thermal characteristics resulting in half the temperature rise of PICA. Overall, C-PICA should be able to replace PICA with a thinner, lighter weight, less complicated design. These characteristics should be particularly attractive for use as backshell TPS on high energy planetary entry vehicles. At the end of this year, the material should be ready for missions to consider including in their design, in fact, NASAs Science Mission Directorate (SMD) is considering incentivizing the use of C-PICA in the next Discovery Proposal call. This year both scale up of the material to large (1-m) sized pieces and the design and build of small probe heatshields for flight tests will be completed. NASA, with an industry partner, will build a 1-m long manufacturing demonstration unit (MDU) with a shape based on a mid LD lifting body. In addition, in an effort to fly as you test and test as you fly, NASA, with a second industry partner, will build a small probe to test in the Interactive Heating Facility (IHF) arc jet and, using nearly the

  20. Comparative Study of LDR (Manchester System) and HDR Image-guided Conformal Brachytherapy of Cervical Cancer: Patterns of Failure, Late Complications, and Survival

    SciTech Connect

    Narayan, Kailash Dyk, Sylvia van; Bernshaw, David; Rajasooriyar, Chrishanthi; Kondalsamy-Chennakesavan, Srinivas

    2009-08-01

    Purpose: To compare patterns of failure, late toxicities, and survival in locally advanced cervical cancer patients treated by either low-dose-rate (LDR) or conformal high-dose-rate (HDRc) brachytherapy as a part of curative radiotherapy. Materials and Methods: A retrospective comparative study of 217 advanced cervix cancer patients was conducted; 90 of these patients received LDR and 127 received HDRc brachytherapy. All patients were staged using International Federation of Gynecology and Obstetrics (FIGO) rules, had pretreatment magnetic resonance imaging (MRI), and were treated with concurrent cisplatin chemoradiotherapy. Both groups matched for FIGO stage, MRI tumor volume, and uterine invasion status. Results: Local and pelvic failures were similar 12-13% and 14% both in both groups. Abdominal and systemic failures in LDR group were 21% and 24%, whereas corresponding failures in HDRc group were 20% and 24%. Sixty-eight percent (87/127) of patients treated by HDRc remained asymptomatic, whereas 42% (38/90) of patients were asymptomatic from the bowel and bladder symptoms after treatment with LDR. The 5-year OS rate was 60% (SE = 4%). The 5-year failure-free survival rate was 55% (SE = 3%). There was no significant difference between the groups. Conclusions: Image-guided HDRc planning led to a large decrease in late radiation effects in patients treated by HDRc. Patterns of failure and survival were similar in patients treated either by LDR or HDRc.

  1. Comprehensive Lifecycle Planning and Management System For Addressing Water Issues Associated With Shale Gas Development In New York, Pennsylvania, And West Virginia

    SciTech Connect

    Arthur, J. Daniel

    2012-07-01

    The objective of this project is to develop a modeling system to allow operators and regulators to plan all aspects of water management activities associated with shale gas development in the target project area of New York, Pennsylvania, and West Virginia (target area ), including water supply, transport, storage, use, recycling, and disposal and which can be used for planning, managing, forecasting, permit tracking, and compliance monitoring. The proposed project is a breakthrough approach to represent the entire shale gas water lifecycle in one comprehensive system with the capability to analyze impacts and options for operational efficiency and regulatory tracking and compliance, and to plan for future water use and disposition. It will address all of the major water-related issues of concern associated with shale gas development in the target area, including water withdrawal, transport, storage, use, treatment, recycling, and disposal. It will analyze the costs, water use, and wastes associated with the available options, and incorporate constraints presented by permit requirements, agreements, local and state regulations, equipment and material availability, etc. By using the system to examine the water lifecycle from withdrawals through disposal, users will be able to perform scenario analysis to answer "what if" questions for various situations. The system will include regulatory requirements of the appropriate state and regional agencies and facilitate reporting and permit applications and tracking. These features will allow operators to plan for more cost effective resource production. Regulators will be able to analyze impacts of development over an entire area. Regulators can then make informed decisions about the protections and practices that should be required as development proceeds. This modeling system will have myriad benefits for industry, government, and the public. For industry, it will allow planning all water management operations for a

  2. Addressing Social Issues.

    ERIC Educational Resources Information Center

    Schoebel, Susan

    1991-01-01

    Maintains that advertising can help people become more aware of social responsibilities. Describes a successful nationwide newspaper advertising competition for college students in which ads address social issues such as literacy, drugs, teen suicide, and teen pregnancy. Notes how the ads have helped grassroots programs throughout the United…

  3. Addressing Sexual Harassment

    ERIC Educational Resources Information Center

    Young, Ellie L.; Ashbaker, Betty Y.

    2008-01-01

    This article discusses ways on how to address the problem of sexual harassment in schools. Sexual harassment--simply defined as any unwanted and unwelcome sexual behavior--is a sensitive topic. Merely providing students, parents, and staff members with information about the school's sexual harassment policy is insufficient; schools must take…

  4. Extended conformal field theories

    NASA Astrophysics Data System (ADS)

    Taormina, Anne

    1990-08-01

    Some extended conformal field theories are briefly reviewed. They illustrate how non minimal models of the Virasoro algebra (c≥1) can become minimal with respect to a larger algebra. The accent is put on N-extended superconformal algebras, which are relevant in superstring compactification.

  5. Conformational changes in biopolymers

    NASA Astrophysics Data System (ADS)

    Ivanov, Vassili

    2005-12-01

    Biopolymer conformational changes are involved in many biological processes. This thesis summarizes some theoretical and experimental approaches which I have taken at UCLA to explore conformational changes in biopolymers. The reversible thermal denaturation of the DNA double helix is, perhaps, the simplest example of biopolymer conformational change. I have developed a statistical mechanics model of DNA melting with reduced degrees of freedom, which allows base stacking interaction to be taken into account and treat base pairing and stacking separately. Unlike previous models, this model describes both the unpairing and unstacking parts of the experimental melting curves and explains the observed temperature dependence of the effective thermodynamic parameters used in models of the nearest neighbor type. I developed a basic kinetic model for irreversible thermal denaturation of F-actin, which incorporates depolymerization of F-actin from the ends and breaking of F-actin fiber in the middle. The model explains the cooperativity of F-actin thermal denaturation observed by D. Pavlov et al. in differential calorimetry measurements. CG-rich DNA sequences form left-handed Z-DNA at high ionic strength or upon binding of polyvalent ions and some proteins. I studied experimentally the B-to-Z transition of the (CG)6 dodecamer. Improvement of the locally linearized model used to interpret the data gives evidence for an intermediate state in the B-to-Z transition of DNA, contrary to previous research on this subject. In the past 15 years it has become possible to study the conformational changes of biomolecules using single-molecule techniques. In collaboration with other lab members I performed a single-molecule experiment, where we monitored the displacement of a micrometer-size bead tethered to a surface by a DNA probe undergoing the conformational change. This technique allows probing of conformational changes with subnanometer accuracy. We applied the method to detect

  6. Quantifying polypeptide conformational space: sensitivity to conformation and ensemble definition.

    PubMed

    Sullivan, David C; Lim, Carmay

    2006-08-24

    Quantifying the density of conformations over phase space (the conformational distribution) is needed to model important macromolecular processes such as protein folding. In this work, we quantify the conformational distribution for a simple polypeptide (N-mer polyalanine) using the cumulative distribution function (CDF), which gives the probability that two randomly selected conformations are separated by less than a "conformational" distance and whose inverse gives conformation counts as a function of conformational radius. An important finding is that the conformation counts obtained by the CDF inverse depend critically on the assignment of a conformation's distance span and the ensemble (e.g., unfolded state model): varying ensemble and conformation definition (1 --> 2 A) varies the CDF-based conformation counts for Ala(50) from 10(11) to 10(69). In particular, relatively short molecular dynamics (MD) relaxation of Ala(50)'s random-walk ensemble reduces the number of conformers from 10(55) to 10(14) (using a 1 A root-mean-square-deviation radius conformation definition) pointing to potential disconnections in comparing the results from simplified models of unfolded proteins with those from all-atom MD simulations. Explicit waters are found to roughen the landscape considerably. Under some common conformation definitions, the results herein provide (i) an upper limit to the number of accessible conformations that compose unfolded states of proteins, (ii) the optimal clustering radius/conformation radius for counting conformations for a given energy and solvent model, (iii) a means of comparing various studies, and (iv) an assessment of the applicability of random search in protein folding.

  7. Effects of the transport site conformation on the binding of external NAP-taurine to the human erythrocyte anion exchange system: evidence for intrinsic asymmetry

    SciTech Connect

    Knauf, P.A.; Law, F.Y.; Tarshis, T.; Furuya, W.

    1984-05-01

    External N-(4-azido (NAP-taurine) inhibits human red cell chloride exchange by binding to a site that is distinct from the chloride transport site. Increases in the intracellular chloride concentration (at constant external chloride) cause an increase in the inhibitory potency of external NAP-taurine. This effect is not due to the changes in pH or membrane potential that usually accompany a chloride gradient, since even when these changes are reversed or eliminated the inhibitory potency remains high. According to the ping-pong model for anion exchange, such transmembrane effects of intracellular chloride on external NAP-taurine can be explained if NAP-taurine only binds to its site when the transport site is in the outward-facing (E/sub o/ or ECl/sub o/) form. Since NAP-taurine prevents the conformational change from ECl/sub o/ to ECl/sub i/, it must lock the system in the outward-facing form. NAP-taurine can therefore be used just like the competitive inhibitor H/sub 2/DIDS (4,4'-diisothiocyano-1,2-diphenylethane-2,2'-disulfonic acid) to monitor the fraction of transport sites that face outward. A quantitative analysis of the effects of chloride gradients on the inhibitory potency of NAP-taurine and H/sub 2/DIDS reveals that the transport system is intrinsically asymmetric, such that when Cl/sub i/ = Cl/sub o/, most of the unloaded transport sites face the cytoplasmic side of the membrane. 30 references, 7 figures, 3 tables.

  8. Chromosome Conformation Capture in Drosophila.

    PubMed

    Li, Hua-Bing

    2016-01-01

    Linear chromatin fiber is packed inside the nuclei as a complex three-dimensional structure, and the organization of the chromatin has important roles in the appropriate spatial and temporal regulation of gene expression. To understand how chromatin organizes inside nuclei, and how regulatory proteins physically interact with genes, chromosome conformation capture (3C) technique provides a powerful and sensitive tool to detect both short- and long-range DNA-DNA interaction. Here I describe the 3C technique to detect the DNA-DNA interactions mediated by insulator proteins that are closely related to PcG in Drosophila, which is also broadly applicable to other systems. PMID:27659987

  9. Detection of rifampin resistance by single-strand conformation polymorphism analysis of cerebrospinal fluid of patients with tuberculosis of the central nervous system.

    PubMed Central

    Scarpellini, P; Braglia, S; Brambilla, A M; Dalessandro, M; Cichero, P; Gori, A; Lazzarin, A

    1997-01-01

    Mutations in a 69-bp region of the rpoB gene of Mycobacterium tuberculosis are associated with rifampin resistance (Rif[r]). These have been detected with mycobacterial DNA extracted from bacterial suspensions or respiratory specimens that were acid-fast smear positive. We experimented with a strategy for the rapid detection of Rif(r) in cerebrospinal fluid (CSF) samples. The strategy involves the amplification of the 69-bp region of rpoB by means of PCR and the identification of nucleotide mutations by single-strand conformation polymorphism (SSCP) analysis of the amplification products. Sixty-five CSF specimens collected from 29 patients (19 patients were coinfected with human immunodeficiency virus) with culture or autopsy-confirmed (22 patients) or highly probable (7 patients) tuberculosis of the central nervous system (CNS-TB) were processed. Amplified products suitable for evaluation by SSCP analysis were obtained from 37 CSF specimens from 25 subjects (86.2%). PCR-SSCP of CSF correctly identified the rifampin susceptibility phenotype of isolates from all 17 patients for whom the results of susceptibility tests carried out with strains cultured from CSF or respiratory samples were available. Moreover, this assay revealed the rifampin susceptibility genotype of isolates from the eight patients (three patients with culture-confirmed CNS-TB and five patients in whom CNS-TB was highly probable) for whom no susceptibility test results were available; the PCR-SSCP data obtained for these patients were concordant with the outcome after a standard antituberculosis treatment. The evolution of a mutation in the rpoB gene was documented in a patient during the course of treatment. PCR-SSCP analysis of CSF seems to be an efficacious method of predicting Rif(r) and would reduce the time required for susceptibility testing from approximately 4 to 8 weeks to a few days. PMID:9350737

  10. Addressing the impact of environmental uncertainty in plankton model calibration with a dedicated software system: the Marine Model Optimization Testbed (MarMOT)

    NASA Astrophysics Data System (ADS)

    Hemmings, J. C. P.; Challenor, P. G.

    2011-08-01

    A wide variety of different marine plankton system models have been coupled with ocean circulation models, with the aim of understanding and predicting aspects of environmental change. However, an ability to make reliable inferences about real-world processes from the model behaviour demands a quantitative understanding of model error that remains elusive. Assessment of coupled model output is inhibited by relatively limited observing system coverage of biogeochemical components. Any direct assessment of the plankton model is further inhibited by uncertainty in the physical state. Furthermore, comparative evaluation of plankton models on the basis of their design is inhibited by the sensitivity of their dynamics to many adjustable parameters. The Marine Model Optimization Testbed is a new software tool designed for rigorous analysis of plankton models in a multi-site 1-D framework, in particular to address uncertainty issues in model assessment. A flexible user interface ensures its suitability to more general inter-comparison, sensitivity and uncertainty analyses, including model comparison at the level of individual processes, and to state estimation for specific locations. The principal features of MarMOT are described and its application to model calibration is demonstrated by way of a set of twin experiments, in which synthetic observations are assimilated in an attempt to recover the true parameter values of a known system. The experimental aim is to investigate the effect of different misfit weighting schemes on parameter recovery in the presence of error in the plankton model's environmental input data. Simulated errors are derived from statistical characterizations of the mixed layer depth, the horizontal flux divergences of the biogeochemical tracers and the initial state. Plausible patterns of uncertainty in these data are shown to produce strong temporal and spatial variability in the expected simulation error over an annual cycle, indicating

  11. Addressing the impact of environmental uncertainty in plankton model calibration with a dedicated software system: the Marine Model Optimization Testbed (MarMOT 1.1 alpha)

    NASA Astrophysics Data System (ADS)

    Hemmings, J. C. P.; Challenor, P. G.

    2012-04-01

    A wide variety of different plankton system models have been coupled with ocean circulation models, with the aim of understanding and predicting aspects of environmental change. However, an ability to make reliable inferences about real-world processes from the model behaviour demands a quantitative understanding of model error that remains elusive. Assessment of coupled model output is inhibited by relatively limited observing system coverage of biogeochemical components. Any direct assessment of the plankton model is further inhibited by uncertainty in the physical state. Furthermore, comparative evaluation of plankton models on the basis of their design is inhibited by the sensitivity of their dynamics to many adjustable parameters. Parameter uncertainty has been widely addressed by calibrating models at data-rich ocean sites. However, relatively little attention has been given to quantifying uncertainty in the physical fields required by the plankton models at these sites, and tendencies in the biogeochemical properties due to the effects of horizontal processes are often neglected. Here we use model twin experiments, in which synthetic data are assimilated to estimate a system's known "true" parameters, to investigate the impact of error in a plankton model's environmental input data. The experiments are supported by a new software tool, the Marine Model Optimization Testbed, designed for rigorous analysis of plankton models in a multi-site 1-D framework. Simulated errors are derived from statistical characterizations of the mixed layer depth, the horizontal flux divergence tendencies of the biogeochemical tracers and the initial state. Plausible patterns of uncertainty in these data are shown to produce strong temporal and spatial variability in the expected simulation error variance over an annual cycle, indicating variation in the significance attributable to individual model-data differences. An inverse scheme using ensemble-based estimates of the

  12. Bioreactors Addressing Diabetes Mellitus

    PubMed Central

    Minteer, Danielle M.; Gerlach, Jorg C.

    2014-01-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies. PMID:25160666

  13. Bioreactors addressing diabetes mellitus.

    PubMed

    Minteer, Danielle M; Gerlach, Jorg C; Marra, Kacey G

    2014-11-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies.

  14. Content addressable memory project

    NASA Technical Reports Server (NTRS)

    Hall, J. Storrs; Levy, Saul; Smith, Donald E.; Miyake, Keith M.

    1992-01-01

    A parameterized version of the tree processor was designed and tested (by simulation). The leaf processor design is 90 percent complete. We expect to complete and test a combination of tree and leaf cell designs in the next period. Work is proceeding on algorithms for the computer aided manufacturing (CAM), and once the design is complete we will begin simulating algorithms for large problems. The following topics are covered: (1) the practical implementation of content addressable memory; (2) design of a LEAF cell for the Rutgers CAM architecture; (3) a circuit design tool user's manual; and (4) design and analysis of efficient hierarchical interconnection networks.

  15. Conformational flexibility of aspartame.

    PubMed

    Toniolo, Claudio; Temussi, Pierandrea

    2016-05-01

    L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016. PMID:27038223

  16. Multiscale conformal pattern transfer.

    PubMed

    Lodewijks, Kristof; Miljkovic, Vladimir; Massiot, Inès; Mekonnen, Addis; Verre, Ruggero; Olsson, Eva; Dmitriev, Alexandre

    2016-01-01

    We demonstrate a method for seamless transfer from a parent flat substrate of basically any lithographic top-down or bottom-up pattern onto essentially any kind of surface. The nano- or microscale patterns, spanning macroscopic surface areas, can be transferred with high conformity onto a large variety of surfaces when such patterns are produced on a thin carbon film, grown on top of a sacrificial layer. The latter allows lifting the patterns from the flat parent substrate onto a water-air interface to be picked up by the host surface of choice. We illustrate the power of this technique by functionalizing broad range of materials including glass, plastics, metals, rough semiconductors and polymers, highlighting the potential applications in in situ colorimetry of the chemistry of materials, anti-counterfeit technologies, biomolecular and biomedical studies, light-matter interactions at the nanoscale, conformal photovoltaics and flexible electronics. PMID:27329824

  17. Multiscale conformal pattern transfer

    PubMed Central

    Lodewijks, Kristof; Miljkovic, Vladimir; Massiot, Inès; Mekonnen, Addis; Verre, Ruggero; Olsson, Eva; Dmitriev, Alexandre

    2016-01-01

    We demonstrate a method for seamless transfer from a parent flat substrate of basically any lithographic top-down or bottom-up pattern onto essentially any kind of surface. The nano- or microscale patterns, spanning macroscopic surface areas, can be transferred with high conformity onto a large variety of surfaces when such patterns are produced on a thin carbon film, grown on top of a sacrificial layer. The latter allows lifting the patterns from the flat parent substrate onto a water-air interface to be picked up by the host surface of choice. We illustrate the power of this technique by functionalizing broad range of materials including glass, plastics, metals, rough semiconductors and polymers, highlighting the potential applications in in situ colorimetry of the chemistry of materials, anti-counterfeit technologies, biomolecular and biomedical studies, light-matter interactions at the nanoscale, conformal photovoltaics and flexible electronics. PMID:27329824

  18. Multiscale conformal pattern transfer

    NASA Astrophysics Data System (ADS)

    Lodewijks, Kristof; Miljkovic, Vladimir; Massiot, Inès; Mekonnen, Addis; Verre, Ruggero; Olsson, Eva; Dmitriev, Alexandre

    2016-06-01

    We demonstrate a method for seamless transfer from a parent flat substrate of basically any lithographic top-down or bottom-up pattern onto essentially any kind of surface. The nano- or microscale patterns, spanning macroscopic surface areas, can be transferred with high conformity onto a large variety of surfaces when such patterns are produced on a thin carbon film, grown on top of a sacrificial layer. The latter allows lifting the patterns from the flat parent substrate onto a water-air interface to be picked up by the host surface of choice. We illustrate the power of this technique by functionalizing broad range of materials including glass, plastics, metals, rough semiconductors and polymers, highlighting the potential applications in in situ colorimetry of the chemistry of materials, anti-counterfeit technologies, biomolecular and biomedical studies, light-matter interactions at the nanoscale, conformal photovoltaics and flexible electronics.

  19. Conformational flexibility of aspartame.

    PubMed

    Toniolo, Claudio; Temussi, Pierandrea

    2016-05-01

    L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016.

  20. Conformal scalar field wormholes

    NASA Technical Reports Server (NTRS)

    Halliwell, Jonathan J.; Laflamme, Raymond

    1989-01-01

    The Euclidian Einstein equations with a cosmological constant and a conformally coupled scalar field are solved, taking the metric to be of the Robertson-Walker type. In the case Lambda = 0, solutions are found which represent a wormhole connecting two asymptotically flat Euclidian regions. In the case Lambda greater than 0, the solutions represent tunneling from a small Tolman-like universe to a large Robertson-Walker universe.

  1. How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems.

    PubMed

    E Birch, A Nicholas; Begg, Graham S; Squire, Geoffrey R

    2011-06-01

    Drivers behind food security and crop protection issues are discussed in relation to food losses caused by pests. Pests globally consume food estimated to feed an additional one billion people. Key drivers include rapid human population increase, climate change, loss of beneficial on-farm biodiversity, reduction in per capita cropped land, water shortages, and EU pesticide withdrawals under policies relating to 91/414 EEC. IPM (Integrated Pest Management) will be compulsory for all EU agriculture by 2014 and is also being widely adopted globally. IPM offers a 'toolbox' of complementary crop- and region-specific crop protection solutions to address these rising pressures. IPM aims for more sustainable solutions by using complementary technologies. The applied research challenge now is to reduce selection pressure on single solution strategies, by creating additive/synergistic interactions between IPM components. IPM is compatible with organic, conventional, and GM cropping systems and is flexible, allowing regional fine-tuning. It reduces pests below economic thresholds utilizing key 'ecological services', particularly biocontrol. A recent global review demonstrates that IPM can reduce pesticide use and increase yields of most of the major crops studied. Landscape scale 'ecological engineering', together with genetic improvement of new crop varieties, will enhance the durability of pest-resistant cultivars (conventional and GM). IPM will also promote compatibility with semiochemicals, biopesticides, precision pest monitoring tools, and rapid diagnostics. These combined strategies are urgently needed and are best achieved via multi-disciplinary research, including complex spatio-temporal modelling at farm and landscape scales. Integrative and synergistic use of existing and new IPM technologies will help meet future food production needs more sustainably in developed and developing countries, in an era of reduced pesticide availability. Current IPM research gaps are

  2. Addressing the pasture anomaly: how uncertainty in historical pasture data leads to divergence of atmospheric CO2 in Earth System Models

    NASA Astrophysics Data System (ADS)

    Chini, L. P.; Hurtt, G. C.; Klein Goldewijk, K.; Frolking, S.; Shevliakova, E.; Thornton, P. E.; Fisk, J. P.

    2012-12-01

    The characterization of land-use changes and activities within Earth System Models (ESMs) has evolved over the years, from inclusion of net emissions only, to dynamic maps of land-use activity. As part of the land-use harmonization (LUH) project for the 5th IPCC Assessment Report (AR5), new historical reconstructions of land-use change were developed for use in ESMs; these were formulated in terms of gridded maps of land-use activities and land-use transitions including agricultural expansion and abandonment, wood harvest, and shifting cultivation. In addition, due to the uncertainties involved in historical land-use reconstructions, the LUH data was evaluated in over 1600 different reconstructions. Here, we build upon the LUH approach and convert the LUH method into an optimization problem that allows model parameters to be varied in a systematic way to quantitatively meet a desired set of model constraints. We use these methods to address the "pasture anomaly" - an anomalous sudden increase in pasture-related emissions that occurs around 1950-1960 and which causes the simulated atmospheric CO2 in ESMs to diverge from the observed record (prior to that period, ESMs using the LUH data products are typically very successful at reproducing observed atmospheric CO2). First, we apply our optimization method while attempting to preserve as much LUH data as possible and simultaneously removing the pasture anomaly from the land-use emissions time-series. Next, we broaden the method and allow key model inputs to vary within realistic bounds (corresponding to specific ways in which the pasture reconstruction is uncertain). The result is a set of alternative land-use histories that quantify the manifold of possible solutions to the pasture anomaly problem. The most realistic reconstructions within this set can be employed by ESMs as a practical solution to closing the gap between historical atmospheric CO2 records and ESM predictions.

  3. Direct tumor in vivo dosimetry in highly-conformal radiotherapy: A feasibility study of implantable MOSFETs for hypofractionated extracranial treatments using the Cyberknife system

    SciTech Connect

    Scalchi, Paolo; Righetto, Roberto; Cavedon, Carlo; Francescon, Paolo; Colombo, Federico

    2010-04-15

    Purpose: In highly-conformal radiotherapy, due to the complexity of both beam configurations and dose distributions, traditional in vivo dosimetry is unpractical or even impossible. The ideal dosimeter would be implanted inside the planning treatment volume so that it can directly measure the total delivered dose during each fraction with no additional uncertainty due to calculation models. The aim of this work is to verify if implantable metal oxide semiconductors field effect transistors (MOSFETs) can achieve a sufficient degree of dosimetric accuracy when used inside extracranial targets undergoing radiotherapy treatments using the Cyberknife system. Methods: Based on the preliminary findings of this study, new prototypes for high dose fractionations were developed to reduce the time dependence for long treatment delivery times. These dosimeters were recently cleared and are marketed as DVS-HFT. Multiple measurements were performed using both Virtual Water and water phantoms to characterize implantable MOSFETs under the Cyberknife beams, and included the reference-dosimetry consistency, the dependence of the response on the collimator size, on the daily delivered dose, and the time irradiation modality. Finally a Cyberknife prostate treatment simulation using a body phantom was conducted, and both MOSFET and ionization readings were compared to Monte Carlo calculations. The feasibility analysis was conducted based on the ratios of the absorbed dose divided by the dose reading, named as ''further calibration factor'' (FCF). Results: The average FCFs resulted to be 0.98 for the collimator dependence test, and about 1.00 for the reference-dosimetry test, the dose-dependence test, and the time-dependence test. The average FCF of the prostate treatment simulation test was 0.99. Conclusions: The obtained results are well within DVS specifications, that is, the factory calibration is still valid for such kind of treatments using the Cyberknife system, with no need of

  4. Conformations of organophosphine oxides

    SciTech Connect

    De Silva, Nuwan; Zahariev, Federico; Hay, Benjamin P.; Gordon, Mark S.; Windus, Theresa L.

    2015-07-17

    The conformations of a series of organophosphine oxides, OP(CH3)2R, where R = methyl, ethyl, isopropyl, tert-butyl, vinyl, and phenyl, are predicted using the MP2/cc-pVTZ level of theory. Comparison of potential energy surfaces for rotation about P–C bonds with crystal structure data reveals a strong correlation between predicted location and energetics of minima and histograms of dihedral angle distributions observed in the solid state. In addition, the most stable conformers are those that minimize the extent of steric repulsion between adjacent rotor substituents, and the torsional barriers tend to increase with the steric bulk of the rotating alkyl group. MM3 force field parameters were adjusted to fit the MP2 results, providing a fast and accurate model for predicting organophosphine oxides shapes—an essential part of understanding the chemistry of these compounds. As a result, the predictive power of the modified MM3 model was tested against MP2/cc-pVTZ conformations for triethylphosphine oxide, OP(CH2CH3)3, and triphenylphosphine oxide, OP(Ph)3.

  5. Conformations of organophosphine oxides

    DOE PAGES

    De Silva, Nuwan; Zahariev, Federico; Hay, Benjamin P.; Gordon, Mark S.; Windus, Theresa L.

    2015-07-17

    The conformations of a series of organophosphine oxides, OP(CH3)2R, where R = methyl, ethyl, isopropyl, tert-butyl, vinyl, and phenyl, are predicted using the MP2/cc-pVTZ level of theory. Comparison of potential energy surfaces for rotation about P–C bonds with crystal structure data reveals a strong correlation between predicted location and energetics of minima and histograms of dihedral angle distributions observed in the solid state. In addition, the most stable conformers are those that minimize the extent of steric repulsion between adjacent rotor substituents, and the torsional barriers tend to increase with the steric bulk of the rotating alkyl group. MM3 forcemore » field parameters were adjusted to fit the MP2 results, providing a fast and accurate model for predicting organophosphine oxides shapes—an essential part of understanding the chemistry of these compounds. As a result, the predictive power of the modified MM3 model was tested against MP2/cc-pVTZ conformations for triethylphosphine oxide, OP(CH2CH3)3, and triphenylphosphine oxide, OP(Ph)3.« less

  6. Addressing Environmental Health Inequalities

    PubMed Central

    Gouveia, Nelson

    2016-01-01

    Environmental health inequalities refer to health hazards disproportionately or unfairly distributed among the most vulnerable social groups, which are generally the most discriminated, poor populations and minorities affected by environmental risks. Although it has been known for a long time that health and disease are socially determined, only recently has this idea been incorporated into the conceptual and practical framework for the formulation of policies and strategies regarding health. In this Special Issue of the International Journal of Environmental Research and Public Health (IJERPH), “Addressing Environmental Health Inequalities—Proceedings from the ISEE Conference 2015”, we incorporate nine papers that were presented at the 27th Conference of the International Society for Environmental Epidemiology (ISEE), held in Sao Paulo, Brazil, in 2015. This small collection of articles provides a brief overview of the different aspects of this topic. Addressing environmental health inequalities is important for the transformation of our reality and for changing the actual development model towards more just, democratic, and sustainable societies driven by another form of relationship between nature, economy, science, and politics. PMID:27618906

  7. Addressing Environmental Health Inequalities.

    PubMed

    Gouveia, Nelson

    2016-01-01

    Environmental health inequalities refer to health hazards disproportionately or unfairly distributed among the most vulnerable social groups, which are generally the most discriminated, poor populations and minorities affected by environmental risks. Although it has been known for a long time that health and disease are socially determined, only recently has this idea been incorporated into the conceptual and practical framework for the formulation of policies and strategies regarding health. In this Special Issue of the International Journal of Environmental Research and Public Health (IJERPH), "Addressing Environmental Health Inequalities-Proceedings from the ISEE Conference 2015", we incorporate nine papers that were presented at the 27th Conference of the International Society for Environmental Epidemiology (ISEE), held in Sao Paulo, Brazil, in 2015. This small collection of articles provides a brief overview of the different aspects of this topic. Addressing environmental health inequalities is important for the transformation of our reality and for changing the actual development model towards more just, democratic, and sustainable societies driven by another form of relationship between nature, economy, science, and politics. PMID:27618906

  8. Conformance Testing: Measurement Decision Rules

    NASA Technical Reports Server (NTRS)

    Mimbs, Scott M.

    2010-01-01

    The goal of a Quality Management System (QMS) as specified in ISO 9001 and AS9100 is to provide assurance to the customer that end products meet specifications. Measuring devices, often called measuring and test equipment (MTE), are used to provide the evidence of product conformity to specified requirements. Unfortunately, processes that employ MTE can become a weak link to the overall QMS if proper attention is not given to the measurement process design, capability, and implementation. Documented "decision rules" establish the requirements to ensure measurement processes provide the measurement data that supports the needs of the QMS. Measurement data are used to make the decisions that impact all areas of technology. Whether measurements support research, design, production, or maintenance, ensuring the data supports the decision is crucial. Measurement data quality can be critical to the resulting consequences of measurement-based decisions. Historically, most industries required simplistic, one-size-fits-all decision rules for measurements. One-size-fits-all rules in some cases are not rigorous enough to provide adequate measurement results, while in other cases are overly conservative and too costly to implement. Ideally, decision rules should be rigorous enough to match the criticality of the parameter being measured, while being flexible enough to be cost effective. The goal of a decision rule is to ensure that measurement processes provide data with a sufficient level of quality to support the decisions being made - no more, no less. This paper discusses the basic concepts of providing measurement-based evidence that end products meet specifications. Although relevant to all measurement-based conformance tests, the target audience is the MTE end-user, which is anyone using MTE other than calibration service providers. Topics include measurement fundamentals, the associated decision risks, verifying conformance to specifications, and basic measurement

  9. 48 CFR 46.315 - Certificate of conformance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Certificate of conformance. 46.315 Section 46.315 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT QUALITY ASSURANCE Contract Clauses 46.315 Certificate of conformance. The contracting...

  10. Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional battery applications.

    PubMed

    Gowda, Sanketh R; Reddy, Arava Leela Mohana; Shaijumon, Manikoth M; Zhan, Xiaobo; Ci, Lijie; Ajayan, Pulickel M

    2011-01-12

    Various three-dimensional (3D) battery architectures have been proposed to address effective power delivery in micro/nanoscale devices and for increasing the stored energy per electrode footprint area. One step toward obtaining 3D configurations in batteries is the formation of core-shell nanowires that combines electrode and electrolyte materials. One of the major challenges however in creating such architectures has been the coating of conformal thin nanolayers of polymer electrolytes around nanostructured electrodes. Here we show conformal coatings of 25-30 nm poly(methyl methacralate) electrolyte layers around individual Ni-Sn nanowires used as anodes for Li ion battery. This configuration shows high discharge capacity and excellent capacity retention even at high rates over extended cycling, allowing for scalable increase in areal capacity with electrode thickness. Our results demonstrate conformal nanoscale anode-electrolyte architectures for an efficient Li ion battery system.

  11. An improved AMBER force field for α,α-dialkylated peptides: intrinsic and solvent-induced conformational preferences of model systems.

    PubMed

    Grubišić, Sonja; Brancato, Giuseppe; Barone, Vincenzo

    2013-10-28

    α,α-Dialkylated amino acid residues have acquired considerable importance as effective means for introducing backbone conformation constraints in synthetic peptides. The prototype of such a class of residues, namely Aib (α-aminoisobutyric acid), appears to play a dominant role in determining the preferred conformations of host proteins. We have recently introduced into the standard AMBER force field some new parameters, fitted against high-level quantum mechanical (QM) data, for simulating peptides containing α,α-dialkylated residues with cyclic side chains, such as TOAC (TOAC, 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) and Ac6c (Ac6c = 1-aminocyclohexaneacetic acid). Here, we show that in order to accurately reproduce the observed conformational geometries and structural fluctuations of linear α,α-dialkylated peptides based on Aib, further improvements of the non-bonding and side chain torsion potential parameters have to be considered, due to the expected larger structural flexibility of linear residues with respect to cyclic ones. To this end, we present an extended set of parameters, which have been optimized by fitting the energies of multiple conformations of the Aib dipeptide analogue to corresponding QM calculations that properly account for dispersion interactions (B3LYP-D3). The quality, transferability and size-consistency of the proposed force field have been assessed both by considering a series of poly-Aib peptides, modeled at the same QM level, and by performing molecular dynamics simulations in solvents with high and low polarity. As a result, the present parameters allow one to reproduce with good reliability the available QM and experimental data, thus representing a notable improvement over current force field especially in the description of the α/310-helix conformational equilibria of α,α-dialkylated peptides with linear and cyclic side chains.

  12. pp waves of conformal gravity with self-interacting source

    SciTech Connect

    Ayon-Beato, Eloy . E-mail: ayon@cecs.cl; Hassaine, Mokhtar . E-mail: hassaine@cecs.cl

    2005-05-01

    Recently, Deser, Jackiw and Pi have shown that three-dimensional conformal gravity with a source given by a conformally coupled scalar field admits pp wave solutions. In this paper, we consider this model with a self-interacting potential preserving the conformal structure. A pp wave geometry is also supported by this system and, we show that this model is equivalent to topologically massive gravity with a cosmological constant whose value is given in terms of the potential strength.

  13. Conformation and hydration of aspartame.

    PubMed

    Kang, Y K

    1991-07-01

    Conformational free energy calculations using an empirical potential (ECEPP/2) and the hydration shell model were carried out on the neutral, acidic, zwitterionic, and basic forms of aspartame in the hydrated state. The results indicate that as the molecule becomes more charged, the number of low energy conformations becomes smaller and the molecule becomes less flexible. The calculated free energies of hydration of charged aspartames show that hydration has a significant effect on the conformation in solution. Only two feasible conformations were found for the zwitterionic form, and these are consistent with the conformations deduced from NMR and X-ray diffraction experiments. The calculated free energy difference between these two conformations was 1.25 kcal/mol. The less favored of the two solvated conformations can be expected to be stabilized by hydrophobic interaction of the phenyl groups in the crystal.

  14. Conformal superalgebras via tractor calculus

    NASA Astrophysics Data System (ADS)

    Lischewski, Andree

    2015-01-01

    We use the manifestly conformally invariant description of a Lorentzian conformal structure in terms of a parabolic Cartan geometry in order to introduce a superalgebra structure on the space of twistor spinors and normal conformal vector fields formulated in purely algebraic terms on parallel sections in tractor bundles. Via a fixed metric in the conformal class, one reproduces a conformal superalgebra structure that has been considered in the literature before. The tractor approach, however, makes clear that the failure of this object to be a Lie superalgebra in certain cases is due to purely algebraic identities on the spinor module and to special properties of the conformal holonomy representation. Moreover, it naturally generalizes to higher signatures. This yields new formulas for constructing new twistor spinors and higher order normal conformal Killing forms out of existing ones, generalizing the well-known spinorial Lie derivative. Moreover, we derive restrictions on the possible dimension of the space of twistor spinors in any metric signature.

  15. Toward improving hurricane forecasts using the JPL Tropical Cyclone Information System (TCIS): A framework to address the issues of Big Data

    NASA Astrophysics Data System (ADS)

    Hristova-Veleva, S. M.; Boothe, M.; Gopalakrishnan, S.; Haddad, Z. S.; Knosp, B.; Lambrigtsen, B.; Li, P.; montgomery, M. T.; Niamsuwan, N.; Tallapragada, V. S.; Tanelli, S.; Turk, J.; Vukicevic, T.

    2013-12-01

    Accurate forecasting of extreme weather requires the use of both regional models as well as global General Circulation Models (GCMs). The regional models have higher resolution and more accurate physics - two critical components needed for properly representing the key convective processes. GCMs, on the other hand, have better depiction of the large-scale environment and, thus, are necessary for properly capturing the important scale interactions. But how to evaluate the models, understand their shortcomings and improve them? Satellite observations can provide invaluable information. And this is where the issues of Big Data come: satellite observations are very complex and have large variety while model forecast are very voluminous. We are developing a system - TCIS - that addresses the issues of model evaluation and process understanding with the goal of improving the accuracy of hurricane forecasts. This NASA/ESTO/AIST-funded project aims at bringing satellite/airborne observations and model forecasts into a common system and developing on-line tools for joint analysis. To properly evaluate the models we go beyond the comparison of the geophysical fields. We input the model fields into instrument simulators (NEOS3, CRTM, etc.) and compute synthetic observations for a more direct comparison to the observed parameters. In this presentation we will start by describing the scientific questions. We will then outline our current framework to provide fusion of models and observations. Next, we will illustrate how the system can be used to evaluate several models (HWRF, GFS, ECMWF) by applying a couple of our analysis tools to several hurricanes observed during the 2013 season. Finally, we will outline our future plans. Our goal is to go beyond the image comparison and point-by-point statistics, by focusing instead on understanding multi-parameter correlations and providing robust statistics. By developing on-line analysis tools, our framework will allow for consistent

  16. Charged gravastars admitting conformal motion

    NASA Astrophysics Data System (ADS)

    Usmani, A. A.; Rahaman, F.; Ray, Saibal; Nandi, K. K.; Kuhfittig, Peter K. F.; Rakib, Sk. A.; Hasan, Z.

    2011-07-01

    We propose a new model of a gravastar admitting conformal motion. While retaining the framework of the Mazur-Mottola model, the gravastar is assumed to be internally charged, with an exterior defined by a Reissner-Nordström instead of a Schwarzschild line element. The solutions, obtained by exploiting an assumed conformal Killing vector, involve (i) the interior region, (ii) the shell, and (iii) the exterior region of the sphere. Of these three cases the first one is of primary interest since the total gravitational mass here turns out to be an electromagnetic mass under some specific conditions. This suggests that the interior de Sitter vacuum of a charged gravastar is essentially an electromagnetic mass model that must generate gravitational mass which provides a stable configuration by balancing the repulsive pressure arising from charge with its attractive gravity to avert a singularity. Therefore the present model, like the Mazur-Mottola model, results in the construction of a compact astrophysical object, as an alternative to a black hole. We have also analyzed various other aspects such as the stress energy tensor in the thin shell and the entropy of the system.

  17. Quantifying macromolecular conformational transition pathways

    NASA Astrophysics Data System (ADS)

    Seyler, Sean; Kumar, Avishek; Thorpe, Michael; Beckstein, Oliver

    2015-03-01

    Diverse classes of proteins function through large-scale conformational changes that are challenging for computer simulations. A range of fast path-sampling techniques have been used to generate transitions, but it has been difficult to compare paths from (and assess the relative strengths of) different methods. We introduce a comprehensive method (pathway similarity analysis, PSA) for quantitatively characterizing and comparing macromolecular pathways. The Hausdorff and Fréchet metrics (known from computational geometry) are used to quantify the degree of similarity between polygonal curves in configuration space. A strength of PSA is its use of the full information available from the 3 N-dimensional configuration space trajectory without requiring additional specific knowledge about the system. We compare a sample of eleven different methods for the closed-to-open transitions of the apo enzyme adenylate kinase (AdK) and also apply PSA to an ensemble of 400 AdK trajectories produced by dynamic importance sampling MD and the Geometrical Pathways algorithm. We discuss the method's potential to enhance our understanding of transition path sampling methods, validate them, and help guide future research toward deeper physical insights into conformational transitions.

  18. Addressing a Historical Mission in a Performance Driven System: A Case Study of a Public Historically Black University Engaged in the Equity Scorecard Process

    ERIC Educational Resources Information Center

    Jones, Tiffany

    2013-01-01

    The case study utilizes interviews, observations, and document analysis to examine how the Equity Scorecard supported a public Historically Black University's ability to (a) respond to their state Performance-Based Funding policy and (b) address outcomes such as retention and graduation rates. The participants identified nurturing, discussions of…

  19. [Keynote address: Climate change

    SciTech Connect

    Forrister, D.

    1994-12-31

    Broadly speaking, the climate issue is moving from talk to action both in the United States and internationally. While few nations have adopted strict controls or stiff new taxes, a number of them are developing action plans that are making clear their intention to ramp up activity between now and the year 2000... and beyond. There are sensible, economically efficient strategies to be undertaken in the near term that offer the possibility, in many countries, to avoid more draconian measures. These strategies are by-and-large the same measures that the National Academy of Sciences recommended in a 1991 report called, Policy Implications of Greenhouse Warming. The author thinks the Academy`s most important policy contribution was how it recommended the nations act in the face of uncertain science and high risks--that cost effective measures are adopted as cheap insurance... just as nations insure against other high risk, low certainty possibilities, like catastrophic health insurance, auto insurance, and fire insurance. This insurance theme is still right. First, the author addresses how the international climate change negotiations are beginning to produce insurance measures. Next, the author will discuss some of the key issues to watch in those negotiations that relate to longer-term insurance. And finally, the author will report on progress in the United States on the climate insurance plan--The President`s Climate Action Plan.

  20. Addressing Failures in Exascale Computing

    SciTech Connect

    Snir, Marc; Wisniewski, Robert; Abraham, Jacob; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, J.; Bose, Pradip; Cappello, Franck; Carlson, Bill; Chien, Andrew; Coteus, Paul; DeBardeleben, Nathan; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Fazzari, Saverio; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Rob; Stearley, Jon; Van Hensbergen, Eric

    2014-01-01

    We present here a report produced by a workshop on Addressing failures in exascale computing' held in Park City, Utah, 4-11 August 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system, discuss existing knowledge on resilience across the various hardware and software layers of an exascale system, and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia, and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  1. Addressing failures in exascale computing

    SciTech Connect

    Snir, Marc; Wisniewski, Robert W.; Abraham, Jacob A.; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, Jim; Bose, Pradip; Cappello, Franck; Carlson, William; Chien, Andrew A.; Coteus, Paul; Debardeleben, Nathan A.; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Saverio, Fazzari; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Robert; Stearly, Jon; Van Hensbergen, Eric

    2014-05-01

    We present here a report produced by a workshop on “Addressing Failures in Exascale Computing” held in Park City, Utah, August 4–11, 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system; discuss existing knowledge on resilience across the various hardware and software layers of an exascale system; and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia; and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  2. Addressing inequities in healthy eating.

    PubMed

    Friel, Sharon; Hattersley, Libby; Ford, Laura; O'Rourke, Kerryn

    2015-09-01

    What, when, where and how much people eat is influenced by a complex mix of factors at societal, community and individual levels. These influences operate both directly through the food system and indirectly through political, economic, social and cultural pathways that cause social stratification and influence the quality of conditions in which people live their lives. These factors are the social determinants of inequities in healthy eating. This paper provides an overview of the current evidence base for addressing these determinants and for the promotion of equity in healthy eating. PMID:26420812

  3. Optical Addressing And Clocking Of RAM's

    NASA Technical Reports Server (NTRS)

    Johnston, Alan R.; Nixon, Robert H.; Bergman, Larry A.; Esener, Sadik

    1989-01-01

    Proposed random-access-memory (RAM) addressing system, in which memory linked optically to read/write logic circuits, greatly increases computer operating speed. System - comprises addressing circuits including numerous lasers as signal sources, numerous optical gates including optical detectors associated with memory cells, and holographic element to direct light signals to desired memory-cell locations - applied to high-capacity digital systems, supercomputers, and complex microcircuits.

  4. Seed conformal blocks in 4D CFT

    NASA Astrophysics Data System (ADS)

    Echeverri, Alejandro Castedo; Elkhidir, Emtinan; Karateev, Denis; Serone, Marco

    2016-02-01

    We compute in closed analytical form the minimal set of "seed" conformal blocks associated to the exchange of generic mixed symmetry spinor/tensor operators in an arbitrary representation ( ℓ, overline{ℓ} ) of the Lorentz group in four dimensional conformal field theories. These blocks arise from 4-point functions involving two scalars, one (0, | ℓ - overline{7ell;} |) and one (| ℓ - overline{ℓ} |, 0) spinors or tensors. We directly solve the set of Casimir equations, that can elegantly be written in a compact form for any ( ℓ, overline{ℓ} ), by using an educated ansatz and reducing the problem to an algebraic linear system. Various details on the form of the ansatz have been deduced by using the so called shadow formalism. The complexity of the conformal blocks depends on the value of p = | ℓ - overline{ℓ} | and grows with p, in analogy to what happens to scalar conformal blocks in d even space-time dimensions as d increases. These results open the way to bootstrap 4-point functions involving arbitrary spinor/tensor operators in four dimensional conformal field theories.

  5. Targeting Inactive Enzyme Conformation

    PubMed Central

    Liu, Sijiu; Zeng, Li-Fan; Wu, Li; Yu, Xiao; Xue, Ting; Gunawan, Andrea M.; Ya-Qiu, Long; Zhang, Zhong-Yin

    2009-01-01

    There has been considerable interest in protein tyrosine phosphatase 1B (PTP1B) as a therapeutic target for diabetes, obesity, as well as cancer. Identifying inhibitory compounds with good bioavailability is a major challenge of drug discovery programs targeted toward PTPs. Most current PTP active site-directed pharmacophores are negatively charged pTyr mimetics which cannot readily enter the cell. This lack of cell permeability limits the utility of such compounds in signaling studies and further therapeutic development. We identify aryl diketoacids as novel pTyr surrogates and show that neutral amide-linked aryl diketoacid dimers also exhibit excellent PTP inhibitory activity. Kinetic studies establish that these aryl diketoacid derivatives act as noncompetitive inhibitors of PTP1B. Crystal structures of ligand-bound PTP1B reveal that both the aryl diketoacid and its dimeric derivative bind PTP1B at the active site, albeit with distinct modes of interaction, in the catalytically inactive, WPD loop open conformation. Furthermore, dimeric aryl diketoacids are cell permeable and enhance insulin signaling in hepatoma cells, suggesting that targeting the inactive conformation may provide a unique opportunity for creating active site-directed PTP1B inhibitors with improved pharmacological properties. PMID:19012396

  6. Conformally symmetric traversable wormholes

    SciTech Connect

    Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.

    2007-10-15

    Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced.

  7. Eikonalization of conformal blocks

    SciTech Connect

    Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.; Wang, Junpu

    2015-09-03

    Classical field configurations such as the Coulomb potential and Schwarzschild solution are built from the t-channel exchange of many light degrees of freedom. We study the CFT analog of this phenomenon, which we term the 'eikonalization' of conformal blocks. We show that when an operator T appears in the OPE Ο(x)Ο(0), then the large spin Fock space states [TT···T] also appear in this OPE with a computable coefficient. The sum over the exchange of these Fock space states in an correlator build the classical 'T field' in the dual AdS description. In some limits the sum of all Fock space exchanges can be represented as the exponential of a single T exchange in the 4-pt correlator of O. Our results should be useful for systematizing 1/ℓ perturbation theory in general CFTs and simplifying the computation of large spin OPE coefficients. As examples we obtain the leading log ℓ dependence of Fock space conformal block coefficients, and we directly compute the OPE coefficients of the simplest ‘triple-trace’ operators.

  8. Eikonalization of conformal blocks

    DOE PAGES

    Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.; Wang, Junpu

    2015-09-03

    Classical field configurations such as the Coulomb potential and Schwarzschild solution are built from the t-channel exchange of many light degrees of freedom. We study the CFT analog of this phenomenon, which we term the 'eikonalization' of conformal blocks. We show that when an operator T appears in the OPE Ο(x)Ο(0), then the large spin Fock space states [TT···T]ℓ also appear in this OPE with a computable coefficient. The sum over the exchange of these Fock space states in an correlator build the classical 'T field' in the dual AdS description. In some limits the sum of all Fock spacemore » exchanges can be represented as the exponential of a single T exchange in the 4-pt correlator of O. Our results should be useful for systematizing 1/ℓ perturbation theory in general CFTs and simplifying the computation of large spin OPE coefficients. As examples we obtain the leading log ℓ dependence of Fock space conformal block coefficients, and we directly compute the OPE coefficients of the simplest ‘triple-trace’ operators.« less

  9. Organic bioelectronics probing conformational changes in surface confined proteins.

    PubMed

    Macchia, Eleonora; Alberga, Domenico; Manoli, Kyriaki; Mangiatordi, Giuseppe F; Magliulo, Maria; Palazzo, Gerardo; Giordano, Francesco; Lattanzi, Gianluca; Torsi, Luisa

    2016-01-01

    The study of proteins confined on a surface has attracted a great deal of attention due to its relevance in the development of bio-systems for laboratory and clinical settings. In this respect, organic bio-electronic platforms can be used as tools to achieve a deeper understanding of the processes involving protein interfaces. In this work, biotin-binding proteins have been integrated in two different organic thin-film transistor (TFT) configurations to separately address the changes occurring in the protein-ligand complex morphology and dipole moment. This has been achieved by decoupling the output current change upon binding, taken as the transducing signal, into its component figures of merit. In particular, the threshold voltage is related to the protein dipole moment, while the field-effect mobility is associated with conformational changes occurring in the proteins of the layer when ligand binding occurs. Molecular Dynamics simulations on the whole avidin tetramer in presence and absence of ligands were carried out, to evaluate how the tight interactions with the ligand affect the protein dipole moment and the conformation of the loops surrounding the binding pocket. These simulations allow assembling a rather complete picture of the studied interaction processes and support the interpretation of the experimental results. PMID:27312768

  10. Organic bioelectronics probing conformational changes in surface confined proteins

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Alberga, Domenico; Manoli, Kyriaki; Mangiatordi, Giuseppe F.; Magliulo, Maria; Palazzo, Gerardo; Giordano, Francesco; Lattanzi, Gianluca; Torsi, Luisa

    2016-06-01

    The study of proteins confined on a surface has attracted a great deal of attention due to its relevance in the development of bio-systems for laboratory and clinical settings. In this respect, organic bio-electronic platforms can be used as tools to achieve a deeper understanding of the processes involving protein interfaces. In this work, biotin-binding proteins have been integrated in two different organic thin-film transistor (TFT) configurations to separately address the changes occurring in the protein-ligand complex morphology and dipole moment. This has been achieved by decoupling the output current change upon binding, taken as the transducing signal, into its component figures of merit. In particular, the threshold voltage is related to the protein dipole moment, while the field-effect mobility is associated with conformational changes occurring in the proteins of the layer when ligand binding occurs. Molecular Dynamics simulations on the whole avidin tetramer in presence and absence of ligands were carried out, to evaluate how the tight interactions with the ligand affect the protein dipole moment and the conformation of the loops surrounding the binding pocket. These simulations allow assembling a rather complete picture of the studied interaction processes and support the interpretation of the experimental results.

  11. Organic bioelectronics probing conformational changes in surface confined proteins

    PubMed Central

    Macchia, Eleonora; Alberga, Domenico; Manoli, Kyriaki; Mangiatordi, Giuseppe F.; Magliulo, Maria; Palazzo, Gerardo; Giordano, Francesco; Lattanzi, Gianluca; Torsi, Luisa

    2016-01-01

    The study of proteins confined on a surface has attracted a great deal of attention due to its relevance in the development of bio-systems for laboratory and clinical settings. In this respect, organic bio-electronic platforms can be used as tools to achieve a deeper understanding of the processes involving protein interfaces. In this work, biotin-binding proteins have been integrated in two different organic thin-film transistor (TFT) configurations to separately address the changes occurring in the protein-ligand complex morphology and dipole moment. This has been achieved by decoupling the output current change upon binding, taken as the transducing signal, into its component figures of merit. In particular, the threshold voltage is related to the protein dipole moment, while the field-effect mobility is associated with conformational changes occurring in the proteins of the layer when ligand binding occurs. Molecular Dynamics simulations on the whole avidin tetramer in presence and absence of ligands were carried out, to evaluate how the tight interactions with the ligand affect the protein dipole moment and the conformation of the loops surrounding the binding pocket. These simulations allow assembling a rather complete picture of the studied interaction processes and support the interpretation of the experimental results. PMID:27312768

  12. Notes on conformal invariance of gauge fields

    NASA Astrophysics Data System (ADS)

    Barnich, Glenn; Bekaert, Xavier; Grigoriev, Maxim

    2015-12-01

    In Lagrangian gauge systems, the vector space of global reducibility parameters forms a module under the Lie algebra of symmetries of the action. Since the classification of global reducibility parameters is generically easier than the classification of symmetries of the action, this fact can be used to constrain the latter when knowing the former. We apply this strategy and its generalization for the non-Lagrangian setting to the problem of conformal symmetry of various free higher spin gauge fields. This scheme allows one to show that, in terms of potentials, massless higher spin gauge fields in Minkowski space and partially massless (PM) fields in (A)dS space are not conformal for spin strictly greater than one, while in terms of curvatures, maximal-depth PM fields in four dimensions are also not conformal, unlike the closely related, but less constrained, maximal-depth Fradkin-Tseytlin fields.

  13. Radiofrequency ablation versus surgical resection for the treatment of hepatocellular carcinoma conforming to the Milan criteria: systemic review and meta-analysis.

    PubMed

    Yi, Hui-Ming; Zhang, Wei; Ai, Xi; Li, Kai-Yan; Deng, You-Bin

    2014-01-01

    Radiofrequency ablation (RFA) is a promising ablation technique and has become one of the best alternatives for hepatocellular carcinoma (HCC) patients. But whether RFA or surgical resection (SR) is the better treatment for HCC conforming to the Milan criteria has long been debated. A meta-analysis of trials that compared RFA versus SR was conducted regarding the survival rate and recurrence rate. Pooled odds ratios (OR) with 95% confidence intervals (95% CI) were calculated using fixed or random effects models. Nineteen studies, comprising 2 randomized controlled trials and 17 non-randomized controlled trials, were included with a total of 2895 patients. The 5 years overall survival rate for SR group was significantly higher than that for RFA group. In the SR group, the local recurrence rate was significantly lower when compared with the RFA group. This meta-analysis yielded no significant differences between laparoscopic RFA and SR in 5-year overall survival rate. In conclusion, surgical resection remains the better choice of treatment for HCC conforming to the Milan criteria, whereas RFA should be considered as an effective alternative treatment when surgery is not feasible. As for RFA technique, laparoscopic approach may be more effective than percutaneous approach for HCC conforming to Milan criteria.

  14. Radiofrequency ablation versus surgical resection for the treatment of hepatocellular carcinoma conforming to the Milan criteria: systemic review and meta-analysis

    PubMed Central

    Yi, Hui-Ming; Zhang, Wei; Ai, Xi; Li, Kai-Yan; Deng, You-Bin

    2014-01-01

    Radiofrequency ablation (RFA) is a promising ablation technique and has become one of the best alternatives for hepatocellular carcinoma (HCC) patients. But whether RFA or surgical resection (SR) is the better treatment for HCC conforming to the Milan criteria has long been debated. A meta-analysis of trials that compared RFA versus SR was conducted regarding the survival rate and recurrence rate. Pooled odds ratios (OR) with 95% confidence intervals (95% CI) were calculated using fixed or random effects models. Nineteen studies, comprising 2 randomized controlled trials and 17 non-randomized controlled trials, were included with a total of 2895 patients. The 5 years overall survival rate for SR group was significantly higher than that for RFA group. In the SR group, the local recurrence rate was significantly lower when compared with the RFA group. This meta-analysis yielded no significant differences between laparoscopic RFA and SR in 5-year overall survival rate. In conclusion, surgical resection remains the better choice of treatment for HCC conforming to the Milan criteria, whereas RFA should be considered as an effective alternative treatment when surgery is not feasible. As for RFA technique, laparoscopic approach may be more effective than percutaneous approach for HCC conforming to Milan criteria. PMID:25419346

  15. CEDS Addresses: Rubric Elements

    ERIC Educational Resources Information Center

    US Department of Education, 2015

    2015-01-01

    Common Education Data Standards (CEDS) Version 4 introduced a common data vocabulary for defining rubrics in a data system. The CEDS elements support digital representations of both holistic and analytic rubrics. This document shares examples of holistic and analytic project rubrics, available CEDS Connections, and a logical model showing the…

  16. Electromagnetic characterization of conformal antennas

    NASA Technical Reports Server (NTRS)

    Volakis, John L.; Kempel, Leo C.; Alexanian, Angelos; Jin, J. M.; Yu, C. L.; Woo, Alex C.

    1992-01-01

    The ultimate objective of this project is to develop a new technique which permits an accurate simulation of microstrip patch antennas or arrays with various feed, superstrate and/or substrate configurations residing in a recessed cavity whose aperture is planar, cylindrical or otherwise conformed to the substructure. The technique combines the finite element and boundary integral methods to formulate a system suitable for solution via the conjugate gradient method in conjunction with the fast Fourier transform. The final code is intended to compute both scattering and radiation patterns of the structure with an affordable memory demand. With upgraded capabilities, the four included papers examined the radar cross section (RCS), input impedance, gain, and resonant frequency of several rectangular configurations using different loading and substrate/superstrate configurations.

  17. Recent Advances in Conformal Gravity

    NASA Astrophysics Data System (ADS)

    O'Brien, James; Chaykov, Spasen

    2016-03-01

    In recent years, significant advances have been made in alternative gravitational theories. Although MOND remains the leading candidate among the alternative models, Conformal Gravity has been studied by Mannheim and O'Brien to solve the rotation curve problem without the need for dark matter. Recently, Mannheim, O'Brien and Chaykov have begun solving other gravitational questions in Conformal Gravity. In this presentation, we highlight the new work of Conformal Gravity's application to random motions of clusters (the original Zwicky problem), gravitational bending of light, gravitational lensing and a very recent survey of dwarf galaxy rotation curves. We will show in each case that Conformal Gravity can provide an accurate explanation and prediction of the data without the need for dark matter. Coupled with the fact that Conformal Gravity is a fully re-normalizable metric theory of gravity, these results help to push Conformal Gravity onto a competitive stage against other alternative models.

  18. Addressing Software Security

    NASA Technical Reports Server (NTRS)

    Bailey, Brandon

    2015-01-01

    Historically security within organizations was thought of as an IT function (web sites/servers, email, workstation patching, etc.) Threat landscape has evolved (Script Kiddies, Hackers, Advanced Persistent Threat (APT), Nation States, etc.) Attack surface has expanded -Networks interconnected!! Some security posture factors Network Layer (Routers, Firewalls, etc.) Computer Network Defense (IPS/IDS, Sensors, Continuous Monitoring, etc.) Industrial Control Systems (ICS) Software Security (COTS, FOSS, Custom, etc.)

  19. Addressing the insider threat

    SciTech Connect

    Hochberg, J.G.; Jackson, K.A.; McClary, J.F.; Simmonds, D.D.

    1993-05-01

    Computers have come to play a major role in the processing of information vital to our national security. As we grow more dependent on computers, we also become more vulnerable to their misuse. Misuse may be accidental, or may occur deliberately for purposes of personal gain, espionage, terrorism, or revenge. While it is difficult to obtain exact statistics on computer misuse, clearly it is growing. It is also clear that insiders -- authorized system users -- are responsible for most of this increase. Unfortunately, their insider status gives them a greater potential for harm This paper takes an asset-based approach to the insider threat. We begin by characterizing the insider and the threat posed by variously motivated insiders. Next, we characterize the asset of concern: computerized information of strategic or economic value. We discuss four general ways in which computerized information is vulnerable to adversary action by the insider: disclosure, violation of integrity, denial of service, and unauthorized use of resources. We then look at three general remedies for these vulnerabilities. The first is formality of operations, such as training, personnel screening, and configuration management. The second is the institution of automated safeguards, such as single-use passwords, encryption, and biometric devices. The third is the development of automated systems that collect and analyze system and user data to look for signs of misuse.

  20. Addressing the insider threat

    SciTech Connect

    Hochberg, J.G.; Jackson, K.A.; McClary, J.F.; Simmonds, D.D.

    1993-01-01

    Computers have come to play a major role in the processing of information vital to our national security. As we grow more dependent on computers, we also become more vulnerable to their misuse. Misuse may be accidental, or may occur deliberately for purposes of personal gain, espionage, terrorism, or revenge. While it is difficult to obtain exact statistics on computer misuse, clearly it is growing. It is also clear that insiders -- authorized system users -- are responsible for most of this increase. Unfortunately, their insider status gives them a greater potential for harm This paper takes an asset-based approach to the insider threat. We begin by characterizing the insider and the threat posed by variously motivated insiders. Next, we characterize the asset of concern: computerized information of strategic or economic value. We discuss four general ways in which computerized information is vulnerable to adversary action by the insider: disclosure, violation of integrity, denial of service, and unauthorized use of resources. We then look at three general remedies for these vulnerabilities. The first is formality of operations, such as training, personnel screening, and configuration management. The second is the institution of automated safeguards, such as single-use passwords, encryption, and biometric devices. The third is the development of automated systems that collect and analyze system and user data to look for signs of misuse.

  1. Fermion-scalar conformal blocks

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-04-13

    In this study, we compute the conformal blocks associated with scalar-scalar-fermionfermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called ‘seed blocks’ in three dimensions. In addition, conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.

  2. Killing and conformal Killing tensors

    NASA Astrophysics Data System (ADS)

    Heil, Konstantin; Moroianu, Andrei; Semmelmann, Uwe

    2016-08-01

    We introduce an appropriate formalism in order to study conformal Killing (symmetric) tensors on Riemannian manifolds. We reprove in a simple way some known results in the field and obtain several new results, like the classification of conformal Killing 2-tensors on Riemannian products of compact manifolds, Weitzenböck formulas leading to non-existence results, and construct various examples of manifolds with conformal Killing tensors.

  3. Reflections on conformal spectra

    NASA Astrophysics Data System (ADS)

    Kim, Hyungrok; Kravchuk, Petr; Ooguri, Hirosi

    2016-04-01

    We use modular invariance and crossing symmetry of conformal field theory to reveal approximate reflection symmetries in the spectral decompositions of the partition function in two dimensions in the limit of large central charge and of the four-point function in any dimension in the limit of large scaling dimensions Δ0 of external operators. We use these symmetries to motivate universal upper bounds on the spectrum and the operator product expansion coefficients, which we then derive by independent techniques. Some of the bounds for four-point functions are valid for finite Δ0 as well as for large Δ0. We discuss a similar symmetry in a large spacetime dimension limit. Finally, we comment on the analogue of the Cardy formula and sparse light spectrum condition for the four-point function.

  4. Capturing Chromosome Conformation

    NASA Astrophysics Data System (ADS)

    Dekker, Job; Rippe, Karsten; Dekker, Martijn; Kleckner, Nancy

    2002-02-01

    We describe an approach to detect the frequency of interaction between any two genomic loci. Generation of a matrix of interaction frequencies between sites on the same or different chromosomes reveals their relative spatial disposition and provides information about the physical properties of the chromatin fiber. This methodology can be applied to the spatial organization of entire genomes in organisms from bacteria to human. Using the yeast Saccharomyces cerevisiae, we could confirm known qualitative features of chromosome organization within the nucleus and dynamic changes in that organization during meiosis. We also analyzed yeast chromosome III at the G1 stage of the cell cycle. We found that chromatin is highly flexible throughout. Furthermore, functionally distinct AT- and GC-rich domains were found to exhibit different conformations, and a population-average 3D model of chromosome III could be determined. Chromosome III emerges as a contorted ring.

  5. 7 CFR 1730.3 - RUS addresses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE General § 1730.3 RUS addresses. (a) Persons wishing to obtain... assigned RUS General Field Representative (GFR) or such other office as designated by RUS....

  6. 7 CFR 1730.3 - RUS addresses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE General § 1730.3 RUS addresses. (a) Persons wishing to obtain... assigned RUS General Field Representative (GFR) or such other office as designated by RUS....

  7. 7 CFR 1730.3 - RUS addresses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE General § 1730.3 RUS addresses. (a) Persons wishing to obtain... assigned RUS General Field Representative (GFR) or such other office as designated by RUS....

  8. 7 CFR 1730.3 - RUS addresses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE General § 1730.3 RUS addresses. (a) Persons wishing to obtain... assigned RUS General Field Representative (GFR) or such other office as designated by RUS....

  9. 7 CFR 1730.3 - RUS addresses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE General § 1730.3 RUS addresses. (a) Persons wishing to obtain... assigned RUS General Field Representative (GFR) or such other office as designated by RUS....

  10. Prosocial Conformity: Prosocial Norms Generalize Across Behavior and Empathy.

    PubMed

    Nook, Erik C; Ong, Desmond C; Morelli, Sylvia A; Mitchell, Jason P; Zaki, Jamil

    2016-08-01

    Generosity is contagious: People imitate others' prosocial behaviors. However, research on such prosocial conformity focuses on cases in which people merely reproduce others' positive actions. Hence, we know little about the breadth of prosocial conformity. Can prosocial conformity cross behavior types or even jump from behavior to affect? Five studies address these questions. In Studies 1 to 3, participants decided how much to donate to charities before learning that others donated generously or stingily. Participants who observed generous donations donated more than those who observed stingy donations (Studies 1 and 2). Crucially, this generalized across behaviors: Participants who observed generous donations later wrote more supportive notes to another participant (Study 3). In Studies 4 and 5, participants observed empathic or non-empathic group responses to vignettes. Group empathy ratings not only shifted participants' own empathic feelings (Study 4), but they also influenced participants' donations to a homeless shelter (Study 5). These findings reveal the remarkable breadth of prosocial conformity. PMID:27229679

  11. Prosocial Conformity: Prosocial Norms Generalize Across Behavior and Empathy.

    PubMed

    Nook, Erik C; Ong, Desmond C; Morelli, Sylvia A; Mitchell, Jason P; Zaki, Jamil

    2016-08-01

    Generosity is contagious: People imitate others' prosocial behaviors. However, research on such prosocial conformity focuses on cases in which people merely reproduce others' positive actions. Hence, we know little about the breadth of prosocial conformity. Can prosocial conformity cross behavior types or even jump from behavior to affect? Five studies address these questions. In Studies 1 to 3, participants decided how much to donate to charities before learning that others donated generously or stingily. Participants who observed generous donations donated more than those who observed stingy donations (Studies 1 and 2). Crucially, this generalized across behaviors: Participants who observed generous donations later wrote more supportive notes to another participant (Study 3). In Studies 4 and 5, participants observed empathic or non-empathic group responses to vignettes. Group empathy ratings not only shifted participants' own empathic feelings (Study 4), but they also influenced participants' donations to a homeless shelter (Study 5). These findings reveal the remarkable breadth of prosocial conformity.

  12. Mapping Conformational Dynamics of Proteins Using Torsional Dynamics Simulations

    PubMed Central

    Gangupomu, Vamshi K.; Wagner, Jeffrey R.; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-01-01

    All-atom molecular dynamics simulations are widely used to study the flexibility of protein conformations. However, enhanced sampling techniques are required for simulating protein dynamics that occur on the millisecond timescale. In this work, we show that torsional molecular dynamics simulations enhance protein conformational sampling by performing conformational search in the low-frequency torsional degrees of freedom. In this article, we use our recently developed torsional-dynamics method called Generalized Newton-Euler Inverse Mass Operator (GNEIMO) to study the conformational dynamics of four proteins. We investigate the use of the GNEIMO method in simulations of the conformationally flexible proteins fasciculin and calmodulin, as well as the less flexible crambin and bovine pancreatic trypsin inhibitor. For the latter two proteins, the GNEIMO simulations with an implicit-solvent model reproduced the average protein structural fluctuations and sample conformations similar to those from Cartesian simulations with explicit solvent. The application of GNEIMO with replica exchange to the study of fasciculin conformational dynamics produced sampling of two of this protein’s experimentally established conformational substates. Conformational transition of calmodulin from the Ca2+-bound to the Ca2+-free conformation occurred readily with GNEIMO simulations. Moreover, the GNEIMO method generated an ensemble of conformations that satisfy about half of both short- and long-range interresidue distances obtained from NMR structures of holo to apo transitions in calmodulin. Although unconstrained all-atom Cartesian simulations have failed to sample transitions between the substates of fasciculin and calmodulin, GNEIMO simulations show the transitions in both systems. The relatively short simulation times required to capture these long-timescale conformational dynamics indicate that GNEIMO is a promising molecular-dynamics technique for studying domain motion in

  13. Mapping conformational dynamics of proteins using torsional dynamics simulations.

    PubMed

    Gangupomu, Vamshi K; Wagner, Jeffrey R; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-05-01

    All-atom molecular dynamics simulations are widely used to study the flexibility of protein conformations. However, enhanced sampling techniques are required for simulating protein dynamics that occur on the millisecond timescale. In this work, we show that torsional molecular dynamics simulations enhance protein conformational sampling by performing conformational search in the low-frequency torsional degrees of freedom. In this article, we use our recently developed torsional-dynamics method called Generalized Newton-Euler Inverse Mass Operator (GNEIMO) to study the conformational dynamics of four proteins. We investigate the use of the GNEIMO method in simulations of the conformationally flexible proteins fasciculin and calmodulin, as well as the less flexible crambin and bovine pancreatic trypsin inhibitor. For the latter two proteins, the GNEIMO simulations with an implicit-solvent model reproduced the average protein structural fluctuations and sample conformations similar to those from Cartesian simulations with explicit solvent. The application of GNEIMO with replica exchange to the study of fasciculin conformational dynamics produced sampling of two of this protein's experimentally established conformational substates. Conformational transition of calmodulin from the Ca(2+)-bound to the Ca(2+)-free conformation occurred readily with GNEIMO simulations. Moreover, the GNEIMO method generated an ensemble of conformations that satisfy about half of both short- and long-range interresidue distances obtained from NMR structures of holo to apo transitions in calmodulin. Although unconstrained all-atom Cartesian simulations have failed to sample transitions between the substates of fasciculin and calmodulin, GNEIMO simulations show the transitions in both systems. The relatively short simulation times required to capture these long-timescale conformational dynamics indicate that GNEIMO is a promising molecular-dynamics technique for studying domain motion in

  14. Essential role of conformational selection in ligand binding

    PubMed Central

    Vogt, Austin D.; Pozzi, Nicola; Chen, Zhiwei; Di Cera, Enrico

    2013-01-01

    Two competing and mutually exclusive mechanisms of ligand recognition – conformational selection and induced fit - have dominated our interpretation of ligand binding in biological macromolecules for almost six decades. Conformational selection posits the pre-existence of multiple conformations of the macromolecule from which the ligand selects the optimal one. Induced fit, on the other hand, postulates the existence of conformational rearrangements of the original conformation into an optimal one that is induced by binding of the ligand. In the former case, conformational transitions precede the binding event; in the latter, conformational changes follow the binding step. Kineticists have used a facile criterion to distinguish between the two mechanisms based on the dependence of the rate of relaxation to equilibrium, kobs, on the ligand concentration, [L]. A value of kobs decreasing hyperbolically with [L] is seen as diagnostic of conformational selection, while a value of kobs increasing hyperbolically with [L] is considered diagnostic of induced fit. However, this simple conclusion is only valid in the rather unrealistic assumption of conformational transitions being much slower than binding and dissociation events. In general, induced fit only produces values of kobs that increase with [L] but conformational selection is more versatile and is associated with values of kobs that increase, decrease with or are independent of [L]. The richer repertoire of kinetic properties of conformational selection applies to kinetic mechanisms with single or multiple saturable relaxations and explains the behavior of nearly all experimental systems reported in the literature thus far. Conformational selection is always sufficient and often necessary to account for the relaxation kinetics of ligand binding to a biological macromolecule and is therefore an essential component of any binding mechanism. On the other hand, induced fit is never necessary and only sufficient in a

  15. Matching Alternative Addresses: a Semantic Web Approach

    NASA Astrophysics Data System (ADS)

    Ariannamazi, S.; Karimipour, F.; Hakimpour, F.

    2015-12-01

    Rapid development of crowd-sourcing or volunteered geographic information (VGI) provides opportunities for authoritatives that deal with geospatial information. Heterogeneity of multiple data sources and inconsistency of data types is a key characteristics of VGI datasets. The expansion of cities resulted in the growing number of POIs in the OpenStreetMap, a well-known VGI source, which causes the datasets to outdate in short periods of time. These changes made to spatial and aspatial attributes of features such as names and addresses might cause confusion or ambiguity in the processes that require feature's literal information like addressing and geocoding. VGI sources neither will conform specific vocabularies nor will remain in a specific schema for a long period of time. As a result, the integration of VGI sources is crucial and inevitable in order to avoid duplication and the waste of resources. Information integration can be used to match features and qualify different annotation alternatives for disambiguation. This study enhances the search capabilities of geospatial tools with applications able to understand user terminology to pursuit an efficient way for finding desired results. Semantic web is a capable tool for developing technologies that deal with lexical and numerical calculations and estimations. There are a vast amount of literal-spatial data representing the capability of linguistic information in knowledge modeling, but these resources need to be harmonized based on Semantic Web standards. The process of making addresses homogenous generates a helpful tool based on spatial data integration and lexical annotation matching and disambiguating.

  16. Addressing the Training and Employment Needs of Youth with Mental Health Disabilities in the Juvenile Justice System. Conference Proceedings with Recommendations to the Presidential Task Force on Employment of Adults with Disabilities (March 3-4, 2000).

    ERIC Educational Resources Information Center

    Cagungun, Hazel

    This document contains information about and from a conference on addressing the training and employment needs of youth with mental health disabilities in the juvenile justice system that was held by the National Mental Health Association (NMHA). The document begins with an executive summary and nine recommendations for the Youth Subcommittee of…

  17. Optically addressed ultra-wideband phased antenna array

    NASA Astrophysics Data System (ADS)

    Bai, Jian

    Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization

  18. Low-power priority Address-Encoder and Reset-Decoder data-driven readout for Monolithic Active Pixel Sensors for tracker system

    NASA Astrophysics Data System (ADS)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.

    2015-06-01

    Active Pixel Sensors used in High Energy Particle Physics require low power consumption to reduce the detector material budget, low integration time to reduce the possibilities of pile-up and fast readout to improve the detector data capability. To satisfy these requirements, a novel Address-Encoder and Reset-Decoder (AERD) asynchronous circuit for a fast readout of a pixel matrix has been developed. The AERD data-driven readout architecture operates the address encoding and reset decoding based on an arbitration tree, and allows us to readout only the hit pixels. Compared to the traditional readout structure of the rolling shutter scheme in Monolithic Active Pixel Sensors (MAPS), AERD can achieve a low readout time and a low power consumption especially for low hit occupancies. The readout is controlled at the chip periphery with a signal synchronous with the clock, allows a good digital and analogue signal separation in the matrix and a reduction of the power consumption. The AERD circuit has been implemented in the TowerJazz 180 nm CMOS Imaging Sensor (CIS) process with full complementary CMOS logic in the pixel. It works at 10 MHz with a matrix height of 15 mm. The energy consumed to read out one pixel is around 72 pJ. A scheme to boost the readout speed to 40 MHz is also discussed. The sensor chip equipped with AERD has been produced and characterised. Test results including electrical beam measurement are presented.

  19. Replacement between conformity and counter-conformity in consumption decisions.

    PubMed

    Chou, Ting-Jui; Chang, En-Chung; Dai, Qi; Wong, Veronica

    2013-02-01

    This study assessed, in a Chinese context, how self-esteem interacts with perceived similarity and uniqueness to yield cognitive dissonance, and whether the dissonance leads to self-reported conformity or counter-conformity behavior. Participants were 408 respondents from 4 major Chinese cities (M age = 33.0 yr., SD = 4.3; 48% men). Self-perceptions of uniqueness, similarity, cognitive dissonance, self-esteem and need to behave in conformity or counter-conformity were measured. A theoretical model was assessed in four situations, relating the ratings of self-esteem and perceived similarity/uniqueness to the way other people at a wedding were dressed, and the resultant cognitive dissonance and conformity/ counter-conformity behavior. Regardless of high or low self-esteem, all participants reported cognitive dissonance when they were told that they were dressed extremely similarly to or extremely differently from the other people attending the wedding. However, the conforming/counter-conforming strategies used by participants to resolve the cognitive dissonance differed. When encountering dissonance induced by the perceived extreme uniqueness of dress, participants with low self-esteem tended to say they would dress next time so as to conform with the way others were dressed, while those with high self-esteem indicated they would continue their counter-conformity in attire. When encountering dissonance induced by the perceived extreme similarity to others, both those with high and low self-esteem tended to say they would dress in an unorthodox manner to surprise other people in the future. PMID:23654033

  20. Replacement between conformity and counter-conformity in consumption decisions.

    PubMed

    Chou, Ting-Jui; Chang, En-Chung; Dai, Qi; Wong, Veronica

    2013-02-01

    This study assessed, in a Chinese context, how self-esteem interacts with perceived similarity and uniqueness to yield cognitive dissonance, and whether the dissonance leads to self-reported conformity or counter-conformity behavior. Participants were 408 respondents from 4 major Chinese cities (M age = 33.0 yr., SD = 4.3; 48% men). Self-perceptions of uniqueness, similarity, cognitive dissonance, self-esteem and need to behave in conformity or counter-conformity were measured. A theoretical model was assessed in four situations, relating the ratings of self-esteem and perceived similarity/uniqueness to the way other people at a wedding were dressed, and the resultant cognitive dissonance and conformity/ counter-conformity behavior. Regardless of high or low self-esteem, all participants reported cognitive dissonance when they were told that they were dressed extremely similarly to or extremely differently from the other people attending the wedding. However, the conforming/counter-conforming strategies used by participants to resolve the cognitive dissonance differed. When encountering dissonance induced by the perceived extreme uniqueness of dress, participants with low self-esteem tended to say they would dress next time so as to conform with the way others were dressed, while those with high self-esteem indicated they would continue their counter-conformity in attire. When encountering dissonance induced by the perceived extreme similarity to others, both those with high and low self-esteem tended to say they would dress in an unorthodox manner to surprise other people in the future.

  1. Conformal invariance in noncommutative geometry and mutually interacting Snyder particles

    NASA Astrophysics Data System (ADS)

    Pramanik, Souvik; Ghosh, Subir; Pal, Probir

    2014-11-01

    A system of relativistic Snyder particles with mutual two-body interaction that lives in a noncommutative Snyder geometry is studied. The underlying novel symplectic structure is a coupled and extended version of (single-particle) Snyder algebra. In a recent work by Casalbuoni and Gomis [Phys. Rev. D 90, 026001 (2014)], a system of interacting conventional particles (in commutative spacetime) was studied with special emphasis on its conformal invariance. Proceeding along the same lines, we have shown that our interacting Snyder particle model is also conformally invariant. Moreover, the conformal Killing vectors have been constructed. Our main emphasis is on the Hamiltonian analysis of the conformal symmetry generators. We demonstrate that the Lorentz algebra remains undeformed, but validity of the full conformal algebra requires further restrictions.

  2. Conformal dome aberration correction by designing the inner surface

    NASA Astrophysics Data System (ADS)

    Zhang, Wang; Chen, Shouqian; Fan, Zhigang

    2016-12-01

    The ray transmission models of optical domes were established, and the characteristics of the rays while passing through a hemispherical dome and a conformal dome were comparatively analysed. Acquiring the minimum deviated angles from the inner surface of the conformal dome was then determined to be the designing goal for reducing the dynamic aberrations. Based on this, the inner surface of the conformal dome was optimized and thus, the dynamic aberrations were reduced. Finally, a completely cooled conformal optical system was designed. The results show that the optical system have produced good imaging quality within all the fields of regard, which further illustrates that designing the inner surface of a conformal dome is an effective method for aberration correction.

  3. Addressing the municipal market

    SciTech Connect

    Mullin, R.

    1993-05-12

    Most municipalities employ simple, fairly inexpensive water treatment regimes, which is why some large industrial treatment firms stay away from the municipal market, despite rapid growth in the sector. Of the $625 million/year spent for US wastewater treatment, 46% is for municipalities, up 14.5% from 1987. Waste treatment in general grew by 12% in that period, according to Kline Co. (Fairfield, NJ). Some of the challenges facing municipalities in the Clean Water Act reauthorization bills are metals-contaminated sediments and storm water containment and treatment. Bill Tullos, business manager for chlor-alkali at Elf Atochem North America, does not foresee a phaseout of chlorine-based products used as disinfectant in drinking water treatment by municipalities, or as a wastewater treatment in municipal and industrial use. [open quotes]Alternatives are not as effective and are more expensive,[close quotes] says Tullos. [open quotes]There was some promise with ozone, but unfortunately it tends to tear apart your corrosion and scale inhibitors. Chlorine also provides residual protection from contamination all along the water line system.[close quotes] Tullos adds that the formation of tetrahydromethane-one of the problems of using chlorine-based products-can be avoided by screening out the hydrocarbons first and then adding chlorine.

  4. Identifying Liquid-Gas System Misconceptions and Addressing Them Using a Laboratory Exercise on Pressure-Temperature Diagrams of a Mixed Gas Involving Liquid-Vapor Equilibrium

    ERIC Educational Resources Information Center

    Yoshikawa, Masahiro; Koga, Nobuyoshi

    2016-01-01

    This study focuses on students' understandings of a liquid-gas system with liquid-vapor equilibrium in a closed system using a pressure-temperature ("P-T") diagram. By administrating three assessment questions concerning the "P-T" diagrams of liquid-gas systems to students at the beginning of undergraduate general chemistry…

  5. A region addresses patient safety.

    PubMed

    Feinstein, Karen Wolk; Grunden, Naida; Harrison, Edward I

    2002-06-01

    The Pittsburgh Regional Healthcare Initiative (PRHI) is a coalition of 35 hospitals, 4 major insurers, more than 30 major and small-business health care purchasers, dozens of corporate and civic leaders, organized labor, and partnerships with state and federal government all working together to deliver perfect patient care throughout Southwestern Pennsylvania. PRHI believes that in pursuing perfection, many of the challenges facing today's health care delivery system (eg, waste and error in the delivery of care, rising costs, frustration and shortage among clinicians and workers, financial distress, overcapacity, and lack of access to care) will be addressed. PRHI has identified patient safety (nosocomial infections and medication errors) and 5 clinical areas (obstetrics, orthopedic surgery, cardiac surgery, depression, and diabetes) as ideal starting points. In each of these areas of work, PRHI partners have assembled multifacility/multidisciplinary groups charged with defining perfection, establishing region-wide reporting systems, and devising and implementing recommended improvement strategies and interventions. Many design and conceptual elements of the PRHI strategy are adapted from the Toyota Production System and its Pittsburgh derivative, the Alcoa Business System. PRHI is in the proof-of-concept phase of development. PMID:12032502

  6. Conformal gravity and time

    NASA Astrophysics Data System (ADS)

    Hazboun, Jeffrey Shafiq

    2014-10-01

    Cartan geometry provides a rich formalism from which to look at various geometrically motivated extensions to general relativity. In this manuscript, we start by motivating reasons to extend the theory of general relativity. We then introduce the reader to our technique, called the quotient manifold method, for extending the geometry of spacetime. We will specifically look at the class of theories formed from the various quotients of the conformal group. Starting with the conformal symmetries of Euclidean space, we construct a manifold where time manifests as a part of the geometry. Though there is no matter present in the geome- try studied here, geometric terms analogous to dark energy and dark matter appear when we write down the Einstein tensor. Specifically, the quotient of the conformal group of Euclidean four-space by its Weyl subgroup results in a geometry possessing many of the properties of relativistic phase space, including both a natural symplectic form and nondegenerate Killing metric. We show the general solution possesses orthogonal Lagrangian submanifolds, with the induced metric and the spin connection on the submanifolds necessarily Lorentzian, despite the Euclidean starting point. By examining the structure equations of the biconformal space in an orthonormal frame adapted to its phase space properties, we also find two new tensor fields exist in this geometry, not present in Riemannian geometry. The first is a combination of the Weyl vector with the scale factor on the metric, and determines the time-like directions on the submanifolds. The second comes from the components of the spin connection, symmetric with respect to the new metric. Though this field comes from the spin connection, it transforms ho- mogeneously. Finally, we show in the absence of Cartan curvature or sources, the configuration space has geometric terms equivalent to a perfect fluid and a cosmological constant. We complete the analysis of this homogeneous space by

  7. 75 FR 49435 - Transportation Conformity Rule Restructuring Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ...: Carbon monoxide (CO), ozone, nitrogen dioxide (NO 2 ) and particulate matter (PM 2.5 and PM 10 ).\\1\\ \\1.... EPA first promulgated the conformity rule on November 24, 1993 (58 FR 62188), and subsequently... addressing a new or revised NAAQS. See the March 24, 2010 final rule and the July 1, 2004 final rule (75...

  8. Conformal variations and quantum fluctuations in discrete gravity

    NASA Astrophysics Data System (ADS)

    Marzuoli, Annalisa; Merzi, Dario

    2016-05-01

    After an overview of variational principles for discrete gravity, and on the basis of the approach to conformal transformations in a simplicial PL setting proposed by Luo and Glickenstein, we present at a heuristic level an improved scheme for addressing the gravitational (Euclidean) path integral and geometrodynamics.

  9. Mapping virtual addresses to different physical addresses for value disambiguation for thread memory access requests

    DOEpatents

    Gala, Alan; Ohmacht, Martin

    2014-09-02

    A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memory access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.

  10. Conformal Transformations and Space Travel.

    PubMed

    Gupta, S N

    1961-10-27

    Conformal transformations are applied to the motion of a space ship experiencing a constant acceleration. The role of proper time is interpreted in terms of atomic periods, and the relationship between the conformal transformations and the general theory of relativity is clarified.

  11. Counselor Identity: Conformity or Distinction?

    ERIC Educational Resources Information Center

    McLaughlin, Jerry E.; Boettcher, Kathryn

    2009-01-01

    The authors explore 3 debates in other disciplines similar to counseling's identity debate in order to learn about common themes and outcomes. Conformity, distinction, and cohesion emerged as common themes. They conclude that counselors should retain their distinctive, humanistic approach rather than conforming to the dominant, medical approach.

  12. [Conformal radiotherapy: principles and classification].

    PubMed

    Rosenwald, J C; Gaboriaud, G; Pontvert, D

    1999-01-01

    'Conformal radiotherapy' is the name fixed by usage and given to a new form of radiotherapy resulting from the technological improvements observed during, the last ten years. While this terminology is now widely used, no precise definition can be found in the literature. Conformal radiotherapy refers to an approach in which the dose distribution is more closely 'conformed' or adapted to the actual shape of the target volume. However, the achievement of a consensus on a more specific definition is hampered by various difficulties, namely in characterizing the degree of 'conformality'. We have therefore suggested a classification scheme be established on the basis of the tools and the procedures actually used for all steps of the process, i.e., from prescription to treatment completion. Our classification consists of four levels: schematically, at level 0, there is no conformation (rectangular fields); at level 1, a simple conformation takes place, on the basis of conventional 2D imaging; at level 2, a 3D reconstruction of the structures is used for a more accurate conformation; and level 3 includes research and advanced dynamic techniques. We have used our personal experience, contacts with colleagues and data from the literature to analyze all the steps of the planning process, and to define the tools and procedures relevant to a given level. The corresponding tables have been discussed and approved at the European level within the Dynarad concerted action. It is proposed that the term 'conformal radiotherapy' be restricted to procedures where all steps are at least at level 2.

  13. The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry

    SciTech Connect

    Hinterbichler, Kurt; Khoury, Justin E-mail: jkhoury@sas.upenn.edu

    2012-04-01

    We present a novel theory of the very early universe which addresses the traditional horizon and flatness problems of big bang cosmology and predicts a scale invariant spectrum of perturbations. Unlike inflation, this scenario requires no exponential accelerated expansion of space-time. Instead, the early universe is described by a conformal field theory minimally coupled to gravity. The conformal fields develop a time-dependent expectation value which breaks the flat space so(4,2) conformal symmetry down to so(4,1), the symmetries of de Sitter, giving perturbations a scale invariant spectrum. The solution is an attractor, at least in the case of a single time-dependent field. Meanwhile, the metric background remains approximately flat but slowly contracts, which makes the universe increasingly flat, homogeneous and isotropic, akin to the smoothing mechanism of ekpyrotic cosmology. Our scenario is very general, requiring only a conformal field theory capable of developing the appropriate time-dependent expectation values, and encompasses existing incarnations of this idea, specifically the U(1) model of Rubakov and the Galileon Genesis scenario. Its essential features depend only on the symmetry breaking pattern and not on the details of the underlying lagrangian. It makes generic observational predictions that make it potentially distinguishable from standard inflation, in particular significant non-gaussianities and the absence of primordial gravitational waves.

  14. Registering Names and Addresses for Information Technology.

    ERIC Educational Resources Information Center

    Knapp, Arthur A.

    The identification of administrative authorities and the development of associated procedures for registering and accessing names and addresses of communications data systems are considered in this paper. It is noted that, for data communications systems using standards based on the Open Systems Interconnection (OSI) Reference Model specified by…

  15. Recursion relations for conformal blocks

    NASA Astrophysics Data System (ADS)

    Penedones, João; Trevisani, Emilio; Yamazaki, Masahito

    2016-09-01

    In the context of conformal field theories in general space-time dimension, we find all the possible singularities of the conformal blocks as functions of the scaling dimension Δ of the exchanged operator. In particular, we argue, using representation theory of parabolic Verma modules, that in odd spacetime dimension the singularities are only simple poles. We discuss how to use this information to write recursion relations that determine the conformal blocks. We first recover the recursion relation introduced in [1] for conformal blocks of external scalar operators. We then generalize this recursion relation for the conformal blocks associated to the four point function of three scalar and one vector operator. Finally we specialize to the case in which the vector operator is a conserved current.

  16. Scoring docking conformations using predicted protein interfaces

    PubMed Central

    2014-01-01

    Background Since proteins function by interacting with other molecules, analysis of protein-protein interactions is essential for comprehending biological processes. Whereas understanding of atomic interactions within a complex is especially useful for drug design, limitations of experimental techniques have restricted their practical use. Despite progress in docking predictions, there is still room for improvement. In this study, we contribute to this topic by proposing T-PioDock, a framework for detection of a native-like docked complex 3D structure. T-PioDock supports the identification of near-native conformations from 3D models that docking software produced by scoring those models using binding interfaces predicted by the interface predictor, Template based Protein Interface Prediction (T-PIP). Results First, exhaustive evaluation of interface predictors demonstrates that T-PIP, whose predictions are customised to target complexity, is a state-of-the-art method. Second, comparative study between T-PioDock and other state-of-the-art scoring methods establishes T-PioDock as the best performing approach. Moreover, there is good correlation between T-PioDock performance and quality of docking models, which suggests that progress in docking will lead to even better results at recognising near-native conformations. Conclusion Accurate identification of near-native conformations remains a challenging task. Although availability of 3D complexes will benefit from template-based methods such as T-PioDock, we have identified specific limitations which need to be addressed. First, docking software are still not able to produce native like models for every target. Second, current interface predictors do not explicitly consider pairwise residue interactions between proteins and their interacting partners which leaves ambiguity when assessing quality of complex conformations. PMID:24906633

  17. Conformal Fermi Coordinates

    SciTech Connect

    Dai, Liang; Pajer, Enrico; Schmidt, Fabian E-mail: Enrico.pajer@gmail.com

    2015-11-01

    Fermi Normal Coordinates (FNC) are a useful frame for isolating the locally observable, physical effects of a long-wavelength spacetime perturbation. Their cosmological application, however, is hampered by the fact that they are only valid on scales much smaller than the horizon. We introduce a generalization that we call Conformal Fermi Coordinates (CFC). CFC preserve all the advantages of FNC, but in addition are valid outside the horizon. They allow us to calculate the coupling of long- and short-wavelength modes on all scales larger than the sound horizon of the cosmological fluid, starting from the epoch of inflation until today, by removing the complications of the second order Einstein equations to a large extent, and eliminating all gauge ambiguities. As an application, we present a calculation of the effect of long-wavelength tensor modes on small scale density fluctuations. We recover previous results, but clarify the physical content of the individual contributions in terms of locally measurable effects and ''projection'' terms.

  18. Dynamics of protein conformations

    NASA Astrophysics Data System (ADS)

    Stepanova, Maria

    2010-10-01

    A novel theoretical methodology is introduced to identify dynamic structural domains and analyze local flexibility in proteins. The methodology employs a multiscale approach combining identification of essential collective coordinates based on the covariance analysis of molecular dynamics trajectories, construction of the Mori projection operator with these essential coordinates, and analysis of the corresponding generalized Langevin equations [M.Stepanova, Phys.Rev.E 76(2007)051918]. Because the approach employs a rigorous theory, the outcomes are physically transparent: the dynamic domains are associated with regions of relative rigidity in the protein, whereas off-domain regions are relatively soft. This also allows scoring the flexibility in the macromolecule with atomic-level resolution [N.Blinov, M.Berjanskii, D.S.Wishart, and M.Stepanova, Biochemistry, 48(2009)1488]. The applications include the domain coarse-graining and characterization of conformational stability in protein G and prion proteins. The results are compared with published NMR experiments. Potential applications for structural biology, bioinformatics, and drug design are discussed.

  19. Addressing Invisible Barriers: Improving Outcomes for Youth with Disabilities in the Juvenile Justice System. Monograph Series on Education, Disability and Juvenile Justice.

    ERIC Educational Resources Information Center

    Osher, David; Quinn, Mary Magee; Kendziora, Kimberly; Woodruff, Darren; Rouse, Gerald

    This monograph introduces a series on youth with cognitive or behavioral disabilities and the juvenile justice system. The first section discusses the importance of prevention and early intervention to divert youth with disabilities from entering the justice system. It offers examples of such efforts and considers early and later intervention…

  20. Conformal Visualization for Partially-Immersive Platforms

    PubMed Central

    Petkov, Kaloian; Papadopoulos, Charilaos; Zhang, Min; Kaufman, Arie E.; Gu, Xianfeng

    2010-01-01

    Current immersive VR systems such as the CAVE provide an effective platform for the immersive exploration of large 3D data. A major limitation is that in most cases at least one display surface is missing due to space, access or cost constraints. This partially-immersive visualization results in a substantial loss of visual information that may be acceptable for some applications, however it becomes a major obstacle for critical tasks, such as the analysis of medical data. We propose a conformal deformation rendering pipeline for the visualization of datasets on partially-immersive platforms. The angle-preserving conformal mapping approach is used to map the 360°3D view volume to arbitrary display configurations. It has the desirable property of preserving shapes under distortion, which is important for identifying features, especially in medical data. The conformal mapping is used for rasterization, realtime raytracing and volume rendering of the datasets. Since the technique is applied during the rendering, we can construct stereoscopic images from the data, which is usually not true for image-based distortion approaches. We demonstrate the stereo conformal mapping rendering pipeline in the partially-immersive 5-wall Immersive Cabin (IC) for virtual colonoscopy and architectural review. PMID:26279083

  1. Computing the conformational entropy for RNA folds

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Chen, Shi-Jie

    2010-06-01

    We develop a polymer physics-based method to compute the conformational entropy for RNA tertiary folds, namely, conformations consisting of multiple helices connected through (cross-linked) loops. The theory is based on a virtual bond conformational model for the nucleotide chain. A key issue in the calculation of the entropy is how to treat the excluded volume interactions. The weak excluded volume interference between the different loops leads to the decomposition of the whole structure into a number of three-body building blocks, each consisting of a loop and two helices connected to the two ends of the loop. The simple construct of the three-body system allows an accurate computation for the conformational entropy for each building block. The assembly of the building blocks gives the entropy of the whole structure. This approach enables treatment of molten globule-like folds (partially unfolded tertiary structures) for RNAs. Extensive tests against experiments and exact computer enumerations indicate that the method can give accurate results for the entropy. The method developed here provides a solid first step toward a systematic development of a theory for the entropy and free energy landscape for complex tertiary folds for RNAs and proteins.

  2. Testing of Advanced Conformal Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Agrawal, Parul; Beck, Robin

    2013-01-01

    In support of the CA250 project, this paper details the results of a test campaign that was conducted at the Ames Arcjet Facility, wherein several novel low density thermal protection (TPS) materials were evaluated in an entry like environment. The motivation for these tests was to investigate whether novel conformal ablative TPS materials can perform under high heat flux and shear environment as a viable alternative to rigid ablators like PICA or Avcoat for missions like MSL and beyond. A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL, and honeycomb-based Avcoat on the Orion Multi Purpose Crew Vehicle (MPCV)). The compliant (high strain to failure) nature of the conformable ablative materials will allow better integration of the TPS with the underlying aeroshell structure and enable monolithic-like configuration and larger segments to be used in fabrication.A novel SPRITE1 architecture, developed by the researchers at NASA Ames was used for arcjet testing. This small probe like configuration with 450 spherecone, enabled us to test the materials in a combination of high heat flux, pressure and shear environment. The heat flux near the nose were in the range of 500-1000 W/sq cm whereas in the flank section of the test article the magnitudes were about 50 of the nose, 250-500W/sq cm range. There were two candidate conformable materials under consideration for this test series. Both test materials are low density (0.28 g/cu cm) similar to Phenolic Impregnated Carbon Ablator (PICA) or Silicone Impregnated Refractory Ceramic Ablator (SIRCA) and are comprised of: A flexible carbon substrate (Carbon felt) infiltrated with an ablative resin system: phenolic (Conformal-PICA) or silicone (Conformal-SICA). The test demonstrated a successful performance of both the conformable ablators for heat flux conditions between 50

  3. Performance of Conformable Phenolic Impregnated Carbon Ablator in Aerothermal Environments

    NASA Technical Reports Server (NTRS)

    Thornton, Jeremy; Fan, Wendy; Stackpoole, Mairead; Kao, David; Skokova, Kristina; Chavez-Garcia, Jose

    2012-01-01

    Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICA's performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.

  4. Coupled changes between lipid order and polypeptide conformation at the membrane surface. A sup 2 H NMR and Raman study of polylysine-phosphatidic acid systems

    SciTech Connect

    Laroche, G.; Pezolet, M. ); Dufourc, E.J.; Dufourcq, J. )

    1990-07-10

    Thermotropism and segmental chain order parameters of sn-2-perdeuteriated dimyristoylphosphatidic acid (DMPA)-water dispersions, with and without poly(L-lysine) (PLL) of different molecular weights, have been investigated by solid-state deuterium NMR spectroscopy. The segmental chain order parameter profile of this negatively charged lipid is similar to that already found for other lipids. Addition of long PLL increases the temperature, {Tc}, of the lipid gel-to-fluid phase transition, whereas short PLL has practically no effect on {Tc}. In the fluid phase both varieties of PLL increase the plateau character of segmental order parameters up to carbon position 10. At the same reduced temperature, long PLL more significantly increases the segmental ordering, especially at the methyl terminal position. This leads to the conclusion that polar head-group capping and charge neutralization by PLL induce severe changes in lipid chain ordering, even down to the bilayer core. The structure of PLL bound to the lipid bilayer surface was monitored by Raman spectroscopy, following the amide I bands. Results show that the lipid gel-to-fluid phase transition triggers a conformational transition from ordered {beta}-sheet to random structure of short PLL, while it does not affect the strongly stabilized {beta}-sheet structure of long PLL. It is concluded that both short and long PLL can efficiently cap and neutralize lipid head groups, whatever their structure, and that peptide length is a key parameter in whether lipids or peptides are the driving force in conformationally coupled changes of both partners in the membrane.

  5. Design Criteria for Future Fuels and Related Power Systems Addressing the Impacts of Non-CO2 Pollutants on Human Health and Climate Change.

    PubMed

    Schauer, James Jay

    2015-01-01

    Concerns over the economics, supply chain, and emissions of greenhouse gases associated with the wide use of fossil fuels have led to increasing interest in developing alternative and renewable fuels for stationary power generation and transportation systems. Although there is considerable uncertainty regarding the economic and environmental impacts of alternative and renewable fuels, there is a great need for assessment of potential and emerging fuels to guide research priorities and infrastructure investment. Likewise, there is a great need to identify potential unintended adverse impacts of new fuels and related power systems before they are widely adopted. Historically, the environmental impacts of emerging fuels and power systems have largely focused on carbon dioxide emissions, often called the carbon footprint, which is used to assess impacts on climate change. Such assessments largely ignore the large impacts of emissions of other air pollutants. Given the potential changes in emissions of air pollutants associated with the large-scale use of new and emerging fuels and power systems, there is a great need to better guide efforts to develop new fuels and power systems that can avoid unexpected adverse impacts on the environment and human health. This review covers the nature of emissions, including the key components and impacts from the use of fuels, and the design criteria for future fuels and associated power systems to assure that the non-CO2 adverse impacts of stationary power generation and transportation are minimized. PMID:26134739

  6. Design Criteria for Future Fuels and Related Power Systems Addressing the Impacts of Non-CO2 Pollutants on Human Health and Climate Change.

    PubMed

    Schauer, James Jay

    2015-01-01

    Concerns over the economics, supply chain, and emissions of greenhouse gases associated with the wide use of fossil fuels have led to increasing interest in developing alternative and renewable fuels for stationary power generation and transportation systems. Although there is considerable uncertainty regarding the economic and environmental impacts of alternative and renewable fuels, there is a great need for assessment of potential and emerging fuels to guide research priorities and infrastructure investment. Likewise, there is a great need to identify potential unintended adverse impacts of new fuels and related power systems before they are widely adopted. Historically, the environmental impacts of emerging fuels and power systems have largely focused on carbon dioxide emissions, often called the carbon footprint, which is used to assess impacts on climate change. Such assessments largely ignore the large impacts of emissions of other air pollutants. Given the potential changes in emissions of air pollutants associated with the large-scale use of new and emerging fuels and power systems, there is a great need to better guide efforts to develop new fuels and power systems that can avoid unexpected adverse impacts on the environment and human health. This review covers the nature of emissions, including the key components and impacts from the use of fuels, and the design criteria for future fuels and associated power systems to assure that the non-CO2 adverse impacts of stationary power generation and transportation are minimized.

  7. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2002-02-28

    This technical progress report describes work performed from June 20 through December 19, 2001, for the project, ''Conformance Improvement Using Gels''. Interest has increased in some new polymeric products that purport to substantially reduce permeability to water while causing minimum permeability reduction to oil. In view of this interest, we are currently studying BJ's Aqua Con. Results from six corefloods revealed that the Aqua Con gelant consistently reduced permeability to water more than that to oil. However, the magnitude of the disproportionate permeability reduction varied significantly for the various experiments. Thus, as with most materials tested to date, the issue of reproducibility and control of the disproportionate permeability remains to be resolved. Concern exists about the ability of gels to resist washout after placement in fractures. We examined whether a width constriction in the middle of a fracture would cause different gel washout behavior upstream versus downstream of the constriction. Tests were performed using a formed Cr(III)-acetate-HPAM gel in a 48-in.-long fracture with three sections of equal length, but with widths of 0.08-, 0.02-, and 0.08-in., respectively. The pressure gradients during gel extrusion (i.e., placement) were similar in the two 0.08-in.-wide fracture sections, even though they were separated by a 0.02-in.-wide fracture section. The constriction associated with the middle fracture section may have inhibited gel washout during the first pulse of brine injection after gel placement. However, during subsequent phases of brine injection, the constriction did not inhibit washout in the upstream fracture section any more than in the downstream section.

  8. 21 CFR 26.69 - Monitoring of conformity assessment bodies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM... COMMUNITY âFrameworkâ Provisions § 26.69 Monitoring of conformity assessment bodies. The following...

  9. Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor.

    PubMed

    Zhang, Edward; Beard, Paul

    2006-07-01

    An optical system for rapidly mapping broad-band ultrasound fields with high spatial resolution has been developed. The transduction mechanism is based upon the detection of acoustically induced changes in the optical thickness of a thin polymer film acting as a Fabry Perot sensing interferometer (FPI). By using a PC-controlled galvanometer mirror to line-scan a focused laser beam over the surface of the FPI, and a wavelength-tuned phase bias control system to optimally set the FPI working point, a notional 1D ultrasound array was synthesized. This system enabled ultrasound fields to be mapped over an aperture of 40 mm, in 50-microm steps with an optically defined element size of 50 microm and an acquisition time of 50 ms per step. The sensor comprised a 38-microm polymer film FPI which was directly vacuum-deposited onto an impedance-matched polycarbonate backing stub. The -3 dB acoustic bandwidth of the sensor was 300 kHz to 28 MHz and the peak noise-equivalent-pressure was 10 kPa over a 20-MHz measurement bandwidth. To demonstrate the system, the outputs of various planar and focused pulsed ultrasound transducers with operating frequencies in the range 3.5 to 20 MHz were mapped. It is considered that this approach offers a practical and inexpensive alternative to piezoelectric-based arrays and scanning systems for rapid transducer field characterization and biomedical and industrial ultrasonic imaging applications. PMID:16889340

  10. Conformational Landscape of Nicotinoids: Solving the "conformational - Rity" of Anabasine

    NASA Astrophysics Data System (ADS)

    Lesarri, Alberto; Cocinero, Emilio J.; Evangelisti, Luca; Suenram, Richard D.; Caminati, Walther; Grabow, Jens-Uwe

    2010-06-01

    The conformational landscape of the alkaloid anabasine (neonicotine) has been investigated using rotational spectroscopy and ab initio calculations. The results allow a detailed comparison of the structural properties of the prototype piperidinic and pyrrolidinic nicotinoids (anabasine vs. nicotine). Anabasine adopts two most stable conformations in isolation conditions, for which we determined accurate rotational and nuclear quadrupole coupling parameters. The preferred conformations are characterized by an equatorial pyridine moiety and additional N-H equatorial stereochemistry at the piperidine ring (Eq-Eq). The two rings of anabasine are close to a bisecting arrangement, with the observed conformations differing in a ca. 180° rotation of the pyridine subunit, denoted either Syn or Anti. The preference of anabasine for the Eq-Eq-Syn conformation has been established by relative intensity measurements (Syn/Anti˜5(2)). The conformational preferences of free anabasine are directed by a N\\cdot\\cdot\\cdotH-C weak hydrogen bond interaction between the nitrogen lone pair at piperidine and the closest hydrogen bond in pyridine, with N\\cdot\\cdot\\cdotN distances ranging from 4.750 Å (Syn) to 4.233 Å (Anti). R. J. Lavrich, R. D. Suenram, D. F. Plusquellic and S. Davis, 58^th OSU Int. Symp. on Mol. Spectrosc., Columbus, OH, 2003, Comm. RH13.

  11. Sources of Non-Conformity in Phonology: Variation and Exceptionality in Modern Hebrew Spirantization

    ERIC Educational Resources Information Center

    Martinez, Michal Temkin

    2010-01-01

    This dissertation investigates the integration of two sources of non-conformity--exceptionality and variation - in a single phonological system. Exceptionality manifests itself as systematic non-conformity, and variation as partial or variable non-conformity. When both occur within the same phenomenon, this is particularly challenging for the…

  12. 48 CFR 227.7103-14 - Conformity, acceptance, and warranty of technical data.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Conformity, acceptance..., DATA, AND COPYRIGHTS Rights in Technical Data 227.7103-14 Conformity, acceptance, and warranty of... requirements of the contract pertaining to the delivery of technical data. (b) Conformity and acceptance....

  13. Determination of conformational entropy of fully and partially folded conformations of holo- and apomyoglobin.

    PubMed

    Stadler, Andreas M; Koza, Michael Marek; Fitter, Jörg

    2015-01-01

    Holo- and apomyoglobin can be stabilized in native folded, partially folded molten globules (MGs) and denatured states depending on the solvent composition. Although the protein has been studied as a model system in the field of protein folding, little is known about the internal dynamics of the different structural conformations on the picosecond time scale. In a comparative experimental study we investigated the correlation between protein folding and dynamics on the picosecond time scale using incoherent quasielastic neutron scattering (QENS). The measured mean square displacements (MSDs) of conformational motions depend significantly on the secondary structure content of the protein, whereas the correlation times of the observed internal dynamics were found to be similar irrespective of the degree of folding. The conformational entropy difference ΔSconf between the folded conformations and the acid denatured state could be determined from the measured MSDs and was compared to the entropy difference ΔS obtained from thermodynamic parameters reported in the literature. The observed difference between ΔS and ΔSconf was attributed to the entropy difference ΔShydr of dynamically disordered water molecules of the hydration shell. The entropy content of the hydration water is significantly larger in the native folded proteins than in the partially folded MGs. We demonstrate the potential of incoherent neutron scattering for the investigation of the role of conformational dynamics in protein folding.

  14. Mapping the conformational space accessible to catechol-O-methyltransferase.

    PubMed

    Ehler, Andreas; Benz, Jörg; Schlatter, Daniel; Rudolph, Markus G

    2014-08-01

    Methylation catalysed by catechol-O-methyltransferase (COMT) is the main pathway of catechol neurotransmitter deactivation in the prefrontal cortex. Low levels of this class of neurotransmitters are held to be causative of diseases such as schizophrenia, depression and Parkinson's disease. Inhibition of COMT may increase neurotransmitter levels, thus offering a route for treatment. Structure-based drug design hitherto seems to be based on the closed enzyme conformation. Here, a set of apo, semi-holo, holo and Michaelis form crystal structures are described that define the conformational space available to COMT and that include likely intermediates along the catalytic pathway. Domain swaps and sizeable loop movements around the active site testify to the flexibility of this enzyme, rendering COMT a difficult drug target. The low affinity of the co-substrate S-adenosylmethionine and the large conformational changes involved during catalysis highlight significant energetic investment to achieve the closed conformation. Since each conformation of COMT is a bona fide target for inhibitors, other states than the closed conformation may be promising to address. Crystallographic data for an alternative avenue of COMT inhibition, i.e. locking of the apo state by an inhibitor, are presented. The set of COMT structures may prove to be useful for the development of novel classes of inhibitors.

  15. Mapping the conformational space accessible to catechol-O-methyltransferase.

    PubMed

    Ehler, Andreas; Benz, Jörg; Schlatter, Daniel; Rudolph, Markus G

    2014-08-01

    Methylation catalysed by catechol-O-methyltransferase (COMT) is the main pathway of catechol neurotransmitter deactivation in the prefrontal cortex. Low levels of this class of neurotransmitters are held to be causative of diseases such as schizophrenia, depression and Parkinson's disease. Inhibition of COMT may increase neurotransmitter levels, thus offering a route for treatment. Structure-based drug design hitherto seems to be based on the closed enzyme conformation. Here, a set of apo, semi-holo, holo and Michaelis form crystal structures are described that define the conformational space available to COMT and that include likely intermediates along the catalytic pathway. Domain swaps and sizeable loop movements around the active site testify to the flexibility of this enzyme, rendering COMT a difficult drug target. The low affinity of the co-substrate S-adenosylmethionine and the large conformational changes involved during catalysis highlight significant energetic investment to achieve the closed conformation. Since each conformation of COMT is a bona fide target for inhibitors, other states than the closed conformation may be promising to address. Crystallographic data for an alternative avenue of COMT inhibition, i.e. locking of the apo state by an inhibitor, are presented. The set of COMT structures may prove to be useful for the development of novel classes of inhibitors. PMID:25084335

  16. Changing systems to address elder abuse: examples from aging services, the courts, the long-term care ombudsman, and the faith community.

    PubMed

    Malks, Betty F; Strobel, Donna M; Leung, Yolanda; Court, Michelle Williams; Morris, Janet R; May, Gus; Reeves, Shawna; Davies, Molly; Cartan, Heidi; Philyaw, Meredith L

    2010-07-01

    The authors describe their use of systems change as a means of ameliorating elder abuse. After assessing the needs of their target audiences, projects developed a variety of strategies. These include disseminating promising practices in courts, creating Elder Law Clinics to assist with conservatorships, educating older adults about predatory mortgage lending, building a new response system for complaints of abuse and neglect in unlicensed care facilities, and convening clergy and lay leader groups to learn how faith communities can make a difference in elder abuse and neglect. The authors share tips on replicating their work, describing barriers to implementation and possible solutions.

  17. 2015 ASHG Awards and Addresses

    PubMed Central

    2016-01-01

    Each year at the annual meeting of The American Society of Human Genetics (ASHG), addresses are given in honor of The Society and a number of award winners. A summary of each of these is given below. On the following pages, we have printed the presidential address and the addresses for the William Allan Award, the Curt Stern Award, and the Victor A. McKusick Leadership Award. Webcasts of these addresses, as well as those of many other presentations, can be found at http://www.ashg.org.

  18. Can the sustainable development goals reduce the burden of nutrition-related non-communicable diseases without truly addressing major food system reforms?

    PubMed

    Hawkes, Corinna; Popkin, Barry M

    2015-06-16

    While the Millennium Development Goals (MDGs; 2000-2015) focused primarily on poverty reduction, hunger and infectious diseases, the proposed Sustainable Development Goals (SDGs) and targets pay more attention to nutrition and non-communicable diseases (NCDs). One of the 169 proposed targets of the SDGs is to reduce premature deaths from NCDs by one third; another is to end malnutrition in all its forms. Nutrition-related NCDs (NR-NCDs) stand at the intersection between malnutrition and NCDs. Driven in large part by remarkable transformations of food systems, they are rapidly increasing in most low and middle income countries (LMICs). The transformation to modern food systems began in the period following World War II with policies designed to meet a very different set of nutritional and food needs, and continued with globalization in the 1990s onwards. Another type of food systems transformation will be needed to shift towards a healthier and more sustainable diet--as will meeting many of the other SDGs. The process will be complex but is necessary. Communities concerned with NCDs and with malnutrition need to work more closely together to demand food systems change.

  19. Staff Preparation, Reward, and Support: Are Quality Rating and Improvement Systems Addressing All of the Key Ingredients Necessary for Change? Policy Report

    ERIC Educational Resources Information Center

    Austin, Lea J. E.; Whitebook, Marcy; Connors, Maia; Darrah, Rory

    2011-01-01

    Reflecting the growing momentum in support of quality rating and improvement systems (QRISs) as a key strategy to improve early care and education quality, significant amounts of public dollars have been devoted to their development and implementation. In this brief, the authors report on their investigation of both quality rating and improvement…

  20. Can the sustainable development goals reduce the burden of nutrition-related non-communicable diseases without truly addressing major food system reforms?

    PubMed

    Hawkes, Corinna; Popkin, Barry M

    2015-01-01

    While the Millennium Development Goals (MDGs; 2000-2015) focused primarily on poverty reduction, hunger and infectious diseases, the proposed Sustainable Development Goals (SDGs) and targets pay more attention to nutrition and non-communicable diseases (NCDs). One of the 169 proposed targets of the SDGs is to reduce premature deaths from NCDs by one third; another is to end malnutrition in all its forms. Nutrition-related NCDs (NR-NCDs) stand at the intersection between malnutrition and NCDs. Driven in large part by remarkable transformations of food systems, they are rapidly increasing in most low and middle income countries (LMICs). The transformation to modern food systems began in the period following World War II with policies designed to meet a very different set of nutritional and food needs, and continued with globalization in the 1990s onwards. Another type of food systems transformation will be needed to shift towards a healthier and more sustainable diet--as will meeting many of the other SDGs. The process will be complex but is necessary. Communities concerned with NCDs and with malnutrition need to work more closely together to demand food systems change. PMID:26082154

  1. Violence Goes to School. Keynote Address.

    ERIC Educational Resources Information Center

    Levin, Jack

    1998-01-01

    Increased juvenile violence in schools has led to suggested solutions that are politically expedient but fail to address what makes violence so appealing. Instead of school uniforms, conflict resolution programs, or media rating systems, a grass roots approach of alternative programs, parental involvement, and youth support systems could repair…

  2. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2004-03-01

    This technical progress report describes work performed from September 1, 2003, through February 29, 2004, for the project, ''Conformance Improvement Using Gels.'' We examined the properties of several ''partially formed'' gels that were formulated with a combination of high and low molecular weight HPAM polymers. After placement in 4-mm-wide fractures, these gels required about 25 psi/ft for brine to breach the gel (the best performance to date in fractures this wide). After this breach, stabilized residual resistance factors decreased significantly with increased flow rate. Also, residual resistance factors were up to 9 times greater for water than for oil. Nevertheless, permeability reduction factors were substantial for both water and oil flow. Gel with 2.5% chopped fiberglass effectively plugged 4-mm-wide fractures if a 0.5-mm-wide constriction was present. The ability to screen-out at a constriction appears crucial for particulate incorporation to be useful in plugging fractures. In addition to fiberglass, we examined incorporation of polypropylene fibers into gels. Once dispersed in brine or gelant, the polypropylene fibers exhibited the least gravity segregation of any particulate that we have tested to date. In fractures with widths of at least 2 mm, 24-hr-old gels (0.5% high molecular weight HPAM) with 0.5% fiber did not exhibit progressive plugging during placement and showed extrusion pressure gradients similar to those of gels without the fiber. The presence of the fiber roughly doubled the gel's resistance to first breach by brine flow. The breaching pressure gradients were not as large as for gels made with high and low molecular weight polymers (mentioned above). However, their material requirements and costs (i.e., polymer and/or particulate concentrations) were substantially lower than for those gels. A partially formed gel made with 0.5% HPAM did not enter a 0.052-mm-wide fracture when applying a pressure gradient of 65 psi/ft. This result

  3. Radial coordinates for conformal blocks

    NASA Astrophysics Data System (ADS)

    Hogervorst, Matthijs; Rychkov, Slava

    2013-05-01

    We develop the theory of conformal blocks in CFTd expressing them as power series with Gegenbauer polynomial coefficients. Such series have a clear physical meaning when the conformal block is analyzed in radial quantization: individual terms describe contributions of descendants of a given spin. Convergence of these series can be optimized by a judicious choice of the radial quantization origin. We argue that the best choice is to insert the operators symmetrically. We analyze in detail the resulting “ρ-series” and show that it converges much more rapidly than for the commonly used variable z. We discuss how these conformal block representations can be used in the conformal bootstrap. In particular, we use them to derive analytically some bootstrap bounds whose existence was previously found numerically.

  4. Conformal mapping of rectangular heptagons

    SciTech Connect

    Bogatyrev, Andrei B

    2012-12-31

    A new effective approach to calculating the direct and inverse conformal mapping of rectangular polygons onto a half-plane is put forward; it is based on the use of Riemann theta functions. Bibliography: 14 titles.

  5. Lattice Simulations and Infrared Conformality

    DOE PAGES

    Appelquist, Thomas; Fleming, George T.; Lin, Meifeng; Neil, Ethan T.; Schaich, David A

    2011-09-01

    We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that itmore » does work well for another theory expected to be infrared conformal.« less

  6. Solution NMR conformation of glycosaminoglycans.

    PubMed

    Pomin, Vitor H

    2014-04-01

    Nuclear magnetic resonance (NMR) spectroscopy has been giving a pivotal contribution to the progress of glycomics, mostly by elucidating the structural, dynamical, conformational and intermolecular binding aspects of carbohydrates. Particularly in the field of conformation, NOE resonances, scalar couplings, residual dipolar couplings, and chemical shift anisotropy offsets have been the principal NMR parameters utilized. Molecular dynamics calculations restrained by NMR-data input are usually employed in conjunction to generate glycosidic bond dihedral angles. Glycosaminoglycans (GAGs) are a special class of sulfated polysaccharides extensively studied worldwide. Besides regulating innumerous physiological processes, these glycans are also widely explored in the global market as either clinical or nutraceutical agents. The conformational aspects of GAGs are key regulators to the quality of interactions with the functional proteins involved in biological events. This report discusses the solution conformation of each GAG type analyzed by one or more of the above-mentioned methods.

  7. Close to community health providers post 2015: Realising their role in responsive health systems and addressing gendered social determinants of health

    PubMed Central

    2015-01-01

    Universal health coverage is gaining momentum and is likely to form a core part of the post Millennium Development Goal (MDG) agenda and be linked to social determinants of health, including gender; Close to community health providers are arguably key players in meeting the goal of universal health coverage through extending and delivering health services to poor and marginalised groups; Close to community health providers are embedded in communities and may therefore be strategically placed to understand intra household gender and power dynamics and how social determinants shape health and well-being. However, the opportunities to develop critical awareness and to translate this knowledge into health system and multi-sectoral action are poorly understood; Enabling close to community health providers to realise their potential requires health systems support and human resource management at multiple levels.

  8. Conformality lost: Broken symmetries in the early universe

    NASA Astrophysics Data System (ADS)

    Joyce, Austin

    In this dissertation, we introduce and investigate a general framework to describe the dynamics of the early universe. This mechanism is based on spontaneously broken conformal symmetry; we find that spectator fields in the theory can acquire a scale invariant spectrum of perturbations under generic conditions. Before introducing the conformal mechanism, we first consider the landscape of cosmologies involving a single scalar field which can address the canonical early universe puzzles. We find that, generically, single field non-inflationary solutions become strongly-coupled. We are therefore led to consider theories with multiple fields. We introduce the conformal mechanism via specific examples before constructing the most general effective theory for the conformal mechanism by utilizing the coset construction familiar from particle physics to construct the lagrangian for the Goldstone field of the broken conformal symmetry. This theory may be observationally distinguished from inflation by considering the non-linearly realized conformal symmetries. We systematically derive the Ward identities associated to the non-linearly realized symmetries, which relate (N + 1)-point correlation functions with a soft external Goldstone to N-point functions, and discuss observational implications, which cannot be mimicked by inflation. Finally, we consider violating the null energy condition (NEC) within the general framework considered. We show that the DBI conformal galileons, derived from the world-volume theory of a 3-brane moving in an Anti-de Sitter bulk, admit a background which violates the NEC. Unlike other known examples of NEC violation, such as ghost condensation and conformal galileons, this theory also admits a stable, Poincare-invariant vacuum. However, perturbations around deformations of this solution propagate superluminally.

  9. Use of a Conformational Switching Aptamer for Rapid and Specific Ex Vivo Identification of Central Nervous System Lymphoma in a Xenograft Model

    PubMed Central

    Eschbacher, Jennifer; Nichols, Joshua; Mooney, Michael A.; Joy, Anna; Spetzler, Robert F.; Feuerstein, Burt G.; Preul, Mark C.; Anderson, Trent; Yan, Hao; Nakaji, Peter

    2015-01-01

    Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions such as CNS B-cell lymphoma from operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific labeling using a novel lymphoma-specific fluorescent switchable aptamer. Our B-cell lymphoma-specific switchable aptamer produced only low-level fluorescence in its unbound conformation and generated an 8-fold increase in fluorescence once bound to its target on CD20-positive lymphoma cells. The aptamer demonstrated strong binding to B-cell lymphoma cells within 15 minutes of incubation as observed by flow cytometry. We applied the switchable aptamer to ex vivo xenograft tissue harboring B-cell lymphoma and astrocytoma, and within one hour specific visual identification of lymphoma was routinely possible. In this proof-of-concept study in human cell culture and orthotopic xenografts, we conclude that a fluorescent switchable aptamer can provide rapid and specific labeling of B-cell lymphoma, and that developing aptamer-based labeling approaches could simplify tissue staining and drastically reduce time to histopathological diagnoses compared with IHC-based methods. We propose that switchable aptamers could enhance expeditious, accurate intraoperative decision-making. PMID:25876071

  10. Use of a conformational switching aptamer for rapid and specific ex vivo identification of central nervous system lymphoma in a xenograft model.

    PubMed

    Georges, Joseph F; Liu, Xiaowei; Eschbacher, Jennifer; Nichols, Joshua; Mooney, Michael A; Joy, Anna; Spetzler, Robert F; Feuerstein, Burt G; Preul, Mark C; Anderson, Trent; Yan, Hao; Nakaji, Peter

    2015-01-01

    Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions such as CNS B-cell lymphoma from operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific labeling using a novel lymphoma-specific fluorescent switchable aptamer. Our B-cell lymphoma-specific switchable aptamer produced only low-level fluorescence in its unbound conformation and generated an 8-fold increase in fluorescence once bound to its target on CD20-positive lymphoma cells. The aptamer demonstrated strong binding to B-cell lymphoma cells within 15 minutes of incubation as observed by flow cytometry. We applied the switchable aptamer to ex vivo xenograft tissue harboring B-cell lymphoma and astrocytoma, and within one hour specific visual identification of lymphoma was routinely possible. In this proof-of-concept study in human cell culture and orthotopic xenografts, we conclude that a fluorescent switchable aptamer can provide rapid and specific labeling of B-cell lymphoma, and that developing aptamer-based labeling approaches could simplify tissue staining and drastically reduce time to histopathological diagnoses compared with IHC-based methods. We propose that switchable aptamers could enhance expeditious, accurate intraoperative decision-making. PMID:25876071

  11. Addressing neurological disorders with neuromodulation.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2011-07-01

    Neurological disorders are becoming increasingly common in developed countries as a result of the aging population. In spite of medications, these disorders can result in progressive loss of function as well as chronic physical, cognitive, and emotional disability that ultimately places enormous emotional and economic on the patient, caretakers, and the society in general. Neuromodulation is emerging as a therapeutic option in these patients. Neuromodulation is a field, which involves implantable devices that allow for the reversible adjustable application of electrical, chemical, or biological agents to the central or peripheral nervous system with the objective of altering its functioning with the objective of achieving a therapeutic or clinically beneficial effect. It is a rapidly evolving field that brings together many different specialties in the fields of medicine, materials science, computer science and technology, biomedical, and neural engineering as well as the surgical or interventional specialties. It has multiple current and emerging indications, and an enormous potential for growth. The main challenges before it are in the need for effective collaboration between engineers, basic scientists, and clinicians to develop innovations that address specific problems resulting in new devices and clinical applications. PMID:21193369

  12. Addressing neurological disorders with neuromodulation.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2011-07-01

    Neurological disorders are becoming increasingly common in developed countries as a result of the aging population. In spite of medications, these disorders can result in progressive loss of function as well as chronic physical, cognitive, and emotional disability that ultimately places enormous emotional and economic on the patient, caretakers, and the society in general. Neuromodulation is emerging as a therapeutic option in these patients. Neuromodulation is a field, which involves implantable devices that allow for the reversible adjustable application of electrical, chemical, or biological agents to the central or peripheral nervous system with the objective of altering its functioning with the objective of achieving a therapeutic or clinically beneficial effect. It is a rapidly evolving field that brings together many different specialties in the fields of medicine, materials science, computer science and technology, biomedical, and neural engineering as well as the surgical or interventional specialties. It has multiple current and emerging indications, and an enormous potential for growth. The main challenges before it are in the need for effective collaboration between engineers, basic scientists, and clinicians to develop innovations that address specific problems resulting in new devices and clinical applications.

  13. Mental health care delivery system reform in Belgium: the challenge of achieving deinstitutionalisation whilst addressing fragmentation of care at the same time.

    PubMed

    Nicaise, Pablo; Dubois, Vincent; Lorant, Vincent

    2014-04-01

    Most mental health care delivery systems in welfare states currently face two major issues: deinstitutionalisation and fragmentation of care. Belgium is in the process of reforming its mental health care delivery system with the aim of simultaneously strengthening community care and improving integration of care. The new policy model attempts to strike a balance between hospitals and community services, and is based on networks of services. We carried out a content analysis of the policy blueprint for the reform and performed an ex-ante evaluation of its plan of operation, based on the current knowledge of mental health service networks. When we examined the policy's multiple aims, intermediate goals, suggested tools, and their articulation, we found that it was unclear how the new policy could achieve its goals. Indeed, deinstitutionalisation and integration of care require different network structures, and different modes of governance. Furthermore, most of the mechanisms contained within the new policy were not sufficiently detailed. Consequently, three major threats to the effectiveness of the reform were identified. These were: issues concerning the relationship between network structure and purpose, the continued influence of hospitals despite the goal of deinstitutionalisation, and the heterogeneity in the actual implementation of the new policy. PMID:24582489

  14. Mental health care delivery system reform in Belgium: the challenge of achieving deinstitutionalisation whilst addressing fragmentation of care at the same time.

    PubMed

    Nicaise, Pablo; Dubois, Vincent; Lorant, Vincent

    2014-04-01

    Most mental health care delivery systems in welfare states currently face two major issues: deinstitutionalisation and fragmentation of care. Belgium is in the process of reforming its mental health care delivery system with the aim of simultaneously strengthening community care and improving integration of care. The new policy model attempts to strike a balance between hospitals and community services, and is based on networks of services. We carried out a content analysis of the policy blueprint for the reform and performed an ex-ante evaluation of its plan of operation, based on the current knowledge of mental health service networks. When we examined the policy's multiple aims, intermediate goals, suggested tools, and their articulation, we found that it was unclear how the new policy could achieve its goals. Indeed, deinstitutionalisation and integration of care require different network structures, and different modes of governance. Furthermore, most of the mechanisms contained within the new policy were not sufficiently detailed. Consequently, three major threats to the effectiveness of the reform were identified. These were: issues concerning the relationship between network structure and purpose, the continued influence of hospitals despite the goal of deinstitutionalisation, and the heterogeneity in the actual implementation of the new policy.

  15. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2003-09-01

    This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysis suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the flow capacity of

  16. Individually addressable cathodes with integrated focusing stack or detectors

    DOEpatents

    Thomas, Clarence E.; Baylor, Larry R.; Voelkl, Edgar; Simpson, Michael L.; Paulus, Michael J.; Lowndes, Douglas; Whealton, John; Whitson, John C.; Wilgen, John B.

    2005-07-12

    Systems and method are described for addressable field emission array (AFEA) chips. A plurality of individually addressable cathodes are integrated with an electrostatic focusing stack and/or a plurality of detectors on the addressable field emission array. The systems and methods provide advantages including the avoidance of space-charge blow-up.

  17. Development of conformal respirator monitoring technology

    SciTech Connect

    Shonka, J.J.; Weismann, J.J.; Logan, R.J.

    1997-04-01

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a {open_quotes}waffle-iron{close_quotes} effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors.

  18. Correlation functions in conformal invariant stochastic processes

    NASA Astrophysics Data System (ADS)

    Alcaraz, Francisco C.; Rittenberg, Vladimir

    2015-11-01

    We consider the problem of correlation functions in the stationary states of one-dimensional stochastic models having conformal invariance. If one considers the space dependence of the correlators, the novel aspect is that although one considers systems with periodic boundary conditions, the observables are described by boundary operators. From our experience with equilibrium problems one would have expected bulk operators. Boundary operators have correlators having critical exponents being half of those of bulk operators. If one studies the space-time dependence of the two-point function, one has to consider one boundary and one bulk operators. The Raise and Peel model has conformal invariance as can be shown in the spin 1/2 basis of the Hamiltonian which gives the time evolution of the system. This is an XXZ quantum chain with twisted boundary condition and local interactions. This Hamiltonian is integrable and the spectrum is known in the finite-size scaling limit. In the stochastic base in which the process is defined, the Hamiltonian is not local anymore. The mapping into an SOS model, helps to define new local operators. As a byproduct some new properties of the SOS model are conjectured. The predictions of conformal invariance are discussed in the new framework and compared with Monte Carlo simulations.

  19. Covariant Conformal Decomposition of Einstein Equations

    NASA Astrophysics Data System (ADS)

    Gourgoulhon, E.; Novak, J.

    It has been shown1,2 that the usual 3+1 form of Einstein's equations may be ill-posed. This result has been previously observed in numerical simulations3,4. We present a 3+1 type formalism inspired by these works to decompose Einstein's equations. This decomposition is motivated by the aim of stable numerical implementation and resolution of the equations. We introduce the conformal 3-``metric'' (scaled by the determinant of the usual 3-metric) which is a tensor density of weight -2/3. The Einstein equations are then derived in terms of this ``metric'', of the conformal extrinsic curvature and in terms of the associated derivative. We also introduce a flat 3-metric (the asymptotic metric for isolated systems) and the associated derivative. Finally, the generalized Dirac gauge (introduced by Smarr and York5) is used in this formalism and some examples of formulation of Einstein's equations are shown.

  20. Conformational selection in trypsin-like proteases

    PubMed Central

    Pozzi, Nicola; Vogt, Austin D.; Gohara, David W.; Di Cera, Enrico

    2012-01-01

    For over four decades, two competing mechanisms of ligand recognition – conformational selection and induced-fit - have dominated our interpretation of protein allostery. Defining the mechanism broadens our understanding of the system and impacts our ability to design effective drugs and new therapeutics. Recent kinetics studies demonstrate that trypsin-like proteases exist in equilibrium between two forms: one fully accessible to substrate (E) and the other with the active site occluded (E*). Analysis of the structural database confirms existence of the E* and E forms and vouches for the allosteric nature of the trypsin fold. Allostery in terms of conformational selection establishes an important paradigm in the protease field and enables protein engineers to expand the repertoire of proteases as therapeutics. PMID:22664096

  1. Conformal field theory of critical Casimir forces

    NASA Astrophysics Data System (ADS)

    Emig, Thorsten; Bimonte, Giuseppe; Kardar, Mehran

    2015-03-01

    Thermal fluctuations of a critical system induce long-ranged Casimir forces between objects that couple to the underlying field. For two dimensional conformal field theories (CFT) we derive exact results for the Casimir interaction for a deformed strip and for two compact objects of arbitrary shape in terms of the free energy of a standard region (circular ring or flat strip) whose dimension is determined by the mutual capacitance of two conductors with the objects' shape; and a purely geometric energy that is proportional to conformal charge of the CFT, but otherwise super-universal in that it depends only on the shapes and is independent of boundary conditions and other details. The effect of inhomogenous boundary conditions is also discussed.

  2. To conform or not to conform: spontaneous conformity diminishes the sensitivity to monetary outcomes.

    PubMed

    Yu, Rongjun; Sun, Sai

    2013-01-01

    When people have different opinions in a group, they often adjust their own attitudes and behaviors to match the group opinion, known as social conformity. The affiliation account of normative conformity states that people conform to norms in order to 'fit in', whereas the accuracy account of informative conformity posits that the motive to learn from others produces herding. Here, we test another possibility that following the crowd reduces the experienced negative emotion when the group decision turns out to be a bad one. Using event related potential (ERP) combined with a novel group gambling task, we found that participants were more likely to choose the option that was predominately chosen by other players in previous trials, although there was little explicit normative pressure at the decision stage and group choices were not informative. When individuals' choices were different from others, the feedback related negativity (FRN), an ERP component sensitive to losses and errors, was enhanced, suggesting that being independent is aversive. At the outcome stage, the losses minus wins FRN effect was significantly reduced following conformity choices than following independent choices. Analyses of the P300 revealed similar patterns both in the response and outcome period. Our study suggests that social conformity serves as an emotional buffer that protects individuals from experiencing strong negative emotion when the outcomes are bad.

  3. Rate of hydrolysis in ATP synthase is fine-tuned by α-subunit motif controlling active site conformation

    PubMed Central

    Beke-Somfai, Tamás; Lincoln, Per; Nordén, Bengt

    2013-01-01

    Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. FoF1 ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing ATP using a rotary motor. Isolated F1 performs hydrolysis with a rate very sensitive to ATP concentration. Experimental and theoretical results show that, at low ATP concentrations, ATP is slowly hydrolyzed in the so-called tight binding site, whereas at higher concentrations, the binding of additional ATP molecules induces rotation of the central γ-subunit, thereby forcing the site to transform through subtle conformational changes into a loose binding site in which hydrolysis occurs faster. How the 1-Å-scale rearrangements are controlled is not yet fully understood. By a combination of theoretical approaches, we address how large macromolecular rearrangements may manipulate the active site and how the reaction rate changes with active site conformation. Simulations reveal that, in response to γ-subunit position, the active site conformation is fine-tuned mainly by small α-subunit changes. Quantum mechanics-based results confirm that the sub-Ångström gradual changes between tight and loose binding site structures dramatically alter the hydrolysis rate. PMID:23345443

  4. Rate of hydrolysis in ATP synthase is fine-tuned by α-subunit motif controlling active site conformation.

    PubMed

    Beke-Somfai, Tamás; Lincoln, Per; Nordén, Bengt

    2013-02-01

    Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. F(o)F(1) ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing ATP using a rotary motor. Isolated F(1) performs hydrolysis with a rate very sensitive to ATP concentration. Experimental and theoretical results show that, at low ATP concentrations, ATP is slowly hydrolyzed in the so-called tight binding site, whereas at higher concentrations, the binding of additional ATP molecules induces rotation of the central γ-subunit, thereby forcing the site to transform through subtle conformational changes into a loose binding site in which hydrolysis occurs faster. How the 1-Å-scale rearrangements are controlled is not yet fully understood. By a combination of theoretical approaches, we address how large macromolecular rearrangements may manipulate the active site and how the reaction rate changes with active site conformation. Simulations reveal that, in response to γ-subunit position, the active site conformation is fine-tuned mainly by small α-subunit changes. Quantum mechanics-based results confirm that the sub-Ångström gradual changes between tight and loose binding site structures dramatically alter the hydrolysis rate. PMID:23345443

  5. Isomonodromic τ-functions and W N conformal blocks

    NASA Astrophysics Data System (ADS)

    Gavrylenko, P.

    2015-09-01

    We study the solution of the Schlesinger system for the 4-point s{l}_N isomonodromy problem and conjecture an expression for the isomonodromic τ-function in terms of 2d conformal field theory beyond the known N = 2 Painlevé VI case. We show that this relation can be used as an alternative definition of conformal blocks for the W N algebra and argue that the infinite number of arbitrary constants arising in the algebraic construction of W N conformal block can be expressed in terms of only a finite set of parameters of the monodromy data of rank N Fuchsian system with three regular singular points. We check this definition explicitly for the known conformal blocks of the W 3 algebra and demonstrate its consistency with the conjectured form of the structure constants.

  6. 40 CFR 93.154 - Conformity analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Conformity analysis. 93.154 Section 93...) DETERMINING CONFORMITY OF FEDERAL ACTIONS TO STATE OR FEDERAL IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 93.154 Conformity analysis. Any...

  7. Scale invariance, conformality, and generalized free fields

    NASA Astrophysics Data System (ADS)

    Dymarsky, Anatoly; Farnsworth, Kara; Komargodski, Zohar; Luty, Markus A.; Prilepina, Valentina

    2016-02-01

    This paper addresses the question of whether there are 4D Lorentz invariant unitary quantum field theories with scale invariance but not conformal invariance. An important loophole in the arguments of Luty-Polchinski-Rattazzi and Dymarsky-Komargodski-Schwimmer-Theisen is that trace of the energy-momentum tensor T could be a generalized free field. In this paper we rule out this possibility. The key ingredient is the observation that a unitary theory with scale but not conformal invariance necessarily has a non-vanishing anomaly for global scale transformations. We show that this anomaly cannot be reproduced if T is a generalized free field unless the theory also contains a dimension-2 scalar operator. In the special case where such an operator is present it can be used to redefine ("improve") the energy-momentum tensor, and we show that there is at least one energy-momentum tensor that is not a generalized free field. In addition, we emphasize that, in general, large momentum limits of correlation functions cannot be understood from the leading terms of the coordinate space OPE. This invalidates a recent argument by Farnsworth-Luty-Prilepina (FLP). Despite the invalidity of the general argument of FLP, some of the techniques turn out to be useful in the present context.

  8. Development of AN Efficient Conformable Array Structure

    NASA Astrophysics Data System (ADS)

    Mackersie, J. W.; Harvey, G.; Gachagan, A.

    2009-03-01

    The inspection of non-planar surfaces encountered in NDT poses difficulties that can only be satisfactorily addressed by a transducer whose active surface is comprised of an efficient conformable piezoelectric material. This paper describes a novel composite 2D array structure in which each element is a fine-scale array of piezoceramic fibres in a random arrangement. Device flexibility is imparted by the relatively soft flexible polymer phase which separates the elements. A comprehensive modelling programme, using the finite element package PZFlex, has produced the resulting structure which is termed a Composite Element Composite Array Transducer or CECAT. To facilitate the initial characterisation of the devices, the primary investigations have implemented the transducers as 1D arrays by the application of appropriate electrode patterns. However, the 2D physical arrangement gives the material excellent conformability over surfaces with two axes of curvature, e.g. an elbow or the root of a welded nozzle. Experimental measurements of electrical impedance and surface displacement are presented which demonstrate the high sensitivity of the devices. In addition, pulse-echo tests show comparable performance to a commercial rigid, 2 MHz transducer when operated into a steel test sample.

  9. Conformational transitions of a weak polyampholyte

    NASA Astrophysics Data System (ADS)

    Narayanan Nair, Arun Kumar; Uyaver, Sahin; Sun, Shuyu

    2014-10-01

    Using grand canonical Monte Carlo simulations of a flexible polyelectrolyte where the charges are in contact with a reservoir of constant chemical potential given by the solution pH, we study the behavior of weak polyelectrolytes in poor and good solvent conditions for polymer backbone. We address the titration behavior and conformational properties of a flexible diblock polyampholyte chain formed of two oppositely charged weak polyelectrolyte blocks, each containing equal number of identical monomers. The change of solution pH induces charge asymmetry in a diblock polyampholyte. For diblock polyampholyte chains in poor solvents, we demonstrate that a discontinuous transition between extended (tadpole) and collapsed (globular) conformational states is attainable by varying the solution pH. The double-minima structure in the probability distribution of the free energy provides direct evidence for the first-order like nature of this transition. At the isoelectric point electrostatically driven coil-globule transition of diblock polyampholytes in good solvents is found to consist of different regimes identified with increasing electrostatic interaction strength. At pH values above or below the isoelectric point diblock chains are found to have polyelectrolyte-like behavior due to repulsion between uncompensated charges along the chain.

  10. Scale invariance, conformality, and generalized free fields

    DOE PAGES

    Dymarsky, Anatoly; Farnsworth, Kara; Komargodski, Zohar; Luty, Markus A.; Prilepina, Valentina

    2016-02-16

    This paper addresses the question of whether there are 4D Lorentz invariant unitary quantum fi eld theories with scale invariance but not conformal invariance. We present an important loophole in the arguments of Luty-Polchinski-Rattazzi and Dymarsky-Komargodski-Schwimmer-Theisen that is the trace of the energy-momentum tensor T could be a generalized free field. In this paper we rule out this possibility. The key ingredient is the observation that a unitary theory with scale but not conformal invariance necessarily has a non-vanishing anomaly for global scale transformations. We show that this anomaly cannot be reproduced if T is a generalized free field unlessmore » the theory also contains a dimension-2 scalar operator. In the special case where such an operator is present it can be used to redefine ("improve") the energy-momentum tensor, and we show that there is at least one energy-momentum tensor that is not a generalized free field. In addition, we emphasize that, in general, large momentum limits of correlation functions cannot be understood from the leading terms of the coordinate space OPE. This invalidates a recent argument by Farnsworth-Luty-Prilepina (FLP). Finally, despite the invalidity of the general argument of FLP, some of the techniques turn out to be useful in the present context.« less

  11. Conformational requirements for glycoprotein reglucosylation in the endoplasmic reticulum.

    PubMed

    Trombetta, E S; Helenius, A

    2000-03-20

    Newly synthesized glycoproteins interact during folding and quality control in the ER with calnexin and calreticulin, two lectins specific for monoglucosylated oligosaccharides. Binding and release are regulated by two enzymes, glucosidase II and UDP-Glc:glycoprotein:glycosyltransferase (GT), which cyclically remove and reattach the essential glucose residues on the N-linked oligosaccharides. GT acts as a folding sensor in the cycle, selectively reglucosylating incompletely folded glycoproteins and promoting binding of its substrates to the lectins. To investigate how nonnative protein conformations are recognized and directed to this unique chaperone system, we analyzed the interaction of GT with a series of model substrates with well defined conformations derived from RNaseB. We found that conformations with slight perturbations were not reglucosylated by GT. In contrast, a partially structured nonnative form was efficiently recognized by the enzyme. When this form was converted back to a nativelike state, concomitant loss of recognition by GT occurred, reproducing the reglucosylation conditions observed in vivo with isolated components. Moreover, fully unfolded conformers were poorly recognized. The results indicated that GT is able to distinguish between different nonnative conformations with a distinct preference for partially structured conformers. The findings suggest that discrete populations of nonnative conformations are selectively reglucosylated to participate in the calnexin/calreticulin chaperone pathway. PMID:10725325

  12. Explicit mentalizing mechanisms and their adaptive role in memory conformity.

    PubMed

    Wheeler, Rebecca; Allan, Kevin; Tsivilis, Dimitris; Martin, Douglas; Gabbert, Fiona

    2013-01-01

    Memory conformity occurs when an individual endorses what other individuals remember about past events. Research on memory conformity is currently dominated by a 'forensic' perspective, which views the phenomenon as inherently undesirable. This is because conformity not only distorts the accuracy of an individual's memory, but also produces false corroboration between individuals, effects that act to undermine criminal justice systems. There is growing awareness, however, that memory conformity may be interpreted more generally as an adaptive social behavior regulated by explicit mentalizing mechanisms. Here, we provide novel evidence in support of this emerging alternative theoretical perspective. We carried out a memory conformity experiment which revealed that explicit belief-simulation (i.e. using one's own beliefs to model what other people believe) systematically biases conformity towards like-minded individuals, even when there is no objective evidence that they have a more accurate memory than dissimilar individuals. We suggest that this bias is functional, i.e. adaptive, to the extent that it fosters trust, and hence cooperation, between in-group versus out-group individuals. We conclude that memory conformity is, in more fundamental terms, a highly desirable product of explicit mentalizing mechanisms that promote adaptive forms of social learning and cooperation.

  13. Addressing adolescent pregnancy with legislation.

    PubMed

    Montgomery, Tiffany M; Folken, Lori; Seitz, Melody A

    2014-01-01

    Adolescent pregnancy is a concern among many women's health practitioners. While it is practical and appropriate to work to prevent adolescent pregnancy by educating adolescents in health care clinics, schools and adolescent-friendly community-based organizations, suggesting and supporting legislative efforts to reduce adolescent pregnancy can help address the issue on an even larger scale. This article aims to help nurses better understand current legislation that addresses adolescent pregnancy, and to encourage support of future adolescent pregnancy prevention legislation. PMID:25145716

  14. Addressing adolescent pregnancy with legislation.

    PubMed

    Montgomery, Tiffany M; Folken, Lori; Seitz, Melody A

    2014-01-01

    Adolescent pregnancy is a concern among many women's health practitioners. While it is practical and appropriate to work to prevent adolescent pregnancy by educating adolescents in health care clinics, schools and adolescent-friendly community-based organizations, suggesting and supporting legislative efforts to reduce adolescent pregnancy can help address the issue on an even larger scale. This article aims to help nurses better understand current legislation that addresses adolescent pregnancy, and to encourage support of future adolescent pregnancy prevention legislation.

  15. Evaluation of High Density Air Traffic Operations with Automation for Separation Assurance, Weather Avoidance and Schedule Conformance

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey S.; Martin, Lynne Hazel; Homola, Jeffrey R.; Cabrall, Christopher D.; Brasil, Connie L.

    2011-01-01

    In this paper we discuss the development and evaluation of our prototype technologies and procedures for far-term air traffic control operations with automation for separation assurance, weather avoidance and schedule conformance. Controller-in-the-loop simulations in the Airspace Operations Laboratory at the NASA Ames Research Center in 2010 have shown very promising results. We found the operations to provide high airspace throughput, excellent efficiency and schedule conformance. The simulation also highlighted areas for improvements: Short-term conflict situations sometimes resulted in separation violations, particularly for transitioning aircraft in complex traffic flows. The combination of heavy metering and growing weather resulted in an increased number of aircraft penetrating convective weather cells. To address these shortcomings technologies and procedures have been improved and the operations are being re-evaluated with the same scenarios. In this paper we will first describe the concept and technologies for automating separation assurance, weather avoidance, and schedule conformance. Second, the results from the 2010 simulation will be reviewed. We report human-systems integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. Next, improvements will be discussed that were made to address identified shortcomings. We conclude that, with further refinements, air traffic control operations with ground-based automated separation assurance can routinely provide currently unachievable levels of traffic throughput in the en route airspace.

  16. Markov state models of biomolecular conformational dynamics

    PubMed Central

    Chodera, John D.; Noé, Frank

    2014-01-01

    It has recently become practical to construct Markov state models (MSMs) that reproduce the long-time statistical conformational dynamics of biomolecules using data from molecular dynamics simulations. MSMs can predict both stationary and kinetic quantities on long timescales (e.g. milliseconds) using a set of atomistic molecular dynamics simulations that are individually much shorter, thus addressing the well-known sampling problem in molecular dynamics simulation. In addition to providing predictive quantitative models, MSMs greatly facilitate both the extraction of insight into biomolecular mechanism (such as folding and functional dynamics) and quantitative comparison with single-molecule and ensemble kinetics experiments. A variety of methodological advances and software packages now bring the construction of these models closer to routine practice. Here, we review recent progress in this field, considering theoretical and methodological advances, new software tools, and recent applications of these approaches in several domains of biochemistry and biophysics, commenting on remaining challenges. PMID:24836551

  17. Three-dimensional conformal setup (3D-CSU) of patients using the coordinate system provided by three internal fiducial markers and two orthogonal diagnostic X-ray systems in the treatment room

    SciTech Connect

    Shirato, Hiroki . E-mail: hshirato@radi.med.hokudai.ac.jp; Oita, Masataka; Fujita, Katsuhisa; Shimizu, Shinichi; Onimaru, Rikiya; Uegaki, Shinji; Watanabe, Yoshiharu; Kato, Norio; Miyasaka, Kazuo

    2004-10-01

    Purpose: To test the accuracy of a system for correcting for the rotational error of the clinical target volume (CTV) without having to reposition the patient using three fiducial markers and two orthogonal fluoroscopic images. We call this system 'three-dimensional conformal setup' (3D-CSU). Methods and materials: Three 2.0-mm gold markers are inserted into or adjacent to the CTV. On the treatment couch, the actual positions of the three markers are calculated based on two orthogonal fluoroscopies crossing at the isocenter of the linear accelerator. Discrepancy of the actual coordinates of gravity center of three markers from its planned coordinates is calculated. Translational setup error is corrected by adjustment of the treatment couch. The rotation angles ({alpha}, {beta}, {gamma}) of the coordinates of the actual CTV relative to the planned CTV are calculated around the lateral (x), craniocaudal (y), and anteroposterior (z) axes of the planned CTV. The angles of the gantry head, collimator, and treatment couch of the linear accelerator are adjusted according to the rotation of the actual coordinates of the tumor in relation to the planned coordinates. We have measured the accuracy of 3D-CSU using a static cubic phantom. Results: The gravity center of the phantom was corrected within 0.9 {+-} 0.3 mm (mean {+-} SD), 0.4 {+-} 0.2 mm, and 0.6 {+-} 0.2 mm for the rotation of the phantom from 0-30 degrees around the x, y, and z axes, respectively, every 5 degrees. Dose distribution was shown to be consistent with the planned dose distribution every 10 degrees of the rotation from 0-30 degrees. The mean rotational error after 3D-CSU was -0.4 {+-} 0.4 (mean {+-} SD), -0.2 {+-} 0.4, and 0.0 {+-} 0.5 degrees around the x, y, and z axis, respectively, for the rotation from 0-90 degrees. Conclusions: Phantom studies showed that 3D-CSU is useful for performing rotational correction of the target volume without correcting the position of the patient on the treatment couch

  18. Universality class in conformal inflation

    SciTech Connect

    Kallosh, Renata; Linde, Andrei E-mail: alinde@stanford.edu

    2013-07-01

    We develop a new class of chaotic inflation models with spontaneously broken conformal invariance. Observational consequences of a broad class of such models are stable with respect to strong deformations of the scalar potential. This universality is a critical phenomenon near the point of enhanced symmetry, SO(1,1), in case of conformal inflation. It appears because of the exponential stretching of the moduli space and the resulting exponential flattening of scalar potentials upon switching from the Jordan frame to the Einstein frame in this class of models. This result resembles stretching and flattening of inhomogeneities during inflationary expansion. It has a simple interpretation in terms of velocity versus rapidity near the Kähler cone in the moduli space, similar to the light cone of special theory of relativity. This effect makes inflation possible even in the models with very steep potentials. We describe conformal and superconformal versions of this cosmological attractor mechanism.

  19. MicroRT - Small animal conformal irradiator

    SciTech Connect

    Stojadinovic, S.; Low, D. A.; Hope, A. J.; Vicic, M.; Deasy, J. O.; Cui, J.; Khullar, D.; Parikh, P. J.; Malinowski, K. T.; Izaguirre, E. W.; Mutic, S.; Grigsby, P. W.

    2007-12-15

    A novel small animal conformal radiation therapy system has been designed and prototyped: MicroRT. The microRT system integrates multimodality imaging, radiation treatment planning, and conformal radiation therapy that utilizes a clinical {sup 192}Ir isotope high dose rate source as the radiation source (teletherapy). A multiparameter dose calculation algorithm based on Monte Carlo dose distribution simulations is used to efficiently and accurately calculate doses for treatment planning purposes. A series of precisely machined tungsten collimators mounted onto a cylindrical collimator assembly is used to provide the radiation beam portals. The current design allows a source-to-target distance range of 1-8 cm at four beam angles: 0 deg. (beam oriented down), 90 deg., 180 deg., and 270 deg. The animal is anesthetized and placed in an immobilization device with built-in fiducial markers and scanned using a computed tomography, magnetic resonance, or positron emission tomography scanner prior to irradiation. Treatment plans using up to four beam orientations are created utilizing a custom treatment planning system--microRTP. A three-axis computer-controlled stage that supports and accurately positions the animals is programmed to place the animal relative to the radiation beams according to the microRTP plan. The microRT system positioning accuracy was found to be submillimeter. The radiation source is guided through one of four catheter channels and placed in line with the tungsten collimators to deliver the conformal radiation treatment. The microRT hardware specifications, the accuracy of the treatment planning and positioning systems, and some typical procedures for radiobiological experiments that can be performed with the microRT device are presented.

  20. Conformational ensembles and sampled energy landscapes: Analysis and comparison.

    PubMed

    Cazals, Frédéric; Dreyfus, Tom; Mazauric, Dorian; Roth, Christine-Andrea; Robert, Charles H

    2015-06-15

    We present novel algorithms and software addressing four core problems in computational structural biology, namely analyzing a conformational ensemble, comparing two conformational ensembles, analyzing a sampled energy landscape, and comparing two sampled energy landscapes. Using recent developments in computational topology, graph theory, and combinatorial optimization, we make two notable contributions. First, we present a generic algorithm analyzing height fields. We then use this algorithm to perform density-based clustering of conformations, and to analyze a sampled energy landscape in terms of basins and transitions between them. In both cases, topological persistence is used to manage (geometric) frustration. Second, we introduce two algorithms to compare transition graphs. The first is the classical earth mover distance metric which depends only on local minimum energy configurations along with their statistical weights, while the second incorporates topological constraints inherent to conformational transitions. Illustrations are provided on a simplified protein model (BLN69), whose frustrated potential energy landscape has been thoroughly studied. The software implementing our tools is also made available, and should prove valuable wherever conformational ensembles and energy landscapes are used. PMID:25994596

  1. Conformational ensembles and sampled energy landscapes: Analysis and comparison.

    PubMed

    Cazals, Frédéric; Dreyfus, Tom; Mazauric, Dorian; Roth, Christine-Andrea; Robert, Charles H

    2015-06-15

    We present novel algorithms and software addressing four core problems in computational structural biology, namely analyzing a conformational ensemble, comparing two conformational ensembles, analyzing a sampled energy landscape, and comparing two sampled energy landscapes. Using recent developments in computational topology, graph theory, and combinatorial optimization, we make two notable contributions. First, we present a generic algorithm analyzing height fields. We then use this algorithm to perform density-based clustering of conformations, and to analyze a sampled energy landscape in terms of basins and transitions between them. In both cases, topological persistence is used to manage (geometric) frustration. Second, we introduce two algorithms to compare transition graphs. The first is the classical earth mover distance metric which depends only on local minimum energy configurations along with their statistical weights, while the second incorporates topological constraints inherent to conformational transitions. Illustrations are provided on a simplified protein model (BLN69), whose frustrated potential energy landscape has been thoroughly studied. The software implementing our tools is also made available, and should prove valuable wherever conformational ensembles and energy landscapes are used.

  2. Conformation-sensitive capillary electrophoresis.

    PubMed

    Ashton, Emma Jane

    2011-01-01

    Conformation-sensitive capillary electrophoresis (CSCE) is a rapid, high-throughput screening method that can be applied to any region of a genome for detection of sequence variants. Slab gel-based conformation-sensitive gel electrophoresis was first described by Ganguly et al., and the transfer from slab gels to capillaries for higher throughput was reported by Rozycka et al. CSCE is based on the principle that DNA homoduplexes and heteroduplexes migrate at different rates during electrophoresis under mildly denaturing conditions. Fragments showing an altered peak morphology compared to the wild type are then sequenced to determine the precise nature of the sequence variant detected.

  3. Addressing spiritual leadership: an organizational model.

    PubMed

    Burkhart, Lisa; Solari-Twadell, P Ann; Haas, Sheila

    2008-01-01

    The Joint Commission requires health systems to address spiritual care. Research indicates that spirituality is associated with better physical, psychological, and social health and that culturally diverse populations and individuals at end-of-life often request spiritual care. The authors report the results of a consensus conference of 21 executives representing 10 large faith-based health systems who discussed the input, process, and outcomes of a corporate model for spiritual leadership. Specific initiatives are highlighted.

  4. 48 CFR 246.504 - Certificate of conformance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Certificate of conformance. 246.504 Section 246.504 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT QUALITY ASSURANCE Acceptance 246.504 Certificate of...

  5. Evidence for weak or linear conformity but not for hyper-conformity in an everyday social learning context.

    PubMed

    Claidière, Nicolas; Bowler, Mark; Whiten, Andrew

    2012-01-01

    Conformity is thought to be an important force in cultural evolution because it has the potential to stabilize cooperation in large groups, potentiate group selection and thus explain uniquely human behaviors. However, the effects of such conformity on cultural and biological evolution will depend much on the way individuals are influenced by the frequency of alternative behavioral options witnessed. Theoretical modeling has suggested that only what we refer to as 'hyper-conformity', an exaggerated tendency to perform the most frequent behavior witnessed in other individuals, is able to increase within-group homogeneity and between-group diversity, for instance. Empirically however, few experiments have addressed how the frequency of behavior witnessed affects behavior. Accordingly we performed an experiment to test for the presence of conformity in a natural situation with humans. Visitors to a Zoo exhibit were invited to write or draw answers to questions on A5 cards and potentially win a small prize. We manipulated the proportion of existing writings versus drawings visible to visitors and measured the proportion of written cards submitted. We found a strong and significant effect of the proportion of text displayed on the proportion of text in the answers, thus demonstrating social learning. We show that this effect is approximately linear, with potentially a small, weak-conformist component but no hyper-conformist one. The present experiment therefore provides evidence for linear conformity in humans in a very natural context.

  6. Addressing problems of employee performance.

    PubMed

    McConnell, Charles R

    2011-01-01

    Employee performance problems are essentially of 2 kinds: those that are motivational in origin and those resulting from skill deficiencies. Both kinds of problems are the province of the department manager. Performance problems differ from problems of conduct in that traditional disciplinary processes ordinarily do not apply. Rather, performance problems are addressed through educational and remedial processes. The manager has a basic responsibility in ensuring that everything reasonable is done to help each employee succeed. There are a number of steps the manager can take to address employee performance problems.

  7. Patterns of Address in Dili Tetum, East Timor

    ERIC Educational Resources Information Center

    Williams-van Klinken, Catharina; Hajek, John

    2006-01-01

    This article focuses on a detailed description of patterns of address in Dili Tetum today. It outlines the complexities of the address system and points to considerable variation in its evolving present-day use. We find, amongst other things, that a speaker may use a range of address strategies even to the same addressee, and that the use of…

  8. Temperature: Human Regulating, Ants Conforming

    ERIC Educational Resources Information Center

    Clopton, Joe R.

    2007-01-01

    Biological processes speed up as temperature rises. Procedures for demonstrating this with ants traveling on trails, and data gathered by students on the Argentine ant ("Linepithema humile") are presented. The concepts of temperature regulation and conformity are detailed with a focus on the processes rather than on terms that label the organisms.

  9. Conformal coating using parylene polymers.

    PubMed

    Noordegraaf, J

    1997-01-01

    Parylene, a conformal polymer film, is being used increasingly in Europe to provide environmental and dielectric isolation. Application areas include electronic circuitry, sensors, and medical substrates. This article describes the variants of parylene and their characteristics, together with the process and applications of parylene coating. PMID:10167681

  10. Caspase Allostery and Conformational Selection.

    PubMed

    Clark, A Clay

    2016-06-01

    The role of caspase proteases in regulated processes such as apoptosis and inflammation has been studied for more than two decades, and the activation cascades are known in detail. Apoptotic caspases also are utilized in critical developmental processes, although it is not known how cells maintain the exquisite control over caspase activity in order to retain subthreshold levels required for a particular adaptive response while preventing entry into apoptosis. In addition to active site-directed inhibitors, caspase activity is modulated by post-translational modifications or metal binding to allosteric sites on the enzyme, which stabilize inactive states in the conformational ensemble. This review provides a comprehensive global view of the complex conformational landscape of caspases and mechanisms used to select states in the ensemble. The caspase structural database provides considerable detail on the active and inactive conformations in the ensemble, which provide the cell multiple opportunities to fine tune caspase activity. In contrast, the current database on caspase modifications is largely incomplete and thus provides only a low-resolution picture of global allosteric communications and their effects on the conformational landscape. In recent years, allosteric control has been utilized in the design of small drug compounds or other allosteric effectors to modulate caspase activity.

  11. The conformational analysis of 2-halocyclooctanones.

    PubMed

    Rozada, Thiago C; Gauze, Gisele F; Rosa, Fernanda A; Favaro, Denize C; Rittner, Roberto; Pontes, Rodrigo M; Basso, Ernani A

    2015-02-25

    The establishment of the most stable structures of eight membered rings is a challenging task to the field of conformational analysis. In this work, a series of 2-halocyclooctanones were synthesized (including fluorine, chlorine, bromine and iodine derivatives) and submitted to conformational studies using a combination of theoretical calculation and infrared spectroscopy. For each compound, four conformations were identified as the most important ones. These conformations are derived from the chair-boat conformation of cyclooctanone. The pseudo-equatorial (with respect to the halogen) conformer is preferred in vacuum and in low polarity solvents for chlorine, bromine and iodine derivatives. For 2-fluorocyclooctanone, the preferred conformation in vacuum is pseudo-axial. In acetonitrile, the pseudo-axial conformer becomes the most stable for the chlorine derivative. According to NBO calculations, the conformational preference is not dictated by electron delocalization, but by classical electrostatic repulsions.

  12. Plasmonic organic thin-film solar cell: light trapping by using conformal vs. non-conformal relief gratings

    NASA Astrophysics Data System (ADS)

    Keshmiri, Hamid; Dostlek, Jakub

    2015-05-01

    Theoretical study of light management in thin film organic photovoltaic cell that utilizes diffraction coupling to guided waves is presented. As a model system, a regular solar cell geometry with P3HT:PCBM active layer, transparent ITO electrode and Al backside electrode is used. The paper discusses enhancement of absorption of incident photons selectively in the active layer by the interplay of surface plasmon polariton and optical waveguide waves, the effect on the profile of their field and damping that affects the spatial distribution of dissipated light energy in the layer structure. The model shows that for optimized grating period and modulation depth the number of absorbed photons in the active layer can be increased by 24 per cent. The comparison of the geometry with conformal and non-conformally corrugated layers reveals that the conformal structure outperforms the non-conformal in the enhancing of photon absorption in the wavelength range of 350-800 nm.

  13. Conformational studies of nucleic acids

    SciTech Connect

    Pearlman, D.A.

    1984-11-01

    Techniques are developed for thorough examinations of the conformational energetics of nucleic acids and their constituents. The first one is a method for modeling the furanose sugar ring in nucleic acids. This method allows the coordinates corresponding to any sugar conformation to be generated rapidly and unambiguously from just the phase angle of pseudorotation. Taking advantage of this simplification, we carry out the first calculations to completely explore the conformational spaces available to the eight commonly occurring nucleosides using experimentally consistent furanose geometries and an appropriate classical potential energy force field. Results are in excellent agreement with experiment. We also develop empirically fit multiple correlation functions between the torsion angles of nucleic acids. This reduces the number of conformations which need to be considered in a thorough energetic survey for a nucleic acid. Such surveys are then carried out for two single-stranded nucleic acid tetramers: d(ApApApA) and ApApApA. We create energy contour maps for each of the 21 possible torsion angle pairs in a nucleotide repeating unit. The maps are quite consistent with the experimental distribution of oligonucleotide data and provide rationalizations for several experimentally observed angle-angle correlations. Complete energy minimization is carried out on all local minima found in the surveys. Both the maps and minimizations indicate DNA and RNA to be highly polymorphic. Conformational changes in DNA upon damage by uv radiation are also studied using energy minimization techniques. Finally, we derive a set of partial charges for a nucleotide (2'-deoxycytidine 5'-monophosphate monohydrate) from high resolution x-ray data.

  14. Logarithmic conformal field theory: beyond an introduction

    NASA Astrophysics Data System (ADS)

    Creutzig, Thomas; Ridout, David

    2013-12-01

    This article aims to review a selection of central topics and examples in logarithmic conformal field theory. It begins with the remarkable observation of Cardy that the horizontal crossing probability of critical percolation may be computed analytically within the formalism of boundary conformal field theory. Cardy’s derivation relies on certain implicit assumptions which are shown to lead inexorably to indecomposable modules and logarithmic singularities in correlators. For this, a short introduction to the fusion algorithm of Nahm, Gaberdiel and Kausch is provided. While the percolation logarithmic conformal field theory is still not completely understood, there are several examples for which the formalism familiar from rational conformal field theory, including bulk partition functions, correlation functions, modular transformations, fusion rules and the Verlinde formula, has been successfully generalized. This is illustrated for three examples: the singlet model \\mathfrak {M} (1,2), related to the triplet model \\mathfrak {W} (1,2), symplectic fermions and the fermionic bc ghost system; the fractional level Wess-Zumino-Witten model based on \\widehat{\\mathfrak {sl}} \\left( 2 \\right) at k=-\\frac{1}{2}, related to the bosonic βγ ghost system; and the Wess-Zumino-Witten model for the Lie supergroup \\mathsf {GL} \\left( 1 {\\mid} 1 \\right), related to \\mathsf {SL} \\left( 2 {\\mid} 1 \\right) at k=-\\frac{1}{2} and 1, the Bershadsky-Polyakov algebra W_3^{(2)} and the Feigin-Semikhatov algebras W_n^{(2)}. These examples have been chosen because they represent the most accessible, and most useful, members of the three best-understood families of logarithmic conformal field theories. The logarithmic minimal models \\mathfrak {W} (q,p), the fractional level Wess-Zumino-Witten models, and the Wess-Zumino-Witten models on Lie supergroups (excluding \\mathsf {OSP} \\left( 1 {\\mid} 2n \\right)). In this review, the emphasis lies on the representation theory

  15. Addressing Phonological Questions with Ultrasound

    ERIC Educational Resources Information Center

    Davidson, Lisa

    2005-01-01

    Ultrasound can be used to address unresolved questions in phonological theory. To date, some studies have shown that results from ultrasound imaging can shed light on how differences in phonological elements are implemented. Phenomena that have been investigated include transitional schwa, vowel coalescence, and transparent vowels. A study of…

  16. Every Other Day. Keynote Address.

    ERIC Educational Resources Information Center

    Tiller, Tom

    Schools need to be reoriented and restructured so that what is taught and learned, and the way in which it is taught and learned, are better integrated with young people's real-world experiences. Many indicators suggest that the meaningful aspects of school have been lost in the encounter with modern times. The title of this address--"Every Other…

  17. State of the Lab Address

    SciTech Connect

    King, Alex

    2010-01-01

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  18. State of the Lab Address

    ScienceCinema

    King, Alex

    2016-07-12

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  19. Deformed Conformal and Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Spiridonov, Vyacheslav

    Within the standard quantum mechanics a q-deformation of the simplest N=2 supersymmetry algebra is suggested. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e., the spectrum of one can be obtained from another (with possible exception of the lowest level) by the q2-factor scaling. A special class of the self-similar potentials is shown to obey the dynamical conformal symmetry algebra suq(1,1). These potentials exhibit exponential spectra and corresponding raising and lowering operators satisfy the q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane.

  20. DEFECT ASSESSMENT USING CONFORMABLE ARRAY DATA

    SciTech Connect

    Alfred E. Crouch; Todd H. Goyen

    2003-12-01

    This report covers the design and fabrication of a conformable eddy current array useful for the mapping and measurement of external corrosion on a transmission pipeline. The feasibility of the basic measuring approach was demonstrated and the general guidelines for sensor design were disclosed in a previous project. This project was concerned with design of a practical array, development of interface electronics, and design of the operation and analysis software. A prototype system was constructed, checked out, and demonstrated on natural corrosion in a field environment.

  1. Lorenz gauge quantization in conformally flat spacetimes

    NASA Astrophysics Data System (ADS)

    Cresswell, Jesse C.; Vollick, Dan N.

    2015-04-01

    Recently it was shown that Dirac's method of quantizing constrained dynamical systems can be used to impose the Lorenz gauge condition in a four-dimensional cosmological spacetime. In this paper we use Dirac's method to impose the Lorenz gauge condition in a general four-dimensional conformally flat spacetime and find that there is no particle production. We show that in cosmological spacetimes with dimension D ≠4 there will be particle production when the scale factor changes, and we calculate the particle production due to a sudden change.

  2. Fake conformal symmetry in unimodular gravity

    NASA Astrophysics Data System (ADS)

    Oda, Ichiro

    2016-08-01

    We study Weyl symmetry (local conformal symmetry) in unimodular gravity. It is shown that the Noether currents for both Weyl symmetry and global scale symmetry vanish exactly as in conformally invariant scalar-tensor gravity. We clearly explain why in the class of conformally invariant gravitational theories, the Noether currents vanish by starting with conformally invariant scalar-tensor gravity. Moreover, we comment on both classical and quantum-mechanical equivalences in Einstein's general relativity, conformally invariant scalar-tensor gravity, and the Weyl-transverse gravity. Finally, we discuss the Weyl current in the conformally invariant scalar action and see that it is also vanishing.

  3. Flexibility unleashed in acyclic monoterpenes: conformational space of citronellal revealed by broadband rotational spectroscopy.

    PubMed

    Domingos, Sérgio R; Pérez, Cristóbal; Medcraft, Chris; Pinacho, Pablo; Schnell, Melanie

    2016-06-22

    Conformational flexibility is intrinsically related to the functionality of biomolecules. Elucidation of the potential energy surface is thus a necessary step towards understanding the mechanisms for molecular recognition such as docking of small organic molecules to larger macromolecular systems. In this work, we use broadband rotational spectroscopy in a molecular jet experiment to unravel the complex conformational space of citronellal. We observe fifteen conformations in the experimental conditions of the molecular jet, the highest number of conformers reported to date for a chiral molecule of this size using microwave spectroscopy. Studies of relative stability using different carrier gases in the supersonic expansion reveal conformational relaxation pathways that strongly favour ground-state structures with globular conformations. This study provides a blueprint of the complex conformational space of an important biosynthetic precursor and gives insights on the relation between its structure and biological functionality.

  4. A Conformal, Bio-interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology

    PubMed Central

    Viventi, Jonathan; Kim, Dae-Hyeong; Moss, Joshua D.; Kim, Yun-Soung; Blanco, Justin A.; Annetta, Nicholas; Hicks, Andrew; Xiao, Jianliang; Huang, Younggang; Callans, David J.; Rogers, John A.; Litt, Brian

    2011-01-01

    The sophistication and resolution of current implantable medical devices are limited by the need connect each sensor separately to data acquisition systems. The ability of these devices to sample and modulate tissues is further limited by the rigid, planar nature of the electronics and the electrode-tissue interface. Here, we report the development of a class of mechanically flexible silicon electronics for measuring signals in an intimate, conformal integrated mode on the dynamic, three dimensional surfaces of soft tissues in the human body. We illustrate this technology in sensor systems composed of 2016 silicon nanomembrane transistors configured to record electrical activity directly from the curved, wet surface of a beating heart in vivo. The devices sample with simultaneous sub-millimeter and sub-millisecond resolution through 288 amplified and multiplexed channels. We use these systems to map the spread of spontaneous and paced ventricular depolarization in real time, at high resolution, on the epicardial surface in a porcine animal model. This clinical-scale demonstration represents one example of many possible uses of this technology in minimally invasive medical devices. [Conformal electronics and sensors intimately integrated with living tissues enable a new generation of implantable devices capable of addressing important problems in human health.] PMID:20375008

  5. Experimental characterization of adsorbed protein orientation, conformation, and bioactivity

    PubMed Central

    Thyparambil, Aby A.; Wei, Yang; Latour, Robert A.

    2015-01-01

    Protein adsorption on material surfaces is a common phenomenon that is of critical importance in many biotechnological applications. The structure and function of adsorbed proteins are tightly interrelated and play a key role in the communication and interaction of the adsorbed proteins with the surrounding environment. Because the bioactive state of a protein on a surface is a function of the orientation, conformation, and accessibility of its bioactive site(s), the isolated determination of just one or two of these factors will typically not be sufficient to understand the structure–function relationships of the adsorbed layer. Rather a combination of methods is needed to address each of these factors in a synergistic manner to provide a complementary dataset to characterize and understand the bioactive state of adsorbed protein. Over the past several years, the authors have focused on the development of such a set of complementary methods to address this need. These methods include adsorbed-state circular dichroism spectropolarimetry to determine adsorption-induced changes in protein secondary structure, amino-acid labeling/mass spectrometry to assess adsorbed protein orientation and tertiary structure by monitoring adsorption-induced changes in residue solvent accessibility, and bioactivity assays to assess adsorption-induced changes in protein bioactivity. In this paper, the authors describe the methods that they have developed and/or adapted for each of these assays. The authors then provide an example of their application to characterize how adsorption-induced changes in protein structure influence the enzymatic activity of hen egg-white lysozyme on fused silica glass, high density polyethylene, and poly(methyl-methacrylate) as a set of model systems. PMID:25708632

  6. Experimental characterization of adsorbed protein orientation, conformation, and bioactivity.

    PubMed

    Thyparambil, Aby A; Wei, Yang; Latour, Robert A

    2015-01-01

    Protein adsorption on material surfaces is a common phenomenon that is of critical importance in many biotechnological applications. The structure and function of adsorbed proteins are tightly interrelated and play a key role in the communication and interaction of the adsorbed proteins with the surrounding environment. Because the bioactive state of a protein on a surface is a function of the orientation, conformation, and accessibility of its bioactive site(s), the isolated determination of just one or two of these factors will typically not be sufficient to understand the structure-function relationships of the adsorbed layer. Rather a combination of methods is needed to address each of these factors in a synergistic manner to provide a complementary dataset to characterize and understand the bioactive state of adsorbed protein. Over the past several years, the authors have focused on the development of such a set of complementary methods to address this need. These methods include adsorbed-state circular dichroism spectropolarimetry to determine adsorption-induced changes in protein secondary structure, amino-acid labeling/mass spectrometry to assess adsorbed protein orientation and tertiary structure by monitoring adsorption-induced changes in residue solvent accessibility, and bioactivity assays to assess adsorption-induced changes in protein bioactivity. In this paper, the authors describe the methods that they have developed and/or adapted for each of these assays. The authors then provide an example of their application to characterize how adsorption-induced changes in protein structure influence the enzymatic activity of hen egg-white lysozyme on fused silica glass, high density polyethylene, and poly(methyl-methacrylate) as a set of model systems. PMID:25708632

  7. Conformal Gravity rotation curves with a conformal Higgs halo

    NASA Astrophysics Data System (ADS)

    Horne, Keith

    2016-06-01

    We discuss the effect of a conformally coupled Higgs field on conformal gravity (CG) predictions for the rotation curves of galaxies. The Mannheim-Kazanas (MK) metric is a valid vacuum solution of CG's fourth-order Poisson equation if and only if the Higgs field has a particular radial profile, S(r) = S0 a/(r + a), decreasing from S0 at r = 0 with radial scalelength a. Since particle rest masses scale with S(r)/S0, their world lines do not follow time-like geodesics of the MK metric gμν, as previously assumed, but rather those of the Higgs-frame MK metric tilde{g}_{μ ν }=Ω ^2 g_{μ ν }, with the conformal factor Ω(r) = S(r)/S0. We show that the required stretching of the MK metric exactly cancels the linear potential that has been invoked to fit galaxy rotation curves without dark matter. We also formulate, for spherical structures with a Higgs halo S(r), the CG equations that must be solved for viable astrophysical tests of CG using galaxy and cluster dynamics and lensing.

  8. Flexible backbone sampling methods to model and design protein alternative conformations.

    PubMed

    Ollikainen, Noah; Smith, Colin A; Fraser, James S; Kortemme, Tanja

    2013-01-01

    Sampling alternative conformations is key to understanding how proteins work and engineering them for new functions. However, accurately characterizing and modeling protein conformational ensembles remain experimentally and computationally challenging. These challenges must be met before protein conformational heterogeneity can be exploited in protein engineering and design. Here, as a stepping stone, we describe methods to detect alternative conformations in proteins and strategies to model these near-native conformational changes based on backrub-type Monte Carlo moves in Rosetta. We illustrate how Rosetta simulations that apply backrub moves improve modeling of point mutant side-chain conformations, native side-chain conformational heterogeneity, functional conformational changes, tolerated sequence space, protein interaction specificity, and amino acid covariation across protein-protein interfaces. We include relevant Rosetta command lines and RosettaScripts to encourage the application of these types of simulations to other systems. Our work highlights that critical scoring and sampling improvements will be necessary to approximate conformational landscapes. Challenges for the future development of these methods include modeling conformational changes that propagate away from designed mutation sites and modulating backbone flexibility to predictively design functionally important conformational heterogeneity.

  9. Conformal Window and Correlation Functions in Lattice Conformal QCD

    NASA Astrophysics Data System (ADS)

    Iwasaki, Y.

    We discuss various aspects of Conformal Field Theories on the Lattice. We mainly investigate the SU(3) gauge theory with Nf degenerate fermions in the fundamental representation, employing the one-plaquette gauge action and the Wilson fermion action. First we make a brief review of our previous works on the phase structure of lattice gauge theories in terms of the gauge coupling constant and the quark mass. We thereby clarify the reason why we conjecture that the conformal window is 7 ≤ Nf ≤ 16. Secondly, we introduce a new concept, "conformal theories with IR cutof" and point out that any numerical simulation on a lattice is bounded by an IR cutoff ∧IR. Then we make predictions that when Nf is within the conformal window, the propagator of a meson G(t) behaves at large t, as G(t) = c exp (-mHt)/tα, that is, a modified Yukawa-type decay form, instead of the usual exponential decay form exp (-mHt), in the small quark mass region. This holds on an any lattice for any coupling constant g, as far as g is between 0 and g*, where g* is the IR fixed point. We verify that numerical results really satisfy the predictions for the Nf = 7 case and the Nf = 16 case. Thirdly, we discuss small number of flavors (Nf = 2 ˜ 6) QCD at finite temperatures. We point out theoretically and verify numerically that the correlation functions at T/Tc > 1 exhibit the characteristics of the conformal function with IR cutoff, an exponential decay with power correction. Investigating our numerical data by a new method which we call the "local-analysis" of propagators, we observe that the Nf = 7 case and the Nf = 2 at T ˜ 2Tc case are similar to each other, while the Nf = 16 case and the Nf = 2 at T = 102 ˜ 105Tc cases are similar to each other. Further, we observe our data are consistent with the picture that the Nf = 7 case and the Nf = 2 at T ˜ 2Tc case are close to the meson unparticle model. On the other hand, the Nf = 16 case and the Nf = 2 at T = 102 ˜ 105Tc cases are close to

  10. Charge-transfer excitations in low-gap systems under the influence of solvation and conformational disorder: exploring range-separation tuning.

    PubMed

    de Queiroz, Thiago B; Kümmel, Stephan

    2014-08-28

    Charge transfer excitations play a prominent role in the fields of molecular electronics and light harvesting. At the same time they have developed a reputation for being hard to predict with time-dependent density functional theory, which is the otherwise predominant method for calculating molecular structure and excitations. Recently, it has been demonstrated that range-separated hybrid functionals, in particular with an "optimally tuned" range separation parameter, describe charge-transfer excitations reliably for different molecules. Many of these studies focused on molecules in vacuum. Here we investigate the influence of solvation on the electronic excitations of thiophene oligomers, i.e., paradigm low gap systems. We take into account bulk solvation using a continuum solvation model and geometrical distortions from molecular dynamics. From our study, three main findings emerge. First, geometrical distortions increase absorption energies by about 0.5 eV for the longer thiophene oligomers. Second, combining optimal tuning of the range separation parameter with a continuum solvation method is not straightforward and has to be approached with great care. Third, optimally tuned range-separated hybrids without a short-range exchange component tend to inherit undesirable characteristics of semi-local functionals: with increasing system size the range separation parameter takes a smaller value, leading to a functional of effectively more semi-local nature and thus not accurately capturing, e.g., the saturation of the optical gap with increasing system size.

  11. Charge-transfer excitations in low-gap systems under the influence of solvation and conformational disorder: Exploring range-separation tuning

    SciTech Connect

    Queiroz, Thiago B. de Kümmel, Stephan

    2014-08-28

    Charge transfer excitations play a prominent role in the fields of molecular electronics and light harvesting. At the same time they have developed a reputation for being hard to predict with time-dependent density functional theory, which is the otherwise predominant method for calculating molecular structure and excitations. Recently, it has been demonstrated that range-separated hybrid functionals, in particular with an “optimally tuned” range separation parameter, describe charge-transfer excitations reliably for different molecules. Many of these studies focused on molecules in vacuum. Here we investigate the influence of solvation on the electronic excitations of thiophene oligomers, i.e., paradigm low gap systems. We take into account bulk solvation using a continuum solvation model and geometrical distortions from molecular dynamics. From our study, three main findings emerge. First, geometrical distortions increase absorption energies by about 0.5 eV for the longer thiophene oligomers. Second, combining optimal tuning of the range separation parameter with a continuum solvation method is not straightforward and has to be approached with great care. Third, optimally tuned range-separated hybrids without a short-range exchange component tend to inherit undesirable characteristics of semi-local functionals: with increasing system size the range separation parameter takes a smaller value, leading to a functional of effectively more semi-local nature and thus not accurately capturing, e.g., the saturation of the optical gap with increasing system size.

  12. Charge-transfer excitations in low-gap systems under the influence of solvation and conformational disorder: Exploring range-separation tuning

    NASA Astrophysics Data System (ADS)

    de Queiroz, Thiago B.; Kümmel, Stephan

    2014-08-01

    Charge transfer excitations play a prominent role in the fields of molecular electronics and light harvesting. At the same time they have developed a reputation for being hard to predict with time-dependent density functional theory, which is the otherwise predominant method for calculating molecular structure and excitations. Recently, it has been demonstrated that range-separated hybrid functionals, in particular with an "optimally tuned" range separation parameter, describe charge-transfer excitations reliably for different molecules. Many of these studies focused on molecules in vacuum. Here we investigate the influence of solvation on the electronic excitations of thiophene oligomers, i.e., paradigm low gap systems. We take into account bulk solvation using a continuum solvation model and geometrical distortions from molecular dynamics. From our study, three main findings emerge. First, geometrical distortions increase absorption energies by about 0.5 eV for the longer thiophene oligomers. Second, combining optimal tuning of the range separation parameter with a continuum solvation method is not straightforward and has to be approached with great care. Third, optimally tuned range-separated hybrids without a short-range exchange component tend to inherit undesirable characteristics of semi-local functionals: with increasing system size the range separation parameter takes a smaller value, leading to a functional of effectively more semi-local nature and thus not accurately capturing, e.g., the saturation of the optical gap with increasing system size.

  13. Charge-transfer excitations in low-gap systems under the influence of solvation and conformational disorder: exploring range-separation tuning.

    PubMed

    de Queiroz, Thiago B; Kümmel, Stephan

    2014-08-28

    Charge transfer excitations play a prominent role in the fields of molecular electronics and light harvesting. At the same time they have developed a reputation for being hard to predict with time-dependent density functional theory, which is the otherwise predominant method for calculating molecular structure and excitations. Recently, it has been demonstrated that range-separated hybrid functionals, in particular with an "optimally tuned" range separation parameter, describe charge-transfer excitations reliably for different molecules. Many of these studies focused on molecules in vacuum. Here we investigate the influence of solvation on the electronic excitations of thiophene oligomers, i.e., paradigm low gap systems. We take into account bulk solvation using a continuum solvation model and geometrical distortions from molecular dynamics. From our study, three main findings emerge. First, geometrical distortions increase absorption energies by about 0.5 eV for the longer thiophene oligomers. Second, combining optimal tuning of the range separation parameter with a continuum solvation method is not straightforward and has to be approached with great care. Third, optimally tuned range-separated hybrids without a short-range exchange component tend to inherit undesirable characteristics of semi-local functionals: with increasing system size the range separation parameter takes a smaller value, leading to a functional of effectively more semi-local nature and thus not accurately capturing, e.g., the saturation of the optical gap with increasing system size. PMID:25173010

  14. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions: Overview of the Technology Maturation Efforts Funded by NASA's Game Changing Development Program

    NASA Technical Reports Server (NTRS)

    Beck, Robin A.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Fan, Wendy; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

    2012-01-01

    The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASA's Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASA's exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agency's 2011 strategic goal to "Create the innovative new space technologies for our exploration, science, and economic future." In addition, recently released "NASA space Technology Roadmaps and Priorities," by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reduction in spacecraft structural mass; more efficient, lighter thermal protection systems; more efficient lighter propulsion systems; and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location (s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the

  15. Conformal triality of the Kepler problem

    NASA Astrophysics Data System (ADS)

    Cariglia, Marco

    2016-08-01

    We show that the Kepler problem is projectively equivalent to null geodesic motion on the conformal compactification of Minkowski-4 space. This space realises the conformal triality of Minkowski, dS and AdS spaces.

  16. Gauge natural formulation of conformal gravity

    SciTech Connect

    Campigotto, M.; Fatibene, L.

    2015-03-15

    We consider conformal gravity as a gauge natural theory. We study its conservation laws and superpotentials. We also consider the Mannheim and Kazanas spherically symmetric vacuum solution and discuss conserved quantities associated to conformal and diffeomorphism symmetries.

  17. Killing Initial Data on spacelike conformal boundaries

    NASA Astrophysics Data System (ADS)

    Paetz, Tim-Torben

    2016-08-01

    We analyze Killing Initial Data on Cauchy surfaces in conformally rescaled vacuum space-times satisfying Friedrich's conformal field equations. As an application, we derive the KID equations on a spacelike ℐ-.

  18. Addressing medical errors in hand surgery.

    PubMed

    Johnson, Shepard P; Adkinson, Joshua M; Chung, Kevin C

    2014-09-01

    Influential think tanks such as the Institute of Medicine have raised awareness about the implications of medical errors. In response, organizations, medical societies, and hospitals have initiated programs to decrease the incidence and prevent adverse effects of these errors. Surgeons deal with the direct implications of adverse events involving patients. In addition to managing the physical consequences, they are confronted with ethical and social issues when caring for a harmed patient. Although there is considerable effort to implement system-wide changes, there is little guidance for hand surgeons on how to address medical errors. Admitting an error by a physician is difficult, but a transparent environment where patients are notified of errors and offered consolation and compensation is essential to maintain physician-patient trust. Furthermore, equipping hand surgeons with a guide for addressing medical errors will help identify system failures, provide learning points for safety improvement, decrease litigation against physicians, and demonstrate a commitment to ethical and compassionate medical care.

  19. [Conformal radiotherapy of brain tumors].

    PubMed

    Haie-Meder, C; Beaudré, A; Breton, C; Biron, B; Cordova, A; Dubray, B; Mazeron, J J

    1999-01-01

    Conformal irradiation of brain tumours is based on the three-dimensional reconstruction of the targeted volumes and at-risk organ images, the three-dimensional calculation of the dose distribution and a treatment device (immobilisation, beam energy, collimation, etc.) adapted to the high precision required by the procedure. Each step requires an appropriate methodology and a quality insurance program. Specific difficulties in brain tumour management are related to GTV and CTV definition depending upon the histological type, the quality of the surgical resection and the medical team. Clinical studies have reported dose escalation trials, mostly in high-grade gliomas and tumours at the base of the skull. Clinical data are now providing a better knowledge of the tolerance of normal tissues. As for small tumours, the implementation of beam intensity modulation is likely to narrow the gap between conformal and stereotaxic radiotherapy. PMID:10572510

  20. The Conformational Behaviour of Glucosamine

    NASA Astrophysics Data System (ADS)

    Peña, Isabel; Kolesniková, Lucie; Cabezas, Carlos; Bermúdez, Celina; Berdakin, Matías; Simao, Alcides; Alonso, José L.

    2014-06-01

    A laser ablation method has been successfully used to vaporize the bioactive amino monosaccharide D-glucosamine. Three cyclic α-4C1 pyranose forms have been identified using a combination of CP-FTMW and LA-MB-FTMW spectroscopy. Stereoelectronic hyperconjugative factors, like those associated with anomeric or gauche effects, as well as the cooperative OH\\cdotsO, OH\\cdotsN and NH\\cdotsO chains, extended along the entire molecule, are the main factors driving the conformational behavior. All observed conformers exhibit a counter-clockwise arrangement (cc) of the network of intramolecular hydrogen bonds. The results are compared with those recently obtained for D-glucose. J. L. Alonso, M. A. Lozoya, I. Peña, J. C. López, C. Cabezas, S. Mata, S. Blanco, Chem. Sci. 2014, 5, 515.

  1. The conformational cycle of kinesin.

    PubMed Central

    Cross, R A; Crevel, I; Carter, N J; Alonso, M C; Hirose, K; Amos, L A

    2000-01-01

    The stepping mechanism of kinesin can be thought of as a programme of conformational changes. We briefly review protein chemical, electron microscopic and transient kinetic evidence for conformational changes, and working from this evidence, outline a model for the mechanism. In the model, both kinesin heads initially trap Mg x ADP. Microtubule binding releases ADP from one head only (the trailing head). Subsequent ATP binding and hydrolysis by the trailing head progressively accelerate attachment of the leading head, by positioning it closer to its next site. Once attached, the leading head releases its ADP and exerts a sustained pull on the trailing head. The rate of closure of the molecular gate which traps ADP on the trailing head governs its detachment rate. A speculative but crucial coordinating feature is that this rate is strain sensitive, slowing down under negative strain and accelerating under positive strain. PMID:10836499

  2. Holographic multiverse and conformal invariance

    SciTech Connect

    Garriga, Jaume; Vilenkin, Alexander E-mail: vilenkin@cosmos.phy.tufts.edu

    2009-11-01

    We consider a holographic description of the inflationary multiverse, according to which the wave function of the universe is interpreted as the generating functional for a lower dimensional Euclidean theory. We analyze a simple model where transitions between inflationary vacua occur through bubble nucleation, and the inflating part of spacetime consists of de Sitter regions separated by thin bubble walls. In this model, we present some evidence that the dual theory is conformally invariant in the UV.

  3. Anomalous dimensions of conformal baryons

    NASA Astrophysics Data System (ADS)

    Pica, Claudio; Sannino, Francesco

    2016-10-01

    We determine the anomalous dimensions of baryon operators for the three-color theory as functions of the number of massless flavors within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within the δ expansion, for a wide range of number of flavors. We also find that this is always smaller than the anomalous dimension of the fermion mass operator. These findings challenge the partial compositeness paradigm.

  4. Microwave Spectroscopy of Alkaloids: the Conformational Shapes of Nicotine

    NASA Astrophysics Data System (ADS)

    Grabow, Jens-Uwe; Mata, S.; López, J. C.; Peńa, I.; Cabezas, C.; Blanco, S.; Alonso, J. L.

    2010-06-01

    Nicotinoid alkaloids consist of two ring systems connected via a C-C σ-bond: Joining pyridine either with a (substituted) pyrrolidine or piperidine ring system, pyrrolidinic or piperidinic nicotinoids are formed. Nicotine itself, consisting of pyridine and N-methylpyrrolidine, is the prototype pyrrolidinic nicotinoid. Its coupled heteoaromatic and heteroaliphatic ring systems exhibit three sites that allow for conformational flexibility: (I) puckering of the pyrrolidine ring (Eq./Ax. positions of the pyridine), (II) inversion of the N-methyl group (Eq./Ax. positions of the hydrogen), and (III) relative orientation of the two rings (Syn-Anti). Two conformations of nicotine have been observed using the In-phase/quadrature-phase-Modulation Passage-Acquired-Coherence Technique (IMPACT) Fourier Transform Microwave (FTMW) spectrometer in Valladolid. The preferred conformations are characterized by an equatorial (Eq.) pyridine moiety and equatorial (Eq.) N-CH_3 stereochemistry. The planes of two rings are almost perpendicular with respect to each other while exhibiting two low energy conformations, Syn and Anti, that differ by a 180° rotation about the C-C σ-bond. The Eq.-Eq. conformational preference is likely due to a weak hydrogen bond interaction between the nitrogen lone pair at the N-methylpyrroline and the closest hydrogen in pyridine. Supporting quantum-chemical calculations are also provided. Lavrich, R. J.; Suenram, R. D.; Plusquellic, D. F.; Davis, S. 58th International Symposium on Molecular Spectroscopy, Columbus, OH 2003, RH13.

  5. Anomalies, conformal manifolds, and spheres

    NASA Astrophysics Data System (ADS)

    Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; Schwimmer, Adam; Seiberg, Nathan; Theisen, Stefan

    2016-03-01

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space {M} is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail {N}=(2,2) and {N}=(0,2) supersymmetric theories in d = 2 and {N}=2 supersymmetric theories in d = 4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For {N}=(2,2) theories in d = 2 and {N}=2 theories in d = 4 we also show that the relation between the sphere partition function and the Kähler potential of {M} follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.

  6. Conformal Invariance of Graphene Sheets.

    PubMed

    Giordanelli, I; Posé, N; Mendoza, M; Herrmann, H J

    2016-03-10

    Suspended graphene sheets exhibit correlated random deformations that can be studied under the framework of rough surfaces with a Hurst (roughness) exponent 0.72 ± 0.01. Here, we show that, independent of the temperature, the iso-height lines at the percolation threshold have a well-defined fractal dimension and are conformally invariant, sharing the same statistical properties as Schramm-Loewner evolution (SLEκ) curves with κ = 2.24 ± 0.07. Interestingly, iso-height lines of other rough surfaces are not necessarily conformally invariant even if they have the same Hurst exponent, e.g. random Gaussian surfaces. We have found that the distribution of the modulus of the Fourier coefficients plays an important role on this property. Our results not only introduce a new universality class and place the study of suspended graphene membranes within the theory of critical phenomena, but also provide hints on the long-standing question about the origin of conformal invariance in iso-height lines of rough surfaces.

  7. Limit cycles and conformal invariance

    NASA Astrophysics Data System (ADS)

    Fortin, Jean-François; Grinstein, Benjamín; Stergiou, Andreas

    2013-01-01

    There is a widely held belief that conformal field theories (CFTs) require zero beta functions. Nevertheless, the work of Jack and Osborn implies that the beta functions are not actually the quantites that decide conformality, but until recently no such behavior had been exhibited. Our recent work has led to the discovery of CFTs with nonzero beta functions, more precisely CFTs that live on recurrent trajectories, e.g., limit cycles, of the beta-function vector field. To demonstrate this we study the S function of Jack and Osborn. We use Weyl consistency conditions to show that it vanishes at fixed points and agrees with the generator Q of limit cycles on them. Moreover, we compute S to third order in perturbation theory, and explicitly verify that it agrees with our previous determinations of Q. A byproduct of our analysis is that, in perturbation theory, unitarity and scale invariance imply conformal invariance in four-dimensional quantum field theories. Finally, we study some properties of these new, "cyclic" CFTs, and point out that the a-theorem still governs the asymptotic behavior of renormalization-group flows.

  8. The Conformational Landscape of Serinol

    NASA Astrophysics Data System (ADS)

    Sanz, M. Eugenia; Loru, Donatella; Peña, Isabel; Alonso, José L.

    2014-06-01

    The rotational spectrum of the amino alcohol serinol CH_2OH--CH(NH_2)--CH_2OH, which constitutes the hydrophilic head of the lipid sphingosine, has been investigated using chirped-pulsed Fourier transform microwave spectroscopy in combination with laser ablation Five different forms of serinol have been observed and conclusively identified by the comparison between the experimental values of their rotational and 14N quadrupole coupling constants and those predicted by ab initio calculations. In all observed conformers several hydrogen bonds are established between the two hydroxyl groups and the amino groups in a chain or circular arrangement. The most abundant conformer is stabilised by O--H···N and N--H···O hydrogen bonds forming a chain rather than a cycle. One of the detected conformers presents a tunnelling motion of the hydrogen atoms of the functional groups similar to that observed in glycerol. S. Mata, I. Peña, C. Cabezas, J. C. López, J. L. Alonso, J. Mol. Spectrosc. 2012, 280, 91 V. V. Ilyushin, R. A. Motiyenko, F. J. Lovas, D. F. Plusquellic, J. Mol. Spectrosc. 2008, 251, 129.

  9. Anomalies, conformal manifolds, and spheres

    DOE PAGES

    Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; Schwimmer, Adam; Seiberg, Nathan; Theisen, Stefan

    2016-03-04

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space $M$ is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail $N$ = (2; 2) and $N$ = (0; 2) supersymmetric theories in d = 2 and $N$ = 2 supersymmetric theories in d = 4. This reasoning leads tomore » new information about the conformal manifolds of these theories, for example, we show that the manifold is K ahler-Hodge and we further argue that it has vanishing K ahler class. For $N$ = (2; 2) theories in d = 2 and N = 2 theories in d = 4 we also show that the relation between the sphere partition function and the K ahler potential of $M$ follows immediately from the appropriate sigma models that we construct. Ultimately, along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.« less

  10. Electrophysiological precursors of social conformity.

    PubMed

    Shestakova, Anna; Rieskamp, Jörg; Tugin, Sergey; Ossadtchi, Alexey; Krutitskaya, Janina; Klucharev, Vasily

    2013-10-01

    Humans often change their beliefs or behavior due to the behavior or opinions of others. This study explored, with the use of human event-related potentials (ERPs), whether social conformity is based on a general performance-monitoring mechanism. We tested the hypothesis that conflicts with a normative group opinion evoke a feedback-related negativity (FRN) often associated with performance monitoring and subsequent adjustment of behavior. The experimental results show that individual judgments of facial attractiveness were adjusted in line with a normative group opinion. A mismatch between individual and group opinions triggered a frontocentral negative deflection with the maximum at 200 ms, similar to FRN. Overall, a conflict with a normative group opinion triggered a cascade of neuronal responses: from an earlier FRN response reflecting a conflict with the normative opinion to a later ERP component (peaking at 380 ms) reflecting a conforming behavioral adjustment. These results add to the growing literature on neuronal mechanisms of social influence by disentangling the conflict-monitoring signal in response to the perceived violation of social norms and the neural signal of a conforming behavioral adjustment.

  11. Conformal Invariance of Graphene Sheets

    PubMed Central

    Giordanelli, I.; Posé, N.; Mendoza, M.; Herrmann, H. J.

    2016-01-01

    Suspended graphene sheets exhibit correlated random deformations that can be studied under the framework of rough surfaces with a Hurst (roughness) exponent 0.72 ± 0.01. Here, we show that, independent of the temperature, the iso-height lines at the percolation threshold have a well-defined fractal dimension and are conformally invariant, sharing the same statistical properties as Schramm-Loewner evolution (SLEκ) curves with κ = 2.24 ± 0.07. Interestingly, iso-height lines of other rough surfaces are not necessarily conformally invariant even if they have the same Hurst exponent, e.g. random Gaussian surfaces. We have found that the distribution of the modulus of the Fourier coefficients plays an important role on this property. Our results not only introduce a new universality class and place the study of suspended graphene membranes within the theory of critical phenomena, but also provide hints on the long-standing question about the origin of conformal invariance in iso-height lines of rough surfaces. PMID:26961723

  12. Electrophysiological precursors of social conformity.

    PubMed

    Shestakova, Anna; Rieskamp, Jörg; Tugin, Sergey; Ossadtchi, Alexey; Krutitskaya, Janina; Klucharev, Vasily

    2013-10-01

    Humans often change their beliefs or behavior due to the behavior or opinions of others. This study explored, with the use of human event-related potentials (ERPs), whether social conformity is based on a general performance-monitoring mechanism. We tested the hypothesis that conflicts with a normative group opinion evoke a feedback-related negativity (FRN) often associated with performance monitoring and subsequent adjustment of behavior. The experimental results show that individual judgments of facial attractiveness were adjusted in line with a normative group opinion. A mismatch between individual and group opinions triggered a frontocentral negative deflection with the maximum at 200 ms, similar to FRN. Overall, a conflict with a normative group opinion triggered a cascade of neuronal responses: from an earlier FRN response reflecting a conflict with the normative opinion to a later ERP component (peaking at 380 ms) reflecting a conforming behavioral adjustment. These results add to the growing literature on neuronal mechanisms of social influence by disentangling the conflict-monitoring signal in response to the perceived violation of social norms and the neural signal of a conforming behavioral adjustment. PMID:22683703

  13. Characterization of DNA conformation inside bacterial viruses

    NASA Astrophysics Data System (ADS)

    Petrov, Anton S.; Locker, C. Rebecca; Harvey, Stephen C.

    2009-08-01

    In this study we develop a formalism to describe the organization of DNA inside bacteriophage capsids during genome packaging. We have previously shown that DNA inside bacteriophage phi29 (ϕ29) is organized into folded toroids [A. S. Petrov and S. C. Harvey, Structure 15, 21 (2007)], whereas epsilon15 (ɛ15) reveals the coaxial organization of the genetic material [A. S. Petrov, K. Lim-Hing, and S. C. Harvey, Structure 15, 807 (2007)]. We now show that each system undergoes two consecutive transitions. The first transition corresponds to the formation of global conformations and is analogous to a disorder-order conformational transition. The second transition is characterized by a significant loss of DNA mobility at the local level leading to glasslike dynamic behavior. Packing genetic material inside bacteriophages can be used as a general model to study the behavior of semiflexible chains inside confined spaces, and the proposed formalism developed here can be used to study other systems of linear polymer chains confined to closed spaces.

  14. On the cohomology of Leibniz conformal algebras

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao

    2015-04-01

    We construct a new cohomology complex of Leibniz conformal algebras with coefficients in a representation instead of a module. The low-dimensional cohomology groups of this complex are computed. Meanwhile, we construct a Leibniz algebra from a Leibniz conformal algebra and prove that the category of Leibniz conformal algebras is equivalent to the category of equivalence classes of formal distribution Leibniz algebras.

  15. 40 CFR 52.799 - Transportation conformity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Transportation conformity. 52.799... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.799 Transportation conformity. On June 4, 2010, Indiana submitted the Transportation Conformity Consultation SIP consisting...

  16. 40 CFR 52.799 - Transportation conformity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Transportation conformity. 52.799... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.799 Transportation conformity. On June 4, 2010, Indiana submitted the Transportation Conformity Consultation SIP consisting...

  17. 40 CFR 52.799 - Transportation conformity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Transportation conformity. 52.799... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.799 Transportation conformity. On June 4, 2010, Indiana submitted the Transportation Conformity Consultation SIP consisting...

  18. 40 CFR 52.799 - Transportation conformity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Transportation conformity. 52.799... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.799 Transportation conformity. On June 4, 2010, Indiana submitted the Transportation Conformity Consultation SIP consisting...

  19. 40 CFR 51.854 - Conformity analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Conformity analysis. 51.854 Section 51... FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 51.854 Conformity analysis. Link to...

  20. Theoretical modeling of UV-Vis absorption and emission spectra in liquid state systems including vibrational and conformational effects: Explicit treatment of the vibronic transitions

    SciTech Connect

    D’Abramo, Marco; Aschi, Massimiliano; Amadei, Andrea

    2014-04-28

    Here, we extend a recently introduced theoretical-computational procedure [M. D’Alessandro, M. Aschi, C. Mazzuca, A. Palleschi, and A. Amadei, J. Chem. Phys. 139, 114102 (2013)] to include quantum vibrational transitions in modelling electronic spectra of atomic molecular systems in condensed phase. The method is based on the combination of Molecular Dynamics simulations and quantum chemical calculations within the Perturbed Matrix Method approach. The main aim of the presented approach is to reproduce as much as possible the spectral line shape which results from a subtle combination of environmental and intrinsic (chromophore) mechanical-dynamical features. As a case study, we were able to model the low energy UV-vis transitions of pyrene in liquid acetonitrile in good agreement with the experimental data.

  1. 48 CFR 227.7103-12 - Government right to establish conformity of markings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Government right to establish conformity of markings. 227.7103-12 Section 227.7103-12 Federal Acquisition Regulations System..., DATA, AND COPYRIGHTS Rights in Technical Data 227.7103-12 Government right to establish conformity...

  2. Addressing Passive Smoking in Children

    PubMed Central

    Hutchinson, Sasha G.; Kuijlaars, Jennifer S.; Mesters, Ilse; Muris, Jean W. M.; van Schayck, Constant P.; Dompeling, Edward; Feron, Frans J. M.

    2014-01-01

    Background A significant number of parents are unaware or unconvinced of the health consequences of passive smoking (PS) in children. Physicians could increase parental awareness by giving personal advice. Aim To evaluate the current practices of three Dutch health professions (paediatricians, youth health care physicians, and family physicians) regarding parental counselling for passive smoking (PS) in children. Methods All physicians (n = 720) representing the three health professions in Limburg, the Netherlands, received an invitation to complete a self-administered electronic questionnaire including questions on their: sex, work experience, personal smoking habits, counselling practices and education regarding PS in children. Results The response rate was 34%. One tenth (11%) of the responding physicians always addressed PS in children, 32% often, 54% occasionally and 4% reported to never attend to it. The three health professions appeared comparable regarding their frequency of parental counselling for PS in children. Addressing PS was more likely when children had respiratory problems. Lack of time was the most frequently mentioned barrier, being very and somewhat applicable for respectively 14% and 43% of the physicians. One fourth of the responders had received postgraduate education about PS. Additionally, 49% of the responders who did not have any education about PS were interested in receiving it. Conclusions Physicians working in the paediatric field in Limburg, the Netherlands, could more frequently address PS in children with parents. Lack of time appeared to be the most mentioned barrier and physicians were more likely to counsel parents for PS in children with respiratory complaints/diseases. Finally, a need for more education on parental counselling for PS was expressed. PMID:24809443

  3. Identifying and Addressing Vaccine Hesitancy

    PubMed Central

    Kestenbaum, Lori A.; Feemster, Kristen A.

    2015-01-01

    In the 20th century, the introduction of multiple vaccines significantly reduced childhood morbidity, mortality, and disease outbreaks. Despite, and perhaps because of, their public health impact, an increasing number of parents and patients are choosing to delay or refuse vaccines. These individuals are described as vaccine hesitant. This phenomenon has developed due to the confluence of multiple social, cultural, political and personal factors. As immunization programs continue to expand, understanding and addressing vaccine hesitancy will be crucial to their successful implementation. This review explores the history of vaccine hesitancy, its causes, and suggested approaches for reducing hesitancy and strengthening vaccine acceptance. PMID:25875982

  4. Nanoscale content-addressable memory

    NASA Technical Reports Server (NTRS)

    Davis, Bryan (Inventor); Principe, Jose C. (Inventor); Fortes, Jose (Inventor)

    2009-01-01

    A combined content addressable memory device and memory interface is provided. The combined device and interface includes one or more one molecular wire crossbar memories having spaced-apart key nanowires, spaced-apart value nanowires adjacent to the key nanowires, and configurable switches between the key nanowires and the value nanowires. The combination further includes a key microwire-nanowire grid (key MNG) electrically connected to the spaced-apart key nanowires, and a value microwire-nanowire grid (value MNG) electrically connected to the spaced-apart value nanowires. A key or value MNGs selects multiple nanowires for a given key or value.

  5. Addressing the workforce pipeline challenge

    SciTech Connect

    Leonard Bond; Kevin Kostelnik; Richard Holman

    2006-11-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

  6. Conformational studies of chiral D-Lys-PNA and achiral PNA system in binding with DNA or RNA through a molecular dynamics approach.

    PubMed

    Autiero, Ida; Saviano, Michele; Langella, Emma

    2015-02-16

    The growing interest in peptide nucleic acid (PNA) oligomers has led to the development of a very wide variety of PNA derivatives. Among others, the introduction of charged chiral groups on a PNA oligomer has proven effective in improving DNA binding ability, complexation direction and cellular uptake. In particular, the introduction of three adjacent chiral monomers based on D-Lys in the middle of the PNA sequence (D-Lys-PNA) has produced noteworthy results in modulating the directionality of the binding with the DNA complementary strand and in mismatch detection. Here, through a molecular dynamics approach, a comparative study has been carried out to investigate the structural properties that drive the interaction of the chiral D-Lys-PNA and the corresponding achiral PNA system with DNA as well as RNA complementary strands, starting from the crystal structure of D-Lys-PNA in complex with DNA. The results obtained complement experimental data and indicate that the binding with the RNA molecule, compared to DNA, is differently affected by the addition of three D-Lys groups on the PNA backbone, suggesting that this modification could be taken into account for the development of new PNA-based molecules able to discriminate between DNA and RNA.

  7. Patterns and conformations in molecularly thin films

    NASA Astrophysics Data System (ADS)

    Basnet, Prem B.

    Molecularly thin films have been a subject of great interest for the last several years because of their large variety of industrial applications ranging from micro-electronics to bio-medicine. Additionally, molecularly thin films can be used as good models for biomembrane and other systems where surfaces are critical. Many different kinds of molecules can make stable films. My research has considered three such molecules: a polymerizable phospholipid, a bent-core molecules, and a polymer. One common theme of these three molecules is chirality. The phospolipid molecules studied here are strongly chiral, which can be due to intrinsically chiral centers on the molecules and also due to chiral conformations. We find that these molecules give rise to chiral patterns. Bent-core molecules are not intrinsically chiral, but individual molecules and groups of molecules can show chiral structures, which can be changed by surface interactions. One major, unconfirmed hypothesis for the polymer conformation at surface is that it forms helices, which would be chiral. Most experiments were carried out at the air/water interface, in what are called Langmuir films. Our major tools for studying these films are Brewster Angle Microscopy (BAM) coupled with the thermodynamic information that can be deduced from surface pressure isotherms. Phospholipids are one of the important constituents of liposomes -- a spherical vesicle com-posed of a bilayer membrane, typically composed of a phospholipid and cholesterol bilayer. The application of liposomes in drug delivery is well-known. Crumpling of vesicles of polymerizable phospholipids has been observed. With BAM, on Langmuir films of such phospholipids, we see novel spiral/target patterns during compression. We have found that both the patterns and the critical pressure at which they formed depend on temperature (below the transition to a i¬‘uid layer). Bent-core liquid crystals, sometimes knows as banana liquid crystals, have drawn

  8. Conformal killing tensors and covariant Hamiltonian dynamics

    SciTech Connect

    Cariglia, M.; Gibbons, G. W.; Holten, J.-W. van; Horvathy, P. A.; Zhang, P.-M.

    2014-12-15

    A covariant algorithm for deriving the conserved quantities for natural Hamiltonian systems is combined with the non-relativistic framework of Eisenhart, and of Duval, in which the classical trajectories arise as geodesics in a higher dimensional space-time, realized by Brinkmann manifolds. Conserved quantities which are polynomial in the momenta can be built using time-dependent conformal Killing tensors with flux. The latter are associated with terms proportional to the Hamiltonian in the lower dimensional theory and with spectrum generating algebras for higher dimensional quantities of order 1 and 2 in the momenta. Illustrations of the general theory include the Runge-Lenz vector for planetary motion with a time-dependent gravitational constant G(t), motion in a time-dependent electromagnetic field of a certain form, quantum dots, the Hénon-Heiles and Holt systems, respectively, providing us with Killing tensors of rank that ranges from one to six.

  9. Recovering a representative conformational ensemble from underdetermined macromolecular structural data.

    PubMed

    Berlin, Konstantin; Castañeda, Carlos A; Schneidman-Duhovny, Dina; Sali, Andrej; Nava-Tudela, Alfredo; Fushman, David

    2013-11-01

    Structural analysis of proteins and nucleic acids is complicated by their inherent flexibility, conferred, for example, by linkers between their contiguous domains. Therefore, the macromolecule needs to be represented by an ensemble of conformations instead of a single conformation. Determining this ensemble is challenging because the experimental data are a convoluted average of contributions from multiple conformations. As the number of the ensemble degrees of freedom generally greatly exceeds the number of independent observables, directly deconvolving experimental data into a representative ensemble is an ill-posed problem. Recent developments in sparse approximations and compressive sensing have demonstrated that useful information can be recovered from underdetermined (ill-posed) systems of linear equations by using sparsity regularization. Inspired by these advances, we designed the Sparse Ensemble Selection (SES) method for recovering multiple conformations from a limited number of observations. SES is more general and accurate than previously published minimum-ensemble methods, and we use it to obtain representative conformational ensembles of Lys48-linked diubiquitin, characterized by the residual dipolar coupling data measured at several pH conditions. These representative ensembles are validated against NMR chemical shift perturbation data and compared to maximum-entropy results. The SES method reproduced and quantified the previously observed pH dependence of the major conformation of Lys48-linked diubiquitin, and revealed lesser-populated conformations that are preorganized for binding known diubiquitin receptors, thus providing insights into possible mechanisms of receptor recognition by polyubiquitin. SES is applicable to any experimental observables that can be expressed as a weighted linear combination of data for individual states.

  10. The Biological Bases of Conformity

    PubMed Central

    Morgan, T. J. H.; Laland, K. N.

    2012-01-01

    Humans are characterized by an extreme dependence on culturally transmitted information and recent formal theory predicts that natural selection should favor adaptive learning strategies that facilitate effective copying and decision making. One strategy that has attracted particular attention is conformist transmission, defined as the disproportionately likely adoption of the most common variant. Conformity has historically been emphasized as significant in the social psychology literature, and recently there have also been reports of conformist behavior in non-human animals. However, mathematical analyses differ in how important and widespread they expect conformity to be, and relevant experimental work is scarce, and generates findings that are both mutually contradictory and inconsistent with the predictions of the models. We review the relevant literature considering the causation, function, history, and ontogeny of conformity, and describe a computer-based experiment on human subjects that we carried out in order to resolve ambiguities. We found that only when many demonstrators were available and subjects were uncertain was subject behavior conformist. A further analysis found that the underlying response to social information alone was generally conformist. Thus, our data are consistent with a conformist use of social information, but as subjects’ behavior is the result of both social and asocial influences, the resultant behavior may not be conformist. We end by relating these findings to an embryonic cognitive neuroscience literature that has recently begun to explore the neural bases of social learning. Here conformist transmission may be a particularly useful case study, not only because there are well-defined and tractable opportunities to characterize the biological underpinnings of this form of social learning, but also because early findings imply that humans may possess specific cognitive adaptations for effective social learning. PMID:22712006

  11. Addressing viral resistance through vaccines

    PubMed Central

    Laughlin, Catherine; Schleif, Amanda; Heilman, Carole A

    2015-01-01

    Antimicrobial resistance is a serious healthcare concern affecting millions of people around the world. Antiviral resistance has been viewed as a lesser threat than antibiotic resistance, but it is important to consider approaches to address this growing issue. While vaccination is a logical strategy, and has been shown to be successful many times over, next generation viral vaccines with a specific goal of curbing antiviral resistance will need to clear several hurdles including vaccine design, evaluation and implementation. This article suggests that a new model of vaccination may need to be considered: rather than focusing on public health, this model would primarily target sectors of the population who are at high risk for complications from certain infections. PMID:26604979

  12. Changing concepts: the presidential address.

    PubMed

    Weed, J C

    1974-09-01

    A discussion of conceptual change in areas related to fertility and medicine is presented in an address by the president of the American Fertility Society. Advances in technological research and medicine, particularly in steroids and reporductive physiology, have been the most readily acceptable changes. Cesarean section and surgical sterilization have also become increasingly accepted. Newer developments such as sperm banks, artificial insemination, and ovum transfer have created profound ethical, moral, and medical issued in human engineering research and evolutionary theory. The legalization of abortion has brought moral, ethical, and legal problems for many members of the medical profession. It is urged that the Society promote education of the people in reproductive function, sexual activity, and parental obligation while being acutely aware of the problems in influencing or altering human reproduction.

  13. Light addressable photoelectrochemical cyanide sensor

    SciTech Connect

    Licht, S.; Myung, N.; Sun, Y.

    1996-03-15

    A sensor is demonstrated that is capable of spatial discrimination of cyanide with use of only a single stationary sensing element. Different spatial regions of the sensing element are light activated to reveal the solution cyanide concentration only at the point of illumination. In this light addressable photoelectrochemical (LAP) sensor the sensing element consists of an n-CdSe electrode immersed in solution, with the open-circuit potential determined under illumination. In alkaline ferro-ferri-cyanide solution, the open-circuit photopotential is highly responsive to cyanide, with a linear response of (120 mV) log [KCN]. LAP detection with a spatial resolution of {+-}1 mm for cyanide detection is demonstrated. The response is almost linear for 0.001-0.100 m cyanide with a resolution of 5 mV. 38 refs., 7 figs., 1 tab.

  14. Conformance Verification of Privacy Policies

    NASA Astrophysics Data System (ADS)

    Fu, Xiang

    Web applications are both the consumers and providers of information. To increase customer confidence, many websites choose to publish their privacy protection policies. However, policy conformance is often neglected. We propose a logic based framework for formally specifying and reasoning about the implementation of privacy protection by a web application. A first order extension of computation tree logic is used to specify a policy. A verification paradigm, built upon a static control/data flow analysis, is presented to verify if a policy is satisfied.

  15. Toward TeV Conformality

    SciTech Connect

    Appelquist, T; Avakian, A; Babich, R; Brower, R C; Cheng, M; Clark, M A; Cohen, S D; Fleming, G T; Kiskis, J; Neil, E T; Osborn, J C; Rebbi, C; Schaich, D; Soltz, R; Vranas, P

    2009-11-30

    We study the chiral condensate <{bar {psi}}{psi}> for an SU(3) gauge theory with N{sub f} massless Dirac fermions in the fundamental representation when N{sub f} is increased from 2 to 6. For N{sub f} = 2, our lattice simulations of <{bar {psi}}{psi}>/F{sup 3}, where F is the Nambu-Goldstone-boson decay constant, agree with the measured QCD value. For N{sub f} = 6, this ratio shows significant enhancement, presaging an even larger enhancement anticipated as N{sub f} increases further, toward the critical value for transition from confinement to infrared conformality.

  16. Modelling protein side-chain conformations using constraint logic programming.

    PubMed

    Swain, M T; Kemp, G J

    2001-12-01

    Side-chain placement is an important sub-task in protein modelling. Selecting conformations for side-chains is a difficult problem because of the large search space to be explored. This problem can be addressed using constraint logic programming (CLP), which is an artificial intelligence technique developed to solve large combinatorial search problems. The side-chain placement problem can be expressed as a CLP program in which rotamer conformations are used as values for finite domain variables, and bad steric contacts involving rotamers are represented as constraints. This paper introduces the concept of null rotamers, and shows how these can be used in implementing a novel iterative approach. We present results that compare the accuracy of models constructed using different rotamer libraries and different domain variable enumeration heuristics. The results obtained using this CLP-based approach compare favourably with those obtained by other methods.

  17. pH-dependent conformational changes of diphtheria toxin adsorbed to lipid monolayers by neutron and X-ray reflection

    NASA Astrophysics Data System (ADS)

    Kent, Michael; Yim, Hyun; Satija, Sushil; Kuzmenko, Ivan

    2006-03-01

    Several important bacterial toxins, such as diphtheria, tetanus, and botulinum, invade cells through a process of high affinity binding, internalization via endosome formation, and subsequent membrane penetration of the catalytic domain activated by a pH drop in the endosome. These toxins are composed of three domains: a binding domain, a translocation domain, and an enzyme. The translocation process is not well understood with regard to the detailed conformational changes that occur at each step, To address this, we performed neutron reflectivity measurements for diphtheria toxin bound to lipid monolayers as a function of pH. While the final membrane inserted conformation will not be reproduced with the present monolayer system, important insights can still be gained into several intermediate stages. In particular, we show that no adsorption occurs at pH = 7.6, but strong adsorption occurs over at a pH range from 6.5 to 6.0. Following binding, at least two stages of conformational change occur, as the thickness increases from pH 6.3 to 5.3 and then decreases from pH 5.3 to 4.5. In addition, the dimension of the adsorbed layer substantially exceeds that of the largest dimension in the crystal structure of monomeric diphtheria, suggesting that the toxin may be present as multimers.

  18. Intensity-Modulated and 3D-Conformal Radiotherapy for Whole-Ventricular Irradiation as Compared With Conventional Whole-Brain Irradiation in the Management of Localized Central Nervous System Germ Cell Tumors

    SciTech Connect

    Chen, Michael Jenwei; Silva Santos, Adriana da; Sakuraba, Roberto Kenji; Lopes, Cleverson Perceu; Goncalves, Vinicius Demanboro; Weltman, Eduardo; Ferrigno, Robson; Cruz, Jose Carlos

    2010-02-01

    Purpose: To compare the sparing potential of cerebral hemispheres with intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for whole-ventricular irradiation (WVI) and conventional whole-brain irradiation (WBI) in the management of localized central nervous system germ cell tumors (CNSGCTs). Methods and Materials: Ten cases of patients with localized CNSGCTs and submitted to WVI by use of IMRT with or without a 'boost' to the primary lesion were selected. For comparison purposes, similar treatment plans were produced by use of 3D-CRT (WVI with or without boost) and WBI (opposed lateral fields with or without boost), and cerebral hemisphere sparing was evaluated at dose levels ranging from 2 Gy to 40 Gy. Results: The median prescription dose for WVI was 30.6 Gy (range, 25.2-37.5 Gy), and that for the boost was 16.5 Gy (range, 0-23.4 Gy). Mean irradiated cerebral hemisphere volumes were lower for WVI with IMRT than for 3D-CRT and were lower for WVI with 3D-CRT than for WBI. Intensity-modulated radiotherapy was associated with the lowest irradiated volumes, with reductions of 7.5%, 12.2%, and 9.0% at dose levels of 20, 30, and 40 Gy, respectively, compared with 3D-CRT. Intensity-modulated radiotherapy provided statistically significant reductions of median irradiated volumes at all dose levels (p = 0.002 or less). However, estimated radiation doses to peripheral areas of the body were 1.9 times higher with IMRT than with 3D-CRT. Conclusions: Although IMRT is associated with increased radiation doses to peripheral areas of the body, its use can spare a significant amount of normal central nervous system tissue compared with 3D-CRT or WBI in the setting of CNSGCT treatment.

  19. The valence electronic structure and conformational flexibility of epichlorohydrin.

    PubMed

    Stranges, S; Alagia, M; Decleva, P; Stener, M; Fronzoni, G; Toffoli, D; Speranza, M; Catone, D; Turchini, S; Prosperi, T; Zema, N; Contini, G; Keheyan, Y

    2011-07-21

    The electronic structure of epichlorohydrin is investigated in the whole valence region by a combined experimental and theoretical study. The issue of controversial assignments of the molecular electronic structure is here addressed. Photoelectron spectra (PES) and Threshold Photoelectron spectra (TPES) of room temperature molecules in the gas phase are recorded. Geometries and energies of the stable conformers due to internal rotation of the C-C-C-Cl dihedral angle, gauche-II (g-II), gauche-I (g-I), and cis, are calculated, and the effect of the conformational flexibility on the photoionization energetics is studied by DFT and 2h-1p Configuration Interaction (CI) methods. Strong breakdown of the Koopmans Theorem (KT) is obtained for the four outermost ionizations, which are further investigated by higher level ab initio calculations. The full assignment of the spectrum is put on a firm basis by the combination of experimental and theoretical results. The orbital composition from correlated calculations is found closer to the DFT orbitals, which are then used to analyze the electronic structure of the molecule. The Highest Occupied Molecular Orbital (HOMO) and HOMO--2 are n(O)/n(Cl) mixed orbitals. The nature of each valence MO is generally preserved in all the conformers, although the magnitude of the n(O)/n(Cl) mixing in HOMO and HOMO--2 varies to some extent with the C-C-C-Cl dihedral angle. The low energy part of the HOMO PE band is predicted to be substantially affected by the conformational flexibility, as experimentally observed in the spectra. The rest of the spectrum is described in terms of the dominant conformer g-II, and a good agreement between experiment and theory is found. The inner-valence PE spectrum is characterized by satellite structures, due to electron correlation effects, which are interpreted by means of 2h-1p CI calculations.

  20. Inactive conformation enhances binding function in physiological conditions

    PubMed Central

    Yakovenko, Olga; Tchesnokova, Veronika; Sokurenko, Evgeni V.; Thomas, Wendy E.

    2015-01-01

    Many receptors display conformational flexibility, in which the binding pocket has an open inactive conformation in the absence of ligand and a tight active conformation when bound to ligand. Here we study the bacterial adhesin FimH to address the role of the inactive conformation of the pocket for initiating binding by comparing two variants: a wild-type FimH variant that is in the inactive state when not bound to its target mannose, and an engineered activated variant that is always in the active state. Not surprisingly, activated FimH has a longer lifetime and higher affinity, and bacteria expressing activated FimH bound better in static conditions. However, bacteria expressing wild-type FimH bound better in flow. Wild-type and activated FimH demonstrated similar mechanical strength, likely because mechanical force induces the active state in wild-type FimH. However, wild-type FimH displayed a faster bond association rate than activated FimH. Moreover, the ability of different FimH variants to mediate adhesion in flow reflected the fraction of FimH in the inactive state. These results demonstrate a new model for ligand-associated conformational changes that we call the kinetic-selection model, in which ligand-binding selects the faster-binding inactive state and then induces the active state. This model predicts that in physiological conditions for cell adhesion, mechanical force will drive a nonequilibrium cycle that uses the fast binding rate of the inactive state and slow unbinding rate of the active state, for a higher effective affinity than is possible at equilibrium. PMID:26216967