Science.gov

Sample records for addressing global warming

  1. Global Warming.

    ERIC Educational Resources Information Center

    Hileman, Bette

    1989-01-01

    States the foundations of the theory of global warming. Describes methodologies used to measure the changes in the atmosphere. Discusses steps currently being taken in the United States and the world to slow the warming trend. Recognizes many sources for the warming and the possible effects on the earth. (MVL)

  2. Addressing global warming and biodiversity through forest restoration and coastal wetlands creation

    PubMed

    Williams

    1999-10-18

    The Climate Challenge is a partnership between the Department of Energy and the electric utility industry to reduce, avoid, and sequester greenhouse gases. A portion of the initiative, the sequestration of greenhouse gases, is the focus of this presentation. Over 4 million acres of bottomland hardwood forests were cleared for agriculture in the Mississippi River Valley in the 1970s. Reestablishing these forests would improve depleted wildlife habitats, serve as wildlife corridors, increase biodiversity, and decrease soil erosion. Louisiana is losing coastal wetlands at a rate of approximately 25 square miles/year. This coastal erosion is due to a number of factors and many efforts are currently underway to address the matter. One such effort is the use of material generated in the dredging of navigational canals; however, this material is low in nutrient value, making the regeneration of marsh grasses more difficult. In addition, bottomland hardwood forests and coastal wetland grasses are excellent 'carbon sinks' because they take carbon dioxide out of the atmosphere and store it in living plant tissue. Entergy Services, Inc. is an electric utility with a service territory that comprises portions of both the Lower Mississippi River Valley and the Gulf of Mexico coastline. This provides an opportunity to positively address both habitat losses noted above while at the same time addressing global warming, forest fragmentation, and biodiversity. Entergy, through its affiliation with the UtiliTree Carbon Company, is participating in projects that will investigate the feasibility of using bottomland hardwood reforestation on cleared marginal farmlands now managed by the Louisiana Department of Wildlife and Fisheries and the US Fish and Wildlife Service. Entergy has also begun a research project with the Environmental Protection Agency and the State of Louisiana. The research is a compost demonstration project that will utilize wood waste generated through our tree

  3. Global Warming?

    ERIC Educational Resources Information Center

    Eichman, Julia Christensen; Brown, Jeff A.

    1994-01-01

    Presents information and data on an experiment designed to test whether different atmosphere compositions are affected by light and temperature during both cooling and heating. Although flawed, the experiment should help students appreciate the difficulties that researchers face when trying to find evidence of global warming. (PR)

  4. Global warming

    NASA Astrophysics Data System (ADS)

    Houghton, John

    2005-06-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources.

  5. Identifying and Addressing Students' Alternative Conceptions of the Causes of Global Warming: The Need for Cognitive Conflict

    NASA Astrophysics Data System (ADS)

    Meadows, George; Wiesenmayer, Randall L.

    1999-09-01

    School-age children are frequently exposed to issues related to global warming/global climatic change. Yet, their conceptions regarding the scope and nature of this phenomenon are often incomplete or even inconstant with predominant scientific understandings. The complex conceptual knowledge required to understand issues related to global warming create learning situations that harbor the development of incomplete or inaccurate ideas related to global warming. This study presents some of those misconceptions and discusses strategies for mitigation.

  6. Global warming on trial

    SciTech Connect

    Broeker, W.S.

    1992-04-01

    Jim Hansen, a climatologist at NASA's Goddard Space Institute, is convinced that the earth's temperature is rising and places the blame on the buildup of greenhouse gases in the atmosphere. Unconvinced, John Sununu, former White House chief of staff, doubts that the warming will be great enough to produce serious threat and fears that measures to reduce the emissions would throw a wrench into the gears that drive the Unites States' troubled economy. During his three years at the White House, Sununu's view prevailed, and although his role in the debate has diminished, others continue to cast doubt on the reality of global warming. A new lobbying group called the Climate Council has been created to do just this. Burning fossil fuels is not the only problem; a fifth of emissions of carbon dioxide now come from clearing and burning forests. Scientists are also tracking a host of other greenhouse gases that emanate from a variety of human activities; the warming effect of methane, chlorofluorocarbons and nitrous oxide combined equals that of carbon dioxide. Although the current warming from these gases may be difficult to detect against the background noise of natural climate variation, most climatologists are certain that as the gases continue to accumulate, increases in the earth's temperature will become evident even to skeptics. If the reality of global warming were put on trial, each side would have trouble making its case. Jim Hansen's side could not prove beyond a reasonable doubt that carbon dioxide and other greenhouse gases have warmed the planet. But neither could John Sununu's side prove beyond a reasonable doubt that the warming expected from greenhouse gases has not occurred. To see why each side would have difficulty proving its case, this article reviews the arguments that might be presented in such a hearing.

  7. Military Implications of Global Warming.

    DTIC Science & Technology

    2007-11-02

    U.S. environmental issues also have important global implications. This paper analyzes current U.S. Policy as it pertains to global warming and climate...for military involvement to reduce global warming . Global warming and other environmental issues are important to the U.S. military. As the United

  8. Is Global Warming Accelerating?

    NASA Astrophysics Data System (ADS)

    Shukla, J.; Delsole, T. M.; Tippett, M. K.

    2009-12-01

    A global pattern that fluctuates naturally on decadal time scales is identified in climate simulations and observations. This newly discovered component, called the Global Multidecadal Oscillation (GMO), is related to the Atlantic Meridional Oscillation and shown to account for a substantial fraction of decadal fluctuations in the observed global average sea surface temperature. IPCC-class climate models generally underestimate the variance of the GMO, and hence underestimate the decadal fluctuations due to this component of natural variability. Decomposing observed sea surface temperature into a component due to anthropogenic and natural radiative forcing plus the GMO, reveals that most multidecadal fluctuations in the observed global average sea surface temperature can be accounted for by these two components alone. The fact that the GMO varies naturally on multidecadal time scales implies that it can be predicted with some skill on decadal time scales, which provides a scientific rationale for decadal predictions. Furthermore, the GMO is shown to account for about half of the warming in the last 25 years and hence a substantial fraction of the recent acceleration in the rate of increase in global average sea surface temperature. Nevertheless, in terms of the global average “well-observed” sea surface temperature, the GMO can account for only about 0.1° C in transient, decadal-scale fluctuations, not the century-long 1° C warming that has been observed during the twentieth century.

  9. Global Warming And Meltwater

    NASA Astrophysics Data System (ADS)

    Bratu, S.

    2012-04-01

    In order to find new approaches and new ideas for my students to appreciate the importance of science in their daily life, I proposed a theme for them to debate. They had to search for global warming information and illustrations in the media, and discuss the articles they found in the classroom. This task inspired them to search for new information about this important and timely theme in science. I informed my students that all the best information about global warming and meltwater they found would be used in a poster that would help us to update the knowledge base of the Physics laboratory. I guided them to choose the most eloquent images and significant information. Searching and working to create this poster, the students arrived to better appreciate the importance of science in their daily life and to critically evaluate scientific information transmitted via the media. In the poster we created, one can find images, photos and diagrams and some interesting information: Global warming refers to the rising average temperature of the Earth's atmosphere and oceans and its projected evolution. In the last 100 years, the Earth's average surface temperature increased by about 0.8 °C with about two thirds of the increase occurring over just the last three decades. Warming of the climate system is unequivocal, and scientists are more than 90% certain most of it is caused by increasing concentrations of greenhouse gases produced by human activities such as deforestation and burning fossil fuel. They indicate that during the 21st century the global surface temperature is likely to rise a further 1.1 to 2.9 °C for the lowest emissions scenario and 2.4 to 6.4 °C for the highest predictions. An increase in global temperature will cause sea levels to rise and will change the amount and pattern of precipitation, and potentially result in expansion of subtropical deserts. Warming is expected to be strongest in the Arctic and would be associated with continuing decrease of

  10. Global warming challenge

    SciTech Connect

    Hengeveld, H. )

    1994-11-01

    Global warming will necessitate significant adjustments in Canadian society and its economy. In 1979, the Canadian federal government created its Canadian Climate Program (CCP) in collaboration with other agencies, institutions, and individuals. It sought to coordinate national efforts to understand global and regional climate, and to promote better use of the emerging knowledge. Much of the CCP-coordinated research into sources and sinks of greenhouse gases interfaces with other national and international programs. Other researchers have become involved in the Northern Wetlands Study, a cooperative United States-Canada initiative to understand the role of huge northern bogs and muskegs in the carbon cycle. Because of the need to understand how the whole, linked climate system works, climate modeling emerged as a key focus of current research. 35 refs., 4 figs.

  11. Global warming: Economic policy responses

    SciTech Connect

    Dornbusch, R.; Poterba, J.M.

    1991-01-01

    This volume contains the proceedings of a conference that brought together economic experts from Europe, the US, Latin America, and Japan to evaluate key issues in the policy debate in global warming. The following issues are at the center of debates on alternative policies to address global warming: scientific evidence on the magnitude of global warming and the extent to which it is due to human activities; availability of economic tools to control the anthropogenic emissions of greenhouse gases, and how vigorously should they be applied; and political economy considerations which influence the design of an international program for controlling greenhouse gases. Many perspectives are offered on the approaches to remedying environmental problems that are currently being pursued in Europe and the Pacific Rim. Deforestation in the Amazon is discussed, as well as ways to slow it. Public finance assessments are presented of both the domestic and international policy issues raised by plans to levy a tax on the carbon emissions from various fossil fuels. Nine chapters have been processed separately for inclusion in the appropriate data bases.

  12. Global Warming on Triton

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Hammel, H. B.; Wasserman, L. H.; Franz, O. G.; McDonald, S. W.; Person, M. J.; Olkin, C. B.; Dunham, E. J.; Spencer, J. R.; Stansberry, J. A.; Buie, M. W.; Pasachoff, J. M.; Babcock, B. A.; McConnochie, T. H.

    1998-01-01

    Triton, Neptune's largest moon, has been predicted to undergo significant seasonal changes that would reveal themselves as changes in its mean frost temperature. But whether this temperature should at the present time be increasing, decreasing or constant depends on a number of parameters (such as the thermal properties of the surface, and frost migration patterns) that are unknown. Here we report observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. Our most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years, significantly faster than predicted by any published frost model for Triton. Our result suggests that permanent polar caps on Triton play a c dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto.

  13. Global Warming Trends.

    ERIC Educational Resources Information Center

    Jones, Philip D.; Wigley, Tom M. L.

    1990-01-01

    Results from the analysis of land and marine records from the past century are presented. It is indicated that the planet earth has warmed about one-half of a degree celsius. The uncertainty of these measurements and future warming trends are discussed. (CW)

  14. Global warming potentials of Hydrofluoroethers.

    PubMed

    Blowers, Paul; Moline, Dena Marie; Tetrault, Kyle Franklin; Wheeler, R'nld Ruth; Tuchawena, Shane Lee

    2008-02-15

    Global warming potentials are estimated for hydrofluoroethers, which are an emerging class of compounds for industrial use. Comparisons are made to the limited data previously available before observations about molecular design are discussed. We quantify how molecular structure can be manipulated to reduce environmental impacts due to global warming. We further highlight the need for additional research on this class of compounds so environmental performance can be assessed for green design.

  15. Global warming 'confirmed'

    NASA Astrophysics Data System (ADS)

    2011-12-01

    In October, the Berkeley Earth Surface Temperature project, funded in part by climate sceptics, concluded that the Earth is warming based on the most comprehensive review of the data yet. Nature Climate Change talks to the project's director, physicist Richard Muller.

  16. Is global warming harmful to health?

    PubMed

    Epstein, P R

    2000-08-01

    Projections from computer models predict that global warming will expand the incidence and distribution of many serious medical disorders. Global warming, aside from indirectly causing death by drowning or starvation, promotes by various means the emergence, resurgence, and spread of infectious diseases. This article addresses the health effects of global warming and disrupted climate patterns in detail. Among the greatest health concerns are diseases transmitted by mosquitoes, such as malaria, dengue fever, yellow fever, and several kinds of encephalitis. Such disorders are projected to become increasingly prevalent because their insect carriers are very sensitive to meteorological conditions. In addition, floods and droughts resulting from global warming can each help trigger outbreaks by creating breeding grounds for insects whose desiccated eggs remain viable and hatch in still water. Other effects of global warming on health include the growth of opportunist populations and the increase of the incidence of waterborne diseases because of lack of clean water. In view of this, several steps are cited in order to facilitate the successful management of the dangers of global warming.

  17. Global warming and health: a review.

    PubMed

    Amofah, G K

    1996-08-01

    The paper looks at the phenomenon of global warming and its potential health effects and outlines a number of plausible response by the health sector in developing countries to its threat. It suggests that the health sector should facilitate an international effort at addressing this challenge, mainly through advocacy, epidemiological surveillance and awareness creation.

  18. Global warming and infectious disease.

    PubMed

    Khasnis, Atul A; Nettleman, Mary D

    2005-01-01

    Global warming has serious implications for all aspects of human life, including infectious diseases. The effect of global warming depends on the complex interaction between the human host population and the causative infectious agent. From the human standpoint, changes in the environment may trigger human migration, causing disease patterns to shift. Crop failures and famine may reduce host resistance to infections. Disease transmission may be enhanced through the scarcity and contamination of potable water sources. Importantly, significant economic and political stresses may damage the existing public health infrastructure, leaving mankind poorly prepared for unexpected epidemics. Global warming will certainly affect the abundance and distribution of disease vectors. Altitudes that are currently too cool to sustain vectors will become more conducive to them. Some vector populations may expand into new geographic areas, whereas others may disappear. Malaria, dengue, plague, and viruses causing encephalitic syndromes are among the many vector-borne diseases likely to be affected. Some models suggest that vector-borne diseases will become more common as the earth warms, although caution is needed in interpreting these predictions. Clearly, global warming will cause changes in the epidemiology of infectious diseases. The ability of mankind to react or adapt is dependent upon the magnitude and speed of the change. The outcome will also depend on our ability to recognize epidemics early, to contain them effectively, to provide appropriate treatment, and to commit resources to prevention and research.

  19. Global warming without global mean precipitation increase?

    PubMed Central

    Salzmann, Marc

    2016-01-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K−1 decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge. PMID:27386558

  20. Global warming without global mean precipitation increase?

    PubMed

    Salzmann, Marc

    2016-06-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge.

  1. Addressing Global Warming, Air Pollution, Energy Security, and Jobs with Roadmaps for Changing the All-Purpose Energy Infrastructure of the 50 United States

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2014-12-01

    Global warming, air pollution, and energy insecurity are three of the most significant problems facing the world today. This talk discusses the development of technical and economic plans to convert the energy infrastructure of each of the 50 United States to those powered by 100% wind, water, and sunlight (WWS) for all purposes, namely electricity, transportation, industry, and heating/cooling, after energy efficiency measures have been accounted for. The plans call for all new energy to be WWS by 2020, ~80% conversion of existing energy by 2030, and 100% by 2050 through aggressive policy measures and natural transition. Resource availability, footprint and spacing areas required, jobs created versus lost, energy costs, avoided costs from air pollution mortality and morbidity and climate damage, and methods of ensuring reliability of the grid are discussed. Please see http://web.stanford.edu/group/efmh/jacobson/Articles/I/WWS-50-USState-plans.html

  2. Global warming at the summit

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    During the recent summit meeting between Russian President Vladimir Putin and U.S. President Bill Clinton, the two leaders reaffirmed their concerns about global warming and the need to continue to take actions to try to reduce the threat.In a June 4 joint statement, they stressed the need to develop flexibility mechanisms, including international emissions trading, under the Kyoto Protocol to the United Nations Framework Convention on Climate Change. They also noted that initiatives to reduce the risk of greenhouse warming, including specific mechanisms of the Kyoto Protocol, could potentially promote economic growth.

  3. Policies on global warming and ozone depletion

    SciTech Connect

    Green, B.

    1987-04-01

    The recent discovery of a dramatic seasonal drop in the amount of ozone over Antarctica has catalyzed concern for protection of stratospheric ozone, the layer of gas that shields the entire planet from excess ultraviolet radiation. Conservative scientific models predict about a 5% reduction in the amount of global ozone by the middle of the next century, with large local variations. The predicted global warming from increased emissions of greenhouse gases will also have differing effects on local climate and weather conditions and consequently on agriculture. Although numerous uncertainties are associated with both ozone depletion and a global warming, there is a consensus that world leaders need to address the problems. The US Congress is now beginning to take note of the task. In this article, one representative outlines some perceptions of the problems and the policy options available to Congress.

  4. The threat of global warming

    SciTech Connect

    1995-12-15

    If the scientific predictions of global warming hold true, there`s trouble ahead for much of the world`s fresh water - and for people living in low-lying areas. The phenomenon, first described in the 1980`s, attributes projected rises in global temperatures to the emission of carbon dioxide and other {open_quotes}greenhouse gases,{close_quotes} so called because they trap the sun`s solar energy close to the Earth`s surface, much as a glass roof helps keep a greenhouse warm. The overwhelming source of these emission is the burning of fossil fuels such as oil, gasoline, coal and natural gas, the principal power sources of modern industry and transportation. In 1988, the United Nations set up the Intergovernmental Panel on Climate Change (IPCC) to study the validity and potential effects of global warming. The panel, composed of an international group of climate scientists, issued a report in June 1990 predicting a nearly two-degree rise in the globe`s average temperature by 2020. At that unprecedented rate of increase, the panel found, humankind would be living in a hotter environment that ever before.

  5. The Discovery of Global Warming

    NASA Astrophysics Data System (ADS)

    MacCracken, Michael C.

    2004-07-01

    At the beginning of the twentieth century, the prospect of ``global warming'' as a result of human activities was thought to be far off, and in any case, likely to be beneficial. As we begin the twenty-first century, science adviser to the British government, Sir David King, has said that he considers global warming to be the world's most important problem, including terrorism. Yet, dealing with it has become the subject of a contentious international protocol, numerous conferences of international diplomats, and major scientific assessments and research programs. Spencer Weart, who is director of the Center for History of Physics of the American Institute of Physics, has taken on the challenge of explaining how this came to be. In the tradition of the Intergovernmental Panel on Climate Change (IPCC), which was established in 1988 to evaluate and assess the state of global warming science, this book is roughly equivalent to the Technical Summary, in terms of its technical level, being quite readable, but with substantive content about the main lines of evidence. Underpinning this relatively concise presentation, there is a well-developed-and still developing-Web site that, like the detailed chapters of the full IPCC assessment reports, provides vastly more information and linkages to a much wider set of reference materials (see http://www.aip.org/history/climate).

  6. Global warming and nuclear power

    SciTech Connect

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  7. Local warming: daily temperature change influences belief in global warming.

    PubMed

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  8. Global warming and biological diversity

    SciTech Connect

    Peters, R.L.; Lovejoy, T.E.

    1992-01-01

    This book is based on presentations given at the World Wildlife Fund's Conference on Consequences of the Greenhouse Effect for Biological Diverisity in 1988, and includes updated literature citations. The general topics covered in the book include the following: overview; summary of past responses of plants to climatic change; general ecological and physiological responses; ecosystems in 4 specific regions (arctic marine, Alaskan North Slope, NW US forests, and Mediterranean); global warming's implications for conservation. Ideas and data from many ecosystems and information about the relationships between biodiversity and climatic change are brought together with a balance of factual information and defensible scientific prognostication.

  9. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1995-01-01

    A resource for teaching about the consequences of global warming. Discusses feedback from the temperature increase, changes in the global precipitation pattern, effects on agriculture, weather extremes, effects on forests, effects on biodiversity, effects on sea levels, and actions which will help the global community cope with global warming. (LZ)

  10. Population growth and global warming.

    PubMed

    Short, R V

    2009-01-01

    When I was born in 1930, the human population of the world was a mere 2 billion. Today, it has already reached 6.8 billion, and is projected to reach 9.1 billion by 2050. That is unsustainable. It is slowly beginning to dawn on us that Global Warming is the result of increasing human CO2 emissions, and the more people there are in the world, the worse it will become. Ultimately, it is the sky that will prove to be the limit to our numbers. The developed countries of the world are the most affluent, and also the most effluent, so we must lead by example and contain our own population growth and per capita emissions. We also have a big debt to repay to former colonial territories in Africa, Asia and South America, who desperately need our help to contain their excessive rates of population growth. Belgian and Dutch obstetricians and gynaecologists can play a critical role in this endeavour. After all, we already have a pill that will stop global warming - the oral contraceptive pill.

  11. Global Warming Estimation from MSU

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, Robert; Yoo, Jung-Moon

    1998-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz) from sequential, sun-synchronous, polar-orbiting NOAA satellites contain small systematic errors. Some of these errors are time-dependent and some are time-independent. Small errors in Ch 2 data of successive satellites arise from calibration differences. Also, successive NOAA satellites tend to have different Local Equatorial Crossing Times (LECT), which introduce differences in Ch 2 data due to the diurnal cycle. These two sources of systematic error are largely time independent. However, because of atmospheric drag, there can be a drift in the LECT of a given satellite, which introduces time-dependent systematic errors. One of these errors is due to the progressive chance in the diurnal cycle and the other is due to associated chances in instrument heating by the sun. In order to infer global temperature trend from the these MSU data, we have eliminated explicitly the time-independent systematic errors. Both of the time-dependent errors cannot be assessed from each satellite. For this reason, their cumulative effect on the global temperature trend is evaluated implicitly. Christy et al. (1998) (CSL). based on their method of analysis of the MSU Ch 2 data, infer a global temperature cooling trend (-0.046 K per decade) from 1979 to 1997, although their near nadir measurements yield near zero trend (0.003 K/decade). Utilising an independent method of analysis, we infer global temperature warmed by 0.12 +/- 0.06 C per decade from the observations of the MSU Ch 2 during the period 1980 to 1997.

  12. Global warming, insurance losses and financial industry

    SciTech Connect

    Low, N.C.

    1996-12-31

    Global warming causes extremely bad weather in the near term. They have already caught the attention of the insurance industry, as they suffered massive losses in the last decade. Twenty-one out of the 25 largest catastrophes in the US, mainly in the form of hurricanes have occurred in the last decade. The insurance industry has reacted by taking the risk of global warming in decisions as to pricing and underwriting decisions. But they have yet to take a more active role in regulating the factors that contributes to global warming. How global warming can impact the financial industry and the modern economy is explored. Insurance and modern financial derivatives are key to the efficient functioning of the modern economy, without which the global economy can still function but will take a giant step backward. Any risk as global warming that causes economic surprises will hamper the efficient working of the financial market and the modern economy.

  13. Global Warming: How Much and Why?

    ERIC Educational Resources Information Center

    Lanouette, William

    1990-01-01

    Summarizes the history of the study of global warming and includes a discussion of the role of gases, like carbon dioxide, methane, and chlorofluorocarbon (CFC). Discusses modern research on the global warming, including computer modelling and the super-greenhouse effect. (YP)

  14. Global Warming: Lessons from Ozone Depletion

    ERIC Educational Resources Information Center

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  15. Exploring the Sociopolitical Dimensions of Global Warming

    ERIC Educational Resources Information Center

    Sadler, Troy D.; Klosterman, Michelle L.

    2009-01-01

    The authors present an activity to help high school students conceptualize the sociopolitical complexity of global warming through an exploration of varied perspectives on the issue. They argue that socioscientific issues such as global warming present important contexts for learning science and that the social and political dimensions of these…

  16. Turkish Students' Ideas about Global Warming

    ERIC Educational Resources Information Center

    Kilinc, Ahmet; Stanisstreet, Martin; Boyes, Edward

    2008-01-01

    A questionnaire was used to explore the prevalence of ideas about global warming in Year 10 (age 15-16 years) school students in Turkey. The frequencies of individual scientific ideas and misconceptions about the causes, consequences and "cures" of global warming were identified. In addition, several general findings emerged from this…

  17. Global warming: The complete briefing

    SciTech Connect

    Houghton, J.

    1994-12-31

    John Houghton has drawn on the exhaustive efforts of the Intergovernmental Panel on Climate Change (IPCC) to produce a notably compact, impeccably complete and authoritative, meticulously balanced, and lucidly presented guide to the complex yet vital issue of global warming. Its subtitle is not mere hyperbole: this truly is a complete briefing. Certainly, one could not ask for a more authoritative brief: Houghton has led an imposing series of national and international efforts relating to climate, including the most recent scientific assessments of the IPCC. Citing many concrete examples, Houghton begins by convincing that climate truly is important to humankind and that climate is far from constant. He then elucidates the mechanisms that maintain the benign climate of our planet, providing in the process, for example, the most accurate explanation of the natural greenhouse effect that has yet appeared in print. He then treats the individual greenhouse gases responsible for maintaining the earth`s warmth and presents projections of their probable future concentrations as influenced by human activities. Further chapters deal with conclusions drawn from climate models, estimates of the impacts on human activities, and possible policies and actions to mitigate or alleviate the changes and their consequences.

  18. Global warming and reproductive health.

    PubMed

    Potts, Malcolm; Henderson, Courtney E

    2012-10-01

    The largest absolute numbers of maternal deaths occur among the 40-50 million women who deliver annually without a skilled birth attendant. Most of these deaths occur in countries with a total fertility rate of greater than 4. The combination of global warming and rapid population growth in the Sahel and parts of the Middle East poses a serious threat to reproductive health and to food security. Poverty, lack of resources, and rapid population growth make it unlikely that most women in these countries will have access to skilled birth attendants or emergency obstetric care in the foreseeable future. Three strategies can be implemented to improve women's health and reproductive rights in high-fertility, low-resource settings: (1) make family planning accessible and remove non-evidenced-based barriers to contraception; (2) scale up community distribution of misoprostol for prevention of postpartum hemorrhage and, where it is legal, for medical abortion; and (3) eliminate child marriage and invest in girls and young women, thereby reducing early childbearing.

  19. How warm days increase belief in global warming

    NASA Astrophysics Data System (ADS)

    Zaval, Lisa; Keenan, Elizabeth A.; Johnson, Eric J.; Weber, Elke U.

    2014-02-01

    Climate change judgements can depend on whether today seems warmer or colder than usual, termed the local warming effect. Although previous research has demonstrated that this effect occurs, studies have yet to explain why or how temperature abnormalities influence global warming attitudes. A better understanding of the underlying psychology of this effect can help explain the public's reaction to climate change and inform approaches used to communicate the phenomenon. Across five studies, we find evidence of attribute substitution, whereby individuals use less relevant but available information (for example, today's temperature) in place of more diagnostic but less accessible information (for example, global climate change patterns) when making judgements. Moreover, we rule out alternative hypotheses involving climate change labelling and lay mental models. Ultimately, we show that present temperature abnormalities are given undue weight and lead to an overestimation of the frequency of similar past events, thereby increasing belief in and concern for global warming.

  20. Global warming: a vicious circle.

    PubMed

    Sinclair, J

    1991-01-01

    The problem of global warming (GW) is larger than it was originally suspected. The release of carbon dioxide (CO2), methane (ME), and nitrous oxide (NO2) by the activities of humans will do more than simply raise the global temperature. It will also trigger a variety of feedback loops that will accelerate the GW process. The extent of these feedback loops is currently impossible to incorporate into the computer models because they are not fully understood. But, from what we do know, it is clear that reductions in greenhouse gas (GG) emissions must be halted immediately. We are already committed to regional droughts, storms, water shortages, fishery disruptions and plant and animal extinctions. But the response of the oceans, forest, and ice masses has not yet been incorporated into our predictions. Almost all the feedbacks identified promise to increase GG concentrations. The carbon cycle is going to be affected in a variety of ways. Plants and soil store almost 3 times the CO2 as found in the atmosphere. Increased temperatures will increase plant respiration, thus increasing CO2 emissions. Forests will die, permafrost will melt and the result will be increased releases of CO2 and ME. The oceans and plankton can not absorb as much CO2 as the water temperature rises. At present levels GG concentrations will double by 2025. Thus scientists are calling for an immediate 60-80% reduction in CO2 and other GG emissions. It is up to the industrialized nations to solve this problem since they are the ones who created it. 75% of all human made CO2 comes from these countries. They also have the ability to help developing nations to do the same. 20 nations have already announced plans to stabilize or reduce their GG emissions, but it is attitudes and lifestyles that must be changed. This is the largest problem to ever face the human race and never before have we acted as we now must act in order to avoid a worldwide catastrophe.

  1. Can Global Warming be Stopped?

    NASA Astrophysics Data System (ADS)

    Luria, M.

    2013-12-01

    Earlier this year, the CO2 levels exceeded the 400 ppm level and there is no sign that the 1-2 ppm annual increase is going to slow down. Concerns regarding the danger of global warming have been reported in numerous occasions for more than a generation, ever since CO2 levels reached the 350 ppm range in the mid 1980's. Nevertheless, all efforts to slow down the increase have showed little if any effect. Mobile sources, including surface and marine transportation and aviation, consist of 20% of the global CO2 emission. The only realistic way to reduce the mobile sources' CO2 signature is by improved fuel efficiency. However, any progress in this direction is more than compensated by continuous increased demand. Stationary sources, mostly electric power generation, are responsible for the bulk of the global CO2 emission. The measurements have shown, that the effect of an increase in renewable sources, like solar wind and geothermal, combined with conversion from coal to natural gas where possible, conservation and efficiency improvement, did not compensate the increased demand mostly in developing countries. Increased usage of nuclear energy can provide some relief in carbon emission but has the potential of even greater environmental hazard. A major decrease in carbon emission can be obtained by either significant reduction in the cost of non-carbon based energy sources or by of carbon sequestration. The most economical way to make a significant decrease in carbon emission is to apply carbon sequestration technology at large point sources that use coal. Worldwide there are about 10,000 major sources that burn >7 billion metric tons of coal which generate the equivalent of 30 trillion kwh. There is a limited experience in CO2 sequestration of such huge quantities of CO2, however, it is estimated that the cost would be US$ 0.01-0.1 per kwh. The cost of eliminating this quantity can be estimated at an average of 1.5 trillion dollars annually. The major emitters, US

  2. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1994-01-01

    A resource for the teaching of the history and causes of climate change. Discusses evidence of climate change from the Viking era, early ice ages, the most recent ice age, natural causes of climate change, human-made causes of climate change, projections of global warming, and unequal warming. (LZ)

  3. Should we be concerned about global warming?

    PubMed

    Diaz, James H

    2006-01-01

    Accurate scientific predictions of the true human health outcomes of global climate change are significantly confounded by several effect modifiers that cannot be adjusted for analytically. Nevertheless, with the documented increase in average global surface temperature of 0.6 C. since 1975, there is uniform consensus in the international scientific community that the earth is warming from a variety of climatic effects, including cyclical re-warming and the cascading effects of greenhouse gas emissions to support human activities.

  4. Scientists' Views about Attribution of Global Warming

    NASA Astrophysics Data System (ADS)

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2015-04-01

    What do scientists think? That is an important question when engaging in science communication, in which an attempt is made to communicate the scientific understanding to a lay audience. To address this question we undertook a large and detailed survey among scientists studying various aspects of climate change , dubbed "perhaps the most thorough survey of climate scientists ever" by well-known climate scientist and science communicator Gavin Schmidt. Among more than 1800 respondents we found widespread agreement that global warming is predominantly caused by human greenhouse gases. This consensus strengthens with increased expertise, as defined by the number of self-reported articles in the peer-reviewed literature. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), agreed that anthropogenic greenhouse gases are the dominant cause of recent global warming, i.e. having contributed more than half of the observed warming. With this survey we specified what the consensus position entails with much greater specificity than previous studies. The relevance of this consensus for science communication will be discussed. Another important result from our survey is that the main attribution statement in IPCC's fourth assessment report (AR4) may lead to an underestimate of the greenhouse gas contribution to warming, because it implicitly includes the lesser known masking effect of cooling aerosols. This shows the importance of the exact wording in high-profile reports such as those from IPCC in how the statement is perceived, even by fellow scientists. The phrasing was improved in the most recent assessment report (AR5). Respondents who characterized the human influence on climate as insignificant, reported having the most frequent media coverage regarding their views on climate change. This shows that contrarian opinions are amplified in the media in relation to their prevalence in the scientific community. This

  5. Hydrological consequences of global warming

    SciTech Connect

    Miller, Norman L.

    2009-06-01

    The 2007 Intergovernmental Panel for Climate Change indicates there is strong evidence that the atmospheric concentration of carbon dioxide far exceeds the natural range over the last 650,000 years, and this recent warming of the climate system is unequivocal, resulting in more frequent extreme precipitation events, earlier snowmelt runoff, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. The effects of recent warming has been well documented and climate model projections indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99 percent) of occurring with significant to severe consequences in response to a warmer lower atmosphere with an accelerating hydrologic cycle.

  6. Unabated global surface temperature warming: evaluating the evidence

    NASA Astrophysics Data System (ADS)

    Karl, T. R.; Arguez, A.

    2015-12-01

    New insights related to time-dependent bias corrections in global surface temperatures have led to higher rates of warming over the past few decades than previously reported in the IPCC Fifth Assessment Report (2014). Record high global temperatures in the past few years have also contributed to larger trends. The combination of these factors and new analyses of the rate of temperature change show unabated global warming since at least the mid-Twentieth Century. New time-dependent bias corrections account for: (1) differences in temperatures measured from ships and drifting buoys; (2) improved corrections to ship measured temperatures; and (3) the larger rates of warming in polar regions (particularly the Arctic). Since 1951, the period over which IPCC (2014) attributes over half of the observed global warming to human causes, it is shown that there has been a remarkably robust and sustained warming, punctuated with inter-annual and decadal variability. This finding is confirmed through simple trend analysis and Empirical Mode Decomposition (EMD). Trend analysis however, especially for decadal trends, is sensitive to selection bias of beginning and ending dates. EMD has no selection bias. Additionally, it can highlight both short- and long-term processes affecting the global temperature times series since it addresses both non-linear and non-stationary processes. For the new NOAA global temperature data set, our analyses do not support the notion of a hiatus or slowing of long-term global warming. However, sub-decadal periods of little (or no warming) and rapid warming can also be found, clearly showing the impact of inter-annual and decadal variability that previously has been attributed to both natural and human-induced non-greenhouse forcings.

  7. National Update: Discussions on global warming

    SciTech Connect

    Not Available

    1989-04-01

    The American Forestry Association (AFA) has launched a national campaign called Global Releaf to educate the public about global warming and the role of forestry in alleviating its effects. AFA executive vice-president R. Neil Sampson states that trees need to be intentionally grown and managed. More trees means less CO{sub 2} buildup, and the lack of trees is one of the causes of global warming. The AFA campaign included public service announcements, educational posters for schools, and material for all forms of media.

  8. Global warming: a public health concern.

    PubMed

    Afzal, Brenda M

    2007-05-31

    Over the last 100 years the average temperature on the Earth has risen approximately 1ºFahrenheit (F), increasing at a rate twice as fast as has been noted for any period in the last 1,000 years. The Arctic ice cap is shrinking, glaciers are melting, and the Arctic permafrost is thawing. There is mounting evidence that these global climate changes are already affecting human health. This article provides a brief overview of global warming and climate changes, discusses effects of climate change on health, considers the factors which contribute to climate changes, and reviews individual and collective efforts related to reducing global warming.

  9. Some coolness concerning global warming

    NASA Technical Reports Server (NTRS)

    Lindzen, Richard S.

    1990-01-01

    The greenhouse effect hypothesis is discussed. The effects of increasing CO2 levels in the atmosphere on global temperature changes are analyzed. The problems with models currently used to predict climatic changes are examined.

  10. Global metabolic impacts of recent climate warming.

    PubMed

    Dillon, Michael E; Wang, George; Huey, Raymond B

    2010-10-07

    Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.

  11. Global warming: A Northwest perspective

    SciTech Connect

    Scott, M.J.; Counts, C.A.

    1990-02-01

    The Northwest Power Planning Council convened a symposium in Olympia, Washington, on the subject of global climate change ( the greenhouse effect'') and its potential for affecting the Pacific Northwest. The symposium was organized in response to a need by the Power Council to understand global climate change and its potential impacts on resource planning and fish and wildlife planning for the region, as well as a need to understand national policy developing toward climate change and the Pacific Northwest's role in it. 40 figs., 15 tabs.

  12. Global Warming Estimation from MSU

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, Robert, Jr.

    1999-01-01

    In this study, we have developed time series of global temperature from 1980-97 based on the Microwave Sounding Unit (MSU) Ch 2 (53.74 GHz) observations taken from polar-orbiting NOAA operational satellites. In order to create these time series, systematic errors (approx. 0.1 K) in the Ch 2 data arising from inter-satellite differences are removed objectively. On the other hand, smaller systematic errors (approx. 0.03 K) in the data due to orbital drift of each satellite cannot be removed objectively. Such errors are expected to remain in the time series and leave an uncertainty in the inferred global temperature trend. With the help of a statistical method, the error in the MSU inferred global temperature trend resulting from orbital drifts and residual inter-satellite differences of all satellites is estimated to be 0.06 K decade. Incorporating this error, our analysis shows that the global temperature increased at a rate of 0.13 +/- 0.06 K decade during 1980-97.

  13. Communicating the Dangers of Global Warming

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.

    2006-12-01

    So far, in my opinion, we scientists have not done a good job of communicating the imminent threat posed by global warming, yet I believe there is still time for that if we work efficiently now to overcome existing obstacles. Several of those obstacles are illustrated by contrasting the roles of scientists, the media, special interests, politicians and the public in the ozone depletion and global warming crises. Scientists in America are further challenged by a decline in public science education, a perceived gap between science and religion, increasing politicization of public affairs offices in the government, and accumulation of power by a unitary executive. First order communication tasks are illustrated by a need for improved exchange and understanding, among scientists as well as with the public, of fundamental climate facts: (1) additional global warming exceeding 1C will yield large climate effects, (2) paleoclimate changes contain quantitatively specific information about climate sensitivity that is not widely appreciated, (3) carbon cycle facts, such as the substantial portion of carbon dioxide emissions that will remain in the air "forever", for practical purposes, (4) fossil fuel facts such as the dominant role of coal and unconventional fuels in all business-as-usual scenarios for future energy sources. The facts graphically illustrate the need for prompt actions to avoid disastrous climate change, yet they also reveal the feasibility of a course that minimizes global warming and yields other benefits. Perhaps the greatest challenge is posed by an inappropriate casting of the topic as a dichotomy between those who deny that there is a global warming problem and those who either are exceedingly pessimistic about the prospects for minimizing climate change or believe that solutions would be very expensive. Sensible evaluation of the situation, in my opinion, suggests a strategy for dealing with global warming that is not costly and has many subsidiary

  14. Global warming and sexual plant reproduction.

    PubMed

    Hedhly, Afif; Hormaza, José I; Herrero, María

    2009-01-01

    The sexual reproductive phase in plants might be particularly vulnerable to the effects of global warming. The direct effect of temperature changes on the reproductive process has been documented previously, and recent data from other physiological processes that are affected by rising temperatures seem to reinforce the susceptibility of the reproductive process to a changing climate. But the reproductive phase also provides the plant with an opportunity to adapt to environmental changes. Understanding phenotypic plasticity and gametophyte selection for prevailing temperatures, along with possible epigenetic changes during this process, could provide new insights into plant evolution under a global-warming scenario.

  15. Carbonyl sulfide: No remedy for global warming

    NASA Astrophysics Data System (ADS)

    Taubman, Steven J.; Kasting, James F.

    1995-04-01

    The enhancement of the stratospheric aerosol layer caused by the eruption of Mt. Pinatubo (June 15, 1991), and the subsequent cooling of the earth's lower atmosphere [Dutton and Christy, 1992; Minnis et al., 1993] shows that stratospheric aerosols can have a strong effect on the earth's climate. This supports the notion that the intentional enhancement of the stratospheric aerosol layer through increased carbonyl sulfide (OCS) emissions might be an effective means for counteracting global warming. Through the use of a one-dimensional photochemical model, we investigate what effect such a program might have on global average stratospheric ozone. In addition, we consider the impact of enhanced OCS emissions on rainwater acidity and on the overall health of both plants and animals. We find that while the warming produced by a single CO2 doubling (1 to 4°C) might be offset with ozone losses of less than 5%, any attempt to use carbonyl sulfide as a permanent solution to global warming could result in depletion of global average ozone by 30% or more. We estimate that in order to achieve cooling of 4°C rainwater pH would fall to between 3.5 and 3.8. Finally, a 4°C cooling at the surface will require that ambient near ground OCS levels rise to above 10 ppmv which is probably greater than the safe exposure limit for humans. Thus, enhanced OCS emissions do not provide an environmentally acceptable solution to the problem of global warming.

  16. Future Global Cryosphere: Impacts of Global Warming

    NASA Astrophysics Data System (ADS)

    Gan, T. Y.; Barry, R. G.

    2014-12-01

    In recent years, the Earth is undergoing potentially rapid changes in all cryospheric components, including Arctic sea ice shrinkage, mountain glacier recession, thawing permafrost, diminishing snow cover, and accelerated melting of the Greenland ice sheet. This has significant implications for global climate, hydrology, water resources, and global sea level. Physical evidences of changes observed in the cryosphere are: (a) Duration of ice cover of rivers and lakes in high latitudes of N. H. decreased by about two weeks over the 20th Century; (b) Significant retreat of glaciers world wide during the 20th Century; (c) Thinning of Arctic sea-ice extent and thickness by about 40% in late summer in recent decades, with the minimum sea ice concentration mapped by the SSM/I sensor of NASA in 2007; (d) Snow cover decreased in area by about 10% since global observations by satellites began in the late 1960s, in various places of the Northern Hemisphere; (e) In North America, snow water equivalent decreased by about 10mm since observations by passive microwave sensors began in the late 1970s; (f) Degradations of permafrost have been detected in some parts of the polar and sub-polar regions, and (g) The total 20th Century global average sea level rise was about 0.17m, likely due to decline in glaciers, snow, ice sheets, and losses from Greenland and Antarctica ice. Next, projected changes to the Cryosphere: northern hemisphere snow cover, avalanches, land ice, permafrost, freshwater ice, and sea ice changes, are presented.

  17. Phenology and global warming research in Brazil

    NASA Astrophysics Data System (ADS)

    Morellato, L. P. C.

    2009-04-01

    A recent review on South American phenology research has shown an increase in phenology papers over the last two decades, especially in this new 21st century. Nevertheless, there is a lack of long term data sets or monitoring systems, or of papers addressing plant phenology and global warming. The IPCC AR4 report from 2007 has offered indisputable evidence of regional to global-scale change in seasonality, but it is supported by plant and animal phenological data from North Hemisphere and temperate species. Information from tropical regions in general and South America in particular are sparse or lacking. Here I summarize the recent outcomes of our ongoing tropical phenology research in Brazil and its potential contribution to integrate fields and understand the effects of global warming within the tropics. The Phenology Laboratory (UNESP) is located at Rio Claro, São Paulo State, Southeastern Brazil. We are looking for trends and shifts on tropical vegetation phenology, and are exploring different methods for collecting and analyzing phenology data. The phenological studies are developed in collaboration with graduate and undergraduate students, post-docs and researchers from Brazil and around the world. We established three long term monitoring programs on Southeastern Brazil from 2000 onwards: trees from an urban garden, semideciduous forest trees, and savanna cerrado woody vegetation, all based on direct weekly to monthly observation of marked plants. We have collected some discontinuous data from Atlantic rain forest trees ranging from 5 to 8 years long. I collaborate with the longest tropical wet forest phenology monitoring system in Central Amazon, and with another long term monitoring system on semi deciduous forest from South Brazil. All research programs aim, in the long run, to monitor and detect shifts on tropical plant phenology related to climatic changes. Our first preliminary findings suggest that: (i) flowering and leafing are more affected by

  18. An apparent hiatus in global warming?

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.; Fasullo, John T.

    2013-12-01

    Global warming first became evident beyond the bounds of natural variability in the 1970s, but increases in global mean surface temperatures have stalled in the 2000s. Increases in atmospheric greenhouse gases, notably carbon dioxide, create an energy imbalance at the top-of-atmosphere (TOA) even as the planet warms to adjust to this imbalance, which is estimated to be 0.5-1 W m-2 over the 2000s. Annual global fluctuations in TOA energy of up to 0.2 W m-2 occur from natural variations in clouds, aerosols, and changes in the Sun. At times of major volcanic eruptions the effects can be much larger. Yet global mean surface temperatures fluctuate much more than these can account for. An energy imbalance is manifested not just as surface atmospheric or ground warming but also as melting sea and land ice, and heating of the oceans. More than 90% of the heat goes into the oceans and, with melting land ice, causes sea level to rise. For the past decade, more than 30% of the heat has apparently penetrated below 700 m depth that is traceable to changes in surface winds mainly over the Pacific in association with a switch to a negative phase of the Pacific Decadal Oscillation (PDO) in 1999. Surface warming was much more in evidence during the 1976-1998 positive phase of the PDO, suggesting that natural decadal variability modulates the rate of change of global surface temperatures while sea-level rise is more relentless. Global warming has not stopped; it is merely manifested in different ways.

  19. Global Warming and Energy Transition: A Public Policy Imperative

    NASA Astrophysics Data System (ADS)

    Stone, G. T.

    2006-12-01

    The historic transition from fossil fuels to alternative energy resources has begun. This development is commonly attributed to increasing energy costs and the need for energy security. Looming ever larger, however, is the issue that will soon drive the third energy revolution: global warming. A preponderance of evidence documents accelerating warming, enlarging impacts, and human causes -- principally combustion of fossil fuels. The carbon dioxide (C02) content of Earth's atmosphere has increased more than 35 percent since the beginning of the industrial revolution and is the highest in 650,000 years. This dramatic rise of C02 and attendant positive feedbacks are already forcing significant impacts worldwide. These include atmospheric warming with shifting climatic and habitat zones, spreading tropical disease, and more extreme weather events; rapid ice loss at high latitude and high altitude; ocean warming and acidification with coral reef bleaching and intensifying tropical storms; rising sea level; and accelerating extinction rates. The 2007 draft report of the Intergovernmental Panel on Climate Change (IPCC) predicts greater warming than in previous models. A tipping point to abrupt climate change may be imminent. It is incumbent upon geoscientists and geoscience educators to assume leadership in addressing this challenge through public outreach and general education. The following topics should be integrated into all appropriate courses: the evidence of global warming and its causes; observed present and predicted future impacts of global warming; mitigation and adaptation strategies; and implications for energy policies and economic opportunities. New entry-level science and general education courses -- such as Climate Change Fundamentals and Energy in Nature, Technology, and Society -- are proving to be effective should be widely developed In addition, by workshops and presentations to civic and business organizations and by demonstrated examples of

  20. Global warming and extreme storm surges

    NASA Astrophysics Data System (ADS)

    Grinsted, Aslak

    2013-04-01

    I will show empirical evidence for how global warming has changed extreme storm surge statistics for different regions in the world. Are there any detectable changes beyond what we expect from sea level rise. What does this suggest about the future of hurricane surges such as from hurricane Katrina and superstorm Sandy?

  1. Can Global Warming Heat Up Environmental Education?

    ERIC Educational Resources Information Center

    Mazzatenta, Claudio

    2008-01-01

    Bronx Community College (CUNY) launched "Global Warming Campus Awareness and Action Days" in celebration of Earth Day, 2007. The purpose of this program was to raise awareness of environmental issues in the college population, especially students. To let more students have a grasp of what Environmental Education (EE) is all about, the author…

  2. Environmental colonialism Leadership and global warming

    SciTech Connect

    Not Available

    1990-02-16

    The vast majority of the world's scientific community believes there is global warming and that it is global problem requiring international cooperation. But policy makers in industrialized countries are at a crossroads:Listen to the skeptics, who demand more proof and who fear economic consequences of an anti-greenhouse campaign, or take the more difficult path of commitment to attacking the problem. Meanwhile, poverty and debt keep. The Third world locked out of any active partnership. This issue of ED highlight their results of recently tapping documents and seminar findings on the subject of global warming. This issue also contains the following: (1) ED Refining Netback Data Series for the US Gulf and West Coasts, Rotterdam, and Singapore as of the February 9, 1990; and (2) ED Fuel Price/Tax Series for countries of the Western Hemisphere, February 1990 edition. 6 figs., 5 tabs.

  3. Frequency of Deep Convective Clouds and Global Warming

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Teixeira, Joao

    2008-01-01

    This slide presentation reviews the effect of global warming on the formation of Deep Convective Clouds (DCC). It concludes that nature responds to global warming with an increase in strong convective activity. The frequency of DCC increases with global warming at the rate of 6%/decade. The increased frequency of DCC with global warming alone increases precipitation by 1.7%/decade. It compares the state of the art climate models' response to global warming, and concludes that the parametrization of climate models need to be tuned to more closely emulate the way nature responds to global warming.

  4. Response to Skeptics of Global Warming.

    NASA Astrophysics Data System (ADS)

    Kellogg, William W.

    1991-04-01

    The majority of the scientific community involved in climate research is convinced of the reality of a current and future global warming due to the greenhouse effect, a change that must be largely caused by human activities. However, a minority of scientists is still skeptical of the notion that mankind is significantly influencing the climate of the earth, and it therefore argues against taking certain measures to avert this alleged global warming. In recent years the media have given considerable coverage to the statements of these skeptics. Reasons for their statements range from a simple argument that we do not understand the earth's climate system well enough to predict the future, to more complex arguments involving negative feed-backs and changes of solar activity. They question whether the global temperature increase in this century of up to 0.6 K is primarily a result of worldwide burning of fossil fuels. The purpose of this article is to show that the statements of this skeptical school of thought need to be critically analyzed (and in some cases refuted) in the light of current understanding of the planetary system that determines our climate. There is also another school of thought that agrees about the reality of present and future global warming, and claims that this will be beneficial for most of mankind and that it should be encouraged. The policy implications of the latter view are in many respects similar to those of the group that are not convinced that a significant global warming will occur. Both schools of thought argue against taking immediate steps to slow the climate change.

  5. The global warming hiatus: Slowdown or redistribution?

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Hai; Boyer, Tim; Trenberth, Kevin; Karl, Thomas R.; Xie, Shang-Ping; Nieves, Veronica; Tung, Ka-Kit; Roemmich, Dean

    2016-11-01

    Global mean surface temperatures (GMST) exhibited a smaller rate of warming during 1998-2013, compared to the warming in the latter half of the 20th Century. Although, not a "true" hiatus in the strict definition of the word, this has been termed the "global warming hiatus" by IPCC (2013). There have been other periods that have also been defined as the "hiatus" depending on the analysis. There are a number of uncertainties and knowledge gaps regarding the "hiatus." This report reviews these issues and also posits insights from a collective set of diverse information that helps us understand what we do and do not know. One salient insight is that the GMST phenomenon is a surface characteristic that does not represent a slowdown in warming of the climate system but rather is an energy redistribution within the oceans. Improved understanding of the ocean distribution and redistribution of heat will help better monitor Earth's energy budget and its consequences. A review of recent scientific publications on the "hiatus" shows the difficulty and complexities in pinpointing the oceanic sink of the "missing heat" from the atmosphere and the upper layer of the oceans, which defines the "hiatus." Advances in "hiatus" research and outlooks (recommendations) are given in this report.

  6. National contributions to observed global warming

    NASA Astrophysics Data System (ADS)

    Damon Matthews, H.; Graham, Tanya L.; Keverian, Serge; Lamontagne, Cassandra; Seto, Donny; Smith, Trevor J.

    2014-01-01

    There is considerable interest in identifying national contributions to global warming as a way of allocating historical responsibility for observed climate change. This task is made difficult by uncertainty associated with national estimates of historical emissions, as well as by difficulty in estimating the climate response to emissions of gases with widely varying atmospheric lifetimes. Here, we present a new estimate of national contributions to observed climate warming, including CO2 emissions from fossil fuels and land-use change, as well as methane, nitrous oxide and sulfate aerosol emissions While some countries’ warming contributions are reasonably well defined by fossil fuel CO2 emissions, many countries have dominant contributions from land-use CO2 and non-CO2 greenhouse gas emissions, emphasizing the importance of both deforestation and agriculture as components of a country’s contribution to climate warming. Furthermore, because of their short atmospheric lifetime, recent sulfate aerosol emissions have a large impact on a country’s current climate contribution We show also that there are vast disparities in both total and per-capita climate contributions among countries, and that across most developed countries, per-capita contributions are not currently consistent with attempts to restrict global temperature change to less than 2 °C above pre-industrial temperatures.

  7. Global Warming 'Pause' - Oceans Reshuffle Heat

    NASA Astrophysics Data System (ADS)

    Nieves, V.; Willis, J. K.; Patzert, W. C.

    2015-12-01

    Despite the fact that greenhouse gases are still increasing and all other indicators show warming-related change (+0.0064 °C/year since 1880 or +0.0077 °C/year during 1993-2002), surface temperatures stopped climbing steadily during the past decade at a rate of +0.0010 °C/year from 2003 to 2012. We show that in recent years, the heat was being trapped in the subsurface waters of the western Pacific and eastern Indian oceans between 100 and 300 m. The movement of warm Pacific water below the surface, also related to the Pacific Decadal Oscillation climatic pattern, temporarily affected surface temperatures and accounted for the global cooling trend in surface temperature. With the Pacific Decadal Oscillation possibly changing to a warm phase, it is likely that the oceans will drive a major surge in global surface warming sometime in the next decade or two. Reference: Nieves, V., Willis, J. K., and Patzert, W. C. (2015). Recent hiatus caused by decadal shift in Indo-Pacific heating. Science, aaa4521.

  8. Global warming and global dioxide emission: An empirical study

    SciTech Connect

    Linyan Sun; Wang, M.

    1996-04-01

    In this paper, the dynamic relationship between global surface temperature (global warming) and global carbon dioxide emission (CO{sub 2}) is modelled and analyzed by causality and spectral analysis in the time domain and frequency domain, respectively. Historical data of global CO{sub 2} emission and global surface temperature anomalies over 129 years from 1860-1988 are used in this study. The causal relationship between the two phenomena is first examined using the Sim and Granger causality test in the time domain after the data series are filtered by ARIMA models. The Granger causal relationship is further scrutinized and confirmed by cross-spectral and multichannel spectral analysis in the frequency domain. The evidence found from both analyses proves that there is a positive causal relationship between the two variables. The time domain analysis suggests that Granger causality exists between global surface temperature and global CO{sub 2} emission. Further, CO{sub 2} emission causes the change in temperature. The conclusions are further confirmed by the frequency domain analysis, which indicates that the increase in CO{sub 2} emission causes climate warming because a high coherence exists between the two variables. Furthermore, it is proved that climate changes happen after an increase in CO{sub 2} emission, which confirms that the increase in CO{sub 2} emission does cause global warming. 27 refs., 10 figs., 5 tabs.

  9. Infectious diseases and global warming: Tracking disease incidence rates globally

    SciTech Connect

    Low, N.C.

    1995-09-01

    Given the increasing importance of impact of global warming on public health, there is no global database system to monitor infectious disease and disease in general, and to which global data of climate change and environmental factors, such as temperature, greenhouse gases, and human activities, e.g., coastal development, deforestation, can be calibrated, investigated and correlated. The author proposes the diseases incidence rates be adopted as the basic global measure of morbidity of infectious diseases. The importance of a correctly chosen measure of morbidity of disease is presented. The importance of choosing disease incidence rates as the measure of morbidity and the mathematical foundation of which are discussed. The author further proposes the establishment of a global database system to track the incidence rates of infectious diseases. Only such a global system can be used to calibrate and correlate other globally tracked climatic, greenhouse gases and environmental data. The infrastructure and data sources for building such a global database is discussed.

  10. Robust warming of the global upper ocean.

    PubMed

    Lyman, John M; Good, Simon A; Gouretski, Viktor V; Ishii, Masayoshi; Johnson, Gregory C; Palmer, Matthew D; Smith, Doug M; Willis, Josh K

    2010-05-20

    A large ( approximately 10(23) J) multi-decadal globally averaged warming signal in the upper 300 m of the world's oceans was reported roughly a decade ago and is attributed to warming associated with anthropogenic greenhouse gases. The majority of the Earth's total energy uptake during recent decades has occurred in the upper ocean, but the underlying uncertainties in ocean warming are unclear, limiting our ability to assess closure of sea-level budgets, the global radiation imbalance and climate models. For example, several teams have recently produced different multi-year estimates of the annually averaged global integral of upper-ocean heat content anomalies (hereafter OHCA curves) or, equivalently, the thermosteric sea-level rise. Patterns of interannual variability, in particular, differ among methods. Here we examine several sources of uncertainty that contribute to differences among OHCA curves from 1993 to 2008, focusing on the difficulties of correcting biases in expendable bathythermograph (XBT) data. XBT data constitute the majority of the in situ measurements of upper-ocean heat content from 1967 to 2002, and we find that the uncertainty due to choice of XBT bias correction dominates among-method variability in OHCA curves during our 1993-2008 study period. Accounting for multiple sources of uncertainty, a composite of several OHCA curves using different XBT bias corrections still yields a statistically significant linear warming trend for 1993-2008 of 0.64 W m(-2) (calculated for the Earth's entire surface area), with a 90-per-cent confidence interval of 0.53-0.75 W m(-2).

  11. Global Warming: Evidence from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2001-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown on-board sequential, sun-synchronous, polar orbiting NOAA operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study we have minimized systematic errors in the time series introduced by the satellite orbital drift in an objective manner. This is done with the help the onboard warm black body temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically weighted global mean temperature of the atmosphere, with a peak weight near the mid-troposphere, warmed at the rate of 0.13 K per decade (with an uncertainty of 0.05 K per decade) during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite deuced result.

  12. Global warming and allergy in Asia Minor.

    PubMed

    Bajin, Munir Demir; Cingi, Cemal; Oghan, Fatih; Gurbuz, Melek Kezban

    2013-01-01

    The earth is warming, and it is warming quickly. Epidemiological studies have demonstrated that global warming is correlated with the frequency of pollen-induced respiratory allergy and allergic diseases. There is a body of evidence suggesting that the prevalence of allergic diseases induced by pollens is increasing in developed countries, a trend that is also evident in the Mediterranean area. Because of its mild winters and sunny days with dry summers, the Mediterranean area is different from the areas of central and northern Europe. Classical examples of allergenic pollen-producing plants of the Mediterranean climate include Parietaria, Olea and Cupressaceae. Asia Minor is a Mediterranean region that connects Asia and Europe, and it includes considerable coastal areas. Gramineae pollens are the major cause of seasonal allergic rhinitis in Asia Minor, affecting 1.3-6.4 % of the population, in accordance with other European regions. This article emphasizes the importance of global climate change and anticipated increases in the prevalence and severity of allergic disease in Asia Minor, mediated through worsening air pollution and altered local and regional pollen production, from an otolaryngologic perspective.

  13. Scientists' views about attribution of global warming.

    PubMed

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2014-08-19

    Results are presented from a survey held among 1868 scientists studying various aspects of climate change, including physical climate, climate impacts, and mitigation. The survey was unique in its size, broadness and level of detail. Consistent with other research, we found that, as the level of expertise in climate science grew, so too did the level of agreement on anthropogenic causation. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), explicitly agreed with anthropogenic greenhouse gases (GHGs) being the dominant driver of recent global warming. The respondents' quantitative estimate of the GHG contribution appeared to strongly depend on their judgment or knowledge of the cooling effect of aerosols. The phrasing of the IPCC attribution statement in its fourth assessment report (AR4)-providing a lower limit for the isolated GHG contribution-may have led to an underestimation of the GHG influence on recent warming. The phrasing was improved in AR5. We also report on the respondents' views on other factors contributing to global warming; of these Land Use and Land Cover Change (LULCC) was considered the most important. Respondents who characterized human influence on climate as insignificant, reported having had the most frequent media coverage regarding their views on climate change.

  14. Effects of Global Warming on Vibrio Ecology.

    PubMed

    Vezzulli, Luigi; Pezzati, Elisabetta; Brettar, Ingrid; Höfle, Manfred; Pruzzo, Carla

    2015-06-01

    Vibrio-related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1 °C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on Vibrio interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause.

  15. Global Warming: Evidence from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R.; Yoo, J.-M.; Dalu, G.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown onboard sequential, sun-synchronous, polar-orbiting NOAA (National Oceanic and Atmospheric Administration) operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study, we have minimized systematic errors in the time series introduced by satellite orbital drift in an objective manner. This is done with the help of the onboard warm-blackbody temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically-weighted global-mean temperature of the atmosphere, with a peak weight near the mid troposphere, warmed at the rate of 0.13 +/- 0.05 K/decade during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite-deduced result.

  16. Management of drought risk under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Han, Lanying; Jia, Jianying; Song, Lingling; Wang, Jinsong

    2016-07-01

    Drought is a serious ecological problem around the world, and its impact on crops and water availability for humans can jeopardize human life. Although drought has always been common, the drought risk has become increasingly prominent because of the climatic warming that has occurred during the past century. However, it still does not comprehensively understand the mechanisms that determine the occurrence of the drought risk it poses to humans, particularly in the context of global climate change. In this paper, we summarize the progress of research on drought and the associated risk, introduce the principle of a drought "transition" from one stage to another, synthesize the characteristics of key factors and their interactions, discuss the potential effect of climatic warming on drought risk, and use this discussion to define the basic requirements for a drought risk management system. We also discuss the main measures that can be used to prevent or mitigate droughts in the context of a risk management strategy.

  17. Microwave sounding units and global warming

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L.; Keihm, Stephen J.

    1991-01-01

    A recent work of Spencer and Christy (1990) on precise monitoring of global temperature trends from satellites is critically examined. It is tentatively concluded in the present comment that remote sensing using satellite microwave radiometers can in fact provide a means for the monitoring of troposphere-averaged air temperature. However, for this to be successful more than one decade of data will be required to overcome the apparent inherent variability of global average air temperature. It is argued that the data set reported by Spencer and Christy should be subjected to careful review before it is interpreted as evidence of the presence or absence of global warming. In a reply, Christy provides specific responses to the commenters' objections.

  18. Competition between global warming and an abrupt collapse of the AMOC in Earth's energy imbalance.

    PubMed

    Drijfhout, Sybren

    2015-10-06

    A collapse of the Atlantic Meridional Overturning Circulation (AMOC) leads to global cooling through fast feedbacks that selectively amplify the response in the Northern Hemisphere (NH). How such cooling competes with global warming has long been a topic for speculation, but was never addressed using a climate model. Here it is shown that global cooling due to a collapsing AMOC obliterates global warming for a period of 15-20 years. Thereafter, the global mean temperature trend is reversed and becomes similar to a simulation without an AMOC collapse. The resulting surface warming hiatus lasts for 40-50 years. Global warming and AMOC-induced NH cooling are governed by similar feedbacks, giving rise to a global net radiative imbalance of similar sign, although the former is associated with surface warming, the latter with cooling. Their footprints in outgoing longwave and absorbed shortwave radiation are very distinct, making attribution possible.

  19. Global warming and thermohaline circulation stability.

    PubMed

    Wood, Richard A; Vellinga, Michael; Thorpe, Robert

    2003-09-15

    The Atlantic thermohaline circulation (THC) plays an important role in global climate. Theoretical and palaeoclimatic evidence points to the possibility of rapid changes in the strength of the THC, including a possible quasi-permanent shutdown. The climatic impacts of such a shutdown would be severe, including a cooling throughout the Northern Hemisphere, which in some regions is greater in magnitude than the changes expected from global warming in the next 50 years. Other climatic impacts would likely include a severe alteration of rainfall patterns in the tropics, the Indian subcontinent and Europe. Modelling the future behaviour of the THC focuses on two key questions. (i) Is a gradual weakening of the THC likely in response to global warming, and if so by how much? (ii) Are there thresholds beyond which rapid or irreversible changes in the THC are likely? Most projections of the response of the THC to increasing concentrations of greenhouse gases suggest a gradual weakening over the twenty-first century. However, there is a wide variation between different models over the size of the weakening. Rapid or irreversible THC shutdown is considered a low-probability (but high-impact) outcome; however, some climate models of intermediate complexity do show the possibility of such events. The question of the future of the THC is beset with conceptual, modelling and observational uncertainties, but some current and planned projects show promise to make substantial progress in tackling these uncertainties in future.

  20. Punishments and Prizes for Explaining Global Warming

    NASA Astrophysics Data System (ADS)

    Somerville, R. C.

    2006-12-01

    Some few gifted scientists, the late Carl Sagan being an iconic example, are superbly skilled at communicating science clearly and compellingly to non-scientists. Most scientists, however, have serious shortcomings as communicators. The common failings include being verbose, addicted to jargon, caveat- obsessed and focused on details. In addition, it is far easier for a scientist to scoff at the scientific illiteracy of modern society than to work at understanding the viewpoints and concerns of journalists, policymakers and the public. Obstacles await even those scientists with the desire and the talent to communicate science well. Peer pressure and career disincentives can act as powerful deterrents, discouraging especially younger scientists from spending time on non-traditional activities. Scientists often lack mentors and role models to help them develop skills in science communication. Journalists also face real difficulties in getting science stories approved by editors and other gatekeepers. Climate change science brings its own problems in communication. The science itself is unusually wide- ranging and complex. The contentious policies and politics of dealing with global warming are difficult to disentangle from the science. Misinformation and disinformation about climate change are widespread. Intimidation and censorship of scientists by some employers is a serious problem. Polls show that global warming ranks low on the public's list of important issues. Despite all the obstacles, communicating climate change science well is critically important today. It is an art that can be learned and that brings its own rewards and satisfactions. Academic institutions and research funding agencies increasingly value outreach by scientists, and they provide resources to facilitate it. Society needs scientists who can clearly and authoritatively explain the science of global warming and its implications, while remaining objective and policy-neutral. This need will

  1. Indentifying the Molecular Origin of Global Warming

    NASA Astrophysics Data System (ADS)

    Bera, P. P.; Lee, T. J.; Francisco, J.

    2009-12-01

    Indentifying the Molecular Origin of Global Warming Partha P. Bera, Joseph S. Francisco and Timothy J. Lee NASA Ames Research Center, Space Science and Astrobiology Division, Moffett Field, California 94035, and Department of Chemistry and Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907-1393 Abstract The physical characteristics of greenhouse gases (GHGs) have been investigated to assess which properties are most important in determining the radiative efficiency of a GHG. Chlorofluorcarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), hydrofluoroethers, fluoroethers, nitrogen fluorides, and various other known atmospheric trace molecules have been included in this study. Compounds containing the halogens F or Cl have in common very polar X-F or X-Cl bonds, particularly the X-F bonds. It is shown that as more F atoms bond to the same central atom, the bond dipoles become larger as a result of the central carbon atom becoming more positive. This leads to a linear increase in the total or integrated X-F bond dipole derivatives for the molecule, which leads to a non-linear (quadratic) increase in infrared (IR) intensity. Moreover, virtually all of the X-F bond stretches occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in the atmospheric window. It is concluded that molecules possessing several F atoms will always have a large radiative forcing parameter in the calculation of their global warming potential. Some of the implications for global warming and climate change and a new design strategy for more environmentally friendly industrial materials from a molecular quantum chemistry perspective will be discussed.

  2. Does coral bleaching mean global warming

    SciTech Connect

    Miller, J.A.

    1991-02-01

    This article discusses the implications of global warming on the marine ecosystems. In recent hearings of the US Senate Committee on Commerce, Science and Transportation, plans were made to introduce legislation for control of greenhouse-gas emissions, conservation of biological diversity, forest conservation, world population planning, sustainable economic development , increased fuel efficiency, and increased research into Earth-system processes. Research is required to ascertain the meaning of coral bleaching, which is the mass expulsion of symbiotic algae, called zooxanthellae, which gives the coral its color. Many scientists think that the death of the algae is an early indicator for massive destruction of the marine ecosystem.

  3. Global warming and carbon dioxide through sciences.

    PubMed

    Florides, Georgios A; Christodoulides, Paul

    2009-02-01

    Increased atmospheric CO(2)-concentration is widely being considered as the main driving factor that causes the phenomenon of global warming. This paper attempts to shed more light on the role of atmospheric CO(2) in relation to temperature-increase and, more generally, in relation to Earth's life through the geological aeons, based on a review-assessment of existing related studies. It is pointed out that there has been a debate on the accuracy of temperature reconstructions as well as on the exact impact that CO(2) has on global warming. Moreover, using three independent sets of data (collected from ice-cores and chemistry) we perform a specific regression analysis which concludes that forecasts about the correlation between CO(2)-concentration and temperature rely heavily on the choice of data used, and one cannot be positive that indeed such a correlation exists (for chemistry data) or even, if existing (for ice-cores data), whether it leads to a "severe" or a "gentle" global warming. A very recent development on the greenhouse phenomenon is a validated adiabatic model, based on laws of physics, forecasting a maximum temperature-increase of 0.01-0.03 degrees C for a value doubling the present concentration of atmospheric CO(2). Through a further review of related studies and facts from disciplines like biology and geology, where CO(2)-change is viewed from a different perspective, it is suggested that CO(2)-change is not necessarily always a negative factor for the environment. In fact it is shown that CO(2)-increase has stimulated the growth of plants, while the CO(2)-change history has altered the physiology of plants. Moreover, data from palaeoclimatology show that the CO(2)-content in the atmosphere is at a minimum in this geological aeon. Finally it is stressed that the understanding of the functioning of Earth's complex climate system (especially for water, solar radiation and so forth) is still poor and, hence, scientific knowledge is not at a level to

  4. Global-Address Space Networking (GASNet) Library

    SciTech Connect

    Welcome, Michael L.; Bell, Christian S.

    2011-04-06

    GASNet (Global-Address Space Networking) is a language-independent, low-level networking layer that provides network-independent, high-performance communication primitives tailored for implementing parallel global address space SPMD languages such as UPC and Titanium. The interface is primarily intended as a compilation target and for use by runtime library writers (as opposed to end users), and the primary goals are high performance, interface portability, and expressiveness. GASNet is designed specifically to support high-performance, portable implementations of global address space languages on modern high-end communication networks. The interface provides the flexibility and extensibility required to express a wide variety of communication patterns without sacrificing performance by imposing large computational overheads in the interface. The design of the GASNet interface is partitioned into two layers to maximize porting ease without sacrificing performance: the lower level is a narrow but very general interface called the GASNet core API - the design is basedheavily on Active Messages, and is implemented directly on top of each individual network architecture. The upper level is a wider and more expressive interface called GASNet extended API, which provides high-level operations such as remote memory access and various collective operations. This release implements GASNet over MPI, the Quadrics "elan" API, the Myrinet "GM" API and the "LAPI" interface to the IBM SP switch. A template is provided for adding support for additional network interfaces.

  5. Forests: a tool to moderate global warming

    SciTech Connect

    Sedjo, R.A.

    1989-01-01

    Earth's climate may be growing warmer in response to atmospheric accumulation of greenhouse gases, predominantly but not exclusively stemming from human-induced emissions of carbon dioxide (CO/sub 2/) into the atmosphere. Once in the atmosphere, CO/sub 2/ traps heat that would otherwise radiate into space. Each year the Earth's atmosphere takes up approximately 2.9 billion tons of the 4.8 to 5.8 billion tons of carbon that are emitted from various sources. The rest is removed from the atmosphere by natural processes in carbon sinks - places like oceans or forests where carbon is removed from the atmosphere and stored. In addition, changes in land use that have eliminated terrestrial biomass, including tropical forests, have released into the atmosphere the carbon that was captive in the vegetation. Humankind can respond to the prospective global climate change by adapting to the warming, attempting to limit the warming by preventing or mitigating the buildup of atmospheric carbon, or by some combination of the above. Forests can play a critical role in any attempt to mitigate the warming because they are able to capture and store large amounts of carbon from the atmosphere.

  6. Revaluating ocean warming impacts on global phytoplankton

    NASA Astrophysics Data System (ADS)

    Behrenfeld, Michael J.; O'Malley, Robert T.; Boss, Emmanuel S.; Westberry, Toby K.; Graff, Jason R.; Halsey, Kimberly H.; Milligan, Allen J.; Siegel, David A.; Brown, Matthew B.

    2016-03-01

    Global satellite observations document expansions of the low-chlorophyll central ocean gyres and an overall inverse relationship between anomalies in sea surface temperature and phytoplankton chlorophyll concentrations. These findings can provide an invaluable glimpse into potential future ocean changes, but only if the story they tell is accurately interpreted. Chlorophyll is not simply a measure of phytoplankton biomass, but also registers changes in intracellular pigmentation arising from light-driven (photoacclimation) and nutrient-driven physiological responses. Here, we show that the photoacclimation response is an important component of temporal chlorophyll variability across the global ocean. This attribution implies that contemporary relationships between chlorophyll changes and ocean warming are not indicative of proportional changes in productivity, as light-driven decreases in chlorophyll can be associated with constant or even increased photosynthesis. Extension of these results to future change, however, requires further evaluation of how the multifaceted stressors of a warmer, higher-CO2 world will impact plankton communities.

  7. Identifying the molecular origin of global warming.

    PubMed

    Bera, Partha P; Francisco, Joseph S; Lee, Timothy J

    2009-11-12

    We have investigated the physical characteristics of greenhouse gases (GHGs) to assess which properties are most important in determining the efficiency of a GHG. Chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen fluorides, and various other known atmospheric trace molecules have been included in this study. Compounds containing the halogens F or Cl have in common very polar X-F or X-Cl bonds, particularly the X-F bonds. It is shown that as more F atoms bond to the same central atom the bond dipoles become larger as a result of the central atom becoming more positive. This leads to a linear increase in the total or integrated X-F bond dipole derivatives for the molecule, which leads to a nonlinear (quadratic) increase in infrared (IR) intensity. Moreover, virtually all of the X-F bond stretches occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in the atmospheric window. It is concluded that molecules possessing several F atoms will always have a large radiative forcing parameter in the calculation of their global warming potential. Some of the implications for global warming and climate change are discussed.

  8. Global warming potential impact of bioenergy systems

    NASA Astrophysics Data System (ADS)

    Tonini, D.; Hamelin, L.; Wenzel, H.; Astrup, T.

    2012-10-01

    Reducing dependence on fossil fuels and mitigation of GHG emissions is a main focus in the energy strategy of many Countries. In the case of Demark, for instance, the long-term target of the energy policy is to reach 100% renewable energy system. This can be achieved by drastic reduction of the energy demand, optimization of production/distribution and substitution of fossil fuels with biomasses. However, a large increase in biomass consumption will finally induce conversion of arable and currently cultivated land into fields dedicated to energy crops production determining significant environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest) GHG emission reduction.

  9. Identifying the Molecular Origin of Global Warming

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2009-01-01

    We have investigated the physical characteristics of greenhouse gases (GHGs) to assess which properties are most important in determining the efficiency of a GHG. Chlorofluorcarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen fluorides, and various other known atmospheric trace molecules have been included in this study. Compounds containing the halogens F or Cl have in common very polar X-F or X-Cl bonds, particularly the X-F bonds. It is shown that as more F atoms bond to the same central atom, the bond dipoles become larger as a result of the central atom becoming more positive. This leads to a linear increase in the total or integrated XF bond dipole derivatives for the molecule, which leads to a non-linear (quadratic) increase in infrared (IR) intensity. Moreover, virtually all of the X-F bond stretches occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in the atmospheric window. It is concluded that molecules possessing several F atoms will always have a large radiative forcing parameter in the calculation of their global warming potential. Some of the implications for global warming and climate change are discussed.

  10. Global warming and cyanobacterial harmful algal blooms.

    PubMed

    Paul, Valerie J

    2008-01-01

    The Earth and the oceans have warmed significantly over the past four decades, providing evidence that the Earth is undergoing long-term climate change. Increasing temperatures and changing rainfall patterns have been documented. Cyanobacteria have a long evolutionary history, with their first occurrence dating back at least 2.7 billion years ago. Cyanobacteria often dominated the oceans after past mass extinction events. They evolved under anoxic conditions and are well adapted to environmental stress including exposure to UV, high solar radiation and temperatures, scarce and abundant nutrients. These environmental conditions favor the dominance of cyanobacteria in many aquatic habitats, from freshwater to marine ecosystems. A few studies have examined the ecological consequences of global warming on cyanobacteria and other phytoplankton over the past decades in freshwater, estuarine, and marine environments, with varying results. The responses of cyanobacteria to changing environmental patterns associated with global climate change are important subjects for future research. Results of this research will have ecological and biogeochemical significance as well as management implications.

  11. Environmental refugees in a globally warmed world

    SciTech Connect

    Myers, N.

    1993-12-01

    This paper examines the complex problem of environmental refugees as among the most serious of all the effects of global warming. Shoreline erosion, coastal flooding, and agricultural disruption from drought, soil erosion and desertification are factors now and in the future in creating a group of environmental refugees. Estimates are that at least 10 million such refugees exist today. A preliminary analysis is presented here as a first attempt to understand the full character and extent of the problem. Countries with large delta and coastal areas and large populations are at particular risk from sea-level rise of as little as .5 - 1 meter, compounded by storm surge and salt water intrusions. Bangladesh, Egypt, China, and India are discussed in detail along with Island states at risk. Other global warming effects such as shifts in monsoon systems and severe and persistent droughts make agriculture particularly vulnerable. Lack of soil moisture is during the growing season will probably be the primary problem. Additional and compounding environmental problems are discussed, and an overview of the economic, sociocultural and political consequences is given. 96 refs., 1 tab.

  12. Global Warming Estimation From Microwave Sounding Unit

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Dalu, G.

    1998-01-01

    Microwave Sounding Unit (MSU) Ch 2 data sets, collected from sequential, polar-orbiting, Sun-synchronous National Oceanic and Atmospheric Administration operational satellites, contain systematic calibration errors that are coupled to the diurnal temperature cycle over the globe. Since these coupled errors in MSU data differ between successive satellites, it is necessary to make compensatory adjustments to these multisatellite data sets in order to determine long-term global temperature change. With the aid of the observations during overlapping periods of successive satellites, we can determine such adjustments and use them to account for the coupled errors in the long-term time series of MSU Ch 2 global temperature. In turn, these adjusted MSU Ch 2 data sets can be used to yield global temperature trend. In a pioneering study, Spencer and Christy (SC) (1990) developed a procedure to derive the global temperature trend from MSU Ch 2 data. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedure, the magnitude of the coupled errors is not determined explicitly. Furthermore, based on some assumptions, these coupled errors are eliminated in three separate steps. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedures. Based on our analysis, we find there is a global warming of 0.23+/-0.12 K between 1980 and 1991. Also, in this study, the time series of global temperature anomalies constructed by removing the global mean annual temperature cycle compares favorably with a similar

  13. Potential effects on health of global warming

    SciTech Connect

    Haines, A. . Whittington Hospital); Parry, M. . Environmental Change Unit)

    1993-12-01

    Prediction of the impacts of global climate change on health is complicated by a number of factors. These include: the difficulty in predicting regional changes in climate, the capacity for adaptation to climate change, the interactions between the effects of global climate change and a number of other key determinants of health, including population growth and poverty, and the availability of adequate preventive and curative facilities for diseases that may be effected by climate change. Nevertheless, it is of importance to consider the potential health impacts of global climate change for a number of reasons. It is also important to monitor diseases which could be effected by climate change in order to detect changes in incidence as early as possible and study possible interactions with other factors. It seems likely that the possible impacts on health of climate change will be a major determinant of the degree to which policies aimed at reducing global warming are followed, as perceptions of the effect of climate change to human health and well-being are particularly likely to influence public opinion. The potential health impacts of climate change can be divided into direct (primary) and indirect (secondary and tertiary) effects. Primary effects are those related to the effect of temperature on human well-being and disease. Secondary effects include the impacts on health of changes in food production, availability of water and of sea level rise. A tertiary level of impacts can also be hypothesized.

  14. Halocarbon ozone depletion and global warming potentials

    NASA Technical Reports Server (NTRS)

    Cox, Richard A.; Wuebbles, D.; Atkinson, R.; Connell, Peter S.; Dorn, H. P.; Derudder, A.; Derwent, Richard G.; Fehsenfeld, F. C.; Fisher, D.; Isaksen, Ivar S. A.

    1990-01-01

    Concern over the global environmental consequences of fully halogenated chlorofluorocarbons (CFCs) has created a need to determine the potential impacts of other halogenated organic compounds on stratospheric ozone and climate. The CFCs, which do not contain an H atom, are not oxidized or photolyzed in the troposphere. These compounds are transported into the stratosphere where they decompose and can lead to chlorine catalyzed ozone depletion. The hydrochlorofluorocarbons (HCFCs or HFCs), in particular those proposed as substitutes for CFCs, contain at least one hydrogen atom in the molecule, which confers on these compounds a much greater sensitivity toward oxidation by hydroxyl radicals in the troposphere, resulting in much shorter atmospheric lifetimes than CFCs, and consequently lower potential for depleting ozone. The available information is reviewed which relates to the lifetime of these compounds (HCFCs and HFCs) in the troposphere, and up-to-date assessments are reported of the potential relative effects of CFCs, HCFCs, HFCs, and halons on stratospheric ozone and global climate (through 'greenhouse' global warming).

  15. Global Warming: The Threat to the Planet

    NASA Astrophysics Data System (ADS)

    Hansen, James

    2007-04-01

    Paleoclimate data show that the Earth's climate is remarkably sensitive to global forcings. Positive feedbacks predominate. This allows the entire planet to be whipsawed between climate states. One feedback, the `albedo flip' property of water substance, provides a powerful trigger mechanism. A climate forcing that `flips' the albedo of a sufficient portion of an ice sheet can spark a cataclysm. Ice sheet and ocean inertia provides only moderate delay to ice sheet disintegration and a burst of added global warming. Recent greenhouse gas (GHG) emissions place the Earth perilously close to dramatic climate change that could run out of our control, with great dangers for humans and other creatures. CO2 is the largest human-made climate forcing, but CH4, O3, N2O and black carbon (BC) are important. Only intense simultaneous efforts to slow CO2 emissions and reduce non-CO2 forcings can keep climate within or near the range of the past million years. Some forcings are especially effective at high latitudes, so concerted efforts to reduce their emissions could still ``save the Arctic,'' while also having major benefits for human health, agricultural productivity, and the global environment.

  16. Does global warming make Triton blush?

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie J.; Hicks, Michael D.; Newburn, Ray L., Jr.

    1999-01-01

    Neptune's largest moon, Triton, is one of two satellites in the Solar System that are currently geologically active. At least two geyser-like plumes were observed by the Voyager 2 spacecraft in 1989, and dozens of streaky deposits hint at the existence of many more. Triton also exhibits complex seasonal changes in its 165-year journey about the Sun. Because Triton's atmosphere transports volatiles (primarily nitrogen and methane) during this seasonal cycle, its atmospheric pressure may fluctuate by up to an order of magnitude over decades. Photometric measurements of its albedo and colour over half a century show that seasonal volatile transport has occurred. There have also been indications that more extreme, short-lived changes, perhaps due to geological events, have occurred on Triton. An anomalously red spectrum was reported for Triton in 1977 (refs 5, 6), and global warming has now been observed.

  17. Global warming and changes in ocean circulation

    SciTech Connect

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  18. Perihelion precession, polar ice and global warming

    NASA Astrophysics Data System (ADS)

    Steel, Duncan

    2013-03-01

    The increase in mean global temperature over the past 150 years is generally ascribed to human activities, in particular the rises in the atmospheric mixing ratios of carbon dioxide and other greenhouse gases since the Industrial Revolution began. Whilst it is thought that ice ages and interglacial periods are mainly initiated by multi-millennial variations in Earth's heliocentric orbit and obliquity, shorter-term orbital variations and consequent observable climatic effects over decadal/centurial timescales have not been considered significant causes of contemporary climate change compared to anthropogenic influences. Here it is shown that the precession of perihelion occurring over a century substantially affects the intra-annual variation of solar radiation influx at different locations, especially higher latitudes, with northern and southern hemispheres being subject to contrasting insolation changes. This north/south asymmetry has grown since perihelion was aligned with the winter solstice seven to eight centuries ago, and must cause enhanced year-on-year springtime melting of Arctic (but not Antarctic) ice and therefore feedback warming because increasing amounts of land and open sea are denuded of high-albedo ice and snow across boreal summer and into autumn. The accelerating sequence of insolation change now occurring as perihelion moves further into boreal winter has not occurred previously during the Holocene and so would not have been observed before by past or present civilisations. Reasons are given for the significance of this process having been overlooked until now. This mechanism represents a supplementary - natural - contribution to climate change in the present epoch and may even be the dominant fundamental cause of global warming, although anthropogenic effects surely play a role too.

  19. Drought under Global Warming: A Review

    NASA Astrophysics Data System (ADS)

    Dai, A.

    2011-12-01

    One of the big concerns associated with global warming is the potential change to land surface moisture conditions that could have a huge impact on agriculture, freshwater resources, and many other aspects of our society and the environment. How drought has changed during recent past and how it might change in the coming decades is increasingly becoming a great concern as global warming continues and more severe droughts are reported in the media. In this presentation, I will provide an overview, based on my own and others' work, of how drought has changed in the last several centuries and during recent decades over many regions around the world based on historical records, and how it might change in the coming decades based on IPCC AR4 model-predicted climate changes. I will present results from analyses of changes in precipitation, streamflow, soil moisture, and (improved) Palmer Drought Severity Index (PDSI) to show that aridity has increased during the last 50-60 years over many land areas, and rapid warming since the 1980s has contributed significantly to this drying. The PDSI (with improved evapotranspiration estimates) calculated from the AR4 multi-model predicted future climate suggests severe drying in the next 20-50 years over most land areas except the northern high-latitudes and parts of Asia. This drying pattern is consistent with other analyses of model-predicted soil moisture and precipitation changes. Although the quantitative interpretation of the future PDSI values may need to be cautious, combined with the other analyses, the PDSI result points to a dire situation with more severe to extreme droughts in the coming decades over the continental U.S., most of Africa and South America, Australia, southern Europe, and western and southeastern Asia. Changes in precipitation play an important role over many land areas, but enhanced evaporation due to increased radiative heating is also a major factor for the model-predicted drying. For more details, see

  20. Title: Freshwater phytoplankton responses to global warming.

    PubMed

    Wagner, Heiko; Fanesi, Andrea; Wilhelm, Christian

    2016-09-20

    Global warming alters species composition and function of freshwater ecosystems. However, the impact of temperature on primary productivity is not sufficiently understood and water quality models need to be improved in order to assess the quantitative and qualitative changes of aquatic communities. On the basis of experimental data, we demonstrate that the commonly used photosynthetic and water chemistry parameters alone are not sufficient for modeling phytoplankton growth under changing temperature regimes. We present some new aspects of the acclimation process with respect to temperature and how contrasting responses may be explained by a more complete physiological knowledge of the energy flow from photons to new biomass. We further suggest including additional bio-markers/traits for algal growth such as carbon allocation patterns to increase the explanatory power of such models. Although carbon allocation patterns are promising and functional cellular traits for growth prediction under different nutrient and light conditions, their predictive power still waits to be tested with respect to temperature. A great challenge for the near future will be the prediction of primary production efficiencies under the global change scenario using a uniform model for phytoplankton assemblages.

  1. Global Warming and 21st Century Drying

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Smerdun, Jason E.; Seager, Richard; Coats, Sloan

    2014-01-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twentyfirst century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman- Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  2. Global warming: Clouds cooled the Earth

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten

    2016-12-01

    The slow instrumental-record warming is consistent with lower-end climate sensitivity. Simulations and observations now show that changing sea surface temperature patterns could have affected cloudiness and thereby dampened the warming.

  3. Applying evolutionary biology to address global challenges.

    PubMed

    Carroll, Scott P; Jørgensen, Peter Søgaard; Kinnison, Michael T; Bergstrom, Carl T; Denison, R Ford; Gluckman, Peter; Smith, Thomas B; Strauss, Sharon Y; Tabashnik, Bruce E

    2014-10-17

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens, and pests that evolve too quickly and the second, from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This Review highlights both progress and gaps in genetic, developmental, and environmental manipulations across the life sciences that either target the rate and direction of evolution or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development.

  4. Applying evolutionary biology to address global challenges

    PubMed Central

    Carroll, Scott P.; Jørgensen, Peter Søgaard; Kinnison, Michael T.; Bergstrom, Carl T.; Denison, R. Ford; Gluckman, Peter; Smith, Thomas B.; Strauss, Sharon Y.; Tabashnik, Bruce E.

    2014-01-01

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens and pests that evolve too quickly, and the second from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This review highlights both progress and gaps in genetic, developmental and environmental manipulations across the life sciences that either target the rate and direction of evolution, or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development. PMID:25213376

  5. Global warming 2007. An update to global warming: the balance of evidence and its policy implications.

    PubMed

    Keller, Charles F

    2007-03-09

    century or so. However, this conclusion is being challenged by differing interpretations of satellite observations of Total Solar Insolation (TSI). Different satellites give different estimates of TSI during the 1996-7 solar activity minimum. A recent study using the larger TSI satellite interpretation indicates a stronger role for the sun, and until there is agreement on TSI at solar minimum, we caution completely disregarding the sun as a significant factor in recent warming. Computer models continue to improve and, while they still do not do a satisfactory job of predicting regional changes, their simulations of global aspects of climate change and of individual forcings are increasingly reliable. In addition to these four areas, the past five years have seen advances in our understanding of many other aspects of climate change--from albedo changes due to land use to the dynamics of glacier movement. However, these more are of second order importance and will only be treated very briefly. The big news since CFK03 is the first of these, the collapse of the climate critics' last real bastion, namely that satellites and radiosondes show no significant warming in the past quarter century. Figuratively speaking, this was the center pole that held up the critics' entire "tent." Their argument was that, if there had been little warming in the past 25 years or so, then what warming was observed would have been within the range of natural variations with solar forcing as the major player. Further, the models would have been shown to be unreliable since they were predicting warming that was not happening. But now both satellite and in-situ radiosonde observations have been shown to corroborate both the surface observations of warming and the model predictions. Thus, while uncertainties still remain, we are now seeing a coherent picture in which past climate variations, solar and other forcings, model predictions and other indicators such as glacier recession all point to a human

  6. A global warming forum: Scientific, economic, and legal overview

    SciTech Connect

    Geyer, R.A.

    1993-01-01

    A Global Warming Forum covers in detail five general subject areas aimed at providing first, the scientific background and technical information available on global warming and second, a study and evaluation of the role of economic, legal, and political considerations in global warming. The five general topic areas discussed are the following: (1) The role of geophysical and geoengineering methods to solve problems related to global climatic change; (2) the role of oceanographic and geochemical methods to provide evidence for global climatic change; (3) the global assessment of greenhouse gas production including the need for additional information; (4) natural resource management needed to provide long-term global energy and agricultural uses; (5) legal, policy, and educational considerations required to properly evaluate global warming proposals.

  7. Global crop yield losses from recent warming

    SciTech Connect

    Lobell, D; Field, C

    2006-06-02

    Global yields of the world-s six most widely grown crops--wheat, rice, maize, soybeans, barley, sorghum--have increased since 1961. Year-to-year variations in growing season minimum temperature, maximum temperature, and precipitation explain 30% or more of the variations in yield. Since 1991, climate trends have significantly decreased yield trends in all crops but rice, leading to foregone production since 1981 of about 12 million tons per year of wheat or maize, representing an annual economic loss of $1.2 to $1.7 billion. At the global scale, negative impacts of climate trends on crop yields are already apparent. Annual global temperatures have increased by {approx}0.4 C since 1980, with even larger changes observed in several regions (1). While many studies have considered the impacts of future climate changes on food production (2-5), the effects of these past changes on agriculture remain unclear. It is likely that warming has improved yields in some areas, reduced them in others, and had negligible impacts in still others; the relative balance of these effects at the global scale is unknown. An understanding of this balance would help to anticipate impacts of future climate changes, as well as to more accurately assess recent (and thereby project future) technologically driven yield progress. Separating the contribution of climate from concurrent changes in other factors--such as crop cultivars, management practices, soil quality, and atmospheric carbon dioxide (CO{sub 2}) levels--requires models that describe the response of yields to climate. Studies of future global impacts of climate change have typically relied on a bottom-up approach, whereby field scale, process-based models are applied to hundreds of representative sites and then averaged (e.g., ref 2). Such approaches require input data on soil and management conditions, which are often difficult to obtain. Limitations on data quality or quantity can thus limit the utility of this approach

  8. Situational Influences upon Children's Beliefs about Global Warming and Energy

    ERIC Educational Resources Information Center

    Devine-Wright, Patrick; Devine-Wright, Hannah; Fleming, Paul

    2004-01-01

    This paper explores children's beliefs about global warming and energy sources from a psychological perspective, focusing upon situational influences upon subjective beliefs, including perceived self-efficacy. The context of the research is one of growing concern at the potential impacts of global warming, yet demonstrably low levels of…

  9. Report nixes Geritol fix for global warming

    SciTech Connect

    Roberts, L.

    1991-09-27

    Several years ago John Martin of the Moss Landing Marine Laboratory in California suggested a quick fix to the greenhouse problem: dump iron into the Southern Ocean near Antarctica. That, he said, would trigger a massive bloom of the ocean's microscopic plants, which in turn would suck carbon dioxide out of the atmosphere and help reduce global warming. His idea ignited a firestorm of controversy that rages on today. While the idea quickly won supporters - including some prominent members of the National Academy of Sciences - much of the oceanographic community was incensed, arguing that you don't tinker with a perfectly health ecosystem to clean up humanity's mess. Now the American Society of Limnology and Oceanography (ASLO) has a report that represents the views of much of the oceanographic community. In the report, released in late summer, ASLO trounces the idea of fertilizing the oceans with iron as a greenhouse fix, as expected. But in an unexpected twist, the society endorses a small-scale experiment in which iron would be added to the open ocean. The idea isn't to engineer the oceans, but to test the hypothesis that might answer one of the longstanding puzzles in biological oceanography: why do the phytoplankton of the Southern Ocean, as well as those in parts of the subarctic and equatorial Pacific, grow so poorly, even though the waters are rich in nutrients such as phosphorus and nitrogen The answer could shed light not only on how the food web operates, but on the global carbon cycle as well.

  10. Talking about Climate Change and Global Warming.

    PubMed

    Lineman, Maurice; Do, Yuno; Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined.

  11. Talking about Climate Change and Global Warming

    PubMed Central

    Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined. PMID:26418127

  12. Global Warming in the 21st Century: An Alternate Scenario

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    2000-01-01

    Evidence on a broad range of time scales, from Proterozoic to the most recent periods, shows that the Earth's climate responds sensitively to global forcings. In the past few decades the Earth's surface has warmed rapidly, apparently in response to increasing anthropogenic greenhouse gases in the atmosphere. The conventional view is that the current global warming rate will continue or accelerate in the 21st century. I will describe an alternate scenario that would slow the rate of global warming and reduce the danger of dramatic climate change. But reliable prediction of future climate change requires improved knowledge of the carbon cycle and global observations that allow interpretation of ongoing climate change.

  13. Global Warming and Its Health Impact.

    PubMed

    Rossati, Antonella

    2017-01-01

    Since the mid-19th century, human activities have increased greenhouse gases such as carbon dioxide, methane, and nitrous oxide in the Earth's atmosphere that resulted in increased average temperature. The effects of rising temperature include soil degradation, loss of productivity of agricultural land, desertification, loss of biodiversity, degradation of ecosystems, reduced fresh-water resources, acidification of the oceans, and the disruption and depletion of stratospheric ozone. All these have an impact on human health, causing non-communicable diseases such as injuries during natural disasters, malnutrition during famine, and increased mortality during heat waves due to complications in chronically ill patients. Direct exposure to natural disasters has also an impact on mental health and, although too complex to be quantified, a link has even been established between climate and civil violence. Over time, climate change can reduce agricultural resources through reduced availability of water, alterations and shrinking arable land, increased pollution, accumulation of toxic substances in the food chain, and creation of habitats suitable to the transmission of human and animal pathogens. People living in low-income countries are particularly vulnerable. Climate change scenarios include a change in distribution of infectious diseases with warming and changes in outbreaks associated with weather extreme events. After floods, increased cases of leptospirosis, campylobacter infections and cryptosporidiosis are reported. Global warming affects water heating, rising the transmission of water-borne pathogens. Pathogens transmitted by vectors are particularly sensitive to climate change because they spend a good part of their life cycle in a cold-blooded host invertebrate whose temperature is similar to the environment. A warmer climate presents more favorable conditions for the survival and the completion of the life cycle of the vector, going as far as to speed it up

  14. Global Warming in Schools: An Inquiry about the Competing Conceptions of High School Social Studies and Science Curricula and Teachers

    NASA Astrophysics Data System (ADS)

    Meehan, Casey R.

    Despite the scientific consensus supporting the theory of anthropogenic (human-induced) global warming, whether global warming is a serious problem, whether human activity is the primary cause of it, and whether scientific consensus exists at all are controversial questions among the U.S. lay-public. The cultural theory of risk perception (Schwarz and Thompson, 1990) serves as the theoretical framework for this qualitative analysis in which I ask the question how do U.S. secondary school curricula and teachers deal with the disparity between the overwhelming scientific consensus and the lay-public's skepticism regarding global warming? I analyzed nine widely used social studies and science textbooks, eight sets of supplemental materials about global warming produced by a range of not-for-profit and governmental organizations, and interviewed fourteen high school teachers who had experience teaching formal lessons about global warming in their content area. Findings suggest: 1) the range of global warming content within social studies and science textbooks and supplemental curricula reflects the spectrum of conceptualizations found among members of the U.S. public; 2) global warming curricula communicate only a narrow range of strategies for dealing with global warming and its associated threats; and 3) social studies and science teachers report taking a range of stances about global warming in their classroom, but sometimes the stance they put forth to their students does not align with their personal beliefs about global warming. The findings pose a troubling conundrum. Some of the global warming curricula treat the cause of global warming--a question that is not scientifically controversial--as a question with multiple and competing "right" answers. At the same time, much of curricula position how we should address global warming--a question that is legitimately controversial--as a question with one correct answer despite there being many reasonable responses

  15. Global warming and neurodegenerative disorders: speculations on their linkage.

    PubMed

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders.

  16. Global warming and neurodegenerative disorders: speculations on their linkage

    PubMed Central

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders. PMID:25671171

  17. Global warming, energy use, and economic growth

    NASA Astrophysics Data System (ADS)

    Khanna, Neha

    The dissertation comprises four papers that explore the interactions between global warming, energy use, and economic growth. While the papers are separate entities, they share the underlying theme of highlighting national differences in the growth experience and their implications for long-term energy use and climate change. The first paper provides an overview of some key economic issues in the climate change literature. In doing so, the paper critically appraises the 1995 draft report of Working Group III of the Intergovernmental Panel on Climate Change. The focus is the choice of a pure rate of time preference in the economic modeling of climate change, abatement costs differentials between developed and developing countries, and contrasting implications of standard discount rates and value of life estimates for these two country groups. The second paper develops a global model that takes account of the depletion of oil resources in the context of a geo-economic model for climate change. It is found that in the presence of non-decreasing carbon and energy intensities and declining petroleum availability, the carbon emissions trajectory is much higher than that typically projected by other models of this genre. Furthermore, by introducing price and income sensitive demand functions for fossil fuels, the model provides a framework to assess the effectiveness of fuel specific carbon taxes in reducing the COsb2 emissions trajectory. Cross-price substitution effects necessitate unrealistically high tax rates in order to lower the projected emissions trajectory to the optimal level. The economic structure of five integrated assessment models for climate change is reviewed in the third paper, with a special focus on the macroeconomic and damage assessment modules. The final paper undertakes an econometric estimation of the changing shares of capital, labour, energy, and technical change in explaining the growth patterns of 38 countries. Production elasticities vary by

  18. Does Climate Literacy Matter? A Case Study of U.S. Students' Level of Concern about Anthropogenic Global Warming

    ERIC Educational Resources Information Center

    Bedford, Daniel

    2016-01-01

    Educators seeking to address global warming in their classrooms face numerous challenges, including the question of whether student opinions about anthropogenic global warming (AGW) can change in response to increased knowledge about the climate system. This article analyzes survey responses from 458 students at a primarily undergraduate…

  19. Carbon cycle: Global warming then and now

    NASA Astrophysics Data System (ADS)

    Stassen, Peter

    2016-04-01

    A rapid warming event 55.8 million years ago was caused by extensive carbon emissions. The rate of change of carbon and oxygen isotopes in marine shelf sediments suggests that carbon emission rates were much slower than anthropogenic emissions.

  20. The impact of global warming on Mount Everest.

    PubMed

    Moore, G W K; Semple, John L

    2009-01-01

    Global warming impacts a wide range of human activities and ecosystems. One unanticipated consequence of the warming is an increase in barometric pressure throughout the troposphere. Mount Everest's extreme height and resulting low barometric pressure places humans near its summit in an extreme state of hypoxia. Here we quantify the degree with which this warming is increasing the barometric pressure near Everest's summit and argue that it is of such a magnitude as to make the mountain, over time, easier to climb.

  1. Competition between global warming and an abrupt collapse of the AMOC in Earth’s energy imbalance

    PubMed Central

    Drijfhout, Sybren

    2015-01-01

    A collapse of the Atlantic Meridional Overturning Circulation (AMOC) leads to global cooling through fast feedbacks that selectively amplify the response in the Northern Hemisphere (NH). How such cooling competes with global warming has long been a topic for speculation, but was never addressed using a climate model. Here it is shown that global cooling due to a collapsing AMOC obliterates global warming for a period of 15–20 years. Thereafter, the global mean temperature trend is reversed and becomes similar to a simulation without an AMOC collapse. The resulting surface warming hiatus lasts for 40–50 years. Global warming and AMOC-induced NH cooling are governed by similar feedbacks, giving rise to a global net radiative imbalance of similar sign, although the former is associated with surface warming, the latter with cooling. Their footprints in outgoing longwave and absorbed shortwave radiation are very distinct, making attribution possible. PMID:26437599

  2. The effect of global warming on infectious diseases.

    PubMed

    Kurane, Ichiro

    2010-12-01

    Global warming has various effects on human health. The main indirect effects are on infectious diseases. Although the effects on infectious diseases will be detected worldwide, the degree and types of the effect are different, depending on the location of the respective countries and socioeconomical situations. Among infectious diseases, water- and foodborne infectious diseases and vector-borne infectious diseases are two main categories that are forecasted to be most affected. The effect on vector-borne infectious diseases such as malaria and dengue fever is mainly because of the expansion of the infested areas of vector mosquitoes and increase in the number and feeding activity of infected mosquitoes. There will be increase in the number of cases with water- and foodborne diarrhoeal diseases. Even with the strongest mitigation procedures, global warming cannot be avoided for decades. Therefore, implementation of adaptation measures to the effect of global warming is the most practical action we can take. It is generally accepted that the impacts of global warming on infectious diseases have not been apparent at this point yet in East Asia. However, these impacts will appear in one form or another if global warming continues to progress in future. Further research on the impacts of global warming on infectious diseases and on future prospects should be conducted.

  3. Global warming description using Daisyworld model with greenhouse gases.

    PubMed

    Paiva, Susana L D; Savi, Marcelo A; Viola, Flavio M; Leiroz, Albino J K

    2014-11-01

    Daisyworld is an archetypal model of the earth that is able to describe the global regulation that can emerge from the interaction between life and environment. This article proposes a model based on the original Daisyworld considering greenhouse gases emission and absorption, allowing the description of the global warming phenomenon. Global and local analyses are discussed evaluating the influence of greenhouse gases in the planet dynamics. Numerical simulations are carried out showing the general qualitative behavior of the Daisyworld for different scenarios that includes solar luminosity variations and greenhouse gases effect. Nonlinear dynamics perspective is of concern discussing a way that helps the comprehension of the global warming phenomenon.

  4. Paleoanalogues of global warming in the 21st century

    NASA Astrophysics Data System (ADS)

    Velichko, A. A.; Borisova, O. K.

    2011-05-01

    On the basis of landscape-climatic reconstructions for warming periods in the past, likely scenarios of future global warming have been developed for various warming levels that might be reached during the current century. The paleoanalogue of global warming by 0.7-1°C is the Holocene climatic optimum (5.5-6 ka B.P.) and that by 1.7-2°C is the last interglacial optimum (about 125 ka B.P.). The complex analysis concerning response of the principal ecosystem components to the expected warming signifies that there will not be any shifts of vegetation zones during the 21st century; reconstruction will touch only the internal structure of vegetable associations and broadening of interzonal ecotones.

  5. Recent warming at Summit, Greenland: Global context and implications

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel; Colgan, William; Bayou, Nicolas; Muto, Atsuhiro; Steffen, Konrad

    2013-05-01

    at Summit, Greenland suggest that the annual mean near-surface air temperature increased at 0.09 ± 0.01°C/a over the 1982-2011 climatology period. This rate of warming, six times the global average, places Summit in the 99th percentile of all globally observed warming trends over this period. The rate of warming at Summit is increasing over time. During the instrumental period (1987-2011), warming has been greatest in the winter season, although the implications of summer warming are more acute. The annual maximum elevation of the equilibrium line and dry snow line has risen at 44 and 35 m/a over the past 15 and 18 years, respectively. Extrapolation of this observed trend now suggests, with 95% confidence intervals, that the dry snow facies of the Greenland Ice Sheet will inevitably transition to percolation facies. There is a 50% probability of this transition occurring by 2025.

  6. Limiting Global Warming to 2 deg C and Beyond

    NASA Astrophysics Data System (ADS)

    Lea, D. W.

    2011-12-01

    This presentation addresses the question of how feasible is it to limit global warming to a specific temperature rise, whether 1.5, 2 or 3 deg C. Inherent in the idea of limiting global warming to a specific temperature level is the notion that future GHG emissions will be subject to a top-down international agreement. In the post-Copenhagen era, however, such an agreement is unlikely, and a bottoms-up approach of national pledges will likely have to serve as a surrogate for achieving emissions reduction. In this case, an additional question is what temperature targets are realistic under scenarios that are bounded by achievable national pledges as opposed to binding mandates. The question of feasibility depends largely on future emission pathways of CO2, other GHGs, black carbon and aerosols. Those pathways depend on many societal, technological and economic factors, but it is likely that the ultimate limiting factor is the maximum possible rate of absolute emission reduction. That rate is limited by how rapidly energy infrastructure can be turned over. Most studies suggest that an absolute emission reduction rate of 3.5% is the highest rate achievable. Climate sensitivity and the current cooling effect of aerosols and earth system responses such as the rate of ocean heat uptake and carbon cycle feedbacks determine how a specific emissions pathway translates into probable climate change. A useful framework for CO2 alone is provided by the newly emerging paradigm of cumulative emissions, which holds that peak temperature can be largely predicted by the total amount of carbon emitted, regardless of pathway. Most studies suggest that 1 Tt of cumulative carbon is equivalent to ~2 deg of peak warming. A consideration of these factors suggests that limiting warming to 1.5 deg C is no longer possible under any feasible economic scenario. For one, currently emitted GHGs are equivalent to a ~1.3 deg C warming commitment. This leaves very little room for future emissions

  7. Is Global Warming significantly affecting atmospheric circulation extremes?

    NASA Astrophysics Data System (ADS)

    Sardeshmukh, P. D.; Compo, G. P.; Penland, M. C.

    2012-12-01

    Although the anthropogenic influence on 20th century global warming is well established, the influence on the atmospheric circulation, especially on regional scales at which natural variability is relatively large, has proved harder to ascertain. And yet assertions are often made to this effect, especially in the media whenever an extreme warm or cold or dry or wet spell occurs and is tied to an apparent trend in the large-scale atmospheric circulation pattern. We are addressing this important issue using the longest currently available global atmospheric circulation dataset, an ensemble of 56 equally likely estimates of the atmospheric state within observational error bounds generated for every 6 hours from 1871 to the present in the 20th Century Reanalysis Project (20CR; Compo et al, QJRMS 2011). We previously presented evidence that long-term trends in the indices of several major modes of atmospheric circulation variability, including the North Atlantic Oscillation (NAO) and the tropical Pacific Walker Circulation (PWC), were weak or non-existent over the full period of record in the 20CR dataset. We have since investigated the possibility of a change in the probability density functions (PDFs) of the daily values of these indices, including changes in their tails, from the first to the second halves of the 20th century and found no statistically significant change. This was done taking into account the generally skewed and heavy-tailed character of these PDFs, and using both raw histograms and fitted "SGS" probability distributions (whose relevance in describing large-scale atmospheric variability was demonstrated in Sardeshmukh and Sura, J. Climate 2009) to assess the significance of any changes through extensive Monte Carlo simulations. We stress that without such an explicit accounting of departures from normal distributions, detection and attribution studies of changes in climate extremes may be seriously compromised and lead to wrong conclusions. Our

  8. Likely cause found for global warming "hiatus"

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-08-01

    An Atlantic current may be the cause of the recent warming "hiatus" observed since the beginning of the 21st century, according to new research published last week in the journal Science (doi:10.1126/science.1254937). The conclusion is based on observations of deep-sea temperatures in the Atlantic Ocean, from floats that sample water down to 2000 meters deep and from looking at historical records from the mid- to late 20th century.

  9. Surface measurements of global warming causing atmospheric constituents in Korea.

    PubMed

    Oh, S N; Youn, Y H; Park, K J; Min, H K; Schnell, R C

    2001-07-01

    The expansion of the industrial economy and the increase of population in Northeast Asian countries have caused much interest in climate monitoring related to global warming. However, new techniques and better platforms for the measurement of global warming and regional databases are still old-fashioned and are not being developed sufficiently. With respect to this agenda, since 1993, at the request of the World Meteorological Organization (WMO), to monitor functions of global warming, the Korea Meteorological Administration (KMA) has set up a Global Atmospheric Watch (GAW) Station on the western coast of Korea (Anmyun-do) and has been actively monitoring global warming over Northeast Asia. In addition, atmospheric carbon dioxide (CO2) has been measured for a similar KMA global warming program at Kosan, Cheju Island since 1990. Aerosol and radiation have also been measured at both sites as well as in Seoul. The observations have been analyzed using diagnostics of climate change in Northeast Asia and also have been internationally compared. Results indicate that greenhouse gases are in good statistic agreement with the NOAA/Climate Monitoring and Diagnostics Laboratory (CMDL) long-term trends of monthly mean concentrations and seasonal cycles. Atmospheric particulate matter has also been analyzed for particular Asian types in terms of optical depth, number concentration and size distribution.

  10. Quantifying global soil carbon losses in response to warming.

    PubMed

    Crowther, T W; Todd-Brown, K E O; Rowe, C W; Wieder, W R; Carey, J C; Machmuller, M B; Snoek, B L; Fang, S; Zhou, G; Allison, S D; Blair, J M; Bridgham, S D; Burton, A J; Carrillo, Y; Reich, P B; Clark, J S; Classen, A T; Dijkstra, F A; Elberling, B; Emmett, B A; Estiarte, M; Frey, S D; Guo, J; Harte, J; Jiang, L; Johnson, B R; Kröel-Dulay, G; Larsen, K S; Laudon, H; Lavallee, J M; Luo, Y; Lupascu, M; Ma, L N; Marhan, S; Michelsen, A; Mohan, J; Niu, S; Pendall, E; Peñuelas, J; Pfeifer-Meister, L; Poll, C; Reinsch, S; Reynolds, L L; Schmidt, I K; Sistla, S; Sokol, N W; Templer, P H; Treseder, K K; Welker, J M; Bradford, M A

    2016-11-30

    The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  11. Quantifying global soil carbon losses in response to warming

    NASA Astrophysics Data System (ADS)

    Crowther, T. W.; Todd-Brown, K. E. O.; Rowe, C. W.; Wieder, W. R.; Carey, J. C.; Machmuller, M. B.; Snoek, B. L.; Fang, S.; Zhou, G.; Allison, S. D.; Blair, J. M.; Bridgham, S. D.; Burton, A. J.; Carrillo, Y.; Reich, P. B.; Clark, J. S.; Classen, A. T.; Dijkstra, F. A.; Elberling, B.; Emmett, B. A.; Estiarte, M.; Frey, S. D.; Guo, J.; Harte, J.; Jiang, L.; Johnson, B. R.; Kröel-Dulay, G.; Larsen, K. S.; Laudon, H.; Lavallee, J. M.; Luo, Y.; Lupascu, M.; Ma, L. N.; Marhan, S.; Michelsen, A.; Mohan, J.; Niu, S.; Pendall, E.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Reinsch, S.; Reynolds, L. L.; Schmidt, I. K.; Sistla, S.; Sokol, N. W.; Templer, P. H.; Treseder, K. K.; Welker, J. M.; Bradford, M. A.

    2016-12-01

    The majority of the Earth’s terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  12. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Roth, Wolff-Michael; Bin Abdullah, Mohd Nor Syahrir

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that…

  13. Strategies for addressing global environmental health concerns.

    PubMed

    Suk, William A; Davis, E Ann

    2008-10-01

    While each region of the world faces unique public health challenges, environmental threats to vulnerable populations in Asia constitute a significant global public health challenge. Environmental threats to health are widespread and are increasing as nations in the region undergo rapid industrial development. One of the major predictors of ill health is poverty. Regional poverty puts large populations at risk for ill health, which exacerbates poverty and increases the exposure risk to environmental factors, such as pollution and disease. Patterns of illness have changed dramatically in the last century, and will continue to change in this century. Chemical toxicants in the environment, poverty, and little or no access to health care are all factors contributing to life-threatening diseases. Therefore, it is vital that we develop a better understanding of the mechanisms and interactions between nutrition, infectious disease, environmental exposures, and genetic predisposition in order to develop better prevention methods.

  14. Addressing global change challenges for Central Asian socio-ecosystems

    NASA Astrophysics Data System (ADS)

    Qi, Jiaguo; Bobushev, Temirbek S.; Kulmatov, Rashid; Groisman, Pavel; Gutman, Garik

    2012-06-01

    Central Asia is one of the most vulnerable regions on the planet earth to global climate change, depending on very fragile natural resources. The Soviet legacy has left the five countries (Kazakhstan, Tajikistan, Kyrgyzstan, Turkmenistan, and Uzbekistan) with a highly integrated system but they are facing great challenges with tensions that hinder regional coordination of food and water resources. With increasing climate variability and warming trend in the region, food and water security issues become even more crucial now and, if not addressed properly, could affect the regional stability. The long-term drivers of these two most critical elements, food and water, are climate change; the immediate and probably more drastic factors affecting the food and water security are land uses driven by institutional change and economic incentives. As a feedback, changes in land use and land cover have directly implications on water uses, food production, and lifestyles of the rural community in the region. Regional and international efforts have been made to holistically understand the cause, extent, rate and societal implications of land use changes in the region. Much of these have been understood, or under investigation by various projects, but solutions or research effort to develop solutions, to these urgent regional issues are lacking. This article, serves as an introduction to the special issue, provides a brief overview of the challenges facing the Central Asian countries and various international efforts in place that resulted in the publications of this special issue.

  15. Geographical features of global water cycle during warm geological epochs

    SciTech Connect

    Georgiadi, A.G.

    1996-12-31

    The impact of global warming on the water cycle can be extremely complex and diverse. The goal of the investigation was to estimate the geographic features of the mean annual water budget of the world during climatic optimums of the Holocene and the Eemian interglacial periods. These geological epochs could be used as analogs of climatic warming on 1 degree, centigrade and 2 degrees, centigrade. The author used the results of climatic reconstructions based on a simplified version of a GCM.

  16. Global warming forecasts may be built on hot air

    SciTech Connect

    Lochhead, C.

    1990-04-16

    Predictions of a catastrophic global warming have come under scrutiny in the scientific community. Data are discussed that suggest that ice sheets are not melting as predicted nor is there clear-cut evidence that Earth is warming. Climate models have proved to be unreliable because of computer limitations and the highly complex factors of the planet's weather. However, some scientists say there is still cause for concern.

  17. Thai Youths and Global Warming: Media Information, Awareness, and Lifestyle Activities

    ERIC Educational Resources Information Center

    Chokriensukchai, Kanchana; Tamang, Ritendra

    2010-01-01

    This study examines the exposure of Thai youths to media information on global warming, the relationship between exposure to global warming information and awareness of global warming, and the relationship between that awareness and lifestyle activities that contribute to global warming. A focus group of eight Thai youths provided information that…

  18. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials Global Warming Potentials Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1 Methane 74-82-8 CH4...

  19. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials Global Warming Potentials Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1 Methane 74-82-8 CH4 a...

  20. Global warming tugs at trophic interactions.

    PubMed

    Brook, Barry W

    2009-01-01

    Climate change impacts are becoming increasingly evident as 1 degree C warming above pre-industrial temperatures is approached. One of the signature biological effects is a shift towards earlier-timed reproduction. If individual species lack sufficient adaptive plasticity to alter phenology, they will have reduced fitness in a hotter world. Yet, a long-term study of an oak-caterpillar-songbird-sparrowhawk food web reveals that what could matter as much is if trophic interactions are disrupted. Multiple selective pressures may be triggered by climate change, leading to a tug-of-war between the need to stay in synchrony with the timing of maximum food, and the benefits of minimizing predation.

  1. Bog breath: Sleeper factor in global warming?

    SciTech Connect

    Benyus, J.M.

    1995-04-01

    This artical examines the emission of gases from northern peatlands as plants grow and decay and its implication in the global increase in greenhouse gases, particularly carbon dioxide and methane. Bogs do extract carbon dioxide from the air, incorporating it into green plants which become buried for a long time. However, the cold, wet conditions are ideal for microbes which emit methane. Global climate change models indicate that Minnesota, for example will be 5 degrees warmer and somewhat wetter in future years. As a result bacterial metabolism and methane generation may increase considerably. This paper discusses current research and speculation and looks at possible solutions, both man-created and natural.

  2. Changes in Terrestrial Water Availability under Global Warming

    NASA Astrophysics Data System (ADS)

    Lan, C. W.; Lo, M. H.; Chou, C.

    2014-12-01

    Under global warming, the annual range of precipitation is widening (Chou and Lan, 2012; Chou et al., 2013) and the frequency of precipitation extreme events also increases. Due to nonlinear responses of land hydrological process to precipitation extremes, runoff can increase exponentially, and on the hard hand, soil water storage may decline. In addition, IPCC AR5 indicates that soil moisture decreases in most areas under the global warming scenario. In this study, we use NCAR Community Land Model version 4 (CLM4) to simulate changes in terrestrial available water (TAW, defined as the precipitation minus evaporation minus runoff, and then divided by the precipitation) under global warming. Preliminary results show that the TAW has clear seasonal variations. Compared to previous studies, which do not include the runoff in the calculations of the available water, our estimates on the TAW has much less available water in high latitudes through out the year, especially under extreme precipitation events.

  3. The impact of global warming on agriculture: A Ricardian analysis

    SciTech Connect

    Mendelsohn, R.; Nordaus, W.D.; Daigee Shaw

    1994-09-01

    We measure the economic impact of climate on land prices. Using cross-sectional data on climate, farmland prices, and other economic and geophysical data for almost 3,000 counties in the United States, we find that higher temperatures in all seasons except autumn reduce average farm values, while more precipitation outside of autumn increases farm values. Applying the model to a global-warming scenario shows a significantly lower estimated impact of global warming on U.S. agriculture than the traditional production-function approach and, in one case, suggests that, even without CO{sub 2} fertilization, global warming may have economic benefits for agriculture. 16 refs., 5 figs., 5 tabs.

  4. Global warming: knowledge and views of Iranian students.

    PubMed

    Yazdanparast, Taraneh; Salehpour, Sousan; Masjedi, Mohammad Reza; Seyedmehdi, Seyed Mohammad; Boyes, Eddie; Stanisstreet, Martin; Attarchi, Mirsaeed

    2013-04-06

    Study of students' knowledge about global warming can help authorities to have better imagination of this critical environmental problem. This research examines high school students' ideas about greenhouse effect and the results may be useful for the respective authorities to improve cultural and educational aspects of next generation. In this cross-sectional study, a 42 question questionnaire with mix of open and closed questions was used to evaluate high school students' view about the mechanism, consequences, causes and cures of global warming. To assess students' knowledge, cognitive score was also calculated. 1035 students were randomly selected from 19 educational districts of Tehran. Sampling method was multi stage. Only 5.1% of the students could explain greenhouse effect correctly and completely. 88.8% and 71.2% respectively believed "if the greenhouse effect gets bigger the Earth will get hotter" and "incidence of more skin cancers is a consequence of global warming". 69.6% and 68.8% respectively thought "the greenhouse effect is made worse by too much carbon dioxide" and "presence of ozone holes is a cause of greenhouse effect". 68.4% believed "not using cars so much is a cure for global warming". While a student's 'cognitive score' could range from -36 to +36, Students' mean cognitive score was equal to +1.64. Mean cognitive score of male students and grade 2 & 3 students was respectively higher than female ones (P<0.01) and grade 1 students (P<0.001) but there was no statistically significant difference between students of different regions (P>0.05). In general, students' knowledge about global warming was not acceptable and there were some misconceptions in the students' mind, such as supposing ozone holes as a cause and more skin cancer as a consequence of global warming. The Findings of this survey indicate that, this important stratum of society have been received no sufficient and efficient education and sensitization on this matter.

  5. Responses of Antarctic Oscillation to global warming

    NASA Astrophysics Data System (ADS)

    Feng, S.

    2015-12-01

    The Antarctic Oscillation (AAO) is the major annular mode dominates the spatiotemporal variability of the atmospheric circulation in the Southern Hemisphere. This study examined the sensitivity of AAO to future warming by analyzing the outputs of 34 state-of-the-art climate models participating in phase 5 of the Coupled Model Intercomparion Project (CMIP5). The model simulations include the stabilized (RCP4.5) and business as usual (RCP8.5) scenarios as well as the idealized 1% per year increase in atmospheric CO2 to quadrupling (1pctCO2) and an instantaneous quadrupling of CO2 (abrupt4xCO2). We show that the CMIP5 models on average simulate increases in the AAO in every season by 2100 under the RCP4.5 and RCP8.5 scenarios. However, due to the impacts of ozone, aerosol and land use changes, the amplitudes of the projected changes in AAO to future climate scenarios are quit different on different seasons. After the impact of ozone, aerosol and land use changes were removed; it was found that the impact of greenhouse gases (GHGs) on AAO is similar on all seasons. The increases of AAO are accelerating following the increase of GHGs. Our results are also consistent with the simulations of 1pctCO2 and abrupt4xCO2.

  6. Global Warming and Climate Change Science

    NASA Astrophysics Data System (ADS)

    Jain, Atul

    2008-03-01

    Global climate change has emerged as a major scientific and political issue within a few short decades. Scientific evidence clearly indicates that this change is a result of a complex interplay between a number of human-related and natural earth systems. While the complexity of the earth-ocean-atmosphere system makes the understanding and prediction of global climate change very difficult, improved scientific knowledge and research capabilities are advancing our understanding of global climate change resulting from rising atmospheric levels of radiatively important (mostly heat-trapping) gases and particles. The effects of climate change can be assessed with climate models, which account for complex physical, chemical and biological processes, and interactions of these processes with human activities, especially the burning of fossil fuels along with land use changes. This presentation begins with a discussion of the current understanding of the concerns about climate change, and then discusses the role climate models in scientific projections of climate change as well as their current strengths and weaknesses.

  7. Global warming: is weight loss a solution?

    PubMed

    Gryka, A; Broom, J; Rolland, C

    2012-03-01

    The current climate change has been most likely caused by the increased greenhouse gas emissions. We have looked at the major greenhouse gas, carbon dioxide (CO(2)), and estimated the reduction in the CO(2) emissions that would occur with the theoretical global weight loss. The calculations were based on our previous weight loss study, investigating the effects of a low-carbohydrate diet on body weight, body composition and resting metabolic rate of obese volunteers with type 2 diabetes. At 6 months, we observed decreases in weight, fat mass, fat free mass and CO(2) production. We estimated that a 10 kg weight loss of all obese and overweight people would result in a decrease of 49.560 Mt of CO(2) per year, which would equal to 0.2% of the CO(2) emitted globally in 2007. This reduction could help meet the CO(2) emission reduction targets and unquestionably would be of a great benefit to the global health.

  8. Climatic irregular staircases: generalized acceleration of global warming

    PubMed Central

    De Saedeleer, Bernard

    2016-01-01

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr — not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth’s climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates — except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature. PMID:26813867

  9. Climatic irregular staircases: generalized acceleration of global warming.

    PubMed

    De Saedeleer, Bernard

    2016-01-27

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr - not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth's climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates - except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature.

  10. Biotic prognostications: Global warming and biological diversity

    SciTech Connect

    Peters, R.L.; Lovejoy, T.E.

    1992-12-31

    This book focuses on the impacts of the greenhouse effect on biological diversity and on natural ecosystems. Included are chapters which include the following topics: government attitudes to climate change problems; general conclusions and deficiencies of general circulation models; impacts of past climate changes on global biota; effects of climate on vegetation, soils, wildlife diversity, animal physiology, ecology, behavior, migration, and parasites and diseases; arctic mariene ecosystems and coasta marine zones; tropical forests; arctic tundra; western North American forests, etc.; indirect linkages and snyergisms among climate change, biodiversity, geosphere, and anthropogenic stresses.

  11. Global warming: Perspectives from the Late Quaternary paleomammal record

    SciTech Connect

    Graham, R.W. )

    1993-03-01

    Global warming at the end of the Pleistocene caused significant environmental changes that directly and indirectly effected biotic communities. The biotic response to this global warming event can provide insights into the processes that might be anticipated for future climatic changes. The megafauna extinction may have been the most dramatic alteration of mammalian communities at the end of the Pleistocene. Late Quaternary warming also altered regional diversity patterns for some small mammal guilds without extinction. Reductions in body size for both small and large mammal species were also consequences of these environmental fluctuations. Geographic shifts in the distributions of individual mammal species resulted in changes in species composition of mammalian communities. The individualistic response of biota to environmental fluctuations define some boundary conditions for modeling communities. Understanding these boundary conditions is mandatory in planning for the preservation of biodiversity in the future. Finally, it is essential to determine how global warming will alter seasonal patterns because it is apparent from the paleobiological record that not all Quaternary warming events have been the same.

  12. Using Updated Climate Accounting to Slow Global Warming Before 2035

    NASA Astrophysics Data System (ADS)

    Schultz, T.

    2015-12-01

    The current and projected worsening of climate impacts make clear the urgency of limiting the global mean temperature to 2°C over preindustrial levels. But while mitigation policy today may slow global warming at the end of the century, it will not keep global warming within these limits. This failure arises in large part from the climate accounting system used to inform this policy, which does not factor in several scientific findings from the last two decades, including: The urgent need to slow global warming before 2035. This can postpone the time the +1.5°C limit is passed, and is the only way to avoid the most serious long-term climate disruptions. That while it may mitigate warming by the end of the century, reducing emissions of CO2 alone, according to UNEP/WMO[1], will do "little to mitigate warming over the next 20-30 years," and "may temporarily enhance near-term warming as sulfate [cooling] is reduced." That the only emissions reductions that can slow warming before 2035 are focused on short-lived climate pollutants. A small increase in current mitigation funding could fund these projects, the most promising of which target emissions in regional climate "hot spots" like the Arctic and India.[2] To ensure policies can effectively slow global warming before 2035, a new climate accounting system is needed. Such an updated system is being standardized in the USA,[3] and has been proposed for use in ISO standards. The key features of this updated system are: consideration of all climate pollutants and their multi-faceted climate effects; use of time horizons which prioritize mitigation of near-term warming; a consistent and accurate accounting for "biogenic" CO2; protocols ensuring that new scientific findings are incorporated; and a distinct accounting for emissions affecting regional "hot spots". This accounting system also considers environmental impacts outside of climate change, a feature necessary to identify "win-win" projects with climate benefits

  13. Global warming---The role for nuclear power

    SciTech Connect

    Jones, J.E. Jr.; Fulkerson, W. )

    1989-01-01

    Nuclear power is currently making an important contribution to our energy requirements. It provides 17% of the world's electricity today --- almost 20% in the US. Reducing the emissions of carbon dioxide over the next 30 to 50 years sufficiently to address the issue of global warming can only be accomplished by a combination of much improved energy efficiency, substantial growth in use of nuclear power, and substantial growth in use of renewable energy. This paper discusses new initiatives in the major nuclear technologies (LWR, HTGR, LMR) which are emerging from a fundamental reexamination of nuclear power in response to the challenges and opportunities in the 21st century. To fulfill its role, nuclear power must gain worldwide acceptance as a viable energy option. The use of modern technology and passive'' safety features in next-generation nuclear power plants offers the potential to simplify their design and operation, enhance their safety, and reduce the cost of electricity. With such improvements, we believe nuclear power can regain public confidence and make a significant contribution to our energy future. 24 refs., 2 figs., 1 tab.

  14. Changes in aridity in response to the global warming hiatus

    NASA Astrophysics Data System (ADS)

    Guan, Xiaodan; Huang, Jianping; Guo, Ruixia

    2017-02-01

    The global warming slowdown or warming hiatus, began around the year 2000 and has persisted for nearly 15 years. Most studies have focused on the interpretation of the hiatus in temperature. In this study, changes in a global aridity index (AI) were analyzed by using a newly developed dynamical adjustment method that can successfully identify and separate dynamically induced and radiatively forced aridity changes in the raw data. The AI and Palmer Drought Severity Index produced a wetting zone over the mid-to-high latitudes of the Northern Hemisphere in recent decades. The dynamical adjustment analysis suggested that this wetting zone occurred in response to the global warming hiatus. The dynamically induced AI (DAI) played a major role in the AI changes during the hiatus period, and its relationships with the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO) also indicated that different phases of the NAO, PDO, and AMO contributed to different performances of the DAI over the Northern Hemisphere. Although the aridity wetting over the mid-to-high latitudes may relieve long-term drying in certain regions, the hiatus is temporary, and so is the relief. Accelerated global warming will return when the NAO, PDO, and AMO revert to their opposite phases in the future, and the wetting zone is likely to disappear.

  15. Global Warming: Discussion for EOS Science Writers Workshop

    NASA Technical Reports Server (NTRS)

    Hansen, James E

    1999-01-01

    The existence of global warming this century is no longer an issue of scientific debate. But there are many important questions about the nature and causes of long-term climate change, th roles of nature and human-made climate forcings and unforced (chaotic) climate variability, the practical impacts of climate change, and what, if anything, should be done to reduce global warming, Global warming is not a uniform increase of temperature, but rather involves at complex geographically varying climate change. Understanding of global warming will require improved observations of climate change itself and the forcing factors that can lead to climate change. The NASA Terra mission and other NASA Earth Science missions will provide key measurement of climate change and climate forcings. The strategy to develop an understanding of the causes and predictability of long-term climate change must be based on combination of observations with models and analysis. The upcoming NASA missions will make important contributions to the required observations.

  16. Global Warming: If You Can't Stand the Heat

    ERIC Educational Resources Information Center

    Baird, Stephen L.

    2005-01-01

    Global warming is the progressive, gradual rise of the earth's average surface temperature, thought to be caused in part by increased concentrations of "greenhouse" gases (GHGs) in the atmosphere. According to the National Academy of Sciences, the Earth's temperature has risen by about one degree Fahrenheit in the past century, with accelerated…

  17. Carbon Dioxide and Global Warming: A Failed Experiment

    ERIC Educational Resources Information Center

    Ribeiro, Carla

    2014-01-01

    Global warming is a current environmental issue that has been linked to an increase in anthropogenic carbon dioxide in the atmosphere. To raise awareness of the problem, various simple experiments have been proposed to demonstrate the effect of carbon dioxide on the planet's temperature. This article describes a similar experiment, which…

  18. A Noted Physicist's Contrarian View of Global Warming

    ERIC Educational Resources Information Center

    Goldstein, Evan R., Comp.

    2008-01-01

    According to Freeman Dyson, an emeritus professor of physics at the Institute for Advanced Study, the debate about global warming has become too narrow and opinions have become too entrenched. Relying on a computer model designed by the Yale University economist William D. Nordhaus, Dyson compared the effectiveness and economic feasibility of…

  19. Net global warming potential and greenhouse gas intensity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...

  20. Promotion of Scientific Literacy on Global Warming by Process Drama

    ERIC Educational Resources Information Center

    Pongsophon, Pongprapan; Yutakom, Naruemon; Boujaoude, Saouma B.

    2010-01-01

    This project aims to investigate how process drama promotes scientific literacy in the context of global warming. Thirty-one lower (n = 24) and upper (n = 7) secondary students of one secondary school in Bangkok, Thailand participated in a seven-day workshop which process drama strategy was implemented. In the workshop, the students were actively…

  1. Turkish Prospective Teachers' Understanding and Misunderstanding on Global Warming

    ERIC Educational Resources Information Center

    Ocal, A.; Kisoglu, M.; Alas, A.; Gurbuz, H.

    2011-01-01

    The key objective of this study is to determine the Turkish elementary prospective teachers' opinions on global warming. It is also aimed to establish prospective teachers' views about the environmental education in Turkish universities. A true-false type scale was administered to 564 prospective teachers from science education, social studies…

  2. Seventh Grade Students' Conceptions of Global Warming and Climate Change

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Niyogi, Dev; Choi, Soyoung; Charusombat, Umarporn

    2009-01-01

    The purpose of this study was to investigate seventh grade students' conceptions of global warming and climate change. The study was descriptive in nature and involved the collection of qualitative data from 91 seventh grade students from three different schools in the Midwest, USA. An open response and draw and explain assessment instrument was…

  3. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection

    PubMed Central

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-01-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053

  4. Is a global warming signature emerging in the tropical Pacific?

    NASA Astrophysics Data System (ADS)

    Ashok, K.; Sabin, T. P.; Swapna, P.; Murtugudde, R. G.

    2012-01-01

    The tropical pacific experienced a hitherto-unseen anomalous basinwide warming from May 2009 through April 2010 with the maximum warming to the east of the dateline, but for a weak anomalous cooling west of 140°E after early boreal fall. Our observed analysis and model experiments isolate the potential teleconnections from TP during the summer of 2009. Further, we show through an empirical orthogonal function analysis of the tropical Pacific SSTA that the anomalous conditions in TP during this period could have manifested as a canonical El Niño, but for a slowly intensifying background west-east gradient. This zonal SST gradient is subject to an increasing trend associated with global warming. A possible implication is that any further increase in global warming may result in more basinwide warm events in place of canonical El Niños, along with the occurrence of more intense La Niñas and El Niño Modokis.

  5. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    PubMed

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-03

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  6. Simulation of future global warming scenarios in rice paddies with an open-field warming facility

    PubMed Central

    2011-01-01

    To simulate expected future global warming, hexagonal arrays of infrared heaters have previously been used to warm open-field canopies of upland crops such as wheat. Through the use of concrete-anchored posts, improved software, overhead wires, extensive grounding, and monitoring with a thermal camera, the technology was safely and reliably extended to paddy rice fields. The system maintained canopy temperature increases within 0.5°C of daytime and nighttime set-point differences of 1.3 and 2.7°C 67% of the time. PMID:22145582

  7. Simulation of future global warming scenarios in rice paddies with an open-field warming facility.

    PubMed

    Rehmani, Muhammad Ishaq Asif; Zhang, Jingqi; Li, Ganghua; Ata-Ul-Karim, Syed Tahir; Wang, Shaohua; Kimball, Bruce A; Yan, Chuan; Liu, Zhenghui; Ding, Yanfeng

    2011-12-06

    To simulate expected future global warming, hexagonal arrays of infrared heaters have previously been used to warm open-field canopies of upland crops such as wheat. Through the use of concrete-anchored posts, improved software, overhead wires, extensive grounding, and monitoring with a thermal camera, the technology was safely and reliably extended to paddy rice fields. The system maintained canopy temperature increases within 0.5°C of daytime and nighttime set-point differences of 1.3 and 2.7°C 67% of the time.

  8. Catholic Social Teaching: Addressing Globalization in Catholic Business Education

    ERIC Educational Resources Information Center

    Ball, James B.; Martinez, Zaida; Toyne, Brian

    2009-01-01

    Although business schools are increasingly aware of the importance of globalization in educating future business leaders, their business programs have addressed globalization from a limited perspective that fails to provide students with a broader understanding of its impact on societies and its moral consequences. The conventional approach to the…

  9. I'll Save the World from Global Warming--Tomorrow: Using Procrastination Management to Combat Global Warming

    ERIC Educational Resources Information Center

    Malott, Richard W.

    2010-01-01

    In the provocatively titled "I'll Save the World from Global Warming--Tomorrow," Dick Malott says that although we all want to do the right thing to help the environment, whether it's buying and installing compact fluorescent light bulbs (CFLs) or replacing an energy-guzzling appliance with a more efficient one, we put it off because there's no…

  10. Toxicological and epidemiological aspects of global warming on human health

    SciTech Connect

    Ando, M.; Yamamoto, S.; Wakamatsu, K.; Kawahara, I.; Asanuma, S.

    1996-12-31

    Since human activities are responsible for anthropogenic greenhouse gases emissions, climate models project an increase in the global surface temperature of 0.9 C to 4.0 C by 2100. For human health, it is projected that global warming may have a critical effect on the increased periods of severe heat stress in summer throughout the world. Global warming may have a critical issue on the increased periods of severe heat stress that have a potential impact on peroxidative damage in humans and animals. Lipid peroxidative damage is markedly related to GSH peroxidase activities, therefore the study was carried out to analyze the relationship between biochemical adaptability and the lipid peroxidative damage especially intracellular structure, such as mitochondria and endoplasmic reticulum depending on the exposure time of heat stress.

  11. Signature of ocean warming in global fisheries catch.

    PubMed

    Cheung, William W L; Watson, Reg; Pauly, Daniel

    2013-05-16

    Marine fishes and invertebrates respond to ocean warming through distribution shifts, generally to higher latitudes and deeper waters. Consequently, fisheries should be affected by 'tropicalization' of catch (increasing dominance of warm-water species). However, a signature of such climate-change effects on global fisheries catch has so far not been detected. Here we report such an index, the mean temperature of the catch (MTC), that is calculated from the average inferred temperature preference of exploited species weighted by their annual catch. Our results show that, after accounting for the effects of fishing and large-scale oceanographic variability, global MTC increased at a rate of 0.19 degrees Celsius per decade between 1970 and 2006, and non-tropical MTC increased at a rate of 0.23 degrees Celsius per decade. In tropical areas, MTC increased initially because of the reduction in the proportion of subtropical species catches, but subsequently stabilized as scope for further tropicalization of communities became limited. Changes in MTC in 52 large marine ecosystems, covering the majority of the world's coastal and shelf areas, are significantly and positively related to regional changes in sea surface temperature. This study shows that ocean warming has already affected global fisheries in the past four decades, highlighting the immediate need to develop adaptation plans to minimize the effect of such warming on the economy and food security of coastal communities, particularly in tropical regions.

  12. Quantifying global warming from the retreat of glaciers

    SciTech Connect

    Oerlemans, J. )

    1994-04-08

    Records of glacier fluctuations compiled by the World Glacier Monitoring Service can be used to derive an independent estimate of global warming during the last 100 years. Records of different glaciers are made comparable by a two-step scaling procedure; one allowing for differences in glacier geometry, the other for differences in climate sensitivity. The retreat of glaciers during the last 100 years appears to be coherent over the globe. On the basis of modeling of the climate sensitivity of glaciers, the observed glacier retreat can be explained by a linear warming trend of 0.66 kelvin per century.

  13. Quantifying global warming from the retreat of glaciers.

    PubMed

    Oerlemans, J

    1994-04-08

    Records of glacier fluctuations compiled by the World Glacier Monitoring Service can be used to derive an independent estimate of global warming during the last 100 years. Records of different glaciers are made comparable by a two-step scaling procedure: one allowing for differences in glacier geometry, the other for differences in climate sensitivity. The retreat of glaciers during the last 100 years appears to be coherent over the globe. On the basis of modeling of the climate sensitivity of glaciers, the observed glacier retreat can be explained by a linear warming trend of 0.66 kelvin per century.

  14. Global warming solutions and the path to recovery.

    PubMed

    Foster, David

    2009-01-01

    We will look back on the last year as a period when extraordinary economic events marked the unraveling of one economic model and placed in front of the global community a set of choices. Either we restructure the architecture of the global economy and replace it with something else, or we face a future of devastating economic consequences. The Blue Green Alliance has become one of America's leading advocates for global warming solutions and we believe that the benefits and economic opportunities will far outweigh the costs. We have popularized the terms "green economy" and "green jobs" and we believe that every job in America should turn into a green job.

  15. Why ocean heat transport warms the global mean climate

    NASA Astrophysics Data System (ADS)

    Herweijer, Celine; Seager, Richard; Winton, Michael; Clement, Amy

    2005-08-01

    Observational and modelling evidence suggest that poleward ocean heat transport (OHT) can vary in response to both natural climate variability and greenhouse warming. Recent modelling studies have shown that increased OHT warms both the tropical and global mean climates. Using two different coupled climate models with mixed-layer oceans, with and without OHT, along with a coupled model with a fixed-current ocean component in which the currents are uniformly reduced and increased by 50%, an attempt is made to explain why this may happen.OHT warms the global mean climate by 1 to 1.6K in the atmospheric general circulation (AGCM) ML model and 3.5K in the AGCM fixed current model. In each model the warming is attributed to an increase in atmospheric greenhouse trapping, primarily clear-sky greenhouse trapping, and a reduction in albedo. This occurs as OHT moistens the atmosphere, particularly at subtropical latitudes. This is not purely a thermodynamic response to the reduction in planetary albedo at these latitudes. It is a change in atmospheric circulation that both redistributes the water vapour and allows for a global atmospheric moistening—a positive 'dynamical' water vapour feedback. With increasing OHT the atmospheric water vapour content increases as atmospheric convection spreads out of the deep tropics. The global mean planetary albedo is decreased with increased OHT. This change is explained by a decrease in subtropical and mid-latitude low cloudiness, along with a reduction in high-latitude surface albedo due to decreased sea ice. The climate models with the mixed layer oceans underestimate both the subtropical low cloud cover and the high-latitude sea ice/surface albedo, and consequently have a smaller warming response to OHT.

  16. Recent decrease in typhoon destructive potential and global warming implications

    PubMed Central

    Lin, I-I; Chan, Johnny C.L.

    2015-01-01

    Typhoons (tropical cyclones) severely impact the half-billion population of the Asian Pacific. Intriguingly, during the recent decade, typhoon destructive potential (Power Dissipation Index, PDI) has decreased considerably (by ∼35%). This decrease, paradoxically, has occurred despite the increase in typhoon intensity and ocean warming. Using the method proposed by Emanuel (in 2007), we show that the stronger negative contributions from typhoon frequency and duration, decrease to cancel the positive contribution from the increasing intensity, controlling the PDI. Examining the typhoons' environmental conditions, we find that although the ocean condition became more favourable (warming) in the recent decade, the atmospheric condition ‘worsened' at the same time. The ‘worsened' atmospheric condition appears to effectively overpower the ‘better' ocean conditions to suppress PDI. This stronger negative contribution from reduced typhoon frequency over the increased intensity is also present under the global warming scenario, based on analysis of the simulated typhoon data from high-resolution modelling. PMID:25990561

  17. Global warming induced hybrid rainy seasons in the Sahel

    NASA Astrophysics Data System (ADS)

    Salack, Seyni; Klein, Cornelia; Giannini, Alessandra; Sarr, Benoit; Worou, Omonlola N.; Belko, Nouhoun; Bliefernicht, Jan; Kunstman, Harald

    2016-10-01

    The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming, conceals some drought features that exacerbate food security. The new rainfall features include false start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing number of hot nights and warm days and a decreasing trend in diurnal temperature range. Here, we explain these mixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and erratic distribution of events, and other atmospheric variables crucial in agro-climatic monitoring and seasonal forecasting. Further composite investigations of seasonal droughts, oceans warming and the regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern, often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns, associates to basin warmings in the North Atlantic and the Mediterranean Sea to trigger hybrid rainy seasons in the Sahel. More challenging to rain-fed farming systems, our results suggest that these new rainfall conditions will most likely be sustained by global warming, reshaping thereby our understanding of food insecurity in this region.

  18. Global warming triggers the loss of a key Arctic refugium.

    PubMed

    Rühland, K M; Paterson, A M; Keller, W; Michelutti, N; Smol, J P

    2013-12-07

    We document the rapid transformation of one of the Earth's last remaining Arctic refugia, a change that is being driven by global warming. In stark contrast to the amplified warming observed throughout much of the Arctic, the Hudson Bay Lowlands (HBL) of subarctic Canada has maintained cool temperatures, largely due to the counteracting effects of persistent sea ice. However, since the mid-1990s, climate of the HBL has passed a tipping point, the pace and magnitude of which is exceptional even by Arctic standards, exceeding the range of regional long-term variability. Using high-resolution, palaeolimnological records of algal remains in dated lake sediment cores, we report that, within this short period of intense warming, striking biological changes have occurred in the region's freshwater ecosystems. The delayed and intense warming in this remote region provides a natural observatory for testing ecosystem resilience under a rapidly changing climate, in the absence of direct anthropogenic influences. The environmental repercussions of this climate change are of global significance, influencing the huge store of carbon in the region's extensive peatlands, the world's southern-most polar bear population that depends upon Hudson Bay sea ice and permafrost for survival, and native communities who rely on this landscape for sustenance.

  19. CFC Destruction of Ozone - Major Cause of Recent Global Warming!

    NASA Astrophysics Data System (ADS)

    Ashworth, R. A.

    2008-12-01

    There has been a lot of discussion about global warming. Some say anthropogenic carbon dioxide (CO2) emissions caused the earth to warm. Others say there is no abnormality at all, that it is just natural warming. As you will see from the data presented and analyzed, a greater than normal warming did occur in recent times but no measurements confirm an increase in CO2, whether anthropogenic or natural, had any effect on global temperatures. There is however, strong evidence that anthropogenic emissions of chlorofluorocarbons (CFCs) were the major cause of the recent abnormal warming. CFCs have created both unnatural atmospheric cooling and warming based on these facts: CFCs have destroyed ozone in the lower stratosphere/ upper troposphere causing these zones in the atmosphere to cool 1.37°C from 1966 to 1998. This time span was selected to eliminate the effect of the natural solar irradiance (cooling-warming) cycle effect on the earth's temperature. The loss of ozone allowed more UV light to pass through the stratosphere at a sufficient rate to warm the lower troposphere plus 8-3/4" of the earth by 0.48°C (1966 to 1998). Mass and energy balances show that the energy that was absorbed in the lower stratosphere and upper troposphere hit the lower troposphere/earth at a sustainable level of 1.69 × 10 18 Btu more in 1998 than it did in 1966. Greater ozone depletion in the Polar Regions has caused these areas to warm some two and one-half (2 1/2) times that of the average earth temperature -1.2°C versus 0.48°C. This has caused permafrost to melt, which is releasing copious quantities of methane, estimated at 100 times that of manmade CO2 release, to the atmosphere. Methane in the atmosphere slowly converts to CO2 and water vapor and its release has contributed to higher CO2 concentrations in the atmosphere. There is a temperature anomaly in Antarctica. The Signey Island landmass further north, warmed like the rest of the Polar Regions; but south at Vostok, there has

  20. How probable was the 20th century global warming?

    NASA Astrophysics Data System (ADS)

    Papalexiou, Simon Michael; Markonis, Yannis

    2016-04-01

    The increase of global mean temperature during the 20th century, according to the Intergovernmental Panel on Climate Change (IPCC), is very plausible due to the anthropogenic greenhouse gas emissions. In addition, climate model projections suggest that the global mean temperature will further rise during the 21st century. While the vast majority of scientists have endorsed IPCC's conclusions, not a few individual scientists, have expressed a disagreement regarding the validity of climate model projections. In this study, the answer to a fundamental question is sought. That is, how probable was the global warming of the 20th century considering only recorded and reconstructed global mean temperatures values, and assuming that the global mean temperature is a stationary stochastic process. In order to answer this question, a stationary stochastic model is set that incorporates (a) the observed autocorrelation structure of the global mean temperature, (b) past observations of global mean temperature and (c) global, regional and site-specific reconstructions of global mean temperature changes during the last two millennia. Based on an intense Monte Carlo simulation, the probability of a global mean temperature trend with equal or greater slope than the observed one in the 20th century is presented.

  1. GIS applications to evaluate public health effects of global warming

    SciTech Connect

    Regens, J.L.; Hodges, D.G.

    1996-12-31

    Modeling projections of future climatic conditions suggest changes in temperature and precipitation patterns that might induce direct adverse effects on human health by altering the extent and severity of infectious and vector-borne diseases. The incidence of mosquito-borne diseases, for example, could increase substantially in areas where temperature and relative humidity rise. The application of Geographic Information Systems (GIS) offers new methodologies to evaluate the impact of global warming on changes in the incidence of infectious and vector-borne diseases. This research illustrates the potential analytical and communication uses of GIS for monitoring historical patterns of climate and human health variables and for projecting changes in these health variables with global warming.

  2. Health effects of global warming: Problems in assessment

    SciTech Connect

    Longstreth, J.

    1993-06-01

    Global warming is likely to result in a variety of environmental effects ranging from impacts on species diversity, changes in population size in flora and fauna, increases in sea level and possible impacts on the primary productivity of the sea. Potential impacts on human health and welfare have included possible increases in heat related mortality, changes in the distribution of disease vectors, and possible impacts on respiratory diseases including hayfever and asthma. Most of the focus thus far is on effects which are directly related to increases in temperature, e.g., heat stress or perhaps one step removed, e.g., changes in vector distribution. Some of the more severe impacts are likely to be much less direct, e.g., increases in migration due to agricultural failure following prolonged droughts. This paper discusses two possible approaches to the study of these less-direct impacts of global warming and presents information from on-going research using each of these approaches.

  3. Remote sensing, global warming, and vector-borne disease

    SciTech Connect

    Wood, B.; Beck, L.; Dister, S.; Lobitz, B.

    1997-12-31

    The relationship between climate change and the pattern of vector-borne disease can be viewed at a variety of spatial and temporal scales. At one extreme are changes such as global warming, which are continental in scale and occur over periods of years, decades, or longer. At the opposite extreme are changes associated with severe weather events, which can occur at local and regional scales over periods of days, weeks, or months. Key ecological factors affecting the distribution of vector-borne diseases include temperature, precipitation, and habitat availability, and their impact on vectors, pathogens, reservoirs, and hosts. Global warming can potentially alter these factors, thereby affecting the spatial and temporal patterns of disease.

  4. Management of Philippine tropical forests: Implications to global warming

    SciTech Connect

    Lasco, R.D.

    1997-12-31

    The first part of the paper presents the massive changes in tropical land management in the Philippines as a result of a {open_quotes}paradigm shift{close_quotes} in forestry. The second part of the paper analyzes the impacts of the above management strategies on global warming, in general, preserved forests are neither sinks not sources of greenhouse gasses (GHG). Reforestation activities are primarily net sinks of carbon specially the use of fast growing reforestation species. Estimates are given for the carbon-sequestering ability of some commonly used species. The last part of the paper policy recommendations and possible courses of action by the government to maximize the role of forest lands in the mitigation of global warming. Private sector initiatives are also explored.

  5. The rogue nature of hiatuses in a global warming climate

    NASA Astrophysics Data System (ADS)

    Sévellec, F.; Sinha, B.; Skliris, N.

    2016-08-01

    The nature of rogue events is their unlikelihood and the recent unpredicted decade-long slowdown in surface warming, the so-called hiatus, may be such an event. However, given decadal variability in climate, global surface temperatures were never expected to increase monotonically with increasing radiative forcing. Here surface air temperature from 20 climate models is analyzed to estimate the historical and future likelihood of hiatuses and "surges" (faster than expected warming), showing that the global hiatus of the early 21st century was extremely unlikely. A novel analysis of future climate scenarios suggests that hiatuses will almost vanish and surges will strongly intensify by 2100 under a "business as usual" scenario. For "CO2 stabilisation" scenarios, hiatus, and surge characteristics revert to typical 1940s values. These results suggest to study the hiatus of the early 21st century and future reoccurrences as rogue events, at the limit of the variability of current climate modelling capability.

  6. The role of clouds and oceans in global greenhouse warming

    SciTech Connect

    Hoffert, M.I.

    1992-12-01

    During the past three years we have conducted several studies using models and a combination of satellite data, in situ meteorological and oceanic data, and paleoclimate reconstructions, under the DoE program, Quantifying the Link Between Change in Radiative Balance and Atmospheric Temperature''. Our goals were to investigate effects of global cloudiness variations on global climate and their implications for cloud feedback and continue development and application of NYU transient climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by both the clouds and oceans. Our original research plan emphasized the use of cloud, surface temperature and ocean data sets interpreted by focused climate/ocean models to develop a cloud radiative forcing scenario for the past 100 years and to assess the transient climate response; to narrow key uncertainties in the system; and to identify those aspects of the climate system most likely to be affected by greenhouse warming over short, medium and long time scales.

  7. Global variations of zonal mean ozone during stratospheric warming events

    NASA Technical Reports Server (NTRS)

    Randel, William J.

    1993-01-01

    Eight years of Solar Backscatter Ultraviolet (SBUV) ozone data are examined to study zonal mean variations associated with stratospheric planetary wave (warming) events. These fluctuations are found to be nearly global in extent, with relatively large variations in the tropics, and coherent signatures reaching up to 50 deg in the opposite (summer) hemisphere. These ozone variations are a manifestation of the global circulation cells associated with stratospheric warming events; the ozone responds dynamically in the lower stratosphere to transport, and photochemically in the upper stratosphere to the circulation-induced temperature changes. The observed ozone variations in the tropics are of particular interest because transport is dominated by zonal-mean vertical motions (eddy flux divergences and mean meridional transports are negligible), and hence, substantial simplifications to the governing equations occur. The response of the atmosphere to these impulsive circulation changes provides a situation for robust estimates of the ozone-temperature sensitivity in the upper stratosphere.

  8. Regional growth management policies: Toward reducing global warming at state and local levels

    SciTech Connect

    Purdie, J.

    1995-09-01

    State and local governments in the United States are accepting mandates to coordinate legislated land use and growth management planning with vigorous environmental protection and resource conservation. These mandates, implemented or planned in states with populations totaling over 100 million, will directly impact growth patterns and ultimately affect the level of atmospheric gases and particulates generated within their borders. This paper addresses the issues of growth management and land use planning at the local, state and regional levels and identifies areas impacting global warming. A review of existing systems will be presented, and recommendations will be made to improve monitoring of growth management mechanisms and organizational structures with the goal of global atmospheric improvement. The issues discussed include urban sprawl, transportation, and growth patterns as managed by policies also designed to protect environments and provide for sustainable growth. Areas for improved coordination between jurisdictions to ease global warming will also be examined.

  9. The relationship between personal experience and belief in the reality of global warming

    NASA Astrophysics Data System (ADS)

    Myers, Teresa A.; Maibach, Edward W.; Roser-Renouf, Connie; Akerlof, Karen; Leiserowitz, Anthony A.

    2013-04-01

    In this paper, we address the chicken-or-egg question posed by two alternative explanations for the relationship between perceived personal experience of global warming and belief certainty that global warming is happening: Do observable climate impacts create opportunities for people to become more certain of the reality of global warming, or does prior belief certainty shape people's perceptions of impacts through a process of motivated reasoning? We use data from a nationally representative sample of Americans surveyed first in 2008 and again in 2011; these longitudinal data allow us to evaluate the causal relationships between belief certainty and perceived experience, assessing the impact of each on the other over time. Among the full survey sample, we found that both processes occurred: `experiential learning', where perceived personal experience of global warming led to increased belief certainty, and `motivated reasoning', where high belief certainty influenced perceptions of personal experience. We then tested and confirmed the hypothesis that motivated reasoning occurs primarily among people who are already highly engaged in the issue whereas experiential learning occurs primarily among people who are less engaged in the issue, which is particularly important given that approximately 75% of American adults currently have low levels of engagement.

  10. Enhanced deep ocean ventilation and oxygenation with global warming

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  11. Global warming, sea-level rise, and coastal marsh survival

    USGS Publications Warehouse

    Cahoon, Donald R.

    1997-01-01

    Coastal wetlands are among the most productive ecosystems in the world. These wetlands at the land-ocean margin provide many direct benefits to humans, including habitat for commercially important fisheries and wildlife; storm protection; improved water quality through sediment, nutrient, and pollution removal; recreation; and aesthetic values. These valuable ecosystems will be highly vulnerable to the effects of the rapid rise in sea level predicted to occur during the next century as a result of global warming.

  12. Global warming and Australian public health: reasons to be concerned.

    PubMed

    Saniotis, Arthur; Bi, Peng

    2009-11-01

    Studies in global warming and climate change indicate that human populations will be deleteriously affected in the future. Studies forecast that Australia will experience increasing heat waves and droughts. Heat stress caused by frequent heat waves will have a marked effect on older Australians due to physiological and pharmacological factors. In this paper we present an overview of some of the foreseeable issues which older Australians will face from a public health perspective.

  13. Stochastic Modeling and Global Warming Trend Extraction For Ocean Acoustic Travel Times.

    DTIC Science & Technology

    1995-01-06

    consideration and that these models can not currently be relied upon by themselves to predict global warming . Experimental data is most certainly needed, not...only to measure global warming itself, but to help improve the ocean model themselves. (AN)

  14. Global warming and extinctions of endemic species from biodiversity hotspots.

    PubMed

    Malcolm, Jay R; Liu, Canran; Neilson, Ronald P; Hansen, Lara; Hannah, Lee

    2006-04-01

    Global warming is a key threat to biodiversity, but few researchers have assessed the magnitude of this threat at the global scale. We used major vegetation types (biomes) as proxies for natural habitats and, based on projected future biome distributions under doubled-CO2 climates, calculated changes in habitat areas and associated extinctions of endemic plant and vertebrate species in biodiversity hotspots. Because of numerous uncertainties in this approach, we undertook a sensitivity analysis of multiple factors that included (1) two global vegetation models, (2) different numbers of biome classes in our biome classification schemes, (3) different assumptions about whether species distributions were biome specific or not, and (4) different migration capabilities. Extinctions were calculated using both species-area and endemic-area relationships. In addition, average required migration rates were calculated for each hotspot assuming a doubled-CO2 climate in 100 years. Projected percent extinctions ranged from <1 to 43% of the endemic biota (average 11.6%), with biome specificity having the greatest influence on the estimates, followed by the global vegetation model and then by migration and biome classification assumptions. Bootstrap comparisons indicated that effects on hotpots as a group were not significantly different from effects on random same-biome collections of grid cells with respect to biome change or migration rates; in some scenarios, however, botspots exhibited relatively high biome change and low migration rates. Especially vulnerable hotspots were the Cape Floristic Region, Caribbean, Indo-Burma, Mediterranean Basin, Southwest Australia, and Tropical Andes, where plant extinctions per hotspot sometimes exceeded 2000 species. Under the assumption that projected habitat changes were attained in 100 years, estimated global-warming-induced rates of species extinctions in tropical hotspots in some cases exceeded those due to deforestation, supporting

  15. When could global warming reach 4°C?

    PubMed

    Betts, Richard A; Collins, Matthew; Hemming, Deborah L; Jones, Chris D; Lowe, Jason A; Sanderson, Michael G

    2011-01-13

    The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) assessed a range of scenarios of future greenhouse-gas emissions without policies to specifically reduce emissions, and concluded that these would lead to an increase in global mean temperatures of between 1.6°C and 6.9°C by the end of the twenty-first century, relative to pre-industrial. While much political attention is focused on the potential for global warming of 2°C relative to pre-industrial, the AR4 projections clearly suggest that much greater levels of warming are possible by the end of the twenty-first century in the absence of mitigation. The centre of the range of AR4-projected global warming was approximately 4°C. The higher end of the projected warming was associated with the higher emissions scenarios and models, which included stronger carbon-cycle feedbacks. The highest emissions scenario considered in the AR4 (scenario A1FI) was not examined with complex general circulation models (GCMs) in the AR4, and similarly the uncertainties in climate-carbon-cycle feedbacks were not included in the main set of GCMs. Consequently, the projections of warming for A1FI and/or with different strengths of carbon-cycle feedbacks are often not included in a wider discussion of the AR4 conclusions. While it is still too early to say whether any particular scenario is being tracked by current emissions, A1FI is considered to be as plausible as other non-mitigation scenarios and cannot be ruled out. (A1FI is a part of the A1 family of scenarios, with 'FI' standing for 'fossil intensive'. This is sometimes erroneously written as A1F1, with number 1 instead of letter I.) This paper presents simulations of climate change with an ensemble of GCMs driven by the A1FI scenario, and also assesses the implications of carbon-cycle feedbacks for the climate-change projections. Using these GCM projections along with simple climate-model projections, including uncertainties in carbon

  16. Sensitivity of Global Warming Potentials to the assumed background atmosphere

    SciTech Connect

    Wuebbles, D.J.; Patten, K.O.

    1992-03-05

    This is the first in a series of papers in which we will examine various aspects of the Global Warming Potential (GWP) concept and the sensitivity and uncertainties associated with the GWP values derived for the 1992 updated scientific assessment report of the Intergovernmental Panel on Climate Change (IPCC). One of the authors of this report (DJW) helped formulate the GWP concept for the first IPCC report in 1990. The Global Warming Potential concept was developed for that report as an attempt to fulfill the request from policymakers for a way of relating the potential effects on climate from various greenhouse gases, in much the same way as the Ozone Depletion Potential (ODP) concept (Wuebbles, 1981) is used in policy analyses related to concerns about the relative effects of CFCs and other compounds on stratospheric ozone destruction. We are also coauthors of the section on radiative forcing and Global Warming Potentials for the 1992 IPCC update; however, there was too little time to prepare much in the way of new research material for that report. Nonetheless, we have recognized for some time that there are a number of uncertainties and limitations associated with the definition of GWPs used in both the original and new IPCC reports. In this paper, we examine one of those uncertainties, namely, the effect of the assumed background atmospheric concentrations on the derived GWPs. Later papers will examine the sensitivity of GWPs to other uncertainties and limitations in the current concept.

  17. The impact of global warming on health and mortality.

    PubMed

    Keatinge, W R; Donaldson, G C

    2004-11-01

    Initial concern about the possible effects of global warming on infections has declined with the realization that the spread of tropical diseases is likely to be limited and controllable. However, the direct effects of heat already cause substantial numbers of deaths among vulnerable people in the summer. Action to prevent these deaths from rising is the most obvious medical challenge presented by a global rise in temperature. Strategies to prevent such deaths are in place to some extent, and they differ between the United States and Europe. Air conditioning has reduced them in the United States, and older technologies such as fans, shade, and buildings designed to keep cool on hot days have generally done so in Europe. Since the energy requirements of air conditioning accelerate global warming, a combination of the older methods, backed up by use of air conditioning when necessary, can provide the ideal solution. Despite the availability of these technologies, occasional record high temperatures still cause sharp rises in heat-related deaths as the climate warms. The most important single piece of advice at the time a heat wave strikes is that people having dangerous heat stress need immediate cooling, eg, by a cool bath. Such action at home can be more effective than transporting the patient to hospital. Meanwhile, it must not be forgotten that cold weather in winter causes-many more deaths than heat in summer, even in most subtropical regions, and measures to control cold-related deaths need to continue.

  18. Global Warming in the 21st Century: An Alternate Scenario

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Sato, Makiko; Ruedy, Reto; Lacis, Andrew; Oinas, Valdar

    2000-01-01

    A common view is that the current global warming rate will continue or accelerate. But we argue that rapid warming in recent decades has been driven by non-CO2 greenhouse gases (GHGs), such as CFCs, CH4 and N2O, not by the products of fossil fuel burning, CO2 and aerosols, whose positive and negative climate forcings are partially offsetting. The growth rate of non-CO2 GHGs has declined in the past decade. If sources of CH4 and O3 precursors were reduced in the future, the change of climate forcing by non-CO2 GHGs In the next 50 years could be near zero. Combined with a reduction of black carbon emissions and plausible success in slowing CO2 emissions, this could lead to a decline in the rate of global warming, reducing the danger of dramatic climate change. Such a focus on air pollution has practical benefits that unite the interests of developed and developing countries. However, assessment of ongoing and future climate change requires composition-specific longterm global monitoring of aerosol properties.

  19. Direct health effects of global warming in Japan and China

    SciTech Connect

    Ando, M.; Yamamoto, S.; Tamura, K.

    1997-12-31

    Combustion of fossil fuels and industrial and agricultural activities are resulting in greater emissions of some greenhouse gases such as carbon dioxide and methane into the atmosphere, therefore contributing to global warming. Using general circulation models, it is estimated that surface temperatures in temperate regions will rise 1 to 3 degrees C during the next 100 years. Because global warming may increase the frequency and length of high temperatures during hot summer months, various health risks caused by heat stress have been studied. According to our epidemiological survey, the incidence of heat-related illness was significantly correlated to hot environments in Tokyo, Japan and in Nanjing and Wuhan, China. The epidemiological results also showed that the incidence of heat-related morbidity and mortality in the elderly increased very rapidly in summer. The regression analysis on these data showed that the number of heat stroke patients increased exponentially when the mean daily temperature and maximum daily temperature exceeded 27C and 32C in Tokyo and 31C and 36C in Wuhan and Nanjing, respectively. Since the incidence of heat-related morbidity and mortality has been shown to increase as a result of exposure to long periods of hot summer temperatures, it is important to determine to what extent the incidence of heat stress-related morbidity and mortality will be affected as a result of global warming.

  20. Early global warming in the period 1850 to 1920

    NASA Astrophysics Data System (ADS)

    Venema, Victor; Lindau, Ralf; Brandsma, Theo; Auchmann, Renate; Esper, Jan; Haustein, Karsten

    2016-04-01

    The current global temperature datasets show no warming in the land surface temperature and the sea surface temperature for the period between 1850 and 1920. However, several lines of evidence suggest that the Earth's surface was warming during this period. Every line of evidence by itself is currently not compelling, but the consilience of evidence at least makes a good case for further research. This period is characterized by the introduction of Stevenson screens, which reduce radiation errors more than the monitoring methods used before. As a consequence, Stevenson screens typically observe cooler temperatures than earlier observations. Recent analyses of parallel measurements suggest that this cooling bias is larger than previously thought. Physical reasoning suggests this bias to be largest in sub-tropical and tropic regions; this pattern is also found in the limited number of parallel measurements available. We are missing information from continental climates. The Global Historical Climate Network (GHCNv3) does not change the trend between 1870 and 1920 and adjust 0.1°C between 1850 and 1970. This small adjustment seems to be less than needed for this transition compared to the size of this jump estimated from the limited evidence we have from parallel measurements Further evidence for warming during this period can be found in lake and river freeze and breakup times, which show a clear shortening of the freezing period between 1850 and 1920. Most of the glaciers for which we have data from this period show reductions in their lengths, which signals clear warming. Also temperature reconstructions from proxies show warming. The CMIP model ensemble shows 0.2°C warming in the global mean temperature. We will be looking at well-homogenized national datasets and compare them to the national averages from the global collections. For this period we have up to now 3 such comparisons (Austria, Italy and Spain), these have too much scatter relative to the BEST

  1. Implications of global warming for the climate of African rainforests

    PubMed Central

    James, Rachel; Washington, Richard; Rowell, David P.

    2013-01-01

    African rainforests are likely to be vulnerable to changes in temperature and precipitation, yet there has been relatively little research to suggest how the regional climate might respond to global warming. This study presents projections of temperature and precipitation indices of relevance to African rainforests, using global climate model experiments to identify local change as a function of global temperature increase. A multi-model ensemble and two perturbed physics ensembles are used, one with over 100 members. In the east of the Congo Basin, most models (92%) show a wet signal, whereas in west equatorial Africa, the majority (73%) project an increase in dry season water deficits. This drying is amplified as global temperature increases, and in over half of coupled models by greater than 3% per °C of global warming. Analysis of atmospheric dynamics in a subset of models suggests that this could be partly because of a rearrangement of zonal circulation, with enhanced convection in the Indian Ocean and anomalous subsidence over west equatorial Africa, the Atlantic Ocean and, in some seasons, the Amazon Basin. Further research to assess the plausibility of this and other mechanisms is important, given the potential implications of drying in these rainforest regions. PMID:23878329

  2. Implications of global warming for the climate of African rainforests.

    PubMed

    James, Rachel; Washington, Richard; Rowell, David P

    2013-01-01

    African rainforests are likely to be vulnerable to changes in temperature and precipitation, yet there has been relatively little research to suggest how the regional climate might respond to global warming. This study presents projections of temperature and precipitation indices of relevance to African rainforests, using global climate model experiments to identify local change as a function of global temperature increase. A multi-model ensemble and two perturbed physics ensembles are used, one with over 100 members. In the east of the Congo Basin, most models (92%) show a wet signal, whereas in west equatorial Africa, the majority (73%) project an increase in dry season water deficits. This drying is amplified as global temperature increases, and in over half of coupled models by greater than 3% per °C of global warming. Analysis of atmospheric dynamics in a subset of models suggests that this could be partly because of a rearrangement of zonal circulation, with enhanced convection in the Indian Ocean and anomalous subsidence over west equatorial Africa, the Atlantic Ocean and, in some seasons, the Amazon Basin. Further research to assess the plausibility of this and other mechanisms is important, given the potential implications of drying in these rainforest regions.

  3. Pacific Sea Level Rise Pattern and Global Warming Hiatus

    NASA Astrophysics Data System (ADS)

    Peyser, C.; Yin, J.; Landerer, F. W.

    2014-12-01

    Two important topics in current climate research are the global warming hiatus and the seesaw pattern of sea level rise (SLR) in the Pacific Ocean. We use ocean temperature and sea-level observations along with CMIP5 climate modelling data to investigate the relationship between the warming hiatus and sea-level variability in the Pacific Ocean. We analyse ocean heat content (OHC) trend by basin and layer for the full record (1945-2012) as well as the hiatus period (1998-2012). The result confirms the importance of the Pacific for heat uptake during the hiatus. Notably, the subsurface layer of the Pacific shows significant increase in OHC during the hiatus and a strong east-west compensation. This is mainly responsible for and reflected by the seesaw pattern of the Pacific sea level through thermosteric effect. The control simulations from 38 CMIP5 models indicate that the seesaw pattern of SLR in the Pacific is mainly a feature of decadal to multidecadal variability. Most CMIP5 models can capture this variability, especially in the Pacific Decadal Oscillation region (poleward of 20°N). The CMIP5 control runs show that during periods of negative trends of global temperatures (analogous to hiatus decades in a warming world), sea level increases in the western Pacific and decreases in the eastern Pacific. The opposite is true during periods of positive temperature trend (accelerated warming). These results suggest that a possible flip of the Pacific SLR seesaw would imply a resumption of surface warming and a SLR acceleration along the U.S. West Coast.

  4. Winners and losers in a world with global warming: Noncooperation, altruism, and social welfare

    SciTech Connect

    Caplan, A.J.; Ellis, C.J.; Silva, E.C.D.

    1999-05-01

    In this paper, global warming is an asymmetric transboundary externality which benefits some countries or regions and harms others. Few environmental problems have captured the public`s imagination as much and attracted as much scrutiny as global warming. The general perception is that global warming is a net social bad, and that across-the-board abatement of greenhouse gas emissions is therefore desirable. Despite many interesting academic contributions, not all of the basic economics of this phenomenon have been fully worked out. The authors use a simple two-country model to analyze the effects of global warming on resource allocations, the global-warming stock, and national and global welfare.

  5. 78 FR 20632 - Mandatory Reporting of Greenhouse Gases: Notice of Data Availability Regarding Global Warming...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... AGENCY Mandatory Reporting of Greenhouse Gases: Notice of Data Availability Regarding Global Warming... EPA is announcing to the public the availability of estimated global warming potentials, as well as... requesting comments on the estimated global warming potentials and the data and analysis supporting them....

  6. Global warming and the regions in the Middle East

    SciTech Connect

    Alvi, S.H.; Elagib, N.

    1996-12-31

    The announcement of NASA scientist James Hansen made at a United States Senate`s hearing in June 1988 about the onset of global warming ignited a whirlwind of public concern in United States and elsewhere in the world. Although the temperature had shown only a slight shift, its warming has the potential of causing environmental catastrophe. According to atmosphere scientists, the effect of higher temperatures will change rainfall patterns--some areas getting drier, some much wetter. The phenomenon of warming in the Arabian Gulf region was first reported by Alvi for Bahrain and then for Oman. In the recent investigations, the authors have found a similar warming in other regions of the Arabian Gulf and in several regions of Sudan in Africa. The paper will investigate the observed data on temperature and rainfall of Seeb in Oman, Bahrain, International Airport in Kuwait as index stations for the Arabian Gulf and Port Sudan, Khartoum and Malakal in the African Continent of Sudan. Based on various statistical methods, the study will highlight a drying of the regions from the striking increase in temperature and decline of rainfall amount. Places of such environmental behavior are regarded as desertifying regions. Following Hulme and Kelly, desertification is taken to mean land degradation in dryland regions, or the permanent decline in the potential of the land to support biological activity, and hence human welfare. The paper will also, therefore, include the aspect of desertification for the regions under consideration.

  7. Gas hydrate contribution to Late Permian global warming

    NASA Astrophysics Data System (ADS)

    Majorowicz, J.; Grasby, S. E.; Safanda, J.; Beauchamp, B.

    2014-05-01

    Rapid gas hydrate release (the “clathrate gun” hypothesis) has been invoked as a cause for the rapid global warming and associated negative carbon isotope excursion observed during the Latest Permian Extinction (LPE). We modeled the stability of gas hydrates through a warming Middle to Late Permian world, considering three settings for methane reservoirs: 1) terrestrial hydrates, 2) hydrates on exposed continental shelves during glacial sea level drop, and 3) hydrates in deep marine settings. Model results show that terrestrial hydrates would rapidly destabilize over ∼400 ky after deglaciation for moderate heatflow (40 mW/m2), and more rapidly for higher heat flow values. Exposed continental shelves would lose hydrates even more rapidly, after being flooded due to loss of ice storage on land. These two major hydrate reservoirs would thus have destabilized during the Middle to Late Permian climate warming, well prior to the LPE event. However, they may have contributed to the >2‰ negative C-isotopic shift during the late Middle Permian. Deep marine hydrates would have remained stable until LPE time. Rapid warming of deep marine waters during this time could have triggered destabilization of this reservoir, however given the configuration of one super continent, Pangea, hydrate bearing continental slopes would have been less extensive than modern day. This suggests that any potential gas hydrate release would have had only a minor contributing impact to the runaway greenhouse during the Latest Permian extinction.

  8. Changes in the annual range of precipitation under global warming

    NASA Astrophysics Data System (ADS)

    Chou, C.; Lan, C.

    2011-12-01

    The annual range of precipitation, which is the difference between maximum and minimum precipitation within a year, is examined in climate model simulations under global warming. For global averages, the annual range of precipitation tends to increase as the globe warms. On a regional basis, this enhancement is found over most areas of the world, except for the bands along 30°S and 30N°, respectively. The enhancement in the annual range of precipitation is mainly associated with larger upward trends of maximum precipitation and smaller upward trends or downward trends of minimum precipitation. Based on the moisture budget analysis, the dominant mechanism is vertical moisture advection, both on a global average and on a regional scale. The vertical moisture advection, moisture convergence induced by vertical motion, includes the thermodynamic component, which is associated with increased water vapor, and the dynamic component, which is associated with changes in circulation. Generally, the thermodynamic component enhances the annual range of precipitation, while the dynamic component tends to reduce it. Evaporation has a positive contribution to both maximum and minimum precipitation, but very little to the annual range of precipitation. Even though evaporation and horizontal moisture advection are small for a global average, they could be important on a regional basis.

  9. A contribution by ice nuclei to global warming

    SciTech Connect

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Hou, Arthur Y.; Xie, Shaocheng; Lang, Stephen; Li, Xiaowen; Starr, David O'C; Li, Xiaofan

    2009-06-10

    Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, 10 years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes. To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a CRM (cloud-resolving model) to generate longterm cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the TOA (top of the atmosphere) from doubling the current IN concentrations becomes larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction. Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic CO2. We found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics. With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g., the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and then be compared with observations. Finally, a general match in geographic

  10. A Contribution by Ice Nuclei to Global Warming

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Hou, Arthur Y.; Xie, Shaocheng; Lang, Stephen; Li, Xiaowen; Starr, David O.; Li, Xiaofan

    2009-01-01

    Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, 10 years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes. To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a CRM (cloud-resolving model) to generate longterm cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the TOA (top of the atmosphere) from doubling the current IN concentrations is larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction. Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic COZ . It is found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics. With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g., the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and then be compared with observations. A general match in geographic and seasonal

  11. Psychology's contributions to understanding and addressing global climate change.

    PubMed

    Swim, Janet K; Stern, Paul C; Doherty, Thomas J; Clayton, Susan; Reser, Joseph P; Weber, Elke U; Gifford, Robert; Howard, George S

    2011-01-01

    Global climate change poses one of the greatest challenges facing humanity in this century. This article, which introduces the American Psychologist special issue on global climate change, follows from the report of the American Psychological Association Task Force on the Interface Between Psychology and Global Climate Change. In this article, we place psychological dimensions of climate change within the broader context of human dimensions of climate change by addressing (a) human causes of, consequences of, and responses (adaptation and mitigation) to climate change and (b) the links between these aspects of climate change and cognitive, affective, motivational, interpersonal, and organizational responses and processes. Characteristics of psychology that cross content domains and that make the field well suited for providing an understanding of climate change and addressing its challenges are highlighted. We also consider ethical imperatives for psychologists' involvement and provide suggestions for ways to increase psychologists' contribution to the science of climate change.

  12. Global warming: it's not only size that matters

    NASA Astrophysics Data System (ADS)

    Hegerl, Gabriele C.

    2011-09-01

    Observed and model simulated warming is particularly large in high latitudes, and hence the Arctic is often seen as the posterchild of vulnerability to global warming. However, Mahlstein et al (2011) point out that the signal of climate change is emerging locally from that of climate variability earliest in regions of low climate variability, based on climate model data, and in agreement with observations. This is because high latitude regions are not only regions of strong feedbacks that enhance the global warming signal, but also regions of substantial climate variability, driven by strong dynamics and enhanced by feedbacks (Hall 2004). Hence the spatial pattern of both observed warming and simulated warming for the 20th century shows strong warming in high latitudes, but this warming occurs against a backdrop of strong variability. Thus, the ratio of the warming to internal variability is not necessarily highest in the regions that warm fastest—and Mahlstein et al illustrate that it is actually the low-variability regions where the signal of local warming emerges first from that of climate variability. Thus, regions with strongest warming are neither the most important to diagnose that forcing changes climate, nor are they the regions which will necessarily experience the strongest impact. The importance of the signal-to-noise ratio has been known to the detection and attribution community, but has been buried in technical 'optimal fingerprinting' literature (e.g., Hasselmann 1979, Allen and Tett 1999), where it was used for an earlier detection of climate change by emphasizing aspects of the fingerprint of global warming associated with low variability in estimates of the observed warming. What, however, was not discussed was that the local signal-to-noise ratio is of interest also for local climate change: where temperatures emerge from the range visited by internal climate variability, it is reasonable to assume that changes in climate will also cause more

  13. Continued global warming after CO2 emissions stoppage

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.; Winton, M.; Sarmiento, J. L.

    2014-12-01

    Recent studies have suggested that global mean surface temperature would remain approximately constant on multi-century timescales after CO2 emissions are stopped. These studies suggest that the cooling effect of reduction in radiative forcing due to the decrease in atmospheric CO2 is roughly balanced by the warming effect of reduction in ocean heat uptake. Here we use Earth system model simulations of such a stoppage to demonstrate that in some models, surface temperature may actually increase on multi-century timescales after an initial century-long decrease. For example, global mean surface temperature may increase by 0.6°C after carbon emissions are stopped at 2°C above preindustrial. Surprisingly, the temperature increase occurs in spite of a decline in radiative forcing that exceeds the decline in ocean heat uptake—a circumstance that would otherwise be expected to lead to a decline in global temperature. The reason is that the warming effect of decreasing ocean heat uptake together with feedback effects arising in response to the geographic structure of ocean heat uptake overcompensates the cooling effect of decreasing atmospheric CO2 on multi-century timescales in these models. We show that ocean heat uptake, which occurs preferentially at subpolar latitudes, has a larger temperature impact per watt per square meter than the CO2 radiative forcing. In other words, the cooling effect of a high-latitude heat sink is larger than that of an equivalent tropical heat sink. The implications of our results for estimates of allowable carbon emissions required to remain below a specific global warming target will be discussed.

  14. Fire, global warming, and the carbon balance of boreal forests

    SciTech Connect

    Kasischke, E.S.; Christensen, N.L. Jr.; Stocks, B.J.

    1995-05-01

    Fire strongly influences carbon cycling and storage in boreal forests. In the near-term, if global warming occurs, the frequency and intensity of fires in boreal forests are likely to increase significantly. A sensitivity analysis on the relationship between fire and carbon storage in the living-biomass and ground-layer compartments of boreal forests was performed to determine how the carbon stocks would be expected to change as a result of global warming. A model was developed to study this sensitivity. The model shows if the annual area burned in boreal forests increases by 50%, as predicted by some studies, then the amount of carbon stored in the ground layer would decrease between 3.5 and 5.6 kg/m{sup 2}, and the amount of carbon stored in the living biomass would increase by 1.2 kg/m{sup 2}. There would be a net loss of carbon in boreal forests between 2.3 and 4.4 kg/m{sup 2}, or 27.1-51.9 Pg on a global scale. Because the carbon in the ground layer is lot more quickly than carbon is accumulated in living biomass, this could lead to a short-term release of carbon over the next 50-100 yr at a rate of 0.33-0.8 Pg/yr, dependent on the distribution of carbon between organic and mineral soil in the ground layer (which is presently not well-understood) and the increase in fire frequency caused by global warming. 57 refs., 9 figs., 2 tabs.

  15. PRISM3 Global Paleoclimate Reconstruction: A Global Warming Data Set

    NASA Astrophysics Data System (ADS)

    Dowsett, H. J.; Chandler, M. A.; Cronin, T. M.; Dwyer, G. S.; Haywood, A. M.; Hill, D. J.; Robinson, M. M.; Salzmann, U.; Williams, M.

    2007-12-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project provides a conceptual model and synoptic view of the earth during the last interval considerably warmer than modern (3.3 to 3.0 Ma) through reconstruction of sea-surface temperature (SST) and other paleoenvironmental parameters. The first PRISM reconstruction, with its foundation in a global network of paleontological analyses, was completed in the early 1990s. Since then, several significant revisions have been released culminating in the PRISM2 data set. The primary goal of PRISM remains a better understanding of the Earth's climate system during the mid-Pliocene, and to that end, includes the development of digital data sets for use with climate models. The new PRISM3 reconstruction, slated to be released early in 2008, has revised SST fields based upon integration of previous and new faunal and floral analyses with new geochemical proxies and biomarkers, a revised vegetation/land cover data set utilizing the BIOME 4 vegetation classification scheme, 3-dimensional land ice distribution based upon ice-sheet model experiments, new sea level estimates based upon stable isotopes and bottom water temperatures, and revised sea-ice distribution. A deep ocean temperature reconstruction, PRISM3D, adds a 3- dimensional component, which can be used for initiating coupled ocean-atmosphere GCM simulations. PRISM3 is a collaborative effort between the U.S. Geological Survey (USGS), National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), British Antarctic Survey (BAS), and several national and international academic institutions (Columbia University, Duke University, George Mason University, University of Leeds and University of Leicester).

  16. Global scale energy budget contrast between warm and cold years

    NASA Astrophysics Data System (ADS)

    Lembo, Valerio; Lionello, Piero

    2014-05-01

    This contribution analyses changes to the energy budget of the troposphere associated to global warm anomalies of the Earth surface temperature. This is important for understanding the dynamics of climate change. A phenomenological approach is adopted, comparing coldest and warmest years over the last century. Data are provided by the results of 10 simulations carried out within the ERA-20CM experiment and covering the period 1900-2010. This ensemble is forced by 10 perturbed realizations of SST fields and greenhouse gases concentration time series. Analysis considers the annual mean meridional distribution of zonal mean tropospheric and surface temperature, net downward solar radiation at top of atmosphere and Earth surface, surface heat flux (SHF), consisting of net longwave upward radiation, latent heat and sensible heat vertical fluxes, and outgoing longwave radiation at top of atmosphere (OLR). Differences of these variables between the warmest and coldest years are computed, in order to analyze how the energy budget of the atmosphere is associated to the warming the Earth surface. During warm years, it is observed that tropospheric warming occurs at all latitudes, decreasing at its top, being rather uniform but larger/smaller around the North/South Pole than at the tropics. This is consistent with the overall increase of OLR at all latitudes. Shortwave absorption in the troposphere increases, with a peak around 30 degrees north, as a result of increased net downward solar radiation at the top. The warming of the surface is associated with reduced SHF almost everywhere, particularly at higher latitudes. This combined effect might be interpreted as a reduction of solar reflection by cloud cover and an increased moisture in the lower troposphere, inhibiting evaporation and heat fluxes from the surface, and increasing downward flow of longwave radiation to the surface. Finally, the meridional distribution of residual net energy budget in the troposphere suggests

  17. Inland Water Temperature and the recent Global Warming Hiatus

    NASA Astrophysics Data System (ADS)

    Hook, S. J.; Healey, N.; Lenters, J. D.; O'Reilly, C.

    2015-12-01

    We are using thermal infrared satellite data in conjunction with in situ measurements to produce water temperatures for all the large inland water bodies in North America and the rest of the world for potential use as climate indicator. Recent studies have revealed significant warming of inland waters throughout the world. The observed rate of warming is - in many cases - greater than that of the ambient air temperature. These rapid, unprecedented changes in inland water temperatures have profound implications for lake hydrodynamics, productivity, and biotic communities. Scientists are just beginning to understand the global extent, regional patterns, physical mechanisms, and ecological consequences of lake warming. As part of our earlier studies we have collected thermal infrared satellite data from those satellite sensors that provide long-term and frequent spaceborne thermal infrared measurements of inland waters including ATSR, AVHRR, and MODIS and used these to examine trends in water surface temperature for approximately 169 of the largest inland water bodies in the world. We are now extending this work to generate temperature time-series of all North American inland water bodies that are sufficiently large to be studied using 1km resolution satellite data for the last 3 decades, approximately 268 lakes. These data are then being related to changes in the surface air temperature and compared with regional trends in water surface temperature derived from CMIP5/IPCC model simulations/projections to better predict future temperature changes. We will discuss the available datasets and processing methodologies together with the patterns they reveal based on recent changes in the global warming, with a particular focus on the inland waters of the southwestern USA.

  18. Changes in Extreme Warm and Cold Temperatures Associated with 20th Century Global Warming

    NASA Astrophysics Data System (ADS)

    Sardeshmukh, P. D.; Compo, G. P.; McColl, C.; Penland, C.

    2015-12-01

    Has 20thcentury global warming resulted in increases of extreme warm temperatures and decreases of extreme cold temperatures around the globe? One would certainly expect this to be so if the changes in the extreme temperature probabilities were determined only by the mean shift and not by changes in the width and/or shape of the temperature distribution. In reality, however, the latter two effects could also be important. Even ignoring changes of shape, it is easily shown that a 25% reduction of standard deviation, for example, can completely offset the effect of a mean positive shift of 0.5 standardized units on the probabilities of extreme positive values. A 25% increase of standard deviation can similarly offset the effect of the mean shift on the probabilities of extreme negative values. It is possible for such changes of standard deviation to occur in regions of large circulation and storminess changes associated with global warming. With this caveat in mind, we have investigated the change in probability of extreme weekly-averaged near-surface air temperatures, in both winter and summer, from the first half-century (1901-1950) to the last half-century (1960-2009) of the 1901 to 2009 period. We have done this using two newly available global atmospheric datasets (ERA-20C and 20CR-v2c) and large ensembles of global coupled climate model simulations of this period, plus very large ensembles of uncoupled atmospheric model simulations of our own. The results are revealing. In the tropics, the changes in the extreme warm and cold temperature probabilities are indeed generally consistent with those expected from the mean shift of the distribution. Outside the tropics, however, they are generally significantly inconsistent with the mean temperature shift, with many regions showing little or no change in the positive temperature extremes and in some instances even a decrease. In such regions, it is clear that the change in the temperature standard deviation is

  19. Continued global warming after CO2 emissions stoppage

    NASA Astrophysics Data System (ADS)

    Frölicher, Thomas; Winton, Michael; Sarmiento, Jorge

    2014-05-01

    Recent studies have suggested that global mean surface temperature would remain approximately constant on multi-century timescales after CO2 emissions are stopped. Here we use Earth system model simulations of such a stoppage to demonstrate that in some models, surface temperature may actually increase on multi-century timescales after an initial century-long decrease. For example, global mean surface temperature may increase by 0.6°C after a carbon emissions stoppage at 2-degree. This increase occurs in spite of a decline in radiative forcing that exceeds the decline in ocean heat uptake—a circumstance that would otherwise be expected to lead to a decline in global temperature. The reason is that the warming effect of decreasing ocean heat uptake together with feedback effects arising in response to the geographic structure of ocean heat uptake overcompensates the cooling effect of decreasing atmospheric CO2 on multi-century timescales. Our study also reveals that equilibrium climate sensitivity estimates based on a widely used method of regressing the Earth's energy imbalance against surface temperature change are biased. Uncertainty in the magnitude of the feedback effects associated with the magnitude and geographic distribution of ocean heat uptake therefore contributes substantially to the uncertainty in allowable carbon emissions for a given multi-century warming target.

  20. Global warming: Energy efficiency is key to reduce dangerous threat

    SciTech Connect

    Not Available

    1989-09-01

    A consensus is growing among scientists, policymakers and citizens that human activity is altering the Earth's climate. Humans are loading carbon dioxide, methane and other pollutants into the atmosphere through deforestation and the burning of fossil fuels. The result, scientists say: pollutants are accelerating the greenhouse effect which is raising the average global temperature. A few degree temperature increase is projected to make major changes in agriculture and many other things. A growing number of scientists believe if these pollutants are not reduced, global warming could destroy the Earth's climatic balance on which our civilization rests, causing disruptions such as heat waves, droughts, coastal flooding and a rise in sea level. Clearly, all the facts about global warming, its exact causes and repercussions on the earth's climate, are not yet in. However, one thing is certain: We are not helpless and we can act now to reduce greenhouse gases through energy efficiency and halting deforestation. While energy efficiency, itself, is not a panacea, it is both an economic opportunity and environmental necessity for out nation, and for our earth.

  1. Global warming, population growth, and natural resources for food production.

    PubMed

    Pimentel, D

    1991-01-01

    Destruction of forests and the considerable burning of fossil fuels is directly causing the level of carbon dioxide and other greenhouse gases including methane, carbon monoxide, and nitrous oxide in the atmosphere to rise. Population growth in the US and the world indirectly contributes to this global warming. This has led the majority of scientists interested in weather and climate to predict that the planet's temperature will increase from 1.5 to 4.5 degrees Celsius by 2050. These forecasted climactic changes will most likely strongly affect crop production. Specifically these scientists expect the potential changes in temperature, moisture, carbon dioxide, and pests to decrease food production in North America. The degree of changes hinges on each crop and its environmental needs. If farmers begin using improved agricultural technology, the fall in crop yields can be somewhat counterbalanced. Even without global warming, however, agriculture in North America must embrace sensible ecological resource management practices such as conserving soil, water, energy, and biological resources. These sustainable agricultural practices would serve agriculture, farmers, the environment, and society. Agriculturalists, farmers, and society are already interested in sustainable agriculture. Still scientists must conduct more research on the multiple effects of potential global climate change on many different crops under various environmental conditions and on new technologies that farmers might use in agricultural production. We must cut down our consumption of fossil fuel, reduce deforestation, erase poverty, and protect our soil, water, and biological resources. The most important action we need to take, however, is to check population growth.

  2. Modification of Cirrus Clouds to Reduce Global Warming

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Rasch, P. J.

    2008-12-01

    As far as we know, no studies have addressed the possibility of modifying cirrus clouds to reduce global warming. Here we explore this possibility and associated feasibility issues. To introduce this concept, some background information is needed. The effect of cirrus on climate can be quantified through their predicted impact on climate sensitivity, S (i.e. the equilibrium response of global- mean surface temperature to CO2 doubling) in global climate model (GCM) simulations. A recent study using an ensemble of thousands of "perturbed physics" GCM simulations found that S was most strongly influenced by the entrainment coefficient and the ice fall speed, indicating that S depends more on changes in cirrus clouds than on low-level boundary layer clouds. It may be possible to modify the ice fall speed in cirrus clouds which controls ice removal rates and affects the cirrus ice content, life cycle and coverage, as well as the upper troposphere relative humidity. The main impact of reducing the ice fall speed was an increase in longwave cloud forcing. In a different recent GCM study, we have used the mean size of the ice particle size distribution to change the representative ice fall speed, V. By decreasing V, the cirrus coverage was increased 5.5%, strongly affecting annual zonal means of cloud forcing, heating rates and temperatures in the upper troposphere. This led us to speculate that the introduction of aerosol particles into the upper troposphere (T < -40 C) that efficiently form ice crystals through heterogeneous nucleation may result in larger ice particles with higher fall speeds since the heterogeneous nuclei would outcompete the natural homogeneous freezing ice nuclei for water vapor. This would reduce longwave cloud forcing and lower surface temperatures, as described above. A third recent GCM study supports our speculation, showing that heterogeneous ice nucleation for these conditions produces larger ice crystals with higher fall velocities (relative

  3. Ocean Global Warming Impacts on the South America Climate

    NASA Astrophysics Data System (ADS)

    Ramos-Da-Silva, Renato

    2016-03-01

    The global Ocean-Land-Atmosphere Model (OLAM) model was used to estimate the impacts of the global oceanic warming on the climate projections for the 21st Century focusing on the South America region. This new model is able to represent simultaneously the global and regional scales using a refining grid approach for the region of interest. First, the model was run for a 31-year control period consisting on the years 1960-1990 using the monthly Sea Surface Temperature (SST) from the Atmospheric Model Intercomparison Project (AMIP) data as a driver for the ocean fluxes. Then, the model was run for the period 2010-2100 using the monthly projected SST from the Hadley Center model (HadCM3) as a driver for the oceanic changes. The model was set up with an icosahedral triangular global grid having about 250 km of grid spacing and with a refining grid resolution with the cells reaching about 32 km over the South America region. The results show an overall temperature increase mainly over the center of the Amazon basin caused by the increase of the greenhouse effect of the water vapor; a decrease on precipitation mainly over the northeast Brazil and an increase in the south and over the western Amazon region; and a major increase on the near surface wind speed. These results are similar to the global coupled models; however, OLAM has a novel type of grid that can provide the interaction between the global and regional scales simultaneously.

  4. Northern Hemisphere Glaciation during the Globally Warm Early Late Pliocene

    PubMed Central

    De Schepper, Stijn; Groeneveld, Jeroen; Naafs, B. David A; Van Renterghem, Cédéric; Hennissen, Jan; Head, Martin J.; Louwye, Stephen; Fabian, Karl

    2013-01-01

    The early Late Pliocene (3.6 to ∼3.0 million years ago) is the last extended interval in Earth's history when atmospheric CO2 concentrations were comparable to today's and global climate was warmer. Yet a severe global glaciation during marine isotope stage (MIS) M2 interrupted this phase of global warmth ∼3.30 million years ago, and is seen as a premature attempt of the climate system to establish an ice-age world. Here we propose a conceptual model for the glaciation and deglaciation of MIS M2 based on geochemical and palynological records from five marine sediment cores along a Caribbean to eastern North Atlantic transect. Our records show that increased Pacific-to-Atlantic flow via the Central American Seaway weakened the North Atlantic Current and attendant northward heat transport prior to MIS M2. The consequent cooling of the northern high latitude oceans permitted expansion of the continental ice sheets during MIS M2, despite near-modern atmospheric CO2 concentrations. Sea level drop during this glaciation halted the inflow of Pacific water to the Atlantic via the Central American Seaway, allowing the build-up of a Caribbean Warm Pool. Once this warm pool was large enough, the Gulf Stream–North Atlantic Current system was reinvigorated, leading to significant northward heat transport that terminated the glaciation. Before and after MIS M2, heat transport via the North Atlantic Current was crucial in maintaining warm climates comparable to those predicted for the end of this century. PMID:24349081

  5. Nuclear Technology, Global Warming, and the Politicization of Science

    NASA Astrophysics Data System (ADS)

    Weart, Spencer

    2016-03-01

    Since the mid 20th century physical scientists have engaged in two fierce public debates on issues that posed existential risks to modern society: nuclear weapons and global warming. The two overlapped with a third major debate over the deployment of nuclear power reactors. Each controversy included technical disagreements raised by a minority among the scientists themselves. Despite efforts to deal with the issues objectively, the scientists became entangled in left vs. right political polarization. All these debates, but particularly the one over climate change, resulted in a deterioration of public faith in the objectivity and integrity of scientists.

  6. Global warming mitigation potential of biogas plants in India.

    PubMed

    Pathak, H; Jain, N; Bhatia, A; Mohanty, S; Gupta, Navindu

    2009-10-01

    Biogas technology, besides supplying energy and manure, provides an excellent opportunity for mitigation of greenhouse gas (GHG) emission and reducing global warming through substituting firewood for cooking, kerosene for lighting and cooking and chemical fertilizers. A study was undertaken to calculate (1) global warming mitigation potential (GMP) and thereby earning carbon credit of a family size biogas plant in India, (2) GMP of the existing and target biogas plants in the country and (3) atmospheric pollution reduction by a family size biogas plant. The GMP of a family size biogas plant was 9.7 t CO(2) equiv. year( - 1) and with the current price of US $10 t( - 1) CO(2) equiv., carbon credit of US $97 year( - 1) could be earned from such reduction in greenhouse gas emission under the clean development mechanism (CDM). A family size biogas plant substitutes 316 L of kerosene, 5,535 kg firewood and 4,400 kg cattle dung cake as fuels which will reduce emissions of NOx, SO(2), CO and volatile organic compounds to the atmosphere by 16.4, 11.3, 987.0 and 69.7 kg year( - 1), respectively. Presently 3.83 million biogas plants are operating in the country, which can mitigate global warming by 37 Mt CO(2) equiv. year( - 1). Government of India has a target of installing 12.34 million biogas plants by 2010. This target has a GMP of 120 Mt CO(2) equiv. year( - 1) and US $1,197 million as carbon credit under the CDM. However, if all the collectible cattle dung (225 Mt) produced in the country is used, 51.2 million family size biogas plants can be supported which will have a GMP of 496 Mt of CO(2) equiv. year( - 1) and can earn US $4,968 million as carbon credit. The reduction in global warming should encourage policy makers to promote biogas technology to combat climate change and integration of carbon revenues will help the farmers to develop biogas as a profitable activity.

  7. The multimillennial sea-level commitment of global warming.

    PubMed

    Levermann, Anders; Clark, Peter U; Marzeion, Ben; Milne, Glenn A; Pollard, David; Radic, Valentina; Robinson, Alexander

    2013-08-20

    Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C(-1) and 1.2 m °C(-1) of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C(-1) within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales.

  8. Will surface winds weaken in response to global warming?

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming

    2016-12-01

    The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.

  9. Global warming and recurrent mass bleaching of corals

    NASA Astrophysics Data System (ADS)

    Hughes, Terry P.; Kerry, James T.; Álvarez-Noriega, Mariana; Álvarez-Romero, Jorge G.; Anderson, Kristen D.; Baird, Andrew H.; Babcock, Russell C.; Beger, Maria; Bellwood, David R.; Berkelmans, Ray; Bridge, Tom C.; Butler, Ian R.; Byrne, Maria; Cantin, Neal E.; Comeau, Steeve; Connolly, Sean R.; Cumming, Graeme S.; Dalton, Steven J.; Diaz-Pulido, Guillermo; Eakin, C. Mark; Figueira, Will F.; Gilmour, James P.; Harrison, Hugo B.; Heron, Scott F.; Hoey, Andrew S.; Hobbs, Jean-Paul A.; Hoogenboom, Mia O.; Kennedy, Emma V.; Kuo, Chao-Yang; Lough, Janice M.; Lowe, Ryan J.; Liu, Gang; McCulloch, Malcolm T.; Malcolm, Hamish A.; McWilliam, Michael J.; Pandolfi, John M.; Pears, Rachel J.; Pratchett, Morgan S.; Schoepf, Verena; Simpson, Tristan; Skirving, William J.; Sommer, Brigitte; Torda, Gergely; Wachenfeld, David R.; Willis, Bette L.; Wilson, Shaun K.

    2017-03-01

    During 2015–2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs.

  10. Global warming and recurrent mass bleaching of corals.

    PubMed

    Hughes, Terry P; Kerry, James T; Álvarez-Noriega, Mariana; Álvarez-Romero, Jorge G; Anderson, Kristen D; Baird, Andrew H; Babcock, Russell C; Beger, Maria; Bellwood, David R; Berkelmans, Ray; Bridge, Tom C; Butler, Ian R; Byrne, Maria; Cantin, Neal E; Comeau, Steeve; Connolly, Sean R; Cumming, Graeme S; Dalton, Steven J; Diaz-Pulido, Guillermo; Eakin, C Mark; Figueira, Will F; Gilmour, James P; Harrison, Hugo B; Heron, Scott F; Hoey, Andrew S; Hobbs, Jean-Paul A; Hoogenboom, Mia O; Kennedy, Emma V; Kuo, Chao-Yang; Lough, Janice M; Lowe, Ryan J; Liu, Gang; McCulloch, Malcolm T; Malcolm, Hamish A; McWilliam, Michael J; Pandolfi, John M; Pears, Rachel J; Pratchett, Morgan S; Schoepf, Verena; Simpson, Tristan; Skirving, William J; Sommer, Brigitte; Torda, Gergely; Wachenfeld, David R; Willis, Bette L; Wilson, Shaun K

    2017-03-15

    During 2015-2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs.

  11. Impact of global warming on streamflow drought in Europe

    NASA Astrophysics Data System (ADS)

    Feyen, Luc; Dankers, Rutger

    2009-09-01

    Recent developments in climate modeling suggest that global warming is likely to favor conditions for the development of droughts in many regions of Europe. Studies evaluating possible changes in drought hazard typically have employed indices that are derived solely from climate variables such as temperature and precipitation, whereas many of the impacts of droughts are more related to hydrological variables such as river flow. This study examines the impact of global warming on streamflow drought in Europe by comparing low-flow predictions of a hydrological model driven by high-resolution regional climate simulations for the end of the previous century and for the end of this century based on the Special Report on Emissions Scenarios A2 greenhouse gas emission scenario. For both time slices, low-flow characteristics were derived from the simulated streamflow series using extreme value analysis. More specifically, we employed the methods of block maxima and partial duration series to obtain minimum flows and flow deficits and fitted extreme value distributions by the maximum likelihood method. In order not to mix drought events with different physical causes the analysis was performed separately for the frost and nonfrost season. Results show that in the frost-free season streamflow droughts will become more severe and persistent in most parts of Europe by the end of this century, except in the most northern and northeastern regions. In the frost season, streamflow drought conditions will be of less importance under future climate conditions.

  12. Stratocumulus Cloud-Feedback to an Idealized Global Warming Scenario

    NASA Astrophysics Data System (ADS)

    De Roode, S. R.; Dal Gesso, S.; van der Dussen, J.; Jonker, H. J.; Siebesma, P.

    2014-12-01

    The response of stratocumulus clouds to global warming as predicted by earth system models is uncertain. Recently, simulations of low clouds in the Hadley cell with single-column model versions of climate models were performed as part of the CGILS project. The results show a divergent behavior in the sign of the low cloud radiative feedback under an idealized global warming scenario. To understand these different model outcomes steady-state solutions of the stratocumulus-topped boundary layer are studied with a mixed-layer model (MLM) in a phase space consisting of the lower tropospheric stability and the free tropospheric specific humidity. In one set of experiments the sea surface temperature (SST) is increased. In case the entrainment rate is kept constant to the control case value it can be shown analytically from the MLM equations that the cloud liquid water path, the sensible and latent heat fluxes will increase. By contrast, if the entrainment rate is allowed to respond to the perturbed SST, both the LWP and the sensible heat flux may decrease. The latent heat flux will increase even further by a drying of the boundary layer due to an enhanced entrainment. Similar experiments were performed with five single column model versions of Earth System Models and the Dutch Atmospheric Large-Eddy Simulation model DALES. The findings strongly suggest that in a future climate changes in the free tropospheric specific humidity are key in controlling the response of stratocumulus cloud layers.

  13. Rice yields decline with higher night temperature from global warming

    PubMed Central

    Peng, Shaobing; Huang, Jianliang; Sheehy, John E.; Laza, Rebecca C.; Visperas, Romeo M.; Zhong, Xuhua; Centeno, Grace S.; Khush, Gurdev S.; Cassman, Kenneth G.

    2004-01-01

    The impact of projected global warming on crop yields has been evaluated by indirect methods using simulation models. Direct studies on the effects of observed climate change on crop growth and yield could provide more accurate information for assessing the impact of climate change on crop production. We analyzed weather data at the International Rice Research Institute Farm from 1979 to 2003 to examine temperature trends and the relationship between rice yield and temperature by using data from irrigated field experiments conducted at the International Rice Research Institute Farm from 1992 to 2003. Here we report that annual mean maximum and minimum temperatures have increased by 0.35°C and 1.13°C, respectively, for the period 1979–2003 and a close linkage between rice grain yield and mean minimum temperature during the dry cropping season (January to April). Grain yield declined by 10% for each 1°C increase in growing-season minimum temperature in the dry season, whereas the effect of maximum temperature on crop yield was insignificant. This report provides a direct evidence of decreased rice yields from increased nighttime temperature associated with global warming. PMID:15226500

  14. Possible human health impacts of a global warming

    SciTech Connect

    Nichols, M.C.; Kalkstein, L.S.; Cheng, S.

    1995-03-01

    Some ways in which a global warming may affect human health are discussed. Research is presented which explores the hypothesis that heat stress-induced mortality may increase substantially in the event of a worldwide temperature increase. Two procedures are applied to four disparate nations: the US, Canada, China and Egypt. Results indicate that significant increases in heat-related mortality are likely to occur, particularly in developing nations. Factors which might help to mitigate these increases, such as acclimatization and air conditioning, are also examined. Another human health impact of a global warming is the likely spread of certain vector-borne diseases into areas of the world where they do not currently exist. Two of these, onchocerciasis and malaria, have been chosen for a detailed international study. The initial steps in this effort are discussed. Policy options are proposed which may prepare international organizations and public officials for difficulties which may arise. Implementation of these procedures, which include continuation of internationally sponsored research, could help to ameliorate many of the problems outlined in this paper.

  15. Continued global warming after CO2 emissions stoppage

    NASA Astrophysics Data System (ADS)

    Frölicher, Thomas Lukas; Winton, Michael; Sarmiento, Jorge Louis

    2014-01-01

    Recent studies have suggested that global mean surface temperature would remain approximately constant on multi-century timescales after CO2 emissions are stopped. Here we use Earth system model simulations of such a stoppage to demonstrate that in some models, surface temperature may actually increase on multi-century timescales after an initial century-long decrease. This occurs in spite of a decline in radiative forcing that exceeds the decline in ocean heat uptake--a circumstance that would otherwise be expected to lead to a decline in global temperature. The reason is that the warming effect of decreasing ocean heat uptake together with feedback effects arising in response to the geographic structure of ocean heat uptake overcompensates the cooling effect of decreasing atmospheric CO2 on multi-century timescales. Our study also reveals that equilibrium climate sensitivity estimates based on a widely used method of regressing the Earth's energy imbalance against surface temperature change are biased. Uncertainty in the magnitude of the feedback effects associated with the magnitude and geographic distribution of ocean heat uptake therefore contributes substantially to the uncertainty in allowable carbon emissions for a given multi-century warming target.

  16. Global warming benefits the small in aquatic ecosystems.

    PubMed

    Daufresne, Martin; Lengfellner, Kathrin; Sommer, Ulrich

    2009-08-04

    Understanding the ecological impacts of climate change is a crucial challenge of the twenty-first century. There is a clear lack of general rules regarding the impacts of global warming on biota. Here, we present a metaanalysis of the effect of climate change on body size of ectothermic aquatic organisms (bacteria, phyto- and zooplankton, and fish) from the community to the individual level. Using long-term surveys, experimental data and published results, we show a significant increase in the proportion of small-sized species and young age classes and a decrease in size-at-age. These results are in accordance with the ecological rules dealing with the temperature-size relationships (i.e., Bergmann's rule, James' rule and Temperature-Size Rule). Our study provides evidence that reduced body size is the third universal ecological response to global warming in aquatic systems besides the shift of species ranges toward higher altitudes and latitudes and the seasonal shifts in life cycle events.

  17. [Global warming: trailblazer for tropical infections in Germany?].

    PubMed

    Hemmer, C J; Frimmel, S; Kinzelbach, R; Gürtler, L; Reisinger, E C

    2007-11-01

    Since 1850, the CO (2) content of the atmosphere has increased from 280 to 360 ppm, and the average surface temperature has risen from 14.6 to 15.3 C . A further increase between 1.8 and 4.0 C is expected for the 21st century. Temperate and cold climate zones are affected predominantly, but tropical regions are not spared. At the same time, the world wide climate effects of the "El Niño Southern Oscillation" are amplified. Global warming enhances the growth of tropical pathogens (malarial plasmodia, leishmania, yellow fever virus, dengue virus, West Nile virus, Vibrio cholerae) and vectors (anopheles, aedes, culex, and phlebotomus mosquitos; hard ticks). Global warming may lead to the emergence of diseases which at present are not endemic in Germany, like West Nile fever, Dengue fever, or Leishmaniases, and to enhanced transmission of borreliosis and tick-borne encephalitis. Malaria and cholera, in contrast, are influenced more strongly by socioeconomic factors. Improved surveillance and intensified research on the relationship between climate change and infectious diseases is needed.

  18. Quantifying Contributions of Climate Feedbacks to Global Warming Pattern Formation

    NASA Astrophysics Data System (ADS)

    Song, X.; Zhang, G. J.; Cai, M.

    2013-12-01

    The ';';climate feedback-response analysis method'' (CFRAM) was applied to the NCAR CCSM3.0 simulation to analyze the strength and spatial distribution of climate feedbacks and to quantify their contributions to global and regional surface temperature changes in response to a doubling of CO2. Instead of analyzing the climate sensitivity, the CFRAM directly attributes the temperature change to individual radiative and non-radiative feedbacks. The radiative feedback decomposition is based on hourly model output rather than monthly mean data that are commonly used in climate feedback analysis. This gives a more accurate quantification of the cloud and albedo feedbacks. The process-based decomposition of non-radiative feedback enables us to understand the roles of GCM physical and dynamic processes in climate change. The pattern correlation, the centered root-mean-square (RMS) difference and the ratio of variations (represented by standard deviations) between the partial surface temperature change due to each feedback process and the total surface temperature change in CCSM3.0 simulation are examined to quantify the roles of each feedback process in the global warming pattern formation. The contributions of climate feedbacks to the regional warming are also discussed.

  19. Global warming benefits the small in aquatic ecosystems

    PubMed Central

    Daufresne, Martin; Lengfellner, Kathrin; Sommer, Ulrich

    2009-01-01

    Understanding the ecological impacts of climate change is a crucial challenge of the twenty-first century. There is a clear lack of general rules regarding the impacts of global warming on biota. Here, we present a metaanalysis of the effect of climate change on body size of ectothermic aquatic organisms (bacteria, phyto- and zooplankton, and fish) from the community to the individual level. Using long-term surveys, experimental data and published results, we show a significant increase in the proportion of small-sized species and young age classes and a decrease in size-at-age. These results are in accordance with the ecological rules dealing with the temperature–size relationships (i.e., Bergmann's rule, James' rule and Temperature–Size Rule). Our study provides evidence that reduced body size is the third universal ecological response to global warming in aquatic systems besides the shift of species ranges toward higher altitudes and latitudes and the seasonal shifts in life cycle events. PMID:19620720

  20. Potential effect of global warming on mosquito-borne arboviruses.

    PubMed

    Reeves, W C; Hardy, J L; Reisen, W K; Milby, M M

    1994-05-01

    If global warming occurs in California, daily mean temperatures may increase by 3 to 5 degrees C, precipitation patterns will change, and sea level may rise 1 m. Studies were done on effect of temperature changes on survival of Culex tarsalis Coquillett, the primary vector of western equine encephalomyelitis (WEE) and St. Louis encephalitis (SLE) viruses, in two regions where temperatures differed by 5 degrees C. Daily mortality of adult vectors increased by 1% for each 1 degree C increase in temperature. At 25 degrees C, only 5% of Cx. tarsalis survived for 8 or more days, the time required for extrinsic incubation of these viruses. Extrinsic incubation times for these viruses shortened when temperatures were increased from 18 to 25 degrees C. WEE virus infection was modulated and transmission decreased at 32 degrees C. If temperatures in the warmer region increase by 5 degrees C, WEE virus may disappear and SLE virus would persist. In the cooler region, a 5 degrees C increase would decrease vector survivorship and virus activity in midsummer. In North America, epidemics of WEE have prevailed above a 21 degrees C isotherm and those of SLE below this isotherm. With global warming, epidemics of these viruses could extend into currently unreceptive northern areas. WEE virus would disappear from more southern regions. Geographic distribution of vector, human, and animal populations could be altered. North America could become more receptive to invasion by tropical vectors and diseases.

  1. Tropical drying trends in global warming models and observations.

    PubMed

    Neelin, J D; Münnich, M; Su, H; Meyerson, J E; Holloway, C E

    2006-04-18

    Anthropogenic changes in tropical rainfall are evaluated in a multimodel ensemble of global warming simulations. Major discrepancies on the spatial distribution of these precipitation changes remain in the latest-generation models analyzed here. Despite this uncertainty, we find a number of measures, both global and local, on which reasonable agreement is obtained, notably for the regions of drying trend (negative precipitation anomalies). Models agree on the overall amplitude of the precipitation decreases that occur at the margins of the convective zones, with percent error bars of magnitude similar to those for the tropical warming. Similar agreement is found on a precipitation climate sensitivity defined here and on differential moisture increase inside and outside convection zones, a step in a hypothesized causal path leading to precipitation changes. A measure of local intermodel agreement on significant trends indicates consistent predictions for particular regions. Observed rainfall trends in several data sets show a significant summer drying trend in a main region of intermodel agreement: the Caribbean/Central-American region.

  2. Modification of cirrus clouds to reduce global warming

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.

    2009-12-01

    Since both greenhouse gases and cirrus clouds strongly affect outgoing longwave radiation (OLR) with no affect or less affect on solar radiation, respectively, an attempt to delay global warming to buy time for emission reduction strategies to work might naturally target cirrus clouds. Cirrus having optical depths < 3.6 cover 13% of the globe and have a net warming effect on climate, with the coldest cirrus having the strongest warming effect. Roughly 2/3 of predicted global warming is due to the feedback effect of water vapor and clouds from an initial greenhouse gas forcing, and a recent study indicates water vapor and clouds in the upper troposphere (UT) have the greatest impact on climate sensitivity (the equilibrium response of global-mean surface temperature to a CO2 doubling). Thus altering UT water vapor and cirrus may be a good strategy for climate engineering. Cirrus cloud coverage is predicted to be sensitive to the ice fall speed which depends on ice crystal size. The higher the cirrus, the greater their impact is on OLR. Thus by changing ice crystal size in the coldest cirrus, OLR and climate might be modified. Fortunately the coldest cirrus have the highest ice supersaturation due to the dominance of homogeneous freezing nucleation. Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing via GCM simulations are more negative than -2.8 W m-2 and could neutralize the radiative forcing due to a CO2 doubling (3.7 W m-2). This cirrus engineered net forcing is due to (1) reduced cirrus coverage and (2) reduced upper tropospheric water vapor, due to enhanced ice sedimentation. The implementation of this climate engineering could use the airline industry to disperse the seeding material. Commercial airliners typically fly at temperatures between -40 and -60 deg. C (where homogeneous

  3. Considering time in LCA: dynamic LCA and its application to global warming impact assessments.

    PubMed

    Levasseur, Annie; Lesage, Pascal; Margni, Manuele; Deschênes, Louise; Samson, Réjean

    2010-04-15

    The lack of temporal information is an important limitation of life cycle assessment (LCA). A dynamic LCA approach is proposed to improve the accuracy of LCA by addressing the inconsistency of temporal assessment. This approach consists of first computing a dynamic life cycle inventory (LCI), considering the temporal profile of emissions. Then, time-dependent characterization factors are calculated to assess the dynamic LCI in real-time impact scores for any given time horizon. Although generally applicable to any impact category, this approach is developed here for global warming, based on the radiative forcing concept. This case study demonstrates that the use of global warming potentials for a given time horizon to characterize greenhouse gas emissions leads to an inconsistency between the time frame chosen for the analysis and the time period covered by the LCA results. Dynamic LCA is applied to the US EPA LCA on renewable fuels, which compares the life cycle greenhouse gas emissions of different biofuels with fossil fuels including land-use change emissions. The comparison of the results obtained with both traditional and dynamic LCA approaches shows that the difference can be important enough to change the conclusions on whether or not a biofuel meets some given global warming reduction targets.

  4. Indirect Global Warming Potentials of Halons Using Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Youn, D.; Patten, K. O.; Wuebbles, D. J.

    2007-05-01

    Emission of bromochlorofluorocarbons, or Halons, results in stratospheric ozone depletion. This leads to cooling of the climate system in the opposite direction to direct warming contribution of the Halons as greenhouse gases. This cooling is a key indirect effect of Halons on radiative forcing or climate. The Global Warming Potential (GWP) is a relative index used to compare the climate impact of an emitted greenhouse gas, relative to an equal amount of carbon dioxide. Until now, indirect GWPs have been calculated based on the concept of Equivalent Effective Stratospheric Chlorine (EESC), which oversimplifies the complex processes in the atmosphere. As a step towards obtaining indirect GWPs through a more robust approach, 2-D and 3-D global chemical transport models (CTM) were used as the computational tool to derive more realistic ozone changes caused by pulse perturbation of Halons at the surface. Indirect GWPs of Halon-1211 and -1301 for a 100-year time horizon were explicitly calculated based on the University of Illinois at Urbana-Champaign (UIUC) 2-D global CTM and radiative transport model (RTM) and the 3-D CTM, MOZART-3.1. The 2-D and 3-D model simulations show acceptable temporal variations in the atmosphere as well as derived lifetimes and direct GWP values of the Halons. The 2-D model-based indirect GWPs for a 100-year horizon are -16,294 for Halon-1211 and -33,648 for Halon-1301. 3-D indirect GWP for Halon-1211 is -18,216. The indirect GWPs for Halon-1211 presented here are much smaller than previous published results using the previous simplified appraoch.

  5. Communicating the deadly consequences of global warming for human heat stress.

    PubMed

    Matthews, Tom K R; Wilby, Robert L; Murphy, Conor

    2017-04-11

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  6. Voluminous Icelandic Basaltic Eruptions Appear To Cause Abrupt Global Warming

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2011-12-01

    major sub-glacial eruptions that occurred during DO 0, A, and 1 (11.6, 13.1, and 14.6 ka) and similar but less well dated activity at least over the past million years. Massive melting of a thick ice sheet by volcanoes would decrease overburden pressure on the magma chambers, potentially increasing volcanism. Continued basaltic eruptions over decades enhanced by such a feedback c8ould explain why the intervals between DO events (1300 to 8800 years) are more random than cyclic and the evidence for sudden influxes of fresh water into the North Atlantic documented during DO events. Concentrations of sulfate in Greenland were as high from 1928 to 1985 as during the largest DO event. Trace element analysis shows this sulfate came from smoke stacks in northern Russia, Europe, and central North America. Observed levels of SO2, NO_{x}, tropospheric O$_{3} and black carbon are more than sufficient to have been the primary cause of 20th century global warming. Efforts to reduce acid rain by reducing emissions of these pollutants "accidentally" slowed global warming by 1998. Mean global surface temperatures have remained high but have not increased since then.

  7. Global warming and least-cost energy planning

    SciTech Connect

    Cavanagh, R.C. )

    1989-01-01

    Energy consumption is implicated in the growing emissions of all the major greenhouse gases'': carbon dioxide, methane, chlorofluorocarbons, nitrous oxide, and tropospheric ozone. All trap heat emitted from the earth's surface, a phenomenon that could accelerate to destroy the same planetary ecosystems that it has nurtured in the past. Strategies for reducing carbon dioxide emissions are this article's principal concern; increases in such emissions account for about half the projected atmospheric warming, with the increases themselves principally attributable to fossil fuel combustion. The United States is the world's largest emissions source, and while it cannot succeed alone, neither can it abdicate leadership responsibilities without all but ensuring failure. This article contends that US energy policy has been working to increase, rather than forestall, the danger of global warming. In particular, recent trends toward deregulation of the energy sector are grossly insufficient as solutions to the problem, although not necessarily inconsistent with them. The article outlines a way to organize urgent US and international energy policy reforms, drawing on the experience of certain state utility regulators with an approach called least-cost energy planning.'' Least-cost planning recognizes improvements in the efficiency of energy use as a major source of additional energy supplies, and seeks fair competition for energy investment dollars between conservation measures and production facilities.

  8. Global Warming: Understanding and Teaching the Forecast. Part A The Greenhouse Effect.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1993-01-01

    Provides information necessary for an interdisciplinary analysis of the greenhouse effect, enhanced greenhouse effect, global warming, global climate change, greenhouse gases, carbon dioxide, and scientific study of global warming for students grades 4-12. Several activity ideas accompany the information. (LZ)

  9. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Global Warming Potentials A Table A-1 to Subpart A of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... A-1 to Subpart A of Part 98—Global Warming Potentials Name CAS No. Chemical formula Global...

  10. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Global Warming Potentials A Table A-1 to Subpart A of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... A-1 to Subpart A of Part 98—Global Warming Potentials Name CAS No. Chemical formula Global...

  11. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Global Warming Potentials A Table A-1 to Subpart A of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... A-1 to Subpart A of Part 98—Global Warming Potentials Name CAS No. Chemical formula Global...

  12. Increasing Temperature Extremes during the Recent Global Warming Hiatus

    NASA Astrophysics Data System (ADS)

    Johnson, N. C.; Kosaka, Y.; Xie, S. P.

    2015-12-01

    Although the recent global warming hiatus has featured a slowdown in the annual, global mean surface air temperature trend, temperature extremes have exhibited contrasting changes, as both wintertime cold and summertime hot extremes have increased over Northern Hemisphere (NH) land from 2002-2014. To investigate the sources of NH temperature extreme variability, we use multiple linear regression analysis that includes as predictors the typical drivers of global-scale climate variability - tropical Pacific sea surface temperatures (SST), volcanic aerosols, solar variability, and the linear time trend. This analysis suggests that natural forcings, including tropical SSTs and solar variations, have contributed to the recent increase in NH winter cold extremes. The magnitude of the recent increase in summer hot extremes is only captured after including an additional SST predictor for a pattern that resembles the Atlantic Multidecadal Oscillation, which suggests the importance of Atlantic Ocean SSTs for recent increases in hot extremes. When the regression models are applied to local, grid point scales, they indicate the promise for substantial skill in seasonal predictions of extreme temperature over some NH regions. Overall, this work reveals important sources of natural variability in extreme temperature trends superimposed upon the long-term increase of hot extremes and decrease of cold extremes.

  13. The observed global warming record: what does it tell us?

    PubMed

    Wigley, T M; Jones, P D; Raper, S C

    1997-08-05

    Global, near-surface temperature data sets and their derivations are discussed, and differences between the Jones and Intergovernmental Panel on Climate Change data sets are explained. Global-mean temperature changes are then interpreted in terms of anthropogenic forcing influences and natural variability. The inclusion of aerosol forcing improves the fit between modeled and observed changes but does not improve the agreement between the implied climate sensitivity value and the standard model-based range of 1.5-4.5 degrees C equilibrium warming for a CO2 doubling. The implied sensitivity goes from below the model-based range of estimates to substantially above this range. The addition of a solar forcing effect further improves the fit and brings the best-fit sensitivity into the middle of the model-based range. Consistency is further improved when internally generated changes are considered. This consistency, however, hides many uncertainties that surround observed data/model comparisons. These uncertainties make it impossible currently to use observed global-scale temperature changes to narrow the uncertainty range in the climate sensitivity below that estimated directly from climate models.

  14. The role of clouds and oceans in global greenhouse warming. Final report

    SciTech Connect

    Hoffert, M.I.

    1996-10-01

    This research focuses on assessing connections between anthropogenic greenhouse gas emissions and global climatic change. it has been supported since the early 1990s in part by the DOE ``Quantitative Links`` Program (QLP). A three-year effort was originally proposed to the QLP to investigate effects f global cloudiness on global climate and its implications for cloud feedback; and to continue the development and application of climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by clouds and oceans. It is well-known that cloud and ocean processes are major sources of uncertainty in the ability to predict climatic change from humankind`s greenhouse gas and aerosol emissions. And it has always been the objective to develop timely and useful analytical tools for addressing real world policy issues stemming from anthropogenic climate change.

  15. Energy conversion of biomass in coping with global warming

    SciTech Connect

    Yokoyama, Shin-ya; Ogi, Tomoko; Minowa, Tomoaki

    1993-12-31

    The main purpose of the present paper is to propose energy conversion technologies of biomass in coping with global warming. Among thermochemical conversion, liquid fuel production by high pressure process is mainly introduced. Biomass is a term used to describe materials of biological origin, either purpose-grown or arising as by-products, residues or wastes from forestry, agriculture and food processing. Such biomass is a renewable energy sources dependent on solar energy. Through photosynthesis, plants converts carbon dioxide into organic materials used in their growth. Energy can be recovered from the plant materials by several processes, the simplest way is burning in air. As far as biomass is used in this way, there is no atmospheric accumulation of carbon dioxide making no effect on the Greenhouse Effect, provided that the cycle of regrowth and burning is sustained.

  16. More hurricanes to hit Western Europe due to global warming

    NASA Astrophysics Data System (ADS)

    Haarsma, Reindert; Hazeleger, Wilco; Severijns, Camiel; de Vries, Hylke; Ster, Andreas; Bintanja, Richard; van Oldenborgh, Geert Jan; van den Brink, Henk; Baatsen, Michiel

    2014-05-01

    Using a very high resolution global climate model (~25 km grid size) with prescribed sea surface temperatures we have investigated the change in the occurrence of hurricane-force (> 32.6 m/s) storms over Western Europe due to climate change. The results show a large increase during early autumn (Aug-Oct). The majority of these storms originate as a tropical cyclone. Using SST sensitivity experiments we have tested the hypothesis that the increase is due to the rise in Atlantic tropical SST thereby extending eastwards the breeding ground of tropical cyclones, yielding more frequent and intense hurricanes following pathways directed towards Europe. En route they transform into extra-tropical depressions and re-intensify after merging with the mid-latitude baroclinic unstable flow. Detailed analysis indicates that the development of a warm seclusion is the main mechanism for the re-intensification and that the hurricane winds are caused by a sting jet.

  17. Limited options for low-global-warming-potential refrigerants.

    PubMed

    McLinden, Mark O; Brown, J Steven; Brignoli, Riccardo; Kazakov, Andrei F; Domanski, Piotr A

    2017-02-17

    Hydrofluorocarbons, currently used as refrigerants in air-conditioning systems, are potent greenhouse gases, and their contribution to climate change is projected to increase. Future use of the hydrofluorocarbons will be phased down and, thus replacement fluids must be found. Here we show that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable. We search for replacements by applying screening criteria to a comprehensive chemical database. For the fluids passing the thermodynamic and environmental screens (critical temperature and global warming potential), we simulate performance in small air-conditioning systems, including optimization of the heat exchangers. We show that the efficiency-versus-capacity trade-off that exists in an ideal analysis disappears when a more realistic system is considered. The maximum efficiency occurs at a relatively high volumetric refrigeration capacity, but there are few fluids in this range.

  18. Cold stress on Russian territory during last global warming

    SciTech Connect

    Vinogradov, V.V.

    1996-12-31

    A great part of Russian territory is characterized by climate discomfort of life. In winter cold stress covers nearly all territory. The purpose of this work is to learn how the climatic discomfort of life is affected by climate change. The effect of global warming for the period 1981--1990 on geographical distribution of bioclimatic indexes by seasons (compared with average figures) is analyzed. Indexes of enthalpy, dry cooling, wind chill, wet cooling, effective temperature, physiological deficit index for monthly average figures were calculated and the data bank for the period 1981--1990 was made up. The indexes of enthalpy, wet cooling, and dry cooling according to Bodman were chosen as the most informative and independent. Maps of the climatic indexes taking into account temperature, humidity and wind speed were made up on the basis of the calculated figures.

  19. Projecting coral reef futures under global warming and ocean acidification.

    PubMed

    Pandolfi, John M; Connolly, Sean R; Marshall, Dustin J; Cohen, Anne L

    2011-07-22

    Many physiological responses in present-day coral reefs to climate change are interpreted as consistent with the imminent disappearance of modern reefs globally because of annual mass bleaching events, carbonate dissolution, and insufficient time for substantial evolutionary responses. Emerging evidence for variability in the coral calcification response to acidification, geographical variation in bleaching susceptibility and recovery, responses to past climate change, and potential rates of adaptation to rapid warming supports an alternative scenario in which reef degradation occurs with greater temporal and spatial heterogeneity than current projections suggest. Reducing uncertainty in projecting coral reef futures requires improved understanding of past responses to rapid climate change; physiological responses to interacting factors, such as temperature, acidification, and nutrients; and the costs and constraints imposed by acclimation and adaptation.

  20. Cloud and ocean effects on global greenhouse warming

    SciTech Connect

    Hoffert, M.I.

    1991-02-01

    Six months into the above-referenced grant, we are making good progress on our research plan. We intend to develop a new generation of transient climate/ocean model capable of reflecting feedbacks associated with clouds and ocean dynamics, and to use them to better constrain the transient climate response to increased greenhouse gas concentrations in the atmosphere. This is a necessary step in quantifying the links between radiative forcing of the atmosphere and climate response on 10--100 year time scales. The modelling work involves, on the one hand, developing a better characterization of cloud forcing and feedback, and on the other, a new generation of ocean/climate model incorporating feedbacks from the changing stratification of the ocean as heat is absorbed during periods of global warming. 3 figs.

  1. Limited options for low-global-warming-potential refrigerants

    PubMed Central

    McLinden, Mark O.; Brown, J. Steven; Brignoli, Riccardo; Kazakov, Andrei F.; Domanski, Piotr A.

    2017-01-01

    Hydrofluorocarbons, currently used as refrigerants in air-conditioning systems, are potent greenhouse gases, and their contribution to climate change is projected to increase. Future use of the hydrofluorocarbons will be phased down and, thus replacement fluids must be found. Here we show that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable. We search for replacements by applying screening criteria to a comprehensive chemical database. For the fluids passing the thermodynamic and environmental screens (critical temperature and global warming potential), we simulate performance in small air-conditioning systems, including optimization of the heat exchangers. We show that the efficiency-versus-capacity trade-off that exists in an ideal analysis disappears when a more realistic system is considered. The maximum efficiency occurs at a relatively high volumetric refrigeration capacity, but there are few fluids in this range. PMID:28211518

  2. Limited options for low-global-warming-potential refrigerants

    NASA Astrophysics Data System (ADS)

    McLinden, Mark O.; Brown, J. Steven; Brignoli, Riccardo; Kazakov, Andrei F.; Domanski, Piotr A.

    2017-02-01

    Hydrofluorocarbons, currently used as refrigerants in air-conditioning systems, are potent greenhouse gases, and their contribution to climate change is projected to increase. Future use of the hydrofluorocarbons will be phased down and, thus replacement fluids must be found. Here we show that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable. We search for replacements by applying screening criteria to a comprehensive chemical database. For the fluids passing the thermodynamic and environmental screens (critical temperature and global warming potential), we simulate performance in small air-conditioning systems, including optimization of the heat exchangers. We show that the efficiency-versus-capacity trade-off that exists in an ideal analysis disappears when a more realistic system is considered. The maximum efficiency occurs at a relatively high volumetric refrigeration capacity, but there are few fluids in this range.

  3. A Robust Response of the Hadley Circulation to Global Warming

    NASA Technical Reports Server (NTRS)

    Lau, William K M.; Kim, Kyu-Myong

    2014-01-01

    Tropical rainfall is expected to increase in a warmer climate. Yet, recent studies have inferred that the Hadley Circulation (HC), which is primarily driven by latent heating from tropical rainfall, is weakened under global warming. Here, we show evidence of a robust intensification of the HC from analyses of 33 CMIP5 model projections under a scenario of 1 per year CO2 emission increase. The intensification is manifested in a deep-tropics squeeze, characterized by a pronounced increase in the zonal mean ascending motion in the mid and upper troposphere, a deepening and narrowing of the convective zone and enhanced rainfall in the deep tropics. These changes occur in conjunction with a rise in the region of maximum outflow of the HC, with accelerated meridional mass outflow in the uppermost branch of the HC away from the equator, coupled to a weakened inflow in the return branches of the HC in the lower troposphere.

  4. Divergent surface and total soil moisture projections under global warming

    USGS Publications Warehouse

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  5. Global Warming: Its Implications for U.S. National Security Policy

    DTIC Science & Technology

    2009-03-19

    give a voice to those 16 makes even very is theory appears global warming . 6 decreased between 1940 and the early ’70s, increased again until the ’90s...get worse in the coming decades. The IPCC reports that even slight increases in global warming will negatively impact agriculture production in...hurricanes, the IPCC has predicted an increase in heavy precipitation events as a result of global warming .43 The price of increased extreme weather is

  6. Relationships Between Global Warming and Tropical Cyclone Activity in the Western North Pacific

    DTIC Science & Technology

    2007-09-01

    In this work, we investigate the relationships between global warming and tropical cyclone activity in the Western North Pacific (WNP). Our...hypothesis is that global warming impacts on TC activity occur through changes in the large scale environmental factors (LSEFs) known to be important in...averages. Using a least squares fit, we identify global warming signals in both the SST and vertical wind shear data across the WNP. These signals vary

  7. Global warming and the possible globalization of vector-borne diseases: a call for increased awareness and action.

    PubMed

    Balogun, Emmanuel O; Nok, Andrew J; Kita, Kiyoshi

    2016-01-01

    Human activities such as burning of fossil fuels play a role in upsetting a previously more balanced and harmonious ecosystem. Climate change-a significant variation in the usual pattern of Earth's average weather conditions is a product of this ecosystem imbalance, and the rise in the Earth's average temperature (global warming) is a prominent evidence. There is a correlation between global warming and the ease of transmission of infectious diseases. Therefore, with global health in focus, we herein opine a stepping-up of research activities regarding global warming and infectious diseases globally.

  8. Predicting future uncertainty constraints on global warming projections

    PubMed Central

    Shiogama, H.; Stone, D.; Emori, S.; Takahashi, K.; Mori, S.; Maeda, A.; Ishizaki, Y.; Allen, M. R.

    2016-01-01

    Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by “current knowledge” of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudo observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2 °C (3 °C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change. PMID:26750491

  9. Global Warming and Food Insecurity in Rural Latin America

    NASA Astrophysics Data System (ADS)

    Byrne, T. R.; Byrne, J. M.; McDaniel, S.

    2012-12-01

    Food insecurity is one of the most important challenges facing humanity in the 21st century - a challenge that will be further exacerbated by the changing climate. The effects of human induced climate change will be most disproportionate and severe in the developing world, where a stable food supply, decreased purchasing power, and adequate nutrition are often already a daily struggle. This study will build on work done by the Food and Agriculture Organization (FAO) of the United Nations (UN), and will assess how vulnerability to household food insecurity will be affected by global warming in various rural parts of Latin America. Temperature data from downscaled Global Circulation Models (GCM) will be used in conjunction with the results of national household surveys to generate information on each rural farming household's probability of falling below a food poverty threshold in the near future. The results of the study will allow us to distinguish between households that are likely to experience chronic food insecurity and those that are likely to experience transitory food insecurity, permitting for improved targeting of policy responses.

  10. Slowing global warming: benefits for patients and the planet.

    PubMed

    Parker, Cindy L

    2011-08-01

    Global warming will cause significant harm to the health of persons and their communities by compromising food and water supplies; increasing risks of morbidity and mortality from infectious diseases and heat stress; changing social determinants of health resulting from extreme weather events, rising sea levels, and expanding flood plains; and worsening air quality, resulting in additional morbidity and mortality from respiratory and cardiovascular diseases. Vulnerable populations such as children, older persons, persons living at or below the poverty level, and minorities will be affected earliest and greatest, but everyone likely will be affected at some point. Family physicians can help reduce greenhouse gas emissions, stabilize the climate, and reduce the risks of climate change while also directly improving the health of their patients. Health interventions that have a beneficial effect on climate change include encouraging patients to reduce the amount of red meat in their diets and to replace some vehicular transportation with walking or bicycling. Patients are more likely to make such lifestyle changes if their physician asks them to and leads by example. Medical offices and hospitals can become more energy efficient by recycling, purchasing wind-generated electricity, and turning off appliances, computers, and lights when not in use. Moreover, physicians can play an important role in improving air quality and reducing greenhouse gas emissions by advocating for enforcement of existing air quality regulations and working with local and national policy makers to further improve air quality standards, thereby improving the health of their patients and slowing global climate change.

  11. Predicting future uncertainty constraints on global warming projections

    NASA Astrophysics Data System (ADS)

    Shiogama, H.; Stone, D.; Emori, S.; Takahashi, K.; Mori, S.; Maeda, A.; Ishizaki, Y.; Allen, M. R.

    2016-01-01

    Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by “current knowledge” of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudo observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2 °C (3 °C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change.

  12. Predicting future uncertainty constraints on global warming projections.

    PubMed

    Shiogama, H; Stone, D; Emori, S; Takahashi, K; Mori, S; Maeda, A; Ishizaki, Y; Allen, M R

    2016-01-11

    Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by "current knowledge" of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudo observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2 °C (3 °C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change.

  13. Upper temperature limits of tropical marine ectotherms: global warming implications.

    PubMed

    Nguyen, Khanh Dung T; Morley, Simon A; Lai, Chien-Houng; Clark, Melody S; Tan, Koh Siang; Bates, Amanda E; Peck, Lloyd S

    2011-01-01

    Animal physiology, ecology and evolution are affected by temperature and it is expected that community structure will be strongly influenced by global warming. This is particularly relevant in the tropics, where organisms are already living close to their upper temperature limits and hence are highly vulnerable to rising temperature. Here we present data on upper temperature limits of 34 tropical marine ectotherm species from seven phyla living in intertidal and subtidal habitats. Short term thermal tolerances and vertical distributions were correlated, i.e., upper shore animals have higher thermal tolerance than lower shore and subtidal animals; however, animals, despite their respective tidal height, were susceptible to the same temperature in the long term. When temperatures were raised by 1°C hour(-1), the upper lethal temperature range of intertidal ectotherms was 41-52°C, but this range was narrower and reduced to 37-41°C in subtidal animals. The rate of temperature change, however, affected intertidal and subtidal animals differently. In chronic heating experiments when temperature was raised weekly or monthly instead of every hour, upper temperature limits of subtidal species decreased from 40°C to 35.4°C, while the decrease was more than 10°C in high shore organisms. Hence in the long term, activity and survival of tropical marine organisms could be compromised just 2-3°C above present seawater temperatures. Differences between animals from environments that experience different levels of temperature variability suggest that the physiological mechanisms underlying thermal sensitivity may vary at different rates of warming.

  14. Permafrost carbon-climate feedbacks accelerate global warming.

    PubMed

    Koven, Charles D; Ringeval, Bruno; Friedlingstein, Pierre; Ciais, Philippe; Cadule, Patricia; Khvorostyanov, Dmitry; Krinner, Gerhard; Tarnocai, Charles

    2011-09-06

    Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH(4) emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO(2) by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO(2) fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH(4)/y to 41-70 Tg CH(4)/y, with increases due to CO(2) fertilization, permafrost thaw, and warming-induced increased CH(4) flux densities partially offset by a reduction in wetland extent.

  15. Shifting terrestrial feedbacks from CO2 fertilization to global warming

    NASA Astrophysics Data System (ADS)

    Peñuelas, Josep; Ciais, Philippe; Janssens, Ivan; Canadell, Josep; Obersteiner, Michael; Piao, Shilong; Vautard, Robert; Sardans Jordi Sardans, Jordi

    2016-04-01

    Humans are increasingly fertilizing the planet. Our activities are increasing atmospheric concentrations of carbon dioxide, nitrogen inputs to ecosystems and global temperatures. Individually and combined, they lead to biospheric availability of carbon and nitrogen, enhanced metabolic activity, and longer growing seasons. Plants can consequently grow more and take up more carbon that can be stored in ecosystem carbon pools, thus enhancing carbon sinks for atmospheric CO2. Data on the increased strength of carbon sinks are, however, inconclusive: Some data (eddy covariance, short-term experiments on elevated CO2 and nutrient fertilization) suggest that biospheric carbon uptake is already effectively increasing but some other data suggest it is not, or are not general and conclusive (tree-ring, forest inventory). The combined land-ocean CO2 sink flux per unit of excess atmospheric CO2 above preindustrial levels declined over 1959-2012 by a factor of about 1/3, implying that CO2 sinks increased more slowly than excess CO2. We will discuss the available data, and the discussion will drive us to revisit our projections for enhanced carbon sinks. We will reconsider the performance of the modulators of increased carbon uptake in a CO2 fertilized and warmed world: nutrients, climate, land use and pollution. Nutrient availability in particular plays a crucial role. A simple mass-balance approach indicates that limited phosphorus availability and the corresponding N:P imbalances can jointly reduce the projected future carbon storage by natural ecosystems during this century. We then present a new paradigm: we are shifting from a fertilization to a warming era. Compared to the historical period, future impacts of warming will be larger than the benefits of CO2 fertilization given nutrient limitations, management and disturbance (which reduces C stocks and thus sequestration potential) and because CO2 will decrease by 2050 in RCP2.6, meaning loss of CO2 fertilization, and CO2

  16. Has global warming modified the relationship between sunspot numbers and global temperatures?

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav

    2017-02-01

    We study time evolution of the relationship between sunspot numbers and global temperatures between 1880 and 2016 using wavelet coherence framework. The results suggest that the relationship is stable in time. Changes in the sunspot numbers precede changes in the temperatures by more than two years as suggested by the wavelet phase differences. This leading position of the sun activity is stable in time as well. However, the relationship has been disturbed by increasing CO2 emissions since 1960s. Without controlling for the effect of possible global warming, or more precisely the positive connection between increasing CO2 emissions and the global temperatures, the findings would have been quite different. Combination of the cointegration analysis and wavelet coherence framework has enabled uncovering a hidden relationship between the solar activity and global temperatures, and possibly explaining equivocal results in the topical literature.

  17. Global Warming: A Science Overview for the A/C Industry

    SciTech Connect

    MacCracken, M.C.

    1999-12-06

    Fossil fuels (i.e., coal, oil, and natural gas) provide about 85% of the world's energy, sustaining our standard-of-living. They are inexpensive, transportable, safe, and relatively abundant. At the same time, their use contributes to problems such as air quality and acid rain that are being addressed through various control efforts and to the problem of global warming, which is now being considered by governments of the world. This talk will focus on six key aspects of the scientific findings that are leading to proposals for significant limitation of the emissions of fossil-fuel-derived carbon dioxide and limitations on emissions of other greenhouse gases that can influence the global climate, including substances used in the refrigeration and air-conditioning industries.

  18. Presenting Global Warming and Evolution as Public Health Issues to Encourage Acceptance of Scientific Evidence

    ERIC Educational Resources Information Center

    Stover, Shawn K.; McArthur, Laurence B.; Mabry, Michelle L.

    2013-01-01

    Although evidence supporting anthropogenic global warming and evolution by natural selection is considerable, the public does not embrace these concepts. The current study explores the hypothesis that individuals will become more receptive to scientific viewpoints if evidence for evolution and implications of global warming are presented as issues…

  19. Global Warming Responses at the Primary Secondary Interface: 1. Students' Beliefs and Willingness to Act

    ERIC Educational Resources Information Center

    Skamp, Keith; Boyes, Eddie; Stannistreet, Martin

    2009-01-01

    Using survey methodology, students' beliefs, and willingness to act, about 16 specific actions related to global warming are compared across the primary secondary interface. More primary students believed in the effectiveness of most actions to reduce global warming and were willing to take those actions. In general there was a disparity between…

  20. A New Type of Debate for Global Warming and Scientific Literacy

    ERIC Educational Resources Information Center

    Gautier, Catherine

    2012-01-01

    Expanding on some ideas introduced in the paper by Albe and Gombert (2012) "Students' communication, argumentation and knowledge in a citizen' conference on global warming", I explore two issues relevant to their work: global warming (GW) as a socioscientific controversy and scientific literacy in regards to climate change science. For the first…

  1. Metaphors of Primary School Students Relating to the Concept of Global Warming

    ERIC Educational Resources Information Center

    Dogru, Mustafa; Sarac, Esra

    2013-01-01

    The purpose of this study is to reveal the metaphors of primary school students (n = 362) relating to the concept of global warming. Data collected by completing the expression of "global warming is like..., because..." of the students were analysed by use of qualitative and quantitative data analysis techniques. According to findings of…

  2. Senior Secondary Indian Students' Views about Global Warming, and Their Implications for Education

    ERIC Educational Resources Information Center

    Chhokar, Kiran; Dua, Shweta; Taylor, Neil; Boyes, Edward; Stanisstreet, Martin

    2012-01-01

    For individuals to make informed lifestyle choices that may help to reduce global warming, they need some understanding of this phenomenon and the factors that contribute to it. However, there is a "gap" between knowledge about global warming and willingness to take personal action. So, although education may be effective in enhancing…

  3. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming

    ERIC Educational Resources Information Center

    Varma, Keisha; Linn, Marcia C.

    2012-01-01

    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called "Global Warming: Virtual Earth". In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw…

  4. Global Warming Responses at the Primary Secondary Interface: 2. Potential Effectiveness of Education

    ERIC Educational Resources Information Center

    Skamp, Keith; Boyes, Eddie; Stannistreet, Martin

    2009-01-01

    In an earlier paper (Skamp, Boyes, & Stanisstreet, 2009b), students' beliefs and willingness to act in relation to 16 specific actions related to global warming were compared across the primary secondary interface. More primary students believed in the effectiveness of most actions to reduce global warming and were willing to take those…

  5. CO2 [Carbon Dioxide] Diet for a Greenhouse Planet: A Citizen's Guide for Slowing Global Warming.

    ERIC Educational Resources Information Center

    DeCicco, John; And Others

    This guide discusses the global warming issue and offers a plan to facilitate a decrease in the emissions of the major greenhouse gases in the United States, including those under the control of individual citizens. A letter from the organization's president describes its involvement with the global warming issue. A brief overview presented in the…

  6. The Understandings of Global Warming and Learning Styles: A Phenomenographic Analysis of Prospective Primary School Teachers

    ERIC Educational Resources Information Center

    Demirkaya, Hilmi

    2008-01-01

    In this study, statements by prospective primary school teachers such as "I think the word global warming ..." or "I think the term global warming means ..." were analyzed by using qualitative phenomenographic research methods. 142 female (48.3%) and 152 male (51.7%) primary school teacher candidates (n = 294) participated in…

  7. The proportionality of global warming to cumulative carbon emissions.

    PubMed

    Matthews, H Damon; Gillett, Nathan P; Stott, Peter A; Zickfeld, Kirsten

    2009-06-11

    The global temperature response to increasing atmospheric CO(2) is often quantified by metrics such as equilibrium climate sensitivity and transient climate response. These approaches, however, do not account for carbon cycle feedbacks and therefore do not fully represent the net response of the Earth system to anthropogenic CO(2) emissions. Climate-carbon modelling experiments have shown that: (1) the warming per unit CO(2) emitted does not depend on the background CO(2) concentration; (2) the total allowable emissions for climate stabilization do not depend on the timing of those emissions; and (3) the temperature response to a pulse of CO(2) is approximately constant on timescales of decades to centuries. Here we generalize these results and show that the carbon-climate response (CCR), defined as the ratio of temperature change to cumulative carbon emissions, is approximately independent of both the atmospheric CO(2) concentration and its rate of change on these timescales. From observational constraints, we estimate CCR to be in the range 1.0-2.1 degrees C per trillion tonnes of carbon (Tt C) emitted (5th to 95th percentiles), consistent with twenty-first-century CCR values simulated by climate-carbon models. Uncertainty in land-use CO(2) emissions and aerosol forcing, however, means that higher observationally constrained values cannot be excluded. The CCR, when evaluated from climate-carbon models under idealized conditions, represents a simple yet robust metric for comparing models, which aggregates both climate feedbacks and carbon cycle feedbacks. CCR is also likely to be a useful concept for climate change mitigation and policy; by combining the uncertainties associated with climate sensitivity, carbon sinks and climate-carbon feedbacks into a single quantity, the CCR allows CO(2)-induced global mean temperature change to be inferred directly from cumulative carbon emissions.

  8. Atmospheric degradation and global warming potentials of three perfluoroalkenes

    NASA Astrophysics Data System (ADS)

    Acerboni, G.; Beukes, J. A.; Jensen, N. R.; Hjorth, J.; Myhre, G.; Nielsen, C. J.; Sundet, J. K.

    The vapour phase reactions of perfluoropropene, CF 3CFCF 2, and perfluorobuta-1,3-diene, CF 2CFCFCF 2, with OH, NO 3 and O 3 were studied at 298±4 K and 740±5 Torr using long-path FT-IR detection. The reactions with ozone are very slow, kCF 3CFCF 2+O 3=(6.2±1.5)×10 -22 and kCF 2CFCFCF 2+O 3=(6.5±0.2)×10 -21 cm 3 molecules -1 s -1, and upper limits of 3×10 -15 cm 3 molecules -1 s -1 are reported for the NO 3 reaction rate coefficients. The OH reaction rate coefficients were determined as kCF 3CFCF 2+OH =(2.6±0.7)×10 -12 and kCF 2CFCFCF 2+OH =(1.1±0.3)×10 -11 cm 3 molecules -1 s -1; perfluoropropene gave a nearly quantitative yield of CF 3CFO and CF 2O as organic products, while perfluorobuta-1,3-diene gave from 130% to 170% of CF 2O. A chemistry transport model was applied to calculate the atmospheric distributions and lifetimes of the perfluoroalkenes; the global and yearly averaged lifetimes were calculated as 1.9 day for C 2F 4 and C 4F 6 and 6 days for C 3F 6. Quantitative infrared cross-sections of perfluoroethene, perfluoropropene, and perfluorobuta-1,3-diene have been obtained at 298 K in the region 100-2600 cm -1. Radiative forcing calculations have been performed for these gases assuming either constant vertical profiles or the distribution derived from the chemistry transport model. The results show that the Global Warming Potentials are totally negligible for these compounds.

  9. Trends in global warming and evolution of nucleoproteins from influenza A viruses since 1918.

    PubMed

    Yan, S; Wu, G

    2010-12-01

    Global warming affects not only the environment where we live, but also all living species to different degree, including influenza A virus. We recently conducted several studies on the possible impact of global warming on the protein families of influenza A virus. More studies are needed in order to have a full picture of the impact of global warming on living organisms, especially its effect on viruses. In this study, we correlate trends in global warming with evolution of the nucleoprotein from influenza A virus and then analyse the trends with respect to northern/southern hemispheres, virus subtypes and sampling species. The results suggest that global warming may have an impact on the evolution of the nucleoprotein from influenza A virus.

  10. An attack on science? Media use, trust in scientists, and perceptions of global warming.

    PubMed

    Hmielowski, Jay D; Feldman, Lauren; Myers, Teresa A; Leiserowitz, Anthony; Maibach, Edward

    2014-10-01

    There is a growing divide in how conservatives and liberals in the USA understand the issue of global warming. Prior research suggests that the American public's reliance on partisan media contributes to this gap. However, researchers have yet to identify intervening variables to explain the relationship between media use and public opinion about global warming. Several studies have shown that trust in scientists is an important heuristic many people use when reporting their opinions on science-related topics. Using within-subject panel data from a nationally representative sample of Americans, this study finds that trust in scientists mediates the effect of news media use on perceptions of global warming. Results demonstrate that conservative media use decreases trust in scientists which, in turn, decreases certainty that global warming is happening. By contrast, use of non-conservative media increases trust in scientists, which, in turn, increases certainty that global warming is happening.

  11. Apocalypse soon? Dire messages reduce belief in global warming by contradicting just-world beliefs.

    PubMed

    Feinberg, Matthew; Willer, Robb

    2011-01-01

    Though scientific evidence for the existence of global warming continues to mount, in the United States and other countries belief in global warming has stagnated or even decreased in recent years. One possible explanation for this pattern is that information about the potentially dire consequences of global warming threatens deeply held beliefs that the world is just, orderly, and stable. Individuals overcome this threat by denying or discounting the existence of global warming, and this process ultimately results in decreased willingness to counteract climate change. Two experiments provide support for this explanation of the dynamics of belief in global warming, suggesting that less dire messaging could be more effective for promoting public understanding of climate-change research.

  12. Global warming and urbanization affect springwater temperatures in Tokyo, Japan

    NASA Astrophysics Data System (ADS)

    Matsuyama, H.

    2014-02-01

    Due to global warming and urbanization, air temperature in Tokyo has risen 1.6 degrees in the past 30-40 years which has also affected springwater temperatures. From 2005, we have proceeded with the observations of springs in Tokyo metropolis, Japan which had been conducted by Environment of Tokyo from the end of the 1980s to 2001. In the rainy season (October) and dry season (February), we have observed springwater temperatures in 25 springs. The field surveys have revealed that most springwater temperatures has steadly risen in the past 30 years. As of February 2013, water temperatures of 19/11 springs have risen with 5% level in the rainy/dry season. As of February 2006, water temperatures of 10/13 springs have risen with 5% level in the rainy/dry season, i.e., 9/2 springs have acquired/lost the significance as of February 2013. One possible reason is the recent hot summer/cold winter in Tokyo.

  13. Global warming presents new challenges for maize pest management

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, Noah S.; Krupke, Christian H.; White, Michael A.; Alexander, Corinne E.

    2008-10-01

    It has been conjectured that global warming will increase the prevalence of insect pests in many agro-ecosystems. In this paper, we quantitatively assess four of the key pests of maize, one of the most important systems in North American grain production. Using empirically generated estimates of pest overwintering thresholds and degree-day requirements, along with climate change projections from a high-resolution climate model, we project potential future ranges for each of these pests in the United States. Our analysis suggests the possibility of increased winter survival and greater degree-day accumulations for each of the pests surveyed. We find that relaxed cold limitation could expand the range of all four pest taxa, including a substantial range expansion in the case of corn earworm (H. zea), a migratory, cold-intolerant pest. Because the corn earworm is a cosmopolitan pest that has shown resistance to insecticides, our results suggest that this expansion could also threaten other crops, including those in high-value areas of the western United States. Because managing significant additional pressure from this suite of established pests would require additional pest management inputs, the projected decreases in cold limitation and increases in heat accumulation have the potential to significantly alter the pest management landscape for North American maize production. Further, these range expansions could have substantial economic impacts through increased seed and insecticide costs, decreased yields, and the downstream effects of changes in crop yield variability.

  14. Response of a temperate demersal fish community to global warming

    NASA Astrophysics Data System (ADS)

    Punzón, A.; Serrano, A.; Sánchez, F.; Velasco, F.; Preciado, I.; González-Irusta, J. M.; López-López, L.

    2016-09-01

    Changes in the distribution of the demersal fish species have been identified in north-European Atlantic waters. The consequence of these changes has been a northward shift of the distribution limits and changes in richness. In this study a notable increase in demersal fish species richness per sampling station was detected in the southern Bay of Biscay. This rise was due to an increase in frequency of occurrence and abundance of the majority of fish species in the area (53% from the total species). A fisheries relate explanation was discarded because the mismatch between the changes in the fishing effort and the augment in frequency of occurrence and abundance. On the contrary, these changes are in agreement with expected response under the increasing temperature of the sea observed over the last three decades, associated to global warming. These changes were positively correlated with an increase in temperature of intermediate waters in the study area. In addition, some of these species showed a notable western displacements of the Centre of Gravity in the study area, which would be expected if temperate water species would be favoured by an increase in water temperature. Our results are consistent with studies in the North Sea, where many of these species showing widened distribution limits towards north. The analysis of the results shows that the studied ecosystem, the Bay of Biscay is under a meridionalization process. On the other hand, only one tropicalization event (Lepidotrigla dieuzeidei), was recorded, maybe due to the conservative restrictions applied in species selection.

  15. Seasonal Climate Extremes : Mechanism, Predictability and Responses to Global Warming

    NASA Astrophysics Data System (ADS)

    Shongwe, M. E.

    2010-01-01

    Climate extremes are rarely occurring natural phenomena in the climate system. They often pose one of the greatest environmental threats to human and natural systems. Statistical methods are commonly used to investigate characteristics of climate extremes. The fitted statistical properties are often interpolated or extrapolated to give an indication of the likelihood of a certain event within a given period or interval. Under changing climatic conditions, the statistical properties of climate extremes are also changing. It is an important scientific goal to predict how the properties of extreme events change. To achieve this goal, observational and model studies aimed at revealing important features are a necessary prerequisite. Notable progress has been made in understanding mechanisms that influence climate variability and extremes in many parts of the globe including Europe. However, some of the recently observed unprecedented extremes cannot be fully explained from the already identified forcing factors. A better understanding of why these extreme events occur and their sensitivity to certain reinforcing and/or competing factors is useful. Understanding their basic form as well as their temporal variability is also vital and can contribute to global scientific efforts directed at advancing climate prediction capabilities, particularly making skilful forecasts and realistic projections of extremes. In this thesis temperature and precipitation extremes in Europe and Africa, respectively, are investigated. Emphasis is placed on the mechanisms underlying the occurrence of the extremes, their predictability and their likely response to global warming. The focus is on some selected seasons when extremes typically occur. An atmospheric energy budget analysis for the record-breaking European Autumn 2006 event has been carried out with the goal to identify the sources of energy for the extreme event. Net radiational heating is compared to surface turbulent fluxes of

  16. The tropical Pacific as a key pacemaker of the variable rates of global warming

    NASA Astrophysics Data System (ADS)

    Kosaka, Yu; Xie, Shang-Ping

    2016-09-01

    Global mean surface temperature change over the past 120 years resembles a rising staircase: the overall warming trend was interrupted by the mid-twentieth-century big hiatus and the warming slowdown since about 1998. The Interdecadal Pacific Oscillation has been implicated in modulations of global mean surface temperatures, but which part of the mode drives the variability in warming rates is unclear. Here we present a successful simulation of the global warming staircase since 1900 with a global ocean-atmosphere coupled model where tropical Pacific sea surface temperatures are forced to follow the observed evolution. Without prescribed tropical Pacific variability, the same model, on average, produces a continual warming trend that accelerates after the 1960s. We identify four events where the tropical Pacific decadal cooling markedly slowed down the warming trend. Matching the observed spatial and seasonal fingerprints we identify the tropical Pacific as a key pacemaker of the warming staircase, with radiative forcing driving the overall warming trend. Specifically, tropical Pacific variability amplifies the first warming epoch of the 1910s-1940s and determines the timing when the big hiatus starts and ends. Our method of removing internal variability from the observed record can be used for real-time monitoring of anthropogenic warming.

  17. Toward a critical anthropology on the impact of global warming on health and human societies.

    PubMed

    Baer, Hans A

    2008-01-01

    This op-ed essay urges medical anthropologists to join a growing number of public health scholars to examine the impact of global warming on health. Adopting a critical medical anthropology perspective, I argue that global warming is yet another manifestation of the contradictions of the capitalist world system. Ultimately, an serious effort to mitigate the impact of global warming not only on health but also settlement patterns and subsistence will require the creation of a new global political economy based upon social parity, democratic processes, and environmental sustainability.

  18. Cool Roofs to Save Money and Delay Global Warming

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arthur

    2006-04-01

    White roofs, and now cool-colored roofs, with a high reflectivity or `albedo' have a long history (best known around the Mediterranean) of keeping buildings and cities cool. In modern times, cool roofs have been shown to reduce air conditioning (a-c) demand and slow the formation of ozone (smog). Studies establishing a typical 10% reduction in a-c demand and electricity savings due to white roofs in California (CA) resulted in the 2005 CA new building energy efficiency standard prescribing that low-slope roofs be white, but exempting sloping roofs for aesthetic reasons. The advent (thanks to physicists' efforts) of inexpensive colored pigments with high albedo has led to 2008 CA standards requiring that even sloping roofs be cool. Here, I show that cooling the planet by reducing urban albedo through white and other cool roofs is a direct effect, much larger and immediate than the 2nd-order cooling from reduced CO2 from reduced a-c use. I then investigate widespread deployment of cool roof in major tropical and temperate cities, which cover 2% of global land area and have a proportionately higher albedo impact due to lower latitude. Here, cool roofs and cooler pavements can raise urban albedo by 10%. This directly drops the global average temperature by ˜0.05 /deg C. Though small compared to a likely 3 /deg C rise by 2060, an immediate drop of 0.05 /deg C represents a reprieve in global warming of 1 year, and represents avoiding a year's current annual world emissions of CO2, i.e. 25 GT(CO2). At a trading price of 25/tCO2, this is worth ˜625B. Cooling the planet also could save annually hundreds of billions on a-c electric bills. Finally I suggest policies to increase cool roof deployment, for example, developed world Kyoto signatories could use its CDM (Clean Development Mechanism) for cool roof programs in developing countries.

  19. Accelerated global warming after 1998 is caused by decrease in terrestrial evapotranspiration

    NASA Astrophysics Data System (ADS)

    Qiu, GuoYu; Yang, Bing

    2016-04-01

    Over the last 50 years, the global temperature has increased an average of 0.180K per decade. However, the increase has accelerated since 1998 at a rate of 0.334K per decade. No satisfactory explanation has been offered by any past research concerning the accelerated global warming after 1998. In this hypothesis-driven study, we proposed that accelerated global warming since 1998 is mainly caused by a significant reduction of global terrestrial evapotranspiration (ET). This is because global annual terrestrial ET increased on average by 7.1 mm per year per decade between 1982 and 1997 and has decreased on average by 7.9 mm per year per decade since 1998. To verify this hypothesis, we analyzed terrestrial ET energy consumption data and the effects of terrestrial ET change on global warming. Results show that the global warming rate by including the effect of terrestrial ET reduction is 0.349K per decade, which is very close to the observed global warming rate of 0.334K per decade. Our study also shows that global warming can be alleviated by increasing terrestrial ET. The global temperature can be reduced by 0.129K per decade by increasing 1 W/m2, which can be achieved by a combination of land use management measures (such as increasing natural vegetation rehabilitation, crop land irrigation) and appropriate water management for biofuel production.

  20. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming.

    PubMed

    Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli

    2016-03-22

    Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ∼50 y to ∼20 y, and the amplitude is reduced by ∼60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves.

  1. Snow: a reliable indicator for global warming in the future?

    NASA Astrophysics Data System (ADS)

    Jacobi, H.-W.

    2012-03-01

    The cryosphere consists of water in the solid form at the Earth's surface and includes, among others, snow, sea ice, glaciers and ice sheets. Since the 1990s the cryosphere and its components have often been considered as indicators of global warming because rising temperatures can enhance the melting of solid water (e.g. Barry et al 1993, Goodison and Walker 1993, Armstrong and Brun 2008). Changes in the cryosphere are often easier to recognize than a global temperature rise of a couple of degrees: many locals and tourists have hands-on experience in changes in the extent of glaciers or the duration of winter snow cover on the Eurasian and North American continents. On a more scientific basis, the last IPCC report left no doubt: the amount of snow and ice on Earth is decreasing (Lemke et al 2007). Available data showed clearly decreasing trends in the sea ice and frozen ground extent of the Northern Hemisphere (NH) and the global glacier mass balance. However, the trend in the snow cover extent (SCE) of the NH was much more ambiguous; a result that has since been confirmed by the online available up-to-date analysis of the SCE performed by the Rutgers University Global Snow Lab (climate.rutgers.edu/snowcover/). The behavior of snow is not the result of a simple cause-and-effect relationship between air temperature and snow. It is instead related to a rather complex interplay between external meteorological parameters and internal processes in the snowpack. While air temperature is of course a crucial parameter for snow and its melting, precipitation and radiation are also important. Further physical properties like snow grain size and the amount of absorbing impurities in the snow determine the fraction of absorbed radiation. While all these parameters affect the energy budget of the snowpack, each of these variables can dominate depending on the season or, more generally, on environmental conditions. As a result, the reduction in SCE in spring and summer in the

  2. Responding to the threat of global warming: Options for the Pacific and Asia

    SciTech Connect

    Streets, D.G.; Siddiqi, T.A.

    1989-01-01

    In June 1989, Argonne National Laboratory and the Environment and Policy Institute of the East-West Center jointly sponsored a workshop that was held at the East-West Center in Honolulu, Hawaii. The primary goal of the workshop was to explore the options that the countries of the Pacific and Asia have for dealing with the threat of global warming. The countries of the Pacific and Asia must address a variety of issues related to global warming, ranging from determining the advisability of reducing greenhouse-gas emissions to assessing the vulnerability of various communities to the consequences of climate change only adds to the many other important health and socioeconomic problems they must face. The goal of this workshop was to bring together policy makers, scientists, and analysts who are concerned about the issue of climate change in this region so they could begin to develop information that will help decision makers formulate rational policy alternatives. Four principal areas of discussion were addressed in the workshop: the current state of knowledge about global climate change and its likely consequences; energy policy options for slowing the expected growth in emissions of greenhouse gases; mitigation measures to cope with the impacts (including impacts related to agriculture and sea-level rise), should they occur, and research needs to assist decision makers in the Pacific and Asia. This volume compiles the proceedings of the workshop. The invited and contributed papers included here are in the form in which they were submitted to the meeting. This volume contains 37 papers. Individual papers are indexed separately on the energy database.

  3. Future pattern of Asian drought under global warming scenario

    NASA Astrophysics Data System (ADS)

    Kim, Do-Woo; Byun, Hi-Ryong

    2009-09-01

    This study investigates the effect of global warming on drought patterns over Asia at the end of the twenty-first century by a multi-model ensemble method based on daily precipitation data of 15 coupled climate models simulations under SRES A1B scenario, thereby assessing the consistency of responses among different models. The projected precipitation climatology was translated into the change in drought climatology using the effective drought index. The results of the models were consistent in that they project an increase in the mean and the standard deviation of precipitation over most of Asia, and the increase was considerably greater in higher latitude areas. Therefore, it is expected that in future, drought over most of Asia will occur less frequently with weaker intensity and shorter duration than those prevalent currently. However, two special regions were detected. One was the Asian monsoon regions (AMRs: South Asia and East Asia), which showed a greater increase in the standard deviation of precipitation than the mean precipitation, with an amplified seasonal precipitation cycle. As a result, part of the AMRs exhibited slight increases in drought properties such as frequency and intensity. The other region was West Asia. The region showed decreased mean precipitation, especially in its northern part (Syria and its vicinity), and more frequent droughts were projected for this region with enhanced drought intensity and lengthened drought duration. The worsening trends in drought patterns over both regions were more significant in extreme drought, the likelihood of which is relatively higher in summer in West Asia and from spring to summer in the AMRs.

  4. Social Activism in Elementary Science Education: A science, technology, and society approach to teach global warming

    NASA Astrophysics Data System (ADS)

    Lester, Benjamin T.; Ma, Li; Lee, Okhee; Lambert, Julie

    2006-03-01

    As part of a large-scale instructional intervention research, this study examined elementary students’ science knowledge and awareness of social activism with regard to an increased greenhouse effect and global warming. The study involved fifth-grade students from five elementary schools of varying demographic makeup in a large urban school district in the United States. The study was based on the analysis of students’ responses to a writing prompt addressing an increased greenhouse effect and global warming at the beginning of and at the completion of instruction over the school year. The results indicate that students with adequate science knowledge tended to express activism more frequently, and that their expression of activism increased as they gained better science knowledge after the instruction. The results highlight the importance of effective instruction of this contemporary and controversial issue with K-12 students, so that they come to be aware of this societal problem, take action in solving the problem, and become socially responsible youth and adults.

  5. What is "good reasoning" about global warming? A comparison of high school students and specialists

    NASA Astrophysics Data System (ADS)

    Adams, Stephen Thomas

    This study compares the knowledge and reasoning about global warming of 10 twelfth grade students and 6 specialists, including scientists and policy analysts. The study uses global warming as a context for addressing the broad objective of formulating goals for scientific literacy. Subjects evaluated a set of articles about global warming and evaluated policies proposed to ameliorate global warming, including a gasoline tax and a "feebate" system of fees and rebates on automobiles. All students and one scientist participated in a full treatment involving interviews and activities with a computer program (discussed below), averaging about 3.75 hours. In addition, five specialists participated in interviews only, averaging one hour. One line of analysis focuses on knowledge content, examining how subjects applied perspectives from both natural and social sciences. This analysis is positioned as an empirical component to the movement to develop content standards for science education, as exemplified by the recommendations of Science for All Americans (SFAA). Some aspects of competent performance in the present study hinged upon knowledge and skills advocated by SFAA (e.g., fluency with themes of science such as scale). Other aspects involved such skills as evaluating economic interests behind a scientific argument in the media or considering hidden costs in a policy area. By characterizing a range of approaches to how students and specialists performed the experimental tasks, the present study affords a view of scientific literacy not possible without this type of information. Another line of analysis investigates a measure of coherent argumentation from a computer program, Convince Me, in relation to policy reasoning. The program is based on a connectionist model, ECHO. Subjects used the program to create arguments about the aforementioned policies. The study compares Convince Me's Model's Fit argumentation measure to other measures, including ratings of 6 human

  6. The Muted Precipitation Increase in Global Warming Simulations: A Surface Evaporation Perspective

    NASA Astrophysics Data System (ADS)

    Richter, I.; Xie, S.; Ma, J.

    2008-12-01

    Both observations and climate simulations suggest an increase of atmospheric moisture content by 7% per degree surface warming. The simulated precipitation, on the other hand, increases at a much slower rate. This muted response of the hydrological cycle to increased greenhouse gas forcing is investigated from a surface evaporation perspective, using simulations participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) under the A1B forcing scenario. A 90-year analysis of surface evaporation based on a standard bulk formula reveals that the following atmospheric changes act to slow down the increase in surface evaporation over ice free oceans: surface relative humidity increases by 1.0%, surface stability, as measured by air-sea temperature difference, increases by 0.2 K, and surface wind speed decreases by 0.02 m/s. As a result of these changes, surface evaporation increases by only 2% per Kelvin of surface warming rather than 7%/K. Particularly the increased surface stability and relative humidity are very robust among models. The potential impact of relative humidity trends on the surface energy budget and temperature is addressed in a set of sensitivity tests with the NCAR Community Atmosphere Model (CAM3) coupled to a slab ocean model. In these CO2 doubling experiments surface relative humidity is prescribed either from present day or CO2 doubling climatology. The results indicate that the increase in surface relative humidity, through inhibiting latent heat flux, contributes approximately 20% of the total warming under CO2 doubling. Our findings underscore the importance of the air-sea interface in the global warming problem and call for observational efforts to detect and monitor changes in surface relative humidity and stability over the World Ocean.

  7. Global warming and prairie wetlands: potential consequences for waterfowl habitat

    USGS Publications Warehouse

    Poiani, Karen A.; Johnson, W. Carter

    1991-01-01

    precipitation and runoff from melting snow on frozen or saturated soils (Figure 2). Annual water levels fluctuate widely due to climate variability in the Great Plains (Borchert 1950, Kantrud et al. 1989b). Climate affects the quality of habitat for breeding waterfowl by controlling regional water conditions--water depth, areal extent, and length of wet/dry cycles (Cowardin et al. 1988)--and vegetation patterns such as the cover ration (the ratio of emergent plant cover to open water). With increased levels of atmospheric carbon dioxide, climate models project warmer and, in some cases, drier conditions for the northern Great Plains (Karl et al. 1991, Manabe and Wetherald 1986, Mitchell 1983, Rind and Lebedeff 1984). In general, a warmer, drier climate could lower waterfowl production directly by increasing the frequency of dry basins and indirectly by producing less favorable cover rations (i.e., heavy emergent cover with few or no open-water areas). The possibility of diminished waterfowl production in a greenhouse climate comes at a time when waterfowl numbers have sharply declined for other reasons (Johnson and Shaffer 1987). Breeding habitat continues to be lost or altered by agriculture, grazing, burning, mowing, sedimentation, and drainage (Kantrud et al. 1989b). For example, it has been estimated that 60% of the wetland area in North Dakota has been drained (Tiner 1984). Pesticides entering wetlands from adjacent agricultural fields have been destructive to aquatic invertebrate populations and have significantly lowered duckling survival (Grue et al. 1988). In this article, we discuss current understanding and projections of global warming; review wetland vegetation dynamics to establish the strong relationship among climate, wetland hydrology, vegetation patterns, and waterflow habitat; discuss the potential effects of a greenhouse warming on these relationships; and illustrate the potential effects of climate change on wetland habitat by using a simulation model. The

  8. 1998 ICA Presidential Address: Communication Structures and Processes in Globalization.

    ERIC Educational Resources Information Center

    Monge, Peter

    1998-01-01

    Asserts that space-time compression, global consciousness through reflexivity, and disembedding mechanisms that restructure human relations constitute the major dynamics of globalization that have been theorized to date. States that globalism provides an important opportunity to expand academic relevance to issues that are central to the entire…

  9. Optimal Detection of Global Warming using Temperature Profiles

    NASA Technical Reports Server (NTRS)

    Leroy, Stephen S.

    1997-01-01

    Optimal fingerprinting is applied to estimate the amount of time it would take to detect warming by increased concentrations of carbon dioxide in monthly averages of temperature profiles over the Indian Ocean.

  10. Germination Shifts of C3 and C4 Species under Simulated Global Warming Scenario

    PubMed Central

    Zhang, Hongxiang; Yu, Qiang; Huang, Yingxin; Zheng, Wei; Tian, Yu; Song, Yantao; Li, Guangdi; Zhou, Daowei

    2014-01-01

    Research efforts around the world have been increasingly devoted to investigating changes in C3 and C4 species' abundance or distribution with global warming, as they provide important insight into carbon fluxes and linked biogeochemical cycles. However, changes in the early life stage (e.g. germination) of C3 and C4 species in response to global warming, particularly with respect to asymmetric warming, have received less attention. We investigated germination percentage and rate of C3 and C4 species under asymmetric (+3/+6°C at day/night) and symmetric warming (+5/+5°C at day/night), simulated by alternating temperatures. A thermal time model was used to calculate germination base temperature and thermal time constant. Two additional alternating temperature regimes were used to test temperature metrics effect. The germination percentage and rate increased continuously for C4 species, but increased and then decreased with temperature for C3 species under both symmetric and asymmetric warming. Compared to asymmetric warming, symmetric warming significantly overestimated the speed of germination percentage change with temperature for C4 species. Among the temperature metrics (minimum, maximum, diurnal temperature range and average temperature), maximum temperature was most correlated with germination of C4 species. Our results indicate that global warming may favour germination of C4 species, at least for the C4 species studied in this work. The divergent effects of asymmetric and symmetric warming on plant germination also deserve more attention in future studies. PMID:25137138

  11. Germination shifts of C3 and C4 species under simulated global warming scenario.

    PubMed

    Zhang, Hongxiang; Yu, Qiang; Huang, Yingxin; Zheng, Wei; Tian, Yu; Song, Yantao; Li, Guangdi; Zhou, Daowei

    2014-01-01

    Research efforts around the world have been increasingly devoted to investigating changes in C3 and C4 species' abundance or distribution with global warming, as they provide important insight into carbon fluxes and linked biogeochemical cycles. However, changes in the early life stage (e.g. germination) of C3 and C4 species in response to global warming, particularly with respect to asymmetric warming, have received less attention. We investigated germination percentage and rate of C3 and C4 species under asymmetric (+3/+6°C at day/night) and symmetric warming (+5/+5°C at day/night), simulated by alternating temperatures. A thermal time model was used to calculate germination base temperature and thermal time constant. Two additional alternating temperature regimes were used to test temperature metrics effect. The germination percentage and rate increased continuously for C4 species, but increased and then decreased with temperature for C3 species under both symmetric and asymmetric warming. Compared to asymmetric warming, symmetric warming significantly overestimated the speed of germination percentage change with temperature for C4 species. Among the temperature metrics (minimum, maximum, diurnal temperature range and average temperature), maximum temperature was most correlated with germination of C4 species. Our results indicate that global warming may favour germination of C4 species, at least for the C4 species studied in this work. The divergent effects of asymmetric and symmetric warming on plant germination also deserve more attention in future studies.

  12. Response of Vegetation in Northern China to Global Warming

    NASA Astrophysics Data System (ADS)

    Cui, H.; Huang, R.

    2009-05-01

    (Sophora japonica), tree of heaven (Ailanthus altissima), yellow locust (Robinia pseudoacacia), staghorn sumac (Rhus typhina), and gingko (Ginkgo biloba) have also been pushing northward to Huhhot, (41 degree N)Chifeng (42 degree N) and Tongliao (43 degree N), Inner Mongolia Autonomous Region. Alpine timberline has also been moved to higher altitude in Wutai Mt., Shanxi Province and Changbaishan Mt., Jilin Province. Although global warming seems to benefit agriculture in some cases, considering the decrease of wetness, the perspective is still uncertain. Drought and frost hazard are stress factors for the vegetation introduced to the northern areas. Chinese scholars are carefully watching the trend.

  13. Global Workforce Development - Addressing the Changing Geography of Investment

    NASA Astrophysics Data System (ADS)

    McElvy, G. W.; Loudin, M. G.

    2005-12-01

    The Geography of professional workforce hiring is changing significantly and rapidly in the petroleum industry, mostly in response to shifting investment patterns. These geographical changes pose daunting challenges as well as new opportunities for philanthropic institutions such as the ExxonMobil Foundation, and especially for academia. Our Angolan affiliate illustrates the challenges brought about by investment in new areas. Although we will continue to require access to numerous Angolan Geoscience graduates who can fully participate in our global Geoscience community, there is only one Angolan institution that grants a relatively small number of Geoscience degrees. Our access to other locally-educated Angolan professional graduates is similarly limited. The Petroleum sector's response to this situation has been to seek indigenous students who are already enrolled, often in North American or European academic institutions, or to sponsor Angolan students there. If one multiplies our Angolan Geoscience example by the number of competing employers in Angola, and then by the number of countries around the world that are experiencing strong economic growth, the magnitude of the unfilled demand for international educational development seems daunting. However, several academic institutions have already taken the initiative and have provided educational, linguistic, and cultural pathways that encourage Angolans and others to obtain a world-class educational preparation on their respective campuses. This strategy has indeed begun to address the need for capacity-building for many indigenous students, and has aided various industries in their efforts to build indigenous workforces. Nevertheless, growing the capacity of indigenous academic infrastructure is also essential for the long term, and only a few academic institutions have begun to explore this educational frontier. Increased engagement and collaboration in international educational activities would clearly confer

  14. Research Spotlight: Limiting global warming may not limit heat wave risk

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    Recent policy discussions on climate change have focused on limiting global average temperature increases. For instance, the European Union has set a goal of limiting global warming to 2°C. However, this goal represents a global average; regional and local temperature changes may vary, and substantial increases in regional extreme heat events could occur, possibly with serious consequences for some communities.

  15. Global Warming and Ozone Layer Depletion: STS Issues for Social Studies Classrooms.

    ERIC Educational Resources Information Center

    Rye, James A.; Strong, Donna D.; Rubba, Peter A.

    2001-01-01

    Explores the inclusion of science-technology-society (STS) education in social studies. Provides background information on global warming and the depletion of the ozone layer. Focuses on reasons for teaching global climate change in the social studies classroom and includes teaching suggestions. Offers a list of Web sites about global climate…

  16. American exceptionalism? Similarities and differences in national attitudes toward energy policy and global warming

    SciTech Connect

    D.M. Reiner; T.E. Curry; M.A. de Figueiredo; H.J. Herzog; S.D. Ansolabehere; K. Itaoka; F. Johnsson; M. Odenberger

    2006-04-01

    Despite sharp differences in government policy, the views of the U.S. public on energy and global warming are remarkably similar to those in Sweden, Britain, and Japan. Americans do exhibit some differences, placing lower priority on the environment and global warming, and with fewer believing that 'global warming has been established as a serious problem and immediate action is necessary'. There also remains a small hard core of skeptics (<10%) who do not believe in the science of climate change and the need for action, a group that is much smaller in the other countries surveyed. The similarities are, however, pervasive. Similar preferences are manifest across a wide range of technology and fuel choices, in support of renewables, in research priorities, in a basic understanding of which technologies produce or reduce carbon dioxide (or misunderstandings in the case of nuclear power), and in willingness to pay for solving global warming. 29 refs., 3 figs., 2 tabs.

  17. American exceptionalism? Similarities and differences in national attitudes toward energy policy and global warming.

    PubMed

    Reiner, D M; Curry, T E; De Figueiredo, M A; Herzog, H J; Ansolabehere, S D; Itaoka, K; Johnsson, F; Odenberger, M

    2006-04-01

    Despite sharp differences in government policy, the views of the U.S. public on energy and global warming are remarkably similar to those in Sweden, Britain, and Japan. Americans do exhibit some differences, placing lower priority on the environment and global warming, and with fewer believing that "global warming has been established as a serious problem and immediate action is necessary". There also remains a small hard core of skeptics (< 10%) who do not believe in the science of climate change and the need for action, a group that is much smaller in the other countries surveyed. The similarities are, however, pervasive. Similar preferences are manifest across a wide range of technology and fuel choices, in support of renewables, in research priorities, in a basic understanding of which technologies produce or reduce carbon dioxide (or misunderstandings in the case of nuclear power), and in willingness to pay for solving global warming.

  18. How the public engages with global warming: A social representations approach.

    PubMed

    Smith, Nicholas; Joffe, Helene

    2013-01-01

    The present study utilises social representations theory to explore common sense conceptualisations of global warming risk using an in-depth, qualitative methodology. Fifty-six members of a British, London-based 2008 public were initially asked to draw or write four spontaneous "first thoughts or feelings" about global warming. These were then explored via an open-ended, exploratory interview. The analysis revealed that first thoughts, either drawn or written, often mirrored the images used by the British press to depict global warming visually. Thus in terms of media framings, it was their visual rather than their textual content that was spontaneously available for their audiences. Furthermore, an in-depth exploration of interview data revealed that global warming was structured around three themata: self/other, natural/unnatural and certainty/uncertainty, reflecting the complex and often contradictory nature of common sense thinking in relation to risk issues.

  19. The rise of global warming skepticism: exploring affective image associations in the United States over time.

    PubMed

    Smith, Nicholas; Leiserowitz, Anthony

    2012-06-01

    This article explores how affective image associations to global warming have changed over time. Four nationally representative surveys of the American public were conducted between 2002 and 2010 to assess public global warming risk perceptions, policy preferences, and behavior. Affective images (positive or negative feelings and cognitive representations) were collected and content analyzed. The results demonstrate a large increase in "naysayer" associations, indicating extreme skepticism about the issue of climate change. Multiple regression analyses found that holistic affect and "naysayer" associations were more significant predictors of global warming risk perceptions than cultural worldviews or sociodemographic variables, including political party and ideology. The results demonstrate the important role affective imagery plays in judgment and decision-making processes, how these variables change over time, and how global warming is currently perceived by the American public.

  20. Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts.

    PubMed

    Aptroot, A; van Herk, C M

    2007-03-01

    Increasing evidence suggests that lichens are responding to climate change in Western Europe. More epiphytic species appear to be increasing, rather than declining, as a result of global warming. Many terricolous species, in contrast, are declining. Changes to epiphytic floras are markedly more rapid in formerly heavily polluted, generally built-up or open rural areas, as compared to forested regions. Both the distribution (southern) and ecology (warmth-loving) of the newly established or increasing species seem to be determined by global warming. Epiphytic temperate to boreo-montane species appear to be relatively unaffected. Vacant niches caused by other environmental changes are showing the most pronounced effects of global warming. Species most rapidly increasing in forests, although taxonomically unrelated, all contain Trentepohlia as phycobiont in addition to having a southern distribution. This suggests that in this habitat, Trentepohlia algae, rather than the different lichen symbioses, are affected by global warming.

  1. Increase of global monsoon area and precipitation under global warming: A robust signal?

    NASA Astrophysics Data System (ADS)

    Hsu, Pang-chi; Li, Tim; Luo, Jing-Jia; Murakami, Hiroyuki; Kitoh, Akio; Zhao, Ming

    2012-03-01

    Monsoons, the most energetic tropical climate system, exert a great social and economic impact upon billions of people around the world. The global monsoon precipitation had an increasing trend over the past three decades. Whether or not this increasing trend will continue in the 21st century is investigated, based on simulations of three high-resolution atmospheric general circulation models that were forced by different future sea surface temperature (SST) warming patterns. The results show that the global monsoon area, precipitation and intensity all increase consistently among the model projections. This indicates that the strengthened global monsoon is a robust signal across the models and SST patterns explored here. The increase of the global monsoon precipitation is attributed to the increases of moisture convergence and surface evaporation. The former is caused by the increase of atmospheric water vapor and the latter is due to the increase of SST. The effect of the moisture and evaporation increase is offset to a certain extent by the weakening of the monsoon circulation.

  2. Using Just in Time Teaching in a Global Climate Change Course to Address Misconceptions

    NASA Astrophysics Data System (ADS)

    Schuenemann, K. C.

    2013-12-01

    Just in Time Teaching (JiTT) is employed in an introductory Global Climate Change college course with the intention of addressing common misconceptions and climate myths. Students enter the course with a variety of prior knowledge and opinions on global warming, and JiTT can be used as a constructivist pedagogical approach to make use of this prior knowledge. Students are asked to watch a short video or do a reading, sometimes screen capture videos created by the professor as review of material from the previous class, a video available on the web from NASA or NOAA, for example, or a reading from an online article or their textbook. After the video or reading, students answer a question carefully designed to pry at a common misconception, or simply are asked for the 'muddiest point' that remains on the concept. This assignment is done the night before class using a web program. The program aggregates the answers in an organized way so the professor can use the answers to design the day's lesson to address common misconceptions or concerns students displayed in their answers, as well as quickly assign participation credit to students who completed the assignment. On the other hand, if students display that they have already mastered the material, the professor can confidently move on to the next concept. The JiTT pedagogical method personalizes each lecture period to the students in that particular class for maximum efficiency while catching and fixing misconceptions in a timely manner. This technique requires students to spend time with the material outside of class, acts as review of important concepts, and increases engagement in class due to the personalization of the course. Evaluation results from use of this technique will be presented. Examples of successful JiTT videos, questions, student answers, and techniques for addressing misconceptions during lecture will also be presented with the intention that instructors can easily apply this technique to their

  3. Modeling the impact of global warming on vector-borne infections.

    PubMed

    Massad, Eduardo; Coutinho, Francisco Antonio Bezerra; Lopez, Luis Fernandez; da Silva, Daniel Rodrigues

    2011-06-01

    Global warming will certainly affect the abundance and distribution of disease vectors. The effect of global warming, however, depends on the complex interaction between the human host population and the causative infectious agent. In this work we review some mathematical models that were proposed to study the impact of the increase in ambient temperature on the spread and gravity of some insect-transmitted diseases.

  4. Potential impacts of global warming on the diversity and distribution of stream insects in South Korea.

    PubMed

    Li, Fengqing; Kwon, Yong-Su; Bae, Mi-Jung; Chung, Namil; Kwon, Tae-Sung; Park, Young-Seuk

    2014-04-01

    Globally, the East Asian monsoon region is one of the richest environments in terms of biodiversity. The region is undergoing rapid human development, yet its river ecosystems have not been well studied. Global warming represents a major challenge to the survival of species in this region and makes it necessary to assess and reduce the potential consequences of warming on species of conservation concern. We projected the effects of global warming on stream insect (Ephemeroptera, Odonata, Plecoptera, and Trichoptera [EOPT]) diversity and predicted the changes of geographical ranges for 121 species throughout South Korea. Plecoptera was the most sensitive (decrease of 71.4% in number of species from the 2000s through the 2080s) order, whereas Odonata benefited (increase of 66.7% in number of species from the 2000s through the 2080s) from the effects of global warming. The impact of global warming on stream insects was predicted to be minimal prior to the 2060s; however, by the 2080s, species extirpation of up to 20% in the highland areas and 2% in the lowland areas were predicted. The projected responses of stream insects under global warming indicated that species occupying specific habitats could undergo major reductions in habitat. Nevertheless, habitat of 33% of EOPT (including two-thirds of Odonata and one-third of Ephemeroptera, Plecoptera, and Trichoptera) was predicted to increase due to global warming. The community compositions predicted by generalized additive models varied over this century, and a large difference in community structure in the highland areas was predicted between the 2000s and the 2080s. However, stream insect communities, especially Odonata, Plecoptera, and Trichoptera, were predicted to become more homogenous under global warming.

  5. The coastal ocean response to the global warming acceleration and hiatus

    NASA Astrophysics Data System (ADS)

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-11-01

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes.

  6. The coastal ocean response to the global warming acceleration and hiatus

    PubMed Central

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-01-01

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes. PMID:26568024

  7. The coastal ocean response to the global warming acceleration and hiatus.

    PubMed

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-11-16

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes.

  8. Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot

    PubMed Central

    Nam, So; Samejima, Hiromitsu; Watanabe, Katsutoshi; Grudpan, Chaiwut; Grudpan, Jarungjit; Magtoon, Wichan; Musikasinthorn, Prachya; Nguyen, Phuong Thanh; Praxaysonbath, Bounthob; Sato, Tomoyuki; Shimatani, Yukihiro; Suvarnaraksha, Apinun; Tanaka, Wataru; Thach, Phanara; Tran, Dac Dinh; Yamashita, Tomomi

    2016-01-01

    Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world’s largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10–20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased—particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately

  9. Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot.

    PubMed

    Kano, Yuichi; Dudgeon, David; Nam, So; Samejima, Hiromitsu; Watanabe, Katsutoshi; Grudpan, Chaiwut; Grudpan, Jarungjit; Magtoon, Wichan; Musikasinthorn, Prachya; Nguyen, Phuong Thanh; Praxaysonbath, Bounthob; Sato, Tomoyuki; Shibukawa, Koichi; Shimatani, Yukihiro; Suvarnaraksha, Apinun; Tanaka, Wataru; Thach, Phanara; Tran, Dac Dinh; Yamashita, Tomomi; Utsugi, Kenzo

    2016-01-01

    Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world's largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10-20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased-particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately pressing for

  10. A new dataset for systematic assessments of climate change impacts as a function of global warming

    NASA Astrophysics Data System (ADS)

    Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; M{ü}ller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.

    2012-11-01

    In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a~narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalized patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilize a simplified relationships betweenΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  11. Pupils teach to pupils about genetics or global warming

    NASA Astrophysics Data System (ADS)

    Cuny, Delphine

    2013-04-01

    program that made me situated? Virtual experiments on the first cell of rats (core transfers) Conclusion: The program that made that a rat is itself is situated in the core of its first cell. It is called a genetic program. Second experiment of this type of project is realized with a class of 16-17 year old pupils, on global warming for 8 to 11 year old pupils from the neighbor school. The older pupils use a teaching set created by "la main à la pâte" foundation, the set is called "le climat, ma planète et moi" (the climate, my planet and me, http://www.fondation-lamap.org/fr/climat). This project is to take place in March 2013.

  12. The roles of external forcing and natural variability in global warming hiatuses

    NASA Astrophysics Data System (ADS)

    Zhang, Lei

    2016-11-01

    Global mean surface temperature (GMST) rising has slowed down since late 1990s, which is referred to as the global warming hiatus. There was another global warming hiatus event during 1940s-1960s. The roles of the external forcing and the natural variability in both global warming hiatuses are explored, using EOF analysis. The first two leading EOF modes of the 5-year running mean global sea surface temperature (SST) reflect the global warming scenario (EOF1) and the interdecadal Pacific oscillation (IPO)-like natural variability (EOF2), respectively. In observation, PC2 was in its positive phase (eastern Pacific cooling) during 1940s-1960s, which contributed to the previous warming hiatus. In addition, GMST trends are found to be negative during late 1950s and 1960s in most of the CMIP5 historical runs, which implies that the external forcing also contributed to the pause in the GMST rising. It is further demonstrated that it is the natural radiative forcing (volcanic forcing) that caused the drop-down of GMST in 1960s. The current global warming hiatus has been attributed to the eastern Pacific cooling/enhanced Pacific trade winds. It is shown that the PC2 switched to its positive phase in late 1990s, and hence the IPO-like natural variability made a contribution to the slowdown of GMST rising in the past decade. It is also found that the EOF1 mode (global warming mode) of the observed SST features a smaller warming in tropical Pacific compared to the Indian Ocean and the tropical Atlantic. Such inter-basin warming contrast, which is attributed to the "ocean thermostat" mechanism, has been suggested to contribute to the intensification of Pacific trade winds since late 1990s as well. Global warming hiatuses are also found in the future projections from CMIP5 models, and the spatial pattern of the SST trends during the warming-hiatus periods exhibits an IPO-like pattern, which resembles the observed SST trends since late 1990s.

  13. Impact of global warming on the Antarctic mass balance and global sea level

    SciTech Connect

    Budd, W.F.; Simmonds, I.

    1992-03-01

    The onset of global warming from increasing greenhouse gases in the atmosphere can have a number of important different impacts on the Antarctic ice sheet. These include increasing basal melt of ice shelves, faster flow of the grounded ice, increased surface ablation in coastal regions, and increased precipitation over the interior. An analysis of these separate terms by ice sheet modeling indicates that the impact of increasing ice sheet flow rates on sea level does not become a dominant factor until 100--200 years after the realization of the warming. For the time period of the next 100 years the most important impact on sea level from the Antarctic mass balance can be expected to result from increasing precipitation minus evaporation balance over the grounded ice. The present Antarctic net accumulation and coastal ice flux each amount to about 2000 km3 yr-1, both of which on their own would equate to approximately 6 mm yr-1 of sea level change. The present rate of sea level rise of about 1.2 mm yr-1 is therefore equivalent to about 20% imbalance in the Antarctic mass fluxes. The magnitude of the changes to the Antarctic precipitation and evaporation have been studied by a series of General Circulation Model experiments, using a model which gives a reasonable simulation of the present Antarctic climate, including precipitation and evaporation.

  14. Regional to global changes in drought and implications for future changes under global warming

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Wood, E. F.; Kam, J.

    2012-12-01

    Drought can have large impacts on multiple sectors, including agriculture, water resources, ecosystems, transport, industry and tourism. In extreme cases, regional drought can lead to food insecurity and famine, and in intensive agricultural regions, extend to global economic impacts in a connected world. Recent droughts globally have been severe and costly but whether they are becoming more frequent and severe, and the attribution of this, is a key question. Observational evidence at large scales, such as satellite remote sensing are often subject to short-term records and inhomogeneities, and ground based data are sparse in many regions. Reliance on model output is also subject to error and simplifications in the model physics that can, for example, amplify the impact of global warming on drought. This presentation will show the observational and model evidence for changes in drought, with a focus on the interplay between precipitation and atmospheric evaporative demand and its impact on the terrestrial water cycle and drought. We discuss the fidelity of climate models to reproduce our best estimates of drought variability and its drivers historically, and the implications of this on uncertainties in future projections of drought from CMIP5 models, and how this has changed since CMIP3.

  15. Global warming and hepatotoxin production by cyanobacteria: what can we learn from experiments?

    PubMed

    El-Shehawy, Rehab; Gorokhova, Elena; Fernández-Piñas, Francisca; del Campo, Francisca F

    2012-04-01

    Global temperature is expected to rise throughout this century, and blooms of cyanobacteria in lakes and estuaries are predicted to increase with the current level of global warming. The potential environmental, economic and sanitation repercussions of these blooms have attracted considerable attention among the world's scientific communities, water management agencies and general public. Of particular concern is the worldwide occurrence of hepatotoxic cyanobacteria posing a serious threat to global public health. Here, we highlight plausible effects of global warming on physiological and molecular changes in these cyanobacteria and resulting effects on hepatotoxin production. We also emphasize the importance of understanding the natural biological function(s) of hepatotoxins, various mechanisms governing their synthesis, and climate-driven changes in food-web interactions, if we are to predict consequences of the current and projected levels of global warming for production and accumulation of hepatotoxins in aquatic ecosystems.

  16. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    PubMed

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected.

  17. Global and regional surface cooling in a warming climate: a multi-model analysis

    NASA Astrophysics Data System (ADS)

    Medhaug, Iselin; Drange, Helge

    2016-06-01

    Instrumental temperature records show that the global climate may experience decadal-scale periods without warming despite a long-term warming trend. We analysed 17 global climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5), identifying the likelihood and duration of periods without warming in the four Representative Concentration Pathway (RCP) scenarios RCP2.6, RCP4.5, RCP6.0 and RCP8.5, together with the preindustrial control and historical simulations. We find that non-warming periods may last 10, 15 and 30 years for RCP8.5, RCP6.0 and RCP4.5, respectively. In the models, anomalous ocean heat uptake and storage are the main factors explaining the decadal-scale surface temperature hiatus periods. The low-latitude East Pacific Ocean is a key region for these variations, acting in tandem with basin-scale anomalies in the sea level pressure. During anomalously cold decades, roughly 35-50 % of the heat anomalies in the upper 700 m of the ocean are located in the Pacific Ocean, and 25 % in the Atlantic Ocean. Decadal-scale ocean heat anomalies, integrated over the upper 700 m, have a magnitude of about 7.5 × 1021 J. This is comparable to the ocean heat uptake needed to maintain a 10 year period without increasing surface temperature under global warming. On sub-decadal time scales the Atlantic, Pacific and Southern Oceans all have the ability to store large amounts of heat, contributing to variations in global surface temperature. The likelihood of decadal-scale non-warming periods decrease with global warming, firstly at the low latitude region stretching eastward from the tropical Atlantic towards the western Pacific. The North Atlantic and Southern Oceans have largest likelihood of non-warming decades in a warming world.

  18. Global Farm Animal Production and Global Warming: Impacting and Mitigating Climate Change

    PubMed Central

    Koneswaran, Gowri; Nierenberg, Danielle

    2008-01-01

    Background The farm animal sector is the single largest anthropogenic user of land, contributing to many environmental problems, including global warming and climate change. Objectives The aim of this study was to synthesize and expand upon existing data on the contribution of farm animal production to climate change. Methods We analyzed the scientific literature on farm animal production and documented greenhouse gas (GHG) emissions, as well as various mitigation strategies. Discussions An analysis of meat, egg, and milk production encompasses not only the direct rearing and slaughtering of animals, but also grain and fertilizer production for animal feed, waste storage and disposal, water use, and energy expenditures on farms and in transporting feed and finished animal products, among other key impacts of the production process as a whole. Conclusions Immediate and far-reaching changes in current animal agriculture practices and consumption patterns are both critical and timely if GHGs from the farm animal sector are to be mitigated. PMID:18470284

  19. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2016-04-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  20. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  1. Century-long trend of global ocean warming identified

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-01-01

    One of the largest sources of uncertainty in reconstructing the warming of the past century stems from problems with historical ocean temperature records. Inconsistencies in method or technology or gaps in observation caused by two world wars mean that long-term records of sea temperature need to be interpreted with care. Drawing on two historical sets of ocean temperature observations—one of the sea surface and the other of the upper 20 meters—Gouretski et al. found that the twentieth century saw a long-term trend of ocean warming. The two data sets were mostly collected independently, using different tools and techniques, and were subjected to different processing. The authors suggest that, owing to the distinct ways in which the data were gathered, the presence of a similar trend could mean that it is not a spurious finding.

  2. Global warming mitigation by sulphur loading in the stratosphere: dependence of required emissions on allowable residual warming rate

    NASA Astrophysics Data System (ADS)

    Eliseev, Alexey V.; Chernokulsky, Alexandr V.; Karpenko, Andrey A.; Mokhov, Igor I.

    2010-07-01

    An approach to mitigate global warming via sulphur loading in the stratosphere (geoengineering) is studied, employing a large ensemble of numerical experiments with the climate model of intermediate complexity IAP RAS CM. The model is forced by the historical+SRES A1B anthropogenic greenhouse gases+tropospheric sulphates scenario for 1860-2100 with additional sulphur emissions in the stratosphere in the twenty-first century. Different ensemble members are constructed by varying values of the parameters governing mass, horizontal distribution and radiative forcing of the stratospheric sulphates. It is obtained that, given a global loading of the sulphates in the stratosphere, among those studied in this paper latitudinal distributions of geoengineering aerosols, the most efficient one at the global basis is that peaked between 50° N and 70° N and with a somewhat smaller burden in the tropics. Uniform latitudinal distribution of stratospheric sulphates is a little less efficient. Sulphur emissions in the stratosphere required to stop the global temperature at the level corresponding to the mean value for 2000-2010 amount to more than 10 TgS/year in the year 2100. These emissions may be reduced if some warming is allowed to occur in the twenty-first century. For instance, if the global temperature trend S g in every decade of this century is limited not to exceed 0.10 K/decade (0.15 K/decade), geoengineering emissions of 4-14 TgS/year (2-7 TgS/year) would be sufficient. Even if the global warming is stopped, temperature changes in different regions still occur with a magnitude up to 1 K. Their horizontal pattern depends on implied latitudinal distribution of stratospheric sulphates. In addition, for the stabilised global mean surface air temperature, global precipitation decreases by about 10%. If geoengineering emissions are stopped after several decades of implementation, their climatic effect is removed within a few decades. In this period, surface air

  3. Evolution determines how global warming and pesticide exposure will shape predator-prey interactions with vector mosquitoes.

    PubMed

    Tran, Tam T; Janssens, Lizanne; Dinh, Khuong V; Op de Beeck, Lin; Stoks, Robby

    2016-07-01

    How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators. Endosulfan imposed mortality and induced behavioral changes (including increased filtering and thrashing and a positional shift away from the bottom) in mosquito larvae. Although the pesticide was only lethal for the mosquitoes, it reduced predation rates by the low-latitude predators. This can be explained by the combination of the evolution of a faster life history and associated higher vulnerabilities to the pesticide (in terms of growth rate and lowered foraging activity) in the low-latitude predators and pesticide-induced survival selection in the mosquitoes. Our results suggest that predation rates on mosquitoes at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward.

  4. Addressing Global Mortality from Ambient PM2.5.

    PubMed

    Apte, Joshua S; Marshall, Julian D; Cohen, Aaron J; Brauer, Michael

    2015-07-07

    Ambient fine particulate matter (PM2.5) has a large and well-documented global burden of disease. Our analysis uses high-resolution (10 km, global-coverage) concentration data and cause-specific integrated exposure-response (IER) functions developed for the Global Burden of Disease 2010 to assess how regional and global improvements in ambient air quality could reduce attributable mortality from PM2.5. Overall, an aggressive global program of PM2.5 mitigation in line with WHO interim guidelines could avoid 750 000 (23%) of the 3.2 million deaths per year currently (ca. 2010) attributable to ambient PM2.5. Modest improvements in PM2.5 in relatively clean regions (North America, Europe) would result in surprisingly large avoided mortality, owing to demographic factors and the nonlinear concentration-response relationship that describes the risk of particulate matter in relation to several important causes of death. In contrast, major improvements in air quality would be required to substantially reduce mortality from PM2.5 in more polluted regions, such as China and India. Moreover, forecasted demographic and epidemiological transitions in India and China imply that to keep PM2.5-attributable mortality rates (deaths per 100 000 people per year) constant, average PM2.5 levels would need to decline by ∼20-30% over the next 15 years merely to offset increases in PM2.5-attributable mortality from aging populations. An effective program to deliver clean air to the world's most polluted regions could avoid several hundred thousand premature deaths each year.

  5. Adapting global influenza management strategies to address emerging viruses.

    PubMed

    Noah, Diana L; Noah, James W

    2013-07-15

    Death by respiratory complications from influenza infections continues to be a major global health concern. Antiviral drugs are widely available for therapy and prophylaxis, but viral mutations have resulted in resistance that threatens to reduce the long-term utility of approved antivirals. Vaccination is the best method for controlling influenza, but vaccine strategies are blunted by virus antigenic drift and shift. Genetic shift in particular has led to four pandemics in the last century, which have prompted the development of efficient global surveillance and vaccination programs. Although the influenza pandemic of 2009 emphasized the need for the rapid standardization of global surveillance methods and the preparation and dissemination of global assay standards for improved reporting and diagnostic tools, outbreaks of novel influenza strains continue to occur, and current efforts must be enhanced by aggressive public education programs to promote increased vaccination rates in the global population. Recently, a novel H7N9 avian influenza virus with potential to become a pandemic strain emerged in China and was transmitted from animals to humans with a demonstrated >20% mortality rate. Sporadic outbreaks of highly lethal avian virus strains have already increased public awareness and altered annual vaccine production strategies to prevent the natural adaption of this virus to human-to-human transmission. Additional strategies for combating influenza include advancement of new antivirals for unexploited viral or host cellular targets; novel adjuvants and alternate vaccine delivery systems; and development of universal protein, DNA, or multivalent vaccines designed to increase immune responsiveness and enhance public health response times.

  6. Projected changes in prevailing winds for transatlantic migratory birds under global warming.

    PubMed

    La Sorte, Frank A; Fink, Daniel

    2017-03-01

    A number of terrestrial bird species that breed in North America cross the Atlantic Ocean during autumn migration when travelling to their non-breeding grounds in the Caribbean or South America. When conducting oceanic crossings, migratory birds tend to associate with mild or supportive winds, whose speed and direction may change under global warming. The implications of these changes for transoceanic migratory bird populations have not been addressed. We used occurrence information from eBird (1950-2015) to estimate the geographical location of population centres at a daily temporal resolution across the annual cycle for 10 transatlantic migratory bird species. We used this information to estimate the location and timing of autumn migration within the transatlantic flyway. We estimated how prevailing winds are projected to change within the transatlantic flyway during this time using daily wind speed anomalies (1996-2005 and 2091-2100) from 29 Atmosphere-Ocean General Circulation Models implemented under CMIP5. Autumn transatlantic migrants have the potential to encounter strong westerly crosswinds early in their transatlantic journey at intermediate and especially high migration altitudes, strong headwinds at low and intermediate migration altitudes within the Caribbean that increase in strength as the season progresses, and weak tailwinds at intermediate and high migration altitudes east of the Caribbean. The CMIP5 simulations suggest that, during this century, the likelihood of autumn transatlantic migrants encountering strong westerly crosswinds will diminish. As global warming progresses, the need for species to compensate or drift under the influence of strong westerly crosswinds during the initial phase of their autumn transatlantic journey may be diminished. Existing strategies that promote headwind avoidance and tailwind assistance will likely remain valid. Thus, climate change may reduce time and energy requirements and the chance of mortality or

  7. Debate on global warming as a socio-scientific issue: science teaching towards political literacy

    NASA Astrophysics Data System (ADS)

    dos Santos, Wildson Luiz Pereira

    2014-09-01

    The focus of this response to the original article by Tom G. H. Bryce and Stephen P. Day (Cult Stud Sci Educ. doi: 10.1007/s11422-012-9407-1, 2013) is the use of empirical data to illustrate and expand the understanding of key points of their argument. Initially, I seek to discuss possible answers to the three questions posed by the authors related to: (1) the concerns to be addressed and the scientific knowledge to be taken into account in the climate change debate, (2) the attention to be paid to perspectives taken by "alarmists" and "deniers," and (3) the approaches to be used to conduct controversial global warming debate. In this discussion, I seek to contribute to the debate proposed by the original paper, illustrating various points commented on by the authors and expanding to other possibilities, which highlight the importance of political issues in the debate. Therefore, I argue that socio-political issues must be taken into account when I aim for a scientific literacy that can enhance students' political education. Likewise, I extend the debate presented in the original article, emphasizing the attention that should be paid to these aspects and approaching science education from a critical perspective. Highlighting only the confirmation bias without considering political implications of the debate can induce a reductionist and empiricist view of science, detached from the political power that acts on scientific activity. In conclusion, I support the idea that for a critical science education, the discussion of political issues should be involved in any controversial debate, a view, which goes beyond the confirmation bias proposed by Bryce and Day for the global warming debate. These issues are indeed vital and science teachers should take them into account when preparing their lessons for the debate on climate change.

  8. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming

    PubMed Central

    Lin, Yong; Franzke, Christian L. E.

    2015-01-01

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary. PMID:26259555

  9. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming.

    PubMed

    Lin, Yong; Franzke, Christian L E

    2015-08-11

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.

  10. Do mitigation strategies reduce global warming potential in the northern U.S. corn belt?

    PubMed

    Johnson, Jane M-F; Archer, David W; Weyers, Sharon L; Barbour, Nancy W

    2011-01-01

    Agricultural management practices that enhance C sequestration, reduce greenhouse gas emission (nitrous oxide [N₂O], methane [CH₄], and carbon dioxide [CO₂]), and promote productivity are needed to mitigate global warming without sacrificing food production. The objectives of the study were to compare productivity, greenhouse gas emission, and change in soil C over time and to assess whether global warming potential and global warming potential per unit biomass produced were reduced through combined mitigation strategies when implemented in the northern U.S. Corn Belt. The systems compared were (i) business as usual (BAU); (ii) maximum C sequestration (MAXC); and (iii) optimum greenhouse gas benefit (OGGB). Biomass production, greenhouse gas flux change in total and organic soil C, and global warming potential were compared among the three systems. Soil organic C accumulated only in the surface 0 to 5 cm. Three-year average emission of N₂O and CH was similar among all management systems. When integrated from planting to planting, N₂O emission was similar for MAXC and OGGB systems, although only MAXC was fertilized. Overall, the three systems had similar global warming potential based on 4-yr changes in soil organic C, but average rotation biomass was less in the OGGB systems. Global warming potential per dry crop yield was the least for the MAXC system and the most for OGGB system. This suggests management practices designed to reduce global warming potential can be achieved without a loss of productivity. For example, MAXC systems over time may provide sufficient soil C sequestration to offset associated greenhouse gas emission.

  11. Potential impacts of global warming on water resources in southern California.

    PubMed

    Beuhler, M

    2003-01-01

    Global warming will have a significant impact on water resources within the 20 to 90-year planning period of many water projects. Arid and semi-arid regions such as Southern California are especially vulnerable to anticipated negative impacts of global warming on water resources. Long-range water facility planning must consider global climate change in the recommended mix of new facilities needed to meet future water requirements. The generally accepted impacts of global warming include temperature, rising sea levels, more frequent and severe floods and droughts, and a shift from snowfall to rain. Precipitation changes are more difficult to predict. For Southern California, these impacts will be especially severe on surface water supplies. Additionally, rising sea levels will exacerbate salt-water intrusion into freshwater and impact the quality of surface water supplies. Integrated water resources planning is emerging as a tool to develop water supplies and demand management strategies that are less vulnerable to the impacts of global warming. These tools include water conservation, conjunctive use of surface and groundwater and desalination of brackish water and possibly seawater. Additionally, planning for future water needs should include explicit consideration of the potential range of global warming impacts through techniques such as scenario planning.

  12. Grazing Effects on Net Global Warming Potential in Mixed Grass Prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of global warming potential (GWP) for grassland ecosystems is critically important given their vast geographical extent and inherent capacity to affect the global carbon cycle. Contributions of grassland ecosystems to net GWP, however, are largely unknown. In this study, we sought t...

  13. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible un...

  14. Global Warming and the Neglected Greenhouse Gas: A Cross-National Study of the Social Causes of Methane Emissions Intensity, 1995

    ERIC Educational Resources Information Center

    Jorgenson, Andrew

    2006-01-01

    The human dimensions of greenhouse gas emissions and global warming attract considerable attention in macrosociology. However, cross-national analyses generally neglect greenhouse gases other than carbon dioxide. The current study addresses this paucity through the testing of theoretically derived models for the social structural causes of the…

  15. Origin of path independence between cumulative CO2 emissions and global warming

    NASA Astrophysics Data System (ADS)

    Seshadri, Ashwin K.

    2017-02-01

    Observations and GCMs exhibit approximate proportionality between cumulative carbon dioxide (CO2 ) emissions and global warming. Here we identify sufficient conditions for the relationship between cumulative CO2 emissions and global warming to be independent of the path of CO2 emissions; referred to as "path independence". Our starting point is a closed form expression for global warming in a two-box energy balance model (EBM), which depends explicitly on cumulative emissions, airborne fraction and time. Path independence requires that this function can be approximated as depending on cumulative emissions alone. We show that path independence arises from weak constraints, occurring if the timescale for changes in cumulative emissions (equal to ratio between cumulative emissions and emissions rate) is small compared to the timescale for changes in airborne fraction (which depends on CO2 uptake), and also small relative to a derived climate model parameter called the damping-timescale, which is related to the rate at which deep-ocean warming affects global warming. Effects of uncertainties in the climate model and carbon cycle are examined. Large deep-ocean heat capacity in the Earth system is not necessary for path independence, which appears resilient to climate modeling uncertainties. However long time-constants in the Earth system carbon cycle are essential, ensuring that airborne fraction changes slowly with timescale much longer than the timescale for changes in cumulative emissions. Therefore path independence between cumulative emissions and warming cannot arise for short-lived greenhouse gases.

  16. Impact of global warming on viral diseases: what is the evidence?

    PubMed

    Zell, Roland; Krumbholz, Andi; Wutzler, Peter

    2008-12-01

    Global warming is believed to induce a gradual climate change. Hence, it was predicted that tropical insects might expand their habitats thereby transmitting pathogens to humans. Although this concept is a conclusive presumption, clear evidence is still lacking--at least for viral diseases. Epidemiological data indicate that seasonality of many diseases is further influenced by strong single weather events, interannual climate phenomena, and anthropogenic factors. So far, emergence of new diseases was unlinked to global warming. Re-emergence and dispersion of diseases was correlated with translocation of pathogen-infected vectors or hosts. Coupled ocean/atmosphere circulations and 'global change' that also includes shifting of demographic, social, and economical conditions are important drivers of viral disease variability whereas global warming at best contributes.

  17. The stability of the thermohaline circulation in global warming experiments

    SciTech Connect

    Schmittner, A.; Stocker, T.F.

    1999-04-01

    A simplified climate model of the coupled ocean-atmosphere system is used to perform extensive sensitivity studies concerning possible future climate change induced by anthropogenic greenhouse gas emissions. Supplemented with an active atmospheric hydrological cycle, experiments with different rates of CO{sub 2} increase and different climate sensitivities are performed. The model exhibits a threshold value of atmospheric CO{sub 2} concentration beyond which the North Atlantic Deep Water formation stops and never recovers. For a climate sensitivity that leads to an equilibrium warming of 3.6 C for a doubling of CO{sub 2} and a rate of CO{sub 2} increase of 1% yr{sup {minus}1}, the threshold lies between 650 and 700 ppmv. Moreover, it is shown that the stability of the thermohaline circulation depends on the rate of increase of greenhouse gases. For a slower increase of atmospheric pCO{sub 2} the final amount that can be reached without a shutdown of the circulation is considerably higher. This rate-sensitive response is due to the uptake of heat and excess freshwater from the uppermost layers to the deep ocean. The increased equator-to-pole freshwater transport in a warmer atmosphere is mainly responsible for the cessation of deep water formation in the North Atlantic. Another consequence of the enhanced latent heat transport is a stronger warming at high latitudes. A model version with fixed water vapor transport exhibits uniform warming at all latitudes. The inclusion of a simple parameterization of the ice-albedo feedback increases the model sensitivity and further decreases the pole-to-equator temperature difference in a greenhouse climate. The possible range of CO{sub 2} threshold concentrations and its dependency on the rate of CO{sub 2} increase, on the climate sensitivity, and on other model parameters are discussed.

  18. Hypoxia, global warming, and terrestrial late Permian extinctions.

    PubMed

    Huey, Raymond B; Ward, Peter D

    2005-04-15

    A catastrophic extinction occurred at the end of the Permian Period. However, baseline extinction rates appear to have been elevated even before the final catastrophe, suggesting sustained environmental degradation. For terrestrial vertebrates during the Late Permian, the combination of a drop in atmospheric oxygen plus climate warming would have induced hypoxic stress and consequently compressed altitudinal ranges to near sea level. Our simulations suggest that the magnitude of altitudinal compression would have forced extinctions by reducing habitat diversity, fragmenting and isolating populations, and inducing a species-area effect. It also might have delayed ecosystem recovery after the mass extinction.

  19. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming.

    PubMed

    Gunderson, Alex R; Stillman, Jonathon H

    2015-06-07

    Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the 'Bogert effect'. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures.

  20. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming

    PubMed Central

    Gunderson, Alex R.; Stillman, Jonathon H.

    2015-01-01

    Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the ‘Bogert effect’. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures. PMID:25994676

  1. Sources of global warming in upper ocean temperature during El Niño

    USGS Publications Warehouse

    White, Warren B.; Cayan, Daniel R.; Dettinger, Mike; Auad, Guillermo

    2001-01-01

    Global average sea surface temperature (SST) from 40°S to 60°N fluctuates ±0.3°C on interannual period scales, with global warming (cooling) during El Niño (La Niña). About 90% of the global warming during El Niño occurs in the tropical global ocean from 20°S to 20°N, half because of large SST anomalies in the tropical Pacific associated with El Niño and the other half because of warm SST anomalies occurring over ∼80% of the tropical global ocean. From examination of National Centers for Environmental Prediction [Kalnay et al., 1996] and Comprehensive Ocean-Atmosphere Data Set [Woodruff et al., 1993] reanalyses, tropical global warming during El Niño is associated with higher troposphere moisture content and cloud cover, with reduced trade wind intensity occurring during the onset phase of El Niño. During this onset phase the tropical global average diabatic heat storage tendency in the layer above the main pycnocline is 1–3 W m−2above normal. Its principal source is a reduction in the poleward Ekman heat flux out of the tropical ocean of 2–5 W m−2. Subsequently, peak tropical global warming during El Niño is dissipated by an increase in the flux of latent heat to the troposphere of 2–5 W m−2, with reduced shortwave and longwave radiative fluxes in response to increased cloud cover tending to cancel each other. In the extratropical global ocean the reduction in poleward Ekman heat flux out of the tropics during the onset of El Niño tends to be balanced by reduction in the flux of latent heat to the troposphere. Thus global warming and cooling during Earth's internal mode of interannual climate variability arise from fluctuations in the global hydrological balance, not the global radiation balance. Since it occurs in the absence of extraterrestrial and anthropogenic forcing, global warming on decadal, interdecadal, and centennial period scales may also occur in association with Earth's internal modes of climate variability on those scales.

  2. Global warming: China’s contribution to climate change

    NASA Astrophysics Data System (ADS)

    Spracklen, Dominick V.

    2016-03-01

    Carbon dioxide emissions from fossil-fuel use in China have grown dramatically in the past few decades, yet it emerges that the country's relative contribution to global climate change has remained surprisingly constant. See Letter p.357

  3. Towards a feminist global bioethics: addressing women's health concerns worldwide.

    PubMed

    Tong, R

    2001-01-01

    In this paper I argue that a global bioethics is possible. Specifically, I present the view that there are within feminist approaches to bioethics some conceptual and methodological tools necessary to forge a bioethics that embraces the health-related concerns of both developing and developed nations equally. To support my argument I discuss some of the challenges that have historically confronted feminists. If feminists accept the idea that women are entirely the same, then feminists present as fact the fiction of the essential "Woman." Not only does "Woman" not exist, -she" obscures important racial, ethnic, cultural, and class differences among women. However, if feminists stress women's differences too much, feminists lose the power to speak coherently and cogently about gender justice, women's rights, and sexual equality in general. Analyzing the ways in which the idea of difference as well as the idea of sameness have led feminists astray, I ask whether it is possible to avoid the Scylla of absolutism (imperialism, colonialism, hegemony) on the one hand and the Charybdis of relativism (postmodernism, fragmentation, Balkanization) on the other. Finally, after reflecting upon the work of Uma Narayan, Susan Muller Okin, and Martha Nussbaum, I conclude that there is a way out of this ethical bind. By focusing on women's, children's, and men's common human needs, it is possible to lay the foundation for a just and caring global bioethics.

  4. Relative effects on global warming of halogenated methanes and ethanes of social and industrial interest

    NASA Technical Reports Server (NTRS)

    Fisher, Donald A.; Hales, Charles H.; Wang, Wei-Chyung; Ko, Malcolm K. W.; Sze, N. Dak

    1990-01-01

    The relative potential global warming effects for several halocarbons (chlorofluorocarbons (CFC's)-11, 12, 113, 114, and 115; hydrochlorofluorocarbons (HCFC's) 22, 123, 124, 141b, and 142b; and hydrofluorocarbons (HFC's) 125, 134a, 143a, and 152a; carbon tetrachloride; and methyl chloroform) were calculated by two atmospheric modeling groups. These calculations were based on atmospheric chemistry and radiative convective models to determine the chemical profiles and the radiative processes. The resulting relative greenhouse warming when normalized to the effect of CFC-11 agree reasonably well as long as we account for differences between modeled lifetimes. Differences among results are discussed. Sensitivity of relative warming values is determined with respect to trace gas levels assumed. Transient relative global warming effects are analyzed.

  5. Is Global Warming likely to cause an increased incidence of Malaria?

    PubMed Central

    Nabi, SA; Qader, SS

    2009-01-01

    The rise in the average temperature of earth has been described as global warming which is mainly attributed to the increasing phenomenon of the greenhouse effect. It is believed that global warming can have several harmful effects on human health, both directly and indirectly. Since malaria is greatly influenced by climatic conditions because of its direct relationship with the mosquito population, it is widely assumed that its incidence is likely to increase in a future warmer world. This review article discusses the two contradictory views regarding the association of global warming with an increased incidence of malaria. On one hand, there are many who believe that there is a strong association between the recent increase in malaria incidence and global warming. They predict that as global warming continues, malaria is set to spread in locations where previously it was limited, due to cooler climate. On the other hand, several theories have been put forward which are quite contrary to this prediction. There are multiple other factors which are accountable for the recent upsurge of malaria: for example drug resistance, mosquito control programs, public health facilities, and living standards. PMID:21483497

  6. The influence of global warming on natural disasters and their public health outcomes.

    PubMed

    Diaz, James H

    2007-01-01

    With a documented increase in average global surface temperatures of 0.6 degrees C since 1975, Earth now appears to be warming due to a variety of climatic effects, most notably the cascading effects of greenhouse gas emissions resulting from human activities. There remains, however, no universal agreement on how rapidly, regionally, or asymmetrically the planet will warm or on the true impact of global warming on natural disasters and public health outcomes. Most reports to date of the public health impact of global warming have been anecdotal and retrospective in design and have focused on the increase in heat-stroke deaths following heat waves and on outbreaks of airborne and arthropod-borne diseases following tropical rains and flooding that resulted from fluctuations in ocean temperatures. The effects of global warming on rainfall and drought, tropical cyclone and tsunami activity, and tectonic and volcanic activity will have far-reaching public health effects not only on environmentally associated disease outbreaks but also on global food supplies and population movements. As a result of these and other recognized associations between climate change and public health consequences, many of which have been confounded by deficiencies in public health infrastructure and scientific debates over whether climate changes are spawned by atmospheric cycles or anthropogenic influences, the active responses to progressive climate change must include combinations of economic, environmental, legal, regulatory, and, most importantly, public health measures.

  7. Is Global Warming likely to cause an increased incidence of Malaria?

    PubMed

    Nabi, Sa; Qader, Ss

    2009-03-01

    The rise in the average temperature of earth has been described as global warming which is mainly attributed to the increasing phenomenon of the greenhouse effect. It is believed that global warming can have several harmful effects on human health, both directly and indirectly. Since malaria is greatly influenced by climatic conditions because of its direct relationship with the mosquito population, it is widely assumed that its incidence is likely to increase in a future warmer world.This review article discusses the two contradictory views regarding the association of global warming with an increased incidence of malaria. On one hand, there are many who believe that there is a strong association between the recent increase in malaria incidence and global warming. They predict that as global warming continues, malaria is set to spread in locations where previously it was limited, due to cooler climate. On the other hand, several theories have been put forward which are quite contrary to this prediction. There are multiple other factors which are accountable for the recent upsurge of malaria: for example drug resistance, mosquito control programs, public health facilities, and living standards.

  8. Addressing sources of uncertainty in a global terrestrial carbon model

    NASA Astrophysics Data System (ADS)

    Exbrayat, J.; Pitman, A. J.; Zhang, Q.; Abramowitz, G.; Wang, Y.

    2013-12-01

    Several sources of uncertainty exist in the parameterization of the land carbon cycle in current Earth System Models (ESMs). For example, recently implemented interactions between the carbon (C), nitrogen (N) and phosphorus (P) cycles lead to diverse changes in land-atmosphere C fluxes simulated by different models. Further, although soil organic matter decomposition is commonly parameterized as a first-order decay process, the formulation of the microbial response to changes in soil moisture and soil temperature varies tremendously between models. Here, we examine the sensitivity of historical land-atmosphere C fluxes simulated by an ESM to these two major sources of uncertainty. We implement three soil moisture (SMRF) and three soil temperature (STRF) respiration functions in the CABLE-CASA-CNP land biogeochemical component of the coarse resolution CSIRO Mk3L climate model. Simulations are undertaken using three degrees of biogeochemical nutrient limitation: C-only, C and N, and C and N and P. We first bring all 27 possible combinations of a SMRF with a STRF and a biogeochemical mode to a steady-state in their biogeochemical pools. Then, transient historical (1850-2005) simulations are driven by prescribed atmospheric CO2 concentrations used in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Similarly to some previously published results, representing N and P limitation on primary production reduces the global land carbon sink while some regions become net C sources over the historical period (1850-2005). However, the uncertainty due to the SMRFs and STRFs does not decrease relative to the inter-annual variability in net uptake when N and P limitations are added. Differences in the SMRFs and STRFs and their effect on the soil C balance can also change the sign of some regional sinks. We show that this response is mostly driven by the pool size achieved at the end of the spin-up procedure. Further, there exists a six-fold range in the level

  9. Understanding and Addressing the Global Need for Orthopaedic Trauma Care.

    PubMed

    Agarwal-Harding, Kiran J; von Keudell, Arvind; Zirkle, Lewis G; Meara, John G; Dyer, George S M

    2016-11-02

    ➤The burden of musculoskeletal trauma is high worldwide, disproportionately affecting the poor, who have the least access to quality orthopaedic trauma care.➤Orthopaedic trauma care is essential, and must be a priority in the horizontal development of global health systems.➤The education of surgeons, nonphysician clinicians, and ancillary staff in low and middle income countries is central to improving access to and quality of care.➤Volunteer surgical missions from rich countries can sustainably expand and strengthen orthopaedic trauma care only when they serve a local need and build local capacity.➤Innovative business models may help to pay for care of the poor. Examples include reducing costs through process improvements and cross-subsidizing from profitable high-volume activities.➤Resource-poor settings may foster innovations in devices or systems with universal applicability in orthopaedics.

  10. Global warming projection in the 21st century based on an observational data-driven model

    NASA Astrophysics Data System (ADS)

    Zeng, Xubin; Geil, Kerrie

    2016-10-01

    Global warming has been projected primarily by Earth system models (ESMs). Complementary to this approach, here we provide the decadal and long-term global warming projections based on an observational data-driven model. This model combines natural multidecadal variability with anthropogenic warming that depends on the history of annual emissions. It shows good skill in decadal hindcasts with the recent warming slowdown well captured. While our ensemble mean temperature projections at the end of 21st century are consistent with those from ESMs, our decadal warming projection of 0.35 (0.30-0.43) K from 1986-2005 to 2016-2035 is within their projection range and only two-thirds of the ensemble mean from ESMs. Our predicted warming rate in the next few years is slower than in the 1980s and 1990s, followed by a greater warming rate. Our projection uncertainty range is just one-third of that from ESMs, and its implication is also discussed.

  11. Identifying Like-Minded Audiences for Global Warming Public Engagement Campaigns: An Audience Segmentation Analysis and Tool Development

    PubMed Central

    Maibach, Edward W.; Leiserowitz, Anthony; Roser-Renouf, Connie; Mertz, C. K.

    2011-01-01

    Background Achieving national reductions in greenhouse gas emissions will require public support for climate and energy policies and changes in population behaviors. Audience segmentation – a process of identifying coherent groups within a population – can be used to improve the effectiveness of public engagement campaigns. Methodology/Principal Findings In Fall 2008, we conducted a nationally representative survey of American adults (n = 2,164) to identify audience segments for global warming public engagement campaigns. By subjecting multiple measures of global warming beliefs, behaviors, policy preferences, and issue engagement to latent class analysis, we identified six distinct segments ranging in size from 7 to 33% of the population. These six segments formed a continuum, from a segment of people who were highly worried, involved and supportive of policy responses (18%), to a segment of people who were completely unconcerned and strongly opposed to policy responses (7%). Three of the segments (totaling 70%) were to varying degrees concerned about global warming and supportive of policy responses, two (totaling 18%) were unsupportive, and one was largely disengaged (12%), having paid little attention to the issue. Certain behaviors and policy preferences varied greatly across these audiences, while others did not. Using discriminant analysis, we subsequently developed 36-item and 15-item instruments that can be used to categorize respondents with 91% and 84% accuracy, respectively. Conclusions/Significance In late 2008, Americans supported a broad range of policies and personal actions to reduce global warming, although there was wide variation among the six identified audiences. To enhance the impact of campaigns, government agencies, non-profit organizations, and businesses seeking to engage the public can selectively target one or more of these audiences rather than address an undifferentiated general population. Our screening instruments are

  12. Global warming and the growth of ice sheets

    SciTech Connect

    Ledley, T.S.; Chu, S.

    1994-01-01

    Recent research has suggested that warmer conditions, that may result from increased levels of CO{sub 2} in the atmosphere, may induce the growth of the Northern Hemisphere ice sheets through the impact of warmer temperature on the water carrying capacity of the atmosphere and thus on precipitation. In this study we examine this possibility using a coupled energy balance climate-thermodynamic sea ice model. Results indicate that if summer ice albedo is high enough, and there is some mechanism for initially maintaining ice through the summer season, then it may be possible to have ice sheet growth under the conditions of CO{sub 2} induced warming. 30 refs., 5 figs., 2 tabs.

  13. Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan plateau.

    PubMed

    Liu, Yinzhan; Mu, Junpeng; Niklas, Karl J; Li, Guoyong; Sun, Shucun

    2012-07-01

    • Temperature is projected to increase more during the winter than during the summer in cold regions. The effects of winter warming on reproductive effort have not been examined for temperate plant species. • Here, we report the results of experimentally induced seasonal winter warming (0.4 and 2.4°C increases in growing and nongrowing seasons, respectively, using warmed and ambient open-top chambers in a Tibetan Plateau alpine meadow) for nine indeterminate-growing species producing multiple (single-flowered or multi-flowered) inflorescences and three determinate-growing species producing single inflorescences after a 3-yr period of warming. • Warming reduced significantly flower number and seed production per plant for all nine multi-inflorescence species, but not for the three single-inflorescence species. Warming had an insignificant effect on the fruit to flower number ratio, seed size and seed number per fruit among species. The reduction in seed production was largely attributable to the decline in flower number per plant. The flowering onset time was unaffected for nine of the 12 species. Therefore, the decline in flower production and seed production in response to winter warming probably reflects a physiological response (e.g. metabolic changes associated with flower production). • Collectively, the data indicate that global warming may reduce flower and seed production for temperate herbaceous species and will probably have a differential effect on single- vs multi-inflorescence species.

  14. An Inconvenient Truth. The Planetary Emergency of Global Warming and What We Can Do About It

    SciTech Connect

    Gore, Al

    2006-06-15

    This book is published to tie in with a documentary film of the same name. Both the book and film were inspired by a series of multimedia presentations on global warming that the author created and delivers to groups around the world. With this book, Gore, brings together leading-edge research from top scientists around the world; photographs, charts, and other illustrations; and personal anecdotes and observations to document the fast pace and wide scope of global warming. He presents, with alarming clarity and conclusiveness, and with humor, too, that the fact of global warming is not in question and that its consequences for the world we live in will be disastrous if left unchecked.

  15. Increasing climate extremes under global warming - What is the driving force?

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Wang, S. Y.; Gillies, R. R.; Hipps, L.; Kravitz, B.; Rasch, P. J.

    2015-12-01

    More climate extreme events have occurred in recent years, including the continual development of extreme drought in California, the severe cold winters in the eastern U.S. since 2014, 2015 Washington drought, and excessive wildfire events over Alaska in 2015. These have been casually attributed to global warming. However, a need for further understanding of mechanisms responsible for climate extremes is growing. In this presentation, we'll use sets of climate model simulation that designed to identify the role of the oceanic feedback in increasing climate extremes under global warming. One is with a fully coupled climate model forced by 1% ramping CO2, and the other is with an atmosphere only model forced by the same CO2 forcing. By contrasting these two, an importance of the oceanic feedback in increasing climate extremes under global warming can be diagnosed.

  16. Identifying sensitive ranges in global warming precipitation change dependence on convective parameters

    NASA Astrophysics Data System (ADS)

    Bernstein, Diana N.; Neelin, J. David

    2016-06-01

    A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3 mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme. This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive "dangerous ranges." The low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.

  17. Addressing Global Environmental Challenges through Interdisciplinary Biogeochemical Research

    NASA Astrophysics Data System (ADS)

    Paytan, A.

    2013-12-01

    Our planet is dynamic; energy and matter constantly move between the hydrosphere, atmosphere and lithosphere on time scales from seconds to millenia. These tight interactions - including those between organisms and their physical environment - are what make Earth habitable. However, as Rachel Carson wrote, 'Only within the moment of time represented by the present century has one species - man - acquired significant power to alter the nature of this world'. Globalization and explosive population growth have generated far-reaching environmental problems on a scale that humanity has never faced before. Fortunately, our species has also developed an unprecedented ability to provide science-based solutions. Since processes impacting the environment involve complex biological, physical, chemical and geological interactions and feedbacks, they require the integration of expertise from all these scientific disciplines as well as input from policy makers, social scientists, and economists. This talk presents four examples of current interdisciplinary research projects conducted in my lab, each one related to a theme from one of Carson's books (Under the Sea-wind, The Sea Around Us, The Edge of the Sea, and Silent Spring). These projects, and others like them, provide hope that we can move toward a sustainable relationship with the natural world by encouraging the best scientists to conduct interdisciplinary research with direct applications for environmental management and stewardship.

  18. Workshop Builds Strategies to Address Global Positioning System Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Fisher, Genene

    2011-01-01

    When we examine the impacts of space weather on society, do we really understand the risks? Can past experiences reliably predict what will happen in the future? As the complexity of technology increases, there is the potential for it to become more fragile, allowing for a single point of failure to bring down the entire system. Take the Global Positioning System (GPS) as an example. GPS positioning, navigation, and timing have become an integral part of daily life, supporting transportation and communications systems vital to the aviation, merchant marine, cargo, cellular phone, surveying, and oil exploration industries. Everyday activities such as banking, mobile phone operations, and even the control of power grids are facilitated by the accurate timing provided by GPS. Understanding the risks of space weather to GPS and the many economic sectors reliant upon it, as well as how to build resilience, was the focus of a policy workshop organized by the American Meteorological Society (AMS) and held on 13-14 October 2010 in Washington, D. C. The workshop brought together a select group of policy makers, space weather scientists, and GPS experts and users.

  19. The recent global-warming hiatus: What is the role of the Pacific variability?

    NASA Astrophysics Data System (ADS)

    Douville, Hervé; Voldoire, Aurore

    2015-04-01

    The observed global mean surface air temperature (GMST) has not risen over the last 15 years, spurring outbreaks of skepticism regarding the nature of global warming and challenging the upper-range transient response of the current-generation global climate models. Recent numerical studies have however tempered the relevance of the observed pause in global warming by highlighting the key role of the tropical Pacific internal variability. Here we first show that many climate models overestimate the influence of the El Niño Southern Oscillation on GMST, thereby shedding doubt on their ability to capture the tropical Pacific contribution to the hiatus. Moreover, we highlight that model results are quite sensitive to the experimental design. We argue that overriding the surface wind stress is more suitable than nudging the sea surface temperature for controlling the tropical Pacific ocean heat uptake and, thereby, the multi-decadal variability of GMST. Using the former technique, our model captures several aspects of the recent climate evolution, including the weaker slowdown of global warming over land and the transition towards a negative phase of the Pacific Decadal Oscillation. Yet, the recent global warming is still overestimated, not only over the recent 1998-2012 hiatus period but also over former decades, thereby suggesting that the model might be too sensitive to the prescribed radiative forcings.

  20. The recent global warming hiatus: What is the role of Pacific variability?

    NASA Astrophysics Data System (ADS)

    Douville, H.; Voldoire, A.; Geoffroy, O.

    2015-02-01

    The observed global mean surface air temperature (GMST) has not risen over the last 15 years, spurring outbreaks of skepticism regarding the nature of global warming and challenging the upper range transient response of the current-generation global climate models. Recent numerical studies have, however, tempered the relevance of the observed pause in global warming by highlighting the key role of tropical Pacific internal variability. Here we first show that many climate models overestimate the influence of the El Niño-Southern Oscillation on GMST, thereby shedding doubt on their ability to capture the tropical Pacific contribution to the hiatus. Moreover, we highlight that model results can be quite sensitive to the experimental design. We argue that overriding the surface wind stress is more suitable than nudging the sea surface temperature for controlling the tropical Pacific ocean heat uptake and, thereby, the multidecadal variability of GMST. Using the former technique, our model captures several aspects of the recent climate evolution, including the weaker slowdown of global warming over land and the transition toward a negative phase of the Pacific Decadal Oscillation. Yet the observed global warming is still overestimated not only over the recent 1998-2012 hiatus period but also over former decades, thereby suggesting that the model might be too sensitive to the prescribed radiative forcings.

  1. Recent global-warming hiatus tied to equatorial Pacific surface cooling.

    PubMed

    Kosaka, Yu; Xie, Shang-Ping

    2013-09-19

    Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase.

  2. The global warming hiatus—a natural product of interactions of a secular warming trend and a multi-decadal oscillation

    NASA Astrophysics Data System (ADS)

    Yao, Shuai-Lei; Huang, Gang; Wu, Ren-Guang; Qu, Xia

    2016-01-01

    The globally-averaged annual combined land and ocean surface temperature (GST) anomaly change features a slowdown in the rate of global warming in the mid-twentieth century and the beginning of the twenty-first century. Here, it is shown that the hiatus in the rate of global warming typically occurs when the internally generated cooling associated with the cool phase of the multi-decadal variability overcomes the secular warming from human-induced forcing. We provide compelling evidence that the global warming hiatus is a natural product of the interplays between a secular warming tendency due in a large part to the buildup of anthropogenic greenhouse gas concentrations, in particular CO2 concentration, and internally generated cooling by a cool phase of a quasi-60-year oscillatory variability that is closely associated with the Atlantic multi-decadal oscillation (AMO) and the Pacific decadal oscillation (PDO). We further illuminate that the AMO can be considered as a useful indicator and the PDO can be implicated as a harbinger of variations in global annual average surface temperature on multi-decadal timescales. Our results suggest that the recent observed hiatus in the rate of global warming will very likely extend for several more years due to the cooling phase of the quasi-60-year oscillatory variability superimposed on the secular warming trend.

  3. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming

    PubMed Central

    Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli

    2016-01-01

    Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ∼50 y to ∼20 y, and the amplitude is reduced by ∼60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves. PMID:26951654

  4. Addressing the Global Burden of Trauma in Major Surgery

    PubMed Central

    Dobson, Geoffrey P.

    2015-01-01

    Despite a technically perfect procedure, surgical stress can determine the success or failure of an operation. Surgical trauma is often referred to as the “neglected step-child” of global health in terms of patient numbers, mortality, morbidity, and costs. A staggering 234 million major surgeries are performed every year, and depending upon country and institution, up to 4% of patients will die before leaving hospital, up to 15% will have serious post-operative morbidity, and 5–15% will be readmitted within 30 days. These percentages equate to around 1000 deaths and 4000 major complications every hour, and it has been estimated that 50% may be preventable. New frontline drugs are urgently required to make major surgery safer for the patient and more predictable for the surgeon. We review the basic physiology of the stress response from neuroendocrine to genomic systems, and discuss the paucity of clinical data supporting the use of statins, beta-adrenergic blockers and calcium-channel blockers. Since cardiac-related complications are the most common, particularly in the elderly, a key strategy would be to improve ventricular-arterial coupling to safeguard the endothelium and maintain tissue oxygenation. Reduced O2 supply is associated with glycocalyx shedding, decreased endothelial barrier function, fluid leakage, inflammation, and coagulopathy. A healthy endothelium may prevent these “secondary hit” complications, including possibly immunosuppression. Thus, the four pillars of whole body resynchronization during surgical trauma, and targets for new therapies, are: (1) the CNS, (2) the heart, (3) arterial supply and venous return functions, and (4) the endothelium. This is termed the Central-Cardio-Vascular-Endothelium (CCVE) coupling hypothesis. Since similar sterile injury cascades exist in critical illness, accidental trauma, hemorrhage, cardiac arrest, infection and burns, new drugs that improve CCVE coupling may find wide utility in civilian and

  5. Sources of global warming of the upper ocean on decadal period scales

    USGS Publications Warehouse

    White, Warren B.; Dettinger, M.D.; Cayan, D.R.

    2003-01-01

    Recent studies find global climate variability in the upper ocean and lower atmosphere during the twentieth century dominated by quasi-biennial, interannual, quasi-decadal and interdecadal signals. The quasi-decadal signal in upper ocean temperature undergoes global warming/cooling of ???0.1??C, similar to that occuring with the interannual signal (i.e., El Nin??o-Southern Oscillation), both signals dominated by global warming/cooling in the tropics. From the National Centers for Environmental Prediction troposphere reanalysis and Scripps Institution of Oceanography upper ocean temperature reanalysis we examine the quasi-decadal global tropical diabetic heat storage (DHS) budget from 1975 to 2000. We find the anomalous DHS warming tendency of 0.3-0.9 W m-2 driven principally by a downward global tropical latent-plus-sensible heat flux anomaly into the ocean, overwhelming the tendency by weaker upward shortwave-minus-longwave heat flux anomaly to drive an anomalous DHS cooling tendency. During the peak quasi-decadal warming the estimated dissipation of DHS anomaly of 0.2-0.5 W m-2 into the deep ocean and a similar loss to the overlying atmosphere through air-sea heat flux anomaly are balanced by a decrease in the net poleward Ekman heat advection out of the tropics of 0.4-0.7 W m-2. This scenario is nearly the opposite of that accounting for global tropical warming during the El Nin??o. These diagnostics confirm that even though the global quasi-decadal signal is phase-locked to the 11-year signal in the Sun's surface radiative forcing of ???0.1 W m-2, the anomalous global tropical DHS tendency cannot be driven by it directly.

  6. Sources of global warming of the upper ocean on decadal period scales

    NASA Astrophysics Data System (ADS)

    White, Warren B.; Dettinger, Michael D.; Cayan, Daniel R.

    2003-08-01

    Recent studies find global climate variability in the upper ocean and lower atmosphere during the twentieth century dominated by quasi-biennial, interannual, quasi-decadal and interdecadal signals. The quasi-decadal signal in upper ocean temperature undergoes global warming/cooling of ˜0.1°C, similar to that occurring with the interannual signal (i.e., El Niño-Southern Oscillation), both signals dominated by global warming/cooling in the tropics. From the National Centers for Environmental Prediction troposphere reanalysis and Scripps Institution of Oceanography upper ocean temperature reanalysis we examine the quasi-decadal global tropical diabatic heat storage (DHS) budget from 1975 to 2000. We find the anomalous DHS warming tendency of 0.3-0.9 W m-2 driven principally by a downward global tropical latent-plus-sensible heat flux anomaly into the ocean, overwhelming the tendency by weaker upward shortwave-minus-longwave heat flux anomaly to drive an anomalous DHS cooling tendency. During the peak quasi-decadal warming the estimated dissipation of DHS anomaly of 0.2-0.5 W m-2 into the deep ocean and a similar loss to the overlying atmosphere through air-sea heat flux anomaly are balanced by a decrease in the net poleward Ekman heat advection out of the tropics of 0.4-0.7 W m-2. This scenario is nearly the opposite of that accounting for global tropical warming during the El Niño. These diagnostics confirm that even though the global quasi-decadal signal is phase-locked to the 11-year signal in the Sun's surface radiative forcing of ˜0.1 W m-2, the anomalous global tropical DHS tendency cannot be driven by it directly.

  7. CLIMATE CHANGE. Possible artifacts of data biases in the recent global surface warming hiatus.

    PubMed

    Karl, Thomas R; Arguez, Anthony; Huang, Boyin; Lawrimore, Jay H; McMahon, James R; Menne, Matthew J; Peterson, Thomas C; Vose, Russell S; Zhang, Huai-Min

    2015-06-26

    Much study has been devoted to the possible causes of an apparent decrease in the upward trend of global surface temperatures since 1998, a phenomenon that has been dubbed the global warming "hiatus." Here, we present an updated global surface temperature analysis that reveals that global trends are higher than those reported by the Intergovernmental Panel on Climate Change, especially in recent decades, and that the central estimate for the rate of warming during the first 15 years of the 21st century is at least as great as the last half of the 20th century. These results do not support the notion of a "slowdown" in the increase of global surface temperature.

  8. Effects of the Pacific Decadal Oscillation and global warming on drought in the US Southwest

    NASA Astrophysics Data System (ADS)

    Grossmann, I.

    2012-12-01

    Droughts are among the most expensive weather related disasters in the US. In the semi-arid regions of the US Southwest, where average annual rainfall is already very low, multiyear droughts can have large economic, societal and ecological impacts. The US Southwest relies on annual precipitation maxima during winter and the North American Monsoon (NAM), both of which undergo considerable interannual variability associated with large-scale climate patterns, in particular ENSO, the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). The region is also part of the subtropical belt projected to become more arid in a warming climate. These impacts have not been combined and compared with projections of long-term variations due to natural climate patterns. This study addresses this need by deriving future projections of rainfall departures for Arizona and New Mexico with the PDO and AMO and combining these with projected global warming impacts. Depending on the precipitation dataset used, the impacts for the ongoing negative PDO phase are projected to be between 1-1.6 times as large as the multi-model means projection of precipitation minus evaporation during 2020-2040 in the IPCC A1B Scenario. The projected precipitation impacts of a combined negative PDO and positive AMO phase are between 1-2 times as large as the A1B Scenario projection. The study also advances earlier work by addressing problems in detecting the effect of the PDO on precipitation. Given the different mechanisms with which the PDO affects precipitation during winter and the NAM season, precipitation impacts are here investigated on a monthly scale. The impacts of the PDO also vary with other climate patterns. This can be partly addressed by investigating precipitation departures in dependence on other patterns. It is further found that the long-term effect of the PDO can be more clearly separated from short-term variability by considering return periods of multi

  9. Geomorphic Response to Global Warming in the Anthropocene: Levee Breaches in California's Sacramento-San Joaquin Watershed

    NASA Astrophysics Data System (ADS)

    Florsheim, J. L.; Dettinger, M.; Malamud-Roam, F.; Ingram, B.; Mount, J.

    2006-12-01

    Geomorphic processes in rivers are likely to be influenced by global warming through alterations of flood, erosion, and sedimentation processes and rates. In California's Sierra Nevada, warming scenarios imply future increases in magnitudes and durations (and changes in timing) of floods as snow packs diminish and rainfall runoff increasingly dominates flow into the Central Valley fluvial system. Geomorphic processes are likely to differ from processes that dominated during the Holocene due to the influence both of projected global warming and land use alterations including levee construction that narrows and separates Sacramento-San Joaquin Rivers and tributaries from floodplains and flow regulation downstream of numerous large dams. Whereas Holocene floods induced overbank flow and avulsion processes that led to vertical floodplain accretion and variability of stages in aggrading multiple-channel systems, modern floods largely transport flow and sediment within incised channels confined by levees. Because the scenarios of warming are developed at coarse scales, only an understanding of the relations between large-scale hydrology and climate on the one hand, and the incidence of levee breaches on the other, will make it possible to project likely geomorphic responses to future warming and flooding. A historical record of catastrophic levee breaks on the Sacramento and San Joaquin Rivers has been developed to allow analyses of these connections. In the current work, we develop statistical relations between historical levee break events and flow discharge, as well as with climatic phenomena such as El Nino and La Nina phases of the ENSO cycle, positive and negative phases of the Pacific Decadal Oscillation, and seasonal propensities towards "pineapple-express" storms. Preliminary results suggest strong relations between levee breaches and discharge, but poor relations to ENSO. Further investigation of these data will provide insight to help inform models and river

  10. Making sense of global warming: Norwegians appropriating knowledge of anthropogenic climate change.

    PubMed

    Ryghaug, Marianne; Sørensen, Knut Holtan; Naess, Robert

    2011-11-01

    This paper studies how people reason about and make sense of human-made global warming, based on ten focus group interviews with Norwegian citizens. It shows that the domestication of climate science knowledge was shaped through five sense-making devices: news media coverage of changes in nature, particularly the weather, the coverage of presumed experts' disagreement about global warming, critical attitudes towards media, observations of political inaction, and considerations with respect to everyday life. These sense-making devices allowed for ambiguous outcomes, and the paper argues four main outcomes with respect to the domestication processes: the acceptors, the tempered acceptors, the uncertain and the sceptics.

  11. BioFacts: Fueling a stronger economy, Global warming and biofuels emissions

    SciTech Connect

    1994-12-01

    The focus of numerous federal and state regulations being proposed and approved today is the reduction of automobile emissions -- particularly carbon dioxide (CO{sub 2}), which is the greenhouse gas considered responsible for global warming. Studies conducted by the USDOE through the National Renewable Energy Laboratory (NREL) indicate that the production and use of biofuels such as biodiesel, ethanol, and methanol could nearly eliminate the contribution of net CO{sub 2} from automobiles. This fact sheet provides and overview of global warming, followed by a summary of NREL`s study results.

  12. The role of emotion in global warming policy support and opposition.

    PubMed

    Smith, Nicholas; Leiserowitz, Anthony

    2014-05-01

    Prior research has found that affect and affective imagery strongly influence public support for global warming. This article extends this literature by exploring the separate influence of discrete emotions. Utilizing a nationally representative survey in the United States, this study found that discrete emotions were stronger predictors of global warming policy support than cultural worldviews, negative affect, image associations, or sociodemographic variables. In particular, worry, interest, and hope were strongly associated with increased policy support. The results contribute to experiential theories of risk information processing and suggest that discrete emotions play a significant role in public support for climate change policy. Implications for climate change communication are also discussed.

  13. The Role of Emotion in Global Warming Policy Support and Opposition

    PubMed Central

    Smith, Nicholas; Leiserowitz, Anthony

    2014-01-01

    Prior research has found that affect and affective imagery strongly influence public support for global warming. This article extends this literature by exploring the separate influence of discrete emotions. Utilizing a nationally representative survey in the United States, this study found that discrete emotions were stronger predictors of global warming policy support than cultural worldviews, negative affect, image associations, or sociodemographic variables. In particular, worry, interest, and hope were strongly associated with increased policy support. The results contribute to experiential theories of risk information processing and suggest that discrete emotions play a significant role in public support for climate change policy. Implications for climate change communication are also discussed. PMID:24219420

  14. Contrasting responses of Central Asian rock glaciers to global warming.

    PubMed

    Sorg, Annina; Kääb, Andreas; Roesch, Andrea; Bigler, Christof; Stoffel, Markus

    2015-02-06

    While the responses of Tien Shan glaciers--and glaciers elsewhere--to climatic changes are becoming increasingly well understood, this is less the case for permafrost in general and for rock glaciers in particular. We use a novel approach to describe the climate sensitivity of rock glaciers and to reconstruct periods of high and low rock glacier activity in the Tien Shan since 1895. Using more than 1500 growth anomalies from 280 trees growing on rock glacier bodies, repeat aerial photography from Soviet archives and high-resolution satellite imagery, we present here the world's longest record of rock glacier movements. We also demonstrate that the rock glaciers exhibit synchronous periods of activity at decadal timescales. Despite the complex energy-balance processes on rock glaciers, periods of enhanced activity coincide with warm summers, and the annual mass balance of Tuyuksu glacier fluctuates asynchronously with rock glacier activity. At multi-decadal timescales, however, the investigated rock glaciers exhibit site-specific trends reflecting different stages of inactivation, seemingly in response to the strong increase in air temperature since the 1970s.

  15. Urban amplification of the global warming in Moscow megacity

    NASA Astrophysics Data System (ADS)

    Kislov, Alexander; Konstantinov, Pavel; Varentsov, Mikhail; Samsonov, Timofey; Gorlach, Irina; Trusilova, Kristina

    2015-04-01

    Climate changes in the large cities are very important and requires better understanding. The focus of this paper is climate change of the Moscow megacity. Its urban features strongly influence the atmospheric boundary layer above the Moscow agglomeration area and determine the microclimatic features of the local environment, such as urban heat island (UHI). Available meteorological observations within the Moscow urban area and surrounding territory allow us to assess the natural climate variations and human-induced climate warming separately. To obtain more precisely viewing on the UHI structure we have included into the analysis the satellite data (Meteosat-10), providing temperature and humidity profiles with high resolution. To investigate the mechanism of the urban amplification we realized the regional climate model COSMO-CLM+TEB. Apart from detailed climate research the model runs will be planned for climate projecting of Moscow agglomeration area. Climate change differences between urban and rural areas are determined by changes of the shape of the UHI and their relationships with changes of building height and density. Therefore, the urban module of COSMO-CLM+TEB model is fed by information from special GIS database contenting both geometric characteristics of the urban canyons and other characteristics of the urban surface. The sources of information were maps belonging to the OpenStreetMap, and digital elevation models SRTM90 and ASTER GDEM v.2 as well. The multiscale GIS database allows us to generate such kind of information with different spatial resolution (200, 500 and 1000 meters).

  16. Hypogean carabid beetles as indicators of global warming?

    NASA Astrophysics Data System (ADS)

    Brandmayr, Pietro; Giorgi, Filippo; Casale, Achille; Colombetta, Giorgio; Mariotti, Laura; Vigna Taglianti, Augusto; Weber, Friedrich; Pizzolotto, Roberto

    2013-12-01

    Climate change has been shown to impact the geographical and altitudinal distribution of animals and plants, and to especially affect range-restricted polar and mountaintop species. However, little is known about the impact on the relict lineages of cave animals. Ground beetles (carabids) show a wide variety of evolutionary pathways, from soil-surface (epigean) predatory habits to life in caves and in other subterranean (hypogean) compartments. We reconstructed an unprecedented set of species/time accumulation curves of the largest carabid genera in Europe, selected by their degree of ‘underground’ adaptation, from true epigean predators to eyeless highly specialized hypogean beetles. The data show that in recent periods an unexpectedly large number of new cave species were found lying in well established European hotspots; the first peak of new species, especially in the most evolved underground taxa, occurred in the 1920-30s and a second burst after the 70s. Temperature data show large warming rates in both periods, suggesting that the temperature increase in the past century might have induced cave species to expand their habitats into large well-aired cavities and superficial underground compartments, where they can be easily sampled. An alternative hypothesis, based on increased sampling intensity, is less supported by available datasets.

  17. Enhanced marine sulphur emissions offset global warming and impact rainfall

    PubMed Central

    Grandey, B. S.; Wang, C.

    2015-01-01

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate. PMID:26293204

  18. Enhanced marine sulphur emissions offset global warming and impact rainfall.

    PubMed

    Grandey, B S; Wang, C

    2015-08-21

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate.

  19. Enhanced marine sulphur emissions offset global warming and impact rainfall

    NASA Astrophysics Data System (ADS)

    Grandey, B. S.; Wang, C.

    2015-08-01

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate.

  20. After Kyoto, science still probes global warming causes

    SciTech Connect

    Westbrook, G.

    1998-01-19

    The Kyoto meeting has come and gone. In the US, the treaty still has to be signed by President Bill Clinton and ratified by the Senate, an action that is most unlikely in view of last year`s 95-0 vote on the issue. In the short term 36 senators are up for reelection in November and therefore likely to come under intense pressure to change their positions, to support the Kyoto treaty, and to push for Senate action. Senators will need support, additional inputs, and overall reinforcement of their positions. One area that this writer believes still has much to offer in this context is the quality--more specifically, the lack of quality--of much of the scientific evidence behind this treaty. Part of that subject is the natural variability in the climate. Natural climate variability is based on cyclical forces, random events, and the Earth`s response to these two factors. These forces create the variability in the climate, the background noise above which any signal of anthropogenic warming must rise in order to be detected. A review of key climatic cycles is the subject of this article.

  1. High-resolution peatland photos show change with global warming

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-11-01

    As global average temperatures rise, vast tracks of peatland currently encased in permafrost will be affected. As the ground thaws, peatlands will evolve in either of two directions. Along one path, land that was previously propped up by supportive permafrost subsides, forming a shallow basin that fills with water—a thermokarst lake. In the new lake, peat undergoes anaerobic bacterial decay, releasing methane to the environment. Alternatively, permafrost thawing can result in lake drainage. In the drained lake beds, fen vegetation and mosses can grow, drawing down atmospheric carbon dioxide levels. The prevalence of these two processes, and their relationship to changing temperatures, remains an important question in understanding the consequences of permafrost thaw on the global carbon cycle.

  2. Investigations into Wetland Carbon Sequestration as Remediation for Global Warming

    SciTech Connect

    Thom, Ronald M.; Blanton, Susan L.; Borde, Amy B.; Williams, Greg D.; Woodruff, Dana L.; Huesemann, Michael H.; KW Nehring and SE Brauning

    2002-01-01

    Wetlands can potentially sequester vast amounts of carbon. However, over 50% of wetlands globally have been degraded or lost. Restoration of wetland systems may therefore result in increased sequestration of carbon. Preliminary results of our investigations into atmospheric carbon sequestration by restored coastal wetlands indicate that carbon can be sequestered in substantial quantities in the first 2-50 years after restoration of natural hydrology and sediment accretion processes.

  3. Personal efficacy, the information environment, and attitudes toward global warming and climate change in the United States.

    PubMed

    Kellstedt, Paul M; Zahran, Sammy; Vedlitz, Arnold

    2008-02-01

    Despite the growing scientific consensus about the risks of global warming and climate change, the mass media frequently portray the subject as one of great scientific controversy and debate. And yet previous studies of the mass public's subjective assessments of the risks of global warming and climate change have not sufficiently examined public informedness, public confidence in climate scientists, and the role of personal efficacy in affecting global warming outcomes. By examining the results of a survey on an original and representative sample of Americans, we find that these three forces-informedness, confidence in scientists, and personal efficacy-are related in interesting and unexpected ways, and exert significant influence on risk assessments of global warming and climate change. In particular, more informed respondents both feel less personally responsible for global warming, and also show less concern for global warming. We also find that confidence in scientists has unexpected effects: respondents with high confidence in scientists feel less responsible for global warming, and also show less concern for global warming. These results have substantial implications for the interaction between scientists and the public in general, and for the public discussion of global warming and climate change in particular.

  4. Expansion of global drylands under a warming climate

    NASA Astrophysics Data System (ADS)

    Feng, S.; Fu, Q.

    2013-10-01

    Global drylands encompassing hyper-arid, arid, semiarid, and dry subhumid areas cover about 41 percent of the earth's terrestrial surface and are home to more than a third of the world's population. By analyzing observations for 1948-2008 and climate model simulations for 1948-2100, we show that global drylands have expanded in the last sixty years and will continue to expand in the 21st~century. By the end of this century, the world's drylands (under a high greenhouse gas emission scenario) are projected to be 5.8 × 106 km2 (or 10%) larger than in the 1961-1990 climatology. The major expansion of arid regions will occur over southwest North America, the northern fringe of Africa, southern Africa, and Australia, while major expansions of semiarid regions will occur over the north side of the Mediterranean, southern Africa, and North and South America. The global dryland expansions will increase the population affected by water scarcity and land degradations.

  5. What do global warming impacts really mean to U.S. industry?

    SciTech Connect

    Bendel, W.B.

    1994-12-31

    This paper will explore real-world impacts that global warming could have on US industry. The question of dealing with global warming is, to some extent, an exercise in probability or relative risk management. The difficult part is separating fact from fiction. There is another issue that arises in this intense debate regarding impacts on business and policy. This is the question of whether the impacts are real or only perceived. As the authors have been seen in several environmental situations, the difference between a real or perceived impact can be academic, since a perceived risk often produces real impacts. This paper presents a discussion on what companies can and should do to minimize the perceived risk of global warming on their bottom lines. That is, the basic question is, how can businesses today manage this risk so that objective business decisions can be made? Problems that could be directly or indirectly embedded in the global warming controversy are examined. These include financial, engineering, and international aspects of global climate change. This discussion will include possible impacts on the utility, agricultural, insurance, and financial industries.

  6. Estimation of Thermodynamic and Dynamic Contribution on Regional Precipitation Intensity and Frequency Changes under Global Warming

    NASA Astrophysics Data System (ADS)

    Chen, C.-A.; Chou, C.; Chen, C.-T.

    2012-04-01

    From global point of view, an increased tendency of mean precipitation, which is associated with a shift toward more intense and extreme precipitation, has been found in observations and global warming simulations. However, changes in regional precipitation might be different due to contributions of thermodynamic and dynamic components. It implies that changes in regional rainfall intensity and frequency, which is connected to regional mean precipitation changes, should be more complicated under global warming. To understand how regional intensity and frequency will change under global warming, the global warming simulations from the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel dataset in the A1B scenario were examined in this study. Over regions with increased mean precipitation, positive precipitation anomaly is usually contributed by more frequent heavy rain and enhanced rainfall intensity, even though there are less light rain events in the future. On the other hand, over regions with decreased mean precipitation, negative precipitation anomaly is associated with decreases in frequency for almost every rain events and weakened rainfall intensity, even though there are more very heavy and light rain events. The thermodynamic component is uniform in different regions, and tends to enhance precipitation frequency and intensity, while the dynamic component varies with regions, and can either enhance or reduce precipitation frequency and intensity.

  7. Trends in global warming and evolution of matrix protein 2 family from influenza A virus.

    PubMed

    Yan, Shao-Min; Wu, Guang

    2009-12-01

    The global warming is an important factor affecting the biological evolution, and the influenza is an important disease that threatens humans with possible epidemics or pandemics. In this study, we attempted to analyze the trends in global warming and evolution of matrix protein 2 family from influenza A virus, because this protein is a target of anti-flu drug, and its mutation would have significant effect on the resistance to anti-flu drugs. The evolution of matrix protein 2 of influenza A virus from 1959 to 2008 was defined using the unpredictable portion of amino-acid pair predictability. Then the trend in this evolution was compared with the trend in the global temperature, the temperature in north and south hemispheres, and the temperature in influenza A virus sampling site, and species carrying influenza A virus. The results showed the similar trends in global warming and in evolution of M2 proteins although we could not correlate them at this stage of study. The study suggested the potential impact of global warming on the evolution of proteins from influenza A virus.

  8. Regional temperature and precipitation changes under high-end (≥4°C) global warming.

    PubMed

    Sanderson, M G; Hemming, D L; Betts, R A

    2011-01-13

    Climate models vary widely in their projections of both global mean temperature rise and regional climate changes, but are there any systematic differences in regional changes associated with different levels of global climate sensitivity? This paper examines model projections of climate change over the twenty-first century from the Intergovernmental Panel on Climate Change Fourth Assessment Report which used the A2 scenario from the IPCC Special Report on Emissions Scenarios, assessing whether different regional responses can be seen in models categorized as 'high-end' (those projecting 4°C or more by the end of the twenty-first century relative to the preindustrial). It also identifies regions where the largest climate changes are projected under high-end warming. The mean spatial patterns of change, normalized against the global rate of warming, are generally similar in high-end and 'non-high-end' simulations. The exception is the higher latitudes, where land areas warm relatively faster in boreal summer in high-end models, but sea ice areas show varying differences in boreal winter. Many continental interiors warm approximately twice as fast as the global average, with this being particularly accentuated in boreal summer, and the winter-time Arctic Ocean temperatures rise more than three times faster than the global average. Large temperature increases and precipitation decreases are projected in some of the regions that currently experience water resource pressures, including Mediterranean fringe regions, indicating enhanced pressure on water resources in these areas.

  9. Global warming increases the interspecific competitiveness of the invasive plant alligator weed, Alternanthera philoxeroides.

    PubMed

    Wu, Hao; Ismail, Mohannad; Ding, Jianqing

    2017-01-01

    Global warming could accelerate the spread of invasive species to higher latitudes and intensify their effects on native species. Here, we report results of two years of field surveys along a latitudinal gradient (21°N to 31°N) in southern China, to determine the species structure of the invasive plant Alternanthera philoxeroides community. We also performed a replacement series experiment (mono and mixed) to evaluate the effects of elevated temperature on the competitiveness of A. philoxeroides with the native co-occurring species Digitaria sanguinalis. In the field survey, we found that the dominance of A. philoxeroides increased with increasing of latitude gradient while cover of D. sanguinalis decreased. In monospecific plantings, artificial warming reduced the length of D. sanguinalis roots. In mixed plantings, warming reduced both A. philoxeroides abundance and D. sanguinalis stem length when A. philoxeroides was more prevalent in the planting. Warming also significantly reduced D. sanguinalis biomass, but increased that of A. philoxeroides. In addition, elevated temperatures significantly reduced the relative yield (RY) of D. sanguinalis, particularly when A. philoxeroides was planted in higher proportion in the plot. These results suggest that the invasiveness of A. philoxeroides increased with increasing latitude, and that warming may increase the effectiveness of its interspecific competition with D. sanguinalis. Hence, under global warming conditions, the harm to native species from A. philoxeroides would increase at higher latitudes. Our findings are critical for predicting the invasiveness of alien species under climate change.

  10. Physiological constraints on organismal response to global warming: Mechanistic insights from clinally varying populations and implications for assessing endangerment.

    PubMed

    Bernardo, Joseph; Spotila, James R

    2006-03-22

    Recent syntheses indicate that global warming affects diverse biological processes, but also highlight the potential for some species to adapt behaviourally or evolutionarily to rapid climate change. Far less attention has addressed the alternative, that organisms lacking this ability may face extinction, a fate projected to befall one-quarter of global biodiversity. This conclusion is controversial, in part because there exist few mechanistic studies that show how climate change could precipitate extinction. We provide a concrete, mechanistic example of warming as a stressor of organisms that are closely adapted to cool climates from a comparative analysis of organismal tolerance among clinally varying populations along a natural thermal gradient. We found that two montane salamanders exhibit significant metabolic depression at temperatures within the natural thermal range experienced by low and middle elevation populations. Moreover, the magnitude of depression was inversely related to native elevation, suggesting that low elevation populations are already living near the limit of their physiological tolerances. If this finding generally applies to other montane specialists, the prognosis for biodiversity loss in typically diverse montane systems is sobering. We propose that indices of warming-induced stress tolerance may provide a critical new tool for quantitative assessments of endangerment due to anthropogenic climate change across diverse species.

  11. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time.

    PubMed

    Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Björk, Robert G; Bjorkman, Anne D; Callaghan, Terry V; Collier, Laura Siegwart; Cooper, Elisabeth J; Cornelissen, Johannes H C; Day, Thomas A; Fosaa, Anna Maria; Gould, William A; Grétarsdóttir, Járngerður; Harte, John; Hermanutz, Luise; Hik, David S; Hofgaard, Annika; Jarrad, Frith; Jónsdóttir, Ingibjörg Svala; Keuper, Frida; Klanderud, Kari; Klein, Julia A; Koh, Saewan; Kudo, Gaku; Lang, Simone I; Loewen, Val; May, Jeremy L; Mercado, Joel; Michelsen, Anders; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Pieper, Sara; Post, Eric; Rixen, Christian; Robinson, Clare H; Schmidt, Niels Martin; Shaver, Gaius R; Stenström, Anna; Tolvanen, Anne; Totland, Orjan; Troxler, Tiffany; Wahren, Carl-Henrik; Webber, Patrick J; Welker, Jeffery M; Wookey, Philip A

    2012-02-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.

  12. Linking Southwest U.S. Drought to the Hiatus in Global Warming

    NASA Astrophysics Data System (ADS)

    Hoerling, M. P.; Quan, X. W.; Livneh, B.

    2014-12-01

    Weather and climate of the new millennium has been unkind to the Southwest United States. Precipitation has been deficient, especially compared to prior decades of the late 20thCentury. Temperatures have been consistently above historical averages. And drought conditions have prevailed for a period now stretching 15 years in duration. Impacts of these dry and warm conditions have included compromised health of forests and ecosystems, more wildfires, reduced water resources most notably the declining elevations of Lake Mead and Powell and substantially diminished annual flows in the Colorado River. The question remains open concerning the extent to which this protracted drought episode is strongly a symptom of human induced climate change. While the prolonged drought, including its recent regional expression over California, has been unusually severe relative to droughts of the 20thCentury, some droughts in the paleoclimate record were more severe. To be sure, various studies have detected the consequences of warming temperatures on the hydrologic cycle over the greater western United States, but the drought's severity has principally resulted from deficient rains, the cause for which has yet to been determined. Here we present results from analysis of historical climate simulations to determine the factors contributing to a protracted reduction in Southwest regional precipitation. A parallel set of 2000 year-long equilibrium coupled ocean-atmosphere experiments, one subjected to late 19th Century radiative forcing and a second subjected to early 21st Century radiative forcing, is used to explore attributable impacts of long-term anthropogenic climate change. Historical atmospheric climate simulations are also used to address the effects of the specific observed evolution of sea surface temperatures. These are characterized by appreciable natural variations, one feature of which has been a cooling in the tropical east Pacific during the last 15 years related to the

  13. The effect of global warming on lightning frequencies

    NASA Technical Reports Server (NTRS)

    Price, Colin; Rind, David

    1990-01-01

    The first attempt to model global lightning distributions by using the Goddard Institute for Space Studies (GISS) GCM is reported. Three sets of observations showing the relationship between lightning frequency and cloud top height are shown. Zonally averaged lightning frequency observed by satellite are compared with those calculated using the GISS GCM, and fair agreement is found. The change in lightning frequency for a double CO2 climate is calculated and found to be nearly 2.23 x 10 exp 6 extra lightning flashes per day.

  14. Mechanisms driving change: altered species interactions and ecosystem function through global warming.

    PubMed

    Traill, Lochran W; Lim, Matthew L M; Sodhi, Navjot S; Bradshaw, Corey J A

    2010-09-01

    1. We review the mechanisms behind ecosystem functions, the processes that facilitate energy transfer along food webs, and the major processes that allow the cycling of carbon, oxygen and nitrogen, and use case studies to show how these have already been, and will continue to be, altered by global warming. 2. Increased temperatures will affect the interactions between heterotrophs and autotrophs (e.g. pollination and seed dispersal), and between heterotrophs (e.g. predators-prey, parasites/pathogens-hosts), with generally negative ramifications for important ecosystem services (functions that provide direct benefit to human society such as pollination) and potential for heightened species co-extinction rates. 3. Mitigation of likely impacts of warming will require, in particular, the maintenance of species diversity as insurance for the provision of basic ecosystem services. Key to this will be long-term monitoring and focused research that seek to maintain ecosystem resilience in the face of global warming. 4. We provide guidelines for pursuing research that quantifies the nexus between ecosystem function and global warming. These include documentation of key functional species groups within systems, and understanding the principal outcomes arising from direct and indirect effects of a rapidly warming environment. Localized and targeted research and monitoring, complemented with laboratory work, will determine outcomes for resilience and guide adaptive conservation responses and long-term planning.

  15. Effects of Global Warming on Ancient Mammalian Communities and Their Environments

    PubMed Central

    DeSantis, Larisa R. G.; Feranec, Robert S.; MacFadden, Bruce J.

    2009-01-01

    Background Current global warming affects the composition and dynamics of mammalian communities and can increase extinction risk; however, long-term effects of warming on mammals are less understood. Dietary reconstructions inferred from stable isotopes of fossil herbivorous mammalian tooth enamel document environmental and climatic changes in ancient ecosystems, including C3/C4 transitions and relative seasonality. Methodology/Principal Findings Here, we use stable carbon and oxygen isotopes preserved in fossil teeth to document the magnitude of mammalian dietary shifts and ancient floral change during geologically documented glacial and interglacial periods during the Pliocene (∼1.9 million years ago) and Pleistocene (∼1.3 million years ago) in Florida. Stable isotope data demonstrate increased aridity, increased C4 grass consumption, inter-faunal dietary partitioning, increased isotopic niche breadth of mixed feeders, niche partitioning of phylogenetically similar taxa, and differences in relative seasonality with warming. Conclusion/Significance Our data show that global warming resulted in dramatic vegetation and dietary changes even at lower latitudes (∼28°N). Our results also question the use of models that predict the long term decline and extinction of species based on the assumption that niches are conserved over time. These findings have immediate relevance to clarifying possible biotic responses to current global warming in modern ecosystems. PMID:19492043

  16. Distinct energy budgets for anthropogenic and natural changes during global warming hiatus

    NASA Astrophysics Data System (ADS)

    Xie, Shang-Ping; Kosaka, Yu; Okumura, Yuko M.

    2016-01-01

    The Earth's energy budget for the past four decades can now be closed, and it supports anthropogenic greenhouse forcing as the cause for climate warming. However, closure depends on invoking an unrealistically large increase in aerosol cooling during the so-called global warming hiatus since the late 1990s (refs ,) that was due partly to tropical Pacific Ocean cooling. The difficulty with this closure lies in the assumption that the same climate feedback applies to both anthropogenic warming and natural cooling. Here we analyse climate model simulations with and without anthropogenic increases in greenhouse gas concentrations, and show that top-of-the-atmosphere radiation and global mean surface temperature are much less tightly coupled for natural decadal variability than for the greenhouse-gas-induced response, implying distinct climate feedback between anthropogenic warming and natural variability. In addition, we identify a phase difference between top-of-the-atmosphere radiation and global mean surface temperature such that ocean heat uptake tends to slow down during the surface warming hiatus. This result deviates from existing energy theory but we find that it is broadly consistent with observations. Our study highlights the importance of developing metrics that distinguish anthropogenic change from natural variations to attribute climate variability and to estimate climate sensitivity from observations.

  17. Change of tropical cyclone heat potential in response to global warming

    NASA Astrophysics Data System (ADS)

    Liu, Ran; Chen, Changlin; Wang, Guihua

    2016-04-01

    Tropical cyclone heat potential (TCHP) in the ocean can affect tropical cyclone intensity and intensification. In this paper, TCHP change under global warming is presented based on 35 models from CMIP5 (Coupled Model Intercomparison Project, Phase 5). As the upper ocean warms up, the TCHP of the global ocean is projected to increase by 140.6% in the 21st century under the RCP4.5 (+4.5 W m-2 Representative Concentration Pathway) scenario. The increase is particularly significant in the western Pacific, northwestern Indian and western tropical Atlantic oceans. The increase of TCHP results from the ocean temperature warming above the depth of the 26°C isotherm (D26), the deepening of D26, and the horizontal area expansion of SST above 26°C. Their contributions are 69.4%, 22.5% and 8.1%, respectively. Further, a suite of numerical experiments with an Ocean General Circulation Model (OGCM) is conducted to investigate the relative importance of wind stress and buoyancy forcing to the TCHP change under global warming. Results show that sea surface warming is the dominant forcing for the TCHP change, while wind stress and sea surface salinity change are secondary.

  18. Are treelines advancing? A global meta-analysis of treeline response to climate warming.

    PubMed

    Harsch, Melanie A; Hulme, Philip E; McGlone, Matt S; Duncan, Richard P

    2009-10-01

    Treelines are temperature sensitive transition zones that are expected to respond to climate warming by advancing beyond their current position. Response to climate warming over the last century, however, has been mixed, with some treelines showing evidence of recruitment at higher altitudes and/or latitudes (advance) whereas others reveal no marked change in the upper limit of tree establishment. To explore this variation, we analysed a global dataset of 166 sites for which treeline dynamics had been recorded since 1900 AD. Advance was recorded at 52% of sites with only 1% reporting treeline recession. Treelines that experienced strong winter warming were more likely to have advanced, and treelines with a diffuse form were more likely to have advanced than those with an abrupt or krummholz form. Diffuse treelines may be more responsive to warming because they are more strongly growth limited, whereas other treeline forms may be subject to additional constraints.

  19. Global warming releases microplastic legacy frozen in Arctic Sea ice

    NASA Astrophysics Data System (ADS)

    Obbard, Rachel W.; Sadri, Saeed; Wong, Ying Qi; Khitun, Alexandra A.; Baker, Ian; Thompson, Richard C.

    2014-06-01

    When sea ice forms it scavenges and concentrates particulates from the water column, which then become trapped until the ice melts. In recent years, melting has led to record lows in Arctic Sea ice extent, the most recent in September 2012. Global climate models, such as that of Gregory et al. (2002), suggest that the decline in Arctic Sea ice volume (3.4% per decade) will actually exceed the decline in sea ice extent, something that Laxon et al. (2013) have shown supported by satellite data. The extent to which melting ice could release anthropogenic particulates back to the open ocean has not yet been examined. Here we show that Arctic Sea ice from remote locations contains concentrations of microplastics at least two orders of magnitude greater than those that have been previously reported in highly contaminated surface waters, such as those of the Pacific Gyre. Our findings indicate that microplastics have accumulated far from population centers and that polar sea ice represents a major historic global sink of man-made particulates. The potential for substantial quantities of legacy microplastic contamination to be released to the ocean as the ice melts therefore needs to be evaluated, as do the physical and toxicological effects of plastics on marine life.

  20. Modification of Cirrus Clouds to Reduce Global Warming: New Findings

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Mishra, S.; Lawson, P.; Baker, B. A.

    2011-12-01

    A climate engineering idea for reducing cirrus cloud coverage to release more outgoing longwave radiation (OLR) has recently been proposed (Mitchell & Finnegan 2009; ERL). The air that cirrus form in would be conditioned with efficient ice nuclei that would outcompete the natural homogeneous freezing ice nuclei for water vapor, forming larger ice crystals that fall faster. Increasing the ice fall speed has been shown to significantly decrease cirrus cloud coverage and optical depth in GCM simulations, releasing more OLR to space. GCM simulations comparing homo- and heterogeneous ice nucleation processes indicate this approach has the potential to neutralize the warming due to a doubling of CO2, but it is currently unclear how dominant homogeneous ice nucleation is in the upper troposphere. This may be the greatest known uncertainty associated with this climate engineering idea. Recent research has employed cirrus cloud field measurements to partially test this climate engineering idea by evaluating the role of homogeneous nucleation. While earlier field measurements were extremely difficult to evaluate for ice nucleation effects due to the problem of ice particle shattering, recent in-situ measurements using the 2 dimensional-stereo (2D-S) probe have greatly reduced this problem, resulting in provocative findings. These findings for tropical anvils and mid-latitude synoptic and anvil cirrus clouds all provide strong evidence showing homogeneous nucleation is a dominant process. In addition to abrupt changes in the ice particle size distribution (PSD) shape, ice particle number concentration/ice water content (N/IWC) ratios and mean ice particle sizes near -40°C, the mid-latitude measurements show an abrupt change in ice particle shape and mass-weighted fall velocity near -40°C (i.e. the onset of homogeneous freezing). An example of these findings for synoptic cirrus is shown in the figure. Note that area ratios (ice particle projected area/area of circle defined

  1. Global warming and marine carbon cycle feedbacks on future atmospheric CO2

    PubMed

    Joos; Plattner; Stocker; Marchal; Schmittner

    1999-04-16

    A low-order physical-biogeochemical climate model was used to project atmospheric carbon dioxide and global warming for scenarios developed by the Intergovernmental Panel on Climate Change. The North Atlantic thermohaline circulation weakens in all global warming simulations and collapses at high levels of carbon dioxide. Projected changes in the marine carbon cycle have a modest impact on atmospheric carbon dioxide. Compared with the control, atmospheric carbon dioxide increased by 4 percent at year 2100 and 20 percent at year 2500. The reduction in ocean carbon uptake can be mainly explained by sea surface warming. The projected changes of the marine biological cycle compensate the reduction in downward mixing of anthropogenic carbon, except when the North Atlantic thermohaline circulation collapses.

  2. Climate. Varying planetary heat sink led to global-warming slowdown and acceleration.

    PubMed

    Chen, Xianyao; Tung, Ka-Kit

    2014-08-22

    A vacillating global heat sink at intermediate ocean depths is associated with different climate regimes of surface warming under anthropogenic forcing: The latter part of the 20th century saw rapid global warming as more heat stayed near the surface. In the 21st century, surface warming slowed as more heat moved into deeper oceans. In situ and reanalyzed data are used to trace the pathways of ocean heat uptake. In addition to the shallow La Niña-like patterns in the Pacific that were the previous focus, we found that the slowdown is mainly caused by heat transported to deeper layers in the Atlantic and the Southern oceans, initiated by a recurrent salinity anomaly in the subpolar North Atlantic. Cooling periods associated with the latter deeper heat-sequestration mechanism historically lasted 20 to 35 years.

  3. Joint CO2 and CH4 accountability for global warming

    PubMed Central

    Smith, Kirk R.; Desai, Manish A.; Rogers, Jamesine V.; Houghton, Richard A.

    2013-01-01

    We propose a transparent climate debt index incorporating both methane (CH4) and carbon dioxide (CO2) emissions. We develop national historic emissions databases for both greenhouse gases to 2005, justifying 1950 as the starting point for global perspectives. We include CO2 emissions from fossil sources [CO2(f)], as well as, in a separate analysis, land use change and forestry. We calculate the CO2(f) and CH4 remaining in the atmosphere in 2005 from 205 countries using the Intergovernmental Panel on Climate Change’s Fourth Assessment Report impulse response functions. We use these calculations to estimate the fraction of remaining global emissions due to each country, which is applied to total radiative forcing in 2005 to determine the combined climate debt from both greenhouse gases in units of milliwatts per square meter per country or microwatts per square meter per person, a metric we term international natural debt (IND). Australia becomes the most indebted large country per capita because of high CH4 emissions, overtaking the United States, which is highest for CO2(f). The differences between the INDs of developing and developed countries decline but remain large. We use IND to assess the relative reduction in IND from choosing between CO2(f) and CH4`control measures and to contrast the imposed versus experienced health impacts from climate change. Based on 2005 emissions, the same hypothetical impact on world 2050 IND could be achieved by decreasing CH4 emissions by 46% as stopping CO2 emissions entirely, but with substantial differences among countries, implying differential optimal strategies. Adding CH4 shifts the basic narrative about differential international accountability for climate change. PMID:23847202

  4. Joint CO2 and CH4 accountability for global warming.

    PubMed

    Smith, Kirk R; Desai, Manish A; Rogers, Jamesine V; Houghton, Richard A

    2013-07-30

    We propose a transparent climate debt index incorporating both methane (CH4) and carbon dioxide (CO2) emissions. We develop national historic emissions databases for both greenhouse gases to 2005, justifying 1950 as the starting point for global perspectives. We include CO2 emissions from fossil sources [CO2(f)], as well as, in a separate analysis, land use change and forestry. We calculate the CO2(f) and CH4 remaining in the atmosphere in 2005 from 205 countries using the Intergovernmental Panel on Climate Change's Fourth Assessment Report impulse response functions. We use these calculations to estimate the fraction of remaining global emissions due to each country, which is applied to total radiative forcing in 2005 to determine the combined climate debt from both greenhouse gases in units of milliwatts per square meter per country or microwatts per square meter per person, a metric we term international natural debt (IND). Australia becomes the most indebted large country per capita because of high CH4 emissions, overtaking the United States, which is highest for CO2(f). The differences between the INDs of developing and developed countries decline but remain large. We use IND to assess the relative reduction in IND from choosing between CO2(f) and CH4`control measures and to contrast the imposed versus experienced health impacts from climate change. Based on 2005 emissions, the same hypothetical impact on world 2050 IND could be achieved by decreasing CH4 emissions by 46% as stopping CO2 emissions entirely, but with substantial differences among countries, implying differential optimal strategies. Adding CH4 shifts the basic narrative about differential international accountability for climate change.

  5. Coastal-zone biogeochemical dynamics under global warming

    SciTech Connect

    Mackenzie, F.T.; Ver, L.M.; Lerman, A.

    2000-03-01

    The coastal zone, consisting of the continental shelves to a depth of 200 meters, including bays, lagoons, estuaries, and near-shore banks, is an environment that is strongly affected by its biogeochemical and physical interactions with reservoirs in the adjacent domains of land, atmosphere, open ocean, and marine sediments. Because the coastal zone is smaller in volume and area coverage relative to the open ocean, it traditionally has been studied as an integral part of the global oceans. In this paper, the authors show by numerical modeling that it is important to consider the coastal zone as an entity separate from the open ocean in any assessment of future Earth-system response under human perturbation. Model analyses for the early part of the 21st century suggest that the coastal zone plays a significant modifying role in the biogeochemical dynamics of the carbon cycle and the nutrient cycles coupled to it. This role is manifested in changes in primary production, storage, and/or export of organic matter, its remineralization, and calcium carbonate precipitation--all of which determine the state of the coastal zone with respect to exchange of CO{sub 2} with the atmosphere. Under a scenario of future reduced or complete cessation of the thermohaline circulation (THC) of the global oceans, coastal waters become an important sink for atmospheric CO{sub 2}, as opposed to the conditions in the past and present, when coastal waters are believed to be a source of CO{sub 2} to the atmosphere. Profound changes in coastal-zone primary productivity underscore the important role of phosphorus as a limiting nutrient. In addition, calculations indicate that the saturation state of coastal waters with respect to carbonate minerals will decline by {approximately}15% by the year 2030. Any future slowdown in the THC of the oceans will increase slightly the rate of decline in saturation state.

  6. Energy and global warming impacts of HFC refrigerants and emerging technologies: TEWI-III

    SciTech Connect

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1997-06-01

    The use of hydrofluorocarbons (BFCs) which were developed as alternative refrigerants and insulating foam blowing agents to replace chlorofluorocarbons (CFCs) is now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants and blowing agents on global warming. A Total Equivalent Warming Impact (TEWI) assessment analyzes the environmental affects of these halogenated working fluids in energy consuming applications by combining a direct effect resulting from the inadvertent release of HFCs to the atmosphere with an indirect effect resulting from the combustion of fossil fuels needed to provide the energy to operate equipment using these compounds as working fluids. TEWI is a more balanced measure of environmental impact because it is not based solely on the global warming potential (GWP) of the working fluid. It also shows the environmental benefit of efficient technologies that result in less CO{sub 2} generation and eventual emission to the earth`s atmosphere. The goal of TEWI is to assess total global warming impact of all the gases released to the atmosphere, including CO{sub 2} emissions from energy conversion. Alternative chemicals and technologies have been proposed as substitutes for HFCs in the vapor-compression cycle for refrigeration and air conditioning and for polymer foams in appliance and building insulations which claim substantial environmental benefits. Among these alternatives are: (1) Hydrocarbon (HC) refrigerants and blowing agents which have zero ozone depleting potential and a negligible global warming potential, (2) CO{sub 2} as a refrigerant and blowing agent, (3) Ammonia (NH{sub 3}) vapor compression systems, (4) Absorption chiller and heat pumping cycles using ammonia/water or lithium bromide/water, and (5) Evacuated panel insulations. This paper summarizes major results and conclusions of the detailed final report on the TEWI-111 study.

  7. The Teach-in on Global Warming Solutions and Vygotsky: Fostering Ecological Action and Environmental Citizenship

    ERIC Educational Resources Information Center

    Lysack, Mishka

    2009-01-01

    The Teach-in on Global Warming Solutions is part of a larger socio-environmental movement concerned with combating climate change. Highlighting the history and elements of the teach-in as a model of learning, the article examines the teach-in movement, using a local event at the University of Calgary as an illustration. Conceptual resources from…

  8. Australian Secondary Students' Views about Global Warming: Beliefs about Actions, and Willingness to Act

    ERIC Educational Resources Information Center

    Boyes, Edward; Skamp, Keith; Stanisstreet, Martin

    2009-01-01

    A 44-item questionnaire was constructed to determine secondary students' views about how useful various specific actions might be at reducing global warming, their willingness to undertake the various actions, and the extent to which these two might be linked. Responses (n = 500) were obtained from students in years 7 to 10 in three schools in…

  9. Mass Media and Global Warming: A Public Arenas Model of the Greenhouse Effect's Scientific Roots.

    ERIC Educational Resources Information Center

    Neuzil, Mark

    1995-01-01

    Uses the Public Arenas model to examine the historical roots of the greenhouse effect issue as communicated in scientific literature from the early 1800s to modern times. Utilizes a constructivist approach to discuss several possible explanations for the rise and fall of global warming as a social problem in the scientific arena. (PA)

  10. Medical Providers as Global Warming and Climate Change Health Educators: A Health Literacy Approach

    ERIC Educational Resources Information Center

    Villagran, Melinda; Weathers, Melinda; Keefe, Brian; Sparks, Lisa

    2010-01-01

    Climate change is a threat to wildlife and the environment, but it also one of the most pervasive threats to human health. The goal of this study was to examine the relationships among dimensions of health literacy, patient education about global warming and climate change (GWCC), and health behaviors. Results reveal that patients who have higher…

  11. Chinese Grade Eight Students' Understanding about the Concept of Global Warming

    ERIC Educational Resources Information Center

    Lin, Jing

    2017-01-01

    China is one of the world's biggest greenhouse gas emitters. Chinese students' awareness and understanding about global warming have a significant impact on the future of mankind. This study, as an initial research of this kind in Mainland China, uses clinical interviews to survey 37 grade eight students on their understanding about global…

  12. Net global warming potential and greenhouse gas intensity affected by cropping sequence and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information is available about management practice effects on the net global warming potential (GWP) and greenhouse gas intensity (GHGI) under dryland cropping systems. We evaluated the effects of cropping sequences (conventional-tillage malt barley [Hordeum vulgaris L.]–fallow [CTB-F], no-ti...

  13. Do mitigation strategies reduce global warming potential in the northern U.S. Corn Belt?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture is both an anthropogenic source of CO2, CH4, and N2O, and a sink for CO2 and CH4. Management can impact agriculture's net global warming potential (GWP) by changing source and/or sink. This study compared GWP among three crop management systems: business as usual (BAU), optimum greenhous...

  14. Beliefs and Willingness to Act about Global Warming: Where to Focus Science Pedagogy?

    ERIC Educational Resources Information Center

    Skamp, Keith; Boyes, Eddie; Stanisstreet, Martin

    2013-01-01

    Science educators have a key role in empowering students to take action to reduce global warming. This involves assisting students to understand its causes as well as taking pedagogical decisions that have optimal probabilities of leading to students being motivated to take actions based on empirically based science beliefs. To this end New South…

  15. Fear Appeals and College Students' Attitudes and Behavioral Intentions toward Global Warming

    ERIC Educational Resources Information Center

    Li, Shu-Chu Sarrina

    2014-01-01

    This study used Witte's extended parallel process model to examine the relationships between the use of fear appeals and college students' attitudes and behavioral intentions toward global warming. A pretest-posttest quasi-experimental design was adopted. Three hundred forty-one college students from six communication courses at two universities…

  16. Debating Global Warming in Media Discussion Forums: Strategies Enacted by "Persistent Deniers" and Implications for Schooling

    ERIC Educational Resources Information Center

    Bowen, G. Michael; Rodger, Valerie

    2008-01-01

    Newspapers and other media are often used as a source of information on science issues, both by the public and teachers in classrooms. Over six months, we collected discussions of global warming issues from the online forums of a national newspaper. Our analysis of these contributions suggests there is a considerable effort in these forums,…

  17. Omani Students' Views about Global Warming: Beliefs about Actions and Willingness to Act

    ERIC Educational Resources Information Center

    Ambusaidi, Abdullah; Boyes, Edward; Stanisstreet, Martin; Taylor, Neil

    2012-01-01

    A 44-item questionnaire was designed to determine students' views about how useful various "specific" actions might be in helping to reduce global warming, their willingness to undertake these various actions and the extent to which these two might be related. The instrument was administered to students in Grades 6 to 12 (N = 1532) from…

  18. "An Inconvenient Truth"--Is It Still Effective at Familiarizing Students with Global Warming?

    ERIC Educational Resources Information Center

    Griep, Mark A.; Reimer, Kaitlin

    2016-01-01

    Chemistry courses for nonscience majors emphasize chemical concepts and the relationship of chemical knowledge to everyday life while teaching the utility of quantitative analysis. As an introduction to the topic of global warming, the first half of "An Inconvenient Truth," released in 2006, has been shown annually since 2008 in the…

  19. Climate of Concern--A Search for Effective Strategies for Teaching Children about Global Warming

    ERIC Educational Resources Information Center

    Taber, Fiona; Taylor, Neil

    2009-01-01

    Recent research suggests that the issue of global warming is one of great concern for Australian children. This point to the need for effective teaching about this issue. Children should be properly informed about actions that help reduce carbon emissions as this may give them a sense of empowerment and go some way to alleviating concerns. This…

  20. Students' Communication, Argumentation and Knowledge in a Citizens' Conference on Global Warming

    ERIC Educational Resources Information Center

    Albe, Virginie; Gombert, Marie-Jose

    2012-01-01

    An empirical study on 12th-grade students' engagement on a global warming debate as a citizens' conference is reported. Within the design-based research methodology, an interdisciplinary teaching sequence integrating an initiation to non-violent communication was developed. Students' debates were analyzed according to three dimensions:…

  1. Social Activism in Elementary Science Education: A Science, Technology, and Society Approach to Teach Global Warming

    ERIC Educational Resources Information Center

    Lester, Benjamin T.; Ma, Li; Lee, Okhee; Lambert, Julie

    2006-01-01

    As part of a large-scale instructional intervention research, this study examined elementary students' science knowledge and awareness of social activism with regard to an increased greenhouse effect and global warming. The study involved fifth-grade students from five elementary schools of varying demographic makeup in a large urban school…

  2. A Collection of Studies Conducted in Education about "Global Warming" Problem

    ERIC Educational Resources Information Center

    Bozdogan, Aykut Emre

    2011-01-01

    The studies global warming problem conducted in education discipline in the world and in Turkey were analysed for this study. The literature was reviewed extensively especially through the articles in the indexed journals of Ebsco Host, Science Direct, Taylor and Francis and Web of Science databases and this study was conducted according to the…

  3. Sensitivity of direct global warming potentials to key uncertainties

    SciTech Connect

    Wuebbles, D.J.; Patten, K.O.; Grant, K.E. ); Jain, A.K. )

    1992-07-01

    A series of sensitivity studies examines the effect of several uncertainties in Global Wanning Potentials (GWPs). For example, the original evaluation of GWPs for the Intergovernmental Panel on Climate Change (EPCC, 1990) did not attempt to account for the possible sinks of carbon dioxide (CO{sub 2}) that could balance the carbon cycle and produce atmospheric concentrations of C0{sub 2} that match observations. In this study, a balanced carbon cycle model is applied in calculation of the radiative forcing from C0{sub 2}. Use of the balanced model produces up to 20 percent enhancement of the GWPs for most trace gases compared with the EPCC (1990) values for time horizons up to 100 years, but a decreasing enhancement with longer time horizons. Uncertainty limits of the fertilization feedback parameter contribute a 10 percent range in GWP values. Another systematic uncertainty in GWPs is the assumption of an equilibrium atmosphere (one in which the concentration of trace gases remains constant) versus a disequilibrium atmosphere. The latter gives GWPs that are 15 to 30 percent greater than the former, dependening upon the carbon dioxide emission scenario chosen. Seven scenarios are employed: constant emission past 1990 and the six EPCC (1992) emission scenarios. For the analysis of uncertainties in atmospheric lifetime ({tau}), the GWP changes in direct proportion to {tau} for short-lived gases, but to a lesser extent for gases with {tau} greater than the time horizon for the GWP calculation.

  4. Can the desert annual Salvia columbariae adapt to global warming?

    SciTech Connect

    Soulanille, E.L.; Bierzychudek, P. |

    1995-06-01

    Atmospheric concentrations of {open_quotes}greenhouse{close_quotes} gases are increasing, and most atmospheric scientists agree that an increase in global mean air temperatures will follow. The predictions about possible biological consequences range from {open_quotes}significant{close_quotes} to {open_quotes}catastrophic.{close_quotes} To explore the possible effects of elevated temperatures on a winter germinating desert annual, we grew seeds from two populations of Salvia columbariae in controlled environments mimicking normal temperatures for those populations and in temperatures 4 C higher. Measures of individual fitness were successful germination and the number of seeds produced. For both populations, fitness was dramatically lower in the elevated temperatures: both percent germination and seed number were significantly reduced. Sixty-five percent of the family groups (same mother) failed to flower under the elevated temperatures, whereas, all of the families grown in the normal temperatures flowered and produced seeds. There were also differences between families grown in the increased temperature treatments, implying genetic differences in high temperature tolerance. Our results suggest that while some families will be able to survive and adapt to elevated air temperatures, most will not. This could lead to a serious eroding of the genetic variability of these populations and possibly hamper their ability to respond to other kinds of environmental change.

  5. Modification of cirrus clouds to reduce global warming

    NASA Astrophysics Data System (ADS)

    Mitchell, David L.; Finnegan, William

    2009-10-01

    Greenhouse gases and cirrus clouds regulate outgoing longwave radiation (OLR) and cirrus cloud coverage is predicted to be sensitive to the ice fall speed which depends on ice crystal size. The higher the cirrus, the greater their impact is on OLR. Thus by changing ice crystal size in the coldest cirrus, OLR and climate might be modified. Fortunately the coldest cirrus have the highest ice supersaturation due to the dominance of homogeneous freezing nucleation. Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing are more negative than -2.8 W m-2 and could neutralize the radiative forcing due to a CO2 doubling (3.7 W m-2). A potential delivery mechanism for the seeding material is already in place: the airline industry. Since seeding aerosol residence times in the troposphere are relatively short, the climate might return to its normal state within months after stopping the geoengineering experiment. The main known drawback to this approach is that it would not stop ocean acidification. It does not have many of the drawbacks that stratospheric injection of sulfur species has.

  6. The impact of global warming on river runoff

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.

    1992-01-01

    A global atmospheric model is used to calculate the annual river runoff for 33 of the world's major rivers for the present climate and for a doubled CO2 climate. The model has a horizontal resolution of 4 x 5 deg, but the runoff from each model grid box is quartered and added to the appropriate river drainage basin on a 2 x 2.5 deg resolution. The computed runoff depends on the model's precipitation, evapotranspiration, and soil moisture storage. For the doubled CO2 climate, the runoff increased for 25 of the 33 rivers, and in most cases the increases coincide with increased rainfall within the drainage basins. There were runoff increases in all rivers in high northern latitudes, with a maximum increase of 47 percent. At low latitudes there were both increases and decreases ranging from a 96 increase to a 43 percent decrease. The effect of the simplified model assumptions of land-atmosphere interactions on the results is discussed.

  7. Vegetation-atmosphere interactions and their role in global warming during the latest Cretaceous

    PubMed Central

    Upchurch, G. R.; Otto-Bliesner, B. L.; Scotese, C.

    1998-01-01

    Forest vegetation has the ability to warm Recent climate by its effects on albedo and atmospheric water vapour, but the role of vegetation in warming climates of the geologic past is poorly understood. This study evaluates the role of forest vegetation in maintaining warm climates of the Late Cretaceous by (1) reconstructing global palaeovegetation for the latest Cretaceous (Maastrichtian); (2) modelling latest Cretaceous climate under unvegetated conditions and different distributions of palaeovegetation; and (3) comparing model output with a global database of palaeoclimatic indicators. Simulation of Maastrichtian climate with the land surface coded as bare soil produces high-latitude temperatures that are too cold to explain the documented palaeogeographic distribution of forest and woodland vegetation. In contrast, simulations that include forest vegetation at high latitudes show significantly warmer temperatures that are sufficient to explain the widespread geographic distribution of high-latitude deciduous forests. These warmer temperatures result from decreased albedo and feedbacks between the land surface and adjacent oceans. Prescribing a realistic distribution of palaeovegetation in model simulations produces the best agreement between simulated climate and the geologic record of palaeoclimatic indicators. Positive feedbacks between high-latitude forests, the atmosphere, and ocean contributed significantly to high-latitude warming during the latest Cretaceous, and imply that high-latitude forest vegetation was an important source of polar warmth during other warm periods of geologic history.

  8. Can Advances in Science and Technology Prevent Global Warming? A Critical Review of Limitations and Challenges

    SciTech Connect

    Huesemann, Michael H.

    2006-07-03

    large amounts of carbon-free power. However, biomass and hydroelectric energy can only be marginally expanded and large-scale solar energy installations (i.e., wind, photovoltaics, and direct thermal) are likely to have significant negative environmental impacts. Expansion of nuclear energy is highly unlikely due to concerns over reactor safety, radioactive waste management, weapons proliferation, and cost. In view of the serious limitations and liabilities of many proposed CO2 mitigation approaches it appears that there remain only few no-regrets options such as drastic energy efficiency improvements, extensive terrestrial carbon sequestration, and cautious expansion of renewable energy generation. These promising CO2 mitigation technologies have the potential to bring about the required 20-fold reduction in per capita carbon emission only if population and economic growth are halted without delay. Thus, addressing the problem of global warming requires not only technological research and development but also a reexamination of core values that mistakenly equate material consumption and economic growth to happiness and well-being.

  9. Global Warming in Schools: An Inquiry about the Competing Conceptions of High School Social Studies and Science Curricula and Teachers

    ERIC Educational Resources Information Center

    Meehan, Casey R.

    2012-01-01

    Despite the scientific consensus supporting the theory of anthropogenic (human-induced) global warming, whether global warming is a serious problem, whether human activity is the primary cause of it, and whether scientific consensus exists at all are controversial questions among the U.S. lay-public. The cultural theory of risk perception (Schwarz…

  10. The Effects of Instruction with Visual Materials on the Development of Preservice Elementary Teachers' Knowledge and Attitude towards Global Warming

    ERIC Educational Resources Information Center

    Bozdogan, Aykut Emre

    2011-01-01

    This study aimed to identify the erroneous knowledge and misconceptions of preservice elementary teachers about global warming and examine the effects of instruction with visual materials on rectifying these misconceptions and fostering a positive attitude towards the issue of global warming. Having a quasi-experimental design, the study made use…

  11. Student Teachers' Conceptions about Global Warming and Changes in Their Conceptions during Pre-Service Education: A Cross Sectional Study

    ERIC Educational Resources Information Center

    Cimer, Sabiha Odabasi; Cimer, Atilla; Ursavas, Nazihan

    2011-01-01

    Global warming is one of the important environmental problems whose dangerous effects are increasing gradually. The study reported herein aimed to reveal student teachers' conceptions about global warming and the effect of biology teacher education program on their awareness of this environmental issue. An open-ended questionnaire was used to…

  12. Atmospheric impacts of changing sea ice cover in CO2 induced global warming

    NASA Astrophysics Data System (ADS)

    Cvijanovic, I.; Caldeira, K.

    2013-12-01

    Changes in sea ice cover have important consequences for both Earth's energy budget and atmospheric dynamics. Sea ice amplifies the effects of applied radiative forcing, insulates ocean from atmosphere and induces changes in the meridional temperature gradients thus affecting atmospheric motion in several ways. In this study, we partition and evaluate the effect of changing sea ice cover in global warming using sets of simulations with active and suppressed sea ice response. In particular, we investigate the effect of CO2 induced sea ice changes on global circulation response and extratropical precipitation extremes. Importantly, our setup employs the Atmospheric General Circulation Model coupled to a mixed layer ocean, thus enabling the atmosphere-surface ocean interactions and global atmospheric teleconnections from remote areas. Mid-latitude circulation patterns are found to be most strongly affected by the sea ice changes. In the standard, 'active' ice setup, westerly winds weaken in response to CO2-induced warming. In contrast, in the absence of sea ice response, westerly winds strengthen with global warming. These contrasting wind responses further affect the atmospheric weather patterns and extreme precipitation event development. We identify two opposing roles of sea ice decline on extreme events: (i) a dominant warming effect leads to an increase in the number and strength of extreme events; (ii) a decrease in the pole to equator gradient (a consequence of sea ice loss) acts to temper the development of precipitation extremes due to a decreased midlatitude dry static energy transport.This leads to the conclusion that for the same global temperature increase, the magnitude and frequency of mid-latitude precipitation extremes is smaller when sea ice loss is enabled than when it is suppressed. In general, in the absence of sea ice feedbacks, we find up to 35% less global warming (depending on the simulation type). This is not only due to the smaller high

  13. Assessing Impacts of Global Warming on Tropical Cyclone Tracks

    NASA Technical Reports Server (NTRS)

    Wu, Li-Guang; Wang, Bin

    2003-01-01

    A new approach is proposed to assess the possible impacts of the global climate change on tropical cyclone (TC) tracks in the western North Pacific (WNP) basin. The idea is based on the premise that the future change of TC track characteristics is primarily determined by changes in large-scale environmental steering flows. It is demonstrated that the main characteristics of the current climatology of TC tracks can be derived from the climatological mean velocity field of TC motion by using a trajectory model. The climatological mean velocity of TC motion, which is composed of the large-scale steering and beta drift, is determined on each grid of the basin. The mean beta drift is estimated from the best track data, and the mean large-scale steering flow is computed from the NCEP/NCAR reanalysis for the current climate state. The derived mean beta drift agrees well with the results of previous observational and numerical studies in terms of its direction and magnitude. The outputs of experiments A2 and B2 of the Geophysical Fluid Dynamics Laboratory (GFDL) R30 climate model suggest that the subtropical high will be persistently weak over the western part of the WNP or shift eastward during July-September in response to the future climate change. By assuming that the mean beta drift in the future climate state is unchanged, the change in the general circulation by 2059 will decrease the TC activities in the WNP, but favor a northward shift of typical TC tracks. As a result, the storm activities in the South China Sea will decrease by about 12%, while the Japan region will experience an increase of TCs by 12-15%. During the period of 2000-2029, the tropical storms that affect the China region will increase by 5-6%, but return to the current level during 2030-2059. It is also suggested that, during the period of 2030-2059 tropical storms will more frequently affect Japan and the middle latitude region of China given that the formation locations remain the same as in the

  14. Millennial-scale projection of oceanic oxygen change due to global warming

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akitomo; Abe-Ouchi, Ayako; Shigemitsu, Masahito; Oka, Akira; Takahashi, Kunio; Ohgaito, Rumi; Yamanaka, Yasuhiro

    2016-04-01

    Global warming is expected to globally decrease ocean oxygen concentrations by sea surface warming and ocean circulation change. Oxygen reduction is expected to persist for a thousand years or more, even after atmospheric carbon dioxide stops rising. However, long-term changes in ocean oxygen and circulation are still unclear. Here we simulate multimillennium changes in ocean circulation and oxygen under doubling and quadrupling of atmospheric carbon dioxide, using GCM (MIROC) and an offline biogeochemical model. In the first 500 years, global oxygen concentration decreases, consistent with previous studies. Thereafter, however, the oxygen concentration in the deep ocean globally recovers and overshoots at the end of the simulations, despite surface oxygen decrease and weaker AMOC. This is because, after the initial cessation, the recovery and overshooting of deep ocean convection in the Weddell Sea enhance ventilation and supply oxygen-rich surface waters to deep ocean. Another contributor to deep ocean oxygenation is seawater warming, which reduces the export production and shifts the organic matter remineralization to the upper water column. Our results indicate that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in deep ocean, which is opposite to the centennial-scale global oxygen reduction and general expectation.

  15. Could a future "Grand Solar Minimum" like the Maunder Minimum stop global warming?

    NASA Astrophysics Data System (ADS)

    Meehl, Gerald A.; Arblaster, Julie M.; Marsh, Daniel R.

    2013-05-01

    A future Maunder Minimum type grand solar minimum, with total solar irradiance reduced by 0.25% over a 50 year period from 2020 to 2070, is imposed in a future climate change scenario experiment (RCP4.5) using, for the first time, a global coupled climate model that includes ozone chemistry and resolved stratospheric dynamics (Whole Atmosphere Community Climate Model). This model has been shown to simulate two amplifying mechanisms that produce regional signals of decadal climate variability comparable to observations, and thus is considered a credible tool to simulate the Sun's effects on Earth's climate. After the initial decrease of solar radiation in 2020, globally averaged surface air temperature cools relative to the reference simulation by up to several tenths of a degree Centigrade. By the end of the grand solar minimum in 2070, the warming nearly catches up to the reference simulation. Thus, a future grand solar minimum could slow down but not stop global warming.

  16. A Robust Response of Precipitation to Global Warming from CMIP5 Models

    NASA Technical Reports Server (NTRS)

    Lau, K. -M.; Wu, H. -T.; Kim, K. -M.

    2012-01-01

    How precipitation responds to global warming is a major concern to society and a challenge to climate change research. Based on analyses of rainfall probability distribution functions of 14 state-of-the-art climate models, we find a robust, canonical global rainfall response to a triple CO2 warming scenario, featuring 100 250% more heavy rain, 5-10% less moderate rain, and 10-15% more very light or no-rain events. Regionally, a majority of the models project a consistent response with more heavy rain events over climatologically wet regions of the deep tropics, and more dry events over subtropical and tropical land areas. Results suggest that increased CO2 emissions induce basic structural changes in global rain systems, increasing risks of severe floods and droughts in preferred geographic locations worldwide.

  17. Polar Low genesis over the North Pacific under different global warming scenarios

    NASA Astrophysics Data System (ADS)

    Chen, Fei; von Storch, Hans; Zeng, Lili; Du, Yan

    2014-12-01

    Following an earlier climatological study of North Pacific Polar Lows by employing dynamical downscaling of NCEP1 reanalysis in the regional climate model COSMO-CLM, the characteristics of Polar Low genesis over the North Pacific under different global warming scenarios are investigated. Simulations based on three scenarios from the Special Report on Emissions Scenarios were conducted using a global climate model (ECHAM5) and used to examine systematic changes in the occurrence of Polar Lows over the twenty first century. The results show that with more greenhouse gas emissions, global air temperature would rise, and the frequency of Polar Lows would decrease. With sea ice melting, the distribution of Polar Low genesis shows a northward shift. In the scenarios with stronger warming there is a larger reduction in the number of Polar Lows.

  18. Global warming threatens agricultural productivity in Africa and South Asia

    NASA Astrophysics Data System (ADS)

    Sultan, Benjamin

    2012-12-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC; Christensen et al 2007) has, with greater confidence than previous reports, warned the international community that the increase in anthropogenic greenhouse gases emissions will result in global climate change. One of the most direct and threatening impacts it may have on human societies is the potential consequences on global crop production. Indeed agriculture is considered as the most weather-dependent of all human activities (Hansen 2002) since climate is a primary determinant for agricultural productivity. The potential impact of climate change on crop productivity is an additional strain on the global food system which is already facing the difficult challenge of increasing food production to feed a projected 9 billion people by 2050 with changing consumption patterns and growing scarcity of water and land (Beddington 2010). In some regions such as Sub-Saharan Africa or South Asia that are already food insecure and where most of the population increase and economic development will take place, climate change could be the additional stress that pushes systems over the edge. A striking example, if needed, is the work from Collomb (1999) which estimates that by 2050 food needs will more than quintuple in Africa and more than double in Asia. Better knowledge of climate change impacts on crop productivity in those vulnerable regions is crucial to inform policies and to support adaptation strategies that may counteract the adverse effects. Although there is a growing literature on the impact of climate change on crop productivity in tropical regions, it is difficult to provide a consistent assessment of future yield changes because of large uncertainties in regional climate change projections, in the response of crops to environmental change (rainfall, temperature, CO2 concentration), in the coupling between climate models and crop productivity functions, and in the adaptation of

  19. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes.

    PubMed

    Cornelissen, Johannes H C; van Bodegom, Peter M; Aerts, Rien; Callaghan, Terry V; van Logtestijn, Richard S P; Alatalo, Juha; Chapin, F Stuart; Gerdol, Renato; Gudmundsson, Jon; Gwynn-Jones, Dylan; Hartley, Anne E; Hik, David S; Hofgaard, Annika; Jónsdóttir, Ingibjörg S; Karlsson, Staffan; Klein, Julia A; Laundre, Jim; Magnusson, Borgthor; Michelsen, Anders; Molau, Ulf; Onipchenko, Vladimir G; Quested, Helen M; Sandvik, Sylvi M; Schmidt, Inger K; Shaver, Gus R; Solheim, Bjørn; Soudzilovskaia, Nadejda A; Stenström, Anna; Tolvanen, Anne; Totland, Ørjan; Wada, Naoya; Welker, Jeffrey M; Zhao, Xinquan

    2007-07-01

    Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.

  20. The mid-Cretaceous super plume, carbon dioxide, and global warming.

    PubMed

    Caldeira, K; Rampino, M R

    1991-06-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. We developed a carbonate-silicate cycle model to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. We find that CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern pre-industrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7 degrees C over today's global mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 degrees C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 degrees C, within the 6 to 14 degrees C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20% of the mid-Cretaceous increase in atmospheric CO2.

  1. The mid-Cretaceous super plume, carbon dioxide, and global warming

    SciTech Connect

    Caldeira, K. ); Rampino, M.R. NASA Goddard Inst. for Space Studies, New York, NY )

    1991-06-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. The authors developed a carbonate-silicate cycle model to quantify the possible climatic effects of these CO{sub 2} releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO{sub 2}. They find that CO{sub 2} emissions resulting from super-plume tectonics could have produced atmospheric CO{sub 2} levels from 3.7 to 14.7 times the modern pre-industrial value of 285 ppm. Based on the temperature sensitivity to CO{sub 2} increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7C over today's global mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO{sub 2} emissions could be in the range of 7.6 to 12.5C, within the 6 to 14C range previously estimated for mid-Cretaceous warming. CO{sub 2} releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20% of the mid-Cretaceous increase in atmospheric CO{sub 2}.

  2. Permafrost degradation and associated ground settlement estimation under 2 °C global warming

    NASA Astrophysics Data System (ADS)

    Guo, Donglin; Wang, Huijun

    2016-12-01

    Global warming of 2 °C above preindustrial levels has been considered to be the threshold that should not be exceeded by the global mean temperature to avoid dangerous interference with the climate system. However, this global mean target has different implications for different regions owing to the globally nonuniform climate change characteristics. Permafrost is sensitive to climate change; moreover, it is widely distributed in high-latitude and high-altitude regions where the greatest warming is predicted. Permafrost is expected to be severely affected by even the 2 °C global warming, which, in turn, affects other systems such as water resources, ecosystems, and infrastructures. Using air and soil temperature data from ten coupled model intercomparison project phase five models combined with observations of frozen ground, we investigated the permafrost thaw and associated ground settlement under 2 °C global warming. Results show that the climate models produced an ensemble mean permafrost area of 14.01 × 106 km2, which compares reasonably with the area of 13.89 × 106 km2 (north of 45°N) in the observations. The models predict that the soil temperature at 6 m depth will increase by 2.34-2.67 °C on area average relative to 1990-2000, and the increase intensifies with increasing latitude. The active layer thickness will also increase by 0.42-0.45 m, but dissimilar to soil temperature, the increase weakens with increasing latitude due to the distinctly cooler permafrost at higher latitudes. The permafrost extent will obviously retreat north and decrease by 24-26% and the ground settlement owing to permafrost thaw is estimated at 3.8-15 cm on area average. Possible uncertainties in this study may be mostly attributed to the less accurate ground ice content data and coarse horizontal resolution of the models.

  3. Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales

    NASA Astrophysics Data System (ADS)

    Frölicher, Thomas L.; Paynter, David J.

    2015-07-01

    The transient climate response to cumulative carbon emissions (TCRE) is a highly policy-relevant quantity in climate science. The TCRE suggests that peak warming is linearly proportional to cumulative carbon emissions and nearly independent of the emissions scenario. Here, we use simulations of the Earth System Model (ESM) from the Geophysical Fluid Dynamics Laboratory (GFDL) to show that global mean surface temperature may increase by 0.5 °C after carbon emissions are stopped at 2 °C global warming, implying an increase in the coefficient relating global warming to cumulative carbon emissions on multi-centennial timescales. The simulations also suggest a 20% lower quota on cumulative carbon emissions allowed to achieve a policy-driven limit on global warming. ESM estimates from the Coupled Model Intercomparison Project Phase 5 (CMIP5-ESMs) qualitatively agree on this result, whereas Earth System Models of Intermediate Complexity (EMICs) simulations, used in the IPCC 5th assessment report to assess the robustness of TCRE on multi-centennial timescales, suggest a post-emissions decrease in temperature. The reason for this discrepancy lies in the smaller simulated realized warming fraction in CMIP5-ESMs, including GFDL ESM2M, than in EMICs when carbon emissions increase. The temperature response to cumulative carbon emissions can be characterized by three different phases and the linear TCRE framework is only valid during the first phase when carbon emissions increase. For longer timescales, when emissions tape off, two new metrics are introduced that better characterize the time-dependent temperature response to cumulative carbon emissions: the equilibrium climate response to cumulative carbon emissions and the multi-millennial climate response to cumulative carbon emissions.

  4. Global and regional cooling in a warming climate from CMIP5 models

    NASA Astrophysics Data System (ADS)

    Medhaug, Iselin; Drange, Helge

    2015-04-01

    Instrumental temperature records show that the global climate may experience decadal-scale (hiatus) periods without warming despite an indisputable long-term warming trend. A large range of factors have been proposed to explain these non-warming decades, like volcanic cooling, reduced solar energy input, low stratospheric water vapor content, elevated tropospheric aerosols, internal variability of the climate system, or a combination thereof. We have analysed 17 global climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5), identifying the likelihood and duration of periods without warming in the four Representative Concentration Pathway (RCP) scenarios RCP2.6, RCP4.5, RCP6.0 and RCP8.5, together with the preindustrial control and historical simulations. We find that non-warming periods, when the effect of volcanic eruptions and variations in the solar cycle are neglected, may last for up to 10, 15 and 30 years for RCP8.5, RCP6.0 and RCP 4.5, respectively. Regionally, the likelihood of a decadal-scale hiatus periods decrease first in the tropical Atlantic, Indian Ocean and western Pacific with increasing global temperatures in the RCP scenarios. The North Atlantic and the Southern Ocean are the regions with largest variability relative to the regional warming signal. As a response to the global temperature increase, the radiative imbalance at top of the atmosphere increases and the global oceans warm. This holds for both the upper and the deep ocean in all scenarios. In the CMIP5 simulations, anomalous uptake and storage of ocean heat are the main factors explaining the decadal-scale surface temperature hiatus periods. The tropical East Pacific is a key region for these variations, acting in tandem with basin-scale anomalies in the sea level pressure. On sub-decadal time scales, ocean storage of heat is largest and comparable in magnitude in the Pacific and Southern Oceans, followed by the Atlantic Ocean. We find no relation

  5. Changes in Extremely Hot Summers over the Global Land Area under Various Warming Targets.

    PubMed

    Wang, Lei; Huang, Jianbin; Luo, Yong; Yao, Yao; Zhao, Zongci

    2015-01-01

    Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) with observations from the Goddard Institute for Space Studies (GISS) and the Climate Research Unit (CRU). Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951-1980) exceeding 3σ (σ is based on the local internal variability) are defined as "extremely hot". The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, "extremely hot" summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection). Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, "extremely hot" summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by "extremely hot" summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low.

  6. Global warming precipitation accumulation increases above the current-climate cutoff scale

    PubMed Central

    Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.

    2017-01-01

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff. PMID:28115693

  7. The global warming-induced South Asian High change and its uncertainty

    NASA Astrophysics Data System (ADS)

    Qu, Xia; Huang, Gang

    2016-04-01

    Based on Coupled Model Intercomparison Project phase 5 (CMIP5) models, the present study investigates the South Asian High (SAH) change in response to global warming. Under global warming, at 100 hPa, the selected 16 coupled general circulation models all feature an elevation of geopotential height to the south of the SAH climatological position; an easterly response is found over the northern Indian Ocean in all the models, while a westerly response is found over subtropical Asia. The ridges of the SAH shift equatorward in 75% of models. Using the linear baroclinic model, it is found that the co-effects of latent heating and the mean advection of stratification change (MASC) are mainly responsible for those responses. The MASC mainly leads to the forementioned easterly and westerly responses; the latent heating contributes to the geopotential height response and the easterly response over the northern Indian Ocean. The most important inter-model diversity found in the 100 hPa circulation change under global warming, and accounts for more than half of the total inter-model variance. The inter-model spread of latent heating and the MASC are important factors in driving the 100 hPa circulation diversity. Furthermore, analysis shows that the projected uncertainty in humidity, vertical velocity and global mean temperature change are the three most important sources of inter-model diversity for the 100 hPa circulation change.

  8. Changes in precipitation pattern and risk of drought over India in the context of global warming

    NASA Astrophysics Data System (ADS)

    Mishra, Anoop; Liu, Shaw Chen

    2014-07-01

    Precipitation pattern has changed over many regions in recent decades. There are evidences of increased heavy precipitation and decreased light precipitation in widespread parts of the globe due to global warming. Many studies over Indian region focus on heavy precipitation and risk of floods. But few works discuss the changes in light precipitation and risk of droughts. In this study, changes in total dry days, prolonged dry spells, light precipitation, and risk of drought as indicated by Modified Palmer Index (MPI) over India during six decades (1951-2010) are examined quantitatively in the context of global warming. It is found that there are increases of 49% ± 21% and 33% ± 17% in prolonged dry spells and total dry days, respectively, over India for each degree Kelvin (K) increase in global mean temperature. There is an increase of 51% ± 24% K-1 in drought index MPI (<= - 2.0). There is also a reduction of 31 ± 14% K-1in light precipitation days over India. These changes are more severe over northeastern and western part of India. Increases in prolonged dry spells, total dry days, and decreases in light precipitation relate well with the increases in drought index MPI (<= - 2.0). These results suggest that there is an increased risk of drought due to increased prolonged dry spells, total dry days, and decreased light precipitation days over India as a result of global warming.

  9. Global warming precipitation accumulation increases above the current-climate cutoff scale

    NASA Astrophysics Data System (ADS)

    Neelin, J. David; Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.

    2017-02-01

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.

  10. Global warming precipitation accumulation increases above the current-climate cutoff scale.

    PubMed

    Neelin, J David; Sahany, Sandeep; Stechmann, Samuel N; Bernstein, Diana N

    2017-02-07

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.

  11. Global warming and South Indian monsoon rainfall-lessons from the Mid-Miocene.

    PubMed

    Reuter, Markus; Kern, Andrea K; Harzhauser, Mathias; Kroh, Andreas; Piller, Werner E

    2013-04-01

    Precipitation over India is driven by the Indian monsoon. Although changes in this atmospheric circulation are caused by the differential seasonal diabatic heating of Asia and the Indo-Pacific Ocean, it is so far unknown how global warming influences the monsoon rainfalls regionally. Herein, we present a Miocene pollen flora as the first direct proxy for monsoon over southern India during the Middle Miocene Climate Optimum. To identify climatic key parameters, such as mean annual temperature, warmest month temperature, coldest month temperature, mean annual precipitation, mean precipitation during the driest month, mean precipitation during the wettest month and mean precipitation during the warmest month the Coexistence Approach is applied. Irrespective of a ~ 3-4 °C higher global temperature during the Middle Miocene Climate Optimum, the results indicate a modern-like monsoonal precipitation pattern contrasting marine proxies which point to a strong decline of Indian monsoon in the Himalaya at this time. Therefore, the strength of monsoon rainfall in tropical India appears neither to be related to global warming nor to be linked with the atmospheric conditions over the Tibetan Plateau. For the future it implies that increased global warming does not necessarily entail changes in the South Indian monsoon rainfall.

  12. Land-atmosphere feedbacks amplify aridity increase over land under global warming

    NASA Astrophysics Data System (ADS)

    Berg, Alexis; Findell, Kirsten; Lintner, Benjamin; Giannini, Alessandra; Seneviratne, Sonia I.; van den Hurk, Bart; Lorenz, Ruth; Pitman, Andy; Hagemann, Stefan; Meier, Arndt; Cheruy, Frédérique; Ducharne, Agnès; Malyshev, Sergey; Milly, P. C. D.

    2016-09-01

    The response of the terrestrial water cycle to global warming is central to issues including water resources, agriculture and ecosystem health. Recent studies indicate that aridity, defined in terms of atmospheric supply (precipitation, P) and demand (potential evapotranspiration, Ep) of water at the land surface, will increase globally in a warmer world. Recently proposed mechanisms for this response emphasize the driving role of oceanic warming and associated atmospheric processes. Here we show that the aridity response is substantially amplified by land-atmosphere feedbacks associated with the land surface's response to climate and CO2 change. Using simulations from the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we show that global aridity is enhanced by the feedbacks of projected soil moisture decrease on land surface temperature, relative humidity and precipitation. The physiological impact of increasing atmospheric CO2 on vegetation exerts a qualitatively similar control on aridity. We reconcile these findings with previously proposed mechanisms by showing that the moist enthalpy change over land is unaffected by the land hydrological response. Thus, although oceanic warming constrains the combined moisture and temperature changes over land, land hydrology modulates the partitioning of this enthalpy increase towards increased aridity.

  13. Global warming and South Indian monsoon rainfall—lessons from the Mid-Miocene

    PubMed Central

    Reuter, Markus; Kern, Andrea K.; Harzhauser, Mathias; Kroh, Andreas; Piller, Werner E.

    2013-01-01

    Precipitation over India is driven by the Indian monsoon. Although changes in this atmospheric circulation are caused by the differential seasonal diabatic heating of Asia and the Indo-Pacific Ocean, it is so far unknown how global warming influences the monsoon rainfalls regionally. Herein, we present a Miocene pollen flora as the first direct proxy for monsoon over southern India during the Middle Miocene Climate Optimum. To identify climatic key parameters, such as mean annual temperature, warmest month temperature, coldest month temperature, mean annual precipitation, mean precipitation during the driest month, mean precipitation during the wettest month and mean precipitation during the warmest month the Coexistence Approach is applied. Irrespective of a ~ 3–4 °C higher global temperature during the Middle Miocene Climate Optimum, the results indicate a modern-like monsoonal precipitation pattern contrasting marine proxies which point to a strong decline of Indian monsoon in the Himalaya at this time. Therefore, the strength of monsoon rainfall in tropical India appears neither to be related to global warming nor to be linked with the atmospheric conditions over the Tibetan Plateau. For the future it implies that increased global warming does not necessarily entail changes in the South Indian monsoon rainfall. PMID:27087778

  14. Land–atmosphere feedbacks amplify aridity increase over land under global warming

    USGS Publications Warehouse

    Berg, Alexis; Findell, Kirsten; Lintner, Benjamin; Giannini, Alessandra; Seneviratne, Sonia I.; van den Hurk, Bart; Lorenz, Ruth; Pitman, Andy; Hagemann, Stefan; Meier, Arndt; Cheruy, Frédérique; Ducharne, Agnès; Malyshev, Sergey; Milly, Paul

    2016-01-01

    The response of the terrestrial water cycle to global warming is central to issues including water resources, agriculture and ecosystem health. Recent studies indicate that aridity, defined in terms of atmospheric supply (precipitation, P) and demand (potential evapotranspiration, Ep) of water at the land surface, will increase globally in a warmer world. Recently proposed mechanisms for this response emphasize the driving role of oceanic warming and associated atmospheric processes. Here we show that the aridity response is substantially amplified by land–atmosphere feedbacks associated with the land surface’s response to climate and CO2 change. Using simulations from the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we show that global aridity is enhanced by the feedbacks of projected soil moisture decrease on land surface temperature, relative humidity and precipitation. The physiological impact of increasing atmospheric CO2 on vegetation exerts a qualitatively similar control on aridity. We reconcile these findings with previously proposed mechanisms by showing that the moist enthalpy change over land is unaffected by the land hydrological response. Thus, although oceanic warming constrains the combined moisture and temperature changes over land, land hydrology modulates the partitioning of this enthalpy increase towards increased aridity.

  15. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming

    PubMed Central

    Paital, Biswaranjan; Panda, Sumana Kumari; Hati, Akshaya Kumar; Mohanty, Bobllina; Mohapatra, Manoj Kumar; Kanungo, Shyama; Chainy, Gagan Bihari Nityananda

    2016-01-01

    The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to

  16. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming.

    PubMed

    Paital, Biswaranjan; Panda, Sumana Kumari; Hati, Akshaya Kumar; Mohanty, Bobllina; Mohapatra, Manoj Kumar; Kanungo, Shyama; Chainy, Gagan Bihari Nityananda

    2016-02-26

    The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to

  17. Changes in yields and their variability at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Childers, Katelin

    2015-04-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the political discussion about mitigation targets as well as for the inclusion of climate change impacts in Integrated Assessment Models (IAMs) that generally only provide global mean temperature change as an indicator of climate change. While there is a well-established framework for the scalability of regional temperature and precipitation changes with global mean temperature change we provide an assessment of the extent to which impacts such as crop yield changes can also be described in terms of global mean temperature changes without accounting for the specific underlying emissions scenario. Based on multi-crop-model simulations of the four major cereal crops (maize, rice, soy, and wheat) on a 0.5 x 0.5 degree global grid generated within ISI-MIP, we show the average spatial patterns of projected crop yield changes at one half degree warming steps. We find that emissions scenario dependence is a minor component of the overall variance of projected yield changes at different levels of global warming. Furthermore, scenario dependence can be reduced by accounting for the direct effects of CO2 fertilization in each global climate model (GCM)/impact model combination through an inclusion of the global atmospheric CO2 concentration as a second predictor. The choice of GCM output used to force the crop model simulations accounts for a slightly larger portion of the total yield variance, but the greatest contributor to variance in both global and regional crop yields and at all levels of warming, is the inter-crop-model spread. The unique multi impact model ensemble available with ISI-MIP data also indicates that the overall variability of crop yields is projected to increase in conjunction with increasing global mean temperature. This result is consistent throughout the ensemble of impact models and across many world regions. Such a hike in yield volatility could have

  18. Clouds, water vapor and the response of the extratropical jets to global warming

    NASA Astrophysics Data System (ADS)

    Voigt, A.; Shaw, T.

    2015-12-01

    Climate models suggest that global warming will cause substantial changes of the mid-latitude circulation, including meridional shifts of the extratropical jets and storm tracks. The magnitude, and in some circumstances even the sign, of these shifts remains subject to large model uncertainties, however. In this talk I will report on recent work that demonstrates the importance of longwave radiative effects of clouds and water vapor for the jet position and its response to warming. To this end, I will apply a hierarchy of climate models ranging from CMIP5 models in realisitic setups to dry idealized general circulation models. I will show that cloud changes, in particular those of the tropics and mid-latitudes, and high-latitude water vapor changes push the jet towards the pole under global warming, whereas equatorial water vapor changes pull the jet towards the equator. These radiative impacts of clouds and water vapor on the jet are found to be consistent with our understanding of the response of the dry circulation to diabatic heating. I will also discuss the extent to which mid-latitude clouds are controlled by the jet. Finally, I will show that CMIP5 model spread in warming-induced jet shifts is correlated with model spread in regional changes of clouds and water vapor. These results provide evidence that part of the climate model uncertainty in projections of future jet shifts might result from uncertainty in how clouds and water vapor respond to global warming, and how they modify the longwave radiation inside the atmosphere.

  19. Improved time-space method for 3-D heat transfer problems including global warming

    SciTech Connect

    Saitoh, T.S.; Wakashima, Shinichiro

    1999-07-01

    In this paper, the Time-Space Method (TSM) which has been proposed for solving general heat transfer and fluid flow problems was improved in order to cover global and urban warming. The TSM is effective in almost all-transient heat transfer and fluid flow problems, and has been already applied to the 2-D melting problems (or moving boundary problems). The computer running time will be reduced to only 1/100th--1/1000th of the existing schemes for 2-D and 3-D problems. However, in order to apply to much larger-scale problems, for example, global warming, urban warming and general ocean circulation, the SOR method (or other iterative methods) in four dimensions is somewhat tedious and provokingly slow. Motivated by the above situation, the authors improved the speed of iteration of the previous TSM by introducing the following ideas: (1) Timewise chopping: Time domain is chopped into small peaches to save memory requirement; (2) Adaptive iteration: Converged region is eliminated for further iteration; (3) Internal selective iteration: Equation with slow iteration speed in iterative procedure is selectively iterated to accelerate entire convergence; and (4) False transient integration: False transient term is added to the Poisson-type equation and the relevant solution is regarded as a parabolic equation. By adopting the above improvements, the higher-order finite different schemes and the hybrid mesh, the computer running time for the TSM is reduced to some 1/4600th of the conventional explicit method for a typical 3-D natural convection problem in a closed cavity. The proposed TSM will be more efficacious for large-scale environmental problems, such as global warming, urban warming and general ocean circulation, in which a tremendous computing time would be required.

  20. Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum.

    PubMed

    Pagani, Mark; Pedentchouk, Nikolai; Huber, Matthew; Sluijs, Appy; Schouten, Stefan; Brinkhuis, Henk; Damsté, Jaap S Sinninghe; Dickens, Gerald R

    2006-08-10

    The Palaeocene/Eocene thermal maximum represents a period of rapid, extreme global warming 55 million years ago, superimposed on an already warm world. This warming is associated with a severe shoaling of the ocean calcite compensation depth and a >2.5 per mil negative carbon isotope excursion in marine and soil carbonates. Together these observations indicate a massive release of 13C-depleted carbon and greenhouse-gas-induced warming. Recently, sediments were recovered from the central Arctic Ocean, providing the first opportunity to evaluate the environmental response at the North Pole at this time. Here we present stable hydrogen and carbon isotope measurements of terrestrial-plant- and aquatic-derived n-alkanes that record changes in hydrology, including surface water salinity and precipitation, and the global carbon cycle. Hydrogen isotope records are interpreted as documenting decreased rainout during moisture transport from lower latitudes and increased moisture delivery to the Arctic at the onset of the Palaeocene/Eocene thermal maximum, consistent with predictions of poleward storm track migrations during global warming. The terrestrial-plant carbon isotope excursion (about -4.5 to -6 per mil) is substantially larger than those of marine carbonates. Previously, this offset was explained by the physiological response of plants to increases in surface humidity. But this mechanism is not an effective explanation in this wet Arctic setting, leading us to hypothesize that the true magnitude of the excursion--and associated carbon input--was greater than originally surmised. Greater carbon release and strong hydrological cycle feedbacks may help explain the maintenance of this unprecedented warmth.

  1. Greenhouse-gas emission targets for limiting global warming to 2 degrees C.

    PubMed

    Meinshausen, Malte; Meinshausen, Nicolai; Hare, William; Raper, Sarah C B; Frieler, Katja; Knutti, Reto; Frame, David J; Allen, Myles R

    2009-04-30

    More than 100 countries have adopted a global warming limit of 2 degrees C or below (relative to pre-industrial levels) as a guiding principle for mitigation efforts to reduce climate change risks, impacts and damages. However, the greenhouse gas (GHG) emissions corresponding to a specified maximum warming are poorly known owing to uncertainties in the carbon cycle and the climate response. Here we provide a comprehensive probabilistic analysis aimed at quantifying GHG emission budgets for the 2000-50 period that would limit warming throughout the twenty-first century to below 2 degrees C, based on a combination of published distributions of climate system properties and observational constraints. We show that, for the chosen class of emission scenarios, both cumulative emissions up to 2050 and emission levels in 2050 are robust indicators of the probability that twenty-first century warming will not exceed 2 degrees C relative to pre-industrial temperatures. Limiting cumulative CO(2) emissions over 2000-50 to 1,000 Gt CO(2) yields a 25% probability of warming exceeding 2 degrees C-and a limit of 1,440 Gt CO(2) yields a 50% probability-given a representative estimate of the distribution of climate system properties. As known 2000-06 CO(2) emissions were approximately 234 Gt CO(2), less than half the proven economically recoverable oil, gas and coal reserves can still be emitted up to 2050 to achieve such a goal. Recent G8 Communiqués envisage halved global GHG emissions by 2050, for which we estimate a 12-45% probability of exceeding 2 degrees C-assuming 1990 as emission base year and a range of published climate sensitivity distributions. Emissions levels in 2020 are a less robust indicator, but for the scenarios considered, the probability of exceeding 2 degrees C rises to 53-87% if global GHG emissions are still more than 25% above 2000 levels in 2020.

  2. Global Warming.

    ERIC Educational Resources Information Center

    Rubin, Charles T.; Landy, Marc K.

    1993-01-01

    Two political scientists summarize what they have learned about the role science plays in policymaking. They explain how "greenhouse policy" is being driven by inadequate notions of scientific consensus, the improper use of scenarios, and a suspect analogy to buying insurance. (Author/MCO)

  3. Idealized Land-sea Warming Contrast Experiments with Two Global Circulation Models: Preliminary results

    NASA Astrophysics Data System (ADS)

    Kim, J. E. E.; Lee, J. L.; Hong, S. Y.

    2014-12-01

    Simulations of warming climates with climate models have pointed out that land surface temperatures will increase more rapidly than sea surface temperature (SST), which is known as the "land-sea warming contrast". We investigate the response of a zonally symmetric atmosphere to robust land-sea surface warming contrast using two global circulation models (GCMs): Non-hydrostatic Icosahedral Model (NIM) and Global and Regional Integrated Model system (GRIMs). NIM is a Finite-volume icosahedral model developed as a next-generation operational model at National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA ESRL). Full model physics were taken from Model for Prediction Across Scales (MPAS) physics suite. GRIMs is a spectral model which has been developed in Korea (Hong et al., 2013, APJAS). It has flexibility for selection of comparable physics options with NIM. Two sets of experiments are designed: one is the control experiment with zonally-symmetric distributions with maxima at the equator and varying off-equatorial temperature gradients on ocean and land. The other experiment will impose the land/sea warming ratio of 1.5. Since two models can be set up with identical physics parameterizations, general consensus on responses and model-dependent feedback can be suggested.

  4. [Labidocera euchaeta: its distribution in Yangtze River Estuary and responses to global warming].

    PubMed

    Xu, Zhao-Li; Gao, Qian

    2009-05-01

    Based on the investigation data from eight oceanographic censuses in Yangtze River Estuary (28 degrees 00'-32 degrees 00' N, 122 degrees 00'-123 degrees 30' E) in four seasons of 1959 and 2002, the seasonal distribution pattern of Labidocera euchaeta in the Estuary and the responses of this zooplankton to global warming were analyzed. In the study area, L. euchaeta had a higher average abundance in winter and spring than in summer and autumn, with the highest occurrence frequency in winter and an obvious aggregation in spring and summer. Water salinity was the key factor determining the horizontal distribution of L. euchaeta. The optimal water temperature and salinity for L. euchaeta were 16 degrees C and 12-20, respectively, indicating that this zooplankton belonged to a warm temperate brackish water species. Comparing with that in 1959, the abundance of L. euchaeta in 2002 decreased obviously, which could be related to global warming and suggested that L. euchaeta could be used as an important indictor species of ocean warming in Yangtze River Estuary. The high abundance of L. euchaeta in spring appeared in the most turbid zone of Yangtze River Estuary, being of significance in maintaining the functions of fishing grounds in the waters.

  5. Climate-change impact potentials as an alternative to global warming potentials

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Miko U. F.

    2014-03-01

    For policy applications, such as for the Kyoto Protocol, the climate-change contributions of different greenhouse gases are usually quantified through their global warming potentials. They are calculated based on the cumulative radiative forcing resulting from a pulse emission of a gas over a specified time period. However, these calculations are not explicitly linked to an assessment of ultimate climate-change impacts. A new metric, the climate-change impact potential (CCIP), is presented here that is based on explicitly defining the climate-change perturbations that lead to three different kinds of climate-change impacts. These kinds of impacts are: (1) those related directly to temperature increases; (2) those related to the rate of warming; and (3) those related to cumulative warming. From those definitions, a quantitative assessment of the importance of pulse emissions of each gas is developed, with each kind of impact assigned equal weight for an overall impact assessment. Total impacts are calculated under the RCP6 concentration pathway as a base case. The relevant climate-change impact potentials are then calculated as the marginal increase of those impacts over 100 years through the emission of an additional unit of each gas in 2010. These calculations are demonstrated for CO2, methane and nitrous oxide. Compared with global warming potentials, climate-change impact potentials would increase the importance of pulse emissions of long-lived nitrous oxide and reduce the importance of short-lived methane.

  6. Susceptibility to a metal under global warming is shaped by thermal adaptation along a latitudinal gradient.

    PubMed

    Dinh Van, Khuong; Janssens, Lizanne; Debecker, Sara; De Jonge, Maarten; Lambret, Philippe; Nilsson-Örtman, Viktor; Bervoets, Lieven; Stoks, Robby

    2013-09-01

    Global warming and contamination represent two major threats to biodiversity that have the potential to interact synergistically. There is the potential for gradual local thermal adaptation and dispersal to higher latitudes to mitigate the susceptibility of organisms to contaminants and global warming at high latitudes. Here, we applied a space-for-time substitution approach to study the thermal dependence of the susceptibility of Ischnura elegans damselfly larvae to zinc in a common garden warming experiment (20 and 24 °C) with replicated populations from three latitudes spanning >1500 km in Europe. We observed a striking latitude-specific effect of temperature on the zinc-induced mortality pattern; local thermal adaptation along the latitudinal gradient made Swedish, but not French, damselfly larvae more susceptible to zinc at 24 °C. Latitude- and temperature-specific differences in zinc susceptibility may be related to the amount of energy available to defend against and repair damage since Swedish larvae showed a much stronger zinc-induced reduction of food intake at 24 °C. The pattern of local thermal adaptation indicates that the predicted temperature increase of 4 °C by 2100 will strongly magnify the impact of a contaminant such as zinc at higher latitudes unless there is thermal evolution and/or migration of lower latitude genotypes. Our results underscore the critical importance of studying the susceptibility to contaminants under realistic warming scenarios taking into account local thermal adaptation across natural temperature gradients.

  7. Mountain-climbing bears protect cherry species from global warming through vertical seed dispersal.

    PubMed

    Naoe, Shoji; Tayasu, Ichiro; Sakai, Yoichiro; Masaki, Takashi; Kobayashi, Kazuki; Nakajima, Akiko; Sato, Yoshikazu; Yamazaki, Koji; Kiyokawa, Hiroki; Koike, Shinsuke

    2016-04-25

    In a warming climate, temperature-sensitive plants must move toward colder areas, that is, higher latitude or altitude, by seed dispersal [1]. Considering that the temperature drop with increasing altitude (-0.65°C per 100 m altitude) is one hundred to a thousand times larger than that of the equivalent latitudinal distance [2], vertical seed dispersal is probably a key process for plant escape from warming temperatures. In fact, plant geographical distributions are tracking global warming altitudinally rather than latitudinally, and the extent of tracking is considered to be large in plants with better-dispersed traits (e.g., lighter seeds in wind-dispersed plants) [1]. However, no study has evaluated vertical seed dispersal itself due to technical difficulty or high cost. Here, we show using a stable oxygen isotope that black bears disperse seeds of wild cherry over several hundred meters vertically, and that the dispersal direction is heavily biased towards the mountain tops. Mountain climbing by bears following spring-to-summer plant phenology is likely the cause of this biased seed dispersal. These results suggest that spring- and summer-fruiting plants dispersed by animals may have high potential to escape global warming. Our results also indicate that the direction of vertical seed dispersal can be unexpectedly biased, and highlight the importance of considering seed dispersal direction to understand plant responses to past and future climate change.

  8. The mid-Cretaceous super plume, carbon dioxide, and global warming

    NASA Technical Reports Server (NTRS)

    Caldeira, Ken; Rampino, Michael R.

    1991-01-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. A carbonate-silicate cycle model is developed to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern preindustrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7 C over today's glogal mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 C, within the 6 to 14 C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20 percent of the mid-Cretaceous increase in atmospheric CO2.

  9. Increasing contrasts between wet and dry precipitation extremes during the "global warming hiatus" (1998-2013)

    NASA Astrophysics Data System (ADS)

    Lau, W. K. M.; Wu, H. T.

    2015-12-01

    We investigate changes in daily precipitation extremes using TRMM data (1998-2013), which coincides with the so-called "global warming hiatus". Results show a structural change in probability distribution functions (pdf) of local precipitation events (LPE) during this period, indicating more intense LPE, less moderate LPE, and more dry (no-rain) days globally. Analyses for land and ocean separately reveal more complex and nuanced changes over land, characterized by a strong positive trend (+12.0% per decade, 99% confidence level (c.l.)) in frequency of extreme LPE's over the Northern Hemisphere extratropics during the wet season, but a negative global trend (-6.6% per decade, 95% c.l.) during the dry season. Analyses of the risk of drought based on the number of dry days show a significant global drying trend (3.2% per decade, 99% c.l.) over land during the dry season. Regions of pronounced increased drought include western and central US, northeastern Asia and southern Europe/Mediterranean. Trends in cloud distributions from TRMM VIS-IR, and relative humidity from reanalysis have also been examined. Overall, the changes in water cycle parameters are consistent with increasing contrasts between wet and dry precipitation extremes, as reported in previous studies based on observations and climate model projections for a longer period, implying changes in global water cycle was underway during 1998-2013 as if there is no "global warming hiatus". The implications of the present results will be discussed.

  10. A Simple Calorimetric Experiment that Highlights Aspects of Global Heat Retention and Global Warming

    ERIC Educational Resources Information Center

    Burley, Joel D.; Johnston, Harold S.

    2007-01-01

    In this laboratory experiment, general chemistry students measure the heating curves for three different systems: (i) 500 g of room-temperature water heated by a small desk lamp, (ii) 500 g of an ice-water mixture warmed by conduction with room-temperature surroundings, and (iii) 500 g of an ice-water mixture heated by a small desk lamp and by…

  11. Global-warming mitigation potential of three tree-plantation scenarios. Final report, September 1989-June 1990

    SciTech Connect

    Peer, R.L.; Campbell, D.L.; Hohenstein, W.G.

    1991-02-01

    The report gives results of an analysis of three alternative uses of forests in the U.S. to reduce atmospheric carbon dioxide (CO{sub 2}) concentrations: (1) planting trees with no harvesting, (2) traditional forestry, and (3) short-rotation intensive culture of trees for biomass. Increasing concentrations of CO{sub 2} and other radiatively important trace gases (RITGs) are of concern due to their potential to alter the Earth's climate. Some scientists, after reviewing the results of general circulation models, predict rising average temperatures and alterations in the Earth's hydrologic cycle. While the debate continues over the actual magnitude of global warming, most scientists agree that some change will occur over the next century. This places a burden on policymakers to address global warming and to develop mitigation measures. Since forests provide a sink for carbon by fixing CO{sub 2} to produce biomass, halting deforestation and creating new forests have been proposed as ways to slow the buildup of carbon in the Earth's atmosphere.

  12. Global warming is changing the dynamics of Arctic host-parasite systems.

    PubMed

    Kutz, S J; Hoberg, E P; Polley, L; Jenkins, E J

    2005-12-22

    Global climate change is altering the ecology of infectious agents and driving the emergence of disease in people, domestic animals, and wildlife. We present a novel, empirically based, predictive model for the impact of climate warming on development rates and availability of an important parasitic nematode of muskoxen in the Canadian Arctic, a region that is particularly vulnerable to climate change. Using this model, we show that warming in the Arctic may have already radically altered the transmission dynamics of this parasite, escalating infection pressure for muskoxen, and that this trend is expected to continue. This work establishes a foundation for understanding responses to climate change of other host-parasite systems, in the Arctic and globally.

  13. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming.

    PubMed

    Huang, Ping; Lin, I-I; Chou, Chia; Huang, Rong-Hui

    2015-05-18

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.

  14. Enhanced or Weakened Western North Pacific Subtropical High under Global Warming?

    PubMed

    He, Chao; Zhou, Tianjun; Lin, Ailan; Wu, Bo; Gu, Dejun; Li, Chunhui; Zheng, Bin

    2015-11-26

    The Western North Pacific Subtropical High (WNPSH) regulates East Asian climate in summer. Anomalous WNPSH causes floods, droughts and heat waves in China, Japan and Korea. The potential change of the WNPSH under global warming is concerned by Asian people, but whether the WNPSH would be enhanced or weakened remains inconclusive. Based on the multi-model climate change projection from the 5th phase of Coupled Model Intercomparison Project (CMIP5), we show evidences that the WNPSH tends to weaken and retreat eastward in the mid-troposphere in response to global warming, accompanied by an eastward expansion of East Asian rain belt along the northwestern flank of WNPSH. Weakened meridional temperature gradient on the northern flank of WNPSH and the associated thermal wind account for the weakened WNPSH in the mid troposphere. We recommend the WNPSH be measured by eddy geopotential height (He) instead of traditionally used geopotential height, especially in climate change studies.

  15. Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions?

    NASA Astrophysics Data System (ADS)

    Barbero, R.; Fowler, H. J.; Lenderink, G.; Blenkinsop, S.

    2017-01-01

    Although it has been documented that daily precipitation extremes are increasing worldwide, faster increases may be expected for subdaily extremes. Here after a careful quality control procedure, we compared trends in hourly and daily precipitation extremes using a large network of stations across the United States (U.S.) within the 1950-2011 period. A greater number of significant increasing trends in annual and seasonal maximum precipitation were detected from daily extremes, with the primary exception of wintertime. Our results also show that the mean percentage change in annual maximum daily precipitation across the U.S. per global warming degree is 6.9% °C-1 (in agreement with the Clausius-Clapeyron rate) while lower sensitivities were observed for hourly extremes, suggesting that changes in the magnitude of subdaily extremes in response to global warming emerge more slowly than those for daily extremes in the climate record.

  16. Climate change, global warming and coral reefs: modelling the effects of temperature.

    PubMed

    Crabbe, M James C

    2008-10-01

    Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs.

  17. Climate change. Projected increase in lightning strikes in the United States due to global warming.

    PubMed

    Romps, David M; Seeley, Jacob T; Vollaro, David; Molinari, John

    2014-11-14

    Lightning plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on lightning rates is poorly constrained. Here we propose that the lightning flash rate is proportional to the convective available potential energy (CAPE) times the precipitation rate. Using observations, the product of CAPE and precipitation explains 77% of the variance in the time series of total cloud-to-ground lightning flashes over the contiguous United States (CONUS). Storms convert CAPE times precipitated water mass to discharged lightning energy with an efficiency of 1%. When this proxy is applied to 11 climate models, CONUS lightning strikes are predicted to increase 12 ± 5% per degree Celsius of global warming and about 50% over this century.

  18. The Global Warming Debate: A Review of the State of Science

    NASA Astrophysics Data System (ADS)

    Khandekar, M. L.; Murty, T. S.; Chittibabu, P.

    2005-08-01

    A review of the present status of the global warming science is presented in this paper. The term global warming is now popularly used to refer to the recent reported increase in the mean surface temperature of the earth; this increase being attributed to increasing human activity and in particular to the increased concentration of greenhouse gases (carbon dioxide, methane and nitrous oxide) in the atmosphere. Since the mid to late 1980s there has been an intense and often emotional debate on this topic. The various climate change reports (1996, 2001) prepared by the IPCC (Intergovernmental Panel on Climate Change), have provided the scientific framework that ultimately led to the Kyoto protocol on the reduction of greenhouse gas emissions (particularly carbon dioxide) due to the burning of fossil fuels. Numerous peer-reviewed studies reported in recent literature have attempted to verify several of the projections on climate change that have been detailed by the IPCC reports.

  19. The role of clouds and oceans in global greenhouse warming. Part 1, Progress report

    SciTech Connect

    Hoffert, M.I.

    1992-12-01

    During the past three years we have conducted several studies using models and a combination of satellite data, in situ meteorological and oceanic data, and paleoclimate reconstructions, under the DoE program, ``Quantifying the Link Between Change in Radiative Balance and Atmospheric Temperature``. Our goals were to investigate effects of global cloudiness variations on global climate and their implications for cloud feedback and continue development and application of NYU transient climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by both the clouds and oceans. Our original research plan emphasized the use of cloud, surface temperature and ocean data sets interpreted by focused climate/ocean models to develop a cloud radiative forcing scenario for the past 100 years and to assess the transient climate response; to narrow key uncertainties in the system; and to identify those aspects of the climate system most likely to be affected by greenhouse warming over short, medium and long time scales.

  20. Partisan differences in the relationship between newspaper coverage and concern over global warming.

    PubMed

    Zhao, Xiaoquan; Rolfe-Redding, Justin; Kotcher, John E

    2016-07-01

    The effects of news media on public opinion about global warming have been a topic of much interest in both academic and popular discourse. Empirical evidence in this regard, however, is still limited and somewhat mixed. This study used data from the 2006 General Social Survey in combination with a content analysis of newspaper coverage of the same time period to examine the relationship between general news climate and public concern about global warming. Results showed a pattern of political polarization, with increased coverage associated with growing divergence between Democrats and Republicans. Further analysis also showed evidence of reactivity in partisan response to coverage from different news outlets. These findings point to a particular form of politically motivated, biased processing of news information.