Science.gov

Sample records for addressing groundwater contamination

  1. Addressing Uncertainty in Contaminant Transport in Groundwater Using the Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Dwivedi, D.; Mohanty, B. P.

    2011-12-01

    Nitrate in groundwater shows significant uncertainty which arises from sparse data and interaction among multiple geophysical factors such as source availability (land use), thickness and composition of the vadose zone, types of aquifers (confined or unconfined), aquifer heterogeneity (geological and alluvial), precipitation characteristics, etc. This work presents the fusion of the ensemble Kalman filter (EnKF) with the numerical groundwater flow model MODFLOW and the solute transport model MT3DMS. The EnKF is a sequential data assimilation approach, which is applied to quantify and reduce the uncertainty of groundwater flow and solute transport models. We conducted numerical simulation experiments for the period January 1990 to December 2005 with MODFLOW and MT3DMS models for variably saturated groundwater flow in various aquifers across Texas. The EnKF was used to update the model parameters, hydraulic conductivity, hydraulic head and solute concentration. Results indicate that the EnKF method notably improves the estimation of the hydraulic conductivity distribution and solute transport prediction by assimilating piezometric head measurements with a known nitrate initial condition. A better estimation of hydraulic conductivity and assimilation of continuous measurements of solute concentrations resulted in reduced uncertainty in MODFLOW and MT3DMS models. It was found that the observation locations and locations in spatial proximity were appropriately corrected by the EnKF. The knowledge of nitrate plume evolution provided an insight into model structure, parameters, and sources of uncertainty.

  2. Experiences with groundwater contamination

    SciTech Connect

    Not Available

    1984-01-01

    This book discusses developments in combating groundwater contamination. The papers include: Regulation of Groundwater; Utility Experiences Related to Existing and Proposed Drinking Water Regulations; Point-of-Use Treatment Technology to Control Organic and Inorganic Contamination; Hazardous Waste Disposal Practices and Groundwater Contamination; Reverse Osmosis Treatment to Control Inorganic and Volatile Organic Contamination; The Dilemma of New Wells Versus Treatment; Characteristics and Handling of Wastes From Groundwater Treatment Systems; and Removing Solvents to Restore Drinking Water at Darien, Connecticut.

  3. Groundwater contamination in Japan

    NASA Astrophysics Data System (ADS)

    Tase, Norio

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.

  4. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, Terry C.; Fliermans, Carl B.

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  5. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1995-01-24

    An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

  6. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

  7. Contain contaminated groundwater

    SciTech Connect

    Mutch, R.D. Jr.; Caputi, J.R.; Ash, R.E. IV

    1997-05-01

    Despite recent progress in innovative treatment technologies, many problems with contaminated groundwater still require the use of barrier walls, typically in combination with extraction and treatment systems. New technologies for subsurface barrier walls, mostly based on geomembranes, advancements in self-hardening slurries and permeation grouts with materials such as colloidal silica gel and montan wax emulsions, are being developed at an unprecedented pace. The paper discusses deep soil mixing, jet grouting, slurry trenches, and permeation grouting.

  8. Procedures for addressing uncertainty and variability in exposure to characterize potential health risk from trichloroethylene contaminated groundwater at Beale Air Force Base in California

    SciTech Connect

    Bogen, K T; Daniels, J I; Hall, L C

    1999-09-01

    This study was designed to accomplish two objectives. The first was to provide to the US Air Force and the regulatory community quantitative procedures that they might want to consider using for addressing uncertainty and variability in exposure to better characterize potential health risk. Such methods could be used at sites where populations may now or in the future be faced with using groundwater contaminated with low concentrations of the chemical trichloroethylene (TCE). The second was to illustrate and explain the application of these procedures with respect to available data for TCE in ground water beneath an inactive landfill site that is undergoing remediation at Beale Air Force Base in California. The results from this illustration provide more detail than the more traditional conservative deterministic, screening-level calculations of risk, also computed for purposes of comparison. Application of the procedures described in this report can lead to more reasonable and equitable risk-acceptability criteria for potentially exposed populations at specific sites.

  9. Solutions Remediate Contaminated Groundwater

    NASA Technical Reports Server (NTRS)

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  10. Hydrocarbon contaminated soils and groundwater

    SciTech Connect

    Kostecki, P.T.

    1992-01-01

    This book contains the proceedings of hydrocarbon contaminated soils and groundwater. Topics covered include: Perspectives on hydrocarbon contamination; regulations; environmental fate and modeling; sampling and site assessment; remediation assessment and design; and remediation case studies.

  11. Groundwater recharge and agricultural contamination

    USGS Publications Warehouse

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  12. Groundwater recharge and agricultural contamination

    NASA Astrophysics Data System (ADS)

    Böhlke, John-Karl

    2002-02-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agricultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3 -, N2, Cl, SO4 2-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well as a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3 -, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  13. Groundwater arsenic contamination throughout China.

    PubMed

    Rodríguez-Lado, Luis; Sun, Guifan; Berg, Michael; Zhang, Qiang; Xue, Hanbin; Zheng, Quanmei; Johnson, C Annette

    2013-08-23

    Arsenic-contaminated groundwater used for drinking in China is a health threat that was first recognized in the 1960s. However, because of the sheer size of the country, millions of groundwater wells remain to be tested in order to determine the magnitude of the problem. We developed a statistical risk model that classifies safe and unsafe areas with respect to geogenic arsenic contamination in China, using the threshold of 10 micrograms per liter, the World Health Organization guideline and current Chinese standard for drinking water. We estimate that 19.6 million people are at risk of being affected by the consumption of arsenic-contaminated groundwater. Although the results must be confirmed with additional field measurements, our risk model identifies numerous arsenic-affected areas and highlights the potential magnitude of this health threat in China.

  14. Groundwater contamination from stormwater infiltration

    SciTech Connect

    Pitt, R.; Clark, S.; Parmer, K.

    1995-10-01

    The research summarized here was conducted during the first year of a 3-yr cooperative agreement (CR819573) to identify and control stormwater toxicants, especially those adversely affecting groundwater. The purpose of this research effort was to review the groundwater contamination literature as it relates to stormwater. Prior to urbanization groundwater is recharged by rainfall-runoff and snowmelt infiltrating through pervious surfaces including grasslands and woods. This infiltrating water is relatively uncontaminated. Urbanization, however, reduces the permeable soil surface area through which recharge by infiltration occurs. This results in much less groundwater recharge and greatly increased surface runoff. In addition the waters available for recharge carry increased quantities of pollutants. With urbanization, waters having elevated contaminant concentrations also recharge groundwater including effluent from domestic septic tanks, wastewater from percolation basins and industrial waste injection wells, infiltrating stormwater, and infiltrating water from agricultural irrigation. The areas of main concern that are covered by this paper are: the source of the pollutants, stormwater constituents having a high potential to contaminate groundwater, and the treatment necessary for stormwater.

  15. Evaluating potential groundwater contamination from contaminated soils

    SciTech Connect

    Pratt, J.R.; McCormick, P.V.; Pontasch, K.W.; Cairns, J.

    1987-01-01

    Contamination of soils at toxic and hazardous-waste sites can adversely affect groundwater and surface water. Water-soluble materials can move in soil by leaching and percolation and by runoff. The project evaluated the toxicity of leachable toxicants from seven soils, five of which were obtained from designated toxic or hazardous-waste sites. Acidified, dechlorinated tap water was used to extract toxic materials from surface soils. Extracts were used as complex mixtures in acute-toxicity tests using Daphnia and in chronic-effect tests using microcosms. Three classes of effects were observed. Some leachates (including control soils) showed no toxicity. Some soil leachates had moderate acute toxicity (50-80% diluted leachate) and no chronic toxicity. Very toxic soils showed both acute and chronic toxicity at <3% leachate. Toxicological evaluations of contaminants in waste-site soils can provide information not available from chemical analyses and may be useful in verifying the effectiveness of cleanup effort.

  16. Inexact Socio-Dynamic Modeling of Groundwater Contamination Management

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Zhang, X.

    2015-12-01

    Groundwater contamination may alter the behaviors of the public such as adaptation to such a contamination event. On the other hand, social behaviors may affect groundwater contamination and associated risk levels such as through changing ingestion amount of groundwater due to the contamination. Decisions should consider not only the contamination itself, but also social attitudes on such contamination events. Such decisions are inherently associated with uncertainty, such as subjective judgement from decision makers and their implicit knowledge on selection of whether to supply water or reduce the amount of supplied water under the scenario of the contamination. A socio-dynamic model based on the theories of information-gap and fuzzy sets is being developed to address the social behaviors facing the groundwater contamination and applied to a synthetic problem designed based on typical groundwater remediation sites where the effects of social behaviors on decisions are investigated and analyzed. Different uncertainties including deep uncertainty and vague/ambiguous uncertainty are effectively and integrally addressed. The results can provide scientifically-defensible decision supports for groundwater management in face of the contamination.

  17. Situ treatment of contaminated groundwater

    DOEpatents

    McNab, Jr., Walt W.; Ruiz, Roberto; Pico, Tristan M.

    2001-01-01

    A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

  18. [Construction of groundwater contamination prevention mapping system].

    PubMed

    Wang, Jun-Jie; He, Jiang-Tao; Lu, Yan; Liu, Li-Ya; Zhang, Xiao-Liang

    2012-09-01

    Groundwater contamination prevention mapping is an important component of groundwater contamination geological survey and assessment work, which could provide the basis for making and implementing groundwater contamination prevention planning. A groundwater contamination prevention mapping system was constructed in view of the synthetic consideration on nature perspective derived from groundwater contamination sources and aquifer itself, social-economic perspective, policy perspective derived from outside. During the system construction process, analytic hierarchy process and relevant overlaying principles were used to couple groundwater contamination risk assessment, groundwater value as well as wellhead protection area zoning. Data processing and visualization of mapping results were achieved in the GIS environment. The research on groundwater contamination prevention mapping in Beijing Plain indicated that the final groundwater prevention map was in accordance with the actual conditions and well reflected the priorities of groundwater prevention, which could play a guidance role in designing and implementing further practical prevention and supervision measures. Besides, because of the dynamical properties of the system components, it was suggested to analyze the update frequency of the mapping.

  19. Protecting the nation's groundwater from contamination

    SciTech Connect

    LeVeen, E.P.

    1985-05-01

    Since groundwater provides approximately half of the nations drinking water, national concern has been focused on the depletion of groundwater. Today, however, the concern is shifting increasingly to the problem of contamination from toxic wastes. Contamination is more serious than depletion, for contamination can suddenly render a water supply worthless, thus causing unexpected and potentially enormous costs of substitute water supplies for home use, adverse impacts on the health of humans and livestock, and dislocation in regional economic activity. This paper reviews a report ''Protecting the Nation's Groundwater from Contamination'' issued by the US Congress Office of Technology Assessment.

  20. Groundwater nitrate contamination: factors and indicators.

    PubMed

    Wick, Katharina; Heumesser, Christine; Schmid, Erwin

    2012-11-30

    Identifying significant determinants of groundwater nitrate contamination is critical in order to define sensible agri-environmental indicators that support the design, enforcement, and monitoring of regulatory policies. We use data from approximately 1200 Austrian municipalities to provide a detailed statistical analysis of (1) the factors influencing groundwater nitrate contamination and (2) the predictive capacity of the Gross Nitrogen Balance, one of the most commonly used agri-environmental indicators. We find that the percentage of cropland in a given region correlates positively with nitrate concentration in groundwater. Additionally, environmental characteristics such as temperature and precipitation are important co-factors. Higher average temperatures result in lower nitrate contamination of groundwater, possibly due to increased evapotranspiration. Higher average precipitation dilutes nitrates in the soil, further reducing groundwater nitrate concentration. Finally, we assess whether the Gross Nitrogen Balance is a valid predictor of groundwater nitrate contamination. Our regression analysis reveals that the Gross Nitrogen Balance is a statistically significant predictor for nitrate contamination. We also show that its predictive power can be improved if we account for average regional precipitation. The Gross Nitrogen Balance predicts nitrate contamination in groundwater more precisely in regions with higher average precipitation.

  1. Groundwater nitrate contamination: Factors and indicators

    PubMed Central

    Wick, Katharina; Heumesser, Christine; Schmid, Erwin

    2012-01-01

    Identifying significant determinants of groundwater nitrate contamination is critical in order to define sensible agri-environmental indicators that support the design, enforcement, and monitoring of regulatory policies. We use data from approximately 1200 Austrian municipalities to provide a detailed statistical analysis of (1) the factors influencing groundwater nitrate contamination and (2) the predictive capacity of the Gross Nitrogen Balance, one of the most commonly used agri-environmental indicators. We find that the percentage of cropland in a given region correlates positively with nitrate concentration in groundwater. Additionally, environmental characteristics such as temperature and precipitation are important co-factors. Higher average temperatures result in lower nitrate contamination of groundwater, possibly due to increased evapotranspiration. Higher average precipitation dilutes nitrates in the soil, further reducing groundwater nitrate concentration. Finally, we assess whether the Gross Nitrogen Balance is a valid predictor of groundwater nitrate contamination. Our regression analysis reveals that the Gross Nitrogen Balance is a statistically significant predictor for nitrate contamination. We also show that its predictive power can be improved if we account for average regional precipitation. The Gross Nitrogen Balance predicts nitrate contamination in groundwater more precisely in regions with higher average precipitation. PMID:22906701

  2. Groundwater contamination and pollution in micronesia

    NASA Astrophysics Data System (ADS)

    Detay, M.; Alessandrello, E.; Come, P.; Groom, I.

    1989-12-01

    This paper is an overview of groundwater contamination and pollution in th e main islands of the Federated States of Micronesia, the Republic of the Marshall Islands and the Republic of Belau (Palau). A strategy for the comprehensive protection of groundwater resources in the Trust Territory of the Pacific Islands is proposed.

  3. Impact Of Groundwater Discharge On Contaminant Behavior In Sediments

    EPA Science Inventory

    The discharge of groundwater into surface water may influence the concentrations and availability of contaminants in sediments. There are three predominant pathways by which groundwater may affect the characteristics of contaminated sediments: 1) direct contribution of contamin...

  4. Contamination and restoration of groundwater aquifers.

    PubMed Central

    Piver, W T

    1993-01-01

    Humans are exposed to chemicals in contaminated groundwaters that are used as sources of drinking water. Chemicals contaminate groundwater resources as a result of waste disposal methods for toxic chemicals, overuse of agricultural chemicals, and leakage of chemicals into the subsurface from buried tanks used to hold fluid chemicals and fuels. In the process, both the solid portions of the subsurface and the groundwaters that flow through these porous structures have become contaminated. Restoring these aquifers and minimizing human exposure to the parent chemicals and their degradation products will require the identification of suitable biomarkers of human exposure; better understandings of how exposure can be related to disease outcome; better understandings of mechanisms of transport of pollutants in the heterogeneous structures of the subsurface; and field testing and evaluation of methods proposed to restore and cleanup contaminated aquifers. In this review, progress in these many different but related activities is presented. PMID:8354172

  5. Contamination and restoration of groundwater aquifers.

    PubMed

    Piver, W T

    1993-04-01

    Humans are exposed to chemicals in contaminated groundwaters that are used as sources of drinking water. Chemicals contaminate groundwater resources as a result of waste disposal methods for toxic chemicals, overuse of agricultural chemicals, and leakage of chemicals into the subsurface from buried tanks used to hold fluid chemicals and fuels. In the process, both the solid portions of the subsurface and the groundwaters that flow through these porous structures have become contaminated. Restoring these aquifers and minimizing human exposure to the parent chemicals and their degradation products will require the identification of suitable biomarkers of human exposure; better understandings of how exposure can be related to disease outcome; better understandings of mechanisms of transport of pollutants in the heterogeneous structures of the subsurface; and field testing and evaluation of methods proposed to restore and cleanup contaminated aquifers. In this review, progress in these many different but related activities is presented.

  6. Y-12 Groundwater Protection Program Extent Of The Primary Groundwater Contaminants At The Y-12 National Security Complex

    SciTech Connect

    2013-12-01

    This report presents data summary tables and maps used to define and illustrate the approximate lateral extent of groundwater contamination at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The data tables and maps address the primary (i.e., most widespread and mobile) organic, inorganic, and radiological contaminants in the groundwater. The sampling locations, calculated contaminant concentrations, plume boundary values, and paired map format used to define, quantify, delineate, and illustrate the approximate extent of the primary organic, inorganic, and radiological contaminants in groundwater at Y-12 are described.

  7. Groundwater Contamination. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    ERIC Educational Resources Information Center

    Cole, Charles A.

    Described is a presentation and learning session on groundwater, which is intended to educate advisory groups interested in improving water quality decision making. Among the areas addressed are the importance of groundwater, sources of contamination, and groundwater pollution control programs. These materials are part of the Working for Clean…

  8. Association of leukemia with radium groundwater contamination.

    PubMed

    Lyman, G H; Lyman, C G; Johnson, W

    1985-08-01

    Radiation exposure, including the ingestion of radium, has been causally associated with leukemia in man. Groundwater samples from 27 counties on or near Florida phosphate lands were found to exceed 5 pCi/L total radium in 12.4% of measurements. The incidence of leukemia was greater in those counties with high levels of radium contamination (greater than 10% of the samples contaminated) than in those with low levels of contamination. Rank correlation coefficients of .56 and .45 were observed between the radium contamination level and the incidence of total leukemia and acute myeloid leukemia, respectively. The standardized incidence density ratio for those in high-contamination counties was 1.5 for total leukemia and 2.0 for acute myeloid leukemia. Further investigation is necessary, however, before a causal relationship between groundwater radium content and human leukemia can be established.

  9. In situ remediation of uranium contaminated groundwater

    SciTech Connect

    Dwyer, B.P.; Marozas, D.C.

    1997-12-31

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.

  10. RAPID REMOVAL OF A GROUNDWATER CONTAMINANT PLUME.

    USGS Publications Warehouse

    Lefkoff, L. Jeff; Gorelick, Steven M.; ,

    1985-01-01

    A groundwater management model is used to design an aquifer restoration system that removes a contaminant plume from a hypothetical aquifer in four years. The design model utilizes groundwater flow simulation and mathematical optimization. Optimal pumping and injection strategies achieve rapid restoration for a minimum total pumping cost. Rapid restoration is accomplished by maintaining specified groundwater velocities around the plume perimeter towards a group of pumping wells located near the plume center. The model does not account for hydrodynamic dispersion. Results show that pumping costs are particularly sensitive to injection capacity. An 8 percent decrease in the maximum allowable injection rate may lead to a 29 percent increase in total pumping costs.

  11. Complexity of Groundwater Contaminants at DOE Sites

    SciTech Connect

    Hazen, T.C.; Faybishenko, B.; Jordan, P.

    2010-12-03

    The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base (GWD) presents data as of 2003 for 221 groundwater plumes at 60 DOE sites

  12. PRACTICAL DIAGNOSIS OF BIOSTIMULATION FOR VOC CONTAMINATED SOIL AND GROUNDWATER

    NASA Astrophysics Data System (ADS)

    Suzuki, Keiichi; Ando, Takuya; Ito, Yoshitaka; Sato, Takeshi

    Biostimulation has been widely used as a remediation of soil and groundwater contaminated by chlorinated volatile organic compounds (VOC). The chemical and biological systems in actual field are so complicated that it is hard to know the mathematical modeling parameters prior to laboratory tests using contaminated soil and groundwater sampled from specific site. The paper addresses an diagnostic method to evaluate the parameters controlling the lag time an d the chemical reaction rate which are essential to predict efficiency of biostimulation in actual field. In this paper, laboratory test results of thirtyseven sites are stochastically reanalyzed to make clear the dependency of the lag time and the chemical reaction rate on groundwater quality indices, such as DO, ORP, pH, etc.

  13. Enhancement of the biodegradability of aromatic groundwater contaminants.

    PubMed

    Bittkau, Anke; Geyer, Roland; Bhatt, Manish; Schlosser, Dietmar

    2004-12-15

    Groundwater (GW) from the Bitterfeld industrial region, Central Germany, is contaminated mainly with monochlorobenzene (MCB). Accordingly, current research addresses the development of feasible in situ groundwater remediation technologies. Although easily degradable under aerobic conditions, MCB persists in the essentially anaerobic Bitterfeld aquifer. Therefore, we focused on primary oxidation of MCB and the subsequent anaerobic biodegradability of MCB oxidation products by the indigenous microbial community. In groundwater microcosms, most efficient MCB removal was observed upon treatment with Fenton's reagent (H2O2 + Fe2+), which produces the highly reactive hydroxyl radical and Fe3+ simultaneously. Phospholipid fatty acid analysis following different treatments suggested respective shifts of the microbial community compositions, and indicated that Fenton's reagent had a rather beneficial than an adverse effect on biomass development. Potential metabolites of hydroxyl radical attack on MCB such as chlorohydroquinone, hydroquinone, catechol, resorcinol, and phenol were anaerobically degraded by the groundwater microbial community under Fe3+ -reducing conditions.

  14. Method to Remove Uranium/Vanadium Contamination from Groundwater

    SciTech Connect

    Metzler, Donald R.; Morrison Stanley

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  15. Method to remove uranium/vanadium contamination from groundwater

    DOEpatents

    Metzler, Donald R.; Morrison, Stanley

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  16. Remediation of groundwater contaminated with radioactive compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both naturally radioactive isotopes and isotopes from man-made sources may appear in groundwater. Depending on the physical and chemical characteristics of the contaminant, different types of treatment methods must be applied to reduce the concentration. The following chapter discusses treatment opt...

  17. Groundwater contamination downstream of a contaminant penetration site. II. Horizontal penetration of the contaminant plume

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    2002-01-01

    Part I of this study (Rubin, H.; Buddemeier, R.W. Groundwater Contamination Downstream of a Contaminant Penetration Site Part 1: Extension-Expansion of the Contaminant Plume. J. of Environmental Science and Health Part A (in press).) addressed cases, in which a comparatively thin contaminated region represented by boundary layers (BLs) developed within the freshwater aquifer close to contaminant penetration site. However, at some distance downstream from the penetration site, the top of the contaminant plume reaches the top or bottom of the aquifer. This is the location of the "attachment point," which comprises the entrance cross section of the domain evaluated by the present part of the study. It is shown that downstream from the entrance cross section, a set of two BLs develop in the aquifer, termed inner and outer BLs. It is assumed that the evaluated domain, in which the contaminant distribution gradually becomes uniform, can be divided into two sections, designated: (a) the restructuring section, and (b) the establishment section. In the restructuring section, the vertical concentration gradient leads to expansion of the inner BL at the expense of the outer BL, and there is almost no transfer of contaminant mass between the two layers. In the establishment section, each of the BLs occupies half of the aquifer thickness, and the vertical concentration gradient leads to transfer of contaminant mass from the inner to the outer BL. By use of BL approximations, changes of salinity distribution in the aquifer are calculated and evaluated. The establishment section ends at the uniformity point, downstream from which the contaminant concentration profile is practically uniform. The length of the restructuring section, as well as that of the establishment section, is approximately proportional to the aquifer thickness squared, and is inversely proportional to the transverse dispersivity. The study provides a convenient set of definitions and terminology that are

  18. Groundwater contamination downstream of a contaminant penetration site. II. Horizontal penetration of the contaminant plume.

    PubMed

    Rubin, Hillel; Buddemeier, Robert W

    2002-11-01

    Part I of this study (Rubin, H.; Buddemeier, R.W. Groundwater Contamination Downstream of a Contaminant Penetration Site Part 1: Extension-Expansion of the Contaminant Plume. J. of Environmental Science and Health Part A (in press).) addressed cases, in which a comparatively thin contaminated region represented by boundary layers (BLs) developed within the freshwater aquifer close to contaminant penetration site. However, at some distance downstream from the penetration site, the top of the contaminant plume reaches the top or bottom of the aquifer. This is the location of the "attachment point," which comprises the entrance cross section of the domain evaluated by the present part of the study. It is shown that downstream from the entrance cross section, a set of two BLs develop in the aquifer, termed inner and outer BLs. It is assumed that the evaluated domain, in which the contaminant distribution gradually becomes uniform, can be divided into two sections, designated: (a) the restructuring section, and (b) the establishment section. In the restructuring section, the vertical concentration gradient leads to expansion of the inner BL at the expense of the outer BL, and there is almost no transfer of contaminant mass between the two layers. In the establishment section, each of the BLs occupies half of the aquifer thickness, and the vertical concentration gradient leads to transfer of contaminant mass from the inner to the outer BL. By use of BL approximations, changes of salinity distribution in the aquifer are calculated and evaluated. The establishment section ends at the uniformity point, downstream from which the contaminant concentration profile is practically uniform. The length of the restructuring section, as well as that of the establishment section, is approximately proportional to the aquifer thickness squared, and is inversely proportional to the transverse dispersivity. The study provides a convenient set of definitions and terminology that are

  19. Site Characterization To Support Use Of Monitored Natural Attentuation For Remediation Of Inorganic Contaminants In Groundwater

    EPA Science Inventory

    Technical recommendations have recently been published by the U.S. Environmental Protection Agency to address site characterization needed to support selection of Monitored Natural Attenuation (MNA) for cleanup of inorganic contaminant plumes in groundwater. Immobilization onto ...

  20. Remediation technologies for heavy metal contaminated groundwater.

    PubMed

    Hashim, M A; Mukhopadhyay, Soumyadeep; Sahu, Jaya Narayan; Sengupta, Bhaskar

    2011-10-01

    The contamination of groundwater by heavy metal, originating either from natural soil sources or from anthropogenic sources is a matter of utmost concern to the public health. Remediation of contaminated groundwater is of highest priority since billions of people all over the world use it for drinking purpose. In this paper, thirty five approaches for groundwater treatment have been reviewed and classified under three large categories viz chemical, biochemical/biological/biosorption and physico-chemical treatment processes. Comparison tables have been provided at the end of each process for a better understanding of each category. Selection of a suitable technology for contamination remediation at a particular site is one of the most challenging job due to extremely complex soil chemistry and aquifer characteristics and no thumb-rule can be suggested regarding this issue. In the past decade, iron based technologies, microbial remediation, biological sulphate reduction and various adsorbents played versatile and efficient remediation roles. Keeping the sustainability issues and environmental ethics in mind, the technologies encompassing natural chemistry, bioremediation and biosorption are recommended to be adopted in appropriate cases. In many places, two or more techniques can work synergistically for better results. Processes such as chelate extraction and chemical soil washings are advisable only for recovery of valuable metals in highly contaminated industrial sites depending on economical feasibility.

  1. Remediation alternatives for low-level herbicide contaminated groundwater

    SciTech Connect

    Conger, R.M.

    1995-10-01

    In early 1995, an evaluation of alternatives for remediation of a shallow groundwater plume containing low-levels of an organic herbicide was conducted at BASF Corporation, a petrochemical facility located in Ascension Parish, Louisiana. The contaminated site is located on an undeveloped portion of property within 1/4 mile of the east bank of the Mississippi River near the community of Geismar. Environmental assessment data indicated that about two acres of the thirty acre site had been contaminated from past waste management practices with the herbicide bentazon. Shallow soils and groundwater between 5 to 15 feet in depth were affected. Maximum concentrations of bentazon in groundwater were less than seven parts per million. To identify potentially feasible remediation alternatives, the environmental assessment data, available research, and cost effectiveness were reviewed. After consideration of a preliminary list of alternatives, only two potentially feasible alternatives could be identified. Groundwater pumping, the most commonly used remediation alternative, followed by carbon adsorption treatment was identified as was a new innovative alternative known as vegetative transpiration. This alternative relies on the natural transpiration processes of vegetation to bioremediate organic contaminants. Advantages identified during screening suggest that the transpiration method could be the best remediation alternative to address both economic and environmental factors. An experiment to test critical factors of the vegetatived transpiration alternative with bentazon was recommended before a final decision on feasibility can be made.

  2. Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modelling

    USGS Publications Warehouse

    Wagner, B.J.

    1992-01-01

    Parameter estimation and contaminant source characterization are key steps in the development of a coupled groundwater flow and contaminant transport simulation model. Here a methodologyfor simultaneous model parameter estimation and source characterization is presented. The parameter estimation/source characterization inverse model combines groundwater flow and contaminant transport simulation with non-linear maximum likelihood estimation to determine optimal estimates of the unknown model parameters and source characteristics based on measurements of hydraulic head and contaminant concentration. First-order uncertainty analysis provides a means for assessing the reliability of the maximum likelihood estimates and evaluating the accuracy and reliability of the flow and transport model predictions. A series of hypothetical examples is presented to demonstrate the ability of the inverse model to solve the combined parameter estimation/source characterization inverse problem. Hydraulic conductivities, effective porosity, longitudinal and transverse dispersivities, boundary flux, and contaminant flux at the source are estimated for a two-dimensional groundwater system. In addition, characterization of the history of contaminant disposal or location of the contaminant source is demonstrated. Finally, the problem of estimating the statistical parameters that describe the errors associated with the head and concentration data is addressed. A stage-wise estimation procedure is used to jointly estimate these statistical parameters along with the unknown model parameters and source characteristics. ?? 1992.

  3. Natural biodegradation of organic contaminants in groundwater

    SciTech Connect

    McNab, W W; Rice, D W

    1998-09-23

    There has recently been a growing awareness that natural processes are degrading contaminants of concern, and that the contribution these natural processes make to achieving cleanup goals needs to be formally considered during site-specific cleanup. Historical case data from a large number of releases has been used to evaluate the expectation for natural attenuation to contribute to the cleanup of petroleum hydrocarbons and chlorinated solvents. The use of historical case data has several advantages, among them: 1) sites can reduce characterization costs by sharing information on key hydrogeologic parameters controlling contaminant fate and transport, and 2) standard reference frameworks can be developed that individual sites can use as a basis of comparison regarding plume behavior. Definition of cleanup times must take into account basic constraints imposed by natural laws governing the transport and natural degradation process of petroleum hydrocarbons. The actual time to reach groundwater cleanup goals is determined by these laws and the limitations on residual subsurface contamination attenuation rates, through either active or natural biological processes. These limitations will practically constrain the time to achieve low concentration cleanup goals. Recognition is needed that sites will need to be transitioned to remediation by natural processes at some point following implementation of active remediation options. The results of an analysis of approximately 1800 California and 600 Texas fuel hydrocarbon (FHC) releases and 2.50 chlorinated volatile organic compound (CVOC) plumes will be summarized. Plume lengths and natural biodegradation potential were evaluated. For FHC releases, 90% of benzene groundwater plumes were less than 280 feet in length and evidence of natural biodegradation was found to be present at all sites studied in detail. For CVOC releases, source strength and groundwater flow velocity are dominant factors controlling groundwater plume

  4. Groundwater contamination downstream of a contaminant penetration site. I. Extension-expansion of the contaminant plume.

    PubMed

    Rubin, Hillel; Buddemeier, Robert W

    2002-11-01

    This study concerns the possible use of boundary layer (BL) approach for the analysis and evaluation of contaminant transport in groundwater due to contaminant penetration into the groundwater aquifer through a site of limited size. The contaminant penetration may occur through either the upper (surface) or lower (bedrock) boundary of the aquifer. Two general cases of contaminant penetration mechanisms are considered: (1) the contaminant is transferred through an interface between a contaminating and freshwater fluid phases, and (2) the contaminant arrives at groundwater by leakage and percolation. For the purpose of BL evaluation the contaminant plume is divided into three different sections: (1) the penetration section, (2) the extension-expansion section, and (3) the spearhead section. In each section a different BL method approach yields simple analytical expressions for the description of the contaminant plume migration and contaminant transport. Previous studies of the BL method can be directly applied to the evaluation of contaminant transport at the contaminant penetration section. The present study extends those studies and concerns the contaminant transport in the two other sections, which are located downstream of the penetration section. This study shows that the contaminant concentration profiles in sections 2 and 3 incorporate two BLs: (1) an inner BL adjacent to the aquifer bottom or surface boundary, and (2) an outer BL, which develops above or below the inner one. The method developed in the present study has been applied to practical issues concerning salinity penetration into groundwater in south central Kansas.

  5. Groundwater contamination downstream of a contaminant penetration site. I. Extension-expansion of the contaminant plume

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    2002-01-01

    This study concerns the possible use of boundary layer (BL) approach for the analysis and evaluation of contaminant transport in groundwater due to contaminant penetration into the groundwater aquifer through a site of limited size. The contaminant penetration may occur through either the upper (surface) or lower (bedrock) boundary of the aquifer. Two general cases of contaminant penetration mechanisms are considered: (1) the contaminant is transferred through an interface between a contaminating and freshwater fluid phases, and (2) the contaminant arrives at groundwater by leakage and percolation. For the purpose of BL evaluation the contaminant plume is divided into three different sections: (1) the penetration section, (2) the extension-expansion section, and (3) the spearhead section. In each section a different BL method approach yields simple analytical expressions for the description of the contaminant plume migration and contaminant transport. Previous studies of the BL method can be directly applied to the evaluation of contaminant transport at the contaminant penetration section. The present study extends those studies and concerns the contaminant transport in the two other sections, which are located downstream of the penetration section. This study shows that the contaminant concentration profiles in sections 2 and 3 incorporate two BLs: (1) an inner BL adjacent to the aquifer bottom or surface boundary, and (2) an outer BL, which develops above or below the inner one. The method developed in the present study has been applied to practical issues concerning salinity penetration into groundwater in south central Kansas.

  6. Hydrocone groundwater study delineates petroleum contamination

    SciTech Connect

    Prochaska, K.; Hartness, J.; Christenson, K.

    1994-12-31

    Law Environmental, Inc., (LAW), conducted a groundwater survey at Myrtle Beach Air Force Base, South Carolina, to delineate the horizontal and vertical extent of petroleum contamination at the BX Service station. The survey was performed using the In-Situ Technology Hydrocone in conjunction with a field gas chromatograph. The Hydrocone proved to be a reliable, cost-effective method of extracting multi-depth groundwater samples without incurring the expenses associated with the installation and maintenance of monitoring wells. The process generates virtually no investigation-derived waste. The Hydrocone system consists of an elongated cylindrical steel sampler attached to drill rods on a direct push trailer mounted rig. A gas/electronic cable connects to the sampler, and a computer installed on the rig displays pressure on the tool, sampling time, and groundwater volume collected. A total of 18 groundwater samples were collected from 12 locations around the site at sampling depths of approximately 10, 20, and 30 feet below the ground surface. The Hydrocone/gas chromatograph method produced a large volume of groundwater quality data within a relatively short time interval.

  7. Intrinsic bioremediation in a solvent-contaminated alluvial groundwater.

    PubMed

    Williams, R A; Shuttle, K A; Kunkler, J L; Madsen, E L; Hooper, S W

    1997-01-01

    An industrial site contaminated with a mixture of volatile organic compounds in its subsurface differed from previously reported locations in that the contamination consisted of a mixture of chlorinated, brominated, and non-halogenated aromatic and aliphatic solvents in an alluvial aquifer. The source area was adjacent to a river. Of the contaminants present in the aquifer, benzene, toluene, and chlorobenzene (BTC) were of primary concern. Studies of the physical, chemical, and microbiological characteristics of site groundwater were conducted. The studies concentrated on BTC, but also addressed the fate of the other aquifer VOCs. Gas chromatographic analyses performed on laboratory microcosms demonstrated that subsurface microorganisms were capable of BTC degradation. Mineralization of BTC was demonstrated by the release of 14CO2 from radiolabelled BTC. In the field, distribution patterns of nutrients and electron acceptors were consistent with expression of in situ microbial metabolic activity: methane, conductivity, salinity and o-phosphate concentrations were all positively correlated with contaminant concentration; while oxidation-reduction potential, nitrate, dissolved oxygen and sulfate concentrations were negatively correlated. Total aerobes, aerotolerant anaerobes, BTC-specific degraders, and acridine orange direct microscopic microorganism counts were strongly and positively correlated with field contaminant concentrations. The relative concentrations of benzene and toluene were lower away from the core of the plume compared to the less readily metabolized compound, chlorobenzene. Hydrodynamic modeling of electron-acceptor depletion conservatively estimated that 450 kg of contaminant have been removed from the subsurface yearly. Models lacking a biodegradation term predicted that 360 kg of contaminant would reach the river annually, which would result in measurable contaminant concentrations. River surveillance, however, has only rarely detected these

  8. Arsenic contamination in groundwater of Samta, Bangladesh.

    PubMed

    Yokota, H; Tanabe, K; Sezaki, M; Yano, Y; Hamabe, K; Yabuuchi, K; Tokunaga, H

    2002-01-01

    In March 1997, we analyzed the water of all tubewells used for drinking in Samta village in the Jessore district, Bangladesh. It has been confirmed from the survey that the arsenic contamination in Samta was one of the worst in the Ganges basin including West Bengal, India. 90% of the tubewells had arsenic concentrations above the Bangladesh standard of 0.05 mg/l. Tubewells with higher arsenic concentrations of over 0.50 mg/l were distributed in the southern area with a belt-like shape from east to west, and the distribution of arsenic concentration showed gradual decreasing toward northern area of the village. In order to examine the characteristics of the arsenic distribution in Samta, we have performed investigations such as: 1) the characteristics of groundwater flow, 2) the distribution of arsenic in the ground, 3) the concentration of arsenic and the other dissolved materials in groundwater, and 4) the distribution of arsenic concentration of trivalence and pentavalence. This paper examines the mechanism of arsenic release to groundwater and explains the above-mentioned characteristics of the arsenic contamination in Samta through the investigations of the survey results for these years.

  9. Coverage methods for early groundwater contamination detection.

    PubMed

    Nunes, Luís Miguel; da Conceição Cunha, Maria; Ribeiro, Luís

    2013-05-01

    A method based on space-filling coverage designs to optimize groundwater monitoring networks for plume detection and quantification is proposed. Space-filling objective functions are then compared with more classical functions. The method was applied to a hypothetical case-study with 160 candidate locations, resulting in final optimal design monitoring networks with 40 locations. Results show that the method is superior to those based strictly on the probability of contamination detection for quantifying maximum and mean values. In the light of these results fractal properties of space-filling coverage methods and of simulated annealing are also discussed.

  10. Parallel Processing of a Groundwater Contaminant Code

    SciTech Connect

    Arnett, Ronald Chester; Greenwade, Lance Eric

    2000-05-01

    The U. S. Department of Energy’s Idaho National Engineering and Environmental Laboratory (INEEL) is conducting a field test of experimental enhanced bioremediation of trichoroethylene (TCE) contaminated groundwater. TCE is a chlorinated organic substance that was used as a solvent in the early years of the INEEL and disposed in some cases to the aquifer. There is an effort underway to enhance the natural bioremediation of TCE by adding a non-toxic substance that serves as a feed material for the bacteria that can biologically degrade the TCE.

  11. Potassium ferrate treatment of RFETS` contaminated groundwater

    SciTech Connect

    1995-01-01

    The potassium ferrate treatment study of Rocky Flats Environmental Technology Site (RFETS) groundwater was performed under the Sitewide Treatability Studies Program (STSP). This study was undertaken to determine the effectiveness of potassium ferrate in a water treatment system to remove the contaminants of concern (COCS) from groundwater at the RFETS. Potassium ferrate is a simple salt where the iron is in the plus six valence state. It is the iron at the plus six valence state (Fe {sup +6}) that makes it an unique water treatment chemical, especially in waters where the pH is greater than seven. In basic solutions where the solubility of the oxides/hydroxides of many of the COCs is low, solids are formed as the pH is raised. By using ferrate these solids are agglomerated so they can be effectively removed by sedimentation in conventional water treatment equipment. The objective of this study was to determine the quality of water after treatment with potassium ferrate and to determine if the Colorado Water Quality Control Commission (CWQCC) discharge limits for the COCs listed in Table 1.0-1 could be met. Radionuclides in the groundwater were of special concern.

  12. Optimal groundwater contamination monitoring using pumping wells.

    PubMed

    Shlomi, Shahar; Ostfeld, Avi; Rubin, Hillel; Shoemaker, Christine

    2010-01-01

    This study presents a new method for selecting monitoring wells for optimal evaluation of groundwater quality. The basic approach of this work is motivated by difficulties in interpolating groundwater quality from information collected for only few sampled wells. The well selection relies on other existing data relevant to contaminant distribution in the sampling domain, e.g. predictions of models which rely on past measurements. The objective of this study is to develop a method of selecting the optimal wells, from which measurements could best serve some external model, e.g. a kriging system for characterizing the entire plume distribution, a flow-and-transport model for predicting a future distribution, or an inverse model for locating contaminant sources or estimating aquifer parameters. The decision variable at each sampling round determines the specific wells to be sampled. The study objective is accomplished through a spatially-continuous utility density function (UDF) which describes the utility of sampling at every point. The entire methodology which utilizes the UDF in conjunction with a sampling algorithm is entitled the UDF method. By applying calculations in steady and unsteady state sampling domains the effectiveness of the UDF method is demonstrated.

  13. A technical approach to groundwater contamination problems

    SciTech Connect

    Burton, J.C.; Leser, C.; Rose, C.M.

    1993-06-01

    Argonne National Laboratory has been performing technical investigations at sites in Nebraska and Kansas that have identified groundwater contamination by carbon tetrachloride. This comprehensive program will ultimately provide the affected communities with safe drinking water. The first step in the program is to evaluate the available data and identify sites that will require an Alternate Water Supply Study (AWSS). The objective of the AWSS is to identify options for providing a safe drinking water supply to all users, in compliance with the Safe Drinking Water Act. The AWSS consists of an engineering and cost evaluation followed by implementation of the selected alternative. For sites with contamination less than a specific concentration, the AWSS is regarded as a satisfactory long term solution, and no further action is taken. For those sites with concentrations above that specific limit, the AWSS implementation is regarded as only a stopgap measure, and the site is selected for additional remedial action. The first step of the remedial action is an Expedited Site Characterization (ESC). The ESC was developed at Argonne to decrease the cost and time of the remedial investigation and feasibility study while producing a high-quality technical investigation. The ESC is designed to characterize the contaminant plume configuration and movement, which requires an understanding of the geological and hydrogeologic controls on groundwater movement as well as the nature and extent of any remaining carbon tetrachloride source in the soils. The ESC program uses a multidisciplinary technical approach that incorporates geology, geochemistry, geohydrology, and geophysics. Field activities include sampling, chemical analysis, and borehole and surface geophysical surveys.

  14. What should be done to mitigate groundwater contamination?

    PubMed

    Patrick, R

    1990-06-01

    Groundwater contamination is a serious problem that is growing in the United States, but its true extent is not known and it is difficult to determine because of the complexities of contaminants, their transformation, and fate in groundwater systems. It is also difficult to predict their movement in groundwater. Since we know that the problem is serious and that our needs for groundwater will grow, the mitigation of groundwater contamination, despite the high cost, is necessary. Furthermore, it is very difficult to predict effects on human health because they have not been defined for many of the chemicals. Antagonism and synergistic effects of interacting chemicals have not been determined because they are complicated by many factors, for example, volatile organic compounds. The effects of leachates in groundwaters entering streams on the riverine environment and aquatic life have not been determined. Successful mitigation requires that we determine which microbial and chemical contaminants are the most serious threats to human health, develop the technology to biologically, chemically, and physically transform hazardous waste into nonhazardous materials; develop the technology to properly contain hazardous materials and to remediate contamination, and determine the effects of those hazardous materials on soils and water microorganisms and macroorganisms. Our challenge is how can we immobilize or destroy groundwater contaminants so that they will not enter groundwater, or if they enter groundwater, are confined and destroyed.

  15. What should be done to mitigate groundwater contamination?

    PubMed Central

    Patrick, R

    1990-01-01

    Groundwater contamination is a serious problem that is growing in the United States, but its true extent is not known and it is difficult to determine because of the complexities of contaminants, their transformation, and fate in groundwater systems. It is also difficult to predict their movement in groundwater. Since we know that the problem is serious and that our needs for groundwater will grow, the mitigation of groundwater contamination, despite the high cost, is necessary. Furthermore, it is very difficult to predict effects on human health because they have not been defined for many of the chemicals. Antagonism and synergistic effects of interacting chemicals have not been determined because they are complicated by many factors, for example, volatile organic compounds. The effects of leachates in groundwaters entering streams on the riverine environment and aquatic life have not been determined. Successful mitigation requires that we determine which microbial and chemical contaminants are the most serious threats to human health, develop the technology to biologically, chemically, and physically transform hazardous waste into nonhazardous materials; develop the technology to properly contain hazardous materials and to remediate contamination, and determine the effects of those hazardous materials on soils and water microorganisms and macroorganisms. Our challenge is how can we immobilize or destroy groundwater contaminants so that they will not enter groundwater, or if they enter groundwater, are confined and destroyed. PMID:2401260

  16. Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater.

    PubMed

    Zhou, Ai-xia; Zhang, Yu-ling; Dong, Tian-zi; Lin, Xue-yu; Su, Xiao-si

    2015-07-01

    The effects of seasonal groundwater level fluctuations on the contamination characteristics of total petroleum hydrocarbons (TPH) in soils, groundwater, and the microbial community were investigated at a typical petrochemical site in northern China. The measurements of groundwater and soil at different depths showed that significant TPH residue was present in the soil in this study area, especially in the vicinity of the pollution source, where TPH concentrations were up to 2600 mg kg(-1). The TPH concentration in the groundwater fluctuated seasonally, and the maximum variation was 0.8 mg L(-1). The highest TPH concentrations were detected in the silty clay layer and lied in the groundwater level fluctuation zones. The groundwater could reach previously contaminated areas in the soil, leading to higher groundwater TPH concentrations as TPH leaches into the groundwater. The coincident variation of the electron acceptors and TPH concentration with groundwater-table fluctuations affected the microbial communities in groundwater. The microbial community structure was significantly different between the wet and dry seasons. The canonical correspondence analysis (CCA) results showed that in the wet season, TPH, NO3(-), Fe(2+), TMn, S(2-), and HCO3(-) were the major factors correlating the microbial community. A significant increase in abundance of operational taxonomic unit J1 (97% similar to Dechloromonas aromatica sp.) was also observed in wet season conditions, indicating an intense denitrifying activity in the wet season environment. In the dry season, due to weak groundwater level fluctuations and low temperature of groundwater, the microbial activity was weak. But iron and sulfate-reducing were also detected in dry season at this site. As a whole, groundwater-table fluctuations would affect the distribution, transport, and biodegradation of the contaminants. These results may be valuable for the control and remediation of soil and groundwater pollution at this site

  17. Groundwater contaminants in the deep benthic zone of urban streams in Canada (Invited)

    NASA Astrophysics Data System (ADS)

    Roy, J. W.; Bickerton, G.

    2010-12-01

    There is little information available on the potential threat that groundwater containing land-based contaminants poses to aquatic ecosystems in urban environments. In this study, a rapid screening approach was applied at the stream reach-scale for eight urban streams (reaches from 100 to < 1000 m). The objective was to determine what types of groundwater contaminants could be detected in the deeper benthic zone of these streams, if any, to start to address questions of whether such contaminants are a concern and which types are the most problematic. The benthic community may be especially at risk since it may experience higher contaminant concentrations than the stream itself due to fewer losses from sorption, degradation and volatilization processes. For each stream, groundwater samples from below the stream bed (typically 25-75 cm) were collected using a drive-point mini-profiler at intervals of 10-15 m along the stream and were subsequently analysed for general chemistry and a wide range of common and emerging urban contaminants. For a few test streams with known contamination, the area of contamination was identified with this technique. In addition, previously unknown contaminants or areas of contamination were identified at all nine streams. Identified contaminants included benzene and other petroleum hydrocarbons, fuel oxygenates (e.g. MTBE), perchlorate, pesticides, artificial sweeteners, and various chlorinated solvent compounds. In addition, elevated levels of nitrate, phosphate, some heavy metals, including cadmium and arsenic, and elevated chloride (likely indicating road salt) were detected. Most streams had many different types of contaminants, often overlapping over small stretches, and together often covering substantial portions of the monitored reach. The findings provide support for this screening approach for delineating areas of potential ecological concern and identifying possible sources of groundwater contamination, for urban settings. They

  18. [Quantitative method of representative contaminants in groundwater pollution risk assessment].

    PubMed

    Wang, Jun-Jie; He, Jiang-Tao; Lu, Yan; Liu, Li-Ya; Zhang, Xiao-Liang

    2012-03-01

    In the light of the problem that stress vulnerability assessment in groundwater pollution risk assessment is lack of an effective quantitative system, a new system was proposed based on representative contaminants and corresponding emission quantities through the analysis of groundwater pollution sources. And quantitative method of the representative contaminants in this system was established by analyzing the three properties of representative contaminants and determining the research emphasis using analytic hierarchy process. The method had been applied to the assessment of Beijing groundwater pollution risk. The results demonstrated that the representative contaminants hazards greatly depended on different research emphasizes. There were also differences between the sequence of three representative contaminants hazards and their corresponding properties. It suggested that subjective tendency of the research emphasis had a decisive impact on calculation results. In addition, by the means of sequence to normalize the three properties and to unify the quantified properties results would zoom in or out of the relative properties characteristic of different representative contaminants.

  19. Arsenic contamination in groundwater: some analytical considerations.

    PubMed

    Kinniburgh, David G; Kosmus, Walter

    2002-08-16

    For countries such as Bangladesh with a significant groundwater arsenic problem, there is an urgent need for the arsenic-contaminated wells to be identified as soon as possible and for appropriate action to be taken. This will involve the testing of a large number of wells, potentially up to 11 million in Bangladesh alone. Field-test kits offer the only practical way forward in the timescale required. The classic field method for detecting arsenic (the 'Gutzeit' method) is based on the reaction of arsine gas with mercuric bromide and remains the best practical approach. It can in principle achieve a detection limit of about 10 mug l(-1) by visual comparison of the coloured stain against a colour calibration chart. A more objective result can be achieved when the colour is measured by an electronic instrument. Attention has to be paid to interferences mainly from hydrogen sulfide. Due to analytical errors, both from the field-test kits and from laboratory analysis, some misclassification of wells is inevitable, even under ideal conditions. The extent of misclassification depends on the magnitude of the errors of analysis and the frequency distribution of arsenic observed, but is in principle predictable before an extensive survey is undertaken. For a country with an arsenic distribution similar to that of Bangladesh, providing care is taken to avoid sources of bias during testing, modern field-test kits should be able to reduce this misclassification to under 5% overall.

  20. Groundwater contamination and its effect on health in Turkey.

    PubMed

    Baba, Alper; Tayfur, Gokmen

    2011-12-01

    The sources of groundwater pollution in Turkey are identified, and pathways of contaminants to groundwater are first described. Then, the effects of groundwater quality on health in Turkey are evaluated. In general, sources of groundwater contamination fall into two main categories: natural and anthropogenic sources. Important sources of natural groundwater pollution in Turkey include geological formations, seawater intrusion, and geothermal fluid(s). The major sources of anthropogenic groundwater contamination are agricultural activities, mining waste, industrial waste, on-site septic tank systems, and pollution from imperfect well constructions. The analysis results revealed that natural contamination due to salt and gypsum are mostly found in Central and Mediterranean regions and arsenic in Aegean region. Geothermal fluids which contain fluoride poses a danger for skeleton, dental, and bone problems, especially in the areas of Denizli, Isparta, and Aydın. Discharges from surface water bodies contaminate groundwater by infiltration. Evidence of such contamination is found in Upper Kızılırmak basin, Gediz basin, and Büyük Melen river basin and some drinking water reservoirs in İstanbul. Additionally, seawater intrusion causes groundwater quality problems in coastal regions, especially in the Aegean coast. Industrial wastes are also polluting surface and groundwater in industrialized regions of Turkey. Deterioration of water quality as a result of fertilizers and pesticides is another major problem especially in the regions of Mediterranean, Aegean, Central Anatolia, and Marmara. Abandoned mercury mines in the western regions of Turkey, especially in Çanakkale, İzmir, Muğla, Kütahya, and Balıkesir, cause serious groundwater quality problems. PMID:21336483

  1. Groundwater contamination and its effect on health in Turkey.

    PubMed

    Baba, Alper; Tayfur, Gokmen

    2011-12-01

    The sources of groundwater pollution in Turkey are identified, and pathways of contaminants to groundwater are first described. Then, the effects of groundwater quality on health in Turkey are evaluated. In general, sources of groundwater contamination fall into two main categories: natural and anthropogenic sources. Important sources of natural groundwater pollution in Turkey include geological formations, seawater intrusion, and geothermal fluid(s). The major sources of anthropogenic groundwater contamination are agricultural activities, mining waste, industrial waste, on-site septic tank systems, and pollution from imperfect well constructions. The analysis results revealed that natural contamination due to salt and gypsum are mostly found in Central and Mediterranean regions and arsenic in Aegean region. Geothermal fluids which contain fluoride poses a danger for skeleton, dental, and bone problems, especially in the areas of Denizli, Isparta, and Aydın. Discharges from surface water bodies contaminate groundwater by infiltration. Evidence of such contamination is found in Upper Kızılırmak basin, Gediz basin, and Büyük Melen river basin and some drinking water reservoirs in İstanbul. Additionally, seawater intrusion causes groundwater quality problems in coastal regions, especially in the Aegean coast. Industrial wastes are also polluting surface and groundwater in industrialized regions of Turkey. Deterioration of water quality as a result of fertilizers and pesticides is another major problem especially in the regions of Mediterranean, Aegean, Central Anatolia, and Marmara. Abandoned mercury mines in the western regions of Turkey, especially in Çanakkale, İzmir, Muğla, Kütahya, and Balıkesir, cause serious groundwater quality problems.

  2. ADVANCED OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINATED GROUNDWATER

    EPA Science Inventory

    This paper presents information on two pilot-field appliations of advanced oxidation technologies for contaminated groundwater with organis. The two UV/oxidation technologies were developed by Ultrox International of Santa Ana, California and Peroxidatrion Systems, Inc. of Tucso...

  3. Groundwater.

    ERIC Educational Resources Information Center

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  4. Assessing soil and groundwater contamination in a metropolitan redevelopment project.

    PubMed

    Yun, Junki; Lee, Ju Young; Khim, Jeehyeong; Ji, Won Hyun

    2013-08-01

    The purpose of this study was to assess contaminated soil and groundwater for the urban redevelopment of a rapid transit railway and a new mega-shopping area. Contaminated soil and groundwater may interfere with the progress of this project, and residents and shoppers may be exposed to human health risks. The study area has been remediated after application of first remediation technologies. Of the entire area, several sites were still contaminated by waste materials and petroleum. For zinc (Zn) contamination, high Zn concentrations were detected because waste materials were disposed in the entire area. For petroleum contamination, high total petroleum hydrocarbon (TPH) and hydrocarbon degrading microbe concentrations were observed at the depth of 7 m because the underground petroleum storage tank had previously been located at this site. Correlation results suggest that TPH (soil) concentration is still related with TPH (groundwater) concentration. The relationship is taken into account in the Spearman coefficient (α). PMID:23307052

  5. Assessing soil and groundwater contamination in a metropolitan redevelopment project.

    PubMed

    Yun, Junki; Lee, Ju Young; Khim, Jeehyeong; Ji, Won Hyun

    2013-08-01

    The purpose of this study was to assess contaminated soil and groundwater for the urban redevelopment of a rapid transit railway and a new mega-shopping area. Contaminated soil and groundwater may interfere with the progress of this project, and residents and shoppers may be exposed to human health risks. The study area has been remediated after application of first remediation technologies. Of the entire area, several sites were still contaminated by waste materials and petroleum. For zinc (Zn) contamination, high Zn concentrations were detected because waste materials were disposed in the entire area. For petroleum contamination, high total petroleum hydrocarbon (TPH) and hydrocarbon degrading microbe concentrations were observed at the depth of 7 m because the underground petroleum storage tank had previously been located at this site. Correlation results suggest that TPH (soil) concentration is still related with TPH (groundwater) concentration. The relationship is taken into account in the Spearman coefficient (α).

  6. A comparison of the extent and impacts of sewage contamination on urban groundwater in developed and developing countries.

    PubMed

    Barrett, M; Howard, G; Pedley, S; Taylor, R; Nalubega, M

    2000-01-01

    In much of the world urban groundwater is an important resource for domestic and industrial use. In many developing countries, groundwater taken directly (untreated) from individual springs and wells is the only option available to communities where comprehensive, reliable reticulated supply systems are absent. A common feature of urban groundwater in both developing and developed countries is contamination by sewage. Current and recent research is presented that shows sewer leakage impacts groundwater in developed countries whilst on-site sanitation contaminates groundwater in developing countries. In the latter case, the competing demands of sanitation and groundwater protection must be addressed. Limitations on the usefulness of accepted standard sewage indicator species in groundwater are also highlighted. As sewage contamination of groundwater is usually addressed only if an actual health risk is posed, it is vital both to developed and developing countries to understand the movement of actual pathogens in groundwater in the context of groundwater management. Further research is required on microbial survival and health risks posed by sewage contamination.

  7. Assessing groundwater vulnerability to agrichemical contamination in the Midwest US

    USGS Publications Warehouse

    Burkart, M.R.; Kolpin, D.W.; James, D.E.

    1999-01-01

    Agrichemicals (herbicides and nitrate) are significant sources of diffuse pollution to groundwater. Indirect methods are needed to assess the potential for groundwater contamination by diffuse sources because groundwater monitoring is too costly to adequately define the geographic extent of contamination at a regional or national scale. This paper presents examples of the application of statistical, overlay and index, and process-based modeling methods for groundwater vulnerability assessments to a variety of data from the Midwest U.S. The principles for vulnerability assessment include both intrinsic (pedologic, climatologic, and hydrogeologic factors) and specific (contaminant and other anthropogenic factors) vulnerability of a location. Statistical methods use the frequency of contaminant occurrence, contaminant concentration, or contamination probability as a response variable. Statistical assessments are useful for defining the relations among explanatory and response variables whether they define intrinsic or specific vulnerability. Multivariate statistical analyses are useful for ranking variables critical to estimating water quality responses of interest. Overlay and index methods involve intersecting maps of intrinsic and specific vulnerability properties and indexing the variables by applying appropriate weights. Deterministic models use process-based equations to simulate contaminant transport and are distinguished from the other methods in their potential to predict contaminant transport in both space and time. An example of a one-dimensional leaching model linked to a geographic information system (GIS) to define a regional metamodel for contamination in the Midwest is included.

  8. Implications of uncertainty in exposure assessment for groundwater contamination

    USGS Publications Warehouse

    Reichard, Eric G.; Izbicki, John A.; Martin, Peter

    1995-01-01

    Decision-making on regulation, mitigation, and treatment of drinking water contamination depends, in part, on estimates of human exposure. Assessment of past, present and potential future exposure levels requires quantitative characterization of the contaminant sources, the transport of contaminants and the level of actual human exposure to the contaminated water. Failure to consider the uncertainties in these three components of exposure assessment can lead to poor decisions such as implementing an inappropriate mitigation strategy or failing to regulate an important contaminant. Three examples from US Geological Survey hydrogeologic studies in southern California are presented to illustrate some of the unique uncertainties associated with exposure assessment for groundwater contamination.

  9. Viability of longitudinal trenches for capturing contaminated groundwater.

    PubMed

    Hudak, Paul F

    2010-04-01

    Using a groundwater flow and mass transport model, this study compared the capability of trenches with permeable backfill for capturing hypothetical contaminant plumes in homogeneous and heterogeneous unconfined aquifers. Longitudinal (parallel to groundwater flow), as well as conventional transverse (perpendicular to groundwater flow) trench configurations were considered. Alternate trench configurations intercepted the leading tip of an initial contaminant plume and had identical length, equal to the cross-gradient width of the plume. A longitudinal trench required 31% less time than its transverse counterpart to remediate a homogeneous aquifer. By contrast, in simulated heterogeneous aquifers, longitudinal remediation timeframes ranged from 41% less to 33% more than transverse trenches. Results suggest that longitudinal trenches may be a viable alternative for narrow contaminant plumes under low-groundwater velocity conditions, but may be impractical for plumes with wide leading tips, or in complex heterogeneous aquifers with divergent flow.

  10. Phytoremediation of organic contaminants in soil and groundwater.

    PubMed

    Reichenauer, Thomas G; Germida, James J

    2008-01-01

    Phytoremediation is an emerging technology for the clean-up of sites contaminated with hazardous chemicals. The term phytoremediation refers to a number of technologies that use photoautotrophic vascular plants for the remediation of sites contaminated with inorganic and organic contaminants. Phytoremediation of organic contaminants can be organized by considering 1) the green liver concept, which elucidates the metabolism of contaminants in planta versus that of contaminants ex planta (e.g. rhizosphere), 2) processes that lead to complete degradation (mineralization) of contaminants as opposed to those that only lead to partial degradation or transformation, and 3) active plant uptake versus passive processes (e.g. sorption). Understanding of these processes needs an interdisciplinary approach involving chemists, biologists, soil scientists, and environmentalists. This Review presents the basic concepts of phytoremediation of organic contaminants in soil and groundwater using selected contaminants as examples.

  11. Groundwater pumping effects on contaminant loading management in agricultural regions.

    PubMed

    Park, Dong Kyu; Bae, Gwang-Ok; Kim, Seong-Kyun; Lee, Kang-Kun

    2014-06-15

    Groundwater pumping changes the behavior of subsurface water, including the location of the water table and characteristics of the flow system, and eventually affects the fate of contaminants, such as nitrate from agricultural fertilizers. The objectives of this study were to demonstrate the importance of considering the existing pumping conditions for contaminant loading management and to develop a management model to obtain a contaminant loading design more appropriate and practical for agricultural regions where groundwater pumping is common. Results from this study found that optimal designs for contaminant loading could be determined differently when the existing pumping conditions were considered. This study also showed that prediction of contamination and contaminant loading management without considering pumping activities might be unrealistic. Motivated by these results, a management model optimizing the permissible on-ground contaminant loading mass together with pumping rates was developed and applied to field investigation and monitoring data from Icheon, Korea. The analytical solution for 1-D unsaturated solute transport was integrated with the 3-D saturated solute transport model in order to approximate the fate of contaminants loaded periodically from on-ground sources. This model was further expanded to manage agricultural contaminant loading in regions where groundwater extraction tends to be concentrated in a specific period of time, such as during the rice-growing season, using a method that approximates contaminant leaching to a fluctuating water table. The results illustrated that the simultaneous management of groundwater quantity and quality was effective and appropriate to the agricultural contaminant loading management and the model developed in this study, which can consider time-variant pumping, could be used to accurately estimate and to reasonably manage contaminant loading in agricultural areas. PMID:24681649

  12. Groundwater pumping effects on contaminant loading management in agricultural regions.

    PubMed

    Park, Dong Kyu; Bae, Gwang-Ok; Kim, Seong-Kyun; Lee, Kang-Kun

    2014-06-15

    Groundwater pumping changes the behavior of subsurface water, including the location of the water table and characteristics of the flow system, and eventually affects the fate of contaminants, such as nitrate from agricultural fertilizers. The objectives of this study were to demonstrate the importance of considering the existing pumping conditions for contaminant loading management and to develop a management model to obtain a contaminant loading design more appropriate and practical for agricultural regions where groundwater pumping is common. Results from this study found that optimal designs for contaminant loading could be determined differently when the existing pumping conditions were considered. This study also showed that prediction of contamination and contaminant loading management without considering pumping activities might be unrealistic. Motivated by these results, a management model optimizing the permissible on-ground contaminant loading mass together with pumping rates was developed and applied to field investigation and monitoring data from Icheon, Korea. The analytical solution for 1-D unsaturated solute transport was integrated with the 3-D saturated solute transport model in order to approximate the fate of contaminants loaded periodically from on-ground sources. This model was further expanded to manage agricultural contaminant loading in regions where groundwater extraction tends to be concentrated in a specific period of time, such as during the rice-growing season, using a method that approximates contaminant leaching to a fluctuating water table. The results illustrated that the simultaneous management of groundwater quantity and quality was effective and appropriate to the agricultural contaminant loading management and the model developed in this study, which can consider time-variant pumping, could be used to accurately estimate and to reasonably manage contaminant loading in agricultural areas.

  13. Distribution of Groundwater Contaminants at the RCA Taoyuan Plant

    NASA Astrophysics Data System (ADS)

    Yao, I.; Wang, Y.; Chia, Y.

    2013-12-01

    The RCA Taoyuan plant is the first announced remediation site due to groundwater contamination in Taiwan in 2004. From 1970 through 1992, Radio Corporation of America (RCA) Taoyuan Plant in Taiwan operated as a television assembly plant producing related electronic equipment. In 1987, the soil and the groundwater of the site area were discovered with contamination of chlorinated Volatile Organic Compounds (VOCs). The primary contaminants are tetrachloroethene (PCE), trichloroethene (TCE), and 1, 1, 1- trichloroethane (1, 1, 1-TCA). The source of the contamination may be caused by improper dumping or leakage of the chemical solvents. The remediation of soil were finished in 1998 and qualified with Republic of China Environmental Protection Administration (ROCEPA) soil pollution control standards. On the other hand, after more detailed site investigations and many pilot tests, the remediation of groundwater has been started since 2005 and is still in progress. Because the chlorinated VOCs are Dense Non-Aqueous Phase Liquids (DNAPLs), they are hardly dissolved in groundwater and couldn't be cleaned up by extraction and treatment. In addition, the densities of DNAPLs are higher than water, so they would keep moving downward till aquitards or interval mud layers between aquifers. The movement was controlled by many complex factors, including the gravity, hydraulic gradient, capillary pressure, etc. Then DNAPLs would move along the surface of layers horizontally leaving slight remains on the paths. The remains would keep slowly dissolving in groundwater to become long-term contamination sources. The Enhanced Reductive Dechlorination (ERD) method has been conducted to remediate the groundwater in site area with successful effects, but some of the monitoring wells in off-site area are still detected with high concentrations of VOCs, exceeding the pollution standards. Furthermore, the concentration of primary contaminants was lowered by the remediation, but some secondary

  14. Toxic groundwater contaminants: an overlooked contributor to urban stream syndrome?

    PubMed

    Roy, James W; Bickerton, Greg

    2012-01-17

    Screening for common groundwater contaminants was performed along eight urban stream reaches (100s-1000s of m) at approximately 25-75 cm below the streambeds. Four sites had known or suspected chlorinated-solvent plumes; otherwise no groundwater contamination was known previously. At each site, between 5 and 22 contaminants were detected at levels above guideline concentrations for the preservation of aquatic life, while several others were detected at lower levels, but which may still indicate some risk. Contaminants of greatest concern include numerous metals (Cd, Zn, Al, Cu, Cr, U), arsenic, various organics (chlorinated and petroleum), nitrate and ammonium, and chloride (road salt likely), with multiple types occurring at each site and often at the same sampling location. Substantial portions of the stream reaches (from 40 to 88% of locations sampled) possessed one or more contaminants above guidelines. These findings suggest that this diffuse and variable-composition urban groundwater contamination is a toxicity concern for all sites and over a large portion of each study reach. Synergistic toxicity, both for similar and disparate compounds, may also be important. We conclude that groundwater contaminants should be considered a genuine risk to urban stream aquatic ecosystems, specifically benthic organisms, and may contribute to urban stream syndrome.

  15. Environmental contamination of groundwater in the Gaza Strip

    NASA Astrophysics Data System (ADS)

    Al-Agha, M. R.

    1995-03-01

    Environmental problems of groundwater contamination in the Gaza Strip are summarized in this paper. The Gaza Strip is a very narrow and highly populated area along the coast of the Mediterranean Sea (360 km2). Human activities greatly threaten the groundwater resources in the area, while the unconfined nature of some parts of the coastal main aquifer favors groundwater contamination. Recent investigations show contamination of the aquifer with organic substances from detergents, agrochemicals, sewage (cesspools), and waste degradation. These effects enhance each other because there is no recycling industry, sewage system, or any type of environmental protection management at present. Inorganic contamination results from overpumping, which increases the salinity of the groundwater. Seawater intrusion also increases the salinity of the groundwater that are used for drinking and agricultural purposes. Consequently, at present about 80 percent of the groundwater in the Gaza Strip is unfit for both human and animal consumption. Solutions are very urgently needed for these problems in order to prevent the spread of dangerous diseases.

  16. Biodegradation of thiocyanate in mining-contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Spurr, L. P.; Watts, M. P.; Moreau, J. W.

    2015-12-01

    In-situ SCN- biodegradation as a strategy for remediating contaminated groundwater remains largely unproven. This study aimed to culture and characterise a community of SCN--degrading microbes from mining-contaminated groundwater, and to optimize the efficiency of this process under varied geochemical conditions. A gold ore processing plant in Victoria, Australia, has generated high amounts of thiocyanate (SCN-)-contaminated waste effluent. This effluent collects in a tailings storage facility (TSF) on site and seepage has contaminated local groundwater. This SCN- plume recently escaped the mine lease in a plume flowing partly through a confined aquifer and partly along buried paleochannel gravels. Groundwater samples were collected using a low-flow pump from two bores near the TSF. The pH of the SCN- contaminated groundwater typically varies between 4 and 6, and dissolved O2 varies between 1 and 40 ppm. SCN- concentrations in off-lease groundwater have increased from 10 ppm in 2010 to over 150 ppm in 2015. Cultures were inoculated directly from the groundwater, and filtered groundwater was used with amendments as the basal growth medium Cultures were subjected to geochemical amendments including changes in dissolved O2, pH, SCN- concentration and additions of organic carbon, phosphate or both. The enriched microbial consortia could not degrade thiocyanate under anoxic conditions, but some could completely degrade high concentrations of SCN- (>800mg L-1) under oxic conditions. Biodegradation accelerated with the addition of phosphate, while the addition of organic carbon actually limited the rate. SCN- degrading cultures are undergoing DNA sequencing for species identification and comparison to SCN--degrading cultures inoculated from surface waters in the TSF.

  17. Probabilistic assessment of ground-water contamination. 1: Geostatistical framework

    SciTech Connect

    Rautman, C.A.; Istok, J.D.

    1996-09-01

    Characterizing the extent and severity of ground-water contamination at waste sites is expensive and time-consuming. A probabilistic approach, based on the acceptance of uncertainty and a finite probability of making classification errors (contaminated relative to a regulatory threshold vs. uncontaminated), is presented as an alternative to traditional site characterization methodology. The approach utilizes geostatistical techniques to identify and model the spatial continuity of contamination at a site (variography) and to develop alternate plausible simulations of contamination fields (conditional simulation). Probabilistic summaries of many simulations provide tools for (a) estimating the range of plausible contaminant concentrations at unsampled locations, (b) identifying the locations of boundaries between contaminated and uncontaminated portions of the site and the degree of certainty in those locations, and (c) estimating the range of plausible values for total contaminant mass. The first paper in the series presents the geostatistical framework and illustrates the approach using synthetic data for a hypothetical site. The second paper presents an application of the proposed methodology to the probabilistic assessment of ground-water contamination at a site involving ground-water contamination by nitrate and herbicide in a shallow, unconfined alluvial aquifer in an agricultural area in eastern Oregon.

  18. A Contamination Vulnerability Assessment for the Sacramento Area Groundwater Basin

    SciTech Connect

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2004-03-10

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as MtBE from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater-monitoring plan, and led to the initiation of the Ambient Groundwater Monitoring and Assessment (GAMA) Program. The primary objective of the GAMA Program is to assess the water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey, the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement the groundwater assessment program in cooperation with local water purveyors. In 2001 and 2002, LLNL carried out this vulnerability study in the groundwater basin of Sacramento suburban area, located to the north of the American River and to the east of the Sacramento River. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3

  19. Hydrogeochemistry of alluvial groundwaters in an agricultural area: an implication for groundwater contamination susceptibility.

    PubMed

    Chae, Gi-Tak; Kim, Kangjoo; Yun, Seong-Taek; Kim, Kyoung-Ho; Kim, Soon-Oh; Choi, Byoung-Young; Kim, Hyoung-Soo; Rhee, Chul Woo

    2004-04-01

    Alluvial groundwaters in the area where intensive agricultural activity takes place were geochemically investigated to evaluate factors regulating groundwater quality of alluvial aquifers. For this study, 55 groundwater samples were taken from the uniformly distributed irrigation wells and were classified into three distinct groups according to their geochemical characteristics. This study reveals that the groundwater quality and the geochemical characteristics of the clustered groups are consistent with the geology of the area. The samples collected from the area where a thick silt bed overlies the sand aquifer are clustered into Group II and show water quality that is only slightly affected by the contaminants originating from the land surface. However, groundwaters of this group are very high in Fe and Mn levels due to strong anoxic condition caused by the thick silt bed. In contrast, Group I shows water quality largely influenced by agricultural activities (i.e., fertilization, liming) and occurs in the area adjacent to the river where the silt bed is not observed and the sand aquifer is covered with sandy soils. Group III mostly occurs in the upgradient of Group I where a thin, silty soil covers the sand aquifer. In overall, the results show that the clustered groups closely reflect the groundwater susceptibility to the contaminants originated from the land surface. This suggests that groundwater clustering based on water chemistry could be applied to the contamination susceptibility assessment for groundwaters in the agricultural area.

  20. Land-use change and costs to rural households: a case study in groundwater nitrate contamination

    NASA Astrophysics Data System (ADS)

    Keeler, Bonnie L.; Polasky, Stephen

    2014-07-01

    Loss of grassland from conversion to agriculture threatens water quality and other valuable ecosystem services. Here we estimate how land-use change affects the probability of groundwater contamination by nitrate in private drinking water wells. We find that conversion of grassland to agriculture from 2007 to 2012 in Southeastern Minnesota is expected to increase the future number of wells exceeding 10 ppm nitrate-nitrogen by 45% (from 888 to 1292 wells). We link outputs of the groundwater well contamination model to cost estimates for well remediation, well replacement, and avoidance behaviors to estimate the potential economic value lost due to nitrate contamination from observed land-use change. We estimate 0.7-12 million in costs (present values over a 20 year horizon) to address the increased risk of nitrate contamination of private wells. Our study demonstrates how biophysical models and economic valuation can be integrated to estimate the welfare consequences of land-use change.

  1. Probability-based nitrate contamination map of groundwater in Kinmen.

    PubMed

    Liu, Chen-Wuing; Wang, Yeuh-Bin; Jang, Cheng-Shin

    2013-12-01

    Groundwater supplies over 50% of drinking water in Kinmen. Approximately 16.8% of groundwater samples in Kinmen exceed the drinking water quality standard (DWQS) of NO3 (-)-N (10 mg/L). The residents drinking high nitrate-polluted groundwater pose a potential risk to health. To formulate effective water quality management plan and assure a safe drinking water in Kinmen, the detailed spatial distribution of nitrate-N in groundwater is a prerequisite. The aim of this study is to develop an efficient scheme for evaluating spatial distribution of nitrate-N in residential well water using logistic regression (LR) model. A probability-based nitrate-N contamination map in Kinmen is constructed. The LR model predicted the binary occurrence probability of groundwater nitrate-N concentrations exceeding DWQS by simple measurement variables as independent variables, including sampling season, soil type, water table depth, pH, EC, DO, and Eh. The analyzed results reveal that three statistically significant explanatory variables, soil type, pH, and EC, are selected for the forward stepwise LR analysis. The total ratio of correct classification reaches 92.7%. The highest probability of nitrate-N contamination map presents in the central zone, indicating that groundwater in the central zone should not be used for drinking purposes. Furthermore, a handy EC-pH-probability curve of nitrate-N exceeding the threshold of DWQS was developed. This curve can be used for preliminary screening of nitrate-N contamination in Kinmen groundwater. This study recommended that the local agency should implement the best management practice strategies to control nonpoint nitrogen sources and carry out a systematic monitoring of groundwater quality in residential wells of the high nitrate-N contamination zones.

  2. Fluorine contamination in groundwater: a major challenge.

    PubMed

    Dar, Mithas Ahmad; Sankar, K; Dar, Imran A

    2011-02-01

    Fluoride in high concentration in groundwater has been reported from many parts of India. However, a systematic study is required to understand the behavior of fluoride in natural water in terms of local hydrogeological setting, climatic conditions, and agricultural practices. The present study is an attempt to assess hydrogeochemistry of groundwater in parts of Palar river basin pertaining to Kancheepuram district Tamil Nadu to understand the fluoride abundance in groundwater and to deduce the chemical parameters responsible for the dissolution activity of fluoride. The study area is geologically occupied by partly sedimentary and partly crystalline formations. A total of 50 dug cum borewell-water samples, representing an area of 2,628.92 km2. The results of the chemical analyses in September 2009 show fluoride abundance in the range of 1 to 3.24 mg/l with 86% of the samples in excess of the permissible limit of 1.5 mg/l. Presence of fluoride-bearing minerals in the host rock, chemical properties like decomposition, dissociation, and dissolution, and their interaction with water are considered to be the main causes for fluoride in groundwater. Chemical weathering with relatively high alkalinity favors high concentration of fluoride in groundwater. Villagers who consume nonpotable high fluoride water may suffer from yellow, cracked teeth; joint pains; and crippled limbs and also age rapidly.

  3. Relation of Nickel Concentrations in Tree Rings to Groundwater Contamination

    NASA Astrophysics Data System (ADS)

    Yanosky, Thomas M.; Vroblesky, Don A.

    1992-08-01

    Increment cores were collected from trees growing at two sites where groundwater is contaminated by nickel. Proton-induced X ray emission spectroscopy was used to determine the nickel concentrations in selected individual rings and in parts of individual rings. Ring nickel concentrations were interpreted on the basis of recent concentrations of nickel in aquifers, historical information about site use activities, and model simulations of groundwater flow. Nickel concentrations in rings increased during years of site use but not in trees outside the contaminated aquifers. Consequently, it was concluded that trees may preserve in their rings an annual record of nickel contamination in groundwater. Tulip trees and oaks contained higher concentrations of nickel than did sassafras, sweet gum, or black cherry. No evidence was found that nickel accumulates consistently within parts of individual rings or that nickel is translocated across ring boundaries.

  4. The new potential for understanding groundwater contaminant transport.

    PubMed

    Hadley, Paul W; Newell, Charles

    2014-01-01

    The groundwater remediation field has been changing constantly since it first emerged in the 1970s. The remediation field has evolved from a dissolved-phase centric conceptual model to a DNAPL-dominated one, which is now being questioned due to a renewed appreciation of matrix diffusion effects on remediation. Detailed observations about contaminant transport have emerged from the remediation field, and challenge the validity of one of the mainstays of the groundwater solute transport modeling world: the concept of mechanical dispersion (Payne et al. 2008). We review and discuss how a new conceptual model of contaminant transport based on diffusion (the usurper) may topple the well-established position of mechanical dispersion (the status quo) that is commonly used in almost every groundwater contaminant transport model, and evaluate the status of existing models and modeling studies that were conducted using advection-dispersion models.

  5. Analysis of hydrocarbon-contaminated groundwater metagenomes as revealed by high-throughput sequencing.

    PubMed

    Abbai, Nathlee S; Pillay, Balakrishna

    2013-07-01

    The tendency for chlorinated aliphatics and aromatic hydrocarbons to accumulate in environments such as groundwater and sediments poses a serious environmental threat. In this study, the metabolic capacity of hydrocarbon (aromatics and chlorinated aliphatics)-contaminated groundwater in the KwaZulu-Natal province of South Africa has been elucidated for the first time by analysis of pyrosequencing data. The taxonomic data revealed that the metagenomes were dominated by the phylum Proteobacteria (mainly Betaproteobacteria). In addition, Flavobacteriales, Sphingobacteria, Burkholderiales, and Rhodocyclales were the predominant orders present in the individual metagenomes. These orders included microorganisms (Flavobacteria, Dechloromonas aromatica RCB, and Azoarcus) involved in the degradation of aromatic compounds and various other hydrocarbons that were present in the groundwater. Although the metabolic reconstruction of the metagenome represented composite cell networks, the information obtained was sufficient to address questions regarding the metabolic potential of the microbial communities and to correlate the data to the contamination profile of the groundwater. Genes involved in the degradation of benzene and benzoate, heavy metal-resistance mechanisms appeared to provide a survival strategy used by the microbial communities. Analysis of the pyrosequencing-derived data revealed that the metagenomes represent complex microbial communities that have adapted to the geochemical conditions of the groundwater as evidenced by the presence of key enzymes/genes conferring resistance to specific contaminants. Thus, pyrosequencing analysis of the metagenomes provided insights into the microbial activities in hydrocarbon-contaminated habitats.

  6. Identification and Tracing Groundwater Contamination by Livestock Burial Sites

    NASA Astrophysics Data System (ADS)

    Ko, K.; Ha, K.; Park, S.; Kim, Y.; Lee, K.

    2011-12-01

    Foot-and-mouth disease (FMD) or hoof-and-mouth disease is a severe plague for animal farming that affects cloven-hoofed animals such as cattle, pigs, sheep, and goats. Since it is highly infectious and can be easily proliferated by infected animals, contaminated equipments, vehicles, clothing, people, and predators. It is widely known that the virus responsible for FMD is a picornavirus, the prototypic member of the genus Aphthovirus. A serious outbreak of foot-and-mouth disease, leading to the stamping out of 3.53 millions of pigs and cattle and the construction of 4,538 burial sites until 15th March, 2011. The build-up of carcass burial should inevitably produce leachate by the decomposition of buried livestock affecting the surround environment such as air, soil, groundwater, and surface water. The most important issues which are currently raised by scientists are groundwater contamination by leachate from the livestock burial sites. This study examined the current status of FMD outbreak occurred in 2010-2011 and the issues of groundwater contamination by leachate from livestock burial sites. The hydrogeochemical, geophysical, and hydrogeological studies were executed to identify and trace groundwater contamination by leachate from livestock burial sites. Generally livestock mortality leachate contains high concentrations of NH3-N, HCO3-, Cl-, SO42-, K+, Na+, P along with relative lesser amounts of iron, calcium, and magnesium. The groundwater chemical data around four burial sites showed high NH3-N, HCO3-, and K+ suggesting the leachate leakage from burial sites. This is also proved by resistivity monitoring survey and tracer tests. The simulation results of leachate dispersion showed the persistent detrimental impacts for groundwater environment for a long time (~50 years). It is need to remove the leachate of burial sites to prevent the dispersion of leachate from livestock burial to groundwater and to monitor the groundwater quality. The most important

  7. Effective contaminant detection networks in uncertain groundwater flow fields.

    PubMed

    Hudak, P F

    2001-01-01

    A mass transport simulation model tested seven contaminant detection-monitoring networks under a 40 degrees range of groundwater flow directions. Each monitoring network contained five wells located 40 m from a rectangular landfill. The 40-m distance (lag) was measured in different directions, depending upon the strategy used to design a particular monitoring network. Lagging the wells parallel to the central flow path was more effective than alternative design strategies. Other strategies allowed higher percentages of leaks to migrate between monitoring wells. Results of this study suggest that centrally lagged groundwater monitoring networks perform most effectively in uncertain groundwater-flow fields.

  8. Public health risk assessment of groundwater contamination in Batman, Turkey.

    PubMed

    Nalbantcilar, M Tahir; Pinarkara, Sukru Yavuz

    2016-08-01

    In this study, a comprehensive analysis of groundwater was performed to assess contamination and phenol content in Batman, Turkey, particularly in residential areas near agriculture, livestock and oil industry facilities. From these areas, where potentially contaminated groundwater used for drinking and irrigation threatens public health, 30 groundwater samples were collected and analyzed for heavy metal concentrations (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Na, Ni, NO3, P, Pb, phenol, S, Sb, Se, SO4, Sr, U, and Zn). Compared with the standards of the Environmental Protection Agency, Al, Fe, and Mn concentrations in groundwater exceeded secondary drinking water regulations, NO3 concentrations were high for maximum contaminant levels, and As, Pb, and U concentrations exceeded maximum contaminant level goals in all samples. Ni, Sb, and Se concentrations also exceeded limits set by the Turkish Standards Institution. Nearly all samples revealed concentrations of Se, Sb, Hg, and phenol due to nearby petroleum refineries, oil storage plants, and agricultural and livestock areas. The results obtained from this study indicate that the groundwater in Batman contains elements in concentrations that approach or exceed limits and thus threatens public health with increased blood cholesterol, decreased blood sugar, and circulatory problems.

  9. Public health risk assessment of groundwater contamination in Batman, Turkey.

    PubMed

    Nalbantcilar, M Tahir; Pinarkara, Sukru Yavuz

    2016-08-01

    In this study, a comprehensive analysis of groundwater was performed to assess contamination and phenol content in Batman, Turkey, particularly in residential areas near agriculture, livestock and oil industry facilities. From these areas, where potentially contaminated groundwater used for drinking and irrigation threatens public health, 30 groundwater samples were collected and analyzed for heavy metal concentrations (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Na, Ni, NO3, P, Pb, phenol, S, Sb, Se, SO4, Sr, U, and Zn). Compared with the standards of the Environmental Protection Agency, Al, Fe, and Mn concentrations in groundwater exceeded secondary drinking water regulations, NO3 concentrations were high for maximum contaminant levels, and As, Pb, and U concentrations exceeded maximum contaminant level goals in all samples. Ni, Sb, and Se concentrations also exceeded limits set by the Turkish Standards Institution. Nearly all samples revealed concentrations of Se, Sb, Hg, and phenol due to nearby petroleum refineries, oil storage plants, and agricultural and livestock areas. The results obtained from this study indicate that the groundwater in Batman contains elements in concentrations that approach or exceed limits and thus threatens public health with increased blood cholesterol, decreased blood sugar, and circulatory problems. PMID:27441860

  10. On-site biological remediation of contaminated groundwater: a review.

    PubMed

    Langwaldt, J H; Puhakka, J A

    2000-02-01

    On-site biological treatment has been used for groundwater cleanup from industrial and agricultural chemicals. The pump-and-treat efficiency is controlled by retardation of contaminants by sorption onto the saturated subsurface solids and by the presence of non-aqueous-phase liquids in the aquifer. On-site bioreactors have been widely used for treatment of contaminants such as petroleum hydrocarbons, monoaromatic hydrocarbons, chlorinated aliphatics and aromatics. The most commonly used reactor types for groundwater include the following: trickling filter, upflow fixed-film reactor and fluidized bed reactor. Bioreactor processes have limitations mainly because of their design to operate at elevated temperatures and thereby by high operational costs.

  11. Identification of multiple sources of groundwater contamination by dual isotopes.

    PubMed

    Kaown, Dugin; Shouakar-Stash, Orfan; Yang, Jaeha; Hyun, Yunjung; Lee, Kang-Kun

    2014-01-01

    Chlorinated solvents are one of the most commonly detected groundwater contaminants in industrial areas. Identification of polluters and allocation of contaminant sources are important concerns in the evaluation of complex subsurface contamination with multiple sources. In recent years, compound-specific isotope analyses (CSIA) have been employed to discriminate among different contaminant sources and to better understand the fate of contaminants in field-site studies. In this study, the usefulness of dual isotopes (carbon and chlorine) was shown in assessments of groundwater contamination at an industrial complex in Wonju, Korea, where groundwater contamination with chlorinated solvents such as trichloroethene (TCE) and carbon tetrachloride (CT) was observed. In November 2009, the detected TCE concentrations at the study site ranged between nondetected and 10,066 µg/L, and the CT concentrations ranged between nondetected and 985 µg/L. In the upgradient area, TCE and CT metabolites were detected, whereas only TCE metabolites were detected in the downgradient area. The study revealed the presence of separate small but concentrated TCE pockets in the downgradient area, suggesting the possibility of multiple contaminant sources that created multiple comingling plumes. Furthermore, the variation of the isotopic (δ(13) C and δ(37) Cl) TCE values between the upgradient and downgradient areas lends support to the idea of multiple contamination sources even in the presence of detectable biodegradation. This case study found it useful to apply a spatial distribution of contaminants coupled with their dual isotopic values for evaluation of the contaminated sites and identification of the presence of multiple sources in the study area.

  12. Determination of micro-organic contaminants in groundwater (Maribor, Slovenia).

    PubMed

    Koroša, A; Auersperger, P; Mali, N

    2016-11-15

    Micro-organic (MO) contaminants in groundwater can have adverse effects on both the environment and on human health. They enter the natural environment as a result of various processes, their presence in groundwater is the result of current anthropogenic activity and pollution loads from the past. A study on the occurrence and concentrations levels of selected contaminants in water was performed in the city of Maribor, Slovenia. A total of 56 groundwater and 4 surface water samples were collected in together four rounds in different hydrogeological periods (dry and wet seasons), and a total of 13 selected contaminants were analysed in this study. Carbamazepine, propyphenazone, caffeine, 2-methyl-2H-benzotriazole (2-MBT) and 2.4-dimethyl-2H-benzotriazole (2.4-DMBT) were determined as indicators of urban pollution, while pesticides and their metabolites (atrazine, desethylatrazine, deisopropylatrazine, terbuthylazine, desethylterbuthylazine, metolachlor, simazine, propazine) were mainly defined as indicators of crop production. All of the selected MO contaminants were detected both in the aquifer and Drava River. The most frequently detected MO compounds in groundwater were desethylatrazine (frequency of detection 98.2%; max. concentration 103.0ngL(-1)), atrazine (94.6%; 229ngL(-1)), 2.4-DMBT (92.9%; 273ngL(-1)), carbamazepine (80.4%; 88.00ngL(-1)), desethylterbuthylazine (76.8%; 7.0ngL(-1)) and simazine (76.8%; 29.6ngL(-1)), whereas propyphenazone (14.3%; 10.7ngL(-1)) was the least frequently detected. Detected MO concentrations in the study were compared with results published elsewhere around the world. Concentrations in groundwater indicate specific land use in their recharge areas. On the basis of correlations and the spatial distribution of selected MOs, groundwater origin for every sampling point was determined. Sampling sites were divided into three different groups for which indicative groundwater quality properties were defined. PMID:27395079

  13. Determination of micro-organic contaminants in groundwater (Maribor, Slovenia).

    PubMed

    Koroša, A; Auersperger, P; Mali, N

    2016-11-15

    Micro-organic (MO) contaminants in groundwater can have adverse effects on both the environment and on human health. They enter the natural environment as a result of various processes, their presence in groundwater is the result of current anthropogenic activity and pollution loads from the past. A study on the occurrence and concentrations levels of selected contaminants in water was performed in the city of Maribor, Slovenia. A total of 56 groundwater and 4 surface water samples were collected in together four rounds in different hydrogeological periods (dry and wet seasons), and a total of 13 selected contaminants were analysed in this study. Carbamazepine, propyphenazone, caffeine, 2-methyl-2H-benzotriazole (2-MBT) and 2.4-dimethyl-2H-benzotriazole (2.4-DMBT) were determined as indicators of urban pollution, while pesticides and their metabolites (atrazine, desethylatrazine, deisopropylatrazine, terbuthylazine, desethylterbuthylazine, metolachlor, simazine, propazine) were mainly defined as indicators of crop production. All of the selected MO contaminants were detected both in the aquifer and Drava River. The most frequently detected MO compounds in groundwater were desethylatrazine (frequency of detection 98.2%; max. concentration 103.0ngL(-1)), atrazine (94.6%; 229ngL(-1)), 2.4-DMBT (92.9%; 273ngL(-1)), carbamazepine (80.4%; 88.00ngL(-1)), desethylterbuthylazine (76.8%; 7.0ngL(-1)) and simazine (76.8%; 29.6ngL(-1)), whereas propyphenazone (14.3%; 10.7ngL(-1)) was the least frequently detected. Detected MO concentrations in the study were compared with results published elsewhere around the world. Concentrations in groundwater indicate specific land use in their recharge areas. On the basis of correlations and the spatial distribution of selected MOs, groundwater origin for every sampling point was determined. Sampling sites were divided into three different groups for which indicative groundwater quality properties were defined.

  14. Catalytic destruction of groundwater contaminants in reactive extraction wells

    DOEpatents

    McNab, Jr., Walt W.; Reinhard, Martin

    2002-01-01

    A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

  15. [Risk assessment of quaternary groundwater contamination in Beijing Plain].

    PubMed

    Guo, Gao-Xuan; Li, Yu; Xu, Liang; Li, Zhi-Ping; Yang, Qing; Xu, Miao-Juan

    2014-02-01

    Firstly, advances in investigation and evaluation of groundwater pollution in China in the last decade were presented, and several issues in the field which hinder the development of groundwater environment were pointed out. Then, four key concepts in risk assessment of groundwater pollution were briefly described with more emphasis on the difference between groundwater pollution assessment and groundwater quality assessment in this paper. After that, a method on risk assessment of groundwater pollution which included four indicators, the pollution assessment, the quality assessment, the vulnerability and the pollution load of groundwater, was presented based on the regional characteristics of Beijing Plain. Also, AHP and expert scoring method were applied to determine the weight of the four evaluation factors. Finally, the application of this method in Beijing Plain showed the area with high, relative high, medium, relative low and low risk of groundwater contamination was 1 232.1 km2, 699.3 km2, 1 951.4 km, 2 644 km2, and 133.2 km2, respectively. The study results showed that the higher risk in the western region was likely caused by the higher pollution load and its higher vulnerability, while the relatively high risk in the southeast of Beijing plain area, the Tongzhou District, is mainly caused by historical pollution sources.

  16. Performance comparison of interceptor trench configurations for extracting contaminated groundwater.

    PubMed

    Hudak, Paul F

    2004-01-01

    Computer simulations tested the capability of five alternative interceptor trench configurations to capture an enclave (plume) of contaminated groundwater. The configurations included a single linear segment and angled segments, at 90 degrees and 135 degrees, with a common endpoint. Alternative angled configurations both faced and opposed the contaminant plume. Each trench configuration had the same total length and was located the same average distance from the contaminant plume. The minimum pumping rate required to capture the plume and a surrounding buffer zone, within a prescribed time period, was determined for each trench configuration. The 90 degree plume-opposed trench performed best, requiring approximately one-third the pumping rate of the 90 degree plume-facing configuration. The plume-opposed configuration yielded a capture zone that best conformed to the actual shape of the contaminant plume, thereby reducing the amount of groundwater that had to be removed from the aquifer to remove the contaminant plume. Ironically, plume opposed configurations are rarely used in practice. Results of this study suggest that alternative interceptor trench configurations, including funnels with mouths opposed to contaminant plumes, should be tested with computer simulations when devising protocols for groundwater remediation.

  17. Integrating Address Geocoding, Land Use Regression, and Spatiotemporal Geostatistical Estimation for Groundwater Tetrachloroethylene

    PubMed Central

    Messier, Kyle P.; Akita, Yasuyuki; Serre, Marc L.

    2012-01-01

    Geographic Information Systems (GIS) based techniques are cost-effective and efficient methods used by state agencies and epidemiology researchers for estimating concentration and exposure. However, budget limitations have made statewide assessments of contamination difficult, especially in groundwater media. Many studies have implemented address geocoding, land use regression, and geostatistics independently, but this is the first to examine the benefits of integrating these GIS techniques to address the need of statewide exposure assessments. A novel framework for concentration exposure is introduced that integrates address geocoding, land use regression (LUR), below detect data modeling, and Bayesian Maximum Entropy (BME). A LUR model was developed for Tetrachloroethylene that accounts for point sources and flow direction. We then integrate the LUR model into the BME method as a mean trend while also modeling below detects data as a truncated Gaussian probability distribution function. We increase available PCE data 4.7 times from previously available databases through multistage geocoding. The LUR model shows significant influence of dry cleaners at short ranges. The integration of the LUR model as mean trend in BME results in a 7.5% decrease in cross validation mean square error compared to BME with a constant mean trend. PMID:22264162

  18. Integrating address geocoding, land use regression, and spatiotemporal geostatistical estimation for groundwater tetrachloroethylene.

    PubMed

    Messier, Kyle P; Akita, Yasuyuki; Serre, Marc L

    2012-03-01

    Geographic information systems (GIS) based techniques are cost-effective and efficient methods used by state agencies and epidemiology researchers for estimating concentration and exposure. However, budget limitations have made statewide assessments of contamination difficult, especially in groundwater media. Many studies have implemented address geocoding, land use regression, and geostatistics independently, but this is the first to examine the benefits of integrating these GIS techniques to address the need of statewide exposure assessments. A novel framework for concentration exposure is introduced that integrates address geocoding, land use regression (LUR), below detect data modeling, and Bayesian Maximum Entropy (BME). A LUR model was developed for tetrachloroethylene that accounts for point sources and flow direction. We then integrate the LUR model into the BME method as a mean trend while also modeling below detects data as a truncated Gaussian probability distribution function. We increase available PCE data 4.7 times from previously available databases through multistage geocoding. The LUR model shows significant influence of dry cleaners at short ranges. The integration of the LUR model as mean trend in BME results in a 7.5% decrease in cross validation mean square error compared to BME with a constant mean trend.

  19. Treatability studies of groundwater contaminated with bis(2-chloroethyl) ether

    SciTech Connect

    Huang, F.Y.C.; Li, K.Y.; Liu, C.C.

    1999-05-01

    The groundwater aquifer underneath a chemical manufacturing plant in Southeast Texas has been contaminated with the leachate from its landfill. There are 17 major chlorinated hydrocarbon contaminants found in the groundwater with concentrations ranging from 1 ppm to 1,200 ppm. An air-stripping unit followed by a thermal catalytic oxidation unit is currently operating on-site to remove all of the chlorinated compounds from the contaminated groundwater. One of the contaminants, bis(2-chloroethyl)ether (DCEE), has a fairly low Henry`s Law constant; therefore, a high air flow rate is employed in the stripping unit to improve the overall stripping efficiency. Nevertheless, the treated groundwater still contains a fair amount of DCEE. An UV-peroxidation reactor is set up to study its feasibility for oxidizing DCEE. The treatability data indicate that DCEE at a concentration of 200 ppm can be oxidized effectively in the presence of H{sub 2}O{sub 2} and the effective UV wavelengths lie between 200 and 280 nm. No noticeable reduction of the oxidation rate is observed at low temperature ({approximately} 11 C). Apparent oxidation rate equations of DCEE are determined and several process design parameters are discussed.

  20. Nitrate contamination risk assessment in groundwater at regional scale

    NASA Astrophysics Data System (ADS)

    Daniela, Ducci

    2016-04-01

    Nitrate groundwater contamination is widespread in the world, due to the intensive use of fertilizers, to the leaking from the sewage network and to the presence of old septic systems. This research presents a methodology for groundwater contamination risk assessment using thematic maps derived mainly from the land-use map and from statistical data available at the national institutes of statistic (especially demographic and environmental data). The potential nitrate contamination is considered as deriving from three sources: agricultural, urban and periurban. The first one is related to the use of fertilizers. For this reason the land-use map is re-classified on the basis of the crop requirements in terms of fertilizers. The urban source is the possibility of leaks from the sewage network and, consequently, is linked to the anthropogenic pressure, expressed by the population density, weighted on the basis of the mapped urbanized areas of the municipality. The periurban sources include the un-sewered areas, especially present in the periurban context, where illegal sewage connections coexist with on-site sewage disposal (cesspools, septic tanks and pit latrines). The potential nitrate contamination map is produced by overlaying the agricultural, urban and periurban maps. The map combination process is very easy, being an algebraic combination: the output values are the arithmetic average of the input values. The groundwater vulnerability to contamination can be assessed using parametric methods, like DRASTIC or easier, like AVI (that involves a limited numbers of parameters). In most of cases, previous documents produced at regional level can be used. The pollution risk map is obtained by combining the thematic maps of the potential nitrate contamination map and the groundwater contamination vulnerability map. The criterion for the linkages of the different GIS layers is very easy, corresponding to an algebraic combination. The methodology has been successfully

  1. Monitoring ecological recovery in a stream impacted by contaminated groundwater

    SciTech Connect

    Southworth, G.R.; Cada, G.F.; Kszos, L.A.; Peterson, M.J.; Smith, J.G.

    1997-11-01

    Past in-ground disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. A biological monitoring program initiated in 1984 has evaluated the effectiveness of the extensive remedial actions undertaken to address contamination sources. Elements of the monitoring program included toxicity testing with fish and invertebrates, bioaccumulation monitoring, and instream monitoring of streambed invertebrate and fish communities. In the mid 1980`s, toxicity tests on stream water indicated that the headwaters of the stream were acutely toxic to fish and aquatic invertebrates as a result of infiltration of a metal-enriched groundwater from ponds used to dispose of acid wastes. Over a twelve year period, measurable toxicity in the headwaters decreased, first becoming non-toxic to larval fish but still toxic to invertebrates, then becoming intermittently toxic to invertebrates. By 1997, episodic toxicity was infrequent at the site that was acutely toxic at the start of the study. Recovery in the fish community followed the pattern of the toxicity tests. Initially, resident fish populations were absent from reaches where toxicity was measured, but as toxicity to fish larvae disappeared, the sites in upper Bear Creek were colonized by fish. The Tennessee dace, an uncommon species receiving special protection by the State of Tennessee, became a numerically important part of the fish population throughout the upper half of the creek, making Bear Creek one of the most significant habitats for this species in the region. Although by 1990 fish populations were comparable to those of similar size reference streams, episodic toxicity in the headwaters coincided with a recruitment failure in 1996. Bioaccumulation monitoring indicated the presence of PCBs and mercury in predatory fish in Bear Creek, and whole forage fish contained elevated levels of cadmium, lead, lithium, nickel, mercury, and uranium.

  2. Advanced oxidation to treat gasoline-contaminated groundwater

    SciTech Connect

    Singh, R.; Medlar, S.J. )

    1992-04-01

    For 10 to 20 years, an undetermined amount of gasoline leaked from a petroleum terminal at a site in New York State and caused groundwater contamination. Benzene, toluene, ethylbenzene, and xylenes were detected in concentrations of up to 90mg/L in some areas, and high levels of iron and lead were also observed. After discovery, recovery wells were installed to pump the pure product out of the ground. To date, more than 1500m[sup 3] (400,000 gal) of gasoline have been recovered. Wells were also installed to intercept the contaminant plume to prevent its migration. An air stripper with vapor-phase carbon was put on line as an immediate response measure to treat the intercepted groundwater. A site remediation plan was proposed to pump the gasoline-contaminated groundwater, treat it to remove both the metals and toxic organic contaminants, and then recharge it to the aquifer. One of the technologies proposed for the treatability study was the advanced oxidation (AO) process which uses ozone and hydrogen peroxide to destroy organic chemicals. This process involves the formation of free radicals by ozone decomposition; the hydroxyl radical concentration increases and contaminant oxidation and destruction are promoted.

  3. Inclusion of emerging organic contaminants in groundwater monitoring plans.

    PubMed

    Lamastra, Lucrezia; Balderacchi, Matteo; Trevisan, Marco

    2016-01-01

    Groundwater is essential for human life and its protection is a goal for the European policies. All the anthropogenic activities could impact on water quality. •Conventional pollutants and more than 700 emerging pollutants, resulting from point and diffuse source contamination, threat the aquatic ecosystem.•Policy-makers and scientists will have to cooperate to create an initial groundwater emerging pollutant priority list, to answer at consumer demands for safety and to the lack of conceptual models for emerging pollutants in groundwater.•Among the emerging contaminants and pollutants this paper focuses on organic wastewater contaminants (OWCs) mainly released into the environment by domestic households, industry, hospitals and agriculture. This paper starts from the current regulatory framework and from the literature overview to explain how the missing conceptual model for OWCs could be developed.•A full understanding of the mechanisms leading to the contamination and the evidence of the contamination must be the foundation of the conceptual model. In this paper carbamazepine, galaxolide and sulfamethozale, between the OWCs, are proposed as "environmental tracers" to identify sources and pathways ofcontamination/pollution.

  4. Inclusion of emerging organic contaminants in groundwater monitoring plans.

    PubMed

    Lamastra, Lucrezia; Balderacchi, Matteo; Trevisan, Marco

    2016-01-01

    Groundwater is essential for human life and its protection is a goal for the European policies. All the anthropogenic activities could impact on water quality. •Conventional pollutants and more than 700 emerging pollutants, resulting from point and diffuse source contamination, threat the aquatic ecosystem.•Policy-makers and scientists will have to cooperate to create an initial groundwater emerging pollutant priority list, to answer at consumer demands for safety and to the lack of conceptual models for emerging pollutants in groundwater.•Among the emerging contaminants and pollutants this paper focuses on organic wastewater contaminants (OWCs) mainly released into the environment by domestic households, industry, hospitals and agriculture. This paper starts from the current regulatory framework and from the literature overview to explain how the missing conceptual model for OWCs could be developed.•A full understanding of the mechanisms leading to the contamination and the evidence of the contamination must be the foundation of the conceptual model. In this paper carbamazepine, galaxolide and sulfamethozale, between the OWCs, are proposed as "environmental tracers" to identify sources and pathways ofcontamination/pollution. PMID:27366676

  5. Passive treatment of wastewater and contaminated groundwater

    DOEpatents

    Phifer, Mark A.; Sappington, Frank C.; Millings, Margaret R.; Turick, Charles E.; McKinsey, Pamela C.

    2007-11-06

    A bioremediation system using inorganic oxide-reducing microbial consortia for the treatment of, inter alia coal mine and coal yard runoff uses a containment vessel for contaminated water and a second, floating phase for nutrients. Biodegradable oils are preferred nutrients.

  6. Passive treatment of wastewater and contaminated groundwater

    DOEpatents

    Phifer, Mark A.; Sappington, Frank C.; Millings, Margaret R.; Turick, Charles E.; McKinsey, Pamela C.

    2006-12-12

    A bioremediation system using inorganic oxide-reducing microbial consortia for the treatment of, inter alia coal mine and coal yard runoff uses a containment vessel for contaminated water and a second, floating phase for nutrients. Biodegradable oils are preferred nutrients.

  7. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  8. Studies in geophysics groundwater contamination by Geophysics Study Committee

    SciTech Connect

    Not Available

    1984-01-01

    The book cites the massive application of chemicals to the land and the possibility of groundwater contamination and the extent of contamination on the natural scale. Movement by microscopic and macroscopic processes is discussed together with a description of chemical processes involved. This is followed by description of shallow land disposal of municipal waste and deep well injection. Several specific examples are then described and discussed. For example, the section on the Love Canal discusses a modeling system and recommendations for receiving the problem. Each section includes an abstract and a comprehensive set of references. It is well written, comprehensive and a valuable addition to the library of anyone working on the environmental problems of groundwater contamination.

  9. Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling

    NASA Astrophysics Data System (ADS)

    Michalak, Anna M.; Kitanidis, Peter K.

    2004-08-01

    As the incidence of groundwater contamination continues to grow, a number of inverse modeling methods have been developed to address forensic groundwater problems. In this work the geostatistical approach to inverse modeling is extended to allow for the recovery of the antecedent distribution of a contaminant at a given point back in time, which is critical to the assessment of historical exposure to contamination. Such problems are typically strongly underdetermined, with a large number of points at which the distribution is to be estimated. To address this challenge, the computational efficiency of the new method is increased through the application of the adjoint state method. In addition, the adjoint problem is presented in a format that allows for the reuse of existing groundwater flow and transport codes as modules in the inverse modeling algorithm. As demonstrated in the presented applications, the geostatistical approach combined with the adjoint state method allow for a historical multidimensional contaminant distribution to be recovered even in heterogeneous media, where a numerical solution is required for the forward problem.

  10. Linking bacterial diversity and geochemistry of uranium-contaminated groundwater.

    PubMed

    Cho, Kelly; Zholi, Alma; Frabutt, Dylan; Flood, Matthew; Floyd, Dalton; Tiquia, Sonia M

    2012-01-01

    To understand the link between bacterial diversity and geochemistry in uranium-contaminated groundwater, microbial communities were assessed based on clone libraries of 16S rDNA genes from the USDOE Oak Ridge Field Research Centre (FRC) site. Four groundwater wells (GW835, GW836, FW113-47 and FW215-49) with a wide range of pH (3 to 7), nitrate (44 to 23,400 mg L(-1)), uranium (0.73 to 60.36 mg L(-1)) and other metal contamination, were investigated. Results indicated that bacterial diversity correlated with the geochemistry of the groundwater. Microbial diversity decreased in relation to the contamination levels of the wells. The highly contaminated well (FW113-47) had lower gene diversity than less contaminated wells (FW215-49, GW835 and GW836). The high concentrations of contaminants present in well FW113-47 stimulated the growth of organisms capable of reducing uranium (Shewanella and Pseudomonas), nitrate (Pseudomonas, Rhodanobacter and Xanthomonas) and iron (Stenotrophomonas), and which were unique to this well. The clone libraries consisted primarily of sequences closely related to the phylum Proteobacteria, with FW-113-47 almost exclusively containing this phylum. Metal-reducing bacteria were present in all four wells, which may suggest that there is potential for successful bioremediation of the groundwater at the Oak Ridge FRC. The microbial community information gained from this study and previous studies at the site can be used to develop predictive multivariate and geographical information system (GIS) based models for microbial populations at the Oak Ridge FRC. This will allow for a better understanding of what organisms are likely to occur where and when, based on geochemistry, and how these organisms relate to bioremediation processes at the site.

  11. Dilution and volatilization of groundwater contaminant discharges in streams

    NASA Astrophysics Data System (ADS)

    Aisopou, Angeliki; Bjerg, Poul L.; Sonne, Anne T.; Balbarini, Nicola; Rosenberg, Louise; Binning, Philip J.

    2015-01-01

    An analytical solution to describe dilution and volatilization of a continuous groundwater contaminant plume into streams is developed for risk assessment. The location of groundwater plume discharge into the stream (discharge through the side versus bottom of the stream) and different distributions of the contaminant plume concentration (Gaussian, homogeneous or heterogeneous distribution) are considered. The model considering the plume discharged through the bank of the river, with a uniform concentration distribution was the most appropriate for risk assessment due to its simplicity and limited data requirements. The dilution and volatilization model is able to predict the entire concentration field, and thus the mixing zone, maximum concentration and fully mixed concentration in the stream. It can also be used to identify groundwater discharge zones from in-stream concentration measurement. The solution was successfully applied to published field data obtained in a large and a small Danish stream and provided valuable information on the risk posed by the groundwater contaminant plumes. The results provided by the dilution and volatilization model are very different to those obtained with existing point source models, with a distributed source leading to a larger mixing length and different concentration field. The dilution model can also provide recommendations for sampling locations and the size of impact zones in streams. This is of interest for regulators, for example when developing guidelines for the implementation of the European Water Framework Directive.

  12. Estimating contaminant attenuation half-lives in alluvial groundwater systems.

    PubMed

    Tardiff, Mark F; Katzman, Danny

    2007-03-01

    One aspect of describing contamination in an alluvial aquifer is estimating changes in concentrations over time. A variety of statistical methods are available for assessing trends in contaminant concentrations. We present a method that extends trend analysis to include estimating the coefficients for the exponential decay equation and calculating contaminant attenuation half-lives. The conceptual model for this approach assumes that the rate of decline is proportional to the contaminant concentration in an aquifer. Consequently, the amount of time to remove a unit quantity of the contaminant inventory from an aquifer lengthens as the concentration decreases. Support for this conceptual model is demonstrated empirically with log-transformed time series of contaminant data. Equations are provided for calculating system attenuation half-lives for non-radioactive contaminants. For radioactive contaminants, the system attenuation half-life is partitioned into the intrinsic radioactive decay and the concentration reduction caused by aquifer processes. Examples are presented that provide the details of this approach. In addition to gaining an understanding of aquifer characteristics and changes in constituent concentrations, this method can be used to assess compliance with regulatory standards and to estimate the time to compliance when natural attenuation is being considered as a remediation strategy. A special application of this method is also provided that estimates the half-life of the residence time for groundwater in the aquifer by estimating the half life for a conservative contaminant that is no longer being released into the aquifer. Finally, the ratio of the half-life for groundwater residence time to the attenuation half-life for a contaminant is discussed as a system-scale retardation factor which can be used in analytical and numerical modeling.

  13. Nitrate contamination in groundwater on an urbanized dairy farm.

    PubMed

    Showers, William J; Genna, Bernard; McDade, Timothy; Bolich, Rick; Fountain, John C

    2008-07-01

    Urbanization of rural farmland is a pervasive trend around the globe, and maintaining and protecting adequate water supplies in suburban areas is a growing problem. Identification of the sources of groundwater contamination in urbanized areas is problematic, but will become important in areas of rapid population growth and development. The isotopic composition of NO3 (delta15N(NO3) and delta18O NO3), NH4 (delta15N(NH4)), groundwater (delta2H(wt) and delta18O(wt)) and chloride/bromide ratios were used to determine the source of nitrate contamination in drinking water wells in a housing development that was built on the site of a dairy farm in the North Carolina Piedmont, U.S. The delta15N(NO3) and delta18O NO3 compositions imply that elevated nitrate levels at this site in drinking well water are the result of waste contamination, and that denitrification has not significantly attenuated the groundwater nitrate concentrations. delta15N(NO3) and delta18O(NO3) compositions in groundwater could not differentiate between septic effluent and animal waste contamination. Chloride/ bromide ratios in the most contaminated drinking water wells were similar to ratios found in animal waste application fields, and were higher than Cl/Br ratios observed in septic drain fields in the area. delta18O(wt) was depleted near the site of a buried waste lagoon without an accompanying shift in delta2H(wt) suggesting water oxygen exchange with CO2. This water-CO2 exchange resulted from the reduction of buried lagoon organic matter, and oxidation of the released gases in aerobic soils. delta18O(wt) is not depleted in the contaminated drinking water wells, indicating that the buried dairy lagoon is not a source of waste contamination. The isotope and Cl/Br ratios indicate that nitrate contamination in these drinking wells are not from septic systems, but are the result of animal waste leached from pastures into groundwater during 35 years of dairy operations which did not violate any

  14. Understanding shallow groundwater contamination in Bwaise slum, Kampala, Uganda

    NASA Astrophysics Data System (ADS)

    Nyenje, P. M.; Havik, J.; Foppen, J. W.; Uhlenbrook, S.

    2012-04-01

    Groundwater in unsewered urban areas is heavily contaminated by onsite sanitation activities and is believed to be an important source of nutrients ex-filtrating into streams and thus contributing to eutrophication of Lakes in urban areas. Currently the fate of nutrients and especially phosphorus leached into groundwater in such areas is not well known. In this study, we undertook an extensive investigation of groundwater in Bwaise slum, Kampala Uganda to understand the distribution and fate of sanitation-related nutrients N and P that are leached into groundwater. Transects of monitoring wells were installed in Bwaise slum and downstream of the slum. From these wells, water levels were measured and water quality analyses done to understand the distribution and composition of the nutrients, how they evolve downstream and the possible subsurface processes affecting their fate during transport. These findings are necessary to evaluate the risk of eutrophication posed by unsewered areas in urban cities and to design/implement sanitation systems that will effectively reduce the enrichment of these nutrients in groundwater. Key words: fate, groundwater, nutrients, processes, slums

  15. Comparative metagenomics reveals impact of contaminants on groundwater microbiomes

    SciTech Connect

    Hemme, Christopher L.; Tu, Qichao; Shi, Zhou; Qin, Yujia; Gao, Weimin; Deng, Ye; Nostrand, Joy D. Van; Wu, Liyou; He, Zhili; Chain, Patrick S. G.; Tringe, Susannah G.; Fields, Matthew W.; Rubin, Edward M.; Tiedje, James M.; Hazen, Terry C.; Arkin, Adam P.; Zhou, Jizhong

    2015-10-31

    To understand patterns of geochemical cycling in pristine versus contaminated groundwater ecosystems, pristine shallow groundwater (FW301) and contaminated groundwater (FW106) samples from the Oak Ridge Integrated Field Research Center (OR-IFRC) were sequenced and compared to each other to determine phylogenetic and metabolic difference between the communities. Proteobacteria (e.g., Burkholderia, Pseudomonas) are the most abundant lineages in the pristine community, though a significant proportion ( >55%) of the community is composed of poorly characterized low abundance (individually <1%) lineages. The phylogenetic diversity of the pristine community contributed to a broader diversity of metabolic networks than the contaminated community. In addition, the pristine community encodes redundant and mostly complete geochemical cycles distributed over multiple lineages and appears capable of a wide range of metabolic activities. In contrast, many geochemical cycles in the contaminated community appear truncated or minimized due to decreased biodiversity and dominance by Rhodanobacter populations capable of surviving the combination of stresses at the site. In conclusion, these results indicate that the pristine site contains more robust and encodes more functional redundancy than the stressed community, which contributes to more efficient nutrient cycling and adaptability than the stressed community.

  16. Comparative metagenomics reveals impact of contaminants on groundwater microbiomes

    DOE PAGES

    Hemme, Christopher L.; Tu, Qichao; Shi, Zhou; Qin, Yujia; Gao, Weimin; Deng, Ye; Nostrand, Joy D. Van; Wu, Liyou; He, Zhili; Chain, Patrick S. G.; et al

    2015-10-31

    To understand patterns of geochemical cycling in pristine versus contaminated groundwater ecosystems, pristine shallow groundwater (FW301) and contaminated groundwater (FW106) samples from the Oak Ridge Integrated Field Research Center (OR-IFRC) were sequenced and compared to each other to determine phylogenetic and metabolic difference between the communities. Proteobacteria (e.g., Burkholderia, Pseudomonas) are the most abundant lineages in the pristine community, though a significant proportion ( >55%) of the community is composed of poorly characterized low abundance (individually <1%) lineages. The phylogenetic diversity of the pristine community contributed to a broader diversity of metabolic networks than the contaminated community. In addition, themore » pristine community encodes redundant and mostly complete geochemical cycles distributed over multiple lineages and appears capable of a wide range of metabolic activities. In contrast, many geochemical cycles in the contaminated community appear truncated or minimized due to decreased biodiversity and dominance by Rhodanobacter populations capable of surviving the combination of stresses at the site. In conclusion, these results indicate that the pristine site contains more robust and encodes more functional redundancy than the stressed community, which contributes to more efficient nutrient cycling and adaptability than the stressed community.« less

  17. Comparative metagenomics reveals impact of contaminants on groundwater microbiomes

    PubMed Central

    Hemme, Christopher L.; Tu, Qichao; Shi, Zhou; Qin, Yujia; Gao, Weimin; Deng, Ye; Nostrand, Joy D. Van; Wu, Liyou; He, Zhili; Chain, Patrick S. G.; Tringe, Susannah G.; Fields, Matthew W.; Rubin, Edward M.; Tiedje, James M.; Hazen, Terry C.; Arkin, Adam P.; Zhou, Jizhong

    2015-01-01

    To understand patterns of geochemical cycling in pristine versus contaminated groundwater ecosystems, pristine shallow groundwater (FW301) and contaminated groundwater (FW106) samples from the Oak Ridge Integrated Field Research Center (OR-IFRC) were sequenced and compared to each other to determine phylogenetic and metabolic difference between the communities. Proteobacteria (e.g., Burkholderia, Pseudomonas) are the most abundant lineages in the pristine community, though a significant proportion ( >55%) of the community is composed of poorly characterized low abundance (individually <1%) lineages. The phylogenetic diversity of the pristine community contributed to a broader diversity of metabolic networks than the contaminated community. In addition, the pristine community encodes redundant and mostly complete geochemical cycles distributed over multiple lineages and appears capable of a wide range of metabolic activities. In contrast, many geochemical cycles in the contaminated community appear truncated or minimized due to decreased biodiversity and dominance by Rhodanobacter populations capable of surviving the combination of stresses at the site. These results indicate that the pristine site contains more robust and encodes more functional redundancy than the stressed community, which contributes to more efficient nutrient cycling and adaptability than the stressed community. PMID:26583008

  18. Groundwater contamination in Ibadan, South-West Nigeria.

    PubMed

    Egbinola, Christiana Ndidi; Amanambu, Amobichukwu Chukwudi

    2014-01-01

    Groundwater is the main source of water for domestic use in Nigeria because it is perceived to be clean. The presence of geogenic contaminants (arsenic and fluoride), and the level of awareness of their presence in groundwater in Ibadan, Nigeria was examined in this study. A total of one hundred and twenty groundwater samples were collected from hand dug wells which tap into shallow aquifers and their location taken with the aid of a GPS. The concentration of arsenic was determined by Atomic Absorption Spectrophotometry (AAS) while concentration of fluoride was determined by single beam spectrophotometer. Three hundred and fifty semi structured questionnaires were also administered within the study area to determine the level of awareness of contamination problem. Simple summary statistics including mean (m) standard deviation (s) and minimum-maximum values of the hydro-chemical data was used in the data analyses, while spatial concentrations were mapped using ArcGIS. The results showed arsenic concentration exceeding the WHO (2011) recommended concentration for drinking water in 98% and 100% of the dry and wet season samples. Concentration of Fluoride exceeded the recommended limits in 13% and 100% of the dry and wet season samples. Questionnaire analyses revealed that 85% of respondents have never tested their wells, 55% have no knowledge of geogenic contamination, while 92% never heard of arsenic or fluoride (52%). The study recommends enlightenment on geogenic contamination and testing of wells for remediation purposes.

  19. Nitrate contamination of groundwater: A conceptual management framework

    SciTech Connect

    Almasri, Mohammad N. . E-mail: mnmasri@najah.edu

    2007-04-15

    In many countries, public concern over the deterioration of groundwater quality from nitrate contamination has grown significantly in recent years. This concern has focused increasingly on anthropogenic sources as the potential cause of the problem. Evidence indicates that the nitrate (NO{sub 3}) levels routinely exceed the maximum contaminant level (MCL) of 10 mg/l NO{sub 3}-N in many aquifer systems that underlie agriculture-dominated watersheds. Degradation of groundwater quality due to nitrate pollution along with the increasing demand for potable water has motivated the adoption of restoration actions of the contaminated aquifers. Restoration efforts have intensified the dire need for developing protection alternatives and management options such that the ultimate nitrate concentrations at the critical receptors are below the MCL. This paper presents a general conceptual framework for the management of groundwater contamination from nitrate. The management framework utilizes models of nitrate fate and transport in the unsaturated and saturated zones to simulate nitrate concentration at the critical receptors. To study the impact of different management options considering both environmental and economic aspects, the proposed framework incorporates a component of a multi-criteria decision analysis. To enhance spatiality in model development along with the management options, the utilization of a land use map is depicted for the allocation and computation of on-ground nitrogen loadings from the different sources.

  20. Arsenic contamination in groundwater in the Southeast Asia region.

    PubMed

    Rahman, Mohammad Mahmudur; Naidu, R; Bhattacharya, Prosun

    2009-04-01

    The adverse impact of groundwater contaminated with arsenic (As) on humans has been reported worldwide, particularly in Asian countries. In this study, we present an overview of the As crisis in the Southeast Asian region where groundwater is contaminated with naturally occurring As and where contamination has become more widespread in recent years. In this region more than 100 million people are estimated to be at risk from groundwater As contamination, and some 700,000 people are known so far to have been affected by As-related diseases. Despite investments exceeding many millions of dollars, there are still substantial knowledge gaps about the prevalence and impact of As, notably in its epidemiology, temporal variations, social factors, patient identification, treatment, etc. Arsenic-affected people in the affected regions also face serious social problems. Of major concern is the fact that many researchers from different countries have been conducting research in SE Asia region but with a lack of coordination, thus duplicating their work. There is an urgent need to coordinate these various studies to ensure better delivery of research outcomes. Further research is needed to improve field testing and monitoring of drinking water sources, and to develop new treatments for chronic As toxicity and new sources of safe drinking water.

  1. Nebraska's groundwater legacy: Nitrate contamination beneath irrigated cropland

    PubMed Central

    Exner, Mary E; Hirsh, Aaron J; Spalding, Roy F

    2014-01-01

    A 31 year record of ∼44,000 nitrate analyses in ∼11,500 irrigation wells was utilized to depict the decadal expansion of groundwater nitrate contamination (N ≥ 10 mg/L) in the irrigated corn-growing areas of eastern and central Nebraska and analyze long-term nitrate concentration trends in 17 management areas (MAs) subject to N fertilizer and budgeting requirements. The 1.3 M contaminated hectares were characterized by irrigation method, soil drainage, and vadose zone thickness and lithology. The areal extent and growth of contaminated groundwater in two predominately sprinkler-irrigated areas was only ∼20% smaller beneath well-drained silt loams with thick clayey-silt unsaturated layers and unsaturated thicknesses >15 m (400,000 ha and 15,000 ha/yr) than beneath well and excessively well-drained soils with very sandy vadose zones (511,000 ha and 18,600 ha/yr). Much slower expansion (3700 ha/yr) occurred in the 220,000 contaminated hectares in the central Platte valley characterized by predominately gravity irrigation on thick, well-drained silt loams above a thin (∼5.3 m), sandy unsaturated zone. The only reversals in long-term concentration trends occurred in two MAs (120,500 ha) within this contaminated area. Concentrations declined 0.14 and 0.20 mg N/L/yr (p < 0.02) to ∼18.3 and 18.8 mg N/L, respectively, during >20 years of management. Average annual concentrations in 10 MAs are increasing (p < 0.05) and indicate that average nitrate concentrations in leachates below the root zone and groundwater concentrations have not yet reached steady state. While management practices likely have slowed increases in groundwater nitrate concentrations, irrigation and nutrient applications must be more effectively controlled to retain nitrate in the root zone. PMID:25558112

  2. Nebraska's groundwater legacy: Nitrate contamination beneath irrigated cropland

    NASA Astrophysics Data System (ADS)

    Exner, Mary E.; Hirsh, Aaron J.; Spalding, Roy F.

    2014-05-01

    A 31 year record of ˜44,000 nitrate analyses in ˜11,500 irrigation wells was utilized to depict the decadal expansion of groundwater nitrate contamination (N ≥ 10 mg/L) in the irrigated corn-growing areas of eastern and central Nebraska and analyze long-term nitrate concentration trends in 17 management areas (MAs) subject to N fertilizer and budgeting requirements. The 1.3 M contaminated hectares were characterized by irrigation method, soil drainage, and vadose zone thickness and lithology. The areal extent and growth of contaminated groundwater in two predominately sprinkler-irrigated areas was only ˜20% smaller beneath well-drained silt loams with thick clayey-silt unsaturated layers and unsaturated thicknesses >15 m (400,000 ha and 15,000 ha/yr) than beneath well and excessively well-drained soils with very sandy vadose zones (511,000 ha and 18,600 ha/yr). Much slower expansion (3700 ha/yr) occurred in the 220,000 contaminated hectares in the central Platte valley characterized by predominately gravity irrigation on thick, well-drained silt loams above a thin (˜5.3 m), sandy unsaturated zone. The only reversals in long-term concentration trends occurred in two MAs (120,500 ha) within this contaminated area. Concentrations declined 0.14 and 0.20 mg N/L/yr (p < 0.02) to ˜18.3 and 18.8 mg N/L, respectively, during >20 years of management. Average annual concentrations in 10 MAs are increasing (p < 0.05) and indicate that average nitrate concentrations in leachates below the root zone and groundwater concentrations have not yet reached steady state. While management practices likely have slowed increases in groundwater nitrate concentrations, irrigation and nutrient applications must be more effectively controlled to retain nitrate in the root zone.

  3. Tracing enteric pathogen contamination in sub-Saharan African groundwater.

    PubMed

    Sorensen, J P R; Lapworth, D J; Read, D S; Nkhuwa, D C W; Bell, R A; Chibesa, M; Chirwa, M; Kabika, J; Liemisa, M; Pedley, S

    2015-12-15

    Quantitative PCR (qPCR) can rapidly screen for an array of faecally-derived bacteria, which can be employed as tracers to understand groundwater vulnerability to faecal contamination. A microbial DNA qPCR array was used to examine 45 bacterial targets, potentially relating to enteric pathogens, in 22 groundwater supplies beneath the city of Kabwe, Zambia in both the dry and subsequent wet season. Thermotolerant (faecal) coliforms, sanitary risks, and tryptophan-like fluorescence, an emerging real-time reagentless faecal indicator, were also concurrently investigated. There was evidence for the presence of enteric bacterial contamination, through the detection of species and group specific 16S rRNA gene fragments, in 72% of supplies where sufficient DNA was available for qPCR analysis. DNA from the opportunistic pathogen Citrobacter freundii was most prevalent (69% analysed samples), with Vibrio cholerae also perennially persistent in groundwater (41% analysed samples). DNA from other species such as Bifidobacterium longum and Arcobacter butzleri was more seasonally transient. Bacterial DNA markers were most common in shallow hand-dug wells in laterite/saprolite implicating rapid subsurface pathways and vulnerability to pollution at the surface. Boreholes into the underlying dolomites were also contaminated beneath the city highlighting that a laterite/saprolite overburden, as occurs across much of sub-Saharan aquifer, does not adequately protect underlying bedrock groundwater resources. Nevertheless, peri-urban boreholes all tested negative establishing there is limited subsurface lateral transport of enteric bacteria outside the city limits. Thermotolerant coliforms were present in 97% of sites contaminated with enteric bacterial DNA markers. Furthermore, tryptophan-like fluorescence was also demonstrated as an effective indicator and was in excess of 1.4μg/L in all contaminated sites. PMID:26363144

  4. Tracing enteric pathogen contamination in sub-Saharan African groundwater.

    PubMed

    Sorensen, J P R; Lapworth, D J; Read, D S; Nkhuwa, D C W; Bell, R A; Chibesa, M; Chirwa, M; Kabika, J; Liemisa, M; Pedley, S

    2015-12-15

    Quantitative PCR (qPCR) can rapidly screen for an array of faecally-derived bacteria, which can be employed as tracers to understand groundwater vulnerability to faecal contamination. A microbial DNA qPCR array was used to examine 45 bacterial targets, potentially relating to enteric pathogens, in 22 groundwater supplies beneath the city of Kabwe, Zambia in both the dry and subsequent wet season. Thermotolerant (faecal) coliforms, sanitary risks, and tryptophan-like fluorescence, an emerging real-time reagentless faecal indicator, were also concurrently investigated. There was evidence for the presence of enteric bacterial contamination, through the detection of species and group specific 16S rRNA gene fragments, in 72% of supplies where sufficient DNA was available for qPCR analysis. DNA from the opportunistic pathogen Citrobacter freundii was most prevalent (69% analysed samples), with Vibrio cholerae also perennially persistent in groundwater (41% analysed samples). DNA from other species such as Bifidobacterium longum and Arcobacter butzleri was more seasonally transient. Bacterial DNA markers were most common in shallow hand-dug wells in laterite/saprolite implicating rapid subsurface pathways and vulnerability to pollution at the surface. Boreholes into the underlying dolomites were also contaminated beneath the city highlighting that a laterite/saprolite overburden, as occurs across much of sub-Saharan aquifer, does not adequately protect underlying bedrock groundwater resources. Nevertheless, peri-urban boreholes all tested negative establishing there is limited subsurface lateral transport of enteric bacteria outside the city limits. Thermotolerant coliforms were present in 97% of sites contaminated with enteric bacterial DNA markers. Furthermore, tryptophan-like fluorescence was also demonstrated as an effective indicator and was in excess of 1.4μg/L in all contaminated sites.

  5. Groundwater arsenic contamination in Bangladesh-21 Years of research.

    PubMed

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Mukherjee, Amitava; Alauddin, Mohammad; Hassan, Manzurul; Dutta, Rathindra Nath; Pati, Shymapada; Mukherjee, Subhash Chandra; Roy, Shibtosh; Quamruzzman, Quazi; Rahman, Mahmuder; Morshed, Salim; Islam, Tanzima; Sorif, Shaharir; Selim, Md; Islam, Md Razaul; Hossain, Md Monower

    2015-01-01

    Department of Public Health Engineering (DPHE), Bangladesh first identified their groundwater arsenic contamination in 1993. But before the international arsenic conference in Dhaka in February 1998, the problem was not widely accepted. Even in the international arsenic conference in West-Bengal, India in February, 1995, representatives of international agencies in Bangladesh and Bangladesh government attended the conference but they denied the groundwater arsenic contamination in Bangladesh. School of Environmental Studies (SOES), Jadavpur University, Kolkata, India first identified arsenic patient in Bangladesh in 1992 and informed WHO, UNICEF of Bangladesh and Govt. of Bangladesh from April 1994 to August 1995. British Geological Survey (BGS) dug hand tube-wells in Bangladesh in 1980s and early 1990s but they did not test the water for arsenic. Again BGS came back to Bangladesh in 1992 to assess the quality of the water of the tube-wells they installed but they still did not test for arsenic when groundwater arsenic contamination and its health effects in West Bengal in Bengal delta was already published in WHO Bulletin in 1988. From December 1996, SOES in collaboration with Dhaka Community Hospital (DCH), Bangladesh started analyzing hand tube-wells for arsenic from all 64 districts in four geomorphologic regions of Bangladesh. So far over 54,000 tube-well water samples had been analyzed by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). From SOES water analysis data at present we could assess status of arsenic groundwater contamination in four geo-morphological regions of Bangladesh and location of possible arsenic safe groundwater. SOES and DCH also made some preliminary work with their medical team to identify patients suffering from arsenic related diseases. SOES further analyzed few thousands biological samples (hair, nail, urine and skin scales) and foodstuffs for arsenic to know arsenic body burden and people sub

  6. Groundwater arsenic contamination in Bangladesh-21 Years of research.

    PubMed

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Mukherjee, Amitava; Alauddin, Mohammad; Hassan, Manzurul; Dutta, Rathindra Nath; Pati, Shymapada; Mukherjee, Subhash Chandra; Roy, Shibtosh; Quamruzzman, Quazi; Rahman, Mahmuder; Morshed, Salim; Islam, Tanzima; Sorif, Shaharir; Selim, Md; Islam, Md Razaul; Hossain, Md Monower

    2015-01-01

    Department of Public Health Engineering (DPHE), Bangladesh first identified their groundwater arsenic contamination in 1993. But before the international arsenic conference in Dhaka in February 1998, the problem was not widely accepted. Even in the international arsenic conference in West-Bengal, India in February, 1995, representatives of international agencies in Bangladesh and Bangladesh government attended the conference but they denied the groundwater arsenic contamination in Bangladesh. School of Environmental Studies (SOES), Jadavpur University, Kolkata, India first identified arsenic patient in Bangladesh in 1992 and informed WHO, UNICEF of Bangladesh and Govt. of Bangladesh from April 1994 to August 1995. British Geological Survey (BGS) dug hand tube-wells in Bangladesh in 1980s and early 1990s but they did not test the water for arsenic. Again BGS came back to Bangladesh in 1992 to assess the quality of the water of the tube-wells they installed but they still did not test for arsenic when groundwater arsenic contamination and its health effects in West Bengal in Bengal delta was already published in WHO Bulletin in 1988. From December 1996, SOES in collaboration with Dhaka Community Hospital (DCH), Bangladesh started analyzing hand tube-wells for arsenic from all 64 districts in four geomorphologic regions of Bangladesh. So far over 54,000 tube-well water samples had been analyzed by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). From SOES water analysis data at present we could assess status of arsenic groundwater contamination in four geo-morphological regions of Bangladesh and location of possible arsenic safe groundwater. SOES and DCH also made some preliminary work with their medical team to identify patients suffering from arsenic related diseases. SOES further analyzed few thousands biological samples (hair, nail, urine and skin scales) and foodstuffs for arsenic to know arsenic body burden and people sub

  7. River and groundwater nitrogen contamination caused by livestock production.

    PubMed

    Maekawa, T; Omura, N; Fujita, K; Zhang, Z Y; Suzuki, K; Ihara, I; Morioka, R

    2001-02-01

    Water quality of rivers in Japanese domestic dairy and pig raising regions, as well as the groundwater in these regions, was investigated. Regarding the method of disposing livestock excreta, interview results from the livestock production farmers and the results of water quality analysis were evaluated. It is concluded that the rivers and the groundwater were contaminated due to inappropriate disposal methods of the livestock excreta. The concentrations of ammonium nitrogen and nitrate nitrogen in the rivers and groundwater were high. The sludge from the bottom of the rivers was also investigated and bacteria which are characteristic of excreta of dairy cattle and pigs were detected. The above pollutants were, therefore, considered to be of livestock origin.

  8. Assessing Ground-Water Contamination Across Broad Regions

    NASA Astrophysics Data System (ADS)

    Helsel, D. R.

    2001-05-01

    Ground-water quality is measured at discrete locations, and often interpreted at local scales. However, regional patterns in ground-water quality can be used to: 1) Assess relations between water quality and broad patterns of human activities or geochemical variation; 2) Reduce monitoring costs by sampling more frequently in areas of highest concentration or vulnerability; 3) Prioritize locations for prevention efforts such as for nitrate reduction, to obtain maximum benefits for lower costs; and 4) Project water-quality conditions to unsampled locations based on a regional understanding or "model". Examples of methods for modeling and interpreting ground-water quality at regional scales are presented along with their utility for cost reduction and contamination prevention purposes.

  9. Magnetic properties changes due to hydrocarbon contaminated groundwater table fluctuations

    NASA Astrophysics Data System (ADS)

    Ameen, Nawrass

    2013-04-01

    This study aims to understand the mechanisms and conditions which control the formation and transformation of ferro(i)magnetic minerals caused by hydrocarbon contaminated groundwater, in particular in the zone of fluctuating water levels. The work extends previous studies conducted at the same site. The study area is a former military air base at Hradčany, Czech Republic (50°37'22.71"N, 14°45'2.24"E). The site was heavily contaminated with petroleum hydrocarbons, due to leaks in petroleum storage tanks and jet fuelling stations over years of active use by the Soviet Union, which closed the base in 1991. The site is one of the most important sources of high quality groundwater in the Czech Republic. In a previous study, Rijal et al. (2010) concluded that the contaminants could be flushed into the sediments as the water level rose due to remediation processes leading to new formation of magnetite. In this previous study three different locations were investigated; however, from each location only one core was obtained. In order to recognize significant magnetic signatures versus depth three cores from each of these three locations were drilled in early 2012, penetrating the unsaturated zone, the groundwater fluctuation (GWF) zone and extending to about one meter below the groundwater level (~2.3 m depth at the time of sampling). Magnetic susceptibility (MS) profiles combined with other magnetic properties were analyzed to obtain a significant depth distribution of the ferro(i)magnetic concentration. Sediment properties, hydrocarbon content and bacterial activity were additionally studied. The results show that the highest ferrimagnetic mineral concentrations exist between 1.4-1.9 m depth from the baseline which is interpreted as the top of the GWF zone. Spikes of MS detected in the previous studies turned out to represent small-scale isolated features, but the trend of increasing MS values from the lowermost position of the groundwater table upward was verified

  10. Comparing Groundwater Contamination Vulnerability in Large, Urbanized Basins of California

    NASA Astrophysics Data System (ADS)

    Moran, J. E.; Hudson, G. B.; Leif, R.; Eaton, G. F.

    2002-12-01

    We have sampled over 700 public drinking water wells as part of a study to assess relative contamination susceptibility of the major groundwater basins in California. The parameters used to rank wells according to vulnerability are groundwater age dates (using the tritium-3helium method), stable isotopes of the water molecule (for water source determination), and occurrence of low level Volatile Organic Compounds (VOCs). Long-screened production wells supply clean, high quality samples, and sample the resource that is being used. However, the groundwater age distribution from production wells may be quite broad, and comparisons to the predicted initial tritium value for the measured mean age, along with analysis of radiogenic 4Helium are used to de-convolute the mixed age. Results from the Los Angeles and Orange County Basins, and Santa Clara Valley, will be presented. A large volume of both imported and locally captured water is artificially recharged in these intensively managed basins. An effective confining unit in the Santa Clara Valley basin prevents widespread vertical transport of contaminants down to drinking water wells. In the southern California basins, groundwater age and the frequency of occurrence of low-level VOCs are spatially correlated, with more recently recharged water likely to have VOC detections. 'Pre-modern' water is nearly always free of VOCs, except when a suspected 'short circuit', (e.g., loss of integrity in well casing) allows near surface contamination to reach 'old' water. Methyl-tertiary-Butyl Ether (MTBE) can be a useful time marker in groundwater basins, with water recharged after the 1980's showing traces of MTBE. Water resource managers can use these vulnerability assessments to focus monitoring efforts, site new wells, plan land use, and evaluate remediation activities. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under

  11. Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA.

    PubMed

    Mair, Alan; El-Kadi, Aly I

    2013-10-01

    Capture zone analysis combined with a subjective susceptibility index is currently used in Hawaii to assess vulnerability to contamination of drinking water sources derived from groundwater. In this study, we developed an alternative objective approach that combines well capture zones with multiple-variable logistic regression (LR) modeling and applied it to the highly-utilized Pearl Harbor and Honolulu aquifers on the island of Oahu, Hawaii. Input for the LR models utilized explanatory variables based on hydrogeology, land use, and well geometry/location. A suite of 11 target contaminants detected in the region, including elevated nitrate (>1 mg/L), four chlorinated solvents, four agricultural fumigants, and two pesticides, was used to develop the models. We then tested the ability of the new approach to accurately separate groups of wells with low and high vulnerability, and the suitability of nitrate as an indicator of other types of contamination. Our results produced contaminant-specific LR models that accurately identified groups of wells with the lowest/highest reported detections and the lowest/highest nitrate concentrations. Current and former agricultural land uses were identified as significant explanatory variables for eight of the 11 target contaminants, while elevated nitrate was a significant variable for five contaminants. The utility of the combined approach is contingent on the availability of hydrologic and chemical monitoring data for calibrating groundwater and LR models. Application of the approach using a reference site with sufficient data could help identify key variables in areas with similar hydrogeology and land use but limited data. In addition, elevated nitrate may also be a suitable indicator of groundwater contamination in areas with limited data. The objective LR modeling approach developed in this study is flexible enough to address a wide range of contaminants and represents a suitable addition to the current subjective approach.

  12. Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA

    NASA Astrophysics Data System (ADS)

    Mair, Alan; El-Kadi, Aly I.

    2013-10-01

    Capture zone analysis combined with a subjective susceptibility index is currently used in Hawaii to assess vulnerability to contamination of drinking water sources derived from groundwater. In this study, we developed an alternative objective approach that combines well capture zones with multiple-variable logistic regression (LR) modeling and applied it to the highly-utilized Pearl Harbor and Honolulu aquifers on the island of Oahu, Hawaii. Input for the LR models utilized explanatory variables based on hydrogeology, land use, and well geometry/location. A suite of 11 target contaminants detected in the region, including elevated nitrate (> 1 mg/L), four chlorinated solvents, four agricultural fumigants, and two pesticides, was used to develop the models. We then tested the ability of the new approach to accurately separate groups of wells with low and high vulnerability, and the suitability of nitrate as an indicator of other types of contamination. Our results produced contaminant-specific LR models that accurately identified groups of wells with the lowest/highest reported detections and the lowest/highest nitrate concentrations. Current and former agricultural land uses were identified as significant explanatory variables for eight of the 11 target contaminants, while elevated nitrate was a significant variable for five contaminants. The utility of the combined approach is contingent on the availability of hydrologic and chemical monitoring data for calibrating groundwater and LR models. Application of the approach using a reference site with sufficient data could help identify key variables in areas with similar hydrogeology and land use but limited data. In addition, elevated nitrate may also be a suitable indicator of groundwater contamination in areas with limited data. The objective LR modeling approach developed in this study is flexible enough to address a wide range of contaminants and represents a suitable addition to the current subjective approach.

  13. Groundwater protection from cadmium contamination by permeable reactive barriers.

    PubMed

    Di Natale, F; Di Natale, M; Greco, R; Lancia, A; Laudante, C; Musmarra, D

    2008-12-30

    This work studies the reliability of an activated carbon permeable reactive barrier in removing cadmium from a contaminated shallow aquifer. Laboratory tests have been performed to characterize the equilibrium and kinetic adsorption properties of the activated carbon in cadmium-containing aqueous solutions. A 2D numerical model has been used to describe pollutant transport within a groundwater and the pollutant adsorption on the permeable adsorbing barrier (PRB). In particular, it has been considered the case of a permeable adsorbing barrier (PAB) used to protect a river from a Cd(II) contaminated groundwater. Numerical results show that the PAB can achieve a long-term efficiency by preventing river pollution for several months.

  14. Remediation of TCE-contaminated groundwater using nanocatalyst and bacteria.

    PubMed

    Kang, Ser Ku; Seo, Hyunhee; Sun, Eunyoung; Kim, Inseon; Roh, Yul

    2011-08-01

    The objective of this study was to develop and evaluate the remediation of trichloroethene (TCE)-contaminated groundwater using both a nanocatalyst (bio-Zn-magnetite) and bacterium (similar to Clostridium quinii) in anoxic environments. Of the 7 nanocatalysts tested, bio-Zn-magnetite showed the highest TCE dechlorination efficiency, with an average of ca. 90% within 8 days in a batch experiment. The column tests confirmed that the application of bio-Zn-magnetite in combination with the bacterium achieved high degradation efficiency (ca. 90%) of TCE within 5 days compared to the nanocatalyst only, which degraded only 30% of the TCE. These results suggest that the application of a nanocatalyst and the bacterium have potential for the remediation of TCE-contaminated groundwater in subsurface environments.

  15. Demonstration of technologies to remove contamination from groundwater

    SciTech Connect

    Hodgson, K.M.; Garrett, L.

    1989-03-01

    The Westinghouse Hanford Company has been testing various technologies for decontaminating groundwaters and liquid effluents. The results of preliminary testing of three technologies are reported. The technologies are iron coprecipitation/filtration, supported liquid membranes, and reverse osmosis. The processes were tested to determine their capability to remove uranium, chromium, nitrates, and technetium. All processes removed contaminants to less than maximum contaminant limits. The secondary waste volumes were estimated for each process. The supported liquid membranes secondary waste volume was the smallest, followed by iron coprecipitation, and the largest volume was created by the reverse osmosis process. 5 refs., 7 tabs.

  16. Investigating groundwater arsenic contamination using aquifer push-pull test

    NASA Astrophysics Data System (ADS)

    Daigle, A. R.; Jin, Q.

    2009-12-01

    The groundwater of the Southern Willamette Basin, OR is contaminated with arsenic at concentrations as high as several ppm. A single-well push-pull test was conducted to investigate how microbial metabolisms control arsenic occurrence and levels in the bedrock aquifer of the area. During the experiments, a test solution containing ethanol was first injected into the aquifer. As the experiment progressed, dissolved gasses, groundwater, and sediment were sampled to monitor the variations in the chemical parameters, including the speciation of iron, sulfur, and arsenic, in the aquifer. Ethanol amendment stimulated a series of microbial metabolisms, including arsenate reduction, iron reduction, and sulfate reduction. Iron reduction released arsenic sorbed onto the aquifer sediments, increasing groundwater arsenic levels. Arsenate reduction converted arsenate to arsenite and, as a result, most arsenic occurred as arsenite in the groundwater. Results of the experiments demonstrate how different microbial functional groups influenced arsenic contamination in the area. These results also shed new light on potential bioremediation strategies in the area.

  17. Mapping organic contaminant plumes in groundwater using spontaneous potentials

    NASA Astrophysics Data System (ADS)

    Forte, Sarah

    Increased water demands have raised awareness of its importance. One of the challenges facing water resource management is dealing with contaminated groundwater; delineating, characterizing and remediating it. In the last decade, spontaneous potentials have been proposed as a method for delineating degrading organic contaminant plumes in groundwater. A hypothesis proposed that the redox potential gradient due to degradation of contaminants generated an electrical potential gradient that could be measured at the ground surface. This research was undertaken to better understand this phenomenon and find under what conditions it occurs. Spontaneous potentials are electrical potentials generated by three sources that act simultaneously: electrokinetic, thermoelectric and electrochemical sources. Over contaminant plumes electrochemical sources are those of interest. Thermoelectric sources are negligible unless in geothermal areas, but we hypothesized that electrokinetic potentials could be impacted by contaminants altering sediment surface properties. We built and calibrated a laboratory apparatus to make measurements that allowed us to calculate streaming current coupling coefficients. We tested sediment from hydrocarbon impacted sites with clean and hydrocarbon polluted groundwater and found a measurable though inconsistent effect. Moreover, numerical modelling was used to demonstrate that the impact of these changes on field measurements was negligible. Spontaneous potential surveys were conducted on two field sites with well characterized degrading hydrocarbon plumes in groundwater. We did not find a correlation between redox conditions and spontaneous potential, even after the electrical measurements were corrected for anthropogenic noise. In order to determine why the expected signal was not seen, we undertook numerical modelling based on coupled fluxes using two hypothesized types of current: redox and diffusion currents. The only scenarios that produced

  18. Managing Groundwater Radioactive Contamination at the Daiichi Nuclear Plant.

    PubMed

    Marui, Atsunao; Gallardo, Adrian H

    2015-07-01

    The Great East Japan Earthquake and tsunami of March 2011 severely damaged three reactors at the Fukushima Daiichi nuclear power station, leading to a major release of radiation into the environment. Groundwater flow through these crippled reactors continues to be one of the main causes of contamination and associated transport of radionuclides into the Pacific Ocean. In this context, a number of strategies are being implemented to manage radioactive pollution of the water resources at the nuclear plant site. Along with water treatment and purification, it is critical to restrict the groundwater flow to and from the reactors. Thus, the devised strategies combine walls containment, bores abstraction, infiltration control, and the use of tanks for the temporary storage of contaminated waters. While some of these techniques have been previously applied in other environments, they have never been tested at such a large scale. Therefore, their effectiveness remains to be seen. The present manuscript presents an overview of the methods being currently implemented to manage groundwater contamination and to mitigate the impact of hydrological pathways in the dispersion of radionuclides at Fukushima. PMID:26197330

  19. Managing Groundwater Radioactive Contamination at the Daiichi Nuclear Plant.

    PubMed

    Marui, Atsunao; Gallardo, Adrian H

    2015-07-21

    The Great East Japan Earthquake and tsunami of March 2011 severely damaged three reactors at the Fukushima Daiichi nuclear power station, leading to a major release of radiation into the environment. Groundwater flow through these crippled reactors continues to be one of the main causes of contamination and associated transport of radionuclides into the Pacific Ocean. In this context, a number of strategies are being implemented to manage radioactive pollution of the water resources at the nuclear plant site. Along with water treatment and purification, it is critical to restrict the groundwater flow to and from the reactors. Thus, the devised strategies combine walls containment, bores abstraction, infiltration control, and the use of tanks for the temporary storage of contaminated waters. While some of these techniques have been previously applied in other environments, they have never been tested at such a large scale. Therefore, their effectiveness remains to be seen. The present manuscript presents an overview of the methods being currently implemented to manage groundwater contamination and to mitigate the impact of hydrological pathways in the dispersion of radionuclides at Fukushima.

  20. Managing Groundwater Radioactive Contamination at the Daiichi Nuclear Plant

    PubMed Central

    Marui, Atsunao; Gallardo, Adrian H.

    2015-01-01

    The Great East Japan Earthquake and tsunami of March 2011 severely damaged three reactors at the Fukushima Daiichi nuclear power station, leading to a major release of radiation into the environment. Groundwater flow through these crippled reactors continues to be one of the main causes of contamination and associated transport of radionuclides into the Pacific Ocean. In this context, a number of strategies are being implemented to manage radioactive pollution of the water resources at the nuclear plant site. Along with water treatment and purification, it is critical to restrict the groundwater flow to and from the reactors. Thus, the devised strategies combine walls containment, bores abstraction, infiltration control, and the use of tanks for the temporary storage of contaminated waters. While some of these techniques have been previously applied in other environments, they have never been tested at such a large scale. Therefore, their effectiveness remains to be seen. The present manuscript presents an overview of the methods being currently implemented to manage groundwater contamination and to mitigate the impact of hydrological pathways in the dispersion of radionuclides at Fukushima. PMID:26197330

  1. [Study on the groundwater petroleum contaminant remediation by air sparging].

    PubMed

    Wang, Zhi-Qiang; Wu, Qiang; Zou, Zu-Guang; Chen, Hong; Yang, Xun-Chang; Zhao, Ji-Chu

    2007-04-01

    The groundwater petroleum contaminant remediation effect by air sparging was investigated in an oil field. The results show that the soil geological situation has great influence on the air distribution, and the shape of air distribution is not symmetrical to the air sparging (AS) well as axis. The influence distance in the left of AS well is 6 m, and only 4 m in the right. The petroleum removal rate can reach 70% in the zone with higher air saturation, but only 40% in the zone with lower air saturation, and the average petroleum removal rate reaches 60% in the influence zone for 40 days continuous air sparging. The petroleum components in groundwater were analyzed by GC/MS (gas chromatogram-mass spectrograph) before and after experiments, respectively. The results show that the petroleum removal rate has relationship with the components and their properties. The petroleum components with higher volatility are easily removed by volatilization, but those with lower volatility are difficult to remove, so a tailing effect of lingering residual contaminant exists when the air sparging technology is adopted to treat groundwater contaminated by petroleum products.

  2. Tracing groundwater recharge in the San Luis Valley, Colorado: Groundwater contamination susceptibility in an agricultural watershed

    NASA Astrophysics Data System (ADS)

    Patel, Tanya; Hindshaw, Ruth; Singer, Michael

    2015-04-01

    Water is a vital resource in any agricultural watershed, yet in the arid western United States farming practices threaten the quality and availability of groundwater. This is a pressing concern in the San Luis Valley, southern Colorado, where agriculture comprises 30% of the local economy, and employs over half the valley population. Although 54 % of the water used for irrigation is surface water, farmers do not usually apply this water directly to their fields. Instead, the water is often diverted into pits which recharge the aquifer, and the water is subsequently pumped during the following irrigation season. The Rio Grande Water Conservation District recognises that recharge to the unconfined aquifer has been outpaced by commercial irrigation for at least four decades, resulting in a decline in groundwater levels. Recycled irrigation water, and leakage from unlined canals now represent the greatest recharge contribution to the unconfined aquifer in this region. This makes the shallow groundwater particularly susceptible to agricultural contamination. The purpose of this study is to assess groundwater contamination in the unconfined and upper confined aquifers of the San Luis Valley, which are the most susceptible to contamination due to their close proximity to the surface. Although concentrations of potentially harmful contaminants from agricultural runoff are regularly monitored, the large spatial and temporal fluctuations in values make it difficult to determine long-term trends. We have analysed δ18O, δ2H and major-ion chemistry of 57 groundwater, stream and precipitation samples, collected in June 2014, and interpreted them alongside regional stream flow data and groundwater levels. This will allow us to study the seasonality and locality of groundwater recharge to provide greater insight into the watershed's potential for pollution. A groundwater vulnerability assessment was performed using the model DRASTIC (Depth to water, Recharge, Aquifer media, Soil

  3. HISTORICAL CONTAMINATION OF GROUNDWATER RESOURCES IN THE NORTH COAST KARST AQUIFERS OF PUERTO RICO

    PubMed Central

    Padilla, Ingrid; Irizarry, Celys; Steele, Katherine

    2012-01-01

    The North Coast Karst Aquifer System of Puerto Rico is the island’s most productive aquifer. The characteristics that make it highly productive also make it vulnerable to contamination. This research, which addresses the historical contamination of groundwater resources in the northern karst region was conducted through integration of spatial hydrogeologic and contaminant concentration data in the La Plata-Arecibo area. The study used GIS technologies and focused on phthalates and chlorinated volatile organic compounds (CVOCs) and phthalates due to their ubiquitous presence in the environment as well as their presence in listed and potential superfund sites in Puerto Rico and U.S. and potential for exposure and health impacts. Results show an extensive historical contamination of the groundwater resources in the northern karst aquifers. Long-term contamination indicates the aquifers’ large capacity for storing and releasing contaminants and reflects a long-term potential for exposure. The degradation of this important water resource has resulted in a subsequent reduction of the extraction capacity and an increase in the cost of use. PMID:24772197

  4. HISTORICAL CONTAMINATION OF GROUNDWATER RESOURCES IN THE NORTH COAST KARST AQUIFERS OF PUERTO RICO.

    PubMed

    Padilla, Ingrid; Irizarry, Celys; Steele, Katherine

    2011-01-01

    The North Coast Karst Aquifer System of Puerto Rico is the island's most productive aquifer. The characteristics that make it highly productive also make it vulnerable to contamination. This research, which addresses the historical contamination of groundwater resources in the northern karst region was conducted through integration of spatial hydrogeologic and contaminant concentration data in the La Plata-Arecibo area. The study used GIS technologies and focused on phthalates and chlorinated volatile organic compounds (CVOCs) and phthalates due to their ubiquitous presence in the environment as well as their presence in listed and potential superfund sites in Puerto Rico and U.S. and potential for exposure and health impacts. Results show an extensive historical contamination of the groundwater resources in the northern karst aquifers. Long-term contamination indicates the aquifers' large capacity for storing and releasing contaminants and reflects a long-term potential for exposure. The degradation of this important water resource has resulted in a subsequent reduction of the extraction capacity and an increase in the cost of use.

  5. Groundwater-derived contaminant fluxes along a channelized Coastal Plain stream

    SciTech Connect

    LaSage, Danita m; Fryar, Alan E; Mukherjee, Abhijit; Sturchio, Neil C; Heraty, Linnea J

    2008-10-01

    Recent studies in various settings across eastern North America have examined the movement of volatile organic compound (VOC) plumes from groundwater to streams, but few studies have addressed focused discharge of such plumes in unlithified sediments. From 1999 through 2002, we monitored concentrations of trichloroethene (TCE) and the non-volatile co-contaminant technetium-99 along Little Bayou Creek, a first -order perennial stream in the Coastal Plain of western Kentucky. Spring flow contributed TCE and technetium-99 to the creek, and TCE concentrations tended to vary with technetium-99 in springs. Contaminant concentrations in stream water fluctuated seasonally, but not always synchronously with stream flow. However, contaminant influxes varied seasonally with stream flow and were dominated by a few springs. Concentrations of O2, NO3⁻, and SO2-4, values of δ37CL in groundwater, and the lack of less-chlorinated ethenes in groundwater and stream water indicated that aerobic biodegradation of TCE was unlikely. Losses of TCE along Little Bayou Creek resulted mainly from volatilization, in contrast to streams receiving diffuse contaminated discharge, where intrinsic bioremediation of VOCs appears to be prevalent.

  6. Massive Microbiological Groundwater Contamination Associated with a Waterborne Outbreak in Lake Erie, South Bass Island, Ohio

    PubMed Central

    Fong, Theng-Theng; Mansfield, Linda S.; Wilson, David L.; Schwab, David J.; Molloy, Stephanie L.; Rose, Joan B.

    2007-01-01

    Background A groundwater-associated outbreak affected approximately 1,450 residents and visitors of South Bass Island, Ohio, between July and September 2004. Objectives To examine the microbiological quality of groundwater wells located on South Bass Island, we sampled 16 wells that provide potable water to public water systems 15–21 September 2004. Methods We tested groundwater wells for fecal indicators, enteric viruses and bacteria, and protozoa (Cryptosporidium and Giardia). The hydrodynamics of Lake Erie were examined to explore the possible surface water–groundwater interactions. Results All wells were positive for both total coliform and Escherichia coli. Seven wells tested positive for enterococci and Arcobacter (an emerging bacterial pathogen), and F+-specific coliphage was present in four wells. Three wells were positive for all three bacterial indicators, coliphages, and Arcobacter; adenovirus DNA was recovered from two of these wells. We found a cluster of the most contaminated wells at the southeast side of the island. Conclusions Massive groundwater contamination on the island was likely caused by transport of microbiological contaminants from wastewater treatment facilities and septic tanks to the lake and the subsurface, after extreme precipitation events in May–July 2004. This likely raised the water table, saturated the subsurface, and along with very strong Lake Erie currents on 24 July, forced a surge in water levels and rapid surface water–groundwater interchange throughout the island. Landsat images showed massive influx of organic material and turbidity surrounding the island before the peak of the outbreak. These combinations of factors and information can be used to examine vulnerabilities in other coastal systems. Both wastewater and drinking water issues are now being addressed by the Ohio Environmental Protection Agency and the Ohio Department of Health. PMID:17589591

  7. The assessment of groundwater nitrate contamination by using logistic regression model in a representative rural area

    NASA Astrophysics Data System (ADS)

    Ko, K.; Cheong, B.; Koh, D.

    2010-12-01

    Groundwater has been used a main source to provide a drinking water in a rural area with no regional potable water supply system in Korea. More than 50 percent of rural area residents depend on groundwater as drinking water. Thus, research on predicting groundwater pollution for the sustainable groundwater usage and protection from potential pollutants was demanded. This study was carried out to know the vulnerability of groundwater nitrate contamination reflecting the effect of land use in Nonsan city of a representative rural area of South Korea. About 47% of the study area is occupied by cultivated land with high vulnerable area to groundwater nitrate contamination because it has higher nitrogen fertilizer input of 62.3 tons/km2 than that of country’s average of 44.0 tons/km2. The two vulnerability assessment methods, logistic regression and DRASTIC model, were tested and compared to know more suitable techniques for the assessment of groundwater nitrate contamination in Nonsan area. The groundwater quality data were acquired from the collection of analyses of 111 samples of small potable supply system in the study area. The analyzed values of nitrate were classified by land use such as resident, upland, paddy, and field area. One dependent and two independent variables were addressed for logistic regression analysis. One dependent variable was a binary categorical data with 0 or 1 whether or not nitrate exceeding thresholds of 1 through 10 mg/L. The independent variables were one continuous data of slope indicating topography and multiple categorical data of land use which are classified by resident, upland, paddy, and field area. The results of the Levene’s test and T-test for slope and land use were showed the significant difference of mean values among groups in 95% confidence level. From the logistic regression, we could know the negative correlation between slope and nitrate which was caused by the decrease of contaminants inputs into groundwater with

  8. Ground-water contamination and legal controls in Michigan

    USGS Publications Warehouse

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  9. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China.

    PubMed

    Wang, Junjie; He, Jiangtao; Chen, Honghan

    2012-08-15

    Groundwater contamination risk assessment is an effective tool for groundwater management. Most existing risk assessment methods only consider the basic contamination process based upon evaluations of hazards and aquifer vulnerability. In view of groundwater exploitation potentiality, including the value of contamination-threatened groundwater could provide relatively objective and targeted results to aid in decision making. This study describes a groundwater contamination risk assessment method that integrates hazards, intrinsic vulnerability and groundwater value. The hazard harmfulness was evaluated by quantifying contaminant properties and infiltrating contaminant load, the intrinsic aquifer vulnerability was evaluated using a modified DRASTIC model and the groundwater value was evaluated based on groundwater quality and aquifer storage. Two groundwater contamination risk maps were produced by combining the above factors: a basic risk map and a value-weighted risk map. The basic risk map was produced by overlaying the hazard map and the intrinsic vulnerability map. The value-weighted risk map was produced by overlaying the basic risk map and the groundwater value map. Relevant validation was completed by contaminant distributions and site investigation. Using Beijing Plain, China, as an example, thematic maps of the three factors and the two risks were generated. The thematic maps suggested that landfills, gas stations and oil depots, and industrial areas were the most harmful potential contamination sources. The western and northern parts of the plain were the most vulnerable areas and had the highest groundwater value. Additionally, both the basic and value-weighted risk classes in the western and northern parts of the plain were the highest, indicating that these regions should deserve the priority of concern. Thematic maps should be updated regularly because of the dynamic characteristics of hazards. Subjectivity and validation means in assessing the

  10. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China.

    PubMed

    Wang, Junjie; He, Jiangtao; Chen, Honghan

    2012-08-15

    Groundwater contamination risk assessment is an effective tool for groundwater management. Most existing risk assessment methods only consider the basic contamination process based upon evaluations of hazards and aquifer vulnerability. In view of groundwater exploitation potentiality, including the value of contamination-threatened groundwater could provide relatively objective and targeted results to aid in decision making. This study describes a groundwater contamination risk assessment method that integrates hazards, intrinsic vulnerability and groundwater value. The hazard harmfulness was evaluated by quantifying contaminant properties and infiltrating contaminant load, the intrinsic aquifer vulnerability was evaluated using a modified DRASTIC model and the groundwater value was evaluated based on groundwater quality and aquifer storage. Two groundwater contamination risk maps were produced by combining the above factors: a basic risk map and a value-weighted risk map. The basic risk map was produced by overlaying the hazard map and the intrinsic vulnerability map. The value-weighted risk map was produced by overlaying the basic risk map and the groundwater value map. Relevant validation was completed by contaminant distributions and site investigation. Using Beijing Plain, China, as an example, thematic maps of the three factors and the two risks were generated. The thematic maps suggested that landfills, gas stations and oil depots, and industrial areas were the most harmful potential contamination sources. The western and northern parts of the plain were the most vulnerable areas and had the highest groundwater value. Additionally, both the basic and value-weighted risk classes in the western and northern parts of the plain were the highest, indicating that these regions should deserve the priority of concern. Thematic maps should be updated regularly because of the dynamic characteristics of hazards. Subjectivity and validation means in assessing the

  11. Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.

    2011-12-01

    Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination

  12. Spatial control of groundwater contamination, using principal component analysis

    NASA Astrophysics Data System (ADS)

    Rao, N. Subba

    2014-06-01

    A study on the geochemistry of groundwater was carried out in a river basin of Andhra Pradesh to probe into the spatial controlling processes of groundwater contamination, using principal component analysis (PCA). The PCA transforms the chemical variables, pH, EC, Ca2+, Mg2+, Na+, K+, HCO, Cl-, SO, NO and F-, into two orthogonal principal components (PC1 and PC2), accounting for 75% of the total variance of the data matrix. PC1 has high positive loadings of EC, Na+, Cl-, SO, Mg2+ and Ca2+, representing a salinity controlled process of geogenic (mineral dissolution, ion exchange, and evaporation), anthropogenic (agricultural activities and domestic wastewaters), and marine (marine clay) origin. The PC2 loadings are highly positive for HCO , F-, pH and NO, attributing to the alkalinity and pollution controlled processes of geogenic and anthropogenic origins. The PC scores reflect the change of groundwater quality of geogenic origin from upstream to downstream area with an increase in concentration of chemical variables, which is due to anthropogenic and marine origins with varying topography, soil type, depth of water levels, and water usage. Thus, the groundwater quality shows a variation of chemical facies from Na+ > Ca2+ > Mg2+ > K+: HCO > Cl- > SO NO > F-at high topography to Na+ > Mg2+ > Ca2+ > K+: Cl- > HCO > SO NO > F- at low topography. With PCA, an effective tool for the spatial controlling processes of groundwater contamination, a subset of explored wells is indexed for continuous monitoring to optimize the expensive effort.

  13. Statistical modeling of global geogenic arsenic contamination in groundwater.

    PubMed

    Amini, Manouchehr; Abbaspour, Karim C; Berg, Michael; Winkel, Lenny; Hug, Stephan J; Hoehn, Eduard; Yang, Hong; Johnson, C Annette

    2008-05-15

    Contamination of groundwaters with geogenic arsenic poses a major health risk to millions of people. Although the main geochemical mechanisms of arsenic mobilization are well understood, the worldwide scale of affected regions is still unknown. In this study we used a large database of measured arsenic concentration in groundwaters (around 20,000 data points) from around the world as well as digital maps of physical characteristics such as soil, geology, climate, and elevation to model probability maps of global arsenic contamination. A novel rule-based statistical procedure was used to combine the physical data and expert knowledge to delineate two process regions for arsenic mobilization: "reducing" and "high-pH/ oxidizing". Arsenic concentrations were modeled in each region using regression analysis and adaptive neuro-fuzzy inferencing followed by Latin hypercube sampling for uncertainty propagation to produce probability maps. The derived global arsenic models could benefit from more accurate geologic information and aquifer chemical/physical information. Using some proxy surface information, however, the models explained 77% of arsenic variation in reducing regions and 68% of arsenic variation in high-pH/oxidizing regions. The probability maps based on the above models correspond well with the known contaminated regions around the world and delineate new untested areas that have a high probability of arsenic contamination. Notable among these regions are South East and North West of China in Asia, Central Australia, New Zealand, Northern Afghanistan, and Northern Mali and Zambia in Africa.

  14. Statistical modeling of global geogenic arsenic contamination in groundwater.

    PubMed

    Amini, Manouchehr; Abbaspour, Karim C; Berg, Michael; Winkel, Lenny; Hug, Stephan J; Hoehn, Eduard; Yang, Hong; Johnson, C Annette

    2008-05-15

    Contamination of groundwaters with geogenic arsenic poses a major health risk to millions of people. Although the main geochemical mechanisms of arsenic mobilization are well understood, the worldwide scale of affected regions is still unknown. In this study we used a large database of measured arsenic concentration in groundwaters (around 20,000 data points) from around the world as well as digital maps of physical characteristics such as soil, geology, climate, and elevation to model probability maps of global arsenic contamination. A novel rule-based statistical procedure was used to combine the physical data and expert knowledge to delineate two process regions for arsenic mobilization: "reducing" and "high-pH/ oxidizing". Arsenic concentrations were modeled in each region using regression analysis and adaptive neuro-fuzzy inferencing followed by Latin hypercube sampling for uncertainty propagation to produce probability maps. The derived global arsenic models could benefit from more accurate geologic information and aquifer chemical/physical information. Using some proxy surface information, however, the models explained 77% of arsenic variation in reducing regions and 68% of arsenic variation in high-pH/oxidizing regions. The probability maps based on the above models correspond well with the known contaminated regions around the world and delineate new untested areas that have a high probability of arsenic contamination. Notable among these regions are South East and North West of China in Asia, Central Australia, New Zealand, Northern Afghanistan, and Northern Mali and Zambia in Africa. PMID:18546706

  15. Superfund record of decision (EPA Region 1): New London Submarine Base, Defense Reutilization Marketing Office (contaminated soil and groundwater), Groton, CT, March 31, 1998

    SciTech Connect

    1998-09-01

    The Defense Reutilization and Marketing Office (DRMO) is located on the Naval Submarine Base New London (NSB-NLON), Groton, Connecticut. This Interim Record of Decision (Interim ROD) addresses the contaminated soil and groundwater at this site. This Interim ROD presents the following interim remedy for soil and groundwater at the DRMO: Institutional Controls and Monitoring.

  16. Monitoring Groundwater Contaminant Plumes Using Airborne Geophysical Data

    NASA Astrophysics Data System (ADS)

    Robinson, Martin; Oftendinger, Ulrich; Ruffell, Alastair; Cowan, Marie; Cassidy, Rachel; Comte, Jean-Christophe; Wilson, Christopher; Desissa, Mohammednur

    2013-04-01

    Under the European Union Water Framework Directive, Member States are required to assess water quality across both surface water and groundwater bodies. Subsurface pollution plumes, originating from a variety of sources, pose a significant direct risk to water quality. The monitoring and characterisation of groundwater contaminant plumes is generally invasive, time consuming and expensive. In particular, adequately capturing the contaminant plume with monitoring installations, when the extent of the feature is unknown and the presence of contamination is only evident from indirect observations, can be prohibitively expensive. This research aims to identify the extent and nature of subsurface contaminant plumes using airborne geophysical survey data. This data was collected across parts of the island of Ireland within the scope of the original Tellus and subsequent Tellus Border projects. The rapid assessment of the airborne electro-magnetic (AEM) data allowed the identification of several sites containing possible contaminant plumes. These AEM anomalies were assessed through the analysis of existing site data and field site inspections, with areas of interest being examined for metallic structures that could affect the AEM data. Electrical resistivity tomography (ERT), ground penetrating radar (GPR) and ground-based electro-magnetic (EM) surveys were performed to ground-truth existing airborne data and to confirm the extent and nature of the affected area identified using the airborne data. Groundwater and surface water quality were assessed using existing field site information. Initial results collected from a landfill site underlain by basalt have indicated that the AEM data, coupled with ERT and GPR, can successfully be used to locate possible plumes and help delineate their extent. The analysis of a range of case study sites exhibiting different geological and environmental settings will allow for the development of a consistent methodology for examining the

  17. Uranium removal from contaminated groundwater by synthetic resins.

    PubMed

    Phillips, D H; Gu, B; Watson, D B; Parmele, C S

    2008-01-01

    Synthetic resins are shown to be effective in removing uranium from contaminated groundwater. Batch and field column tests showed that strong-base anion-exchange resins were more effective in removing uranium from both near-neutral-pH (6.5)- and high-pH (8)-low-nitrate-containing groundwaters, than metal-chelating resins, which removed more uranium from acidic-pH (5)-high-nitrate-containing groundwater from the Oak Ridge Reservation (ORR) Y-12 S-3 Ponds area in Tennessee, USA. Dowex 1-X8 and Purolite A-520E anion-exchange resins removed more uranium from high-pH (8)-low-nitrate-containing synthetic groundwater in batch tests than metal-chelating resins. The Dowex 21K anion-exchange resin achieved a cumulative loading capacity of 49.8 mg g(-1) before breakthrough in a field column test using near-neutral-pH (6.5)-low-nitrate-containing groundwater. However, in an acidic-pH (5)-high-nitrate-containing groundwater, metal-chelating resins Diphonix and Chelex-100 removed more uranium than anion-exchange resins. In 15 m L of acidic-pH (5)-high-nitrate-containing groundwater spiked with 20 mg L(-1) uranium, the uranium concentrations ranged from 0.95 mg L(-1) at 1-h equilibrium to 0.08 mg L(-1) at 24-h equilibrium for Diphonix and 0.17 mg L(-1) at 1-h equilibrium to 0.03 mg L(-1) at 24-h equilibrium for Chelex-100. Chelex-100 removed more uranium in the first 10 min in the 100mL of acidic-(pH 5)-high-nitrate-containing groundwater ( approximately 5 mg L(-1) uranium); however, after 10 min, Diphonix equaled or out-performed Chelex-100. This study presents an improved understanding of the selectivity and sorption kenetics of a range of ion-exchange resins that remove uranium from both low- and high-nitrate-containing groundwaters with varying pHs.

  18. Groundwater contamination from well points -- an experience from the Norwegian groundwater monitoring network.

    PubMed

    Jaeger, Øystein; Grimstvedt, Andreas; Frengstad, Bjørn; Reimann, Clemens

    2006-08-15

    Until 2005 the observation wells of the Norwegian Groundwater Monitoring Network in Quaternary aquifers were equipped with metal well points with brass lining. A laboratory leaching test using a new well point demonstrated that the well point material (galvanized iron pipe), the brass lining and the solder used to fix the lining could cause substantial contamination of the collected well water with a long list of chemical elements (Sn, Zn, Pb, Sb, Cd, Fe, Cu, Mn and Al), depending on well capacity, contact time water/well point and pH. Because groundwater chemistry is receiving increased attention in groundwater monitoring all wells were equipped with high density polyethylene (HDPE) points during the years 2004-2005. The HDPE points did not return any values above detection in a similar leaching test, with some minor values of Zn being the only exception.

  19. Prevalence of anaerobic ammonium-oxidizing bacteria in contaminated groundwater.

    PubMed

    Moore, Tara A; Xing, Yangping; Lazenby, Brent; Lynch, Michael D J; Schiff, Sherry; Robertson, William D; Timlin, Robert; Lanza, Sadia; Ryan, M Cathryn; Aravena, Ramon; Fortin, Danielle; Clark, Ian D; Neufeld, Josh D

    2011-09-01

    Anaerobic ammonium-oxidizing (anammox) bacteria perform an important step in the global nitrogen cycle: anaerobic oxidation of ammonium and reduction of nitrite to form dinitrogen gas (N(2)). Anammox organisms appear to be widely distributed in natural and artificial environments. However, their roles in groundwater ammonium attenuation remain unclear and only limited biomarker-based data confirmed their presence prior to this study. We used complementary molecular and isotope-based methods to assess anammox diversity and activity occurring at three ammonium-contaminated groundwater sites: quantitative PCR, denaturing gradient gel electrophoresis, sequencing of 16S rRNA genes, and (15)N-tracer incubations. Here we show that anammox performing organisms were abundant bacterial community members. Although all sites were dominated by Candidatus Brocadia-like sequences, the community at one site was particularly diverse, possessing four of five known genera of anammox bacteria. Isotope data showed that anammox produced up to 18 and 36% of N(2) at these sites. By combining molecular and isotopic results we have demonstrated the diversity, abundance, and activity of these autotrophic bacteria. Our results provide strong evidence for their important biogeochemical role in attenuating groundwater ammonium contamination.

  20. Potential of the insecticides acephate and methamidophos to contaminate groundwater.

    PubMed

    Yen, J H; Lin, K H; Wang, Y S

    2000-01-01

    The possible contamination of groundwater by the insecticides acephate and methamidophos was assessed using the behavior assessment model (BAM) and the groundwater pollution-potential model (GWP). The dissipation coefficients of the two insecticides in two soils (Annei silt loam and Pingchen silt clay loam) at different moisture contents (50 and 100% field capacity) and soil temperatures (20 and 30 degrees C) were studied by determining the degradation and adsorption of each insecticide in the soil. The movement of acephate and methamidophos was studied by leaching each insecticide in a soil column in the laboratory. The absorption coefficient of methamidophos was much higher than that of acephate in both types of soil. In the leaching test, methamidophos more easily leached out from the Pingchen soil column than from the Annei soil column. Methamidophos was rapidly degraded, with a half-life of 1.11 to 1.61 days in the Annei soil and 7.50 to 13.20 days in the Pingchen soil at different temperatures and soil water contents. Acephate was found to have a longer half-life than methamidophos in soil; however, the mobility of methamidophos in both soils was slower than that of acephate. The mobility of acephate in soil is somewhat faster than that of methamidophos, and thus acephate may lead to the contamination of groundwater much more easily than methamidophos under normal conditions.

  1. Groundwater contamination assessment for sustainable water supply in Kathmandu Valley, Nepal.

    PubMed

    Khatlwada, N R; Takizawa, S; Tran, T V N; Inoue, M

    2002-01-01

    A study was carried out to assess the water quality situation of groundwater sources in Kathmandu Valley, Nepal. Groundwater has remained to be a major water supply source for a population of 1.5 million at present in the valley. The focus of this study was to evaluate the extent and sources of groundwater contamination. Water sampling was carried out in selected deep wells and shallow sources. The level of pollution was evaluated by comparing the water quality results with WHO guidelines. The major problems with the dug wells, hand pumps and spouts were found to be the elevated nitrate and mercury contents. The deep wells located on the central aquifer were found to have a serious threat of ammonia pollution. Deep wells were also found to have iron, manganese and mercury concentrations exceeding the guideline values. Multivariate statistical analysis was carried out to cluster the sampling sources and identify the common factors describing the potential sources and possible mechanisms associated with the contaminants. The results suggested that disintegration of the sediment organic matter under strong reducing environment leads to the origin of the unusual water qualities at the central confined aquifer. This process may be microbially mediated and occurs with the simultaneous reduction of species such as arsenic, iron, manganese and sulfate. Both natural and anthropogenic water quality problems were observed in the groundwater system of Kathmandu valley. Attention should be focused to consider distinct strategies to address these problems.

  2. Emerging contaminants in urban groundwater sources in Africa.

    PubMed

    Sorensen, J P R; Lapworth, D J; Nkhuwa, D C W; Stuart, M E; Gooddy, D C; Bell, R A; Chirwa, M; Kabika, J; Liemisa, M; Chibesa, M; Pedley, S

    2015-04-01

    The occurrence of emerging organic contaminants within the aquatic environment in Africa is currently unknown. This study provides early insights by characterising a broad range of emerging organic contaminants (n > 1000) in groundwater sources in Kabwe, Zambia. Groundwater samples were obtained during both the dry and wet seasons from a selection of deep boreholes and shallow wells completed within the bedrock and overlying superficial aquifers, respectively. Groundwater sources were distributed across the city to encompass peri-urban, lower cost housing, higher cost housing, and industrial land uses. The insect repellent DEET was ubiquitous within groundwater at concentrations up to 1.8 μg/L. Other compounds (n = 26) were detected in less than 15% of the sources and included the bactericide triclosan (up to 0.03 μg/L), chlorination by-products - trihalomethanes (up to 50 μg/L), and the surfactant 2,4,7,9-tetramethyl-5-decyne-4,7-diol (up to 0.6 μg/L). Emerging contaminants were most prevalent in shallow wells sited in low cost housing areas. This is attributed to localised vulnerability associated with inadequate well protection, sanitation, and household waste disposal. The five-fold increase in median DEET concentration following the onset of the seasonal rains highlights that more mobile compounds can rapidly migrate from the surface to the aquifer suggesting the aquifer is more vulnerable than previously considered. Furthermore it suggests DEET is potentially useful as a wastewater tracer in Africa. There was a general absence of personal care products, life-style compounds, and pharmaceuticals which are commonly detected in the aquatic environment in the developed world. This perhaps reflects some degree of attenuation within the subsurface, but could also be a result of the current limited use of products containing emerging contaminants by locals due to unaffordability and unavailability. As development and population increases in Africa, it is

  3. Emerging contaminants in urban groundwater sources in Africa.

    PubMed

    Sorensen, J P R; Lapworth, D J; Nkhuwa, D C W; Stuart, M E; Gooddy, D C; Bell, R A; Chirwa, M; Kabika, J; Liemisa, M; Chibesa, M; Pedley, S

    2015-04-01

    The occurrence of emerging organic contaminants within the aquatic environment in Africa is currently unknown. This study provides early insights by characterising a broad range of emerging organic contaminants (n > 1000) in groundwater sources in Kabwe, Zambia. Groundwater samples were obtained during both the dry and wet seasons from a selection of deep boreholes and shallow wells completed within the bedrock and overlying superficial aquifers, respectively. Groundwater sources were distributed across the city to encompass peri-urban, lower cost housing, higher cost housing, and industrial land uses. The insect repellent DEET was ubiquitous within groundwater at concentrations up to 1.8 μg/L. Other compounds (n = 26) were detected in less than 15% of the sources and included the bactericide triclosan (up to 0.03 μg/L), chlorination by-products - trihalomethanes (up to 50 μg/L), and the surfactant 2,4,7,9-tetramethyl-5-decyne-4,7-diol (up to 0.6 μg/L). Emerging contaminants were most prevalent in shallow wells sited in low cost housing areas. This is attributed to localised vulnerability associated with inadequate well protection, sanitation, and household waste disposal. The five-fold increase in median DEET concentration following the onset of the seasonal rains highlights that more mobile compounds can rapidly migrate from the surface to the aquifer suggesting the aquifer is more vulnerable than previously considered. Furthermore it suggests DEET is potentially useful as a wastewater tracer in Africa. There was a general absence of personal care products, life-style compounds, and pharmaceuticals which are commonly detected in the aquatic environment in the developed world. This perhaps reflects some degree of attenuation within the subsurface, but could also be a result of the current limited use of products containing emerging contaminants by locals due to unaffordability and unavailability. As development and population increases in Africa, it is

  4. Ecosystem perspective of groundwater arsenic contamination in India and relevance in policy.

    PubMed

    Sarkar, Atanu

    2010-08-01

    Millions of people living in India are at risk by consuming arsenic contaminated groundwater. Several technological solutions have failed to address the problem due to segmental approaches, resulting in human suffering for a period of three decades. The article is based on an analysis of arsenic-related health problems from an ecosystem perspective through a primary survey conducted in five arsenic affected villages in the state of West Bengal and review of existing research and policy documents. Although modern agricultural practices and drinking water policies have resulted in arsenic contamination of groundwater, current mitigation policy is essentially confined to biomedical approaches, which includes potable water supply and medical care. The study also shows that existing disparity, difficulty in coping, inaccessibility to health service and potable water supply and lack of participation in decision making have resulted in more suffering among the poor. On the other hand, spreading of arsenic contamination in the ecosystem remains unabated. Foods grown in the affected area have emerged as additional sources of exposure to humans. There is lack of evidence of any perceivable benefits due to sustainable agriculture, as present nature of agriculture practice is essentially driven by crop yield only. Further research is needed to generate credible evidence of alternative agriculture paradigms that may eventually reduce body burden of arsenic through reduced dependency on groundwater. PMID:20419333

  5. Ecosystem perspective of groundwater arsenic contamination in India and relevance in policy.

    PubMed

    Sarkar, Atanu

    2010-08-01

    Millions of people living in India are at risk by consuming arsenic contaminated groundwater. Several technological solutions have failed to address the problem due to segmental approaches, resulting in human suffering for a period of three decades. The article is based on an analysis of arsenic-related health problems from an ecosystem perspective through a primary survey conducted in five arsenic affected villages in the state of West Bengal and review of existing research and policy documents. Although modern agricultural practices and drinking water policies have resulted in arsenic contamination of groundwater, current mitigation policy is essentially confined to biomedical approaches, which includes potable water supply and medical care. The study also shows that existing disparity, difficulty in coping, inaccessibility to health service and potable water supply and lack of participation in decision making have resulted in more suffering among the poor. On the other hand, spreading of arsenic contamination in the ecosystem remains unabated. Foods grown in the affected area have emerged as additional sources of exposure to humans. There is lack of evidence of any perceivable benefits due to sustainable agriculture, as present nature of agriculture practice is essentially driven by crop yield only. Further research is needed to generate credible evidence of alternative agriculture paradigms that may eventually reduce body burden of arsenic through reduced dependency on groundwater.

  6. Arsenic Contamination of Groundwater at Zimapán, Mexiko

    NASA Astrophysics Data System (ADS)

    Armienta, M. A.; Rodriguez, R.; Aguayo, A.; Ceniceros, N.; Villaseñor, G.; Cruz, O.

    1997-02-01

    Arsenic contamination of groundwater has been detected in the Zimapán Valley, Mexico. Concentrations as much as 1.097 mg/L were observed in water pumped from one of the most productive wells. Three sources of arsenic are known. The natural source is produced by the oxidation of arsenic-bearing minerals; polluted water pumped from the deepest wells is derived from this source and has the highest concentrations. Two anthropogenic sources pollute the shallow wells. These result from the leaching of mine tailings and from the percolation of smelter fumes containing arsenic and which settled on the soil until the 1940's. The identification and evaluation of multiple sources of pollutants in aquifers are needed to establish reliable aquifer-remediation programs, especially in many arid regions, where groundwater in commonly the main or only source of drinking water.

  7. Herbicide contamination of surficial groundwater in Northern Italy.

    PubMed

    Guzzella, Licia; Pozzoni, Fiorenzo; Giuliano, Giuseppe

    2006-07-01

    Data on herbicide pollution in groundwater are rather scarce; monitoring data are based on single investigation, focussing on limited area and on few compounds of interest. The large number of approved active ingredients (approximately 600 chemicals) makes difficult to obtain an accurate and actual information on herbicide application in different countries, even if herbicides are the second most important class of pesticides used in the European Union. The results of a two-year monitoring campaign undertaken in two areas intensively cultivated at Lombardy, Northern Italy, showed a diffuse groundwater contamination due to active ingredients and their metabolites. More than 50% of samples overcame M.A.C. and the most common herbicides were Atrazine, Terbuthylazine and Metolachlor, while DEA and DET metabolites were often characterized by greater concentrations than their relative active principles.

  8. Uranium Removal from Contaminated Groundwater by Synthetic Resins

    SciTech Connect

    Phillips, Debra H.; Gu, Baohua; Watson, David B; Parmele, C. S.

    2008-01-01

    Synthetic resins are shown to be effective in removing uranium from contaminated groundwater. Batch and field column tests showed that strong-base anion-exchange resins were more effective in removing uranium from both near-neutral-pH (6.5)- and high-pH (8)-low-nitrate-containing ground waters, than metal-chelating resins, which removed more uranium from acidic-pH (5)-high-nitrate-containing groundwater from the Oak Ridge Reservation (ORR) Y-12 S-3 Ponds area in Tennessee, USA. Dowex 1-X8 and Purolite A-520E anion-exchange resins removed more uranium from high-pH (8)-low-nitrate-containing synthetic groundwater in batch tests than metal-chelating resins. The Dowex{trademark} 21K anion-exchange resin achieved a cumulative loading capacity of 49.8 mg g{sup -1} before breakthrough in a field column test using near-neutral-pH (6.5)-low-nitrate-containing groundwater. However, in an acidic-pH (5)-high-nitrate-containing groundwater, metal-chelating resins Diphonix and Chelex-100 removed more uranium than anion-exchange resins. In 15 mL of acidic-pH (5)-high-nitrate-containing groundwater spiked with 20 mg L{sup -1} uranium, the uranium concentrations ranged from 0.95 mg L{sup -1} at 1-h equilibrium to 0.08 mg L{sup -1} at 24-h equilibrium for Diphonix and 0.17 mg L{sup -1} at 1-h equilibrium to 0.03 mg L{sup -1} at 24-h equilibrium for Chelex-100. Chelex-100 removed more uranium in the first 10 min in the 100 mL of acidic-(pH 5)-high-nitrate-containing groundwater (5 mg L{sup -1} uranium); however, after 10 min, Diphonix equaled or out-performed Chelex-100. This study presents an improved understanding of the selectivity and sorption kinetics of a range of ion-exchange resins that remove uranium from both low- and high-nitrate-containing groundwaters with varying pHs.

  9. Arsenic contaminated groundwater and its treatment options in Bangladesh.

    PubMed

    Jiang, Jia-Qian; Ashekuzzaman, S M; Jiang, Anlun; Sharifuzzaman, S M; Chowdhury, Sayedur Rahman

    2012-12-20

    Arsenic (As) causes health concerns due to its significant toxicity and worldwide presence in drinking water and groundwater. The major sources of As pollution may be natural process such as dissolution of As-containing minerals and anthropogenic activities such as percolation of water from mines, etc. The maximum contaminant level for total As in potable water has been established as 10 µg/L. Among the countries facing As contamination problems, Bangladesh is the most affected. Up to 77 million people in Bangladesh have been exposed to toxic levels of arsenic from drinking water. Therefore, it has become an urgent need to provide As-free drinking water in rural households throughout Bangladesh. This paper provides a comprehensive overview on the recent data on arsenic contamination status, its sources and reasons of mobilization and the exposure pathways in Bangladesh. Very little literature has focused on the removal of As from groundwaters in developing countries and thus this paper aims to review the As removal technologies and be a useful resource for researchers or policy makers to help identify and investigate useful treatment options. While a number of technological developments in arsenic removal have taken place, we must consider variations in sources and quality characteristics of As polluted water and differences in the socio-economic and literacy conditions of people, and then aim at improving effectiveness in arsenic removal, reducing the cost of the system, making the technology user friendly, overcoming maintenance problems and resolving sludge management issues.

  10. Depth and Well Type Related to Groundwater Microbiological Contamination

    PubMed Central

    Maran, Nayara Halimy; Crispim, Bruno do Amaral; Iahnn, Stephanie Ramirez; de Araújo, Renata Pires; Grisolia, Alexeia Barufatti; de Oliveira, Kelly Mari Pires

    2016-01-01

    Use of groundwater from private wells in households has increased considerably, owing to a better cost/benefit ratio than that of water provided by local utilities for a fee. However, this water is usually untreated, which makes it a vehicle for diseases. Thus, monitoring this water is necessary to ensure its integrity and quality. We aimed to evaluate the physical, chemical, and microbiological parameters of untreated groundwater drawn from different types of wells, and the antimicrobial susceptibility profile of the bacteria isolated from this water. Wellwater samples were collected in two Brazilian cities. Although physical and chemical parameters of the water were suitable for drinking, Escherichia coli was detected in 33% of the samples. E. coli contaminated 65% of dug wells and 10.25% of drilled wells. Many bacteria isolated were resistant to multiple antibacterial agents, including β-lactams. Microbial contamination of this water was related to the well depth, and was more common in dug wells, making this water unfit for human consumption. Consumption of such contaminated and untreated water is a public health concern. Thus, individuals who regularly use such water must be alerted so they may either take preventive measures or connect to the water distribution system operated by local utilities. PMID:27775681

  11. Arsenic Contaminated Groundwater and Its Treatment Options in Bangladesh

    PubMed Central

    Jiang, Jia-Qian; Ashekuzzaman, S. M.; Jiang, Anlun; Sharifuzzaman, S. M.; Chowdhury, Sayedur Rahman

    2012-01-01

    Arsenic (As) causes health concerns due to its significant toxicity and worldwide presence in drinking water and groundwater. The major sources of As pollution may be natural process such as dissolution of As-containing minerals and anthropogenic activities such as percolation of water from mines, etc. The maximum contaminant level for total As in potable water has been established as 10 µg/L. Among the countries facing As contamination problems, Bangladesh is the most affected. Up to 77 million people in Bangladesh have been exposed to toxic levels of arsenic from drinking water. Therefore, it has become an urgent need to provide As-free drinking water in rural households throughout Bangladesh. This paper provides a comprehensive overview on the recent data on arsenic contamination status, its sources and reasons of mobilization and the exposure pathways in Bangladesh. Very little literature has focused on the removal of As from groundwaters in developing countries and thus this paper aims to review the As removal technologies and be a useful resource for researchers or policy makers to help identify and investigate useful treatment options. While a number of technological developments in arsenic removal have taken place, we must consider variations in sources and quality characteristics of As polluted water and differences in the socio-economic and literacy conditions of people, and then aim at improving effectiveness in arsenic removal, reducing the cost of the system, making the technology user friendly, overcoming maintenance problems and resolving sludge management issues. PMID:23343979

  12. Hydrochemistry indicating groundwater contamination and the potential fate of chlorohydrocarbons in combined polluted groundwater: a case study at a contamination site in North China.

    PubMed

    Huang, Shuang-Bing; Han, Zhan-Tao; Zhao, Long; Kong, Xiang-Ke

    2015-05-01

    Groundwater contamination characteristics and the potential fate of chlorohydrocarbons were investigated at a combined polluted groundwater site in North China. Groundwater chemistry and (2)D and (18)O isotope compositions indicated that high salination of groundwater was related with chemical pollution. The elevated salinity plume was consistent with the domain where typical chlorohydrocarbon contaminants occurred. The concentrations of heavy metals, oxidation-reduction potential, and pH in organic polluted areas significantly differed from those in peripheral (background) areas, indicating modified hydrochemistry possibly resulting from organic pollution. Under the presented redox conditions of groundwater, monochlorobenzene oxidation may have occurred when the trichlorohydrocarbons underwent reductive dechlorination. These findings suggested that inorganic hydrochemistry effectively indicated the occurrence of chemical contamination in groundwater and the potential fate of chlorohydrocarbons.

  13. Phytoremediation of contaminated soils and groundwater: lessons from the field

    SciTech Connect

    Vangronsveld, J.; van der Lelie, D.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A.; Thewys, T.; Vassilev, A.; Meers, E.; Nehnevajova, E.; Mench, M.

    2009-11-01

    The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass. It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).

  14. Assessing the vulnerability of a karst groundwater system to contamination by pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Einsiedl, Florian; Radke, Michael

    2010-05-01

    Contamination of drinking water supplies is a serious problem and a potential threat to public health. Organic micropollutants such as pharmaceuticals and personal care products are identified as an environmental risk and concern has been raised about their environmental presence and fate. These compounds are present in effluents of wastewater treatment plants (WWTPs) in concentrations of up to several µg/L, and they have frequently been detected in surface waters and groundwater systems. A popular method for wastewater disposal in karst areas is the injection of wastewater into open sinkholes. Subsequently, the wastewater infiltrates rapidly along conduits and through the fractured karst aquifer. This is a major contributing factor to the contamination of karst aquifers. To address the vulnerability of such systems against relatively mobile organic micropollutants, we investigated the occurrence of two pharmaceuticals (diclofenac, ibuprofen) in combination with the groundwater heterogeneity and flow pathways in the aquifer. Groundwater samples and effluents of three WWTPs were repeatedly collected during a field campaign in the Franconian Alb karst system which is located in southern Germany. These results were coupled with hydrogeological investigations such as tracer tests, application of environmental isotopes (3H), and modeling. The results of this study demonstrated that (i) both pharmaceuticals are mobile in the karst aquifer and thus represent a risk for contamination of karst water, (ii) the transport of pharmaceuticals in the fractured system with mean transit times of some years affects the karst groundwater contamination, and (iii) long-term wastewater injection containing organic micropollutants into karst ecosystems may contribute to water quality deterioration over years.

  15. Groundwater contamination by Temik Aldicarb pesticide: The first 8 months

    NASA Astrophysics Data System (ADS)

    Wartenberg, Daniel

    1988-02-01

    In 1979, Temik aldicarb pesticide was detected in the groundwater of Suffolk County, New York. Concentrations detected in drinking water supplies exceeded health guidelines, causing concern among thousands of residents. In spite of suggestive evidence prior to detection and inquiries from local investigators, EPA did not consider contamination a likely event. Upon detection of the contamination, EPA officials instituted an emergency response. Then, when they were sure there was no acute hazard, they left the situation in the hands of local health authorities, who struggled without adequate resources or sufficient in-house expertise. The local officials' failure to acknowledge these limitations led to public mistrust and discontent. From this case study one sees the consequences of limited implementation of the federal pesticide regulatory system. More stringent requirements would have likely prevented the contamination. In addition, an integrated response from agencies at many levels of government would have helped prevent similar contamination elsewhere and provided more comprehensive management of this episode on Long Island. Openness by government officials on the limitations of the health data would have helped defuse public animosity and encouraged a more satisfactory resolution of the contamination.

  16. Contamination of groundwater by outdoor highway deicing agent storage

    NASA Astrophysics Data System (ADS)

    Ostendorf, David W.; Hinlein, Erich S.; Rotaru, Camelia; DeGroot, Don J.

    2006-07-01

    This research quantifies the impact of outdoor highway deicing agent storage on groundwater quality. Data and theory realize the objective at a well characterized salt/premix storage facility on a glacial drumlin comprised of clayey sand till. Tritium and tritiogenic helium were observed in 17 monitoring wells in 2003, while chloride concentrations were measured in 43 monitoring wells from 1998 through 2004. The 3He/ 3H ratios confirm an analytical model of drumlin hydraulics (Ostendorf, D.W., DeGroot, D.J., Shelburne, W.M., and Mitchell, T.J., 2004. Hydraulic head in a clayey sand till over multiple timescales. Can. Geotech. J. 41, 89-105.), and support advective travel time estimates from the monitoring well screens back to the water table. An advective balance of recharge, precipitation, and surface runoff routes the water table Cl - concentrations inwards to the outdoor storage pile maintained at the site from the 1960s to the mid 1980s. Concentrations as high as 320 meq Cl -/L were observed in groundwater, although the deicing agent contamination had not yet reached the bottom of the drumlin in the study area. The travel time simulations yield a 200 meq Cl -/L water table isopleth in 1985 under the prior outdoor storage pile. The recharge concentration model matches the radial decrease of Cl - water table concentrations from the pile, and implies that 4400 kg of Cl - leached into the groundwater in 1985. This is about 0.3% of the deicing agent Cl - stored at the site each year. These results suggest that outdoor storage of highway deicing agents significantly impacted groundwater quality near the pile. The groundwater quality began to recover after source removal however: the leached Cl - flux dropped to 2,300 kg in 1992, more than 5 years after elimination of the outdoor storage pile.

  17. Numerical model for the uptake of groundwater contaminants by phreatophytes

    USGS Publications Warehouse

    Widdowson, M.A.; El-Sayed, A.; Landmeyer, J.E.

    2008-01-01

    Conventional solute transport models do not adequately account for the effects of phreatophytic plant systems on contaminant concentrations in shallow groundwater systems. A numerical model was developed and tested to simulate threedimensional reactive solute transport in a heterogeneous porous medium. Advective-dispersive transport is coupled to biodegradation, sorption, and plantbased attenuation processes including plant uptake and sorption by plant roots. The latter effects are a function of the physical-chemical properties of the individual solutes and plant species. Models for plant uptake were tested and evaluated using the experimental data collected at a field site comprised of hybrid poplar trees. A non-linear equilibrium isotherm model best represented site conditions.

  18. Natural attenuation and enhanced bioremediation of organic contaminants in groundwater.

    PubMed

    Scow, Kate M; Hicks, Kristin A

    2005-06-01

    An area of intense scientific and practical interest is the biogeochemical and microbial processes determining the success of natural attenuation, biostimulation and/or bioaugmentation treatments for organic contaminants in groundwater. Recent studies in this area have focused on the reductive dechlorination of chlorinated solvents, the degradation of the fuel additive methyl tert-butyl ether, and the removal of long-term hydrocarbon contamination. These studies have been facilitated by the use of stable isotope analysis to demonstrate in situ bioremediation and push-pull tests, in which isotopes are injected into aquifers and then quickly retrieved and analyzed, to measure in situ activity. Molecular tools such as quantitative PCR, the detection of mRNA expression, and numerous DNA fingerprinting methods have also proved valuable, being employed to identify and sometimes quantify environmentally important organisms or changes in communities. Methods to track bacteria and tools to characterize bacterial attachment properties have also offered insight into bacterial transport in situ.

  19. Identification of manganese as a toxicant in a groundwater treatment system: Addressing naturally occurring toxicants

    SciTech Connect

    Goodfellow, W. Jr.; Sohn, V.; Richey, M.; Yost, J.

    1995-12-31

    Effluent from a groundwater remediation system at a bulk oil storage and distribution terminal has been chronically toxic to Ceriodaphnia dubia. The remediation system was designed in response to a hydrocarbon plume in the area of the terminal. The remediation system consists of a series of groundwater recovery wells and groundwater intercept trench systems with groundwater treatment and phased-separated hydrocarbon recovery systems. The groundwater treatment and petroleum recovery systems consist of oil/water separators, product recovery tanks, air strippers, filters, and carbon adsorption units. The characteristics of this effluent are low total suspended solids, total dissolved solids, and hardness concentrations as well as meeting stringent NPDES permit requirements for lead, copper, zinc, mercury, total petroleum hydrocarbons, and BTEX. Additional priority pollutant evaluations revealed no compounds of concern. Performance of a Toxicity identification Evaluation (TIE) indicated that manganese was the principle toxicant in the effluent. Manganese is a naturally occurring constituent in this groundwater source and is not added to the treatment system. This paper will present the results of the TIE with a discussion of treatability/control options for manganese control at this facility. Recommendations for addressing naturally occurring toxicants that are not a result of the facility`s operations will also be presented.

  20. Migration of wood-preserving chemicals in contaminated groundwater in a sand aquifer at Pensacola, Florida

    USGS Publications Warehouse

    Goerlitz, D.F.; Troutman, D.E.; Godsy, E.M.; Franks, B.J.

    1985-01-01

    Operation of a wood-preserving facility for nearly 80 years at Pensacola, FL, contaminated the near-surface groundwater with creosote and pentachlorophenol. The major source of aquifer contamination was unlined surface impoundments that were in direct hydraulic contact with the groundwater. Episodes of overtopping the impoundments and overland flow of treatment liquor and waste were also significant to the migration and contamination of the groundwater. Solutes contaminating the ground-water are mainly naphthalene and substituted phenols. Sorption did not influence retardation of solutes in transport in the groundwater. Phenol and the mono substituted methylphenols appear to be undergoing bio-transformation. Pentachlorophenol (PCP) was not found in significant concentrations in the groundwater possibly because the solubility of PCP is approximately 5 mg/L at pH 6, near the average acidity for the groundwater.

  1. Degradation of sucralose in groundwater and implications for age dating contaminated groundwater.

    PubMed

    Robertson, W D; Van Stempvoort, D R; Spoelstra, J; Brown, S J; Schiff, S L

    2016-01-01

    The artificial sweetener sucralose has been in use in Canada and the US since about 2000 and in the EU since 2003, and is now ubiquitous in sanitary wastewater in many parts of the world. It persists during sewage treatment and in surface water environments and as such, has been suggested as a powerful tracer of wastewater. In this study, longer-term persistence of sucralose was examined in groundwater by undertaking a series of three sampling snapshots of a well constrained wastewater plume in Canada (Long Point septic system) over a 6-year period from 2008 to 2014. A shrinking sucralose plume in 2014, compared to earlier sampling, during this period when sucralose use was likely increasing, provides clear evidence of degradation. However, depletion of sucralose from a mean of 40 μg/L in the proximal plume zone, occurred at a relatively slow rate over a period of several months to several years. Furthermore, examination of septic tank effluent and impacted groundwater at six other sites in Canada, revealed that sucralose was present in all samples of septic tank effluent (6-98 μg/L, n = 32) and in all groundwater samples (0.7-77 μg/L, n = 64). Even though sucralose degradation is noted in the Long Point plume, its ubiquitous presence in the groundwater plumes at all seven sites implies a relatively slow rate of decay in many groundwater septic plume environments. Thus, sucralose has the potential to be used as an indicator of 'recent' wastewater contamination. The presence of sucralose identifies groundwater that was recharged after 2000 in Canada and the US and after 2003 in the EU and many Asian countries. PMID:26575474

  2. Degradation of sucralose in groundwater and implications for age dating contaminated groundwater.

    PubMed

    Robertson, W D; Van Stempvoort, D R; Spoelstra, J; Brown, S J; Schiff, S L

    2016-01-01

    The artificial sweetener sucralose has been in use in Canada and the US since about 2000 and in the EU since 2003, and is now ubiquitous in sanitary wastewater in many parts of the world. It persists during sewage treatment and in surface water environments and as such, has been suggested as a powerful tracer of wastewater. In this study, longer-term persistence of sucralose was examined in groundwater by undertaking a series of three sampling snapshots of a well constrained wastewater plume in Canada (Long Point septic system) over a 6-year period from 2008 to 2014. A shrinking sucralose plume in 2014, compared to earlier sampling, during this period when sucralose use was likely increasing, provides clear evidence of degradation. However, depletion of sucralose from a mean of 40 μg/L in the proximal plume zone, occurred at a relatively slow rate over a period of several months to several years. Furthermore, examination of septic tank effluent and impacted groundwater at six other sites in Canada, revealed that sucralose was present in all samples of septic tank effluent (6-98 μg/L, n = 32) and in all groundwater samples (0.7-77 μg/L, n = 64). Even though sucralose degradation is noted in the Long Point plume, its ubiquitous presence in the groundwater plumes at all seven sites implies a relatively slow rate of decay in many groundwater septic plume environments. Thus, sucralose has the potential to be used as an indicator of 'recent' wastewater contamination. The presence of sucralose identifies groundwater that was recharged after 2000 in Canada and the US and after 2003 in the EU and many Asian countries.

  3. Statistical modeling of global geogenic fluoride contamination in groundwaters.

    PubMed

    Amini, Manouchehr; Mueller, Kim; Abbaspour, Karim C; Rosenberg, Thomas; Afyuni, Majid; Møller, Klaus N; Sarr, Mamadou; Johnson, C Annette

    2008-05-15

    The use of groundwater with high fluoride concentrations poses a health threat to millions of people around the world. This study aims at providing a global overview of potentially fluoride-rich groundwaters by modeling fluoride concentration. A large database of worldwide fluoride concentrations as well as available information on related environmental factors such as soil properties, geological settings, and climatic and topographical information on a global scale have all been used in the model. The modeling approach combines geochemical knowledge with statistical methods to devise a rule-based statistical procedure, which divides the world into 8 different "process regions". For each region a separate predictive model was constructed. The end result is a global probability map of fluoride concentration in the groundwater. Comparisons of the modeled and measured data indicate that 60-70% of the fluoride variation could be explained by the models in six process regions, while in two process regions only 30% of the variation in the measured data was explained. Furthermore, the global probability map corresponded well with fluorotic areas described in the international literature. Although the probability map should not replace fluoride testing, it can give a first indication of possible contamination and thus may support the planning process of new drinking water projects.

  4. Dimension reduction and source identification for multispecies groundwater contamination.

    PubMed

    Duffy, C J; Brandes, D

    2001-03-01

    Assessment of chemical contamination at large industrial complexes with long and sometimes unknown histories of operation represents a challenging environmental problem. The spatial and temporal complexity of the contaminant may be due to changes in production processes, differences in the chemical transport, and the physical heterogeneity of the soil and aquifer materials. Traditional mapping techniques are of limited value for sites where dozens of chemicals with diverse transport characteristics may be scattered over large spatial areas without documentation of disposal histories. In this context, a site with a long and largely undocumented disposal history of shallow groundwater contamination is examined using principal component analysis (PCA). The dominant chemical groups and chemical "modes" at the site were identified. PCA results indicate that five primary and three transition chemical groups can be identified in the space of the first three eigenvectors of the correlation matrix, which account for 61% of the total variance of the data. These groups represent a significant reduction in the dimension of the original data (116 chemicals). It is shown that each group represents a class of chemicals with similar chemo-dynamic properties and/or environmental response. Finally, the groups are mapped back onto the site map to infer delineation of contaminant source areas for each class of compounds. The approach serves as a preliminary step in subsurface characterization, and a data reduction strategy for source identification, subsurface modeling and remediation planning.

  5. Screening of French groundwater for regulated and emerging contaminants.

    PubMed

    Lopez, Benjamin; Ollivier, Patrick; Togola, Anne; Baran, Nicole; Ghestem, Jean-Philippe

    2015-06-15

    Nationwide screening of 411 emerging contaminants and other regulated compounds, including parent molecules and transformation products (TPs) having various uses and origins, was done at 494 groundwater sites throughout France during two sampling campaigns in the Spring and the Fall of 2011. One hundred and eighty substances (44% of the targeted compounds) were quantified in at least one sampling point. These included pharmaceuticals, industrial products, pesticides, their transformation products and other emerging compounds. Fifty-five compounds were quantified in more than 1% of the samples. Both regulated and emerging compounds were found. Among the unregulated compounds, acetaminophen, carbamazepine, perfluorinated compounds, dioxins/furans, tolyltriazole, bisphenol A, triazine transformation products, and caffeine were quantified in more than 10% of the samples analyzed. Concentrations exceeding the threshold of toxicological concern of 0.1 μg/L were found for tolyltriazole, bisphenol A and some of the triazine transformation products (DEDIA). These new results should help the water resource managers and environmental regulators develop sound policies regarding the occurrence and distribution of regulated and emerging contaminants in groundwater. PMID:25782024

  6. Hexavalent chromium contamination in groundwaters of Thiva Basin, central Greece.

    PubMed

    Tziritis, Evangelos; Kelepertzis, Efstratios; Korres, George; Perivolaris, Dimitrios; Repani, Stella

    2012-11-01

    There is an increasing concern regarding elevated levels of Cr(VI) in the environment due to its higher mobility and toxicity compared to the trivalent form. Anomalous hexavalent chromium concentrations (up to 212 μg/L) were determined in irrigated groundwaters from the wider area of Thiva Basin (central Greece), frequently exceeding the permissible limit for human consumption (50 μg/L for total Cr). Based on the spatial distribution of Cr(VI) values, two groups of groundwater samples were distinguished, possibly reflecting different natural and/or anthropogenic factors that govern the levels of contamination. The first group is spatially located northwards of Thiva town and is consisted of concentrations that range from 13 to 212 μg/L (median 58 μg/L), while the second group is located near Mouriki village and Cr(VI) values range from <9 to 14 μg/L. The Cr(VI) chemical anomalies represent an important social problem because the agricultural products of this region are a major vegetable supply for Greece, bringing up the urgent need to evaluate the health effects associated with Cr(VI) exposure by ingesting the potentially contaminated foods.

  7. Screening of French groundwater for regulated and emerging contaminants.

    PubMed

    Lopez, Benjamin; Ollivier, Patrick; Togola, Anne; Baran, Nicole; Ghestem, Jean-Philippe

    2015-06-15

    Nationwide screening of 411 emerging contaminants and other regulated compounds, including parent molecules and transformation products (TPs) having various uses and origins, was done at 494 groundwater sites throughout France during two sampling campaigns in the Spring and the Fall of 2011. One hundred and eighty substances (44% of the targeted compounds) were quantified in at least one sampling point. These included pharmaceuticals, industrial products, pesticides, their transformation products and other emerging compounds. Fifty-five compounds were quantified in more than 1% of the samples. Both regulated and emerging compounds were found. Among the unregulated compounds, acetaminophen, carbamazepine, perfluorinated compounds, dioxins/furans, tolyltriazole, bisphenol A, triazine transformation products, and caffeine were quantified in more than 10% of the samples analyzed. Concentrations exceeding the threshold of toxicological concern of 0.1 μg/L were found for tolyltriazole, bisphenol A and some of the triazine transformation products (DEDIA). These new results should help the water resource managers and environmental regulators develop sound policies regarding the occurrence and distribution of regulated and emerging contaminants in groundwater.

  8. Review of groundwater contamination hazard rating systems for old landfills.

    PubMed

    Singh, Raj Kumar; Datta, Manoj; Nema, Arvind Kumar

    2010-02-01

    A large number of old uncontrolled landfills exist in developing countries. These are potentially harmful to the environment, especially with respect to groundwater contamination, and therefore, are in need of appropriate control and remedial measures. However, due to resource constraints, such measures are to be undertaken in a phased manner. An appropriate landfill hazard rating system that can evaluate relative groundwater contamination hazard of different sites is a useful tool for site ranking in order to set priorities. This paper reviews 18 existing hazard rating systems that follow the index function approach. Nine systems that are best representative of the existing systems, have been applied to six hazardous waste landfills as well as six municipal solid waste landfills. When used for ranking hazardous waste landfills, some systems such as HRS-1990, ERPHRS, WARM and RSS respond well whereas others like DRASTIC, NCS, NPC system and JENV system show a clustering effect. However, these rating systems do not perform well when applied to old municipal solid waste landfills. Even the HRS-1990, which is observed to be the most sensitive among all rating systems, exhibits some shortcomings. Improvements have been suggested in the waste quantity factor values of HRS-1990 to make it suitable for old municipal solid waste landfills. The improved system is observed to provide superior results in comparison with the existing systems, making it appropriate for use as a tool for ranking of old landfills in need of remediation and control measures.

  9. Is contaminated groundwater an important cause of viral gastroenteritis in the United States?

    PubMed

    Frost, Floyd J; Kunde, Twila R; Craun, Gunther F

    2002-10-01

    The large volume of human sewage discharged into the ground has raised concerns about contamination of underground water supplies and possible human health risks. Few groundwater outbreaks reported in the United States, however, have been linked to enteric viruses. Studies on the occurrence of groundwater enteric viruses have detected viruses in groundwater, but many of these studies selected high-risk wells for testing. The results likely overestimated the occurrence of virus contamination in groundwater as well as the resulting public-health risks. This study found only limited evidence for viral contamination of groundwater in the absence of bacterial indicators of sewage contamination. From current studies of virus contamination in groundwater, the authors could not identify a sufficient population with evidence of exposure convincing enough to make an epidemiological investigation feasible and thus were unable to epidemiologically evaluate health risks that may be associated with viral contamination of groundwater. To better estimate the potential health risks, surveys should look at the occurrence of groundwater virus contamination in water that does not have bacterial indicators of sewage contamination and in water that has not been adequately disinfected. These surveys should include groundwater from a wide range of geological conditions.

  10. Contaminated groundwater characterization at the Chalk River Laboratories, Ontario, Canada

    SciTech Connect

    Schilk, A.J.; Robertson, D.E.; Thomas, C.W.; Lepel, E.A.; Champ, D.R.; Killey, R.W.D.; Young, J.L.; Cooper, E.L.

    1993-03-01

    The licensing requirements for the disposal of low-level radioactive waste (10 CFR 61) specify the performance objectives and technical requisites for federal and commercial land disposal facilities, the ultimate goal of which is to contain the buried wastes so that the general population is adequately protected from harmful exposure to any released radioactive materials. A major concern in the operation of existing and projected waste disposal sites is subterranean radionuclide transport by saturated or unsaturated flow, which could lead to the contamination of groundwater systems as well as uptake by the surrounding biosphere, thereby directly exposing the general public to such materials. Radionuclide transport in groundwater has been observed at numerous commercial and federal waste disposal sites [including several locations within the waste management area of Chalk River Laboratories (CRL)], yet the physico-chemical processes that lead to such migration are still not completely understood. In an attempt to assist in the characterization of these processes, an intensive study was initiated at CRL to identify and quantify the mobile radionuclide species originating from three separate disposal sites: (a) the Chemical Pit, which has received aqueous wastes containing various radioisotopes, acids, alkalis, complexing agents and salts since 1956, (b) the Reactor Pit, which has received low-level aqueous wastes from a reactor rod storage bay since 1956, and (c) the Waste Management Area C, a thirty-year-old series of trenches that contains contaminated solid wastes from CRL and various regional medical facilities. Water samples were drawn downgradient from each of the above sites and passed through a series of filters and ion-exchange resins to retain any particulate and dissolved or colloidal radionuclide species, which were subsequently identified and quantified via radiochemical separations and gamma spectroscopy. These groundwaters were also analyzed for anions

  11. Unsaturated zone arsenic distribution and implications for groundwater contamination.

    PubMed

    Reedy, Robert C; Scanlon, Bridget R; Nicot, Jean-Philippe; Tachovsky, J Andrew

    2007-10-15

    Arsenic compounds have been applied at the land surface as pesticides in agricultural areas globally. The purpose of this study was to evaluate the fate of anthropogenic arsenic applications related to agriculture, using arsenic applications on cotton in the southern High Plains (SHP), Texas, as a case study and examining possible linkages with contamination of the underlying Ogallala aquifer in this region, where 36% of wells exceed the new EPA 10 microg/L standard. Unsaturated zone soil samples were collected from boreholes beneath natural ecosystems (grassland/ shrubland) to provide a control (no arsenic application) (5 profiles) and cotton cropland (20 profiles) for analyses of water-extractable arsenic, vanadium, phosphate, chloride, and nitrate. Natural ecosystem profiles have high arsenic concentrations at depth (maximum of 7.2-69.6 microg As/ kg dry soil at 5.9-21.4 m depth) that are attributed to a geologic source. Most profiles beneath cotton cropland have high arsenic concentrations within the upper meter (profile means 1.7 to 31.6 microg/kg) that correlate with phosphate (r = 0.70, p < 0.01) and are attributed to anthropogenic arsenic application associated with phosphate fertilizer application. High arsenic concentrations at >1 m depth (profile means < or =36.3 microg/kg) found in cropland profiles are attributed to a geologic source because of similarity with profiles beneath natural ecosystems, lack of correlation with phosphate, and pore-water ages that predate anthropogenic arsenic application in many profiles. GIS analyses showed poor correlations between groundwater arsenic and percent cultivated land (r = -0.15, p < 0.01), groundwater nitrate (r = 0.30, p < 0.01), and water table depth (r= -0.31, p < 0.01), further supporting the idea that anthropogenic-derived arsenic in the shallow subsurface is not linked to groundwater arsenic contamination in this region.

  12. REMEDIATION OF NITRATE-CONTAMINATED GROUNDWATER USING A BIOBARRIER

    SciTech Connect

    B. STRIETELMEIR; ET AL

    2000-12-01

    A biobarrier system has been developed for use in remediating shallow alluvial groundwater. This barrier is made from highly porous materials that are relatively long-lasting, carbon-based (to supply a limiting nutrient in nitrate destruction, in most cases), and extremely inexpensive and easy to emplace. In a series of laboratory studies, we have determined the effectiveness of this barrier at destroying nitrate and perchlorate in groundwater from Mortandad Canyon at Los Alamos National Laboratory (LANL). This groundwater was obtained from a monitoring well, MCO-5, which is located in the flowpath of the discharge waters from the LANL Radioactive Liquid Waste Treatment Facility (RLWTF). Water with elevated nitrate levels has been discharged from this plant for many years, until recently when the nitrate levels have been brought under the discharge limits. However, the historical discharge has resulted in a nitrate plume in the alluvial groundwater in this canyon. The LANL Multi-Barrier project was initiated this past year to develop a system of barriers that would prevent the transport of radionuclides, metals, colloids and other contaminants, including nitrate and perchlorate, further down the canyon in order to protect populations down-gradient. The biobarrier. will be part of this Multi-Barrier system. We have demonstrated the destruction of nitrate at levels up to 6.5-9.7 mhl nitrate (400-600 mg/L), and that of perchlorate at levels of about 4.3 {micro}M perchlorate (350 ppb). We have quantified the populations of microorganisms present in the biofilm that develops on the biobarrier. The results of this research will be discussed along with other potential applications of this system.

  13. Groundwater Arsenic Contamination in Kopruoren Basin (Kutahya), Turkey

    NASA Astrophysics Data System (ADS)

    Arslan, S.; Dokuz, U.; Celik, M.; Cheng, Z.

    2012-12-01

    Groundwater quality in the Kopruoren Basin located to the west of Kutahya city in western Anatolia was investigated. Kopruoren Basin is about 275 km2 with about 6,000 residents, but the surface and ground-water quality in this basin impacts a much larger population since the area is located upstream of Kutahya and Eskisehir plains. Groundwater occurs under confined conditions in the limestones of Pliocene units. The only silver deposit of Turkey is developed in the metamorphic basement rocks, Early Miocene volcanics and Pliocene units near Gumuskoy. The amount of silver manufactured annually comprises about 1% of the World's Silver Production. The cyanide-rich wastes of the Eti Gumus silver plant is stored in waste pools. There have been debates about the safety of this facility after a major collapse occurred in one of the pools in May 2011. In this study samples from 31 wells and 21 springs were collected in July and October 2011 and May 2012. The groundwaters are of Ca-Mg-HCO3 type, with arsenic, zinc and antimony occurring at high concentrations. Dissolved arsenic concentrations are as high as 48 ug/L in springs and 734 ug/L in well water. Arsenic in 57% of the springs and 68% of the wells exceeded the WHO guideline value (10 ug/L). Natural sources of arsenic in the area include the dissolution of arsenic-rich minerals such as realgar and orpiment associated with the mineral deposits in the southern part of the study area. In the northern part, arsenic is enriched due to the dissolution of arsenic-bearing coal deposits. Besides these natural sources of contamination, the silver mining activity could be an important anthropogenic source. The leakage of cyanide and arsenic, together with other trace elements to the environment from the waste pools, will continue to poison the environment if necessary precautions are not taken immediately.

  14. REMEDIATION OF NITRATE-CONTAMINATED GROUNDWATER USING A BIOBARRIER

    SciTech Connect

    B. STRIETELMEIER; M. ESPINOSA

    2001-01-01

    A biobarrier system has been developed for use in remediating shallow alluvial groundwater. This barrier is made from highly porous materials that are relatively long-lasting, carbon-based (to supply a limiting nutrient in nitrate destruction, in most cases), extremely inexpensive, and easy to replace. In a series of laboratory studies, we have determined the effectiveness of this barrier at destroying nitrate and perchlorate in groundwater from Mortandad Canyon at Los Alamos National Laboratory (LANL). This groundwater was obtained from a monitoring well, MCO-5, which is located in the flowpath of the discharge waters from the LANL Radioactive Liquid Waste Treatment Facility (RLWTF). Water with elevated nitrate levels was discharged from this plant for many years. Recently, the nitrate levels have been brought under the discharge limits. However, the historical discharge has resulted in a nitrate plume in the alluvial groundwater in this canyon. The LANL Multi-Barrier project was initiated in 1999 to develop a system of barriers that would prevent the transport of radionuclides, metals, colloids and other contaminants, including nitrate and perchlorate, further down the canyon in order to protect populations down-gradient. The biobarrier will be part of this Multi-Barrier system. We have demonstrated the destruction of nitrate at levels up to 6.5-9.7 mM nitrate (400-600 mg/L), and that of perchlorate at levels of about 4.3 {micro}M perchlorate (350 ppb). We have quantified the populations of microorganisms present in the biofilm that develops on the biobarrier. The results of this research will be discussed along with other potential applications of this system.

  15. Contamination by Arsenate in Oxidizing Groundwater, Southern Gulf Coast Aquifer System, Texas

    NASA Astrophysics Data System (ADS)

    Gates, J. B.; Nicot, J.; Reedy, R. C.; Scanlon, B. R.

    2009-12-01

    Groundwater arsenic concentrations exceed the U.S. EPA maximum contaminant level for drinking water (10 μg/L) in about one-third of wells in the southern Gulf Coast Aquifer System (GCAS) in Texas, representing a potential public health hazard and an environmental compliance challenge to numerous small public water supply systems. The aim of this study is to better understand the hydrogeochemical mechanisms underpinning the widespread distribution of elevated groundwater arsenic concentrations in the region. Here we focus upon arsenic contamination in unconfined portions of the aquifer system. The investigation is based upon chemical analyses of a field transect of 27 groundwater samples collected from across three units of the GCAS; stratified water quality sampling from one additional well; and relevant water chemistry data from the Texas Water Development Board groundwater database (more than 500 samples). Chemical results from the field study showed that carbonate weathering and active recharge in the unconfined zone result in circum-neutral pH and oxidizing redox conditions, which are typically amenable to arsenic immobilization by adsorption of As(V) onto mineral oxides and clays. However, arsenic concentrations were found up to 129 μg/L (median 12 μg/L), and As(V) represented nearly 100% of total arsenic. Concentrations generally decreased with increasing distance from the Catahoula Formation (which contains abundant volcanic ash presumed to be the original arsenic source), through the overlying Jasper, Evangeline and Chicot Aquifers. Statistically significant pairwise correlations with arsenic were found for vanadium, silica and potassium, all of which were released during weathering of volcanic sediments and their degradation products. Silica that was co-released with arsenic may compete for sorption sites and reduce the capacity for arsenic adsorption. An important role for variable arsenic source availability was suggested by regional spatial

  16. A review of groundwater contamination near municipal solid waste landfill sites in China.

    PubMed

    Han, Zhiyong; Ma, Haining; Shi, Guozhong; He, Li; Wei, Luoyu; Shi, Qingqing

    2016-11-01

    Landfills are the most widely used method for municipal solid waste (MSW) disposal method in China. However, these facilities have caused serious groundwater contamination due to the leakage of leachate. This study, analyzed 32 scientific papers, a field survey and an environmental assessment report related to groundwater contamination caused by landfills in China. The groundwater quality in the vicinity of landfills was assessed as "very bad" by a comprehensive score (FI) of 7.85 by the Grading Method in China. Variety of pollutants consisting of 96 groundwater pollutants, 3 organic matter indicators, 2 visual pollutants and 6 aggregative pollutants had been detected in the various studies. Twenty-two kinds of pollutants were considered to be dominant. According to the Kruskal-Wallis test and the median test, groundwater contamination differed significantly between regions in China, but there were no significant differences between dry season and wet season measurements, except for some pollutants in a few landfill sites. Generally, the groundwater contamination appeared in the initial landfill stage after five years and peaked some years afterward. In this stage, the Nemerow Index (PI) of groundwater increased exponentially as landfill age increased at some sites, but afterwards decreased exponentially with increasing age at others. After 25years, the groundwater contamination was very low at selected landfills. The PI values of landfills decreased exponentially as the pollutant migration distance increased. Therefore, the groundwater contamination mainly appeared within 1000m of a landfill and most of serious groundwater contamination occurred within 200m. The results not only indicate that the groundwater contamination near MSW landfills should be a concern, but also are valuable to remediate the groundwater contamination near MSW landfills and to prevent the MSW landfill from secondary pollutions, especially for developing countries considering the similar

  17. A review of groundwater contamination near municipal solid waste landfill sites in China.

    PubMed

    Han, Zhiyong; Ma, Haining; Shi, Guozhong; He, Li; Wei, Luoyu; Shi, Qingqing

    2016-11-01

    Landfills are the most widely used method for municipal solid waste (MSW) disposal method in China. However, these facilities have caused serious groundwater contamination due to the leakage of leachate. This study, analyzed 32 scientific papers, a field survey and an environmental assessment report related to groundwater contamination caused by landfills in China. The groundwater quality in the vicinity of landfills was assessed as "very bad" by a comprehensive score (FI) of 7.85 by the Grading Method in China. Variety of pollutants consisting of 96 groundwater pollutants, 3 organic matter indicators, 2 visual pollutants and 6 aggregative pollutants had been detected in the various studies. Twenty-two kinds of pollutants were considered to be dominant. According to the Kruskal-Wallis test and the median test, groundwater contamination differed significantly between regions in China, but there were no significant differences between dry season and wet season measurements, except for some pollutants in a few landfill sites. Generally, the groundwater contamination appeared in the initial landfill stage after five years and peaked some years afterward. In this stage, the Nemerow Index (PI) of groundwater increased exponentially as landfill age increased at some sites, but afterwards decreased exponentially with increasing age at others. After 25years, the groundwater contamination was very low at selected landfills. The PI values of landfills decreased exponentially as the pollutant migration distance increased. Therefore, the groundwater contamination mainly appeared within 1000m of a landfill and most of serious groundwater contamination occurred within 200m. The results not only indicate that the groundwater contamination near MSW landfills should be a concern, but also are valuable to remediate the groundwater contamination near MSW landfills and to prevent the MSW landfill from secondary pollutions, especially for developing countries considering the similar

  18. Leachable 226Ra in Philippine phosphogypsum and its implication in groundwater contamination in Isabel, Leyte, Philippines.

    PubMed

    Cañete, Socrates Jose P; Palad, Lorna Jean H; Enriquez, Eliza B; Garcia, Teofilo Y; Yulo-Nazarea, Teresa

    2008-07-01

    Phosphogypsum (PG), the major waste material in phosphate fertilizer processing, has been known to contain enhanced levels of naturally-occurring radionuclides especially (226)Ra. The lack of radioactivity data regarding Philippine phosphogypsum and its environmental behavior in the Philippine setting has brought concern on possible contamination of groundwater beneath the phosphogypsum ponds in Isabel, Leyte, Philippines. The radioactivity of Philippine phosphogypsum was determined and the leaching of (226)Ra from phosphogypsum and through local soil was quantified. Level of (226)Ra in groundwater samples in Isabel, Leyte, Philippines was also quantified to address the primary concern. It was found that the (226)Ra activity in Philippine phosphogypsum is distributed in a wide range from 91.5 to 935 Bq/kg. As much as 5% of (226)Ra can be leached from Philippine PG with deionized water. In vitro soil leach experiments suggest that the soil in the phosphate fertilizer plant area would be able to deter the intrusion of (226)Ra into the water table. Compared to reported values of natural groundwater levels of (226)Ra, the concentration of this radionuclide in Isabel, Leyte groundwater suggest that there is no (226)Ra intrusion brought about by the presence of phosphogypsum ponds in the area.

  19. In situ bioremediation of groundwater contaminated with petroleum constituents using oxygen release compounds (ORCs).

    PubMed

    Kunukcu, Yasemin Kacar

    2007-06-01

    Over the past 5 years, the use of in situ biological remediation methods has gained acceptance for the biological degradation of petroleum hydrocarbons and chlorinated solvents in the groundwater. Application of slow-release compounds such as Oxygen Release Compound (ORC) and Hydrogen Releasing Compounds have been used routinely as remediation tools. This paper describes the implementation of an in situ bioremediation scheme to address the petroleum constituents in the groundwater at the site of a former gasoline station. Site investigations had indicated that groundwater beneath the site was contaminated with up to 34,300 microg/L benzene, toluene, ethylbenzene and xylenes (BTEX). The remedial scheme involved the installation of the four monitoring wells, monitoring and sampling of the wells and the application of ORCs into the Area of Concern (AOC). The results indicate that levels of petroleum constituents continue to be present in groundwater beneath the site after ORC injection. However, over time the levels of BTEX have significantly decreased. Kinetic study showed that the removal of BTEX fits a zero-order kinetic model for each monitoring well under enhanced oxidized conditions. The compound with the highest biodegradation rate constant was m,p-xylene in monitoring wells MW-2, MW-3 and MW-4.

  20. Geogenic Groundwater Contamination: A Case Study Of Canakkale - Western Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, Ozan; Çalık, Ayten

    2016-04-01

    Study area is located NW of Turkey. Total area of the drainage basin is 465 square kilometers and mostly covered by volcanic rocks. Majority of these rocks have highly altered and lost their primary properties because of alteration processes. Especially argillic alteration is common. Tectonic movements and cooling fractures were created suitable circulation environment of groundwater in the rocks (secondary porosity). Alteration affects the composition of groundwater and some rock elements pass into groundwater during the movement of water in the cavities of rocks. High concentration of natural contaminants related to water-rock interaction in spring water has been studied in this research. Field measurements such as pH, electrical conductivity, temperature, oxidation-reduction potential and salinity carried out in 500 water points (spring, drilling, well and stream). 150 water samples taken from the water points and 50 rock samples taken from the source of springs has been investigated in point of major anion-cations, heavy metals and trace elements. Some components in the water such as pH (3.5-9.1), specific electrical conductivity (84-6400 microS/cm), aluminum (27-44902 ppb), iron (10-8048 ppb), manganese (0.13-8740 ppb), nickel (0.2-627 ppb), lead (0.1-42.5 ppb) and sulphate (10 to 1940 ppm) extremely high or low in the springs sourced from especially highly altered Miocene aged volcanic rocks. Some measured parameters highly above according to European Communities Drinking Water Regulations (2007) and TS266 (2015-Intended for Human Consumption Water Regulations of Turkey) drinking water standards. The most common element which is found in the groundwater is aluminum that is higher than to the drinking water standards (200 microg/L). The highest levels of the Al values measured in acidic waters with very low pH (3.4) emerging from altered volcanic rocks because of acid mine drainage in Obakoy district, north of the study area. The abundance of this element in

  1. Seismic and Tilt Data Processing for Monitoring Groundwater Contamination

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Spetzler, H. A.

    2003-12-01

    We are conducting a feasibility study to see if we can detect changes in the state of saturation in groundwater by seismic means. This field study is based on laboratory experiments that show large changes in seismic attenuation when contaminants change the wettability of porous rocks. Three tiltmeters and three seismometers were installed at different distances from a controlled irrigation site near Maricopa, AZ. The research site has a facility to controllably irrigate a 50 m by 50 m area with water and chemical surfactants. The instruments are used to record naturally-occurring, low frequency strain and seismic signals before, during and after irrigations. The purpose of the data analysis is to develop techniques for looking for the differences in station response due to local differences, such as contamination in the vadose zone and groundwater. Ours is not a conventional way of data processing for our non-traditional use of the data, since the variations in instrument response caused by the trace amount of contaminants are very small. We are looking for small changes in the relative response between the instruments. For the seismic data, not only do we examine large events, such as Earthquakes, but also microseisms. We use microseisms as our source and the related processing is an attempt to measure the tiny changes in instrument response caused by differences in irrigation and contamination at the three different locations. In tilt data processing, the large events caused by regional water pumping, oil productions, and Earthquakes, etc. need to be removed, since we wish to use the Earth solid tide as our strain source. The key issue during the process of removing the large events is to make sure that the tide signals are not also removed or greatly distorted. A method and corresponding codes were developed for automatically removing data at the three stations induced by large events. After completing this processing, the signal left is the local Earth tide

  2. PERMEABLE REACTIVE BARRIER STRATEGIES FOR REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Results are presented from laboratory batch tests using zero-valent iron to treat arsenic-contaminated groundwater. The laboratory tests were conducted using near- neutral pH groundwater from a contaminated aquifer located adjacent to a custom smelting facility. Experiments we...

  3. Proactive screening approach for detecting groundwater contaminants along urban streams at the reach-scale.

    PubMed

    Roy, James W; Bickerton, Greg

    2010-08-15

    Here we outline and demonstrate a screening approach for the detection of groundwater contaminants along urban streams within unconsolidated beds. It involves the rapid acquisition of groundwater samples along urban stream reaches at a spacing of about 10 m and from depths of about 25-75 cm below the streambed, with analyses for a suite of potential contaminants. This screening approach may serve two functions: a) providing information for assessing and mitigating the toxicity and eutrophication risks to aquatic ecosystems posed by groundwater contaminants and b) detecting and identifying groundwater contamination in urban settings more rapidly and inexpensively compared to land-based well installations. The screening approach was tested at three urban streams, each affected by a known chlorinated-solvent plume. All three known groundwater plumes were detected and roughly delineated. Multiple, previously unknown, areas or types of groundwater contamination were also identified at each stream. The newly identified contaminants and plumes included petroleum hydrocarbons (BTEX, naphthalene, MTBE), 1,4-dioxane, nitrate and phosphate, road salt, and various metals (including arsenic, cadmium, chromium, copper, lead) at elevated concentrations compared to background values and relevant Canadian water quality guidelines. These findings suggest that this screening approach may be a useful tool for both ecologists performing ecological assessments and stream restorations and for hydrogeologists undertaking groundwater protection activities. Given the numerous contaminants detected, it may be appropriate to apply this technique proactively to better determine the pervasiveness of urban groundwater contaminants, especially along urban streams.

  4. Technical Basis for Evaluating Surface Barriers to Protect Groundwater from Deep Vadose Zone Contamination

    SciTech Connect

    Fayer, Michael J.; Ward, Anderson L.; Freedman, Vicky L.

    2010-02-03

    This document presents a strategy for evaluating the effectiveness of surface barriers for site-specific deep vadose zone remediation. The strategy provides a technically defensible approach to determine the depth to which a surface barrier can effectively isolate contaminants in the vadose at a specific site as a function of subsurface properties, contaminant distribution, barrier design, and infiltration control performance. The strategy also provides an assessment of additional data and information needs with respect to surface barrier performance for deep vadose zone applications. The strategy addresses the linkage between surface barriers and deep vadose zone in situ remediation activities, monitoring issues, and emerging science, technology, and regulatory objectives. In short, the report documents the existing knowledge base, identifies knowledge needs (based on data gaps), and suggests tasks whose outcomes will address those knowledge needs. More important, the report serves as a starting point to engage the regulator and stakeholder community on the viability of deploying surface barriers for deep vadose zone contamination. As that engagement unfolds, a systematic methodology can be formalized and instituted. The strategy is focused on deep vadose zone contamination and the methods needed to determine the impact to groundwater from those deep vadose zone contaminants. Processes that affect surface barrier performance, recharge in the areas surrounding the surface barrier, and the near-surface vadose zone beneath the barrier are acknowledged but are not addressed by this strategy. In addition, the collection of site-specific data on contaminant distribution and geologic structure and properties are programmatic responsibilities and are not provided by this strategy.

  5. Managing ground-water contamination from agricultural nitrates

    SciTech Connect

    Halstead, J.M.

    1989-01-01

    Ground-water contamination from agricultural nitrates poses potential adverse health effects to a large segment of the rural population of the United States. Contamination is especially prevalent in livestock intensive areas, which produce large quantities of animal waste with substantial nitrogen content. In this study, potential management strategies for reducing nitrate contamination of ground water from agricultural sources were examined using an economic-physical model of representative dairy farm in Rockingham County, Virginia. A mixed-integer programming model with stochastic constraints on nitrate loading to ground water and silage production was used. Results of the model indicate that substantial reductions in current nitrate loadings are possible with relatively minor impacts on farmers' net returns through the use of currently practiced approaches of cost sharing for manure storage facility construction and nutrient management planning. Study results indicate that a wide range of policy options exist for reducing nitrate loading to ground water; these reductions, while varying in cost, do no appear to come at the expense of eliminating the economic viability of the county dairy sector.

  6. In situ treatment of mixed contaminants in groundwater: Review of candidate processes

    SciTech Connect

    Korte, N.E.; Siegrist, R.L.; Ally, M.

    1994-10-01

    This document describes the screening and preliminary evaluation of candidate treatment for use in treating mixed contaminants volatile organic compounds (VOCs) and radionuclides in groundwater. Treating mixed contaminants presents unusual difficulties. Typically, VOCs are the most abundant contaminants, but the presence of radionuclides results in additional health concerns that must be addressed, usually by a treatment approach different from that used for VOCs. Furthermore, the presence of radionuclides may yield mixed solid wastes if the VOCs are treated by conventional means. These issues were specifically addressed in the evaluation of candidate treatment processes for testing in this program. Moreover, because no research or early development of a particular process would be performed, the technology review also focused on technologies that could be readily adapted and integrated for use with mixed contaminants. The objective is to couple emerging or available processes into treatment modules for use in situ. The three year project, to be completed in September 1996, includes a full-scale field demonstration. The findings reported in this document encompass all activities through the treatment process evaluations.

  7. Application of Biostimulation for Remediation of Sulfate-Contaminated Groundwater at a Mining Site

    NASA Astrophysics Data System (ADS)

    Miao, Z.; Carroll, K. C.; Carreon, C.; Brusseau, M. L.

    2011-12-01

    There is growing concern regarding sulfate contamination of groundwater. One innovative in-situ remediation option under investigation is biostimulation through addition of electron-donor amendments to enhance sulfate reduction. Two pilot-scale ethanol-injection tests were conducted at a former uranium mining site that is contaminated with sulfate and nitrate (with a lack of heavy metals), and for which there appears to be minimal natural attenuation of sulfate. The first test was a push-pull test that had a limited zone of influence, while the second test was a single-well injection test in which additional downgradient wells were monitored. For both tests, sulfate concentrations began to decline within a few weeks of injection, after nitrate concentrations were significantly reduced. Concomitantly, aqueous concentrations of manganese, iron, and hydrogen sulfide increased from background. Monitoring over many months revealed that the declines in sulfate concentration conformed to exponential decay, with first-order decay rates of approximately 0.01 /d. Analysis of sulfur stable isotope data indicated that the decrease in sulfate concentrations was microbially mediated. The results also indicated that sulfides formed during sulfate reduction may have undergone partial re-oxidation. This study illustrates the feasibility of using ethanol injection for remediation of sulfate-contaminated groundwater. However, re-oxidation of sulfides (both metal sulfide precipitates and hydrogen sulfide gas) is a potential issue of significance that would need to be addressed.

  8. Numerical simulation approaches to evaluate nitrate contamination of groundwater through leakage well in layered aquifer system

    NASA Astrophysics Data System (ADS)

    Koh, E.; Lee, E.; Lee, K.

    2013-12-01

    The layered aquifer system (i.e. perched and regional aquifers) is locally observed in Gosan area of Jeju Island, Korea due to scattered distributions of an impermeable clay layer. In the Gosan area, farming is actively performed and nitrate contamination has been frequently reported in groundwater of regional aquifer which is sole water resource in the island. Water quality of the regional groundwater is impacted by inflows of the nitrate-rich perched groundwater, which is located above the impermeable layer and directly affected by surface contaminants. A poorly grouted well penetrating the impermeable layer provides a passage of contaminated groundwater through the impermeable layer. Such a hydrogeological characteristic consequently induces nitrate contamination of the regional aquifer in this region. To quantify the inflows of the perched groundwater via leakage wells, a numerical model was developed to calculate leakage amounts of the perched groundwater into the regional groundwater. This perched groundwater leakages were applied as point and time-variable contamination sources during the solute transport simulation process for the regional aquifer. This work will provide useful information to suggest effective ways to control nitrate contamination of groundwater in the agricultural field.

  9. Ground-water contamination in East Bay Township, Michigan

    USGS Publications Warehouse

    Twenter, F.R.; Cummings, T.R.; Grannemann, N.G.

    1985-01-01

    Glacial deposits, as much as 360 feet thick, underlie the study area. The upper 29 to 118 feet, a sand and gravel unit, is the aquifer tapped by all wells in the area. This unit is underlain by impermeable clay that is at least 100 feet thick. Ground-water flow is northeastward at an estimated rate of 2 to 5 feet per day. Hydraulic conductivities in the aquifer range from 85 to 250 feet per day; 120 feet per day provided the best match of field data in a ground-water flow model. The depth to water ranged from 1 to 20 feet. Chemical analyses indicate that ground water is contaminated with organic chemicals from near the Hangar/Administration building at the U.S. Coast Guard Air Station at East Bay, about 4,300 feet northeast. The plume, which follows ground-water flow lines, ranges from 180 to 400 feet wide. In the upper reach of the plume, hydrocarbons less dense than water occur at the surface of the water table; they move downward in the aquifer as they move toward east Bay. Maximum concentrations of the major organic compounds include: benzene, 3,390 ug/L; toluene, 55,500 ug/L; xylene, 3,900 ug/L, tetrachloroethylene, 3,410 ug/L; amd bis (2-ethyl hexyl) phthalate, 2,100 ug/L. Soils are generally free of these hydrocarbons; however, in the vicinity of past drum storage, aircraft maintenance operations, and fuel storage and dispensing , as much as 1,100 ug/kg of tetrachloroethylene and 1,500 ug/kg of bis (-ethyl hexyl) phthalate were detected. At a few locations higher molecular weight hydrocarbons, characteristic of petroleum distillates were found. (USGS)

  10. Modeling uranium transport in acidic contaminated groundwater with base addition

    SciTech Connect

    Zhang, Fan; Luo, Wensui; Parker, Jack C.; Brooks, Scott C; Watson, David B; Jardine, Philip; Gu, Baohua

    2011-01-01

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  11. Modeling uranium transport in acidic contaminated groundwater with base addition.

    PubMed

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2011-06-15

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO(3)(-), SO(4)(2-), U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  12. A new system for groundwater contamination hazard rating of landfills.

    PubMed

    Singh, Raj Kumar; Datta, Manoj; Nema, Arvind Kumar

    2009-01-01

    In developing countries, several unregulated landfills exist adjacent to large cities, releasing harmful contaminants to the underlying aquifer. Normally, landfills are constructed to hold three types of waste, namely hazardous waste, municipal solid waste, and construction and demolition waste. Hazardous waste and municipal solid waste landfills are of greater importance as these pose greater hazard to groundwater, in comparison with landfills holding waste from construction and demolition. The polluting landfills need to be prioritized to undertake necessary control and remedial measures. This paper assesses existing site hazard rating systems and presents a new groundwater contamination hazard rating system for landfills, which can be used for site prioritization. The proposed system is based on source-pathway-receptor relationships and evaluates different sites relative to one another. The system parameters have been selected based on literature. The Delphi technique is used to derive the relative importance weights of the system parameters. The proposed system is compared with nine existing systems. The comparison shows that the site hazard scores produced by the existing systems for hazardous waste, municipal solid waste, and construction and demolition waste landfills are of the same order of magnitude and tend to overlap each other but the scores produced by the proposed system for the three types of landfills vary almost by an order of magnitude, which shows that the proposed system is more sensitive to the type of waste. The comparison further shows that the proposed system exhibits greater sensitivity also to varied site conditions. The application of different systems to six old municipal solid waste landfills shows that whereas the existing systems produce clustered scores, the proposed system produces significantly differing scores for all the six landfills, which improves decision making in site ranking. This demonstrates that the proposed system

  13. Predicting geogenic arsenic contamination in shallow groundwater of south Louisiana, United States.

    PubMed

    Yang, Ningfang; Winkel, Lenny H E; Johannesson, Karen H

    2014-05-20

    Groundwater contaminated with arsenic (As) threatens the health of more than 140 million people worldwide. Previous studies indicate that geology and sedimentary depositional environments are important factors controlling groundwater As contamination. The Mississippi River delta has broadly similar geology and sedimentary depositional environments to the large deltas in South and Southeast Asia, which are severely affected by geogenic As contamination and therefore may also be vulnerable to groundwater As contamination. In this study, logistic regression is used to develop a probability model based on surface hydrology, soil properties, geology, and sedimentary depositional environments. The model is calibrated using 3286 aggregated and binary-coded groundwater As concentration measurements from Bangladesh and verified using 78 As measurements from south Louisiana. The model's predictions are in good agreement with the known spatial distribution of groundwater As contamination of Bangladesh, and the predictions also indicate high risk of As contamination in shallow groundwater from Holocene sediments of south Louisiana. Furthermore, the model correctly predicted 79% of the existing shallow groundwater As measurements in the study region, indicating good performance of the model in predicting groundwater As contamination in shallow aquifers of south Louisiana.

  14. Significance of groundwater flux on contaminant concentration and mass discharge in the nonaqueous phase liquid (NAPL) contaminated zone.

    PubMed

    Zhu, Jianting; Sun, Dongmin

    2016-09-01

    Groundwater flowing through residual nonaqueous phase liquid (NAPL) source zone will cause NAPL dissolution and generate large contaminant plume. The use of contaminant mass discharge (CMD) measurements in addition to NAPL aqueous phase concentration to characterize site conditions and assess remediation performance is becoming popular. In this study, we developed new and generic numerical models to investigate the significance of groundwater flux temporal variations on the NAPL source dynamics. The developed models can accommodate any temporal variations of groundwater flux in the source zone. We examined the various features of groundwater flux using a few selected functional forms of linear increase/decrease, gradual smooth increase/decrease, and periodic fluctuations with a general trend. Groundwater flux temporal variations have more pronounced effects on the contaminant mass discharge dynamics than the aqueous concentration. If the groundwater flux initially increases, then the reduction in contaminant mass discharge (CMDR) vs. NAPL mass reduction (MR) relationship is mainly downward concave. If the groundwater flux initially decreases, then CMDR vs. MR relationship is mainly upward convex. If the groundwater flux variations are periodic, the CMDR vs. MR relationship tends to also have periodic variations ranging from upward convex to downward concave. Eventually, however, the CMDR vs. MR relationship approaches 1:1 when majority of the NAPL mass becomes depleted. PMID:27500747

  15. Significance of groundwater flux on contaminant concentration and mass discharge in the nonaqueous phase liquid (NAPL) contaminated zone

    NASA Astrophysics Data System (ADS)

    Zhu, Jianting; Sun, Dongmin

    2016-09-01

    Groundwater flowing through residual nonaqueous phase liquid (NAPL) source zone will cause NAPL dissolution and generate large contaminant plume. The use of contaminant mass discharge (CMD) measurements in addition to NAPL aqueous phase concentration to characterize site conditions and assess remediation performance is becoming popular. In this study, we developed new and generic numerical models to investigate the significance of groundwater flux temporal variations on the NAPL source dynamics. The developed models can accommodate any temporal variations of groundwater flux in the source zone. We examined the various features of groundwater flux using a few selected functional forms of linear increase/decrease, gradual smooth increase/decrease, and periodic fluctuations with a general trend. Groundwater flux temporal variations have more pronounced effects on the contaminant mass discharge dynamics than the aqueous concentration. If the groundwater flux initially increases, then the reduction in contaminant mass discharge (CMDR) vs. NAPL mass reduction (MR) relationship is mainly downward concave. If the groundwater flux initially decreases, then CMDR vs. MR relationship is mainly upward convex. If the groundwater flux variations are periodic, the CMDR vs. MR relationship tends to also have periodic variations ranging from upward convex to downward concave. Eventually, however, the CMDR vs. MR relationship approaches 1:1 when majority of the NAPL mass becomes depleted.

  16. Significance of groundwater flux on contaminant concentration and mass discharge in the nonaqueous phase liquid (NAPL) contaminated zone.

    PubMed

    Zhu, Jianting; Sun, Dongmin

    2016-09-01

    Groundwater flowing through residual nonaqueous phase liquid (NAPL) source zone will cause NAPL dissolution and generate large contaminant plume. The use of contaminant mass discharge (CMD) measurements in addition to NAPL aqueous phase concentration to characterize site conditions and assess remediation performance is becoming popular. In this study, we developed new and generic numerical models to investigate the significance of groundwater flux temporal variations on the NAPL source dynamics. The developed models can accommodate any temporal variations of groundwater flux in the source zone. We examined the various features of groundwater flux using a few selected functional forms of linear increase/decrease, gradual smooth increase/decrease, and periodic fluctuations with a general trend. Groundwater flux temporal variations have more pronounced effects on the contaminant mass discharge dynamics than the aqueous concentration. If the groundwater flux initially increases, then the reduction in contaminant mass discharge (CMDR) vs. NAPL mass reduction (MR) relationship is mainly downward concave. If the groundwater flux initially decreases, then CMDR vs. MR relationship is mainly upward convex. If the groundwater flux variations are periodic, the CMDR vs. MR relationship tends to also have periodic variations ranging from upward convex to downward concave. Eventually, however, the CMDR vs. MR relationship approaches 1:1 when majority of the NAPL mass becomes depleted.

  17. Delineation of groundwater contamination around an ash pond: geochemical and GIS approach.

    PubMed

    Praharaj, T; Swain, S P; Powell, M A; Hart, B R; Tripathy, S

    2002-03-01

    The study has investigated the levels of metal contamination in groundwater due to particulate matter fallout and leaching from ash pond and assigned contamination indices for the adjacent localities around an ash disposal site with application of geographic information systems (GIS). Fe, Ba, Cu, Mn, S, Pb, V, and Zn were found to be the major contaminants in groundwater. Enrichment factors (EF) of these elements with respect to the United States Environmental Protection Agency (USEPA) maximum contaminant levels show high values for Mn, Fe, and Pb in groundwater. The zone of attenuation for Ba, Fe, Cu, Mn, S, and Zn in groundwater is about 600-900 m from the ash pond, while Pb did not show any significant attenuation even at a distance of 1200 m. Tube wells around Rankasingha and Kukurhanga villages are most contaminated whereas open wells of Lachhmanpur, Kaniapada, and Kurudul villages showed higher degrees of contamination.

  18. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    SciTech Connect

    Not Available

    1993-12-01

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  19. Magnitude and costs of groundwater contamination from agricultural chemicals: a national perspective. Staff report

    SciTech Connect

    Nielsen, E.G.; Lee, L.K.

    1987-06-01

    Evidence is mounting that agricultural pesticide and fertilizer applications are causing groundwater contamination in some parts of the United States. A synthesis of national data has enabled researchers to identify regions potentially affected by contamination from pesticides and fertilizers and to estimate the number of people in these regions who rely on groundwater for their drinking water needs. The study found that pesticides and nitrates from fertilizers do not necessarily occur together in potentially contaminated regions.

  20. Remediation of groundwater contaminated with DNAPLs by biodegradable oil emulsion.

    PubMed

    Lee, Young-Chul; Kwon, Tae-Soon; Yang, Jung-Seok; Yang, Ji-Won

    2007-02-01

    Emulsion-based remediation with biodegradable vegetable oils was investigated as an alternative technology for the treatment of subsurface DNAPLs (dense non-aqueous phase liquids) such as TCE (trichloroethylene) and PCE (perchloroethylene). Corn and olive oil emulsions obtained by homogenization at 8000rpm for 15min were used. The emulsion droplets prepared with corn and olive oil gave a similar size distribution (1-10microm) and almost all of initially injected oil, >90%, remained in a dispersed state. In batch experiments, 2% (v/v) oil emulsion could adsorb up to 11,000ppm of TCE or 18,000ppm of PCE without creating a free phase. Results of one-dimensional column flushing studies indicated that contaminants with high aqueous solubility could be efficiently removed by flushing with vegetable oil emulsions. Removal efficiencies exceeded 98% for TCE and PCE with both corn and olive oil emulsions. The results of this study show that flushing with biodegradable oil emulsion can be used for the remediation of groundwater contaminated by DNAPLs.

  1. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China.

    PubMed

    Zhang, Qianqian; Sun, Jichao; Liu, Jingtao; Huang, Guanxing; Lu, Chuan; Zhang, Yuxi

    2015-11-01

    Nitrate contamination of groundwater has become an environmental problem of widespread concern in China. We collected 899 groundwater samples from a rapidly urbanized area, in order to identify the main sources and driving mechanisms of groundwater nitrate contamination. The results showed that the land use has a significant effect on groundwater nitrate concentration (P<0.001). Landfill leakage was an important source of nitrate in groundwater in the PRD (Pearl River Delta) region, since landfill yielded the highest nitrate concentration (38.14 mg/L) and the highest ratio of exceeded standard (42.50%). In this study, the driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth. This study revealed that domestic wastewater and industrial wastewater were the main sources of groundwater nitrate pollution. Therefore, the priority method for relieving groundwater nitrate contamination is to control the random discharge of domestic and industrial wastewater in regions undergoing rapid urbanization. Capsule abstract. The main driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth. PMID:26440579

  2. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China

    NASA Astrophysics Data System (ADS)

    Zhang, Qianqian; Sun, Jichao; Liu, Jingtao; Huang, Guanxing; Lu, Chuan; Zhang, Yuxi

    2015-11-01

    Nitrate contamination of groundwater has become an environmental problem of widespread concern in China. We collected 899 groundwater samples from a rapidly urbanized area, in order to identify the main sources and driving mechanisms of groundwater nitrate contamination. The results showed that the land use has a significant effect on groundwater nitrate concentration (P < 0.001). Landfill leakage was an important source of nitrate in groundwater in the PRD (Pearl River Delta) region, since landfill yielded the highest nitrate concentration (38.14 mg/L) and the highest ratio of exceeded standard (42.50%). In this study, the driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth. This study revealed that domestic wastewater and industrial wastewater were the main sources of groundwater nitrate pollution. Therefore, the priority method for relieving groundwater nitrate contamination is to control the random discharge of domestic and industrial wastewater in regions undergoing rapid urbanization. Capsule abstract. The main driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth.

  3. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China.

    PubMed

    Zhang, Qianqian; Sun, Jichao; Liu, Jingtao; Huang, Guanxing; Lu, Chuan; Zhang, Yuxi

    2015-11-01

    Nitrate contamination of groundwater has become an environmental problem of widespread concern in China. We collected 899 groundwater samples from a rapidly urbanized area, in order to identify the main sources and driving mechanisms of groundwater nitrate contamination. The results showed that the land use has a significant effect on groundwater nitrate concentration (P<0.001). Landfill leakage was an important source of nitrate in groundwater in the PRD (Pearl River Delta) region, since landfill yielded the highest nitrate concentration (38.14 mg/L) and the highest ratio of exceeded standard (42.50%). In this study, the driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth. This study revealed that domestic wastewater and industrial wastewater were the main sources of groundwater nitrate pollution. Therefore, the priority method for relieving groundwater nitrate contamination is to control the random discharge of domestic and industrial wastewater in regions undergoing rapid urbanization. Capsule abstract. The main driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth.

  4. Factors affecting the spatial pattern of nitrate contamination in shallow groundwater.

    PubMed

    Kaown, Dugin; Hyun, Yunjung; Bae, Gwang-Ok; Lee, Kang-Kun

    2007-01-01

    The elevated level of nitrate in groundwater is a serious problem in Korean agricultural areas. To control and manage groundwater quality, the characterization of groundwater contamination and identification of the factors affecting the nitrate concentration of groundwater are significant. The characterization of groundwater contamination at a hydrologically complex agricultural site in Yupori, Chuncheon (Korea) was undertaken by analyzing the hydrochemical data of groundwater within a statistical framework. Multivariate statistical tools such as cluster analyses and Tobit regression were applied to investigate the spatial variation of nitrate contamination and to analyze the factors affecting the NO3-N concentration in a shallow groundwater system. The groundwater groups from the cluster analysis were consistent with the land use pattern of the study area. The clustered group of a gentle-slope area with lower elevations showed higher NO3-N contamination of groundwater than groups on a hillside with higher elevations. Tobit regression results indicated that the agricultural activity in the vegetable fields and barns were the major factors affecting the elevated NO3-N concentration while the land slopes and elevations were negatively correlated with the NO3-N concentration. This shows that topographic characteristics such as land slopes and elevations should be considered to evaluate the land use impact on shallow groundwater quality.

  5. Increased concentrations of potassium in heartwood of trees in response to groundwater contamination

    NASA Astrophysics Data System (ADS)

    Vroblesky, Don A.; Yanosky, Thomas M.; Siegel, Frederic R.

    1992-03-01

    The wood of tuliptrees ( Liriodendron tulipifera L.) growing above groundwater contamination from a hazardous-waste landfill in Maryland contained elevated concentrations of potassium (K). The groundwater contamination also contained elevated concentrations of dissolved K, as well as arsenic (As), cadmium (Cd), chloride (Cl), iron (Fe), manganese (Mn), zinc (Zn), and organic solvents. The dissolved K is derived from disposed smoke munitions. The excess K in the tuliptrees is concentrated in the heartwood, the part of the xylem most depleted in K in trees growing outside of the contamination. These data show that the uptake and translocation of K by tuliptrees can be strongly influenced by the availability of K in groundwater contamination and suggest the utility of this species as an areal indicator of groundwater contamination.

  6. Increased concentrations of potassium in heartwood of trees in response to groundwater contamination

    USGS Publications Warehouse

    Vroblesky, D.A.; Yanosky, T.M.; Siegel, F.R.

    1992-01-01

    The wood of tuliptrees (Liriodendron tulipifera L.) growing above groundwater contamination from a hazardous-waste landfill in Maryland contained elevated concentrations of potassium (K). The groundwater contamination also contained elevated concentrations of dissolved K, as well as arsenic (As), cadmium (Cd), chloride (Cl), iron (Fe), manganese (Mn), zinc (Zn), and organic solvents. The dissolved K is derived from disposed smoke munitions. The excess K in the tuliptrees is concentrated in the heartwood, the part of the xylem most depleted in K in trees growing outside of the contamination. These data show that the uptake and translocation of K by tuliptrees can be strongly influenced by the availability of K in groundwater contamination and suggest the utility of this species as an areal indicator of groundwater contamination. ?? 1992 Springer-Verlag New York Inc.

  7. Resistivity mapping and geochemical data for groundwater contamination at Sarimukti municipal landfill, West Bandung

    NASA Astrophysics Data System (ADS)

    Ardi, Nanang Dwi; Iryanti, Mimin

    2015-09-01

    Opened dumping landfill system at the Municipal landfill Sarimukti, West Bandung has a possibility in related to the existence of leachates contamination, especially for shallow groundwater. Earth resistivity measured with 3 profiles resistivity survey on Wenner array and measurement of electrics conductivity of geochemistry samples its converted become water formation resistivity were conducted to delineate the spreading of leachates contamination by using empirical relationship. Leachates have been identified by resistivity range 0,61 - 6,3 Ωm with 6 m depth. However, result of geochemistry samples test and 2D resistivity profiles at surrounding civilian residences still have unclear in terms of leachates contamination to groundwater. High resistive rocks on imaging show that leachates are not possible to penetrate the shallow groundwater. But, this result is still early prediction to confirm a contamination to groundwater due to the age of landfill. Then, it needs improvement data continuously to monitor landfill contamination periodically.

  8. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal.

    PubMed

    Jadhav, Sachin V; Bringas, Eugenio; Yadav, Ganapati D; Rathod, Virendra K; Ortiz, Inmaculada; Marathe, Kumudini V

    2015-10-01

    Chronic contamination of groundwaters by both arsenic (As) and fluoride (F) is frequently observed around the world, which has severely affected millions of people. Fluoride and As are introduced into groundwaters by several sources such as water-rock interactions, anthropogenic activities, and groundwater recharge. Coexistence of these pollutants can have adverse effects due to synergistic and/or antagonistic mechanisms leading to uncertain and complicated health effects, including cancer. Many developing countries are beset with the problem of F and As laden waters, with no affordable technologies to provide clean water supply. The technologies available for the simultaneous removal are akin to chemical treatment, adsorption and membrane processes. However, the presence of competing ions such as phosphate, silicate, nitrate, chloride, carbonate, and sulfate affect the removal efficiency. Highly efficient, low-cost and sustainable technology which could be used by rural populations is of utmost importance for simultaneous removal of both pollutants. This can be realized by using readily available low cost materials coupled with proper disposal units. Synthesis of inexpensive and highly selective nanoadsorbents or nanofunctionalized membranes is required along with encapsulation units to isolate the toxicant loaded materials to avoid their re-entry in aquifers. A vast number of reviews have been published periodically on removal of As or F alone. However, there is a dearth of literature on the simultaneous removal of both. This review critically analyzes this important issue and considers strategies for their removal and safe disposal. PMID:26265600

  9. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal.

    PubMed

    Jadhav, Sachin V; Bringas, Eugenio; Yadav, Ganapati D; Rathod, Virendra K; Ortiz, Inmaculada; Marathe, Kumudini V

    2015-10-01

    Chronic contamination of groundwaters by both arsenic (As) and fluoride (F) is frequently observed around the world, which has severely affected millions of people. Fluoride and As are introduced into groundwaters by several sources such as water-rock interactions, anthropogenic activities, and groundwater recharge. Coexistence of these pollutants can have adverse effects due to synergistic and/or antagonistic mechanisms leading to uncertain and complicated health effects, including cancer. Many developing countries are beset with the problem of F and As laden waters, with no affordable technologies to provide clean water supply. The technologies available for the simultaneous removal are akin to chemical treatment, adsorption and membrane processes. However, the presence of competing ions such as phosphate, silicate, nitrate, chloride, carbonate, and sulfate affect the removal efficiency. Highly efficient, low-cost and sustainable technology which could be used by rural populations is of utmost importance for simultaneous removal of both pollutants. This can be realized by using readily available low cost materials coupled with proper disposal units. Synthesis of inexpensive and highly selective nanoadsorbents or nanofunctionalized membranes is required along with encapsulation units to isolate the toxicant loaded materials to avoid their re-entry in aquifers. A vast number of reviews have been published periodically on removal of As or F alone. However, there is a dearth of literature on the simultaneous removal of both. This review critically analyzes this important issue and considers strategies for their removal and safe disposal.

  10. Comparison of inverse methods for reconstructing the release history of a groundwater contamination source

    NASA Astrophysics Data System (ADS)

    Neupauer, Roseanna M.; Borchers, Brian; Wilson, John L.

    2000-09-01

    Inverse methods can be used to reconstruct the release history of a known source of groundwater contamination from concentration data describing the present-day spatial distribution of the contaminant plume. Using hypothetical release history functions and contaminant plumes, we evaluate the relative effectiveness of two proposed inverse methods, Tikhonov regularization (TR) and minimum relative entropy (MRE) inversion, in reconstructing the release history of a conservative contaminant in a one-dimensional domain [Skaggs and Kabala, 1994; Woodbury and Ulrych, 1996]. We also address issues of reproducibility of the solution and the appropriateness of models for simulating random measurement error. The results show that if error-free plume concentration data are available, both methods perform well in reconstructing a smooth source history function. With error-free data the MRE method is more robust than TR in reconstructing a nonsmooth source history function; however, the TR method is more robust if the data contain measurement error. Two error models were evaluated in this study, and we found that the particular error model does not affect the reliability of the solutions. The results for the TR method have somewhat greater reproducibility because, in some cases, its input parameters are less subjective than those of the MRE method; however, the MRE solution can identify regions where the data give little or no information about the source history function, while the TR solution cannot.

  11. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study

    NASA Astrophysics Data System (ADS)

    Oostrom, M.; Truex, M. J.; Last, G. V.; Strickland, C. E.; Tartakovsky, G. D.

    2016-06-01

    For sites with a contaminant source located in the vadose zone, the nature and extent of groundwater contaminant plumes are a function of the contaminant flux from the vadose zone to groundwater. Especially for thick vadose zones, transport may be relatively slow making it difficult to directly measure contaminant flux. An integrated assessment approach, supported by site characterization and monitoring data, is presented to explain current vadose zone contaminant distributions and to estimate future contaminant flux to groundwater in support of remediation decisions. The U.S. Department of Energy Hanford Site (WA, USA) SX Tank Farm was used as a case study because of a large existing contaminant inventory in its deep vadose zone, the presence of a limited-extent groundwater plume, and the relatively large amount of available data for the site. A predictive quantitative analysis was applied to refine a baseline conceptual model through the completion of a series of targeted simulations. The analysis revealed that site recharge is the most important flux-controlling process for future contaminant flux. Tank leak characteristics and subsurface heterogeneities appear to have a limited effect on long-term contaminant flux into groundwater. The occurrence of the current technetium-99 groundwater plume was explained by taking into account a considerable historical water-line leak adjacent to one of the tanks. The analysis further indicates that the vast majority of technetium-99 is expected to migrate into the groundwater during the next century. The approach provides a template for use in evaluating contaminant flux to groundwater using existing site data and has elements that are relevant to other disposal sites with a thick vadose zone.

  12. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study.

    PubMed

    Oostrom, M; Truex, M J; Last, G V; Strickland, C E; Tartakovsky, G D

    2016-06-01

    For sites with a contaminant source located in the vadose zone, the nature and extent of groundwater contaminant plumes are a function of the contaminant flux from the vadose zone to groundwater. Especially for thick vadose zones, transport may be relatively slow making it difficult to directly measure contaminant flux. An integrated assessment approach, supported by site characterization and monitoring data, is presented to explain current vadose zone contaminant distributions and to estimate future contaminant flux to groundwater in support of remediation decisions. The U.S. Department of Energy Hanford Site (WA, USA) SX Tank Farm was used as a case study because of a large existing contaminant inventory in its deep vadose zone, the presence of a limited-extent groundwater plume, and the relatively large amount of available data for the site. A predictive quantitative analysis was applied to refine a baseline conceptual model through the completion of a series of targeted simulations. The analysis revealed that site recharge is the most important flux-controlling process for future contaminant flux. Tank leak characteristics and subsurface heterogeneities appear to have a limited effect on long-term contaminant flux into groundwater. The occurrence of the current technetium-99 groundwater plume was explained by taking into account a considerable historical water-line leak adjacent to one of the tanks. The analysis further indicates that the vast majority of technetium-99 is expected to migrate into the groundwater during the next century. The approach provides a template for use in evaluating contaminant flux to groundwater using existing site data and has elements that are relevant to other disposal sites with a thick vadose zone. PMID:27107320

  13. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study.

    PubMed

    Oostrom, M; Truex, M J; Last, G V; Strickland, C E; Tartakovsky, G D

    2016-06-01

    For sites with a contaminant source located in the vadose zone, the nature and extent of groundwater contaminant plumes are a function of the contaminant flux from the vadose zone to groundwater. Especially for thick vadose zones, transport may be relatively slow making it difficult to directly measure contaminant flux. An integrated assessment approach, supported by site characterization and monitoring data, is presented to explain current vadose zone contaminant distributions and to estimate future contaminant flux to groundwater in support of remediation decisions. The U.S. Department of Energy Hanford Site (WA, USA) SX Tank Farm was used as a case study because of a large existing contaminant inventory in its deep vadose zone, the presence of a limited-extent groundwater plume, and the relatively large amount of available data for the site. A predictive quantitative analysis was applied to refine a baseline conceptual model through the completion of a series of targeted simulations. The analysis revealed that site recharge is the most important flux-controlling process for future contaminant flux. Tank leak characteristics and subsurface heterogeneities appear to have a limited effect on long-term contaminant flux into groundwater. The occurrence of the current technetium-99 groundwater plume was explained by taking into account a considerable historical water-line leak adjacent to one of the tanks. The analysis further indicates that the vast majority of technetium-99 is expected to migrate into the groundwater during the next century. The approach provides a template for use in evaluating contaminant flux to groundwater using existing site data and has elements that are relevant to other disposal sites with a thick vadose zone.

  14. Biotreatment of groundwater contaminated with MTBE: interaction of common environmental co-contaminants.

    PubMed

    Wang, Xiaolin; Deshusses, Marc A

    2007-02-01

    Contamination of groundwater with the gasoline additive methyl tert-butyl ether (MTBE) is often accompanied by many aromatic components such as benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene (BTEX). In this study, a laboratory-scale biotrickling filter for groundwater treatment inoculated with a microbial consortium degrading MTBE was studied. Individual or mixtures of BTEX compounds were transiently loaded in combination with MTBE. The results indicated that single BTEX compound or BTEX mixtures inhibited MTBE degradation to varying degrees, but none of them completely repressed the metabolic degradation in the biotrickling filter. Tert-butyl alcohol (TBA), a frequent co-contaminant of MTBE had no inhibitory effect on MTBE degradation. The bacterial consortium was stable and showed promising capabilities to remove TBA, ethylbenzene and toluene, and partially degraded benzene and xylenes without significant lag time. The study suggests that it is feasible to deploy a mixed bacterial consortia to degrade MTBE, BTEX and TBA at the same time.

  15. Methodology for setting risk-based concentrations of contaminants in soil and groundwater and application to a model contaminated site.

    PubMed

    Fujinaga, Aiichiro; Uchiyama, Iwao; Morisawa, Shinsuke; Yoneda, Minoru; Sasamoto, Yuzuru

    2012-01-01

    In Japan, environmental standards for contaminants in groundwater and in leachate from soil are set with the assumption that they are used for drinking water over a human lifetime. Where there is neither a well nor groundwater used for drinking, the standard is thus too severe. Therefore, remediation based on these standards incurs excessive effort and cost. In contrast, the environmental-assessment procedure used in the United States and the Netherlands considers the site conditions (land use, existing wells, etc.); however, a risk assessment is required for each site. Therefore, this study proposes a new framework for judging contamination in Japan by considering the merits of the environmental standards used and a method for risk assessment. The framework involves setting risk-based concentrations that are attainable remediation goals for contaminants in soil and groundwater. The framework was then applied to a model contaminated site for risk management, and the results are discussed regarding the effectiveness and applicability of the new methodology.

  16. Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging.

    PubMed

    Reddy, K R; Adams, J A

    2000-02-25

    This paper presents two-dimensional laboratory experiments performed to study how groundwater flow may affect the injected air zone of influence and remedial performance, and how injected air may alter subsurface groundwater flow and contaminant migration during in situ air sparging. Tests were performed by subjecting uniform sand profiles contaminated with dissolved-phase benzene to a hydraulic gradient and two different air flow rates. The results of the tests were compared to a test subjected to a similar air flow rate but a static groundwater condition. The test results revealed that the size and shape of the zone of influence were negligibly affected by groundwater flow, and as a result, similar rates of contaminant removal were realized within the zone of influence with and without groundwater flow. The air flow, however, reduced the hydraulic conductivity within the zone of influence, reducing groundwater flow and subsequent downgradient contaminant migration. The use of a higher air flow rate further reduced the hydraulic conductivity and decreased groundwater flow and contaminant migration. Overall, this study demonstrated that air sparging may be effectively implemented to intercept and treat a migrating contaminant plume.

  17. Biodegradation of low aqueous concentration pentachlorophenol (PCP) contaminated groundwater.

    PubMed

    Schmidt, L M; Delfino, J J; Preston, J F; St Laurent, G

    1999-05-01

    Bioremedial treatment to remove low level organic contamination to regulatory standards has met with limited success. In this study source water from a contaminated surficial aquifer at a former wood treatment facility was used to evaluate the potential for indigenous microorganisms to degrade low level (< 1.0 mg) pentachlorophenol (PCP) to a regulatory drinking water standard of 0.001 mg/L. PCP degradation was evaluated in series of batch reactors in a two phase study to (a) determine the rate and extent of PCP removal and (b) evaluate the impact of nutrient amendment (N and P) on removal rate. All reactors with the exception of the abiotic control demonstrated PCP removal to a level < 0.002 mg/L within a maximum period of 32 d with and without nutrient amendment. A regression analysis of reactive phosphate (ortho-P) concentration versus removal rate produced an R2 of 0.94 (p = 0.006) indicating a significant correlation between the level of available phosphate and PCP degradation rate. Selective bacterial enumeration (for PCP degrading bacteria) revealed PCP-degrading bacteria increased in abundance prior to and in conjunction with the degradation phase to a density of between 10(3) to 10(4) CFU/ml. Isolates were also analyzed for total fatty acids using Fatty Acid Methyl Ester (FAME) methodology and the results indicated that PCP degrading bacteria were present in the aquifer and consisted of predominately fluorescent, oxidase positive Pseudomonas species. Overall, data indicate that autochthonous microbes are capable of removing low level PCP (< 1.0 mg/L) to approach if not reach the regulatory standard of 0.001 mg/L with the addition of oxygen, with or without nutrient amendment. Results of this research can be applied to full-scale implementation of in-situ or ex-situ bioremediation of groundwater at former wood treatment facilities.

  18. Bioremediation of trichloroethylene contaminated groundwater using anaerobic process.

    PubMed

    Chomsurin, Cheema; Kajorntraidej, Juthathip; Luangmuang, Kongrit

    2008-01-01

    Anaerobic remediation of trichloroethylene (TCE) contaminated soil and groundwater was studied in laboratory setups. In this process fermentation of polymeric organic materials (POMS) produced volatile fatty acids (VFAs) that were electron donors in reductive dechlorination of TCE. Shredded peanut shell was selected as low cost POM and the experiments were set up in 500 ml Erlenmeyer flasks. In the setups, approximately 25 mg of leachate contaminated soil was used as the main source of microorganisms and about 5 g of shredded peanut shell (0.5-2.36 mm) was added to produce VFAs for dechlorination of TCE. In the first set of experiments, fermentation of soil and shredded peanut shell was studied and it was found that VFAs were produced continuously with increasing concentration (5.63 mM as CH3COOH from the first day to 17.17 in the 10th day of the experiment). During the fermentation, concentration of ammonia-nitrogen was 22-50 mg/L, the ratio of VFA to NH3 was 15.29-23.44 and pH was 5.24-6.00. These results show that the system was appropriate for microorganism activities. In the second set of experiments, TCE (approximately 48 mg/L) was added to the fermentation system and remediation of TCE by reductive dechlorination was studied. It was found that 0.04(+/-0.01) mg TCE adsorbed to a gram of soil and peanut shells at the beginning of the experiment and based on mass balance of the system, TCE concentration in water was linearly reduced at the rate of 0.0098 mg/hr.

  19. Migration of contaminants in groundwater at a landfill: A case study. 2. Groundwater monitoring devices

    NASA Astrophysics Data System (ADS)

    Cherry, J. A.; Gillham, R. W.; Anderson, E. G.; Johnson, P. E.

    1983-05-01

    Six types of devices for groundwater monitoring were used on an experimental basis in the investigation of the plume of contamination in the unconfined sandy aquifer at the Borden landfill. These include: standpipe piezometers, water-table standpipes, an auger-head sampler, suction-type and positive-displacement-type multilevel point-samplers, and bundle-piezometers. With the exception of the first two, each of these devices provides a means of obtaining vertical sample profiles of groundwater from a single borehole. The auger-head sampler, which is a device that is attached to the cutting head of conventional continuous-flight hollow-stem augers, yields samples from relatively undisturbed aquifer zones as the augers are advanced downward in the borehole from one depth of sampling to another. This method is a rapid means of aquiring water-quality profiles for mapping the distribution of a contaminant plume. The other three profiling devices can be used to establish permanent networks for groundwater-quality monitoring. A suction-type multilevel sampler consists of twenty or more narrow polyethylene or polypropylene tubes contained in a PVC casing that is capped at the bottom. Each tube extends to a different depth and is attached to a small screened sampling point that extends through the casing to draw water from the aquifer when suction is applied. A positive-displacement multilevel sampler is similar except that each sampling point is connected to a positive-displacement pumping device located inside the PVC casing adjacent to the screen. Use of the suction-type multilevel sampler is limited to zones where the water table is less than the suction-lift depth of 8 or 9 m. The positive-displacement sampler can be used even if the water table is at a much greater depth. A bundle-piezometer consists of 1.2-cm O.D. flexible polyethylene tubes, each with a short screened section at the bottom, fastened as a bundle around a semi-rigid center-piezometer constructed of

  20. Contamination, Transport, and Exposure Mapping and Assessment of Karst Groundwater Systems in Northern Puerto Rico Using GIS

    NASA Astrophysics Data System (ADS)

    Howard, J.; Schifman, L. A.; Irrizary, C.; Torres, P.; Padilla, I. Y.

    2011-12-01

    Ground waters from karst aquifer systems are one of the most important sources of freshwater worldwide and are highly vulnerable to both natural and anthropogenic contamination. Contaminants released into karst groundwater systems move through complex pathways from their sources to discharge areas of potential exposure. Points of exposure can include wells, springs, and surface waters that serve as drinking water sources. In Puerto Rico, the North Coast Limestone Aquifer System, which extends 90 miles across the north coast with an area of nearly 700 sq. miles, provides more than 50% of the potable water demand for industrial and drinking purposes. Historical reports from the 1980s revealed that volatile organic compounds, phthalates, and metals were close to or exceeded maximum contaminant levels. Exposure to such contaminants has been reported to cause reproductive and developmental issues, such as preterm birth. Since there is minimal understanding of the extent of contamination it is important to identify areas of potential concern. Preliminary analysis of 20 groundwater/springs and 20 tap water sites within the North Coast suggest that contamination is still a major concern. In addition, mixed effects models analyses suggest that >60% of pre-term birth rates may be explained by the presence of sites contaminated with volatile organic compounds, phthalates, and metals within the North Coast region. This presentation will focus primarily on how GIS was used as a tool for developing sampling strategies for collecting groundwater and tap water sources within the North Coast Limestone Aquifer System of Puerto Rico. In addition, the linkage of contamination, transport, and exposure to volatile organic compounds and phthalates will be addressed.

  1. Undetected Groundwater Contamination at Underground Storage Tank Sites by the Gasoline Lead Scavengers Ethylene Dibromide and 1,2-Dichloroethane

    NASA Astrophysics Data System (ADS)

    Falta, R. W.

    2004-05-01

    Ethylene dibromide (EDB) is a synthetic organic chemical that was produced in large amounts for use as a leaded gasoline additive and pesticide. The chlorinated solvent 1,2-dichlorethane (1,2-DCA) is widely used in the chemical industry, and was also added to leaded gasoline. EDB and 1,2-DCA are classified as probable human carcinogens by the United States Environmental Protection Agency (EPA), and EDB's use as a pesticide was suspended in 1984. The current EPA maximum contaminant level (MCL) for EDB in drinking water is 0.05 ug/l, and the MCL for 1,2-DCA is 5 ug/l. EDB has proven to be both mobile and persistent in groundwater, and contamination of groundwater by EDB was documented in several states beginning in the early 1980s. The majority of this contamination is attributed to agricultural uses of EDB, however approximately 90 percent of the EDB produced was used as a leaded gasoline additive, and it was present in virtually all leaded gasoline sold in the US. 1,2-DCA is commonly found as a groundwater contaminant, and it is both mobile and persistent. Past site investigations and remediation efforts at underground storage tank sites contaminated by leaded gasoline have rarely addressed the potential for EDB or 1,2-DCA contamination. However, the concentrations of EDB and 1,2-DCA in leaded gasoline were high enough to produce groundwater concentrations of thousands of ug/l. For this reason, there is a substantial likelihood that undetected EDB and 1,2-DCA plumes above the MCL may exist at many sites where leaded gasoline leaked or spilled. An initial review of field data from underground storage tank sites in two states suggests that this problem is widespread.

  2. [Experimental research on bioremediation of groundwater contaminated by herbicide atrazine].

    PubMed

    Hu, Hongtao; Lin, Xueyu; Lu, Yongsen

    2003-11-01

    The experimental research on the static degradation and treatment of groundwater contaminated by herbicide atrazine was conducted by using bacterium AT which was isolated from the sludge outlet of workshop of the pesticide factory. And the result indicated that bacterium AT had the ability of degradation of atrazine with pH ranged from 5.0 to 10.0, and the optimum extent was 6.5-8.0. The experimental conditions (pH = 7.5, t = 10 degrees C) were similar to that of the aquifer in study area. Then the rate of degradation of atrazine was up to 31.08% for one addition of bacterium AT. And the environmental factors changed simultaneously in the course of experiment such as DO, pH and etc. decreasing with the reducing of concentration of bacterium AT. In addition, a mode of dropping bacteria was designed to simulate the condition of throwing bacteria in field. And the permeability of aquifer decreased 60.54% after treatment and the renewals were 48.96% after washing with clean water for 10 days, which indicated the method of renewal is effectual.

  3. Assessment of diesel contamination in groundwater using electromagnetic induction geophysical techniques.

    PubMed

    Jin, Song; Fallgren, Paul; Cooper, Jeffrey; Morris, Jeffrey; Urynowicz, Michael

    2008-05-01

    Determining hydrocarbon plumes in groundwater is typically accomplished through the installation of extensive monitoring wells. Issues of scale and site heterogeneities tend to introduce errors in delineating the extent of contamination and environmental impact. In this study, electromagnetic induction survey was investigated as an alternative technique for mapping petroleum contaminants in the subsurface. The surveys were conducted at a coal mining site near Gillette, Wyoming, using the EM34-XL ground conductivity meter. Data from this survey were validated with known concentrations of diesel compounds detected in groundwater from the study site. Groundwater data correlated well with the electromagnetic survey data, which was used to generate a site model to identify subsurface diesel plumes. To our knowledge, this is one of the first studies to use electromagnetic survey techniques for mapping hydrocarbon contamination in groundwater. Results from this study indicate that this geophysical technique can be an effective tool for assessing subsurface petroleum hydrocarbon sources and plumes at contaminated sites.

  4. Assessment of diesel contamination in groundwater using electromagnetic induction geophysical techniques

    SciTech Connect

    Jin, S.; Fallgren, P.; Cooper, J.; Morris, J; . Urynowicz, M.

    2008-07-01

    Determining hydrocarbon plumes in groundwater is typically accomplished through the installation of extensive monitoring wells. Issues of scale and site heterogeneities tend to introduce errors in delineating the extent of contamination and environmental impact. In this study, electromagnetic induction survey was investigated as an alternative technique for mapping petroleum contaminants in the subsurface. The surveys were conducted at a coal mining site near Gillette, Wyoming, using the EM34-XL ground conductivity meter. Data from this survey were validated with known concentrations of diesel compounds detected in groundwater from the study site. Groundwater data correlated well with the electromagnetic survey data, which was used to generate a site model to identify subsurface diesel plumes. To our knowledge, this is one of the first studies to use electromagnetic survey techniques for mapping hydrocarbon contamination in groundwater. Results from this study indicate that this geophysical technique can be an effective tool for assessing subsurface petroleum hydrocarbon sources and plumes at contaminated sites.

  5. In Situ Formation of Calcium Apatite in Soil for Sequestering Contaminants in Soil and Groundwater

    SciTech Connect

    Moore, Robert; Szecsody, Jim; Thompson, Mike

    2015-10-20

    A new method for in situ formation of a calcium apatite permeable reactive barrier that is a groundbreaking technology for containing radioactive/heavy metal contaminants threatening groundwater supplies.

  6. PERMEABLE REACTIVE BARRIERS FOR IN-SITU TREATMENT OF ARSENIC-CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Laboratory and field research has shown that permeable reactive barriers (PRBs) containing a variety of materials can treat arsenic (As) contaminated groundwater. Sites where these PRBs are located include a mine tailings facility, fertilizer and chemical manufacturing sites, a...

  7. Unregulated potential sources of groundwater contamination involving the transport and storage of liquid fuels: Technical and policy issues

    SciTech Connect

    Davis, M.J.

    1989-08-01

    A large population of underground and aboveground tanks storing petroleum or petroleum products and the pipelines transporting such materials are not subject to federal regulations intended to protect groundwater, although existing regulations that address safety and surface-water protection do provide some groundwater protection. This study examined technical and policy issues related to regulating such facilities specifically to protect groundwater from losses of contents. Because the extent of groundwater contamination associated with these facilities is largely unknown, the benefits associated with additional regulations are difficult to estimate. The study found that the most effective leak detection approaches are not required or generally employed by any of the facility types considered. The effectiveness of leak prevention approaches varies with facility type. Issues associated with implementing additional regulations also vary with the type of facility. Costs of groundwater protection would be high for older pipelines, considerably less for modern pipelines. Many unregulated storage tanks are at residences, and implementation problems could be expected if stringent groundwater protection is required. For large storage tanks, issues would not be significantly different from those for currently regulated underground tanks. 44 refs., 3 figs., 17 tabs.

  8. A coupled simulation-optimization approach for groundwater remediation design under uncertainty: an application to a petroleum-contaminated site.

    PubMed

    He, L; Huang, G H; Lu, H W

    2009-01-01

    This study provides a coupled simulation-optimization approach for optimal design of petroleum-contaminated groundwater remediation under uncertainty. Compared to the previous approaches, it has the advantages of: (1) addressing the stochasticity of the modeling parameters in simulating the flow and transport of NAPLs in groundwater, (2) providing a direct and response-rapid bridge between remediation strategies (pumping rates) and remediation performance (contaminant concentrations) through the created proxy models, (3) alleviating the computational cost in searching for optimal solutions, and (4) giving confidence levels for the obtained optimal remediation strategies. The approach is applied to a practical site in Canada for demonstrating its performance. The results show that mitigating the effects of uncertainty on optimal remediation strategies (through enhancing the confidence level) would lead to the rise of remediation cost due to the increase in the total pumping rate.

  9. Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The arsenic (As) contamination of groundwater has increasingly been recognized as a major global issue of concern. As groundwater resources are one of most important freshwater sources for water supplies in Southeast Asian countries, it is important to investigate the spatial distribution of As cont...

  10. Bioremediation Of Groundwater Contaminated Wtih Gasoline Hydrocarbons And Oxygenates Using A Membrane-Based Reactor

    EPA Science Inventory

    The objective of this study was to operate a novel, field-scale, aerobic bioreactor and assess its performance in the ex situ treatment of groundwater contaminated with gasoline from a leaking underground storage tank in Pascoag, RI. The groundwater contained elevated concentrat...

  11. Characterization of Microbial Communities from Pristine and Chlorinated-Ethene-Contaminated Landfill Groundwater

    SciTech Connect

    Brigmon, R.L.

    2002-05-17

    Molecular, phospholipid fatty acid analysis (PLFA), and substrate utilization (BIOLOG) techniques were used to assess structural and functional differences between microbial communities from a chlorinated-ethene (CE)-contaminated groundwater at a sanitary landfill. The information will be used to evaluate natural attenuation of the associated CE plume. Two groundwater-monitoring wells were tested.

  12. Modeling approaches to management of nitrate contamination of groundwater in a heavily cultivated area

    NASA Astrophysics Data System (ADS)

    Koh, E.; Park, Y.; Lee, K.

    2011-12-01

    A three-dimensional variably-saturated groundwater flow and reactive transport modeling framework was implemented to simulate nitrate contamination in a heavily cultivated area in Jeju volcanic Island. In the study area, two localized aquifer systems (perched and regional groundwater) exist due to distributions of impermeable clay layers beneath the perched groundwater. The approximate application rate of chemical fertilizers was surveyed to be 627.9 kg-N/ha per year, which is much higher than the average annual chemical fertilizer usage in Jeju Island, 172 kg-N/ha per year. Severe nitrate contamination has been observed in the perched groundwater system and such perched groundwater has influenced regional groundwater quality, through poorly cemented wall of the distributed throughout the region wells. For a part of managing plan of nitrate contamination in the island, a numerical modeling framework was developed for various scenarios associated with the factors affecting nitrate contamination in the study area (i.e., usage amount of chemical fertilizers, cultivated methods, grouting condition of wells). This work provides useful information to suggest effective ways to manage nitrate contamination of groundwater in the agricultural field. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0001120) and by BK21 project of Korean Government.

  13. Risk assessment of groundwater contamination: a multilevel fuzzy comprehensive evaluation approach based on DRASTIC model.

    PubMed

    Zhang, Qiuwen; Yang, Xiaohong; Zhang, Yan; Zhong, Ming

    2013-01-01

    Groundwater contamination is a serious threat to water supply. Risk assessment of groundwater contamination is an effective way to protect the safety of groundwater resource. Groundwater is a complex and fuzzy system with many uncertainties, which is impacted by different geological and hydrological factors. In order to deal with the uncertainty in the risk assessment of groundwater contamination, we propose an approach with analysis hierarchy process and fuzzy comprehensive evaluation integrated together. Firstly, the risk factors of groundwater contamination are identified by the sources-pathway-receptor-consequence method, and a corresponding index system of risk assessment based on DRASTIC model is established. Due to the complexity in the process of transitions between the possible pollution risks and the uncertainties of factors, the method of analysis hierarchy process is applied to determine the weights of each factor, and the fuzzy sets theory is adopted to calculate the membership degrees of each factor. Finally, a case study is presented to illustrate and test this methodology. It is concluded that the proposed approach integrates the advantages of both analysis hierarchy process and fuzzy comprehensive evaluation, which provides a more flexible and reliable way to deal with the linguistic uncertainty and mechanism uncertainty in groundwater contamination without losing important information.

  14. Risk Assessment of Groundwater Contamination: A Multilevel Fuzzy Comprehensive Evaluation Approach Based on DRASTIC Model

    PubMed Central

    Zhang, Yan; Zhong, Ming

    2013-01-01

    Groundwater contamination is a serious threat to water supply. Risk assessment of groundwater contamination is an effective way to protect the safety of groundwater resource. Groundwater is a complex and fuzzy system with many uncertainties, which is impacted by different geological and hydrological factors. In order to deal with the uncertainty in the risk assessment of groundwater contamination, we propose an approach with analysis hierarchy process and fuzzy comprehensive evaluation integrated together. Firstly, the risk factors of groundwater contamination are identified by the sources-pathway-receptor-consequence method, and a corresponding index system of risk assessment based on DRASTIC model is established. Due to the complexity in the process of transitions between the possible pollution risks and the uncertainties of factors, the method of analysis hierarchy process is applied to determine the weights of each factor, and the fuzzy sets theory is adopted to calculate the membership degrees of each factor. Finally, a case study is presented to illustrate and test this methodology. It is concluded that the proposed approach integrates the advantages of both analysis hierarchy process and fuzzy comprehensive evaluation, which provides a more flexible and reliable way to deal with the linguistic uncertainty and mechanism uncertainty in groundwater contamination without losing important information. PMID:24453883

  15. Stable isotope ( 18O) investigations on the processes controlling fluoride contamination of groundwater

    NASA Astrophysics Data System (ADS)

    Datta, P. S.; Deb, D. L.; Tyagi, S. K.

    1996-10-01

    Groundwater is being used extensively in the Delhi area for both irrigation and raw water requirement. Fluoride contamination in groundwater is therefore a matter of concern for the planners and managers of water resources. Stable isotope ( 18O) and fluoride signatures in groundwater have been discussed, in this context, to characterise the sources and controlling processes of fluoride contamination. The study indicates that almost 50% of the area is affected by fluoride contamination beyond the maximum permissible limit. The wide range (0.10-16.5 ppm) in fluoride concentration suggests contributions from both point and non-point sources. Very high fluoride levels in groundwater are mostly found in the vicinity of brick kilns. Significant quantities of evaporated (isotopically enriched) rainfall, irrigation water and surface runoff water from surrounding farmland also percolate along with fluoride salts from the soils to the groundwater system. The process of adsorption and dispersion of fluoride species in the soil as well as lateral mixing of groundwater along specific flow-paths control the groundwater fluoride and 18O composition. The groundwater system has more than two isotopically distinct non-point source origins, causing spatial and temporal variations in fluoride concentration. Issues related to harmful effects of excessive use of high-fluoride groundwater and management options have also been discussed.

  16. An integrated approach for addressing uncertainty in the delineation of groundwater management areas.

    PubMed

    Sousa, Marcelo R; Frind, Emil O; Rudolph, David L

    2013-05-01

    Uncertainty is a pervasive but often poorly understood factor in the delineation of wellhead protection areas (WHPAs), which can discourage water managers and practitioners from relying on model results. To make uncertainty more understandable and thereby remove a barrier to the acceptance of models in the WHPA context, we present a simple approach for dealing with uncertainty. The approach considers two spatial scales for representing uncertainty: local and global. At the local scale, uncertainties are assumed to be due to heterogeneities, and a capture zone is expressed in terms of a capture probability plume. At the global scale, uncertainties are expressed through scenario analysis, using a limited number of physically realistic scenarios. The two scales are integrated by using the precautionary principle to merge the individual capture probability plumes corresponding to the different scenarios. The approach applies to both wellhead protection and the mitigation of contaminated aquifers, or in general, to groundwater management areas. An example relates to the WHPA for a supply well located in a complex glacial aquifer system in southwestern Ontario, where we focus on uncertainty due to the spatial distributions of recharge. While different recharge scenarios calibrate equally well to the same data, they result in different capture probability plumes. Using the precautionary approach, the different plumes are merged into two types of maps delineating groundwater management areas for either wellhead protection or aquifer mitigation. The study shows that calibrations may be non-unique, and that finding a "best" model on the basis of the calibration fit may not be possible.

  17. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence.

    PubMed

    Lapworth, D J; Baran, N; Stuart, M E; Ward, R S

    2012-04-01

    Emerging organic contaminants (EOCs) detected in groundwater may have adverse effects on human health and aquatic ecosystems. This paper reviews the existing occurrence data in groundwater for a range of EOCs including pharmaceutical, personal care, 'life-style' and selected industrial compounds. The main sources and pathways for organic EOCs in groundwater are reviewed, with occurrence data for EOCs in groundwater included from both targeted studies and broad reconnaissance surveys. Nanogram-microgram per litre concentrations are present in groundwater for a large range of EOCs as well as metabolites and transformation products and under certain conditions may pose a threat to freshwater bodies for decades due to relatively long groundwater residence times. In the coming decades, more of these EOCs are likely to have drinking water standards, environmental quality standards and/or groundwater threshold values defined, and therefore a better understanding of the spatial and temporal variation remains a priority. PMID:22306910

  18. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence.

    PubMed

    Lapworth, D J; Baran, N; Stuart, M E; Ward, R S

    2012-04-01

    Emerging organic contaminants (EOCs) detected in groundwater may have adverse effects on human health and aquatic ecosystems. This paper reviews the existing occurrence data in groundwater for a range of EOCs including pharmaceutical, personal care, 'life-style' and selected industrial compounds. The main sources and pathways for organic EOCs in groundwater are reviewed, with occurrence data for EOCs in groundwater included from both targeted studies and broad reconnaissance surveys. Nanogram-microgram per litre concentrations are present in groundwater for a large range of EOCs as well as metabolites and transformation products and under certain conditions may pose a threat to freshwater bodies for decades due to relatively long groundwater residence times. In the coming decades, more of these EOCs are likely to have drinking water standards, environmental quality standards and/or groundwater threshold values defined, and therefore a better understanding of the spatial and temporal variation remains a priority.

  19. Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam province, Vietnam.

    PubMed

    Nguyen, Van Anh; Bang, Sunbaek; Viet, Pham Hung; Kim, Kyoung-Woong

    2009-04-01

    The characteristics of arsenic-contaminated groundwater and the potential risks from the groundwater were investigated. Arsenic contamination in groundwater was found in four villages (Vinh Tru, Bo De, Hoa Hau, Nhan Dao) in Ha Nam province in northern Vietnam. Since the groundwater had been used as one of the main drinking water sources in these regions, groundwater and hair samples were collected in the villages. The concentrations of arsenic in the three villages (Vinh Tru, Bo De, Hoa Hau) significantly exceeded the Vietnamese drinking water standard for arsenic (10 microg/L) with average concentrations of 348, 211, and 325 microg/L, respectively. According to the results of the arsenic speciation testing, the predominant arsenic species in the groundwater existed as arsenite [As(III)]. Elevated concentrations of iron, manganese, and ammonium were also found in the groundwater. Although more than 90% of the arsenic was removed by sand filtration systems used in this region, arsenic concentrations of most treated groundwater were still higher than the drinking water standard. A significant positive correlation was found between the arsenic concentrations in the treated groundwater and in female human hair. The risk assessment for arsenic through drinking water pathways shows both potential chronic and carcinogenic risks to the local community. More than 40% of the people consuming treated groundwater are at chronic risk for arsenic exposure.

  20. Influencing factors and a proposed evaluation methodology for predicting groundwater contamination potential from stormwater infiltration activities.

    PubMed

    Clark, Shirley E; Pitt, Robert

    2007-01-01

    To offset the detrimental effects of urbanization on groundwater recharge, stormwater managers are focusing on infiltrating much of the runoff from a site that was generated because of development. For this to be effective, tools are required to predict the potential for contamination resulting from this infiltration for many site conditions, because infiltration should be stressed in areas where the least potential for causing groundwater contamination exists. Factors that influence contamination potential include the pollutant concentration in the runoff directed to the infiltration device and the ability of the underlying soil to remove the pollutant. The groundwater contamination potential of some pollutants, even those with high concentrations and moderate-to-high mobilities, can be reduced with proper pretreatment before infiltration. This paper presents a methodology that can be used to evaluate infiltration as an management option and introduces two different levels of models that could be used to evaluate contamination potential.

  1. Parameter estimation and prediction for groundwater contamination based on measure theory

    NASA Astrophysics Data System (ADS)

    Mattis, S. A.; Butler, T. D.; Dawson, C. N.; Estep, D.; Vesselinov, V. V.

    2015-09-01

    The problem of groundwater contamination in an aquifer is one with many uncertainties. Properly quantifying these uncertainties is essential in order to make reliable probabilistic-based predictions and decisions regarding remediation strategies. In this work, a measure-theoretic framework is employed to quantify uncertainties in a simplified groundwater contamination transport model. Given uncertain data from observation wells, the stochastic inverse problem is solved numerically to obtain a probability measure on the space of unknown model parameters characterizing groundwater flow and contaminant transport in an aquifer, as well as unknown model boundary or source terms such as the contaminant source release into the environment. This probability measure is used to make predictions of future contaminant concentrations and to analyze possible remediation techniques. The ability to identify regions of small but nonzero probability using this method is illustrated.

  2. Modelling the fate of oxidisable organic contaminants in groundwater

    NASA Astrophysics Data System (ADS)

    Barry, D. A.; Prommer, H.; Miller, C. T.; Engesgaard, P.; Brun, A.; Zheng, C.

    Subsurface contamination by organic chemicals is a pervasive environmental problem, susceptible to remediation by natural or enhanced attenuation approaches or more highly engineered methods such as pump-and-treat, amongst others. Such remediation approaches, along with risk assessment or the pressing need to address complex scientific questions, have driven the development of integrated modelling tools that incorporate physical, biological and geochemical processes. We provide a comprehensive modelling framework, including geochemical reactions and interphase mass transfer processes such as sorption/desorption, non-aqueous phase liquid dissolution and mineral precipitatation/dissolution, all of which can be in equilibrium or kinetically controlled. This framework is used to simulate microbially mediated transformation/degradation processes and the attendant microbial population growth and decay. Solution algorithms, particularly the split-operator (SO) approach, are described, along with a brief résumé of numerical solution methods. Some of the available numerical models are described, mainly those constructed using available flow, transport and geochemical reaction packages. The general modelling framework is illustrated by pertinent examples, showing the degradation of dissolved organics by microbial activity limited by the availability of nutrients or electron acceptors (i.e., changing redox states), as well as concomitant secondary reactions. Two field-scale modelling examples are discussed, the Vejen landfill (Denmark) and an example where metal contamination is remediated by redox changes wrought by injection of a dissolved organic compound. A summary is provided of current and likely future challenges to modelling of oxidisable organics in the subsurface.

  3. Sources of arsenic and fluoride in highly contaminated soils causing groundwater contamination in Punjab, Pakistan.

    PubMed

    Farooqi, Abida; Masuda, Harue; Siddiqui, Rehan; Naseem, Muhammad

    2009-05-01

    Highly contaminated groundwater, with arsenic (As) and fluoride (F(-)) concentrations of up to 2.4 and 22.8 mg/L, respectively, has been traced to anthropogenic inputs to the soil. In the present study, samples collected from the soil surface and sediments from the most heavily polluted area of Punjab were analyzed to determine the F(-) and As distribution in the soil. The surface soils mainly comprise permeable aeolian sediment on a Pleistocene terrace and layers of sand and silt on an alluvial flood plain. Although the alluvial sediments contain low levels of F, the terrace soils contain high concentrations of soluble F(-) (maximum, 16 mg/kg; mean, 4 mg/kg; pH > 8.0). Three anthropogenic sources were identified as fertilizers, combusted coal, and industrial waste, with phosphate fertilizer being the most significance source of F(-) accumulated in the soil. The mean concentration of As in the surface soil samples was 10.2 mg/kg, with the highest concentration being 35 mg/kg. The presence of high levels of As in the surface soil implies the contribution of air pollutants derived from coal combustion and the use of fertilizers. Intensive mineral weathering under oxidizing conditions produces highly alkaline water that dissolves the F(-) and As adsorbed on the soil, thus releasing it into the local groundwater.

  4. Sources of arsenic and fluoride in highly contaminated soils causing groundwater contamination in Punjab, Pakistan

    SciTech Connect

    Farooqi, A.; Masuda, H.; Siddiqui, R.; Naseem, M.

    2009-05-15

    Highly contaminated groundwater, with arsenic (As) and fluoride (F{sup -}) concentrations of up to 2.4 and 22.8 mg/L, respectively, has been traced to anthropogenic inputs to the soil. In the present study, samples collected from the soil surface and sediments from the most heavily polluted area of Punjab were analyzed to determine the F{sup -} and As distribution in the soil. The surface soils mainly comprise permeable aeolian sediment on a Pleistocene terrace and layers of sand and silt on an alluvial flood plain. Although the alluvial sediments contain low levels of F, the terrace soils contain high concentrations of soluble F{sup -} (maximum, 16 mg/kg; mean, 4 mg/kg; pH > 8.0). Three anthropogenic sources were identified as fertilizers, combusted coal, and industrial waste, with phosphate fertilizer being the most significance source of F{sup -} accumulated in the soil. The mean concentration of As in the surface soil samples was 10.2 mg/kg, with the highest concentration being 35 mg/kg. The presence of high levels of As in the surface soil implies the contribution of air pollutants derived from coal combustion and the use of fertilizers. Intensive mineral weathering under oxidizing conditions produces highly alkaline water that dissolves the F{sup -} and As adsorbed on the soil, thus releasing it into the local groundwater.

  5. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    SciTech Connect

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992.

  6. A collaborative effort to address the distribution of plutonium-contaminated sludge in Livermore, California.

    PubMed

    Sutton, Patrice; Cabasso, Jacqueline; Barreau, Tracy; Kelley, Marylia

    2012-01-01

    Plutonium releases from the U.S. nuclear weapons laboratory in Livermore, California resulted in the contamination of sewage sludge. Two research models to address the potential public health impacts of plutonium-contaminated sludge distribution were undertaken. One model was a collaborative approach that emphasized incorporating local knowledge into the scientific analysis and fostering the growth of mutually respectful relationships between scientists, governmental, and non-governmental collaborators. The second was a dose-assessment approach that utilized existing data to estimate radiological doses from exposure to plutonium contaminated sewage sludge and compared the estimated doses with those that have caused sickness or death. The two models reached different conclusions; neither addressed issues of intergenerational equity and primary prevention of exposure. Advancing an ethical research agenda will involve looking upstream of the contamination and working toward sustainable solutions to security that do not involve the public health threats embedded in the global embrace of nuclear weapons. PMID:22776580

  7. A collaborative effort to address the distribution of plutonium-contaminated sludge in Livermore, California.

    PubMed

    Sutton, Patrice; Cabasso, Jacqueline; Barreau, Tracy; Kelley, Marylia

    2012-01-01

    Plutonium releases from the U.S. nuclear weapons laboratory in Livermore, California resulted in the contamination of sewage sludge. Two research models to address the potential public health impacts of plutonium-contaminated sludge distribution were undertaken. One model was a collaborative approach that emphasized incorporating local knowledge into the scientific analysis and fostering the growth of mutually respectful relationships between scientists, governmental, and non-governmental collaborators. The second was a dose-assessment approach that utilized existing data to estimate radiological doses from exposure to plutonium contaminated sewage sludge and compared the estimated doses with those that have caused sickness or death. The two models reached different conclusions; neither addressed issues of intergenerational equity and primary prevention of exposure. Advancing an ethical research agenda will involve looking upstream of the contamination and working toward sustainable solutions to security that do not involve the public health threats embedded in the global embrace of nuclear weapons.

  8. Radioactive contamination and radionuclide migration in groundwater. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1997-12-01

    The bibliography contains citations concerning the contamination of groundwater with radionuclides and their subsequent migration. Monitoring surveys of existing sites with actual or potential radioactive groundwater contamination are included. Transport and migration models for radionuclides in groundwater are discussed. Natural radiation and accidental releases are considered in addition to anthropogenic sources of radioactive pollution such as waste storage and disposal. Contributions to radioactive pollution from uranium mining and processing are discussed in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Developments in in situ biorestoration of contaminated soil and groundwater in the Netherlands.

    PubMed

    Staps, J J

    1989-01-01

    This paper considers the actual state of the art of in-situ biorestoration of contaminated soil and groundwater in the Netherlands. After a description of the relevant research programme, some research projects are described. These concern stimulation of biodegradation by means of venting and circulation of water for addition of oxygen and nutrients. Furthermore, some information about treatment of contaminated soil and groundwater on full scale is given. For groundwater, some activities on research of biological treatment systems for specific pollutants are mentioned. PMID:2658037

  10. Arsenic contamination of groundwater: Mitigation strategies and policies

    NASA Astrophysics Data System (ADS)

    Alaerts, Guy J.; Khouri, Nadim

    Contamination of groundwater by arsenic from natural geochemical sources is at present a most serious challenge in the planning of large-scale use of groundwater for drinking and other purposes. Recent improvements in detection limits of analytical instruments are allowing the correlation of health impacts such as cancer with large concentrations of arsenic in groundwater. However, there are at present no known large-scale technological solutions for the millions of people-mostly rural-who are potentially affected in developing countries. An overall framework of combating natural resource degradation is combined with case studies from Chile, Mexico, Bangladesh and elsewhere to arrive at a set of strategic recommendations for the global, national and local dimensions of the arsenic ``crisis''. The main recommendations include: the need for flexibility in the elaboration of any arsenic mitigation strategy, the improvement and large-scale use of low-cost and participatory groundwater quality testing techniques, the need to maintain consistent use of key lessons learned worldwide in water supply and sanitation and to integrate arsenic as just one other factor in providing a sustainable water supply, and the following of distinct but communicable tracks between arsenic-related developments and enhanced, long-term, sustainable water supplies. La contamination des eaux souterraines par l'arsenic provenant de sources naturelles est actuellement un sujet des plus graves dans l'organisation d'un recours à grande échelle des eaux souterraines pour la boisson et d'autres usages. De récentes améliorations dans les limites de détection des équipements analytiques permettent de corréler les effets sur la santé tels que le cancer à de fortes concentrations en arsenic dans les eaux souterraines. Toutefois, il n'existe pas actuellement de solutions technologiques à grande échelle connues pour des millions de personnes, surtout en zones rurales, qui sont potentiellement

  11. Perched-Water Analysis Related to Deep Vadose Zone Contaminant Transport and Impact to Groundwater

    SciTech Connect

    Oostrom, Martinus; Truex, Michael J.; Carroll, KC; Chronister, Glen B.

    2013-11-15

    Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located just a few meters above the water table beneath the B-complex at the Hanford Site. The perched water, containing elevated concentrations of uranium and technetium-99, is important to consider in evaluating the future flux of contaminated water into the groundwater. A study was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and, 3) associated groundwater impact. Based on the current vertical transport pathways and large areal extent of the perched system, the evaluation was conducted using a one-dimensional (1-D) analysis. Steady-state scoping calculations showed that the perching-layer hydraulic conductivity is likely to be up to two orders of magnitude less than the base case value obtained from Hanford site literature. Numerical flow and transport simulations provided both steady-state and transient system estimates of water and contaminant behavior and were used to further refine the range of conditions consistent with current observations of perched water height and to provide estimates of future water and contaminant flux to groundwater. With a recharge rate of 6 cm/yr, representative of current disturbed surface conditions, contaminant flux from the perched water occurs over a time interval of tens of years. However, if the recharge rate is 0.35 cm/yr, representative of returning recharge to pre-Hanford Site levels, the contaminant flux into the groundwater is spread over hundreds of years. It was also demonstrated that removal of perched water by pumping would reduce the flux of water (and associated contaminants) to the groundwater, thereby impacting the long-term rate of contaminant movement to the groundwater.

  12. Optimal environmental management strategy and implementation for groundwater contamination prevention and restoration.

    PubMed

    Wang, Mingyu

    2006-04-01

    An innovative management strategy is proposed for optimized and integrated environmental management for regional or national groundwater contamination prevention and restoration allied with consideration of sustainable development. This management strategy accounts for availability of limited resources, human health and ecological risks from groundwater contamination, costs for groundwater protection measures, beneficial uses and values from groundwater protection, and sustainable development. Six different categories of costs are identified with regard to groundwater prevention and restoration. In addition, different environmental impacts from groundwater contamination including human health and ecological risks are individually taken into account. System optimization principles are implemented to accomplish decision-makings on the optimal resources allocations of the available resources or budgets to different existing contaminated sites and projected contamination sites for a maximal risk reduction. Established management constraints such as budget limitations under different categories of costs are satisfied at the optimal solution. A stepwise optimization process is proposed in which the first step is to select optimally a limited number of sites where remediation or prevention measures will be taken, from all the existing contaminated and projected contamination sites, based on a total regionally or nationally available budget in a certain time frame such as 10 years. Then, several optimization steps determined year-by-year optimal distributions of the available yearly budgets for those selected sites. A hypothetical case study is presented to demonstrate a practical implementation of the management strategy. Several issues pertaining to groundwater contamination exposure and risk assessments and remediation cost evaluations are briefly discussed for adequately understanding implementations of the management strategy.

  13. Classification of groundwater contamination in Yuxi River Valley, Shaanxi Province, China.

    PubMed

    Li, Yunfeng; Wan, Weifeng; Song, Jin; Wu, Yaoguo; Xu, Yanjuan; Zhang, Maosheng

    2009-02-01

    This study investigated groundwater contamination in the Yuxi River Valley in northern Shaanxi Province, one of largest energy resource centers in China. Groundwater samples collected from 129 locations in the Yuxi River Valley area were analyzed and evaluated to establish the local groundwater quality zonings. Results indicate that groundwater in the Yuxi River Valley is contaminated, and the dominant contaminants in the groundwater are ammonium (NH(4)(+)) and nitrite (NO(2)(-)). Maximal concentration of NH(4)(+) was detected at 0.019 and 3.50 mg/L in the samples collected up-gradient and down-gradient, respectively, of the segment of Yuxi River that flows through Yulin City. Concentration of NO(2)(-) was detected at 0.0015 and 1.522 mg/L, respectively from the same samples. Zones I through IV, from non-polluted to seriously polluted, were identified for groundwater quality in the Yuxi River Valley. We attribute the groundwater contamination in the Yuxi River valley to sources in the Yulin township, presumably its wastewater discharge.

  14. Remediation of Groundwater Contaminated with Organics and Radionuclides - An Innovative Approach Eases Traditional Hurdles

    SciTech Connect

    Scott, J.; Case, N.; Coltman, K.

    2003-02-25

    Traditional approaches to the remediation of contaminated groundwater, such as pump-and-treat, have been used for many years for the treatment of groundwater contaminated with various organics. However the treatment of groundwater contaminated with organics and radionuclides has been considerably more challenging. Safety and Ecology Corporation (SEC) was recently faced with these challenges while designing a remediation system for the remediation of TCE-contaminated groundwater and soil at the RMI Extrusion Plant in Ashtabula, OH. Under contract with RMI Environmental Services (RMIES), SEC teamed with Regenesis, Inc. to design, implement, and execute a bioremediation system to remove TCE and associated organics from groundwater and soil that was also contaminated with uranium and technetium. The SEC-Regenesis system involved the injection of Hydrogen Release Compound (HRC), a natural attenuation accelerant that has been patented, designed, and produced by Regenesis, to stimulate the reductive dechlorination and remediation of chlorinated organics in subsurface environments. The compound was injected using direct-push Geoprobe rods over a specially designed grid system through the zone of contaminated groundwater. The innovative approach eliminated the need to extract contaminated groundwater and bypassed the restrictive limitations listed above. The system has been in operation for roughly six months and has begun to show considerable success at dechlorinating and remediating the TCE plume and in reducing the radionuclides into insoluble precipitants. The paper will provide an overview of the design, installation, and initial operation phase of the project, focusing on how traditional design challenges of remediating radiologically contaminated groundwater were overcome. The following topics will be specifically covered: a description of the mechanics of the HRC technology; an assessment of the applicability of the HRC technology to contaminated groundwater plumes

  15. Mobilisation processes responsible for iron and manganese contamination of groundwater in Central Adriatic Italy.

    PubMed

    Palmucci, William; Rusi, Sergio; Di Curzio, Diego

    2016-06-01

    Iron and manganese are two of the most common contaminants that exceed the threshold imposed by international and national legislation. When these contamination occurs in groundwater, the use of the water resource is forbidden for any purposes. Several studies investigated these two metals in groundwater, but research focused in the Central Adriatic area are still lacking. Thus, the objective of this study is to identify the origin of Fe and Mn contamination in groundwater and the hydrogeochemical processes that can enrich aquifers with these metals. This work is based on hydrogeochemical and multivariate statistical analysis of analytical results undertaken on soils and groundwater. Fe and Mn contamination are widespread in the alluvial aquifers, and their distribution is regulated by local conditions (i.e. long residence time, presence of peat or organic-rich fine sediments or anthropic pollution) that control redox processes in the aquifers and favour the mobilisation of these two metals in groundwater. The concentration of iron and manganese identified within soil indicates that the latter are a concrete source of the two metals. Anthropic impact on Fe and Mn contamination of groundwater is not related to agricultural activities, but on the contrary, the contribution of hydrocarbons (e.g. spills) is evident.

  16. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ

    NASA Astrophysics Data System (ADS)

    Piscopo, Amy N.; Neupauer, Roseanna M.; Kasprzyk, Joseph R.

    2016-07-01

    The effectiveness of in situ remediation to treat contaminated aquifers is limited by the degree of contact between the injected treatment chemical and the groundwater contaminant. In this study, candidate designs that actively spread the treatment chemical into the contaminant are generated using a multi-objective evolutionary algorithm. Design parameters pertaining to the amount of treatment chemical and the duration and rate of its injection are optimized according to objectives established for the remediation - maximizing contaminant degradation while minimizing energy and material requirements. Because groundwater contaminants have different reaction and sorption properties that influence their ability to be degraded with in situ remediation, optimization was conducted for six different combinations of reaction rate coefficients and sorption rates constants to represent remediation of the common groundwater contaminants, trichloroethene, tetrachloroethene, and toluene, using the treatment chemical, permanganate. Results indicate that active spreading for contaminants with low reaction rate coefficients should be conducted by using greater amounts of treatment chemical mass and longer injection durations relative to contaminants with high reaction rate coefficients. For contaminants with slow sorption or contaminants in heterogeneous aquifers, two different design strategies are acceptable - one that injects high concentrations of treatment chemical mass over a short duration or one that injects lower concentrations of treatment chemical mass over a long duration. Thus, decision-makers can select a strategy according to their preference for material or energy use. Finally, for scenarios with high ambient groundwater velocities, the injection rate used for active spreading should be high enough for the groundwater divide to encompass the entire contaminant plume.

  17. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ.

    PubMed

    Piscopo, Amy N; Neupauer, Roseanna M; Kasprzyk, Joseph R

    2016-07-01

    The effectiveness of in situ remediation to treat contaminated aquifers is limited by the degree of contact between the injected treatment chemical and the groundwater contaminant. In this study, candidate designs that actively spread the treatment chemical into the contaminant are generated using a multi-objective evolutionary algorithm. Design parameters pertaining to the amount of treatment chemical and the duration and rate of its injection are optimized according to objectives established for the remediation - maximizing contaminant degradation while minimizing energy and material requirements. Because groundwater contaminants have different reaction and sorption properties that influence their ability to be degraded with in situ remediation, optimization was conducted for six different combinations of reaction rate coefficients and sorption rates constants to represent remediation of the common groundwater contaminants, trichloroethene, tetrachloroethene, and toluene, using the treatment chemical, permanganate. Results indicate that active spreading for contaminants with low reaction rate coefficients should be conducted by using greater amounts of treatment chemical mass and longer injection durations relative to contaminants with high reaction rate coefficients. For contaminants with slow sorption or contaminants in heterogeneous aquifers, two different design strategies are acceptable - one that injects high concentrations of treatment chemical mass over a short duration or one that injects lower concentrations of treatment chemical mass over a long duration. Thus, decision-makers can select a strategy according to their preference for material or energy use. Finally, for scenarios with high ambient groundwater velocities, the injection rate used for active spreading should be high enough for the groundwater divide to encompass the entire contaminant plume.

  18. Relationships between groundwater contamination and major-ion chemistry in a karst aquifer

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.

    1990-11-01

    Groundwater contamination was examined within a rural setting of the Inner Bluegrass Karst Region of central Kentucky where potential contaminant sources include soil-organic matter, organic and inorganic fertilizer, and septic-tank effluent. To evaluate controls on groundwater contamination, data on nitrate concentrations and indicator bacteria in water from wells and springs were compared with physical and chemical attributes of the groundwater system. Bacterial densities greater than the recommended limit were found in all springs and approximately half of the wells, whereas nitrate concentrations >45 mg l -1 were restricted to 20% of the springs and 10% of the wells. Nitrate concentrations varied markedly in closely spaced wells and springs, which indicates that land use is not the primary control on groundwater contamination. Groundwater contamination is related to the distribution of chemical water types in the study area. All Ca subtype water was contaminated with nitrate and bacteria. Ca subtype water occurs in the shallow, rapidly circulating groundwater zone, which is most susceptible to contamination. The similarity in nitrate concentrations between local springs, major springs, and wells that contain Ca subtype water indicates that the occurrence of large conduits is not the main control on nitrate and bacterial contamination of groundwater. Temporal fluctuations in nitrate concentrations of Ca subtype water are attributed to seasonal fluctuations in recharge and in plant growth. Ca-Mg water subtype was generally not contaminated, and Na-HCO 3 and Na-Cl water types were not contaminated. Ca-Mg water subtype, and Na-HCO 3 and Na-Cl water types are associated with longer residence times and reducing conditions, which allow bacterial die-off and denitrification, respectively. Differences in residence time and reducing conditions among the chemical water types and subtypes are attributed to variations in rock permeability and to the occurrence of horizontal

  19. Use of Additives in Bioremediation of Contaminated Groundwater and Soil

    EPA Science Inventory

    This chapter reviews application of additives used in bioremediation of chlorinated solvents and fuels for groundwater and soil remediation. Soluble carbon substrates are applicable to most site conditions except aquifers with very high or very low groundwater flow. Slow-release ...

  20. Guidelines for active spreading during in situ chemical oxidation to remediate contaminated groundwater

    EPA Science Inventory

    The effectiveness of in situ chemical oxidation to remediate contaminated aquifers depends on the extent and duration of contact between the injected treatment chemical and the groundwater contaminant (the reactants). Techniques that inject and extract in the aquifer to ‘ac...

  1. DEMONSTRATION OF THE HIPOX ADVANCED OXIDATION TECHNOLOGY FOR THE TREATMENT OF MTBE-CONTAMINATED GROUNDWATER

    EPA Science Inventory

    The HiPOx technology is an advanced oxidation process that incorporates high-precision delivery of ozone and hydrogen peroxide to chemically destroy organic contaminants with the promise of minimizing bromate formation. A MTBE-contaminated groundwater from the Ventura County Nav...

  2. PHYTOREMEDIATION: USING PLANTS TO CLEAN UP CONTAMINATED SOIL, GROUNDWATER, AND WASTEWATER

    EPA Science Inventory

    Phytoremediation is an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost. The cleanup technology is defined as the use of green plants to remove, contain, or render harmless such environmental contaminants as heavy ...

  3. IN SITU TREATMENT OF SOIL AND GROUNDWATER CONTAMINATED WITH CHROMIUM - TECHNICAL RESOURCE GUIDE

    EPA Science Inventory

    New information and treatment approaches have been developed for chromium-contaminated soil and groundwater treatment. The prupose of this report is to bring together the most current information pertaining to the science of chromium contamination and the insitu treatment and co...

  4. Assessment of arsenic contamination of groundwater and health problems in Bangladesh.

    PubMed

    Khalequzzaman, M; Faruque, Fazlay S; Mitra, Amal K

    2005-08-01

    Excessive amounts of arsenic (As) in the groundwater in Bangladesh and neighboring states in India are a major public health problem. About 30% of the private wells in Bangladesh exhibit high concentrations of arsenic. Over half the country, 269 out of 464 administrative units, is affected. Similar problems exist in many other parts of the world, including the Unites States. This paper presents an assessment of the health hazards caused by arsenic contamination in the drinking water in Bangladesh. Four competing hypotheses, each addressing the sources, reaction mechanisms, pathways, and sinks of arsenic in groundwater, were analyzed in the context of the geologic history and land-use practices in the Bengal Basin. None of the hypotheses alone can explain the observed variability in arsenic concentration in time and space; each appears to have some validity on a local scale. Thus, it is likely that several biogeochemical processes are active among the region's various geologic environments, and that each contributes to the mobilization and release of arsenic. Additional research efforts will be needed to understand the relationships between underlying biogeochemical factors and the mechanisms for arsenic release in various geologic settings.

  5. Characterization of nitrate contamination in groundwater in Gosan, western part of Jeju Island

    NASA Astrophysics Data System (ADS)

    Koh, E.; Kaown, D.; Kang, B.; Oh, S.; Moon, H.; Lee, K.

    2010-12-01

    Jeju Isalnd, composed of porous volcanic rocks, is located about 140 km south of the Korean peninsula. The annual mean rainfall of the island (1,975 mm) is about 600 mm higher than that of Korean mainland. Groundwater in Jeju Island is vulnerable to contamination sources in surface land because surface water easily percolates into groundwater when the rainfall event occurs. The western part of the island, where proportion of agricultural area is higher, nitrate contamination in groundwater has been observed. It is important to characterize nitrate contamination in the western part of the island to preserve the groundwater resources. In Gosan, located in the western part of Jeju Island, agricultural fields are broadly distributed resulting from readjustment of arable land in 1970s. Shallow perched groundwater is observed at the top soil layer with depth to water table range of 0.25 ~ 2.68. The nitrate-nitrogen concentration of the shallow groundwater is observed as 8.24 ~ 59.96 mg/l. The deep groundwater is distributed with depth to water table from 12.47 m to 29.11 m and the nitrate-nitrogen concentration is distributed between 0.10 ~ 29.16 mg/l. Such high concentrations of nitrate-nitrogen in the shallow groundwater might cause continuous nitrate contamination of deep groundwater in the study area. Analysis of stable isotope, δ 15N and δ18O of nitrate, in both shallow and deep groundwater was conducted to identify sources of nitrate and transformation processes of nitrogen. Shallow groundwater has broad ranges of δ 15N and δ18O values (δ 15N: 2.3 ~ 26.1‰, δ18O: 2.5 ~ 15.8‰) contrast to deep groundwater, which has limit ranges (δ 15N: 3.1 ~ 5.0‰, δ18O: 0.5 ~ 4.7‰). The source of nitrate in the deep groundwater was identified as the ammonium fertilizer and organic soil and in the shallow groundwater, complex source such as chemical fertilizer, organic soil and denitrification was consider to affect the nitrate contamination in the study area.

  6. Behavioral response to contamination risk information in a spatially explicit groundwater environment: Experimental evidence

    NASA Astrophysics Data System (ADS)

    Li, Jingyuan; Michael, Holly A.; Duke, Joshua M.; Messer, Kent D.; Suter, Jordan F.

    2014-08-01

    This paper assesses the effectiveness of aquifer monitoring information in achieving more sustainable use of a groundwater resource in the absence of management policy. Groundwater user behavior in the face of an irreversible contamination threat is studied by applying methods of experimental economics to scenarios that combine a physics-based, spatially explicit, numerical groundwater model with different representations of information about an aquifer and its risk of contamination. The results suggest that the threat of catastrophic contamination affects pumping decisions: pumping is significantly reduced in experiments where contamination is possible compared to those where pumping cost is the only factor discouraging groundwater use. The level of information about the state of the aquifer also affects extraction behavior. Pumping rates differ when information that synthesizes data on aquifer conditions (a "risk gauge") is provided, despite invariant underlying economic incentives, and this result does not depend on whether the risk information is location-specific or from a whole aquifer perspective. Interestingly, users increase pumping when the risk gauge signals good aquifer status compared to a no-gauge treatment. When the gauge suggests impending contamination, however, pumping declines significantly, resulting in a lower probability of contamination. The study suggests that providing relatively simple aquifer condition guidance derived from monitoring data can lead to more sustainable use of groundwater resources.

  7. Sensitivity analysis of pesticides contaminating groundwater by applying probability and transport methods.

    PubMed

    Zhang, Pengxin; Aagaard, Per; Nadim, Farrokh; Gottschalk, Lars; Haarstad, Ketil

    2009-07-01

    The use of pesticides is a potential threat to local groundwater. Once groundwater is contaminated, it is very difficult to clean. Thus, it is of importance to assess the risk of contaminating local groundwater at an early stage when pesticides are found in soils. This knowledge will also help in remediation strategies. Traditional methods of deterministic analysis cannot explicitly account for the sometimes large uncertainties that exist at this stage in the work, whereas probabilistic analyses are better suited for dealing with these problems. In this paper, we have combined contaminant transport with a 1st-order reliability approach. Pesticide concentrations in soil have been studied to estimate the probability of failure--that is, of pesticides exceeding established critical levels in groundwater. Results indict that failure probability increases rapidly within a certain range of pesticide concentrations in soil for different critical levels. In given aquifer conditions and contaminants, probabilities of contaminants exceeding particular critical levels can easily be obtained according to various water usage scenarios. The distribution of importance factors among variables indicates the contribution their relative weights make to the failure probability. Hence, authorities can easily form sensitivity factors to take action and reduce the risk of contaminating the groundwater.

  8. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    SciTech Connect

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP.

  9. Groundwater contaminant science activities of the U.S. Geological Survey in New England

    USGS Publications Warehouse

    Weiskel, Peter K.

    2016-01-01

    Aquifers in New England provide water for human needs and natural ecosystems. In some areas, however, aquifers have been degraded by contaminants from geologic and human sources. In recent decades, the U.S. Geological Survey has been a leader in describing contaminant occurrence in the bedrock and surficial aquifers of New England. In cooperation with Federal, State, and local agencies, the U.S. Geological Survey has also studied the vulnerability of groundwater to contaminants, the factors affecting the geographic distribution of contaminants, and the geochemical processes controlling contaminant transport and fate. This fact sheet describes some of the major science needs in the region related to groundwater contaminants and highlights recent U.S. Geological Survey studies that provide a foundation for future investigations.

  10. Groundwater contaminant science activities of the U.S. Geological Survey in New England

    USGS Publications Warehouse

    Weiskel, Peter K.

    2016-03-23

    Aquifers in New England provide water for human needs and natural ecosystems. In some areas, however, aquifers have been degraded by contaminants from geologic and human sources. In recent decades, the U.S. Geological Survey has been a leader in describing contaminant occurrence in the bedrock and surficial aquifers of New England. In cooperation with Federal, State, and local agencies, the U.S. Geological Survey has also studied the vulnerability of groundwater to contaminants, the factors affecting the geographic distribution of contaminants, and the geochemical processes controlling contaminant transport and fate. This fact sheet describes some of the major science needs in the region related to groundwater contaminants and highlights recent U.S. Geological Survey studies that provide a foundation for future investigations.

  11. Nitrate contamination of groundwater in the catchment of Goczałkowice reservoir

    NASA Astrophysics Data System (ADS)

    Czekaj, Joanna; Witkowski, Andrzej J.

    2014-05-01

    Goczałkowice dammed reservoir (area - 26 km2 , volume - 100 million m3 at a typical water level) is a very important source of drinking water for Upper Silesian agglomeration. At the catchment of the reservoir there are many potential sources of groundwater pollution (agriculture, bad practices in wastewater management, intensive fish farming). Thus local groundwater contamination, mainly by nitrogen compounds. The paper presents groundwater monitoring system and preliminary results of the research carried on at Goczałkowice reservoir and its catchment in 2010 - 2014 within the project "Integrated system supporting management and protection of dammed reservoir (ZiZoZap)'. The main objective for hydrogeologists in the project is to assess the role of groundwater in total water balance of the reservoir and the influence of groundwater on its water quality. During research temporal variability of groundwater - surface water exchange has been observed. Monitoring Network of groundwater quality consists of 22 observation wells (nested piezometers included) located around the reservoir - 13 piezometers is placed in two transects on northern and southern shore of reservoir. Sampling of groundwater from piezometers was conducted twice - in autumn 2011 and spring 2012. Maximum observed concentrations of nitrate, nitrite and ammonium were 255 mg/L, 0,16 mg/L and 3,48 mg/L, respectively. Surface water in reservoir (8 points) has also been sampled. Concentrations of nitrate in groundwater are higher than in surface water. Nitrate and ammonium concentrations exceeding standards for drinking water were reported in 18% and 50% of monitored piezometers, respectively. High concentration of nitrate (exceeding more than 5 times maximal admissible concentration) have been a significant groundwater contamination problem in the catchment of the reservoir. Periodically decrease of surface water quality is possible. Results of hydrogeological research indicate substantial spatial

  12. Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources.

    PubMed

    Farooqi, Abida; Masuda, Harue; Firdous, Nousheen

    2007-02-01

    The present study is the first attempt to put forward possible sources of As, F- and SO4(2-) contaminated groundwater in the Kalalanwala area, Punjab, Pakistan. Five rainwater and 24 groundwater samples from three different depths were analyzed. Shallow groundwater from 24 to 27 m depth contained high F- (2.47-21.1mg/L), while the groundwater samples from the deeper depth were free from fluoride contamination. All groundwater samples contained high As (32-1900 microg/L), in excess of WHO drinking water standards. The SO4(2-) ranges from 110 to 1550 mg/L. Delta34S data indicate three sources for SO4(2-) air pollutants (5.5-5.7 per thousand), fertilizers (4.8 per thousand), and household waste (7.0 per thousand). Our important finding is the presence of SO4(2-), As and F- in rainwater, indicating the contribution of these elements from air pollution. We propose that pollutants originate, in part, from coal combusted at brick factories and were mobilized promotionally by the alkaline nature of the local groundwater.

  13. TECHNICAL BASIS FOR EVALUATING SURFACE BARRIERS TO PROTECT GROUNDWATER FROM DEEP VADOSE ZONE CONTAMINATION

    SciTech Connect

    FAYER JM; FREEDMAN VL; WARD AL; CHRONISTER GB

    2010-02-24

    tasks to achieve those outcomes. Full understanding of contaminant behavior in the deep vadose zone is constrained by four key data gaps: limited access; limited data; limited time; and the lack of an accepted predictive capability for determining whether surface barriers can effectively isolate deep vadose zone contaminants. Activities designed to fill these data gaps need to have these outcomes: (1) common evaluation methodology that provides a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination; (2) deep vadose zone data that characterize the lithology, the spatial distribution of moisture and contaminants, the physical, chemical, and biological process that affect the mobility of each contaminant, and the impacts to the contaminants following placement of a surface barrier; (3) subsurface monitoring to provide subsurface characterization of initial conditions and changes that occur during and following remediation activities; and (4) field observations that span years to decades to validate the evaluation methodology. A set of six proposed tasks was identified to provide information needed to address the above outcomes. The proposed tasks are: (1) Evaluation Methodology - Develop common evaluation methodology that will provide a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination. (2) Case Studies - Conduct case studies to demonstrate the applicability ofthe common evaluation methodology and provide templates for subsequent use elsewhere. Three sites expected to have conditions that would yield valuable information and experience pertinent to deep vadose zone contamination were chosen to cover a range of conditions. The sites are BC Cribs and Trenches, U Plant Cribs, and the T Farm Interim Cover. (3) Subsurface Monitoring Technologies - Evaluate minimally invasive

  14. Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater

    SciTech Connect

    Holmes, Dawn; Giloteaux, L.; Williams, Kenneth H.; Wrighton, Kelly C.; Wilkins, Michael J.; Thompson, Courtney A.; Roper, Thomas J.; Long, Philip E.; Lovley, Derek

    2013-07-28

    The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well-recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, acetate amendments initially promoted the growth of metal-reducing Geobacter species followed by the growth of sulfate-reducers, as previously observed. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater prior to the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the amoeboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey-predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity, and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.

  15. Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater

    PubMed Central

    Holmes, Dawn E; Giloteaux, Ludovic; Williams, Kenneth H; Wrighton, Kelly C; Wilkins, Michael J; Thompson, Courtney A; Roper, Thomas J; Long, Philip E; Lovley, Derek R

    2013-01-01

    The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, USA, acetate amendments initially promoted the growth of metal-reducing Geobacter species, followed by the growth of sulfate reducers, as observed previously. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater before the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the ameboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey–predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies. PMID:23446832

  16. Use of iron-based technologies in contaminated land and groundwater remediation: a review.

    PubMed

    Cundy, Andrew B; Hopkinson, Laurence; Whitby, Raymond L D

    2008-08-01

    Reactions involving iron play a major role in the environmental cycling of a wide range of important organic, inorganic and radioactive contaminants. Consequently, a range of environmental clean-up technologies have been proposed or developed which utilise iron chemistry to remediate contaminated land and surface and subsurface waters, e.g. the use of injected zero zero-valent iron nanoparticles to remediate organic contaminant plumes; the generation of iron oxyhydroxide-based substrates for arsenic removal from contaminated waters; etc. This paper reviews some of the latest iron-based technologies in contaminated land and groundwater remediation, their current state of development, and their potential applications and limitations.

  17. Identification of Groundwater Contaminant Location and Release History using Simulation-Optimization Method

    NASA Astrophysics Data System (ADS)

    Park, Y. C.

    2015-12-01

    Identification of location and release history of contaminant in groundwater is necessary to improve the remediation accuracy and to decrease the remediation cost. Especially in an industrial complex, groundwater is contaminated by various sources during unknown periods and groundwater remediation turns out complicated problems. A simulation-optimization method is preferred to solve the complicated problems of contaminant source identification because a simulation-optimization method has flexible applicability. For simulations of groundwater flow and contaminant transport, MODFLOW, MT3DMS and RT3D are used. These models are integrated with a genetic algorithm to obtain the optimization of contaminant location and release history. Because computing time and costs are enormous for a simulation-optimization method, a distributed computing technique is used to reduce computing time and costs. The performance of developed computer programs is evaluated with hypothetical examples with combinations of aquifers and contaminants from simple to complicated levels. The results shows the possibility of developed computer program to solve the problem of contaminant location and release history problems. This subject is supported by Korea Ministry of Environment as "The GAIA project".

  18. Evaluation of long-term (1960-2010) groundwater fluoride contamination in Texas.

    PubMed

    Chaudhuri, Sriroop; Ale, Srinivasulu

    2014-07-01

    Groundwater quality degradation is a major threat to sustainable development in Texas. The aim of this study was to elucidate spatiotemporal patterns of groundwater fluoride (F) contamination in different water use classes in 16 groundwater management areas in Texas between 1960 and 2010. Groundwater F concentration data were obtained from the Texas Water Development Board and aggregated over a decadal scale. Our results indicate that observations exceeding the drinking water quality threshold of World Health Organization (1.5 mg F L) and secondary maximum contaminant level (SMCL) (2 mg F L) of the USEPA increased from 26 and 19% in the 1960s to 37 and 23%, respectively, in the 2000s. In the 2000s, F observations > SMCL among different water use classes followed the order: irrigation (39%) > domestic (20%) > public supply (17%). Extent and mode of interaction between F and other water quality parameters varied regionally. In western Texas, high F concentrations were prevalent at shallower depths (<50 m) and were positively correlated with bicarbonate (HCO) and sulfate anions. In contrast, in southern and southeastern Texas, higher F concentrations occurred at greater depths (>50 m) and were correlated with HCO and chloride anions. A spatial pattern has become apparent marked by "excess" F in western Texas groundwaters as compared with "inadequate" F contents in rest of the state. Groundwater F contamination in western Texas was largely influenced by groundwater mixing and evaporative enrichment as compared with water-rock interaction and mineral dissolution in the rest of the state.

  19. Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L.

    PubMed

    Tu, S; Ma, Lena Q; Fayiga, Abioye O; Zillioux, Edward J

    2004-01-01

    Arsenic concentrations in a much larger fraction of U.S. groundwater sources will exceed the maximum contaminant limit when the new 10 microg L(-1) EPA standard for drinking water takes effect in 2006. Thus, it is important to develop remediation technologies that can meet this new standard. Phytoremediation of arsenic-contaminated groundwater is a relatively new idea. In this research, an arsenic-hyperaccumulating fern, commonly known as Chinese Brake fern (Pteris vittata L.), was grown hydroponically to examine its effectiveness in arsenic removal from what is believed to be herbicide-contaminated groundwater. One plant grown in 600 mL of groundwater effectively reduced the arsenic concentration from 46 to less than 10 microg L(-1) in 3 days. Re-used plants continued to take up arsenic from the groundwater, albeit at a slower rate (from 46 to 20 microg L(-1) during the same time). Young fern plants were more efficient in removing arsenic than were older fern plants of similar size. The addition of a supplement of phosphate-free Hoagland nutrition to the groundwater had little effect on arsenic removal, but the addition of phosphate nutrition significantly reduced its arsenic affinity and, thus, inhibited the arsenic removal. This study suggested that Chinese Brake has some potential to remove arsenic from groundwater.

  20. Evaluation of organic contamination in urban groundwater surrounding a municipal landfill, Zhoukou, China.

    PubMed

    Han, D M; Tong, X X; Jin, M G; Hepburn, Emily; Tong, C S; Song, X F

    2013-04-01

    This paper investigates the organic pollution status of shallow aquifer sediments and groundwater around Zhoukou landfill. Chlorinated aliphatic hydrocarbons, monocylic aromatic hydrocarbons, halogenated aromatic hydrocarbons, organochlorine pesticides and other pesticides, and polycyclic aromatic hydrocarbons (PAHs) have been detected in some water samples. Among the detected eleven PAHs, phenanthrene, fluorine, and fluoranthene are the three dominant in most of the groundwater samples. Analysis of groundwater samples around the landfill revealed concentrations of PAHs ranging from not detected to 2.19 μg/L. The results show that sediments below the waste dump were low in pollution, and the shallow aquifer, at a depth of 18-30 m, was heavily contaminated, particularly during the wet season. An oval-shaped pollution halo has formed, spanning 3 km from west to east and 2 km from south to north, and mainly occurs in groundwater depths of 2-4 m. For PAH source identification, both diagnostic ratios of selected PAHs and principal component analysis were studied, suggesting mixed sources of pyro- and petrogenic derived PAHs in the Zhoukou landfill. Groundwater table fluctuations play an important role in the distribution of organic pollutants within the shallow aquifer. A conceptual model of leachate migration in the Quaternary aquifers surrounding the Zhoukou landfill has been developed to describe the contamination processes based on the major contaminant (PAHs). The groundwater zone contaminated by leachate has been identified surrounding the landfill.

  1. Assessment of Groundwater Vulnerability for Antropogenic and Geogenic Contaminants in Subwatershed

    NASA Astrophysics Data System (ADS)

    Ko, K.; Koh, D.; Chae, G.; Cheong, B.

    2007-12-01

    Groundwater is an important natural resource that providing drinking water to more than five million people in Korea. Nonpoint source nitrate was frequently observed contaminant and the investigation result for small potable water supply system that mainly consisted of 70 percent groundwater showed that about 5 percent of water samples exceeded potable water quality standards of Korea. The geogenic contanminants such as arsenic and fluoride also frequently observed contaminants in Korea. In order to protect groundwater and to supply safe water to public, we need to assess groundwater vulnerability and to know the cause of occurrence of contaminants. To achieve this goal, we executed groundwater investigation and assessment study for Keumsan subwatershed with 600km2 in Keum-river watershed. The geostatistical and GIS technique were applied to map the spatial distribution of each contaminants and to calculate vulnerability index. The results of logistic regression for nitrate indicated the close relationship with land use. The results of hydrogeochemical analyses showed that nitrates in groundwater are largely influenced by land use and had high values in granitic region with dense agricultural field and resident. The high nitrates are closely related to groundwater of greenhouse area where large amount of manure and fertilizer were usually introduced in cultural land. The soil in granitic region had high contents of permeable sand of weathered products of granite that play as a role of pathway of contaminants in agricultural land and resident area. The high values of bicarbonate are originated from two sources, limestone dissolution of Ogcheon belt and biodegradation organic pollutants from municipal wastes in granitic region with dense agriculture and residence. It is considered that the anomalous distribution of arsenic and fluoride is related to limestone and metasedimentry rock of Ogcheon belt with high contents of sulfide minerals and F bearing minerals. The

  2. Acid mine drainage contaminates groundwater of a Tennessee watershed

    NASA Astrophysics Data System (ADS)

    O'Bara, Christopher J.; Don Estes, R.

    1985-09-01

    Water samples were collected from 18 natural springs within the West Fork of the Obey River watershed. Overton County, Tennessee, to determine if groundwater was adversely affected by runoff from abandoned surface coal mines Six springs were found to be affected severely and deemed unfit as a source of potable water Water quality of the remaining springs was essentially unaffected it appeared that proximity to surface mines, elevation at the outflow, and geology of the surrounding strata determined the quality of the groundwater

  3. Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea

    NASA Astrophysics Data System (ADS)

    Jeong, Chan Ho

    2001-11-01

    Taejon Metropolitan City located in the central part of South Korea has grown and urbanized rapidly. The city depends heavily on groundwater as a water resource. Because of ubiquitous pollution sources, the quality and contamination have become important issues for the urban groundwater supply. This study has investigated the chemical characteristics and the contamination of groundwater in relation to land use. An attempt was made to distinguish anthrophogenic inputs from the influence of natural chemical weathering on the chemical composition of groundwater at Taejon. Groundwater samples collected at 170 locations in the Taejon area show very variable chemical composition of groundwater, e.g. electrical conductance ranges from 65 to 1,290 μS/cm. Most groundwater is weakly acidic and the groundwater chemistry is more influenced by land use and urbanization than by aquifer rock type. Most groundwater from green areas and new town residential districts has low electrical conductance, and is of Ca-HCO 3 type, whereas the chemical composition of groundwater from the old downtown and industrial district is shifted towards a Ca-Cl (NO 3+SO 4) type with high electrical conductance. A number of groundwater samples in the urbanized area are contaminated by high nitrate and chlorine, and exhibit high hardness. The EpCO 2, that is the CO 2 content of a water sample relative to pure water, was computed to obtain more insight into the origin of CO 2 and bicarbonate in the groundwater. The CO 2 concentration of groundwater in the urbanized area shows a rough positive relationship with the concentration of major inorganic components. The sources of nitrate, chlorine and excess CO 2 in the groundwater are likely to be municipal wastes of unlined landfill sites, leaky latrines and sewage lines. Chemical data of commercial mineral water from other Jurassic granite areas were compared to the chemical composition of the groundwater in the Taejon area. Factor analysis of the chemical

  4. Enhanced detection of groundwater contamination from a leaking waste disposal site by microbial community profiles

    NASA Astrophysics Data System (ADS)

    Mouser, Paula J.; Rizzo, Donna M.; Druschel, Gregory K.; Morales, Sergio E.; Hayden, Nancy; O'Grady, Patrick; Stevens, Lori

    2010-12-01

    Groundwater biogeochemistry is adversely impacted when municipal solid waste leachate, rich in nutrients and anthropogenic compounds, percolates into the subsurface from leaking landfills. Detecting leachate contamination using statistical techniques is challenging because well strategies or analytical techniques may be insufficient for detecting low levels of groundwater contamination. We sampled profiles of the microbial community from monitoring wells surrounding a leaking landfill using terminal restriction fragment length polymorphism (T-RFLP) targeting the 16S rRNA gene. Results show in situ monitoring of bacteria, archaea, and the family Geobacteraceae improves characterization of groundwater quality. Bacterial T-RFLP profiles showed shifts correlated to known gradients of leachate and effectively detected changes along plume fringes that were not detected using hydrochemical data. Experimental sediment microcosms exposed to leachate-contaminated groundwater revealed a shift from a β-Proteobacteria and Actinobacteria dominated community to one dominated by Firmicutes and δ-Proteobacteria. This shift is consistent with the transition from oxic conditions to an anoxic, iron-reducing environment as a result of landfill leachate-derived contaminants and associated redox conditions. We suggest microbial communities are more sensitive than hydrochemistry data for characterizing low levels of groundwater contamination and thus provide a novel source of information for optimizing detection and long-term monitoring strategies at landfill sites.

  5. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system.

    PubMed

    Babiker, Insaf S; Mohamed, Mohamed A A; Terao, H; Kato, Kikuo; Ohta, Keiichi

    2004-02-01

    This study employed the Geographical Information System (GIS) technology to investigate nitrate contamination of groundwater by agrochemical fertilizers in the Kakamigahara Heights, Gifu Prefecture, central Japan. Thematic information and chemical data of groundwater from the Heights were analyzed in a GIS environment to study the extent and variation of nitrate contamination and to establish spatial relationships with responsible land use types. The high and correlated concentrations of Ca(2+), Mg(2+), SO(4)(2-), and NO(3)(-) reflected the polluted nature of the unconfined highly permeable Kakamigahara aquifer. Ninety percent of the water samples showed nitrate concentrations above the human affected value (3 mg/l NO(3)(-)), while more than 30% have exceeded the maximum acceptable level (44 mg/l NO(3)(-)) according to Japan regulations. The spatial analyses indicated that groundwater contamination by nitrate is closely associated with one specific land use class, the "vegetable fields". The nitrate concentration of groundwater under vegetable fields was significantly higher than that under urban land or paddy fields. Most of the unacceptable nitrate levels were encountered in boreholes assigned to "vegetable fields" but a few were also found in boreholes allotted to "urban" class. Therefore, the vegetable fields were considered the principal source of nitrate contamination of groundwater in the Kakamigahara. However, contamination from urban sources is also possible.

  6. Accounting for Transport Parameter Uncertainty in Geostatistical Groundwater Contaminant Release History Estimation

    NASA Astrophysics Data System (ADS)

    Ostrowski, J.; Shlomi, S.; Michalak, A.

    2007-12-01

    The process of estimating the release history of a contaminant in groundwater relies on coupling a limited number of concentration measurements with a groundwater flow and transport model in an inverse modeling framework. The information provided by available measurements is generally not sufficient to fully characterize the unknown release history; therefore, an accurate assessment of the estimation uncertainty is required. The modeler's level of confidence in the transport parameters, expressed as pdfs, can be incorporated into the inverse model to improve the accuracy of the release estimates. In this work, geostatistical inverse modeling is used in conjunction with Monte Carlo sampling of transport parameters to estimate groundwater contaminant release histories. Concentration non-negativity is enforced using a Gibbs sampling algorithm based on a truncated normal distribution. The method is applied to two one-dimensional test cases: a hypothetical dataset commonly used in validating contaminant source identification methods, and data collected from a tetrachloroethylene and trichloroethylene plume at the Dover Air Force Base in Delaware. The estimated release histories and associated uncertainties are compared to results from a geostatistical inverse model where uncertainty in transport parameters is ignored. Results show that the a posteriori uncertainty associated with the model that accounts for parameter uncertainty is higher, but that this model provides a more realistic representation of the release history based on available data. This modified inverse modeling technique has many applications, including assignment of liability in groundwater contamination cases, characterization of groundwater contamination, and model calibration.

  7. Optimization-based multicriteria decision analysis for identification of desired petroleum-contaminated groundwater remediation strategies.

    PubMed

    Lu, Hongwei; Feng, Mao; He, Li; Ren, Lixia

    2015-06-01

    The conventional multicriteria decision analysis (MCDA) methods used for pollution control generally depend on the data currently available. This could limit their real-world applications, especially where the input data (e.g., the most cost-effective remediation cost and eventual contaminant concentration) might vary by scenario. This study proposes an optimization-based MCDA (OMCDA) framework to address such a challenge. It is capable of (1) capturing various preferences of decision-makers, (2) screening and analyzing the performance of various optimized remediation strategies under changeable scenarios, and (3) compromising incongruous decision analysis results. A real-world case study is employed for demonstration, where four scenarios are considered with each one corresponding to a set of weights representative of the preference of the decision-makers. Four criteria are selected, i.e., optimal total pumping rate, remediation cost, contaminant concentration, and fitting error. Their values are determined through running optimization and optimization-based simulation procedures. Four sets of the most desired groundwater remediation strategies are identified, implying specific pumping rates under varied scenarios. Results indicate that the best action lies in groups 32 and 16 for the 5-year, groups 49 and 36 for the 10-year, groups 26 and 13 for the 15-year, and groups 47 and 13 for the 20-year remediation.

  8. Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998

    SciTech Connect

    1998-04-01

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

  9. A Contamination Vulnerability Assessment for the Santa Clara and San Mateo County Groundwater Basins

    SciTech Connect

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2004-01-06

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as MtBE from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater-monitoring plan, and led to the initiation of the Ambient Groundwater Monitoring and Assessment (GAMA) Program. The primary objective of the GAMA Program is to assess the water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey, the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement this groundwater assessment program. In 2001 and 2002, LLNL carried out this vulnerability study in the groundwater basins of Santa Clara County and San Mateo County, located to the south of the city of San Francisco. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3 method). In addition, stable oxygen isotope measurements

  10. Two-stage bioreactor to destroy chlorinated and nonchlorinated organic groundwater contaminants

    SciTech Connect

    Folsom, B.R.; Bohner, A.K.; Burick, T.; Guarini, W.J.

    1995-12-31

    Both chlorinated and nonchlorinated volatile organic compounds are found as common contaminants of groundwater across the nation. Two field-pilot bioreactors successfully treated contaminated groundwater at Robins Air Force Base (AFB). The fluidized-bed bioreactor (FBR) effectively removed >97% of the 1,2-dichlorobenzene (DCB) and >95% of the benzene, toluene, ethylbenzene, and xylene(s) (BTEX) from more than 210,000 gal of contaminated groundwater. The FBR removed 84% of the trichloroethylene (TCE), also found in this groundwater, based on a total mass balance beyond carbon adsorption. Enhanced operational stability was demonstrated for the gas-phase reactor (GPR) with 10 months of continuous operation in the laboratory and 2 months in the field. TCE concentrations in contaminated air entering the pilot GPR were reduced by 75% on average. Capital and operating costs for the FBR system were compared to other treatment options including ultraviolet (UV)-peroxidation, air stripping with carbon adsorption, and wet carbon adsorption. GPR economics were compared to carbon adsorption at two TCE concentrations. These bioreactor systems provide economical, destructive technologies for treating either contaminated water or contaminated air originating from air stripping, air sparging, or soil vapor extraction operations and will be effective remedial options at many sites.

  11. Persistence of a Groundwater Contaminant Plume after Hydraulic Source Containment at a Chlorinated-Solvent Contaminated Site

    PubMed Central

    Matthieu, D.E.; Brusseau, M.L.; Guo, Z.; Plaschke, M.; Carroll, K.C.; Brinker, F.

    2015-01-01

    The objective of this study was to characterize the behavior of a groundwater contaminant (trichloroethene) plume after implementation of a source-containment operation at a site in Arizona. The plume resides in a quasi three-layer system comprising a sand/gravel unit bounded on the top and bottom by relatively thick silty clayey layers. The system was monitored for 60 months beginning at start-up in 2007 to measure the change in contaminant concentrations within the plume, the change in plume area, the mass of contaminant removed, and the integrated contaminant mass discharge. Concentrations of trichloroethene in groundwater pumped from the plume extraction wells have declined significantly over the course of operation, as have concentrations for groundwater sampled from 40 monitoring wells located within the plume. The total contaminant mass discharge associated with operation of the plume extraction wells peaked at 0.23 kg/d, decreased significantly within one year, and thereafter began an asymptotic decline to a current value of approximately 0.03 kg/d. Despite an 87% reduction in contaminant mass and a comparable 87% reduction in contaminant mass discharge for the plume, the spatial area encompassed by the plume has decreased by only approximately 50%. This is much less than would be anticipated based on ideal flushing and mass-removal behavior. Simulations produced with a simplified 3-D numerical model matched reasonably well to the measured data. The results of the study suggest that permeability heterogeneity, back diffusion, hydraulic factors associated with the specific well field system, and residual discharge from the source zone are all contributing to the observed persistence of the plume, as well as the asymptotic behavior currently observed for mass removal and for the reduction in contaminant mass discharge. PMID:26069436

  12. [Simulation on contamination forecast and control of groundwater in a certain hazardous waste landfill].

    PubMed

    Ma, Zhi-Fei; An, Da; Jiang, Yong-Hai; Xi, Bei-Dou; Li, Ding-Long; Zhang, Jin-Bao; Yang, Yu

    2012-01-01

    On the basis of site investigation and data collection of a certain hazardous waste landfill, the groundwater flow and solute transport coupled models were established by applying Visual Modflow software, which was used to conduct a numerical simulation that forecast the transport process of Cr6+ in groundwater and the effects of three control measures (ground-harden, leakage-proof barriers and drainage ditches) of contaminants transport after leachate leakage happened in impermeable layer of the landfill. The results show that the contamination plume of Cr6+ transports with groundwater flow direction, the contamination rang would reach the pool's boundary in 10 years, and the distance of contamination transport is 1 450 m. But the diffusion range of contamination plume would not be obviously expanded between 10 and 20 years. While the ground is hardened, the contamination plume would not reach the pool's boundary in 20 years. When the leakage-proof barrier is set in the bottom of water table aquifer, the concentration of Cr6+ is higher than that the leakage-proof barrier is unset, but the result is just opposite when setting the leakage-proof barrier in the bottom of underlying aquifer. The range of contamination plume is effectively controlled by setting drainage ditches that water discharge is 2 642 m3 x d(-1), which makes the monitoring wells would not be contaminated in 20 years. Moreover, combining the ground-harden with drainage ditches can get the best effect in controlling contaminants diffusion, and meanwhile, the drainage ditches' daily discharge is reduced to 1 878 m3 x d(-1). Therefore, it is suggested that the control measure combining the ground-harden with drainage ditches should apply to prevent contamination diffusion in groundwater when leachate leakage have happened in impermeable layer of the landfill.

  13. Ultrasonic process for remediation of organics-contaminated groundwater/wastewater

    SciTech Connect

    Wu, J.M.; Peters, R.W.

    1995-07-01

    A technology is being developed that employs ultrasonic-wave energy for remediation of groundwater/wastewater contaminated with volatile organic compounds such as carbon tetrachloride (CCl{sub 4}) and trichloroethylene (TCE). This paper presents the updated results of a laboratory investigation of ultrasonic groundwater remediation using synthetic groundwaters prepared with laboratory deionized water. Key process parameters investigated included steady-state temperature, contaminant concentration, solution pH, sonication time, and intensity of the applied ultrasonics-wave energy. High destruction efficiencies of the target contaminants were achieved, and the sonication time required for a given degree of destruction decreased with increasing intensity of the applied ultrasonic energy. The sonication time can be further reduced by adding a chemical oxidant such as hydrogen peroxide.

  14. Human impacts on groundwater flow and contamination deduced by multiple isotopes in Seoul City, South Korea.

    PubMed

    Hosono, Takahiro; Ikawa, Reo; Shimada, Jun; Nakano, Takanori; Saito, Mitsuyo; Onodera, Shin-ichi; Lee, Kang-Kun; Taniguchi, Makoto

    2009-04-15

    The influence of human activities on the flow system and contamination of groundwater were investigated in Seoul City, South Korea, one of the largest Asian cities, using a combination of isotopes (deltaD, T, delta15N, delta18O, delta34S, and 87Sr/86Sr). Eighteen representative groundwater and river water samples, which were collected over a wide area of the city, were compared with previously reported data. The distribution of stable isotopes (deltaD and delta18O) with groundwater potential data shows that recharged groundwater from either the surrounding mountainous area as well as the Han River and other surface streams discharged towards the northern-central part of the city, where a subway tunnel pumping station is located. It is suggested from T values (3.3 to 5.8 T.U.) that groundwater was recharged in the last 30 to 40 years. The delta34S and delta15N of SO4(2-) and NO3- data were efficiently used as indicators of contamination by human activities. These isotopes clarified that the contribution of anthropogenic contaminants i.e., industrial and household effluents, waste landfills, and fertilizers, are responsible for the enrichment by SO4(2-) (>30 ppm as SO4(2-)) and NO3- (>20 ppm as NO3-) of groundwater. The 87Sr/86Sr values of groundwater vary (0.71326 to 0.75058) in accordance with the host rocks of different origins. Mineral elements such as Ca are also suggested to be derived naturally from rocks. The groundwater under Seoul City is greatly affected by transportation of pollutants along the groundwater flow controlled by subway tunnel pumping, contributing to the degradation of water quality in urbanized areas.

  15. In-situ remediation system and method for contaminated groundwater

    DOEpatents

    Corey, John C.; Looney, Brian B.; Kaback, Dawn S.

    1989-01-01

    A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like.

  16. In-situ remediation system and method for contaminated groundwater

    DOEpatents

    Corey, J.C.; Looney, B.B.; Kaback, D.S.

    1989-05-23

    A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like. 3 figs.

  17. Superfund Record of Decision (EPA Region 9): Modesto Groundwater Contamination, Modesto, CA, September 26, 1997

    SciTech Connect

    1998-01-01

    This decision document presents the selected interim remedial action (IRA) for the Modesto Ground Water Contamination Site in Modesto, Stanislaus County, California. The primary components of the selected remedy include groundwater extraction, groundwater treatment by air stripping with carbon adsorption, discharge of treated groundwater to the City of Modesto`s water system, and soil vapor extraction (SVE) followed by carbon adsorption. The selected alternative is expected to remove a substantial portion of dissolved PCE from the groundwater. EPA will be monitoring the downgradient edge of the plume to determine if the remaining PCE would be removed through natural attenuation. If necessary to comply with discharge requirements, extracted groundwater will also be treated using an ion exchange unit to remove naturally occurring uranium.

  18. Ethanol-based in situ bioremediation of acidified, nitrate-contaminated groundwater.

    PubMed

    Salminen, Jani M; Petäjäjärvi, Sanna J; Tuominen, Sirkku M; Nystén, Taina H

    2014-10-15

    A novel approach for the in situ bioremediation of acidified, nitrate-contaminated groundwater was developed. Ethanol was introduced into the groundwater to enhance the activity of intrinsic denitrifying micro-organisms. Infiltration of the carbon source was made via an infiltration gallery constructed in the unsaturated zone to avoid clogging problems and to allow wider distribution of ethanol in the groundwater. The changes in the groundwater geochemistry and soil gas composition were monitored at the site to evaluate the efficiencies of the infiltration system and nitrate removal. Moreover, the impact of pH and ethanol addition on the denitrification rate was studied in laboratory. A reduction of 95% was achieved in the groundwater nitrate concentrations during the study. Neither clogging problems nor inefficient introduction of ethanol into the saturated zone were observed. Most crucial to the denitrifying communities was pH, values above 6 were required for efficient denitrification.

  19. Groundwater Nitrate Contamination Risk Assessment in Canicattì area (Sicily)

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Cusimano, Gioacchino; Favara, Rocco

    2010-05-01

    Groundwaters play a dominant role in the Sicily, because as most part of Mediterranean countries this island is interested by the phenomenon of desertification and the quality of the groundwater reservoir is one of the most important aim for the management policy strategies. During last decade most of the Italian regions the nitrate levels in river and groundwaters have increased gradually over mainly as a consequence of large-scale agricultural application of manure and fertilizers, thereby threatening drinking water quality. The excessive use of chemicals and fertilizers increases the risk to pollution of surface and groundwater from diffuse source, an important reflex to human health and the environment. The studied area is located in Canicattì (central Sicily, Italy), the current land use (grape, olive grove and almond) is the main source of groundwater pollution. In order to investigate the effect of the over farming on the groundwater quality we report the study on the potential risk of contamination from nitrate of agricultural origin through the join of the application of two parametric methods: the IPNOA method (the intrinsic nitrate contamination risk from Agricultural sources) applied to define the Nitrate Vulnerable Zones and the SINTACS method applied to determine the aquifer vulnerability to contamination.

  20. [Solute transport modeling application in groundwater organic contaminant source identification].

    PubMed

    Wang, Shu-Fang; Wang, Li-Ya; Wang, Xiao-Hong; Lin, Pei; Liu, Jiu-Rong; Xin, Bao-Dong; He, Guo-Ping

    2012-03-01

    Investigation and numerical simulation, based on RT3D (reactive transport in 3-dimensions)were used to identify the source of tetrachloroethylene (PCE) and trichloroethylene (TCE) in the groundwater of a city in the north of China and reverse the input intensity. Multiple regressions were applied to analyze the influenced factors of input intensity of PCE and TCE using Stepwise function in Matlab. The results indicate that the factories and industries are the source of the PCE and TCE in groundwater. Natural attenuation was identified and the natural attenuation rates are 93.15%, 61.70% and 61.00% for PCE, and 70.05%, 73.66% and 63.66% for TCE in 173 days. The 4 source points identified by the simulation have released 0.910 6 kg PCE and 95.693 8 kg TCE during the simulation period. The regression analysis results indicate that local precipitation and the thickness of vadose zone are the main factors influencing organic solution transporting from surface to groundwater. The PCE and TCE concentration are found to be 0 and 5 mg x kg(-1) from surface to 35 cm in vadose zone. All above results suggest that PCE and TCE in groundwater are from the source in the surface. Natural attenuation occurred when PCE and TCE transporting from the surface to groundwater, and the rest was transported to groundwater through vadose zone. Local precipitation was one of the critical factors influencing the transportation of PCE and TCE to aquifer through sand, pebble and gravel of the Quaternary.

  1. Groundwater contamination. Volume 2: Management, containment, risk assessment and legal issues

    SciTech Connect

    Rail, C.D.

    2000-07-01

    This book explains in a comprehensive way the sources for groundwater contamination, the regulations governing it, and the technologies for abating it. Volume 2 discusses aquifer management, including technologies to control and stabilize multiple influxes into the water table. This volume outlines strategies for stormwater control and groundwater restoration and presents numerous case histories of site analysis and remediation based on DOE and state documents. Among the many new features of this edition are a full discussion of risk assessment, the preparation of groundwater protection plans, and references linking the text to over 2,300 water-related Web sites.

  2. Pollution potential of oil-contaminated soil on groundwater resources in Kuwait.

    PubMed

    Literathy, P; Quinn, M; Al-Rashed, M

    2003-01-01

    The only natural freshwater resource of Kuwait occurs as lenses floating on the saline groundwater in the northern part of the country, near to the oil fields. Rainwater is the only means of recharge of this limited groundwater resource. This groundwater is used as bottled drinking water and the fresh groundwater aquifer is considered as a strategic drinking water reserve for Kuwait. As a result of the 1991 Gulf War, the upper soil layer has been widely contaminated with crude oil and crude oil combustion products, which are potential pollutants likely affecting the groundwater resources. Significant efforts have been made to assess this pollution. These included: (a) a soil survey for assessing the soil contamination, and (b) leaching experiments to characterise the mobilization of the soil-associated pollutants. Fluorescence measurement techniques were used during field surveys as well as for laboratory testing. In addition, determination of the total extractable matter (TEM), total petroleum hydrocarbons (TPH), and GC/MS measurement of polyaromatic hydrocarbons (PAHs) were performed for the assessments. The laser induced fluorescence (LIF) measurement, having good correlation with the other laboratory measurements, was proved to provide necessary information for the assessment of the oil-contamination level in the desert soil. The subsequent leaching test with water demonstrated the mobilization of the fluorescing compounds (e.g. PAHs), and the alteration in the leaching characteristics of the contamination during the long-term environmental weathering of the oil.

  3. Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation.

    PubMed

    Shankar, Shiv; Shanker, Uma; Shikha

    2014-01-01

    Arsenic contamination of groundwater in different parts of the world is an outcome of natural and/or anthropogenic sources, leading to adverse effects on human health and ecosystem. Millions of people from different countries are heavily dependent on groundwater containing elevated level of As for drinking purposes. As contamination of groundwater, poses a serious risk to human health. Excessive and prolonged exposure of inorganic As with drinking water is causing arsenicosis, a deteriorating and disabling disease characterized by skin lesions and pigmentation of the skin, patches on palm of the hands and soles of the feet. Arsenic poisoning culminates into potentially fatal diseases like skin and internal cancers. This paper reviews sources, speciation, and mobility of As and global overview of groundwater As contamination. The paper also critically reviews the As led human health risks, its uptake, metabolism, and toxicity mechanisms. The paper provides an overview of the state-of-the-art knowledge on the alternative As free drinking water and various technologies (oxidation, coagulation flocculation, adsorption, and microbial) for mitigation of the problem of As contamination of groundwater.

  4. Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation.

    PubMed

    Shankar, Shiv; Shanker, Uma; Shikha

    2014-01-01

    Arsenic contamination of groundwater in different parts of the world is an outcome of natural and/or anthropogenic sources, leading to adverse effects on human health and ecosystem. Millions of people from different countries are heavily dependent on groundwater containing elevated level of As for drinking purposes. As contamination of groundwater, poses a serious risk to human health. Excessive and prolonged exposure of inorganic As with drinking water is causing arsenicosis, a deteriorating and disabling disease characterized by skin lesions and pigmentation of the skin, patches on palm of the hands and soles of the feet. Arsenic poisoning culminates into potentially fatal diseases like skin and internal cancers. This paper reviews sources, speciation, and mobility of As and global overview of groundwater As contamination. The paper also critically reviews the As led human health risks, its uptake, metabolism, and toxicity mechanisms. The paper provides an overview of the state-of-the-art knowledge on the alternative As free drinking water and various technologies (oxidation, coagulation flocculation, adsorption, and microbial) for mitigation of the problem of As contamination of groundwater. PMID:25374935

  5. Arsenic Contamination of Groundwater: A Review of Sources, Prevalence, Health Risks, and Strategies for Mitigation

    PubMed Central

    Shikha

    2014-01-01

    Arsenic contamination of groundwater in different parts of the world is an outcome of natural and/or anthropogenic sources, leading to adverse effects on human health and ecosystem. Millions of people from different countries are heavily dependent on groundwater containing elevated level of As for drinking purposes. As contamination of groundwater, poses a serious risk to human health. Excessive and prolonged exposure of inorganic As with drinking water is causing arsenicosis, a deteriorating and disabling disease characterized by skin lesions and pigmentation of the skin, patches on palm of the hands and soles of the feet. Arsenic poisoning culminates into potentially fatal diseases like skin and internal cancers. This paper reviews sources, speciation, and mobility of As and global overview of groundwater As contamination. The paper also critically reviews the As led human health risks, its uptake, metabolism, and toxicity mechanisms. The paper provides an overview of the state-of-the-art knowledge on the alternative As free drinking water and various technologies (oxidation, coagulation flocculation, adsorption, and microbial) for mitigation of the problem of As contamination of groundwater. PMID:25374935

  6. Applying membrane technology to air stripping effluent for remediation of groundwater contaminated with volatile organic compounds

    SciTech Connect

    Brown, J.J.; Erickson, M.D.; Beskid, N.J.

    1993-12-31

    Remediation groundwater contaminated by volatile organic compounds (VOCs) requires cost- and technically-effective solutions. This paper reviews the options for VOC removal from remediation air streams, focusing on membrane separation. The basic separation science and technology, results of performance tests, and results of cost studies for membrane separation are presented. Competing technologies are discussed and compared with membrane separation. Membrane separation combined with air stripping will provide an economically and environmentally safe technology for remediation of VOC-contaminated groundwater and, as it matures, may become the preferred method. 9 refs., 6 figs., 2 tabs.

  7. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    SciTech Connect

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    Groundwater flow and radionuclide transport at the Shoal underground nuclear test are characterized using three-dimensional numerical models, based on site-specific hydrologic data. The objective of this modeling is to provide the flow and transport models needed to develop a contaminant boundary defining the extent of radionuclide-contaminated groundwater at the site throughout 1,000 years at a prescribed level of confidence. This boundary will then be used to manage the Project Shoal Area for the protection of the public and the environment.

  8. Treatment of TNT contaminated soil and groundwater using plant-based enzyme systems

    SciTech Connect

    Medina, V.F.; Wolfe, L.; McCutcheon, S.C.

    1995-12-31

    Trinitrotoluene (TNT) is considered toxic and a mutagen. For over 100 years, TNT has been widely used in explosives for both military and commercial applications. Soil and groundwater contamination by TNT is prevalent at military bases, manufacturing facilities and at commercial (such as mining) sites were TNT was used or stored. TNT is a difficult compound to treat. It is resistant to complete microbial degradation. Although incineration is feasible, it can be costly. One promising technology is degradation using plant enzyme systems, which has become known as phytoremediation. This paper will highlight bench and field studies of phytoremediation of TNT contaminated soil and groundwater. Parameters for developing a model will be discussed.

  9. Treatment of contaminated groundwaters with granular activated carbon and air stripping

    SciTech Connect

    Stenzel, M.H.; Gupta, U.S.

    1985-01-01

    Over the past several years there have been increasing reports of cases of contaminated groundwater. Many cases were caused by leaking from surface impoundments or landfills, or leakage from underground storage tanks. Treatment of groundwater use, discharge or recharge into the aquifer is becoming a major concern. Two widely used treatment techniques are adsorption with granular activated carbon and packed tower air stripping. Granular activated carbon is often applied when organic contaminants need to be removed to nondetectable levels, and should be a part of the process if nonvolatile contaminants are present. Air stripping is capable of 95-99% reduction of volatile contaminants and can be a cost effective treatment technology if nondetectable contaminant levels are not required and air pollution is not a factor. Should off-gas from an air stripper require treatment for removal of organic contaminants, granular activated carbon adsorption can be effectively applied as it was in the water phase. Selection of a groundwater treatment technology depends on factors such as contaminant type, end use of the water and air pollution concern, and each case requires consideration of these factors to arrive at the most cost effective solution.

  10. Nuclear decontamination technology evaluation to address contamination of a municipal water system

    SciTech Connect

    McFee, J.; Langsted, J.; Young, M.; Porcon, J.; Day, E.

    2007-07-01

    The US Environmental Protection Agency (EPA) and US Department of Homeland Security (DHS) are considering the impact and recovery from contamination of municipal water systems, including intentional contamination of those systems. Industrial chemicals, biological agents, drugs, pesticides, chemical warfare agents, and radionuclides all could be introduced into a municipal water system to create detrimental health effects and disrupt a community. Although unintentional, the 1993 cryptosporidium contamination of the Milwaukee WS water system resulted in 100 fatalities and disrupted the city for weeks. Shaw Environmental and Infrastructure Inc, (Shaw), as a subcontractor on a DHS contract with Michael Baker Jr., Inc., was responsible for evaluation of the impact and recovery from radionuclide contamination in a municipal water system distribution system. Shaw was tasked to develop a matrix of nuclear industry decontamination technologies and evaluate applicability to municipal water systems. Shaw expanded the evaluation to include decontamination methods commonly used in the drinking water supply. The matrix compared all technologies for implementability, effectiveness, and cost. To address the very broad range of contaminants and contamination scenarios, Shaw bounded the problem by identification of specific contaminant release scenario(s) for specific water system architecture(s). A decontamination technology matrix was developed containing fifty-nine decontamination technologies potentially applicable to the water distribution system piping, pumps, tanks, associated equipment, and/or contaminated water. Qualitatively, the majority of the nuclear industry decontamination technologies were eliminated from consideration due to implementability concerns. However, inclusion of the municipal water system technologies supported recommendations that combined the most effective approaches in both industries. (authors)

  11. Development of Chemical Indicators of Groundwater Contamination Near the Carcass Burial Site

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, J.; Kim, M.; Choi, J.; Lee, M.; Lee, H.; Jeon, S.; Bang, S.; Noh, H.; Yoo, J.; Park, S.; Kim, H.; Kim, D.; Lee, Y.; Han, J.

    2011-12-01

    A serious outbreak of foot and mouth disease (FMD) and avian influenza (AI) led to the culling of millions of livestock in South Korea from late 2010 to earlier 2011. Because of the scale of FMD and AI epidemic in Korea and rapid spread of the diseases, mass burial for the disposal of carcass was conducted to halt the outbreak. The improper construction of the burial site or inappropriate management of the carcass burial facility can cause the contamination of groundwater mainly due to the discharges of leachate through the base of disposal pit. The leachate from carcass burial contains by products of carcass decay such as amino acids, nitrate, ammonia and chloride. The presence of these chemical components in groundwater can be used as indicators demonstrating contamination of groundwater with leachate from carcass. The major concern about using these chemical indicators is that other sources including manures, fertilizers and waste waters from human or animal activities already exist in farming area. However, we lack the understanding of how groundwater contamination due to mass burial of carcass can be differentiated from the contamination due to livestock manures which shows similar chemical characteristics. The chemical compositions of the leachate from carcass burial site and the wastewater from livestock manure treatment facilities were compared. The chemical compositions considered include total organic carbon (TOC), total nitrogen (TN), nitrate, organic nitrogen (Organic nitrogen =TN-Ammonium Nitrogen- Nitrate nitrogen), ammonia, chloride, sodium, potassium and amino acids (20 analytes). The ratios of concentrations of the chemical compositions as indicators of contamination were determined to distinguish the sources of contamination in groundwater. Indicators which showed a linear relationship between two factors and revealed a distinct difference between the carcass leachate and livestock manure were chosen. In addition, the background level of the

  12. Remediation of arsenic-contaminated soils and groundwaters

    DOEpatents

    Peters, Robert W.; Frank, James R.; Feng, Xiandong

    1998-01-01

    An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

  13. Remediation of arsenic-contaminated soils and groundwaters

    DOEpatents

    Peters, R.W.; Frank, J.R.; Feng, X.

    1998-06-23

    An in situ method is described for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal. 8 figs.

  14. STATISTICAL ESTIMATION AND VISUALIZATION OF GROUND-WATER CONTAMINATION DATA

    EPA Science Inventory

    This work presents methods of visualizing and animating statistical estimates of ground water and/or soil contamination over a region from observations of the contaminant for that region. The primary statistical methods used to produce the regional estimates are nonparametric re...

  15. Urban groundwater contamination by residues of UV filters.

    PubMed

    Jurado, Anna; Gago-Ferrero, Pablo; Vàzquez-Suñé, Enric; Carrera, Jesus; Pujades, Estanislao; Díaz-Cruz, M Silvia; Barceló, Damià

    2014-04-30

    The occurrence and fate of UV filters (UV F) in an urban aquifer in correlation with (1) the spatial distribution of UV F in Barcelona's groundwater, (2) the depth of the groundwater sample, (3) the physicochemical properties of the target compounds, (4) the recharge sources, and (5) the redox conditions of the Barcelona aquifers, were studied for the first time. The highest groundwater concentrations and the largest number of detected UV F were observed in an aquifer recharged by a polluted river (around 55 ng/L in SAP-4). In contrast, the urbanized areas had lower concentrations (around 20 ng/L in MPSP-1). Two pathways can be identified for UV F to enter the aquifers: (1) leakage of row sewage from the sewage network in urbanized areas and (2) wastewater treatment plant (WWTP) effluents discharged into the river. Measured concentrations of UV F were significantly much lower than those estimated from the waste water proportion in groundwater samples suggesting that UV F might undergo transformation processes in both reducing and oxidizing conditions.

  16. Natural attenuation model and biodegradation for 1,1,1-trichloroethane contaminant in shallow groundwater

    PubMed Central

    Lu, Qiang; Zhu, Rui-Li; Yang, Jie; Li, Hui; Liu, Yong-Di; Lu, Shu-Guang; Luo, Qi-Shi; Lin, Kuang-Fei

    2015-01-01

    Natural attenuation is an effective and feasible technology for controlling groundwater contamination. This study investigated the potential effectiveness and mechanisms of natural attenuation of 1,1,1-trichloroethane (TCA) contaminants in shallow groundwater in Shanghai by using a column simulation experiment, reactive transport model, and 16S rRNA gene clone library. The results indicated that the majority of the contaminant mass was present at 2–6 m in depth, the contaminated area was approximately 1000 m × 1000 m, and natural attenuation processes were occurring at the site. The effluent breakthrough curves from the column experiments demonstrated that the effectiveness of TCA natural attenuation in the groundwater accorded with the advection-dispersion-reaction equation. The kinetic parameter of adsorption and biotic dehydrochlorination of TCA was 0.068 m3/kg and 0.0045 d–1. The contamination plume was predicted to diminish and the maximum concentration of TCA decreased to 280 μg/L. The bacterial community during TCA degradation in groundwater belonged to Trichococcus, Geobacteraceae, Geobacter, Mucilaginibacter, and Arthrobacter. PMID:26379629

  17. Natural attenuation model and biodegradation for 1,1,1-trichloroethane contaminant in shallow groundwater.

    PubMed

    Lu, Qiang; Zhu, Rui-Li; Yang, Jie; Li, Hui; Liu, Yong-Di; Lu, Shu-Guang; Luo, Qi-Shi; Lin, Kuang-Fei

    2015-01-01

    Natural attenuation is an effective and feasible technology for controlling groundwater contamination. This study investigated the potential effectiveness and mechanisms of natural attenuation of 1,1,1-trichloroethane (TCA) contaminants in shallow groundwater in Shanghai by using a column simulation experiment, reactive transport model, and 16S rRNA gene clone library. The results indicated that the majority of the contaminant mass was present at 2-6 m in depth, the contaminated area was approximately 1000 m × 1000 m, and natural attenuation processes were occurring at the site. The effluent breakthrough curves from the column experiments demonstrated that the effectiveness of TCA natural attenuation in the groundwater accorded with the advection-dispersion-reaction equation. The kinetic parameter of adsorption and biotic dehydrochlorination of TCA was 0.068 m(3)/kg and 0.0045 d(-1). The contamination plume was predicted to diminish and the maximum concentration of TCA decreased to 280 μg/L. The bacterial community during TCA degradation in groundwater belonged to Trichococcus, Geobacteraceae, Geobacter, Mucilaginibacter, and Arthrobacter. PMID:26379629

  18. Pentachlorophenol contaminated groundwater bioremediation using immobilized Sphingomonas cells inoculation in the bioreactor system.

    PubMed

    Yang, Chu-Fang; Lee, Chi-Mei

    2008-03-21

    Pentachlorophenol (PCP) has been used as a wood preservative for more than 100 years. The extensive use of PCP has widely contaminated soil and groundwater. PCP is toxic to living organisms. The main objective of this research was to inoculate the pure PCP-degrading bacterium strain Sphingomonas chlorophenolica PCP-1, isolated from PCP-contaminated soils, into PCP-contaminated groundwater for remediation purposes. The factors that influenced the bioremediation were explored with batch experiments using the inoculated immobilized and suspended cells as inoculation. A biological treatment system inoculated with immobilized cells was set up to estimate the microbial capability to degrade PCP. The results indicated that the suspended and immobilized cells could be inoculated into PCP-contaminated groundwater without adding other supplementary nitrogen and phosphate sources in batch conditions. Moreover, PCP decomposition was accompanied with released Cl- and decreasing pH value. The optimum HRT in the bioreactor system was 12.6h. PCP removal in the bioreactor remained stable and PCP removal efficiency was higher than 92% at this phase. Furthermore, PCP concentration in the biotreatment system effluent remained undetectable. It is possible to bioremediate PCP-contaminated groundwater using immobilized S. chlorophenolica PCP-1 cells in a bioreactor system. The proposed biological treatment system could be maintained for at least for 2 months.

  19. Natural attenuation model and biodegradation for 1,1,1-trichloroethane contaminant in shallow groundwater.

    PubMed

    Lu, Qiang; Zhu, Rui-Li; Yang, Jie; Li, Hui; Liu, Yong-Di; Lu, Shu-Guang; Luo, Qi-Shi; Lin, Kuang-Fei

    2015-01-01

    Natural attenuation is an effective and feasible technology for controlling groundwater contamination. This study investigated the potential effectiveness and mechanisms of natural attenuation of 1,1,1-trichloroethane (TCA) contaminants in shallow groundwater in Shanghai by using a column simulation experiment, reactive transport model, and 16S rRNA gene clone library. The results indicated that the majority of the contaminant mass was present at 2-6 m in depth, the contaminated area was approximately 1000 m × 1000 m, and natural attenuation processes were occurring at the site. The effluent breakthrough curves from the column experiments demonstrated that the effectiveness of TCA natural attenuation in the groundwater accorded with the advection-dispersion-reaction equation. The kinetic parameter of adsorption and biotic dehydrochlorination of TCA was 0.068 m(3)/kg and 0.0045 d(-1). The contamination plume was predicted to diminish and the maximum concentration of TCA decreased to 280 μg/L. The bacterial community during TCA degradation in groundwater belonged to Trichococcus, Geobacteraceae, Geobacter, Mucilaginibacter, and Arthrobacter.

  20. Development of a microbial contamination susceptibility model for private domestic groundwater sources

    NASA Astrophysics Data System (ADS)

    Hynds, Paul D.; Misstear, Bruce D.; Gill, Laurence W.

    2012-12-01

    Groundwater quality analyses were carried out on samples from 262 private sources in the Republic of Ireland during the period from April 2008 to November 2010, with microbial quality assessed by thermotolerant coliform (TTC) presence. Assessment of potential microbial contamination risk factors was undertaken at all sources, and local meteorological data were also acquired. Overall, 28.9% of wells tested positive for TTC, with risk analysis indicating that source type (i.e., borehole or hand-dug well), local bedrock type, local subsoil type, groundwater vulnerability, septic tank setback distance, and 48 h antecedent precipitation were all significantly associated with TTC presence (p < 0.05). A number of source-specific design parameters were also significantly associated with bacterial presence. Hierarchical logistic regression with stepwise parameter entry was used to develop a private well susceptibility model, with the final model exhibiting a mean predictive accuracy of >80% (TTC present or absent) when compared to an independent validation data set. Model hierarchies of primary significance are source design (20%), septic tank location (11%), hydrogeological setting (10%), and antecedent 120 h precipitation (2%). Sensitivity analysis shows that the probability of contamination is highly sensitive to septic tank setback distance, with probability increasing linearly with decreases in setback distance. Likewise, contamination probability was shown to increase with increasing antecedent precipitation. Results show that while groundwater vulnerability category is a useful indicator of aquifer susceptibility to contamination, its suitability with regard to source contamination is less clear. The final model illustrates that both localized (well-specific) and generalized (aquifer-specific) contamination mechanisms are involved in contamination events, with localized bypass mechanisms dominant. The susceptibility model developed here could be employed in the

  1. Phytoremediation of explosives contaminated groundwater in constructed wetlands: 2. Flow through study. Draft report

    SciTech Connect

    DBehrends, L.L.; Sikora, F.J.; Phillips, W.D.; Baily, E.; McDonald, C.

    1996-02-01

    This study evaluates the utility of constructed wetlands for remediating explosives contaminated groundwaters using bench scale flow-through type reactors. Specifially the study examines: the degradation of TNT, TNB, RDX, and HMX in contaminated waters in plant lagoons and gravel-based wetlands. The study also provides design recommendations for the wetland demonstration project to be located at the Milan Army Ammunition Plant (MAAP), in Tennessee.

  2. Alternative Endpoints and Approaches Selected for the Remediation of Contaminated Groundwater at Complex Sites

    NASA Astrophysics Data System (ADS)

    Deeb, R. A.; Hawley, E.

    2011-12-01

    This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and alternative remedial strategies for groundwater remediation under a variety of Federal and state cleanup programs, including technical impracticability (TI) and other Applicable or Relevant and Appropriate Requirement (ARAR) waivers, state and local designations such as groundwater management zones, Alternate Concentration Limits (ACLs), use of monitored natural attenuation (MNA) over long timeframes, and more. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies to illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, timeframe, and potential remedial effectiveness. Case studies provide examples of the flexible, site-specific, application of alternative endpoints and alternative remedial strategies that have been used in the past to manage and remediate groundwater contamination at complex sites. For example, at least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. These designations typically indicate that groundwater contamination is present above permissible levels. Soil and groundwater within these zones are managed to protect human health and the environment. Lesson learned for the analyses

  3. The Use of Bacteria for Remediation of Mercury Contaminated Groundwater

    EPA Science Inventory

    Many processes of mercury transformation in the environment are bacteria mediated. Mercury properties cause some difficulties of remediation of mercury contaminated environment. Despite the significance of the problem of mercury pollution, methods of large scale bioremediation ...

  4. Influence Of Groundwater Discharge On Arsenic Contamination In Sediments

    EPA Science Inventory

    A field investigation was conducted to evaluate the impact of a discharging arsenic plume on sediment contaminant characteristics at a site adjacent to a landfill in northeastern Massachusetts. Site characterization included assessment of the hydrologic and chemical samples coll...

  5. Fingerprinting groundwater pollution in catchments with contrasting contaminant sources using microorganic compounds.

    PubMed

    Stuart, Marianne E; Lapworth, Dan J; Thomas, Jenny; Edwards, Laura

    2014-01-15

    Evaluating the occurrence of microorganics helps to understand sources and processes which may be controlling the transport and fate of emerging contaminants (ECs). A study was carried out at the contrasting instrumented environmental observatory sites at Oxford, on the peri-urban floodplain gravel aquifer of the River Thames and Boxford, in the rural valley of the River Lambourn on the chalk aquifer, in Southern England to explore the use of ECs to fingerprint contaminant sources and flow pathways in groundwater. At Oxford compounds were typical of a local waste tip plume (not only plasticisers and solvents but also barbiturates and N,N-diethyl-m-toluamide (DEET)) and of the urban area (plasticisers and mood-enhancing drugs such as carbamazepine). At Boxford the results were different with widespread occurrence of agricultural pesticides, their metabolites and the solvent trichloroethene, as well as plasticisers, caffeine, butylated food additives, DEET, parabens and trace polyaromatic hydrocarbons (PAHs). Groups of compounds used in pharmaceuticals and personal care products of different provenance in the environment could be distinguished, i) historical household and medical waste, ii) long-term household usage persistent in groundwater and iii) current usage and contamination from surface water. Co-contaminant and degradation products can also indicate the likely source of contaminants. A cocktail of contaminants can be used as tracers to provide information on catchment pathways and groundwater/surface water interactions. A prominent feature in this study is the attenuation of many EC compounds in the hyporheic zone. PMID:24055671

  6. Fingerprinting groundwater pollution in catchments with contrasting contaminant sources using microorganic compounds.

    PubMed

    Stuart, Marianne E; Lapworth, Dan J; Thomas, Jenny; Edwards, Laura

    2014-01-15

    Evaluating the occurrence of microorganics helps to understand sources and processes which may be controlling the transport and fate of emerging contaminants (ECs). A study was carried out at the contrasting instrumented environmental observatory sites at Oxford, on the peri-urban floodplain gravel aquifer of the River Thames and Boxford, in the rural valley of the River Lambourn on the chalk aquifer, in Southern England to explore the use of ECs to fingerprint contaminant sources and flow pathways in groundwater. At Oxford compounds were typical of a local waste tip plume (not only plasticisers and solvents but also barbiturates and N,N-diethyl-m-toluamide (DEET)) and of the urban area (plasticisers and mood-enhancing drugs such as carbamazepine). At Boxford the results were different with widespread occurrence of agricultural pesticides, their metabolites and the solvent trichloroethene, as well as plasticisers, caffeine, butylated food additives, DEET, parabens and trace polyaromatic hydrocarbons (PAHs). Groups of compounds used in pharmaceuticals and personal care products of different provenance in the environment could be distinguished, i) historical household and medical waste, ii) long-term household usage persistent in groundwater and iii) current usage and contamination from surface water. Co-contaminant and degradation products can also indicate the likely source of contaminants. A cocktail of contaminants can be used as tracers to provide information on catchment pathways and groundwater/surface water interactions. A prominent feature in this study is the attenuation of many EC compounds in the hyporheic zone.

  7. Use of an Artificial Sweetener to Identify Sources of Groundwater Nitrate Contamination.

    PubMed

    Robertson, W D; Van Stempvoort, D R; Roy, J W; Brown, S J; Spoelstra, J; Schiff, S L; Rudolph, D R; Danielescu, S; Graham, G

    2016-07-01

    The artificial sweetener acesulfame (ACE) is a potentially useful tracer of waste water contamination in groundwater. In this study, ACE concentrations were measured in waste water and impacted groundwater at 12 septic system sites in Ontario, Canada. All samples of septic tank effluent (n = 37) had ACE >6 µg/L, all samples of groundwater from the proximal plume zones (n = 93) had ACE >1 µg/L and, almost all samples from the distal plume zones had ACE >2 µg/L. Mean mass ratios of total inorganic nitrogen/ACE at the 12 sites ranged from 680 to 3500 for the tank and proximal plume samples. At five sites, decreasing ratio values in the distal zones indicated nitrogen attenuation. These ratios were applied to three aquifers in Canada that are nitrate-stressed and an urban stream where septic systems are present nearby to estimate the amount of waste water nitrate contamination. At the three aquifer locations that are agricultural, low ACE values (<0.02-0.15 µg/L) indicated that waste water contributed <15% of the nitrate in most samples. In groundwater discharging to the urban stream, much higher ACE values (0.2-11 µg/L) indicated that waste water was the likely source of >50% of the nitrate in most samples. This study confirms that ACE is a powerful tracer and demonstrates its use as a diagnostic tool for establishing whether waste water is a significant contributor to groundwater contamination or not. PMID:26729010

  8. Use of an Artificial Sweetener to Identify Sources of Groundwater Nitrate Contamination.

    PubMed

    Robertson, W D; Van Stempvoort, D R; Roy, J W; Brown, S J; Spoelstra, J; Schiff, S L; Rudolph, D R; Danielescu, S; Graham, G

    2016-07-01

    The artificial sweetener acesulfame (ACE) is a potentially useful tracer of waste water contamination in groundwater. In this study, ACE concentrations were measured in waste water and impacted groundwater at 12 septic system sites in Ontario, Canada. All samples of septic tank effluent (n = 37) had ACE >6 µg/L, all samples of groundwater from the proximal plume zones (n = 93) had ACE >1 µg/L and, almost all samples from the distal plume zones had ACE >2 µg/L. Mean mass ratios of total inorganic nitrogen/ACE at the 12 sites ranged from 680 to 3500 for the tank and proximal plume samples. At five sites, decreasing ratio values in the distal zones indicated nitrogen attenuation. These ratios were applied to three aquifers in Canada that are nitrate-stressed and an urban stream where septic systems are present nearby to estimate the amount of waste water nitrate contamination. At the three aquifer locations that are agricultural, low ACE values (<0.02-0.15 µg/L) indicated that waste water contributed <15% of the nitrate in most samples. In groundwater discharging to the urban stream, much higher ACE values (0.2-11 µg/L) indicated that waste water was the likely source of >50% of the nitrate in most samples. This study confirms that ACE is a powerful tracer and demonstrates its use as a diagnostic tool for establishing whether waste water is a significant contributor to groundwater contamination or not.

  9. Assessment of ground-water contamination in the alluvial aquifer near West Point, Kentucky

    USGS Publications Warehouse

    Lyverse, M.A.; Unthank, M.D.

    1988-01-01

    Well inventories, water level measurements, groundwater quality samples, surface geophysical techniques (specifically, electromagnetic techniques), and test drilling were used to investigate the extent and sources of groundwater contamination in the alluvial aquifer near West Point, Kentucky. This aquifer serves as the principal source of drinking water for over 50,000 people. Groundwater flow in the alluvial aquifer is generally unconfined and moves in a northerly direction toward the Ohio River. Two large public supply well fields and numerous domestic wells are located in this natural flow path. High concentrations of chloride in groundwater have resulted in the abandonment of several public supply wells in the West Point areas. Chloride concentrations in water samples collected for this study were as high as 11,000 mg/L. Electromagnetic techniques indicated and test drilling later confirmed that the source of chloride in well waters was probably improperly plugged or unplugged, abandoned oil and gas exploration wells. The potential for chloride contamination of wells exists in the study area and is related to proximity to improperly abandoned oil and gas exploration wells and to gradients established by drawdowns associated with pumped wells. Periodic use of surface geophysical methods, in combination with added observation wells , could be used to monitor significant changes in groundwater quality related to chloride contamination. (USGS)

  10. Origin of a mixed brominated ethene groundwater plume: contaminant degradation pathways and reactions.

    PubMed

    Patterson, Bradley M; Cohen, Elizabeth; Prommer, Henning; Thomas, David G; Rhodes, Stuart; McKinley, Allan J

    2007-02-15

    On the basis of a combination of laboratory microcosm experiments, column sorption experiments, and the current spatial distribution of groundwater concentrations, the origin of a mixed brominated ethene groundwater plume and its degradation pathway were hypothesized. The contaminant groundwater plume was detected downgradient of a former mineral processing facility, and consisted of tribromoethene (TriBE), cis-1,2-dibromoethene (c-DBE), trans-1,2-dibromoethene (t-DBE), and vinyl bromide (VB). The combined laboratory and field data provided strong evidence that the origin of the mixed brominated ethene plume was a result of dissolution of the dense non-aqueous-phase liquid 1,1,2,2-tetrabromoethane (TBA) atthe presumed source zone, which degraded rapidly (half-life of 0.2 days) to form TriBE in near stoichiometric amounts. TriBE then degraded (half-life of 96 days) to form c-DBE, t-DBE, and VB via a reductive debromination degradation pathway. Slow degradation of c-DBE (half-life >220 days), t-DBE (half-life 220 days), and VB (half-life >220 days) coupled with their low retardation coefficients (1.2, 1.2, and 1.0 respectively) resulted in the formation of an extensive mixed brominated ethene contaminant plume. Without this clearer understanding of the mechanism for TBA degradation, the origin of the mixed brominated ethene groundwater contamination could have been misinterpreted, and inappropriate and ineffective source zone and groundwater remediation techniques could be applied.

  11. Modeling nitrate contamination of groundwater in agricultural watersheds

    NASA Astrophysics Data System (ADS)

    Almasri, Mohammad N.; Kaluarachchi, Jagath J.

    2007-09-01

    SummaryThis paper presents and implements a framework for modeling the impact of land use practices and protection alternatives on nitrate pollution of groundwater in agricultural watersheds. The framework utilizes the national land cover database (NLCD) of the United State Geological Survey (USGS) grid and a geographic information system (GIS) to account for the spatial distribution of on-ground nitrogen sources and corresponding loadings. The framework employs a soil nitrogen dynamic model to estimate nitrate leaching to groundwater. These estimates were used in developing a groundwater nitrate fate and transport model. The framework considers both point and non-point sources of nitrogen across different land use classes. The methodology was applied for the Sumas-Blaine aquifer of Washington State, US, where heavy dairy industry and berry plantations are concentrated. Simulations were carried out using the developed framework to evaluate the overall impacts of current land use practices and the efficiency of proposed protection alternatives on nitrate pollution in the aquifer.

  12. Correlation of BTEX levels and toxicity of condensate contaminated groundwater

    SciTech Connect

    Headley, J.; Goudey, S.; Birkholz, D.; Hardisty, P.

    1995-12-31

    The concentration of BTEX was determined for 60 groundwater samples collected from 6 gas plants in Western Canada, using conventional purge-and-trap GC/MS procedures. The gas plants were selected to cover different types of operations with different amine process chemicals employed for the sweetening of the raw sour-gas condensates. Aliquots of the ground water samples were subjected to toxicity screening tests, specifically, (a) bacterial luminescence (microtox) ; (b) daphnia mortality and (c) fathead minnow mortality. For the toxicity tests, sample handling procedures were developed to minimize the loss of volatile organics during the experiments. To account for possible losses, the levels of BTEX were monitored at the start and upon completion of these tests. The results indicated that the toxicity of the groundwater was in general, well correlated to the concentration of BTEX (primarily xylene). Approximately 5% of the samples, however, were observed to be toxic although the concentration of BTEX were below the method detection limit (1 {micro}g/1). Thiophenic volatile organics were implicated for the latter. Based on the laboratory results, the remediation of BTEX is expected to correlate with the removal of the toxicity of the groundwater. These findings are of direct relevance to present technologies employed for remediation of ground water at the Sourgas plants.

  13. Toxicological and chemical assessment of arsenic-contaminated groundwater after electrochemical and advanced oxidation treatments.

    PubMed

    Radić, Sandra; Crnojević, Helena; Vujčić, Valerija; Gajski, Goran; Gerić, Marko; Cvetković, Želimira; Petra, Cvjetko; Garaj-Vrhovac, Vera; Oreščanin, Višnja

    2016-02-01

    Owing to its proven toxicity and mutagenicity, arsenic is regarded a principal pollutant in water used for drinking. The objective of this study was the toxicological and chemical evaluation of groundwater samples obtained from arsenic enriched drinking water wells before and after electrochemical and ozone-UV-H2O2-based advanced oxidation processes (EAOP). For this purpose, acute toxicity test with Daphnia magna and chronic toxicity test with Lemna minor L. were employed as well as in vitro bioassays using human peripheral blood lymphocytes (HPBLs). Several oxidative stress parameters were estimated in L.minor. Physicochemical analysis showed that EAOP treatment was highly efficient in arsenic but also in ammonia and organic compound removal from contaminated groundwater. Untreated groundwater caused only slight toxicity to HPBLs and D. magna in acute experiments. However, 7-day exposure of L. minor to raw groundwater elicited genotoxicity, a significant growth inhibition and oxidative stress injury. The observed genotoxicity and toxicity of raw groundwater samples was almost completely eliminated by EAOP treatment. Generally, the results obtained with L. minor were in agreement with those obtained in the chemical analysis suggesting the sensitivity of the model organism in monitoring of arsenic-contaminated groundwater. In parallel to chemical analysis, the implementation of chronic toxicity bioassays in a battery is recommended in the assessment of the toxic and genotoxic potential of such complex mixtures.

  14. Toxicological and chemical assessment of arsenic-contaminated groundwater after electrochemical and advanced oxidation treatments.

    PubMed

    Radić, Sandra; Crnojević, Helena; Vujčić, Valerija; Gajski, Goran; Gerić, Marko; Cvetković, Želimira; Petra, Cvjetko; Garaj-Vrhovac, Vera; Oreščanin, Višnja

    2016-02-01

    Owing to its proven toxicity and mutagenicity, arsenic is regarded a principal pollutant in water used for drinking. The objective of this study was the toxicological and chemical evaluation of groundwater samples obtained from arsenic enriched drinking water wells before and after electrochemical and ozone-UV-H2O2-based advanced oxidation processes (EAOP). For this purpose, acute toxicity test with Daphnia magna and chronic toxicity test with Lemna minor L. were employed as well as in vitro bioassays using human peripheral blood lymphocytes (HPBLs). Several oxidative stress parameters were estimated in L.minor. Physicochemical analysis showed that EAOP treatment was highly efficient in arsenic but also in ammonia and organic compound removal from contaminated groundwater. Untreated groundwater caused only slight toxicity to HPBLs and D. magna in acute experiments. However, 7-day exposure of L. minor to raw groundwater elicited genotoxicity, a significant growth inhibition and oxidative stress injury. The observed genotoxicity and toxicity of raw groundwater samples was almost completely eliminated by EAOP treatment. Generally, the results obtained with L. minor were in agreement with those obtained in the chemical analysis suggesting the sensitivity of the model organism in monitoring of arsenic-contaminated groundwater. In parallel to chemical analysis, the implementation of chronic toxicity bioassays in a battery is recommended in the assessment of the toxic and genotoxic potential of such complex mixtures. PMID:26580737

  15. Treatment of contaminated groundwater in sandy layer under river bank by electrokinetic and ultrasonic technology.

    PubMed

    Chung, Ha I

    2007-01-01

    A series of laboratory experiments involving simple, ultrasonic, electrokinetic, electrokinetic/ ultrasonic flushing test were carried out for treatment and removal of heavy metal and hydrocarbon from contaminated groundwater in sandy layers under a river bank. The test results show that the electrokinetic/ultrasonic flushing technique is most effective for the removal of heavy metal and hydrocarbon from contaminated sandy layers by the coupling action of their own phenomena. It is shown that the electrokinetic technique is most effective to enhance the removal efficiency of heavy metal contaminants such as cadmium from contaminated sandy soil under the river bank; on the other hand the ultrasonic technique is most effective to enhance the removal efficiency of hydrocarbon contaminant, such as diesel fuel from contaminated soil. PMID:17305157

  16. A top specified boundary layer (TSBL) approximation approach for the simulation of groundwater contamination processes

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    1996-01-01

    This paper presents improvements in the 'classical boundary layer' (CBL) approximation method to obtain simple but robust initial characterization of aquifer contamination processes. Contaminants are considered to penetrate into the groundwater through the free surface of the aquifer. The improved method developed in this study is termed the 'top specified boundary layer' (TSBL) approach. It involves the specification of the contaminant concentration at the top of the contaminated 'region of interest' (ROI), which is simulated as a boundary layer. the TSBL modification significantly improves the ability of the boundary layer method to predict the development of concentration profiles over both space and time. The TSBL method can be useful for the simulation of cases in which the contaminant concentration is prescribed at the aquifer's free surface as well as for cases in which the contaminant mass flux is prescribed at the surface.

  17. Treatment of contaminated groundwater in sandy layer under river bank by electrokinetic and ultrasonic technology.

    PubMed

    Chung, Ha I

    2007-01-01

    A series of laboratory experiments involving simple, ultrasonic, electrokinetic, electrokinetic/ ultrasonic flushing test were carried out for treatment and removal of heavy metal and hydrocarbon from contaminated groundwater in sandy layers under a river bank. The test results show that the electrokinetic/ultrasonic flushing technique is most effective for the removal of heavy metal and hydrocarbon from contaminated sandy layers by the coupling action of their own phenomena. It is shown that the electrokinetic technique is most effective to enhance the removal efficiency of heavy metal contaminants such as cadmium from contaminated sandy soil under the river bank; on the other hand the ultrasonic technique is most effective to enhance the removal efficiency of hydrocarbon contaminant, such as diesel fuel from contaminated soil.

  18. Heavy metal contamination and its indexing approach for groundwater of Goa mining region, India

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Kamal, Rakesh Kant

    2016-06-01

    The objective of the study is to reveal the seasonal variations in the groundwater quality with respect to heavy metal contamination. To get the extent of the heavy metals contamination, groundwater samples were collected from 45 different locations in and around Goa mining area during the monsoon and post-monsoon seasons. The concentration of heavy metals, such as lead, copper, manganese, zinc, cadmium, iron, and chromium, were determined using atomic absorption spectrophotometer. Most of the samples were found within limit except for Fe content during the monsoon season at two sampling locations which is above desirable limit, i.e., 300 µg/L as per Indian drinking water standard. The data generated were used to calculate the heavy metal pollution index (HPI) for groundwater. The mean values of HPI were 1.5 in the monsoon season and 2.1 in the post-monsoon season, and these values are well below the critical index limit of 100.

  19. Electrochemical remediation of trichloroethene-contaminated groundwater using palladized iron oxides.

    PubMed

    Roh, Y; Cho, K S; Lee, S

    2001-01-01

    The objective of this study is to develop electrochemically-enhanced dechlorination of trichloroethene (TCE) using palladized iron oxides minerals for ex situ remediation of contaminated groundwaters. A bench-scale column packed with the palladized iron oxide media connected to a cathode and an anode embedded in a carbon pad was prepared for flow through column tests. Contaminated groundwaters with about 14-16 mg/L TCE were passed from the cathode side to the anode side of the column while the system was supplied with direct current. All of the TCE in the groundwater was dechlorinated even after 300 pore volumes were passed. Furthermore, intermediate reaction products, dichloroethene isomers and vinyl chloride, were not detected in the treated water.

  20. OASIS: A GEOGRAPHICAL DECISION SUPPORT SYSTEM FOR GROUND-WATER CONTAMINANT MODELING

    EPA Science Inventory

    Three new software technologies were applied to develop an efficient and easy to use decision support system for ground-water contaminant modeling. Graphical interfaces create a more intuitive and effective form of communication with the computer compared to text-based interfaces...

  1. Testing of a benchscale Reverse Osmosis/Coupled Transport system for treating contaminated groundwater

    SciTech Connect

    Hodgson, K.M.; Lunsford, T.R.; Panjabi, G.

    1994-01-01

    The Reverse Osmosis/Coupled Transport process is a innovative means of removing radionuclides from contaminated groundwater at the Hanford Site. Specifically, groundwater in the 200 West Area of the Hanford Site has been contaminated with uranium, technetium, and nitrate. Investigations are proceeding to determine the most cost effective method to remove these contaminants. The process described in this paper combines three different membrane technologies (reverse osmosis, coupled transport, and nanofiltration to purify the groundwater while extracting and concentrating uranium, technetium, and nitrate into separate solutions. This separation allows for the future use of the radionuclides, if needed, and reduces the amount of waste that will need to be disposed of. This process has the potential to concentrate the contaminants into solutions with volumes in a ratio of 1/10,000 of the feed volume. This compares to traditional volume reductions of 10 to 100 for ion exchange and stand-alone reverse osmosis. The successful demonstration of this technology could result in significant savings in the overall cost of decontaminating the groundwater.

  2. Past and Current Groundwater Flow and Contaminant Distribution at Single-Shell Tank Waste Management Areas

    SciTech Connect

    Horton, Duane G.

    2008-01-17

    This will be part of a CH2M HILL document. It summarizes important finidings from historic and recent groundwater investigations of the uppermost aquifer beneath the 200 East and 200 West Areas. The document also summarizes ongoing work to further characterize the unconfined aquifer and contaminants in that aquifer.

  3. Appendix H: Past and Current Groundwater Flow and Contamination beneath Shell Tank Waste Management Areas

    SciTech Connect

    Horton, Duane G.

    2008-01-17

    This is being prepared as an appendix for CH2M HILL Hanford Group, Inc. and is part of PNNL support of the RCRA Facility Investigation Report. The document contains a detailed description of groundwater flow and contamination under the Central Plateau, emphasizing the areas around the tank farms.

  4. Ground-water and soil contamination near two pesticide-burial sites in Minnesota

    USGS Publications Warehouse

    Stark, J.R.; Strudell, J.D.; Bloomgren, P.A.; Eger, P.

    1987-01-01

    In general, concentrations of lead and arsenic in soil and groundwater were below background concentrations for the areas. Concentrations of organic pesticides generally were below analytical-detection limits. The limited solubility of the chemicals and the tendency of the contaminants to be sorbed on soil particles probably combined to restrict mobilization of the chemicals.

  5. TAILORING CATALYSTS FOR HYDRODECHLORINATING CHLORINATED HYDROCARBON CONTAMINANTS IN GROUNDWATER. (R825689C093)

    EPA Science Inventory

    Abstract

    A palladium-on-zeolite catalyst has been optimized for treating groundwater contaminated with halogenated hydrocarbon compounds (HHCs) by hydrodechlorination with dissolved hydrogen. Aqueous sulfite was used as the model poison and the dechlorination of 1,2-di...

  6. TAILORING CATALYSTS FOR HYDRODECHLORINATING CHLORINATED HYDROCARBON CONTAMINANTS IN GROUNDWATER. (R825689C078)

    EPA Science Inventory

    Abstract

    A palladium-on-zeolite catalyst has been optimized for treating groundwater contaminated with halogenated hydrocarbon compounds (HHCs) by hydrodechlorination with dissolved hydrogen. Aqueous sulfite was used as the model poison and the dechlorination of 1,2-di...

  7. Grand challenge problems in environmental modeling and remediation: groundwater contaminant transport

    SciTech Connect

    Todd Arbogast; Steve Bryant; Clint N. Dawson; Mary F. Wheeler

    1998-08-31

    This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.

  8. Modeling nonpoint source nitrate contamination and associated uncertainty in groundwater of U.S. regional aquifers

    NASA Astrophysics Data System (ADS)

    Gurdak, J. J.; Lujan, C.

    2009-12-01

    Nonpoint source nitrate contamination in groundwater is spatially variable and can result in elevated nitrate concentrations that threaten drinking-water quality in many aquifers of the United States. Improved modeling approaches are needed to quantify the spatial controls on nonpoint source nitrate contamination and the associated uncertainty of predictive models. As part of the U.S. Geological Survey National Water Quality Assessment Program, logistic regression models were developed to predict nitrate concentrations greater than background in recently recharged (less than 50 years) groundwater in selected regional aquifer systems of the United States; including the Central Valley, California Coastal Basins, Basin and Range, Floridan, Glacial, Coastal Lowlands, Denver Basin, High Plains, North Atlantic Coastal Plain, and Piedmont aquifer systems. The models were used to evaluate the spatial controls of climate, soils, land use, hydrogeology, geochemistry, and water-quality conditions on nitrate contamination. The novel model Raster Error Propagation Tool (REPTool) was used to estimate error propagation and prediction uncertainty in the predictive nitrate models and to determine an approach to reduce uncertainty in future model development. REPTool consists of public-domain, Python-based packages that implement Latin Hypercube sampling within a probabilistic framework to track error propagation in geospatial models and quantitatively estimate the prediction uncertainty of the model output. The presented nitrate models, maps, and uncertainty analysis provide important tools for water-resource managers of regional groundwater systems to identify likely areas and the spatial controls on nonpoint source nitrate contamination in groundwater.

  9. Prevalence of microbiological contaminants in groundwater sources and risk factor assessment in Juba, South Sudan.

    PubMed

    Engström, Emma; Balfors, Berit; Mörtberg, Ulla; Thunvik, Roger; Gaily, Tarig; Mangold, Mikael

    2015-05-15

    In low-income regions, drinking water is often derived from groundwater sources, which might spread diarrheal disease if they are microbiologically polluted. This study aimed to investigate the occurrence of fecal contamination in 147 improved groundwater sources in Juba, South Sudan and to assess potential contributing risk factors, based on bivariate statistical analysis. Thermotolerant coliforms (TTCs) were detected in 66% of the investigated sources, including 95 boreholes, breaching the health-based recommendations for drinking water. A significant association (p<0.05) was determined between the presence of TTCs and the depth of cumulative, long-term prior precipitation (both within the previous five days and within the past month). No such link was found to short-term rainfall, the presence of latrines or damages in the borehole apron. However, the risk factor analysis further suggested, to a lesser degree, that the local topography and on-site hygiene were additionally significant. In summary, the analysis indicated that an important contamination mechanism was fecal pollution of the contributing groundwater, which was unlikely due to the presence of latrines; instead, infiltration from contaminated surface water was more probable. The reduction in fecal sources in the environment in Juba is thus recommended, for example, through constructing latrines or designating protection areas near water sources. The study results contribute to the understanding of microbiological contamination of groundwater sources in areas with low incomes and high population densities, tropical climates and weathered basement complex environments, which are common in urban sub-Saharan Africa.

  10. IN-SITU REDUCTION OF CHROMIUM-CONTAMINATED GROUNDWATER, SOILS, AND SEDIMENTS BY SODIUM DITHIONITE

    EPA Science Inventory

    Laboratory studies were conducted to characterize the extent of chromium contamination in the groundwater and underlying soils and sediments of a chrome-plating shop at the USCG Support Center near Elizabeth City, NC. Most of the mobile Cr(VI) is present in the capillary zone ...

  11. EVALUATION OF SULFATE-REDUCING BACTERIA TO PRECIPITATE MERCURY FROM CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Several regions in the Republic of Kazakhstan are contaminated with mercury as a result of releases from industrial plants. Operations at an old chemical plant, "Khimprom", which produced chlorine and alkali in the 1970s - 1990s, resulted in significant pollution of groundwater ...

  12. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER

    SciTech Connect

    Robert S. Bowman; Zhaohui Li; Stephen J. Roy; Todd Burt; Timothy L. Johnson; Richard L. Johnson

    1999-08-30

    The overall objective of this effort is to develop and test a zeolite-based permeable barrier system for containing and remediating contaminated groundwater. The projected product is an engineered and tested permeable barrier system that can be adopted by the commercial sector.

  13. Remediation of heavy metal contaminated groundwater originated from abandoned mine using lime and calcium carbonate.

    PubMed

    Lee, Minhee; Paik, In Sung; Kim, Insu; Kang, Hyunmin; Lee, Sanghoon

    2007-06-01

    Column and pilot scale experiments for a chemical treatment involving the use of coagulants to remediate heavy metal contaminated groundwater were performed. Granulated lime (Ca(OH)(2)) and calcium carbonate (CaCO(3)) were used as coagulants and contaminated groundwater obtained at an abandoned Fe-mine in Korea was used for the experiments. The main removal mechanism of heavy metals in the experiments was "sweep precipitation" by coagulation. Using granulated lime as a coagulant in the column experiment, more than 98% of As and Ni were removed from artificially contaminated water. When granulated calcium carbonate was used in the artificially contaminated water, the removal efficiencies of Ni and Zn were more than 97%, but As removal efficiency was lower than 50%. For the continuous column experiment with mixed lime and calcium carbonate at a 1:1 (v/v) ratio, almost all As was removed and more than 98 % of Ni was removed. For pilot scale experiments (acryl tank: 34 cm in length and 24 cm in diameter), the removal efficiencies of As and Cd were above 96% for 150l groundwater treatment and their accumulated removal capacities linearly maintained. This suggests that coagulants could treat more than 22 times greater groundwater volume compared with the volume of coagulants used.

  14. The discharge of nitrate-contaminated groundwater from developed shoreline to marsh-fringed estuary

    USGS Publications Warehouse

    Portnoy, J.W.; Nowicki, B.L.; Roman, C.T.; Urish, D.W.

    1998-01-01

    As residential development, onsite wastewater disposal and groundwater contamination increase in the coastal zone, assessment of nutrient removal by soil and sedimentary processes becomes increasingly important. Nitrogen removal efficiency depends largely upon the specific flow paths taken by groundwater as it discharges into nitrogen-limited estuarine waters. Shoreline salinity surveys, hydraulic studies and thermal infrared imagery indicated that groundwater discharge into the Nauset Marsh estuary (Eastham, MA) occurred in high-velocity seeps immediately seaward of the upland-fringing salt marsh. Discharge was highly variable spatially and occurred through permeable, sandy sediments during low tide. Seepage chamber monitoring showed that dissolved inorganic nitrogen (principally nitrate) traversed nearly conservatively from the aquifer through shallow estuarine sediments to coastal waters at flux rates of 13 mmoles m2 h1. A significant relationship found between porewater NO3N concentrations and NO3N flux rates may provide a rapid method of estimating nitrogen loading from groundwater to the water column.

  15. Persistent and emerging micro-organic contaminants in Chalk groundwater of England and France.

    PubMed

    Lapworth, D J; Baran, N; Stuart, M E; Manamsa, K; Talbot, J

    2015-08-01

    The Chalk aquifer of Northern Europe is an internationally important source of drinking water and sustains baseflow for surface water ecosystems. The areal distribution of microorganic (MO) contaminants, particularly non-regulated emerging MOs, in this aquifer is poorly understood. This study presents results from a reconnaissance survey of MOs in Chalk groundwater, including pharmaceuticals, personal care products and pesticides and their transformation products, conducted across the major Chalk aquifers of England and France. Data from a total of 345 sites collected during 2011 were included in this study to provide a representative baseline assessment of MO occurrence in groundwater. A suite of 42 MOs were analysed for at each site including industrial compounds (n=16), pesticides (n=14) and pharmaceuticals, personal care and lifestyle products (n=12). Occurrence data is evaluated in relation to land use, aquifer exposure, well depth and depth to groundwater to provide an understanding of vulnerable groundwater settings.

  16. A national-scale assessment of micro-organic contaminants in groundwater of England and Wales.

    PubMed

    Manamsa, Katya; Crane, Emily; Stuart, Marianne; Talbot, John; Lapworth, Dan; Hart, Alwyn

    2016-10-15

    A large variety of micro-organic (MO) compounds is used in huge quantities for a range of purposes (e.g. manufacturing, food production, healthcare) and is now being frequently detected in the aquatic environment. Interest in the occurrence of MO contaminants in the terrestrial and aquatic environments continues to grow, as well as in their environmental fate and potential toxicity. However, the contamination of groundwater resources by MOs has a limited evidence base compared to other freshwater resources. Of particular concern are newly 'emerging contaminants' such as pharmaceuticals and lifestyle compounds, particularly those with potential endocrine disrupting properties. While groundwater often has a high degree of protection from pollution due to physical, chemical and biological attenuation processes in the subsurface compared to surface aquatic environments, trace concentrations of a large range of compounds are still detected in groundwater and in some cases may persist for decades due to the long residence times of groundwater systems. This study provides the first national-scale assessment of micro-organic compounds in groundwater in England and Wales. A large set of monitoring data was analysed to determine the relative occurrence and detected concentrations of different groups of compounds and to determine relationships with land-use, aquifer type and groundwater vulnerability. MOs detected including emerging compounds such as caffeine, DEET, bisphenol A, anti-microbial agents and pharmaceuticals as well as a range of legacy contaminants including chlorinated solvents and THMs, petroleum hydrocarbons, pesticides and other industrial compounds. There are clear differences in MOs between land-use types, particularly for urban-industrial and natural land-use. Temporal trends of MO occurrence are assessed but establishing long-term trends is not yet possible. PMID:27073165

  17. A national-scale assessment of micro-organic contaminants in groundwater of England and Wales.

    PubMed

    Manamsa, Katya; Crane, Emily; Stuart, Marianne; Talbot, John; Lapworth, Dan; Hart, Alwyn

    2016-10-15

    A large variety of micro-organic (MO) compounds is used in huge quantities for a range of purposes (e.g. manufacturing, food production, healthcare) and is now being frequently detected in the aquatic environment. Interest in the occurrence of MO contaminants in the terrestrial and aquatic environments continues to grow, as well as in their environmental fate and potential toxicity. However, the contamination of groundwater resources by MOs has a limited evidence base compared to other freshwater resources. Of particular concern are newly 'emerging contaminants' such as pharmaceuticals and lifestyle compounds, particularly those with potential endocrine disrupting properties. While groundwater often has a high degree of protection from pollution due to physical, chemical and biological attenuation processes in the subsurface compared to surface aquatic environments, trace concentrations of a large range of compounds are still detected in groundwater and in some cases may persist for decades due to the long residence times of groundwater systems. This study provides the first national-scale assessment of micro-organic compounds in groundwater in England and Wales. A large set of monitoring data was analysed to determine the relative occurrence and detected concentrations of different groups of compounds and to determine relationships with land-use, aquifer type and groundwater vulnerability. MOs detected including emerging compounds such as caffeine, DEET, bisphenol A, anti-microbial agents and pharmaceuticals as well as a range of legacy contaminants including chlorinated solvents and THMs, petroleum hydrocarbons, pesticides and other industrial compounds. There are clear differences in MOs between land-use types, particularly for urban-industrial and natural land-use. Temporal trends of MO occurrence are assessed but establishing long-term trends is not yet possible.

  18. Contamination of groundwater under cultivated fields in an arid environment, central Arava Valley, Israel

    USGS Publications Warehouse

    Oren, O.; Yechieli, Y.; Böhlke, J.K.; Dody, A.

    2004-01-01

    The purpose of this study is to obtain a better understanding of groundwater contamination processes in an arid environment (precipitation of 50 mm/year) due to cultivation. Additional aims were to study the fate of N, K, and other ions along the whole hydrological system including the soil and vadose zone, and to compare groundwater in its natural state with contaminated groundwater (through the drilling of several wells). A combination of physical, chemical, and isotopic analyses was used to describe the hydrogeological system and the recharge trends of water and salts to the aquifers. The results indicate that intensive irrigation and fertilization substantially affected the quantity and quality of groundwater recharge. Low irrigation efficiency of about 50% contributes approximately 3.5-4 millionm3/year to the hydrological system, which corresponds to 0.65 m per year of recharge in the irrigated area, by far the most significant recharge mechanism. Two main contamination processes were identified, both linked to human activity: (1) salinization due to circulation of dissolved salts in the irrigation water itself, mainly chloride, sulfate, sodium and calcium, and (2) direct input of nitrate and potassium mainly from fertilizers. The nitrate concentrations in a local shallow groundwater lens range between 100 and 300 mg/l and in the upper sub-aquifer are over 50 mg/l. A major source of nitrate is fertilizer N in the excess irrigation water. The isotopic compositions of ??15N- NO3 (range of 4.9-14.8???) imply also possible contributions from nearby sewage ponds and/or manure. Other evidence of contamination of the local groundwater lens includes high concentrations of K (20-120 mg/l) and total organic carbon (about 10 mg/l). ?? 2004 Elsevier B.V. All rights reserved.

  19. Vulnerability of deep groundwater in the Bengal Aquifer System to contamination by arsenic

    USGS Publications Warehouse

    Burgess, W.G.; Hoque, M.A.; Michael, H.A.; Voss, C.I.; Breit, G.N.; Ahmed, K.M.

    2010-01-01

    Shallow groundwater, the primary water source in the Bengal Basin, contains up to 100 times the World Health Organization (WHO) drinking-water guideline of 10g l 1 arsenic (As), threatening the health of 70 million people. Groundwater from a depth greater than 150m, which almost uniformly meets the WHO guideline, has become the preferred alternative source. The vulnerability of deep wells to contamination by As is governed by the geometry of induced groundwater flow paths and the geochemical conditions encountered between the shallow and deep regions of the aquifer. Stratification of flow separates deep groundwater from shallow sources of As in some areas. Oxidized sediments also protect deep groundwater through the ability of ferric oxyhydroxides to adsorb As. Basin-scale groundwater flow modelling suggests that, over large regions, deep hand-pumped wells for domestic supply may be secure against As invasion for hundreds of years. By contrast, widespread deep irrigation pumping might effectively eliminate deep groundwater as an As-free resource within decades. Finer-scale models, incorporating spatial heterogeneity, are needed to investigate the security of deep municipal abstraction at specific urban locations. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  20. [Simulation on remediation of benzene contaminated groundwater by air sparging].

    PubMed

    Fan, Yan-Ling; Jiang, Lin; Zhang, Dan; Zhong, Mao-Sheng; Jia, Xiao-Yang

    2012-11-01

    Air sparging (AS) is one of the in situ remedial technologies which are used in groundwater remediation for pollutions with volatile organic compounds (VOCs). At present, the field design of air sparging system was mainly based on experience due to the lack of field data. In order to obtain rational design parameters, the TMVOC module in the Petrasim software package, combined with field test results on a coking plant in Beijing, is used to optimize the design parameters and simulate the remediation process. The pilot test showed that the optimal injection rate was 23.2 m3 x h(-1), while the optimal radius of influence (ROI) was 5 m. The simulation results revealed that the pressure response simulated by the model matched well with the field test results, which indicated a good representation of the simulation. The optimization results indicated that the optimal injection location was at the bottom of the aquifer. Furthermore, simulated at the optimized injection location, the optimal injection rate was 20 m3 x h(-1), which was in accordance with the field test result. Besides, 3 m was the optimal ROI, less than the field test results, and the main reason was that field test reflected the flow behavior at the upper space of groundwater and unsaturated area, in which the width of flow increased rapidly, and became bigger than the actual one. With the above optimized operation parameters, in addition to the hydro-geological parameters measured on site, the model simulation result revealed that 90 days were needed to remediate the benzene from 371 000 microg x L(-1) to 1 microg x L(-1) for the site, and that the opeation model in which the injection wells were progressively turned off once the groundwater around them was "clean" was better than the one in which all the wells were kept operating throughout the remediation process.

  1. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado. Revision 1

    SciTech Connect

    Not Available

    1994-04-01

    This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  2. Simulation of Groundwater Contaminant Transport at a Decommissioned Landfill Site—A Case Study, Tainan City, Taiwan

    PubMed Central

    Chen, Chao-Shi; Tu, Chia-Huei; Chen, Shih-Jen; Chen, Cheng-Chung

    2016-01-01

    Contaminant transport in subsurface water is the major pathway for contamination spread from contaminated sites to groundwater supplies, to remediate a contaminated site. The aim of this paper was to set up the groundwater contaminant transport model for the Wang-Tien landfill site, in southwestern Taiwan, which exhibits high contamination of soil and groundwater and therefore represents a potential threat for the adjacent Hsu-Hsian Creek. Groundwater Modeling System software, which is the most sophisticated groundwater modeling tool available today, was used to numerically model groundwater flow and contaminant transport. In the simulation, the total mass of pollutants in the aquifer increased by an average of 72% (65% for ammonium nitrogen and 79% for chloride) after 10 years. The simulation produced a plume of contaminated groundwater that extends 80 m in length and 20 m in depth northeastward from the landfill site. Although the results show that the concentrations of ammonium nitrogen and chlorides in most parts are low, they are 3.84 and 467 mg/L, respectively, in the adjacent Hsu-Hsian Creek. PMID:27153078

  3. [Difference of contaminant composition between landfill leachates and groundwater and its reasons].

    PubMed

    He, Xiao-Song; Yu, Hong; Xi, Bei-Dou; Cui, Dong-Yu; Pan, Hong-Wei; Li, Dan

    2014-04-01

    In order to investigate the groundwater pollution by landfill leachates, the distribution characteristics of inorganic salt, organic compounds and heavy metals in leachastes from a simple landfill and groundwater and its reason were study using conventional analysis, fluorescence excitation-emission matrix spectra and multivariate statistical analysis. The results showed that the landfill was heterogeneous, and the extracts from the landfill wastes showed a high concentration of NH4(+) -N, but low contents of Cl-, SO4(2-), dissolved organic matter (DOM) and heavy metals. The nitrification process was blocked due to a strong reducing atmosphere in landfill, which caused a low concentration of NO3(-) -N and NO2(-) -N in leachates. Cu was mainly associated with DOM in leachates, while the distribution of the metals Ba, Cd, Cr, Fe, Mn, Ni, Zn and As was primarily related to hydrophobic organic compounds. The contaminate compositions in different groundwater were similar except for the groundwater under the landfill site. In contrast to landfill leachates, the groundwater showed a low concentration of NH4(+) -N, but high concentrations of Cl-, SO4(2-), DOM, NO3(-) -N and NO2(-) -N except for the groundwater under the landfill site. The organic compounds in the groundwater were mainly originated from microbial activity, and the distribution of the metals Ba, Cd, Cu, Fe, Mn and Ni was mainly related to fluorescecent organic matter in DOM. The results showed that the leak point of landfill leachates can be identified through the cluster analysis method on the basis of the contaminant composition in groundwater. PMID:24946594

  4. Attenuation of groundwater contamination caused by cattle slurry: a plot-scale experimental study.

    PubMed

    López Periago, E; Núñez Delgado, A; Díaz-Fierros, F

    2002-09-01

    Infiltration of contaminants was investigated in a flat pasture plot Lolium perenne L. which received 250 m3/ha of cattle slurry. Lysimeters and piezometers had previously been installed in the plot to sample groundwater at different depths. Water samples were analysed for pH, conductivity, NH4(+), NO3-, orthophosphate, Cl-, Na+, K+, Ca2+, Mg2+ and chemical oxygen demand (COD), and for faecal coliforms and faecal streptococci. Contaminant concentrations in water samples taken in lysimeters at a depth of 5 cm (2 h after slurry application) were already from 22% to 83%, of raw slurry. After slurry application and after 150 mm of rainfall, contaminant concentrations in groundwater were in all depths less than 95% of those initially measured in the slurry. For all contaminants except Cl-, NO3-, K+ and COD, concentrations in groundwater measured before application were reached within 15 days. Mechanical retention was the principal mechanism of attenuation of microorganism and COD levels, whereas cations were attenuated by sorption to soil matrix. Dilution by rain water had less significant effects, accounting for about a tenfold reduction in contaminant levels.

  5. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater.

    PubMed

    Turner, Brett D; Binning, Philip J; Sloan, Scott W

    2008-01-28

    The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process. The paper focuses on two issues in the implementation of calcite permeable reactive barriers for remediating fluoride contaminated water: the impact of the groundwater chemical matrix and CO2 addition on fluoride removal. Column tests comparing pure NaF solutions, synthetic SPL solutions, and actual SPL leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal diminishes. Column tests also show that pH control is important for optimizing fluoride removal with the mass removed increasing with decreasing pH. Barrier pH can be regulated by CO2 addition with the point of injection being critical for optimising the remediation performance. Experimental and model results show that approximately 99% of 2300 mg/L fluoride can be removed when CO2 is injected directly into the barrier. This can be compared to approximately 30-50% removal when the influent solution is equilibrated with atmospheric CO2 before contact with calcite.

  6. Stable lead isotopes reveal a natural source of high lead concentrations to gasoline-contaminated groundwater

    USGS Publications Warehouse

    Landmeyer, J.E.; Bradley, P.M.; Bullen, T.D.

    2003-01-01

    Concentrations of total lead as high as 1,600 ??g/L were detected in gasoline-contaminated and uncontaminated groundwater at three gasoline-release sites in South Carolina. Total lead concentrations were highest in turbid groundwater samples from gasoline-contaminated and uncontaminated wells, whereas lower turbidity groundwater samples (collected using low-flow methods) had lower total lead concentrations. Dissolved lead concentrations in all wells sampled, however, were less than 15 ??g total lead/L, the current United States Environmental Protection Agency (US EPA) maximum contaminant level (MCL). Because many total lead concentrations exceeded the MCL, the source of lead to the groundwater system at two of the three sites was investigated using a stable lead isotope ratio approach. Plots of the stable isotope ratios of lead (Pb) in groundwater as 207Pb/206Pb versus 208Pb/206Pb, and 208Pb/204Pb versus 206Pb/204Pb were similar to ratios characteristic of lead-based minerals in local rocks of the southeastern US, and were not similar to the stable lead isotopes ratios characteristic of distant lead ore deposits such as Broken Hill, Australia, used to produce tetraethyl lead in gasoline products prior to its phase-out and ban in the United States. Moreover, the isotopic composition of dissolved lead was equivalent to the isotopic composition of total lead in turbid samples collected from the same well, suggesting that the majority of the lead detected in the groundwater samples was associated with sediment particulates of indigenous aquifer material, rather than lead associated with spilled leaded gasoline. The results of this investigation indicate that (1) lead detected at some gasoline-release sites may be derived from the local aquifer material, rather than the gasoline release, and consequently may affect site-specific remediation goals; (2) non-low flow groundwater sampling methods, such as a disposable bailer, may result in turbid groundwater samples and

  7. [Organic contaminants in the Jakusevec landfill and their impact on groundwater quality].

    PubMed

    Ahel, Marijan; Terzić, Senka; Tepić, Natasa

    2006-09-01

    Landfilling is probably, the most popular disposal method for the management of domestic and industrial waste. Unfortunately, many landfills around the world do not include leachate collection systems and present a considerable risk to the underlying aquifers. There have been numerous reports on groundwater contamination in the vicinity of unprotected landfills, paying particular attention to specific organic contaminants. This problem is especially pronounced in landfills which, in addition to ordinary domestic refuse, contain waste of industrial origin. Jakusevec, the main landfill of the city of Zagreb, belongs to this category. The recently completed remediation programme for Jakusevec included comprehensive investigations with the aim to quantify various organic contaminants in solid waste and establish their possible infiltration into the underlying soils and groundwater. A detailed analyses using chromatographic and mass spectrometric techniques made it possible to identify a number of contaminants. According to their origin, the identified compound classes can be divided into the two main categories: markers of biological waste and its microbial transformation and markers of anthropogenic waste. Our investigations have shown that the composition of organic contaminants changes dramatically during the vertical transport from the solid waste through the unsaturated zone of soil to aquifer sediments, which involves both physicochemical and biotransformation processes. The vertical transport of polar organic contaminants was very efficient and led to a significant contamination of the aquifer in the vicinity of the landfill.

  8. Second moment method for evaluating human health risks from groundwater contaminated by trichloroethylene.

    PubMed

    Jacobs, T L; Warmerdam, J M; Medina, M A; Piver, W T

    1996-08-01

    Pollutants in groundwater aquifers may constitute a significant human health risk. A large variation in response may result among human populations experiencing the same level and duration of exposure to pollutants. Variability in response, as a result of exposure to a carcinogenic contaminant such as trichloroethylene (TCE), can be represented by a distribution function of safe doses. Spatial variability in aquifer characteristics and contaminant transport parameters requires the use of stochastic transport models to quantify variability in exposure concentrations. A second moment method is used to evaluate the probability of exceeding safe dose levels for a contaminated aquifer. The name of this method stems from the fact that the formulation is based on the first and second moments of the random variables. With this method, the probability is a function of the variability of contaminant concentration (which incorporates variability in hydrogeologic parameters such as hydraulic conductivity) and the variability in response in the human population. In this manner, the severity of the health risk posed by a contaminated aquifer and the evaluation of appropriate strategies and technologies for aquifer remediation are a function of contaminant concentrations and human health risks. The applicability and limitations of this method are demonstrated with data on groundwater contaminated by TCE at Hill Air Force Base, Utah.

  9. Characterization and assessment of contaminated soil and groundwater at an organic chemical plant site in Chongqing, Southwest China.

    PubMed

    Liu, Geng; Niu, Junjie; Zhang, Chao; Guo, Guanlin

    2016-04-01

    Contamination from organic chemical plants can cause serious pollution of soil and groundwater ecosystems. To characterize soil contamination and to evaluate the health risk posed by groundwater at a typical organic chemical plant site in Chongqing, China, 91 soil samples and seven groundwater samples were collected. The concentrations of different contaminants and their three-dimensional distribution were determined based on the 3D-krige method. Groundwater chemistry risk index (Chem RI) and cancer risk were calculated based on TRIAD and RBCA models. The chemistry risk indices of groundwater points SW5, SW18, SW22, SW39, SW52, SW80, and SW82 were 0.4209, 0.9972, 0.9324, 0.9990, 0.9991, 1.0000, and 1.0000, respectively, indicating that the groundwater has poor environmental status. By contrast, the reference Yangtse River water sample showed no pollution with a Chem RI of 0.1301. Benzene and 1,2-dichloroethane were the main contaminants in the groundwater and were responsible for the elevated cancer risk. The cumulative health risk of groundwater points (except SW5 and SW18) were all higher than the acceptable baselines of 10(-6), which indicates that the groundwater poses high cancer risk. Action is urgently required to control and remediate the risk for human health and groundwater ecosystems.

  10. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    PubMed

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater. PMID:26937943

  11. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    PubMed

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.

  12. Development of one-dimensional computational fluid dynamics code 'GFLOW' for groundwater flow and contaminant transport analysis

    SciTech Connect

    Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G.

    2012-07-01

    Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)

  13. Groundwater pollution and remediation options for multi-source contaminated aquifers (Bitterfeld/Wolfen, Germany).

    PubMed

    Wycisk, P; Weiss, H; Kaschl, A; Heidrich, S; Sommerwerk, K

    2003-04-11

    Large-scale contaminated megasites like Bitterfeld/Wolfen in the eastern part of Germany are characterized by a regional pollution of soil, surface water and groundwater due to the long and varied history of the chemical industry on location. The pollutants in groundwater may spread to uncontaminated areas and endanger receptors like surface water and drinking water wells according to the site-specific hydrologic regime. In addition, the sheer extension of the contamination at megasites as well as the existence of large densely populated areas and land of high-reuse value prevent a simple risk management strategy of use restriction for the whole area. Since a complete clean-up of the groundwater on a megasite is neither economically feasible nor technically possible within a reasonable time-frame, a multi-approach remediation strategy is needed, taking into account the immediate risks for human health, ecosystem and so-called "protectable goods". Moreover, the contaminants at megasites typically represent a dangerous cocktail of multiple harmful substances stemming from a variety of sources, which may interact with each other and complicate the search for an appropriate remediation strategy. At the SAFIRA-project site in Bitterfeld approaches for in situ remediation of multiple contaminants in groundwater are being tested. Alternatives in local implementation strategies as well as consequences of long-term restrictions for megasites like Bitterfeld need an independent evaluation of the situation using a risk-based approach. For this reason, a GIS-based 3D model of the area including geology, contaminants, hydrogeology, land-use and protected areas has been built. The regional groundwater pollution is characterized by contamination profiles of all monitored substances. In the area of investigation, e.g. threefold and fourfold threshold levels of chlorinated methane, ethane and ethene as well as HCH-isomers, mono-, di- and tetrachlorobenzene, DDT-isomers and benzene

  14. Major issues regarding the efficiency of monitoring programs for nitrate contaminated groundwater.

    PubMed

    Stigter, T Y; Carvalho Dill, A M M; Ribeiro, L

    2011-10-15

    Major issues regarding the efficiency of moni toring programs for nitrate contaminated groundwater are analyzed in this paper: (i) representativeness of monitoring networks; (ii) correct interpretation of the monitoring data and resulting time series and trends; and (iii) differentiation among the different sources of nitrates in groundwater. Following an overview of the nitrate contamination problem and possible solutions, as well as some of the difficulties found, a relatively straightforward method for assessing monitoring network representativity is presented, namely interpolation standard error assessment. It is shown how nitrate-concentration time series resulting from periodic observations can be corrected with a conservative tracer, in order to avoid misinterpretation and confirm or correct apparent trends. Finally, coupled ¹⁵N and ¹⁸O isotope signatures of nitrate (NO₃⁻) in groundwater are used to differentiate among nitrogen (N) sources, to ensure correct targeting of restoration measures. The case study regards a Nitrate Vulnerable Zone in the south of Portugal, designated in compliance with the European Nitrates Directive, where coastal discharge of nutrient-rich groundwater threatens the good qualitative and ecological status of the Ria Formosa coastal lagoon. Results show that mineral fertilizer is the main source of N in groundwater, and that increases in N load can be masked by dilution phenomena.

  15. In situ disinfection of sewage contaminated shallow groundwater: a feasibility study.

    PubMed

    Bailey, Morgan M; Cooper, William J; Grant, Stanley B

    2011-11-01

    Sewage-contaminated shallow groundwater is a potential cause of beach closures and water quality impairment in marine coastal communities. In this study we set out to evaluate the feasibility of several strategies for disinfecting sewage-contaminated shallow groundwater before it reaches the coastline. The disinfection rates of Escherichia coli (EC) and enterococci bacteria (ENT) were measured in mixtures of raw sewage and brackish shallow groundwater collected from a coastal community in southern California. Different disinfection strategies were explored, ranging from benign (aeration alone, and aeration with addition of brine) to aggressive (chemical disinfectants peracetic acid (PAA) or peroxymonosulfate (Oxone)). Aeration alone and aeration with brine did not significantly reduce the concentration of EC and ENT after 6 h of exposure, while 4-5 mg L(-1) of PAA or Oxone achieved >3 log reduction after 15 min of exposure. Oxone disinfection was more rapid at higher salinities, most likely due to the formation of secondary oxidants (e.g., bromine and chlorine) that make this disinfectant inappropriate for marine applications. Using a Lagrangian modeling framework, we identify several factors that could influence the performance of in-situ disinfection with PAA, including the potential for bacterial regrowth, and the non-linear dependence of disinfection rate upon the residence time of water in the shallow groundwater. The data and analysis presented in this paper provide a framework for evaluating the feasibility of in-situ disinfection of shallow groundwater, and elucidate several topics that warrant further investigation. PMID:21906774

  16. Dissipation of the herbicide oxyfluorfen in subtropical soils and its potential to contaminate groundwater.

    PubMed

    Yen, Jui-Hung; Sheu, Wey-Shin; Wang, Yei-Shung

    2003-02-01

    The dissipation and mobility of the herbicide oxyfluorfen (2-chloro-alpha,alpha,alpha-trifluoro-p-tolyl 3-ethoxy-4-nitrophenyl ether) in field soil of Taiwan were investigated in the laboratory with six tea garden soils. The dissipation coefficients of oxyfluorfen in soils of different moisture content (30%, 60%, and 90% of soil field capacity) and soil temperature (10 degrees C, 25 degrees C, and 40 degrees C) were studied. Results indicate that the half-life of oxyfluorfen ranged from 72 to 160 days for six tea garden soils. It was found that if the temperature is high, the dissipation rate is rapid, and there is almost no dissipation at 10 degrees C. Possible contamination of groundwater by the herbicide oxyfluorfen was assessed using the behavior assessment model and the groundwater pollution-potential (GWP) model. The results obtained after evaluating the residue and travel time using the GWP model illustrated that oxyfluorfen is not very mobile in soil and may not contaminate groundwater under normal conditions. But in the case of soil of extremely low organic carbon content and coarse texture, oxyfluorfen has the potential to contaminate groundwater less than 3m deep.

  17. Proteomic analysis of ethene-enriched groundwater microcosms from a vinyl chloride-contaminated site.

    PubMed

    Chuang, Adina S; Jin, Yang Oh; Schmidt, Laura S; Li, Yalan; Fogel, Samuel; Smoler, Donna; Mattes, Timothy E

    2010-03-01

    Contamination of groundwater with vinyl chloride (VC), a known human carcinogen, is a common environmental problem at plastics manufacturing, dry cleaning, and military sites. At many sites, there is the potential to cleanup VC groundwater plumes with aerobic VC-oxidizing microorganisms (e.g., methanotrophs, etheneotrophs, and VC-assimilating bacteria). Environmental biotechnologies that reveal the presence and activity of VC-oxidizing bacteria in contaminated groundwater samples would provide valuable lines of evidence that bioremediation of VC is occurring at a site. We applied targeted shotgun mass spectrometry-based proteomic methods to ethene-enriched groundwater microcosms from a VC-contaminated site. Polypeptides from the enzymes alkene monooxygenase (EtnC) and epoxyalkane:CoM transferase (EtnE), both of which are expressed by aerobic etheneotrophs and VC-assimilating bacteria, were identified in 7 of the 14 samples analyzed. Bioinformatic analysis revealed that 2 EtnC and 5 EtnE peptides were unique to deduced EtnC and EtnE sequences from two different cultivated strains. In addition, several partial EtnE genes sequenced from microcosms matched with observed EtnE peptides. Our results have revealed broader etheneotroph functional gene diversity and demonstrate the feasibility, speed, and accuracy of applying a targeted metaproteomics approach to identifying protein biomarkers from etheneotrophs in complex environmental samples.

  18. Bioaugmented remediation of high concentration BTEX-contaminated groundwater by permeable reactive barrier with immobilized bead.

    PubMed

    Xin, Bao-Ping; Wu, Chih-Hung; Wu, Cheng-Han; Lin, Chi-Wen

    2013-01-15

    Ineffective biostimulation requires immediate development of new technologies for remediation of high concentration BTEX-contaminated (benzene, toluene, ethylbenzene and xylene) groundwater. In this study, bioaugmentation with Mycobacterium sp. CHXY119 and Pseudomonas sp. YATO411 immobilized bead was used to remediate BTEX-contaminated groundwater with about 100 mg l(-1) in total concentration. The batch test results showed that the CHXY119 and YATO411 immobilized bead completely biodegraded each BTEX compound, and the maximum biodegradation rates were 0.790 mg l(-1) h(-1) for benzene, 1.113 mg l(-1) h(-1) for toluene, 0.992 mg l(-1) h(-1) for ethylbenzene and 0.231 mg l(-1) h(-1) for p-xylene. The actual mineralization rates were 10.8% for benzene, 10.5% for toluene, 5.8% for ethylbenzene and 11.4% for p-xylene, which indicated that the bioremediation of BTEX by the immobilized bead requires a rather small oxygen supply. Degradation rates achieved by the bioaugmented permeable reactive barrier (Bio-PRB) system of the immobilized bead were 97.8% for benzene, 94.2% for toluene, 84.7% for ethylbenzene and 87.4% for p-xylene; and the toxicity of the groundwater fell by 91.2% after bioremediation by the bioaugmented PRB, which confirmed its great potential for remediating groundwater with high concentrations of contaminants.

  19. On the potential of biological treatment for arsenic contaminated soils and groundwater.

    PubMed

    Wang, Suiling; Zhao, Xiangyu

    2009-06-01

    Bioremediation of arsenic contaminated soils and groundwater shows a great potential for future development due to its environmental compatibility and possible cost-effectiveness. It relies on microbial activity to remove, mobilize, and contain arsenic through sorption, biomethylation-demethylation, complexation, coprecipitation, and oxidation-reduction processes. This paper gives an evaluation on the feasibility of using biological methods for the remediation of arsenic contaminated soils and groundwater. Ex-situ bioleaching can effectively remove bulk arsenic from contaminated soils. Biostimulation such as addition of carbon sources and mineral nutrients can be applied to promote the leaching rate. Biosorption can be used either ex-situ or in-situ to remove arsenic from groundwater by sorption to biomass and/or coprecipitation with biogenic solids or sulfides. Introduction of proper biosorbents or microorganisms to produce active biosorbents in-situ is the key to the success of this method. Phytoremediation depends on arsenic-hyperaccumulating plants to remove arsenic from soils and shallow groundwater by translocating it into plant tissues. Engineering genetic strategies can be employed to increase the arsenic-hyperaccumulating capacity of the plants. Biovolatilization may be developed potentially as an ex-situ treatment technology. Further efforts are needed to focus on increasing the volatilization rate and the post-treatment of volatilization products.

  20. Field-scale evaluation of the passive flux meter for simultaneous measurement of groundwater and contaminant fluxes.

    PubMed

    Annable, Michael D; Hatfield, Kirk; Cho, Jaehyun; Klammler, Harald; Parker, Beth L; Cherry, John A; Rao, P Suresh C

    2005-09-15

    A new method, passive flux meter (PFM), has been developed and field-tested for simultaneously measuring contaminant and groundwater fluxes in the saturated zone at hazardous waste sites. The PFM approach uses a sorptive permeable medium placed in either a borehole or monitoring well to intercept contaminated groundwater and release "resident" tracers. The sorbent pack is placed in a groundwater flow field for a specified exposure time and then recovered for extraction and analysis. By quantifying the mass fraction of resident tracers lost and the mass of contaminant sorbed, groundwater and contaminant fluxes are calculated. Here, we assessed the performance of PFMs at the Canadian Forces Base Borden field site in Ontario, Canada. Two field tests were conducted under imposed groundwater flow fields: (1) radial flow to a well and (2) linear flow in a test channel confined by sheet pile walls on three sides. Both tests demonstrate that the local fluxes measured by PFM and averaged overthe screen interval were within 15% of imposed groundwaterflow and within 30% of measured contaminant mass flux. Patterns in depth variations in groundwater and contaminant fluxes, determined by the PFM approach, allow for site characterization at a higher spatial resolution. These results support the PMF method as a potential innovative alternative for measuring groundwater and contaminant fluxes in screened wells.

  1. Assessment of fluoride contamination in groundwater as precursor for electrocoagulation.

    PubMed

    Sajil Kumar, P J

    2012-07-01

    The Present study was conducted in January 2010, in order to assess the fluoride contamination in the Thirupathur Taluk. The major objective of this study was to locate the vulnerable areas in terms of fluoride contamination. The range of fluoride concentration varied between .26 and 2.75 mg/L. 60 % of the samples were above the permissible limit. Good correlation was observed between pH, Na, HCO(3), CO(3) TDS and NO(3). A negative correlation showed by Ca and K. The results show that Geochemistry of these ions controls the Fluoride concentration in the study area. All the samples exceeded the permissible limit of F was characterized by Na-HCO(3) type of water. A fairly good correlation between F and NO(3) suggest an anthropogenic input of F, mainly from the agricultural fields. Spatial distribution map of Fluoride shows very high concentration in the SW part of the study area.

  2. Pilot-scale constructed wetlands for petroleum-contaminated groundwater.

    PubMed

    Bedessem, Marjorie E; Ferro, Ari M; Hiegel, Trevor

    2007-06-01

    A pilot study was conducted to determine the feasibility of using constructed treatment wetlands to remediate recovered groundwater from the subsurface of a former refinery site. The pilot system consisted of four subsurface flow treatment cells operated in an upward vertical flow mode and equipped with subsurface aeration lines. The treatment system showed minimal capability for methyl-tert-butyl ether removal, but did effectively remove total petroleum hydrocarbons-deisel range organics and total benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes (total BTEX). Effluent benzene concentrations were less than 0.05 mg/L in 70% of the samples from a treatment cell using subsurface aeration and a wetland sod amendment. Based on 1 year of operating data, cumulative mass removal approached 80% for benzene and 88% for total BTEX.

  3. Nitrate contamination of shallow aquifer groundwater in the central districts of Punjab, India.

    PubMed

    Bhardwaj, Anil; Garg, Sunil; Sondhi, S K; Taneja, D S

    2012-01-01

    The increasing trend in nitrogenous fertilizer use and extensive irrigation in the agricultural production system in Punjab, India are the reasons of contamination of groundwater, which is the main source of drinking water. A study was conducted to determine the extent of nitrate-nitrogen (NO3-N) contamination of groundwater in the shallow aquifers of Ludhiana district. Pre and post-monsoon groundwater samples from hand pumps of 36 villages, located at or near the nodes of 6-12 km grid, were collected during the years 1998 and 1999 and were analyzed for NO3-N concentration. During the period of study, the NO3-N concentration in 34.7%, 37.5%, 15.3%, 11.1% and 1.4% of the groundwater samples was between 0-5 mg/L, 6-10 mg/L, 11-15 mg/L, 16-20 mg/L and 21-25 mg/L, respectively. Around 72% of the groundwater samples were safe and did not exceed the critical limit of NO3-N concentration (10 mg/L) prescribed for drinking water. Although, statistically no change in the mean NO3-N concentration level has been observed during the study period and is within the safe limit in most of the samples (72%), yet there is every possibility of further contamination of groundwater due to continuous high N-fertilizer use and over irrigation which necessitates judicious and efficient N-fertilizer and irrigation water use in Punjab (India).

  4. Evidence for Groundwater Contamination Vulnerability in California?s Central Valley

    SciTech Connect

    Moran, J E; Leif, R; Esser, B K; Singleton, M J

    2005-12-13

    The California Water Resources Control Board, in collaboration with the US Geological Survey and Lawrence Livermore National Laboratory, has implemented a program to assess the susceptibility of groundwater resources. Advanced techniques such as groundwater age dating using the tritium-helium method, extensive use of oxygen isotopes of the water molecule ({delta}{sup 18}O) for recharge water provenance, and analysis of common volatile organic compounds (VOCs) at ultra-low levels are applied with the goal of assessing the contamination vulnerability of deep aquifers, which are frequently used for public drinking water supply. Over 1200 public drinking water wells have been tested to date, resulting in a very large, tightly spaced collection of groundwater ages in some of the heavily exploited groundwater basins of California. Smaller scale field studies that include shallow monitoring wells are aimed at assessing the probability that nitrate will be transported to deep drinking water aquifers. When employed on a basin-scale, groundwater ages are an effective tool for identifying recharge areas, defining flowpaths, and determining the rate of transport of water and entrained contaminants. De-convolution of mixed ages, using ancillary dissolved noble gas data, gives insight into the water age distribution drawn at a well, and into the effective dilution of contaminants such as nitrate at long-screened production wells. In combination with groundwater ages, low-level VOCs are used to assess the impact of vertical transport. Special studies are focused on the fate and transport of nitrate with respect to vulnerability of aquifers in agricultural and formerly agricultural areas.

  5. Using trees to remediate groundwaters contaminated with chlorinated hydrocarbons. 1998 annual progress report

    SciTech Connect

    Strand, S.E.; Gordon, M.P.

    1998-06-01

    'Industrial practices in the past have resulted in contamination of groundwater with chlorinated hydrocarbons (CHCs) at many DOE sites, such as Hanford and Savannah River. Such contamination is a major problem because existing groundwater remediation technologies are expensive and difficult. An inexpensive method for groundwater remediation is greatly needed. Trees could be used to remediate CHC polluted groundwater at minimal cost (phytoremediation). Before phytoremediation can be extensively applied, the authors must determine the range of compounds that are attacked, the effects of metabolic products on the plants and the environment, and the effect of transpiration and concentration of CHC on uptake and metabolism. They will test the ability of hybrid poplar to take up and transform the chlorinated methanes, ethanes and ethylenes. The rate of uptake and transformation by poplar of TCE as a function of concentration in the soil, transpiration rate and illumination level will be determined. Methods will be developed to permit rapid testing of plants from contaminated sites for species able to oxidize and sequester chlorinated compounds. They will identify the nature of the bound residues of TCE metabolism in poplar. They will identify the mechanisms involved in CHC oxidation in poplar and use genetic manipulations to enhance that activity. They will introduce the genes for mammalian cytochrome P-450-IIE1, known to oxidize light CHCs such as TCE to attempt to increase the CHC metabolism capacity of poplar. The results of this research will place phytoremediation of CHCs on a firm scientific footing, allowing a rational assessment of its application to groundwater contamination. This report summarizes the results of the first 1.5 years of work on a three-year project.'

  6. Groundwater chemistry in the nitrate contaminated area in Shimabara, Nagasaki Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Nakagawa, K.

    2014-12-01

    Groundwater contamination by nitrate from agricultural fields is a problem shared by many parts of the world. Shimabara, Nagasaki prefecture, Japan is an important agricultural district experiencing this problem. In Shimabara, drinking water relies on the groundwater. In this study, groundwater samples were collected at 40 locations such as residents and municipal waterworks wells, springs and rivers from August 2011 to November 2013. NO3-N concentration of 15 samples exceeded 10 mg L-1 (drinking water standard in Japan). Maximum NO3-N concentration was 26.6 mg L-1. Correlation coefficients were calculated between ion components of collected samples (n=277). NO3- had the highest positive correlation with Cl-(r =0.956) and had positive correlation with K+(r=0.679), SO42-(r=0.654) and Ca2+(r=0.593), respectively. The results revealed that Cl- and K+ related to livestock wastes, SO42- related to chemical fertilizers and Ca2+ related to calcareous materials. Main source of NO3- is from livestock wastes. To understand groundwater chemistry in detail, principal component analysis (PCA) and cluster analysis were carried out. Result from the PCA, chemical characteristics of groundwater was summarized by the first principal component and the second principal component. Both of two principal components reflected nitrate contamination and ion dissolution from aquifer matrix during groundwater flows. Result from the cluster analysis, chemical characteristics of groundwater was classified into four clusters. Nitrate polluted samples into specific cluster and the rest samples were classified into other clusters depending on the original water quality.

  7. Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat.

    PubMed

    Berg, M; Tran, H C; Nguyen, T C; Pham, H V; Schertenleib, R; Giger, W

    2001-07-01

    This is the first publication on arsenic contamination of the Red River alluvial tract in the city of Hanoi and in the surrounding rural districts. Due to naturally occurring organic matter in the sediments, the groundwaters are anoxic and rich in iron. With an average arsenic concentration of 159 micrograms/L, the contamination levels varied from 1 to 3050 micrograms/L in rural groundwater samples from private small-scale tubewells. In a highly affected rural area, the groundwater used directly as drinking water had an average concentration of 430 micrograms/L. Analysis of raw groundwater pumped from the lower aquifer for the Hanoi water supply yielded arsenic levels of 240-320 micrograms/L in three of eight treatment plants and 37-82 micrograms/L in another five plants. Aeration and sand filtration that are applied in the treatment plants for iron removal lowered the arsenic concentrations to levels of 25-91 micrograms/L, but 50% remained above the Vietnamese Standard of 50 micrograms/L. Extracts of sediment samples from five bore cores showed a correlation of arsenic and iron contents (r2 = 0.700, n = 64). The arsenic in the sediments may be associated with iron oxyhydroxides and released to the groundwater by reductive dissolution of iron. Oxidation of sulfide phases could also release arsenic to the groundwater, but sulfur concentrations in sediments were below 1 mg/g. The high arsenic concentrations found in the tubewells (48% above 50 micrograms/L and 20% above 150 micrograms/L) indicate that several million people consuming untreated groundwater might be at a considerable risk of chronic arsenic poisoning.

  8. [Laboratory evaluation of remediation of nitrobenzene contaminated aquifer by using groundwater circulation well].

    PubMed

    Bai, Jing; Zhao, Yong-Sheng; Sun, Chao; Qin, Chuan-Yu; Yu, Ling

    2014-10-01

    A two-dimension simulated sand box was set up to investigate the influencing factors, such as the initial groundwater level, aeration rate and the initial groundwater rate, that affect groundwater circulation well (GCW) by determining the intensity of groundwater circulation which was characterized by the variation of groundwater level before and after aeration. The optimal operating parameters were used to remediate nitrobenzene contaminated aquifer. The results demonstrated that: GCW could be well operated under the conditions of 45 cm groundwater level, 0.7 m3 · h(-1) aeration rate. The effects of groundwater velocity less than 1.0 m · d(-1) could be ignored. The lateral mobility rate of nitrobenzene was faster than that of longitudinal. The average concentration of nitrobenzene was 246.97 mg · L(-1) on day 50 of leakage. During the remediation of circulation well, an efficient organics remediation region was gradually formed around the circulation well. The organics in this region was removed preferentially, and the concentration decreased continuously. Besides the efficient remediation region, there was a transient region, where the concentration of organics was influenced by the combined effects of adsorption/desorption and migration potential of organics. During the whole remediation process, the concentration of nitrobenzene went through three stages described as rapid removal, slow removal. After 14h aeration, the nitrobenzene average concentration was reduced to 71.19 mg L(-1). The residual nitrobenzene was distributed in regions far away from GCW. Therefore, nitrobenzene contaminated aquifer could be well remediated by GCW, and there were optimal operation conditions and appropriate remediation time which guaranteed the best remediation effect.

  9. In situ treatment of cyanide-contaminated groundwater by iron cyanide precipitation

    SciTech Connect

    Ghosh, R.S.; Dzombak, D.A.; Luthy, R.G.; Smith, J.R.

    1999-10-01

    Groundwater contamination with cyanide is common at many former or active industrial sites. Metal-cyanide complexes typically dominate aqueous speciation of cyanide in groundwater systems, with iron-cyanide complexes often most abundant. Typically, metal-cyanide complexes behave as nonadsorbing solutes in sand-gravel aquifer systems in the neutral pH range, rendering cyanide relatively mobile in groundwater systems. Groundwater pump-and-treat systems have often been used to manage cyanide contamination in groundwater. This study examined the feasibility of using in situ precipitation of iron cyanide in a reactive barrier to attenuate the movement of cyanide in groundwater. Laboratory column experiments were performed in which cyanide solutions were passed through mixtures of sand and elemental iron filings. Removal of dissolved cyanide was evaluated in a variety of cyanide-containing influents under various flow rates and sand-to-iron weight ratios. Long-term column tests performed with various cyanide-containing influents under both oxic and anoxic conditions, at neutral pH and at flow rates typical of sand-gravel porous media, yielded effluent concentrations of total cyanide as low as 0.5 mg/L. Effluent cyanide concentrations achieved were close to the solubilities of Turnbull's blue-hydrous ferric oxide solid solutions, indicating co-precipitation of the two solids. Maximum cyanide removal efficiency was achieved with approximately 10% by weight of iron in the sand-iron mixtures; higher iron contents did not increase removal efficiency significantly. Results obtained indicate that in situ precipitation is a promising passive treatment approach for cyanide in groundwater.

  10. Baseline risk assessment of groundwater contamination at the uranium mill tailings site near Shiprock, New Mexico. Draft

    SciTech Connect

    Not Available

    1993-09-01

    This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain.

  11. Contamination valuation of soil and groundwater source at anaerobic municipal solid waste landfill site.

    PubMed

    Aziz, Shuokr Qarani; Maulood, Yousif Ismael

    2015-12-01

    The present work aimed to determine the risks that formed landfill leachate from anaerobic Erbil Landfill Site (ELS) poses on groundwater source and to observe the effects of disposed municipal solid waste (MSW) on soil properties. The study further aims to fill the gap in studies on the effects of disposed MSW and produced leachate on the groundwater characteristics and soil quality at ELS, Iraq. Soil, leachate, and groundwater samples were collected from ELS for use as samples in this study. Unpolluted groundwater samples were collected from an area outside of the landfill. Field and laboratory experiments for the soil samples were conducted. Chemical analyses for the soil samples such as organic matter, total salts, and SO4 (=) were also performed. Raw leachate and groundwater samples were analyzed using physical and chemical experiments. The yields for sorptivity, steady-state infiltration rate, and hydraulic conductivity of the soil samples were 0.0006 m/√s, 0.00004 m/s, and 2.17 × 10(-5) m/s, respectively. The soil at ELS was found to be light brown clayey gravel with sand and light brown gravely lean clay layers with low permeability. Unprocessed leachate analysis identified the leachate as stabilized. Findings showed that the soil and groundwater at the anaerobic ELS were contaminated.

  12. Contamination valuation of soil and groundwater source at anaerobic municipal solid waste landfill site.

    PubMed

    Aziz, Shuokr Qarani; Maulood, Yousif Ismael

    2015-12-01

    The present work aimed to determine the risks that formed landfill leachate from anaerobic Erbil Landfill Site (ELS) poses on groundwater source and to observe the effects of disposed municipal solid waste (MSW) on soil properties. The study further aims to fill the gap in studies on the effects of disposed MSW and produced leachate on the groundwater characteristics and soil quality at ELS, Iraq. Soil, leachate, and groundwater samples were collected from ELS for use as samples in this study. Unpolluted groundwater samples were collected from an area outside of the landfill. Field and laboratory experiments for the soil samples were conducted. Chemical analyses for the soil samples such as organic matter, total salts, and SO4 (=) were also performed. Raw leachate and groundwater samples were analyzed using physical and chemical experiments. The yields for sorptivity, steady-state infiltration rate, and hydraulic conductivity of the soil samples were 0.0006 m/√s, 0.00004 m/s, and 2.17 × 10(-5) m/s, respectively. The soil at ELS was found to be light brown clayey gravel with sand and light brown gravely lean clay layers with low permeability. Unprocessed leachate analysis identified the leachate as stabilized. Findings showed that the soil and groundwater at the anaerobic ELS were contaminated. PMID:26577215

  13. Erratum to "Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities".

    PubMed

    Umezawa, Yu; Hosono, Takahiro; Onodera, Shin-ichi; Siringan, Fernando; Buapeng, Somkid; Delinom, Robert; Yoshimizu, Chikage; Tayasu, Ichiro; Nagata, Toshi; Taniguchi, Makoto

    2009-04-15

    The status of nitrate (NO3-), nitrite (NO2-) and ammonium (NH4 +) contamination in the water systems, and the mechanisms controlling their sources, pathways, and distributions were investigated for the Southeast Asian cities of Metro Manila, Bangkok, and Jakarta. GIS-based monitoring and dual isotope approach (nitrate delta15N and delta18O) suggested that human waste via severe sewer leakage was the major source of nutrient contaminants in Metro Manila and Jakarta urban areas. Furthermore, the characteristics of the nutrient contamination differed depending on the agricultural land use pattern in the suburban areas: high nitrate contamination was observed in Jakarta (dry fields), and relatively lower nutrients consisting mainly of ammonium were detected in Bangkok (paddy fields). The exponential increase in NO3--delta15N along with the NO3- reduction and clear delta18O/delta15N slopes of NO3- (approximately 0.5) indicated the occurrence of denitrification. An anoxic subsurface system associated with the natural geological setting (e.g., the old tidal plain at Bangkok) and artificial pavement coverage served to buffer NO3- contamination via active denitrification and reduced nitrification. Our results showed that NO3- and NH4+ contamination of the aquifers in Metro Manila, Bangkok, and Jakarta was not excessive, suggesting low risk of drinking groundwater to human health, at present. However, the increased nitrogen load and increased per capita gross domestic product (GDP) in these developing cities may increase this contamination in the very near future. Continuous monitoring and management of the groundwater system is needed to minimize groundwater pollution in these areas, and this information should be shared among adjacent countries with similar geographic and cultural settings.

  14. Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities.

    PubMed

    Umezawa, Yu; Hosono, Takahiro; Onodera, Shin-ichi; Siringan, Fernando; Buapeng, Somkid; Delinom, Robert; Yoshimizu, Chikage; Tayasu, Ichiro; Nagata, Toshi; Taniguchi, Makoto

    2008-10-15

    The status of nitrate (NO(3)(-)), nitrite (NO(2)(-)) and ammonium (NH(4)(+)) contamination in the water systems, and the mechanisms controlling their sources, pathways, and distributions were investigated for the Southeast Asian cities of Metro Manila, Bangkok, and Jakarta. GIS-based monitoring and dual isotope approach (nitrate delta(15)N and delta(18)O) suggested that human waste via severe sewer leakage was the major source of nutrient contaminants in Metro Manila and Jakarta urban areas. Furthermore, the characteristics of the nutrient contamination differed depending on the agricultural land use pattern in the suburban areas: high nitrate contamination was observed in Jakarta (dry fields), and relatively lower nutrients consisting mainly of ammonium were detected in Bangkok (paddy fields). The exponential increase in NO(3)(-)-delta(15)N along with the NO(3)(-) reduction and clear delta(18)O/delta(15)N slopes of NO(3)(-) ( approximately 0.5) indicated the occurrence of denitrification. An anoxic subsurface system associated with the natural geological setting (e.g., the old tidal plain at Bangkok) and artificial pavement coverage served to buffer NO(3)(-) contamination via active denitrification and reduced nitrification. Our results showed that NO(3)(-) and NH(4)(+) contamination of the aquifers in Metro Manila, Bangkok, and Jakarta was not excessive, suggesting low risk of drinking groundwater to human health, at present. However, the increased nitrogen load and increased per capita gross domestic product (GDP) in these developing cities may increase this contamination in the very near future. Continuous monitoring and management of the groundwater system is needed to minimize groundwater pollution in these areas, and this information should be shared among adjacent countries with similar geographic and cultural settings.

  15. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Last, George V.; Strickland, Christopher E.; Tartakovsky, Guzel D.

    2015-09-01

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.

  16. Associations of free-living bacteria and dissolved organic compounds in a plume of contaminated groundwater

    USGS Publications Warehouse

    Harvey, R.W.; Barber, L.B.; ,

    1992-01-01

    Associations of free-living bacteria (FLB) and dissolved organic contaminants in a 4-km-long plume of sewage-contaminated groundwater were investigated. Abundance of FLB in the core of the plume (as delineated by maximum specific conductance) steadily decreased in the direction of flow from a point 0.25 km downgradient from the source to the toe of the plume. At 0.25 km downgradient, FLB comprised up to 31% of the total bacterial population, but constituted < 7% of the population at 2 km downgradient. Abundance of FLB correlated strongly (r = 0.80 n = 23) with total dissolved organic carbon (DOC) in contaminated groundwater between 0.64 and 2.1 km downgradient, although distributions of individual contaminants such as di-, tri- and tetrachloroethene were highly variable, and their association with FLB less clear. Numbers of FLB in the downgradient portion of the plume which is contaminated with branched-chain alkylbenzenesulfonate (ABS) surfactants were low (< 5??108/L) in spite of relatively high levels of DOC (up to 4 mg/L). However, abundance of FLB correlated strongly with non-surfactant DOC along vertical transects through the plume. The ratio of FLB to DOC and the ratio of FLB to attached bacteria generally decreased in the direction of flow and, consequently, with the age of the organic contaminants.

  17. Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments.

    PubMed

    Kim, Seok-Hwi; Kim, Kangjoo; Ko, Kyung-Seok; Kim, Yeongkyoo; Lee, Kwang-Sik

    2012-05-01

    The co-contamination of arsenic (As) and fluoride (F(-)) in shallow aquifers is frequently observed worldwide, and the correlations between those contaminants are different according to the redox conditions. This study geochemically explores the reasons for the co-contamination and for the redox-dependent correlations by investigating the groundwater of an alluvial aquifer in Korea. Geochemical signatures of the groundwater in the study area show that the As concentrations are enriched by the reductive dissolution of Fe-(hydr)oxides, and the correlations between As and F(-) concentrations are poor comparatively to those observed in the oxidizing aquifers. However, F(-) concentrations are strongly dependent on pH. Desorption/adsorption experiments using raw soils and citrate-bicarbonate-dithionite treated soils indicated that Fe-(hydr)oxides are the important As and F(-) hosts causing the co-contamination phenomenon. The weaker correlation between F(-) and As in reducing aquifers is likely to be associated with sulfate reduction, which removes As from groundwater without changing the F(-) concentration.

  18. Prediction of groundwater contamination with multivariate regression and probabilistic capture zones.

    PubMed

    Lim, Jeong-Won; Bae, Gwang-Ok; Kaown, Dugin; Lee, Kang-Kun

    2010-01-01

    Probabilistic capture zones are combined with a regression model and used as buffer zones around wells for Tobit regression analysis to predict contaminant concentration of groundwater in an agricultural region. A backward transport equation, which is a mathematical model based on the physical processes of solute transport, is used to delineate probabilistic capture zones. The probabilistic capture zone defines the area where contaminant discharge can have a direct influence, with pertinent probability, on the quality of groundwater pumped from a well. Tobit regression analysis is used to find the relationship between independent regression variables and a dependent variable, which is contaminant concentration in this study. The capture zone and the regression are combined into a model, and its applicability for prediction of nitrate concentration is tested in a small agricultural basin in Chuncheon, Korea, which is occupied mainly by vegetation fields, orchards, and small barns. Three cases of Model 1, Model 2, and Model 3 are compared in which buffer zones are circles, capture zones with probability over 0.1, and capture zones divided into sections with different probabilities, respectively. The resulting regression model describes nitrate concentration in terms of selected independent variables. When the concentrations are calculated with the model, the best fit with the observed concentrations was in Model 3. This result supports the applicability of the method proposed in this study to prediction of contaminant concentration of groundwater.

  19. Uptake and mobility of uranium in black oaks: implications for biomonitoring depleted uranium-contaminated groundwater.

    PubMed

    Edmands, J D; Brabander, D J; Coleman, D S

    2001-08-01

    In a preliminary study, the uptake and the mobility of uranium (U) by black oak trees (Quercus velutina) were assessed by measuring the isotopic composition of tree rings in two mature oak trees in a heavy metal contaminated bog in Concord, MA. The bog is adjacent to a nuclear industrial facility that has been processing depleted uranium (DU) since 1959. Over the past 40 years, DU has been leaking from an onsite holding basin and cooling pond down gradient to the bog where the oaks are located. Because DU has no source outside the nuclear industry, contamination from the industrial facility is readily discernable from uptake of natural U by measuring isotopic compositions. Isotope ratio analysis confirms the occurrence of DU in bark, sapwood and heartwood tree rings dating back to 1937, pre-dating the introduction of DU at the site by at least 20 years. Isotope dilution analysis indicates high concentrations of U (>3 ppb) in sapwood that drop rapidly to relatively constant concentrations (0.3-0.4 ppb) in heartwood. These data indicate that once incorporated into tree cells, U is mobile, possibly by diffusion through the tree wood. Concentrations of U in sapwood are approximately equal to average U concentrations in groundwater onsite over the past 10 years, suggesting that oak trees can be used as present-day bioindicators of U-contaminated groundwater. We suggest that regional sampling of oak bark and sapwood is a reasonable, inexpensive alternative to drilling wells to monitor shallow groundwater U contamination.

  20. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.

    PubMed

    Rango, Tewodros; Vengosh, Avner; Dwyer, Gary; Bianchini, Gianluca

    2013-10-01

    This study investigates the mechanisms of arsenic (As) and other naturally occurring contaminants (F(-), U, V, B, and Mo) mobilization from Quaternary sedimentary aquifers of the Main Ethiopian Rift (MER) and their enrichment in the local groundwater. The study is based on systematic measurements of major and trace elements as well as stable oxygen and hydrogen isotopes in groundwater, coupled with geochemical and mineralogical analyses of the aquifer rocks. The Rift Valley aquifer is composed of rhyolitic volcanics and Quaternary lacustrine sediments. X-ray fluorescence (XRF) results revealed that MER rhyolites (ash, tuff, pumice and ignimbrite) and sediments contain on average 72 wt. % and 65 wt. % SiO2, respectively. Petrographic studies of the rhyolites indicate predominance of volcanic glass, sanidine, pyroxene, Fe-oxides and plagioclase. The As content in the lacustrine sediments (mean = 6.6 mg/kg) was higher than that of the rhyolites (mean: 2.5 mg/kg). The lacustrine aquifers of the Ziway-Shala basin in the northern part of MER were identified as high As risk zones, where mean As concentration in groundwater was 22.4 ± 33.5 (range of 0.60-190 μg/L) and 54% of samples had As above the WHO drinking water guideline value of 10 μg/L. Field As speciation measurements showed that most of the groundwater samples contain predominantly (~80%) arsenate-As(V) over arsenite-As(III) species. The As speciation together with field data of redox potential (mean Eh = +73 ± 65 mV) and dissolved-O2 (6.6 ± 2.2 mg/L) suggest that the aquifer is predominantly oxidative. Water-rock interactions, including the dissolution of volcanic glass produces groundwater with near-neutral to alkaline pH (range 6.9-8.9), predominance of Na-HCO3 ions, and high concentration of SiO2 (mean: 85.8 ± 11.3 mg/L). The groundwater data show high positive correlation of As with Na, HCO3, U, B, V, and Mo (R(2) > 0.5; p < 0.001). Chemical modeling of the groundwater indicates that Fe-oxides and

  1. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.

    PubMed

    Rango, Tewodros; Vengosh, Avner; Dwyer, Gary; Bianchini, Gianluca

    2013-10-01

    This study investigates the mechanisms of arsenic (As) and other naturally occurring contaminants (F(-), U, V, B, and Mo) mobilization from Quaternary sedimentary aquifers of the Main Ethiopian Rift (MER) and their enrichment in the local groundwater. The study is based on systematic measurements of major and trace elements as well as stable oxygen and hydrogen isotopes in groundwater, coupled with geochemical and mineralogical analyses of the aquifer rocks. The Rift Valley aquifer is composed of rhyolitic volcanics and Quaternary lacustrine sediments. X-ray fluorescence (XRF) results revealed that MER rhyolites (ash, tuff, pumice and ignimbrite) and sediments contain on average 72 wt. % and 65 wt. % SiO2, respectively. Petrographic studies of the rhyolites indicate predominance of volcanic glass, sanidine, pyroxene, Fe-oxides and plagioclase. The As content in the lacustrine sediments (mean = 6.6 mg/kg) was higher than that of the rhyolites (mean: 2.5 mg/kg). The lacustrine aquifers of the Ziway-Shala basin in the northern part of MER were identified as high As risk zones, where mean As concentration in groundwater was 22.4 ± 33.5 (range of 0.60-190 μg/L) and 54% of samples had As above the WHO drinking water guideline value of 10 μg/L. Field As speciation measurements showed that most of the groundwater samples contain predominantly (~80%) arsenate-As(V) over arsenite-As(III) species. The As speciation together with field data of redox potential (mean Eh = +73 ± 65 mV) and dissolved-O2 (6.6 ± 2.2 mg/L) suggest that the aquifer is predominantly oxidative. Water-rock interactions, including the dissolution of volcanic glass produces groundwater with near-neutral to alkaline pH (range 6.9-8.9), predominance of Na-HCO3 ions, and high concentration of SiO2 (mean: 85.8 ± 11.3 mg/L). The groundwater data show high positive correlation of As with Na, HCO3, U, B, V, and Mo (R(2) > 0.5; p < 0.001). Chemical modeling of the groundwater indicates that Fe-oxides and

  2. Arsenic Groundwater Contamination in Bengal: a Coupled Geochemical and Geophysical Study

    NASA Astrophysics Data System (ADS)

    Charlet, L.; Ansari, A. A.; Dietrich, M.; Latscha, A.; LeBeux, A.; Chatterjee, D.; Mallik, S. B.

    2001-05-01

    Arsenic contamination in drinking water is a problem of great concern in Ganges delta region, and could be one of the largest natural calamity in the world. In the present study, a contamination plume located in the Lalpur area (Chakdaha Block, Nadia District, West Bengal, India) was studied. A coupled geochemical and geophysical approach was employed to understand the mechanism of arsenic mobilisation from the sediments to groundwater, as a first step towards a global explanation of the phenomenon for other contaminated areas in the Ganges delta. The groundwater As concentration, in the 10 km x 10 km studied area, ranges from 10 to 500 ppb. In situ chemical speciation of arsenic was carried out and various geochemical parameters were measured in representative contaminated wells to interpret the mobilization mechanism in terms of redox kinetics. Through geophysical investigations, subsurface lithology, sediment depositional and geomorphological characteristics were determined and correlated with the arsenic contamination processes. From a geomorphological viewpoint, the contaminated area is located in an abandoned paleochannel of the Hooghly river, interpreted as the active site of deposition of fine sediments which were preserved as clay pockets at certain depths. These clay pockets are rich in organic matter, which may be the driving force for redox potential change and thus, may have driven the mobilisation of arsenic in groundwater. The clay pockets rich in organic matter presumably represent the major reservoir where arsenic is sitting and getting released due to redox mechanism. They are sampled at present. A piezometric depression cone characterized by a radial groundwater flow is located underneath the highly populated Lalpur area. The arsenic plume appears to migrate from the Hooghly river towards the cone of depression following the water flowpath, and this shall be verified in forthcoming field campaigns. As (III) constitutes 42 % of the total As

  3. A multi-level assessment methodology for determining the potential for groundwater contamination by pesticides.

    PubMed

    Crowe, A S; Booty, W G

    1995-05-01

    A multi-level pesticide assessment methodology has been developed to permit regulatory personnel to undertake a variety of assessments on the potential for pesticide used in agricultural areas to contaminate the groundwater regime at an increasingly detailed geographical scale of investigation. A multi-level approach accounts for a variety of assessment objectives and detail required in the assessment, the restrictions on the availability and accuracy of data, the time available to undertake the assessment, and the expertise of the decision maker. The level 1: regional scale is designed to prioritize districts having a potentially high risk for groundwater contamination from the application of a specific pesticide for a particular crop. The level 2: local scale is used to identify critical areas for groundwater contamination, at a soil polygon scale, within a district. A level 3: soil profile scale allows the user to evaluate specific factors influencing pesticide leaching and persistence, and to determine the extent and timing of leaching, through the simulation of the migration of a pesticide within a soil profile. Because of the scale of investigation, limited amount of data required, and qualitative nature of the assessment results, the level 1 and level 2 assessment are designed primarily for quick and broad guidance related to management practices. A level 3 assessment is more complex, requires considerably more data and expertise on the part of the user, and hence is designed to verify the potential for contamination identified during the level 1 or 2 assessment. The system combines environmental modelling, geographical information systems, extensive databases, data management systems, expert systems, and pesticide assessment models, to form an environmental information system for assessing the potential for pesticides to contaminate groundwater.

  4. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production.

    PubMed

    Lockhart, K M; King, A M; Harter, T

    2013-08-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. The San Joaquin Valley, California, is an example of an agricultural landscape with a large diversity of field, vegetable, tree, nut, and citrus crops, but also confined animal feeding operations (CAFOs, here mostly dairies) that generate, store, and land apply large amounts of liquid manure. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Variability in crops, soil type, and depth to groundwater contribute to large variability in nitrate occurrence across the underlying aquifer system. The role of these factors in controlling groundwater nitrate contamination levels is examined. Two hundred domestic wells were sampled in two sub-regions of the San Joaquin Valley, Stanislaus and Merced (Stan/Mer) and Tulare and Kings (Tul/Kings) Counties. Forty six percent of well water samples in Tul/Kings and 42% of well water samples in Stan/Mer exceeded the MCL for nitrate (10mg/L NO3-N). For statistical analysis of nitrate contamination, 78 crop and landuse types were considered by grouping them into ten categories (CAFO, citrus, deciduous fruits and nuts, field crops, forage, native, pasture, truck crops, urban, and vineyards). Vadose zone thickness, soil type, well construction information, well proximity to dairies, and dominant landuse near the well were considered. In the Stan/Mer area, elevated nitrate levels in domestic wells most strongly correlate with the combination of very shallow (≤21 m) water table and the presence of either CAFO derived animal waste applications or deciduous fruit and nut crops (synthetic fertilizer applications). In Tulare County, statistical data indicate that elevated

  5. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production

    NASA Astrophysics Data System (ADS)

    Lockhart, K. M.; King, A. M.; Harter, T.

    2013-08-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. The San Joaquin Valley, California, is an example of an agricultural landscape with a large diversity of field, vegetable, tree, nut, and citrus crops, but also confined animal feeding operations (CAFOs, here mostly dairies) that generate, store, and land apply large amounts of liquid manure. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤ 150 m deep), of which many have been affected by nitrate. Variability in crops, soil type, and depth to groundwater contribute to large variability in nitrate occurrence across the underlying aquifer system. The role of these factors in controlling groundwater nitrate contamination levels is examined. Two hundred domestic wells were sampled in two sub-regions of the San Joaquin Valley, Stanislaus and Merced (Stan/Mer) and Tulare and Kings (Tul/Kings) Counties. Forty six percent of well water samples in Tul/Kings and 42% of well water samples in Stan/Mer exceeded the MCL for nitrate (10 mg/L NO3-N). For statistical analysis of nitrate contamination, 78 crop and landuse types were considered by grouping them into ten categories (CAFO, citrus, deciduous fruits and nuts, field crops, forage, native, pasture, truck crops, urban, and vineyards). Vadose zone thickness, soil type, well construction information, well proximity to dairies, and dominant landuse near the well were considered. In the Stan/Mer area, elevated nitrate levels in domestic wells most strongly correlate with the combination of very shallow (≤ 21 m) water table and the presence of either CAFO derived animal waste applications or deciduous fruit and nut crops (synthetic fertilizer applications). In Tulare County, statistical data indicate that elevated

  6. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production.

    PubMed

    Lockhart, K M; King, A M; Harter, T

    2013-08-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. The San Joaquin Valley, California, is an example of an agricultural landscape with a large diversity of field, vegetable, tree, nut, and citrus crops, but also confined animal feeding operations (CAFOs, here mostly dairies) that generate, store, and land apply large amounts of liquid manure. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Variability in crops, soil type, and depth to groundwater contribute to large variability in nitrate occurrence across the underlying aquifer system. The role of these factors in controlling groundwater nitrate contamination levels is examined. Two hundred domestic wells were sampled in two sub-regions of the San Joaquin Valley, Stanislaus and Merced (Stan/Mer) and Tulare and Kings (Tul/Kings) Counties. Forty six percent of well water samples in Tul/Kings and 42% of well water samples in Stan/Mer exceeded the MCL for nitrate (10mg/L NO3-N). For statistical analysis of nitrate contamination, 78 crop and landuse types were considered by grouping them into ten categories (CAFO, citrus, deciduous fruits and nuts, field crops, forage, native, pasture, truck crops, urban, and vineyards). Vadose zone thickness, soil type, well construction information, well proximity to dairies, and dominant landuse near the well were considered. In the Stan/Mer area, elevated nitrate levels in domestic wells most strongly correlate with the combination of very shallow (≤21 m) water table and the presence of either CAFO derived animal waste applications or deciduous fruit and nut crops (synthetic fertilizer applications). In Tulare County, statistical data indicate that elevated

  7. Preliminary investigation of soil and ground-water contamination at a U.S. Army Petroleum Training Facility, Fort Lee, Virginia, September-October 1989

    USGS Publications Warehouse

    Wright, W.G.; Powell, J.D.

    1990-01-01

    Fuel-oil constituents in the soil and groundwater at the Fort Lee Petroleum Training Facility near Petersburg, Virginia, were studied by the U.S. Geological Survey (USGS) in cooperation with the Department of Defense, U.S. Army. The study included installation of 25 groundwater monitoring wells and description of groundwater flow patterns of the shallow-aquifer system underlying the facility. Soil and groundwater samples were collected to determine the concentrations of fuel-oil constituents and to determine the potential for off-site migration of the constituents. Total petroleum hydrocarbon concentrations up to 18,400 mg/km were reported in soil samples. Concentrations of benzene in water from wells at the facility were up to 130 micrograms per liter (ug/L), and concentrations of ethylbenzene and xylene were up to 54 and 120 ug/L, respectively. Potential exists for off-site migration of the contaminants and migration of contaminants downward to deeper aquifers. Further investigations of these potential contamination-migration pathways are warranted. Risk identification at the Petroleum Training Facility cannot be properly addressed because the distribution of the fuel-oil constituents has not been fully characterized. Preliminary identification of risk, however is presented by an examination of toxicity data for the chemical constituents reported in the groundwater at the facility. Concentrations of constituents were compared to the maximum contaminant levels (MCLs) for drinking water established by the U.S. Environmental Protection Agency (USEPA). Concentrations of benzene in water from wells at the facility exceed the USEPA 's 5 ug/L MCL by as much as 26 times. Sufficient data are not available to fully design the remedial-action plan for the facility; however, general responses to contamination of the type associated with the facility include no-action, monitoring, institutional controls, removal, and treatment. (USGS)

  8. Bat groundwater monitoring system in contaminant studies. Doctoral thesis

    SciTech Connect

    Mines, B.S.

    1992-01-01

    The purpose of this study is to provide an in-depth, comprehensive study to compare results from the BAT probe and Teflon bailers from nearby monitoring wells. Volatile organic compounds are typically the most difficult contaminants to sample. The research was performed by taking samples within a small radius around monitoring wells at two leaking underground storage tank sites and taking bailer samples from the monitoring wells. BAT sampling will also be performed inside the monitoring wells to ensure basically the same water is being sampled.

  9. Effects of heterogeneity on active spreading strategies to remediate contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Kasprzyk, J. R.; Piscopo, A. N.; Neupauer, R.

    2015-12-01

    The effectiveness of in situ chemical oxidation (ISCO) to remediate contaminated aquifers is constrained by the amount of contact between the groundwater contaminant and the injected oxidant. Contaminant degradation during ISCO can be enhanced using innovative active spreading strategies, which involve injecting and extracting water at wells in the vicinity of the plume to generate flow fields that spread the contaminant and oxidant plumes in a manner that increases their contact. Because aquifer heterogeneity affects the transport of the contaminant and oxidant during injection and extraction, aquifer heterogeneity also affects the amount of contact and the degree of contaminant degradation achieved using active spreading strategies during ISCO. Consequently, we can improve the effectiveness of active spreading strategies by generating sequences of injection and extraction that take the aquifer heterogeneity into account. In this study, we optimize sequences of injections and extractions to maximize contaminant degradation in aquifers with zonal and spatially-correlated heterogeneity for three contaminant-oxidant pairings with different reaction kinetics. Analysis of the transport and degradation corresponding to the optimal sequences of injection and extraction demonstrates that the underlying aquifer and contaminant properties are reflected by the optimal sequences.

  10. The Speciation of Groundwater Contaminated with Coal Pile Leachate at the Savannah River Site, South Carolina

    SciTech Connect

    Denham, M.E.; Nichols, R.L.

    1995-05-15

    Modeling the transport of contaminant metals and designing systems for their remediation requires an understanding of the metal`s speciation. Thus, analysis of contaminant speciation and evaluation of the processes that can change the speciation should be done during characterization of the contaminated site. This approach is being used at the Savannah River Site for a metals contaminated site that will serve as a test platform for metals remediation technologies. The site is adjacent to a coal storage pile and the basin that contains the coal pile runoff. A network of well clusters allows definition of the plume, including profiles of contamination with depth. The groundwater is acidic (pH {approx} 2) and contains high concentrations of sulfate (up to 2300 mg/l) and metals, with chromium, nickel, cadmium and lead exceeding drinking water standards. Aluminum and total iron concentrations range up to 1326 mg/l and 7991 mg/l, respectively. Speciation calculations on dissolved contaminants indicate that as much as 65% of the lead, 54% of the cadmium, and 34% of the nickel may be present in sulfate complexes. Chromium occurs predominantly as Cr{sup +3}. There is evidence that some contaminant metals may be associated with colloidal material. Contamination in the groundwater is stratified with concentrations decreasing over a depth range of 3 meters (10 feet). Fluid-rock interactions explain the non-uniform behavior of dissolved components with depth. Mass balance considerations suggest that the interactions are dominated by Kaolinite dissolution coupled with precipitation of phases containing aluminum, ferric iron, silica, and sulfate, as well as co- precipitation of contaminant metals.

  11. Assessing soil and groundwater contamination from biofuel spills.

    PubMed

    Chen, Colin S; Shu, Youn-Yuen; Wu, Suh-Huey; Tien, Chien-Jung

    2015-03-01

    Future modifications of fuels should include evaluation of the proposed constituents for their potential to damage environmental resources such as the subsurface environment. Batch and column experiments were designed to simulate biofuel spills in the subsurface environment and to evaluate the sorption and desorption behavior of target fuel constituents (i.e., monoaromatic and polyaromatic hydrocarbons) in soil. The extent and reversibility of the sorption of aromatic biofuel constituents onto soil were determined. When the ethanol content in ethanol-blended gasoline exceeded 25%, enhanced desorption of the aromatic constituents to water was observed. However, when biodiesel was added to diesel fuel, the sorption of target compounds was not affected. In addition, when the organic carbon content of the soil was higher, the desorption of target compounds into water was lower. The empirical relationships between the organic-carbon normalized sorption coefficient (Koc) and water solubility and between Koc and the octanol-water partition coefficient (Kow) were established. Column experiments were carried out for the comparison of column effluent concentration/mass from biofuel-contaminated soil. The dissolution of target components depended on chemical properties such as the hydrophobicity and total mass of biofuel. This study provides a basis for predicting the fate and transport of hydrophobic organic compounds in the event of a biofuel spill. The spill scenarios generated can assist in the assessment of biofuel-contaminated sites.

  12. Boron and selenium contamination in south Texas groundwater.

    PubMed

    Hudak, Paul F

    2004-01-01

    Boron and selenium concentrations from 112 water wells in an irrigated agricultural region of south Texas were compiled, mapped, and statistically analyzed. Wells in the study area produce water from the Gulf Coast Aquifer System, comprising coastward sloping beds of clay, silt, sand, and gravel. Nearly 84 percent of boron observations exceeded the 600 ug/L advisory level for drinking water, 70% exceeded the 1250 ug/L level for sensitive crops, and 24% exceeded the 3750 ug/L level for tolerant crops. Additionally, 21% of selenium observations exceeded the 20 ug/L advisory level for irrigation water, and five percent surpassed the 50 ug/L standard for drinking water. Many wells with high boron concentrations also had high selenium concentrations, and several clusters of high concentrations were in irrigated parts of the study area. However, there was no association between selenium and well depth, and a direct rather than inverse association between boron and well depth. Progressively brackish water in downdip reaches of the aquifer largely controls observed boron patterns. Both irrigation practices and prevailing groundwater chemistry significantly influence selenium concentrations in the study area.

  13. Emerging organic contaminants in surface water and groundwater: a first overview of the situation in Italy.

    PubMed

    Meffe, Raffaella; de Bustamante, Irene

    2014-05-15

    This paper provides the first review of the occurrence of 161 emerging organic compounds (EOCs) in Italian surface water and groundwater. The reported EOCs belong to the groups of industrials, pharmaceuticals, estrogens and illicit drugs. Occurrence of 137 pesticides was also reported. The reviewed research works have been published between 1997 and 2013. The majority of the studies have been carried out in Northern Italy (n. 30) and to a lower extent in Central Italy (n. 13). Only a limited number of research studies report EOC concentrations in water resources of Southern Italy. The EOCs that have been more frequently studied are in the following descending order, pesticides (16), pharmaceuticals (15), industrials (13), estrogens (7) and illicit drugs (2). Research activities investigating the EOC occurrence in surface water are more numerous than those in groundwater. This is consistent with the higher complexity involved in groundwater sampling and EOC detection. Among the reported EOCs, industrials and pesticides are those occurring in both surface water and groundwater with the highest concentrations (up to 15 × 10(6) and 4.78 × 0(5)ng L(-1), respectively). Concentrations of pharmaceuticals in surface water reach a maximum of 3.59 × 10(3)ng L(-1), whereas only the antimicrobial agent josamycin has been encountered in groundwater with a concentration higher than 100 ng L(-1). Both estrogens and illicit drugs appeared in surface water with concentrations lower than 50 ng L(-1). Groundwater concentrations for estrogens were measured to be below the detection limits, whereas illicit drugs have so far not been studied in groundwater. The present review reveals the serious contamination status of Italian surface water and groundwater especially by pesticides, industrials and to a lower extent by pharmaceuticals and the necessity to foster the research on EOC occurrence in Italian water resources, in particular in Southern Italy where a limited number of

  14. [Spatial and temporal variability of nitrate contaminant in groundwater in Jinfo Mt. area, Chongqing, China].

    PubMed

    Wu, Kun-Yu; Wang, Peng; Shen, Li-Cheng; Xiao, Qiong

    2011-11-01

    The geochemical background of nitrate in groundwater in Jinfo Mt. area was determined, and spatial and temporal variability of nitrate contaminant was analyzed using geochemical, statistical and GIS methods. Twenty-three samples were collected from groundwater discharge points in the study area during 1976-1977, 2004-2006 and 2009, and mass concentration of nitrate in groundwater was tested. The results showed that the geochemical background of nitrate in groundwater in study area was in the range of 0.72-2. 00 mg x L(-1), and the threshold of anomaly was 3.20 mg x L(-1). During 2004-2006 and 2009, the average values of nitrate concentration in groundwater in Jinfo Mt. natural reserve were 2.08, 2.67, 2.59 and 3.92 mg x L(-1); and were 39.08, 25.46, 17.99 and 13.73 mg x L(-1) in the groundwater out of the reserve; the average over-limit rates (standard limit NO3(-) -N < or = 10mg x L(-1)) were 451.64%, 478.61%, 331.85% and 145.67%; the maximum over-limit rates were 1 475.81%, 1 080.39%, 538.20% and 361.78%. Results of interpolation showed that the high value centers of nitrate concentration in groundwater in study area were changing over time, but districts with low nitrate concentration in groundwater in study area were distributed along Jinfo Mt. natural reserve. The application of environmental policy measures and industrial restructuring implemented were reasonable and successful, which had a positive effect to environmental protection.

  15. Linking Groundwater Quality and Quantity: An Assessment of Satellite-Based Groundwater Storage Anomalies From GRACE Against Ground Measurements of Contaminants in California

    NASA Astrophysics Data System (ADS)

    Rezaie Boroon, M.; Fisher, J. B.

    2011-12-01

    Groundwater comprises a large portion of irrigation for California's agriculture, and sustains a wide diversity of ecosystems as well as consumptive use, but pumping is occurring faster than replenishment. At the same time, contaminants from fertilizers and pesticides are infiltrating into the groundwater, becoming increasingly concentrated as water is extracted. We compared space-based observations of groundwater anomalies from California's San Joaquin Valley using the Gravity Recovery and Climate Experiment (GRACE) against measurements of 42 organic and inorganic chemicals from 41,667 wells in the valley from 2003 to 2010. Preliminary results show both strong and weak correlations with groundwater depletion against increasing chlorine (r2=0.78), boron (r2=0.88), but no relationship with benzene (r2=0.03). These results are the first to link space-based groundwater quantity with groundwater quality.

  16. Effects of Hydrogeologic Conditions on Groundwater Contamination of CVOCs in the North Coast Karst Aquifer of Puerto Rico

    NASA Astrophysics Data System (ADS)

    Torres Torres, N. I.; Howard, J.; Padilla, I. Y.; Torres, P.; Cotto, I.; Irizarry, C.

    2012-12-01

    The karst system of northern Puerto Rico is the most productive aquifer of the island. It serves freshwater to industrial, domestic and agricultural purposes, and contributes to the ecological integrity of the region. The same characteristics that make this a highly productive aquifer, make it vulnerable to contamination of groundwater. Of particular importance is contamination with chlorinated volatile organic compounds (CVOCs), which have been related to preterm birth problems. A great extent of CVOC contamination has been seen in the North Coast of Puerto Rico since the 1970s. The main purposes of this study are (1) to relate the water quality of wells and springs with the hydrogeological conditions in the north coast limestone aquifer of Puerto Rico, and (2) to make a statistical analysis of the historical groundwater contamination in that area. To achieve these objectives, groundwater samples are collected from wells and springs during dry and wet seasons. Results show that trichloroethylene (TCE), tetrachloroethylene (PCE) and chloroform (TCM) are frequently detected in groundwater samples. A greater detection of CVOCs is detected during the wet season than the dry season. This is attributed to a greater capacity to flush stored contaminants during the wet season. Historical analysis of contamination in the north coast of Puerto Rico shows a high capacity of the aquifer to store and release contaminants. Future work will be focused the statistical analysis of the historical groundwater contamination data to understand the behavior of the contaminants in different hydrologic conditions.

  17. Waste green sands as reactive media for groundwater contaminated with trichloroethylene (TCE).

    PubMed

    Lee, Taeyoon; Benson, Craig H; Eykholt, Gerald R

    2004-06-18

    Waste green sands are byproducts of the gray iron foundry industry that consist of sand, binding agents, organic carbon, and residual iron particles. Because of their potential sorptive and reactive properties, tests were conducted to determine the feasibility of using waste green sands as a low cost reactive medium for groundwater treatment. Batch and column tests were conducted to determine the reactivity, sorptive characteristics, and transport parameters for trichloroethylene (TCE) solutions in contact with green sands. Normalized rate constants for TCE degradation in the presence of iron particles extracted from green sands were found to be comparable to those for Peerless iron, a common medium used to treat groundwater. Rate constants and partition coefficients obtained from the batch tests were found to be comparable to those from the column tests. Analytical modeling shows that reactive barriers containing green sand potentially can be used to treat contaminated groundwater containing TCE at typical concentrations observed in the field. PMID:15177742

  18. Agricultural contamination of groundwater as a possible risk factor for growth restriction or prematurity.

    PubMed

    Bukowski, J; Somers, G; Bryanton, J

    2001-04-01

    Agricultural activity on Prince Edward Island poses a potential hazard to groundwater, which is the sole source of drinking water on the island. This study investigates the potential impact of groundwater nitrate exposure on prematurity and intrauterine growth restriction on Prince Edward Island. A total of 210 intrauterine growth restriction cases, 336 premature births, and 4098 controls were abstracted from a database of all Island births. An ecological measure of groundwater nitrate level was used to gauge potential exposure to agriculturally contaminated drinking water. The higher nitrate exposure categories were positively associated with intrauterine growth restriction and prematurity, and significant dose-response trends were seen, even after adjustment for several important covariates. Nevertheless, these risks must be interpreted cautiously because of the ecological nature of this exposure metric. An investigation using nitrate levels for individual study subjects is needed to confirm this association.

  19. Seasonal variations of lead, arsenic, cadmium and aluminium contamination of groundwater in Dhemaji district, Assam, India.

    PubMed

    Buragohain, Mridul; Bhuyan, Bhabajit; Sarma, Hari Prasad

    2010-11-01

    Seasonal variations in the concentrations of groundwater with respect to arsenic, lead, cadmium and aluminium has been studied in Dhemaji district of Assam, India. The water samples were collected from 20 different sites in both dry and wet seasons. The metals were analysed by using atomic absorption spectrometer, Perkin Elmer AAnalyst 200 model. The concentrations of aluminium, lead and cadmium in groundwater were found to be significantly elevated. High concentrations of all the metals were recorded in the dry season than in the wet season. Univariate statistics along with skewness, kurtosis and confidence limit have been calculated for both the seasons to test the distribution normality for each metal. Statistical analyses of the data reveal non-uniform distribution of the metals in the area. The metal contamination of groundwater in the district follows the trend Al>Pb>Cd>As in both the seasons.

  20. Microbial contamination of groundwater at small community water supplies in Finland.

    PubMed

    Pitkänen, Tarja; Karinen, Päivi; Miettinen, Ilkka T; Lettojärvi, Heidi; Heikkilä, Annika; Maunula, Reetta; Aula, Vesa; Kuronen, Henry; Vepsäläinen, Asko; Nousiainen, Liina-Lotta; Pelkonen, Sinikka; Heinonen-Tanski, Helvi

    2011-06-01

    The raw water quality and associations between the factors considered as threats to water safety were studied in 20 groundwater supplies in central Finland in 2002-2004. Faecal contaminations indicated by the appearance of Escherichia coli or intestinal enterococci were present in five small community water supplies, all these managed by local water cooperatives. Elevated concentrations of nutrients in raw water were linked with the presence of faecal bacteria. The presence of on-site technical hazards to water safety, such as inadequate well construction and maintenance enabling surface water to enter into the well and the insufficient depth of protective soil layers above the groundwater table, showed the vulnerability of the quality of groundwater used for drinking purposes. To minimize the risk of waterborne illnesses, the vulnerable water supplies need to be identified and appropriate prevention measures such as disinfection should be applied.

  1. Pulsed gas injection: a minimum effort approach for enhanced natural attenuation of chlorobenzene in contaminated groundwater.

    PubMed

    Balcke, Gerd Ulrich; Paschke, Heidrun; Vogt, Carsten; Schirmer, Mario

    2009-07-01

    Chlorobenzene-contaminated groundwater was used to assess pulsed gas sparging as a minimum effort aeration strategy to enhance intrinsic natural attenuation. In contrast to existing biosparging operations, oxygen was supplied at minimum rate by reducing the gas injection frequency to 0.33 day(-1). Field tests in a model aquifer were conducted in a 12 m long reactor, filled with indigenous aquifer material and continuously recharged with polluted groundwater over 3 years. The closed arrangement allowed yield balances, cost accounting as well as the investigation of spatial distributions of parameters which are sensitive to the biodegradation process. Depending on the injection frequency and on the gas chosen for injection (pure oxygen or air) oxygen-deficient conditions prevailed in the aquifer. Despite the limiting availability of dissolved oxygen in the groundwater, chlorobenzene degradation under oxygen-deficient conditions proved to be more effective than under conditions with dissolved oxygen being available in high concentrations.

  2. Effect of on-site sanitation on groundwater contamination in basaltic environment--a case study from India.

    PubMed

    Pujari, Paras R; Nanoti, Madan; Nitnaware, Vaishali C; Khare, Leena A; Thacker, N P; Kelkar, P S

    2007-11-01

    On-site sanitation is increasingly adopted in urban cities in India. The adoption of on-site sanitation system puts the groundwater resources in the vicinity of the system at a greater risk. Microbial contaminants as well as chemical contaminants like Chloride and Nitrate are generated from human waste. These contaminants travel through the medium and ultimately get in contact with the groundwater. Hence, the groundwater sources are vulnerable to nitrate contamination near the on-site sanitation systems. The present study indicates significant Nitrate and Chloride contamination in samples collected close to on-site sanitation systems. The recommended limit set by the Bureau of Indian standards (BIS) limit of 45 mg/l for Nitrate concentration is also exceeded in few samples. The study indicates that Bacterial as well as Nitrate contamination is more in Monsoon as compared to Summer.

  3. Groundwater arsenic contamination in Bangladesh and West Bengal, India.

    PubMed

    Chowdhury, U K; Biswas, B K; Chowdhury, T R; Samanta, G; Mandal, B K; Basu, G C; Chanda, C R; Lodh, D; Saha, K C; Mukherjee, S K; Roy, S; Kabir, S; Quamruzzaman, Q; Chakraborti, D

    2000-05-01

    Nine districts in West Bengal, India, and 42 districts in Bangladesh have arsenic levels in groundwater above the World Health Organization maximum permissible limit of 50 microg/L. The area and population of the 42 districts in Bangladesh and the 9 districts in West Bengal are 92,106 km(2) and 79.9 million and 38,865 km(2) and 42.7 million, respectively. In our preliminary study, we have identified 985 arsenic-affected villages in 69 police stations/blocks of nine arsenic-affected districts in West Bengal. In Bangladesh, we have identified 492 affected villages in 141 police stations/blocks of 42 affected districts. To date, we have collected 10,991 water samples from 42 arsenic-affected districts in Bangladesh for analysis, 58,166 water samples from nine arsenic-affected districts in West Bengal. Of the water samples that we analyzed, 59 and 34%, respectively, contained arsenic levels above 50 microg/L. Thousands of hair, nail, and urine samples from people living in arsenic-affected villages have been analyzed to date; Bangladesh and West Bengal, 93 and 77% samples, on an average, contained arsenic above the normal/toxic level. We surveyed 27 of 42 districts in Bangladesh for arsenic patients; we identified patients with arsenical skin lesions in 25 districts. In West Bengal, we identified patients with lesions in seven of nine districts. We examined people from the affected villages at random for arsenical dermatologic features (11,180 and 29,035 from Bangladesh and West Bengal, respectively); 24.47 and 15.02% of those examined, respectively, had skin lesions. After 10 years of study in West Bengal and 5 in Bangladesh, we feel that we have seen only the tip of iceberg.

  4. The background state leading to arsenic contamination of Bengal basin groundwater.

    PubMed

    Adel, Miah M

    2005-12-01

    The Bengal basin has the world's densest water diversion constructions on the natural courses of rivers. The most damaging water diversion construction is the Farakka Barrage upon the international River Ganges. The diversion of water through this barrage and other constructions upstream of it has reduced the Ganges flow rate by 2.5 times. The resulting downstream effects are the depletion of surface water resources, more withdrawal than recharge of groundwater, sinking groundwater table, spread in depth and extension of the vadose zone, changes in surface features, climatic changes, etc. An investigation was carried out to find the contributions of water diversion to the arsenic contamination of groundwater in the Bengal basin. The reasonable scenario for arsenic contamination is the oxygen deficiency in groundwater and aeration of arsenopyrites buried in the sediment that would remain under water prior to 1975. The mineral forms water-soluble compounds of arsenic when react with atmospheric oxygen. These soluble arsenic compounds infiltrates to the groundwater. This article summarizes the short-time and incomplete study-based quick conclusions reached by investigators that have totally avoided the vital issue of water diversion. It then shows the depleting condition of the water resources under continuing diversions, the generation of favorable condition for arsenic release, the reasons for low sulfur concentration, the reason for first contamination in the Hugly basin, and the hindrance to water's self-purification. The articles advocates that the restoration of the virgin wetland ecosystems in the Bengal basin following the stoppage of the inordinate amount of unilateral upstream water withdrawals can remove the catastrophe.

  5. Characterization and fingerprinting of soil and groundwater contamination sources around a fuel distribution station in Galicia (NW Spain).

    PubMed

    Balseiro-Romero, María; Macías, Felipe; Monterroso, Carmen

    2016-05-01

    Soil and groundwater contamination around a fuel distribution station in Tomiño (NW Spain) was evaluated. For this purpose, top and subsoil (up to 6.4 m) and groundwater were sampled around the station, approximately in a 60-m radius. Samples were analysed by HS-SPME-GC-MS to identify and quantify volatile fuel organic compounds (VFOC) (MTBE, ETBE and BTEX) and diesel range organics (DRO). Analysis and fingerprinting data suggested that the contamination of soil and groundwater was provoked by a fuel leak from underground storage tanks. This was reflected by hydrocarbon indices and principal component analysis, which discriminated a direct source of contamination of the subsoil samples around the station. The contaminants probably migrated from tank nearby soils to surrounding soils and leached to groundwater, following a SW direction. Irrigation with contaminated groundwater provoked a severe contamination of topsoils, which were enriched with the lightest components of gasoline and diesel. Fingerprinting also revealed the continuity of the leak, reflected by the presence of volatiles in some samples, which principally appeared in fresh leaks. MTBE was detected in a very high concentration in groundwater samples (up to 690 μg L(-1)), but it was not detected in fresh gasoline. This also evidenced an old source of contamination, probably starting in the mid-1990s, when the use of MTBE in gasoline was regulated.

  6. Groundwater remediation using an enricher reactor-permeable reactive biobarrier for periodically absent contaminants.

    PubMed

    Kasi, Murthy; McEvoy, John; Padmanabhan, G; Khan, Eakalak

    2011-07-01

    A combined enricher reactor (ER)-permeable reactive biobarrier (PRBB) system was developed to treat groundwater with contaminants that appear in batches. An enricher reactor is an offline reactor used to enrich contaminant degraders by supplying necessary growth materials, and the enriched degraders are used to augment PRBB to increase its performance after a period of contaminant absence. Bench-scale experiments on PRBBs with and without bacterial supply from the enricher reactor were conducted to evaluate PRBB removal performances for benzene, which was used as a model contaminant. Benzene absence periods of 10 and 25 days were tested in the presence and absence of ethanol. The PRBBs without the bioaugmentation from the enricher reactor experienced a decrease in performance from approximately 65% to 30% after benzene reappeared. The presence of ethanol accelerated the benzene removal performance recovery of PRBBs. The 25-day benzene absence period caused greater changes in the bacterial community structure, regardless of the ethanol availability.

  7. Establishing indices for groundwater contamination risk assessment in the vicinity of hazardous waste landfills in China.

    PubMed

    Li, Ying; Li, Jinhui; Chen, Shusheng; Diao, Weihua

    2012-06-01

    Groundwater contamination by leachate is the most damaging environmental impact over the entire life of a hazardous waste landfill (HWL). With the number of HWL facilities in China rapidly increasing, and considering the poor status of environmental risk management, it is imperative that effective environmental risk management methods be implemented. A risk assessment indices system for HWL groundwater contamination is here proposed, which can simplify the risk assessment procedure and make it more user-friendly. The assessment framework and indices were drawn from five aspects: source term, underground media, leachate properties, risk receptors and landfill management quality, and a risk assessment indices system consisting of 38 cardinal indicators was established. Comparison with multimedia models revealed that the proposed indices system was integrated and quantitative, that input data for it could be easily collected, and that it could be widely used for environmental risk assessment (ERA) in China.

  8. The role of retail fertilizer dealers in reducing groundwater contamination: A focus on educational needs

    SciTech Connect

    Williams, R.J.; Ransom, J.M.

    1989-06-01

    Retail fertilizer dealers are a critical link in the US agricultural production complex. They are positioned to have major impact on annual fertilizer and pesticide use decisions involving over 44 million tons of fertilizer materials and 470 million pounds of active ingredients of pesticides (USDA, 1989). These inputs are key targets in efforts to reduce agrichemical contamination of groundwater. The purpose of this paper is: to focus on the role of the fertilizer/agrichemical dealer in this effort, to discuss educational needs of the dealer in order to operate his own business in compliance with environmental regulations and, to point out the educational and motivational needs of the dealer in order to assist his farmer-customers to use agrichemicals in ways that will eliminate or reduce groundwater contamination from farming operations.

  9. Change of magnetic properties due to fluctuations of hydrocarbon contaminated groundwater in unconsolidated sediments.

    PubMed

    Rijal, Moti L; Appel, Erwin; Petrovský, Eduard; Blaha, Ulrich

    2010-05-01

    Sediments affected by fluctuations of hydrocarbon contaminated groundwater were studied at a former military site. Due to remediation, groundwater table fluctuation (GWTF) extends over approximately one meter. Three cores were collected, penetrating through the GWTF zone. Magnetic parameters, sediment properties and hydrocarbon content were measured. We discovered that magnetic concentration parameters increased towards the top of the GWTF zone. Magnetite is responsible for this enhancement; rock magnetic parameters indicate that the newly formed magnetite is in a single domain rather than a superparamagnetic state. The presence of hydrocarbons is apparently essential for magnetite to form, as there is clearly less magnetic enhancement in the core, which is outside of the strongly contaminated area. From our results we conclude that the top of the fluctuation zone has the most intensive geomicrobiological activity probably responsible for magnetite formation. This finding could be relevant for developing methods for simply and quickly detecting oil spills.

  10. Modelling assessment of regional groundwater contamination due to historic smelter emissions of heavy metals.

    PubMed

    van der Grift, Bas; Griffioen, Jasper

    2008-02-19

    Historic emissions from ore smelters typically cause regional soil contamination. We developed a modelling approach to assess the impact of such contamination on groundwater and surface water load, coupling unsaturated zone leaching modelling with 3D groundwater transport modelling. Both historic and predictive modelling were performed, using a mass balance approach for three different catchments in the vicinity of three smelters. The catchments differ in their hydrology and geochemistry. The historic modelling results indicate that leaching to groundwater is spatially very heterogeneous due to variation in soil characteristics, in particular soil pH. In the saturated zone, cadmium is becoming strongly retarded due to strong sorption at neutral pH, even though the reactivity of the sandy sediments is low. A comparison between two datasets (from 1990 to 2002) on shallow groundwater and modelled concentrations provided a useful verification on the level of statistics of "homogeneous areas" (areas with comparable land use, soil type and geohydrological situation) instead of comparison at individual locations. While at individual locations observations and the model varies up to two orders of magnitude, for homogeneous areas, medians and ranges of measured concentrations and the model results are similar. A sensitivity analysis on metal input loads, groundwater composition and sediment geochemistry reveals that the best available information scenario based on the median value of input parameters for the model predicts the range in observed concentrations very well. However, the model results are sensitive to the sediment contents of the reactive components (organic matter, clay minerals and iron oxides). Uncertainty in metal input loads and groundwater chemistry are of lesser importance. Predictive modelling reveals a remarkable difference in geochemical and hydrological controls on subsurface metal transport at catchment-scale. Whether the surface water load will peak

  11. Modelling assessment of regional groundwater contamination due to historic smelter emissions of heavy metals.

    PubMed

    van der Grift, Bas; Griffioen, Jasper

    2008-02-19

    Historic emissions from ore smelters typically cause regional soil contamination. We developed a modelling approach to assess the impact of such contamination on groundwater and surface water load, coupling unsaturated zone leaching modelling with 3D groundwater transport modelling. Both historic and predictive modelling were performed, using a mass balance approach for three different catchments in the vicinity of three smelters. The catchments differ in their hydrology and geochemistry. The historic modelling results indicate that leaching to groundwater is spatially very heterogeneous due to variation in soil characteristics, in particular soil pH. In the saturated zone, cadmium is becoming strongly retarded due to strong sorption at neutral pH, even though the reactivity of the sandy sediments is low. A comparison between two datasets (from 1990 to 2002) on shallow groundwater and modelled concentrations provided a useful verification on the level of statistics of "homogeneous areas" (areas with comparable land use, soil type and geohydrological situation) instead of comparison at individual locations. While at individual locations observations and the model varies up to two orders of magnitude, for homogeneous areas, medians and ranges of measured concentrations and the model results are similar. A sensitivity analysis on metal input loads, groundwater composition and sediment geochemistry reveals that the best available information scenario based on the median value of input parameters for the model predicts the range in observed concentrations very well. However, the model results are sensitive to the sediment contents of the reactive components (organic matter, clay minerals and iron oxides). Uncertainty in metal input loads and groundwater chemistry are of lesser importance. Predictive modelling reveals a remarkable difference in geochemical and hydrological controls on subsurface metal transport at catchment-scale. Whether the surface water load will peak

  12. The groundwater contribution to surface water contamination in a region with intensive agricultural land use (Noord-Brabant, The Netherlands).

    PubMed

    Rozemeijer, J C; Broers, H P

    2007-08-01

    Traditionally, monitoring of soil, groundwater and surface water quality is coordinated by different authorities in the Netherlands. Nowadays, the European Water Framework Directive (EU, 2,000) stimulates an integrated approach of the complete soil-groundwater-surface water system. Based on water quality data from several test catchments, we propose a conceptual model stating that stream water quality at different discharges is the result of different mixing ratios of groundwater from different depths. This concept is used for a regional study of the groundwater contribution to surface water contamination in the Dutch province of Noord-Brabant, using the large amount of available data from the regional monitoring networks. The results show that groundwater is a dominant source of surface water contamination. The poor chemical condition of upper and shallow groundwater leads to exceedance of the quality standards in receiving surface waters, especially during quick flow periods.

  13. Relating groundwater and sediment chemistry to microbial characterization at a BTEX-contaminated site

    SciTech Connect

    Pfiffner, S.M.; Palumbo, A.V.; McCarthy, J.F.; Gibson, T.

    1996-07-01

    The National Center for Manufacturing Science is investigating bioremediation of petroleum hydrocarbon at a site in Belleville, Michigan. As part of this study we examined the microbial communities to help elucidate biodegradative processes currently active at the site. We observed high densities of aerobic hydrocarbon degraders and denitrifiers in the less-contaminated sediments. Low densities of iron and sulfate reducers were measured in the same sediments. In contrast, the highly-contaminated sediments showed low densities of aerobic hydrocarbon degraders and denitrifiers and high densities of iron and sulfate reducers. Methanogens were also found in these highly-contaminated sediments. These contaminated sediments also showed a higher biomass, by phospholipid fatty acids, and greater ratios of phospholipid fatty acids which indicate stress within the microbial community. Aquifer chemistry analyses indicated that the more-contaminated area was more reduced and had lower sulfate than the less-contaminated area. These conditions suggest that the subsurface environment at the highly-contaminated area had progressed into sulfate reduction and methanogensis. The less-contaminated area, although less reduced, also appeared to be progressing into primarily iron- and sulfate-reducing microbial communities. The proposed treatment to stimulate bioremediation includes addition of oxygen and nitrate. Groundwater chemistry and microbial analyses revealed significant differences resulted from the injection of dissolved oxygen and nitrate in the subsurface. These differences included increases in pH and Eh and large decreases in BTEX, dissolved iron, and sulfate concentrations at the injection well.

  14. Groundwater contamination by chlorinated naphthalenes and related substances caused by activities of a former military base.

    PubMed

    Vinzelberg, Gero; Schwarzbauer, Jan; Littke, Ralf

    2005-11-01

    Water samples derived from two different aquifer layers of six sampling sites were analysed by GC/MS in order to characterize a groundwater contamination caused by chemicals used for wood impregnation. Mono- and dichlorinated naphthalenes, chlorobenzo(b)thiophene, 1-chloro-4-naphthol, 1-chloronaphthoic acid, acenaphthene and methyled naphthalenes were identified as the main pollutants and quantified. 1-Chloro-4-naphthol and 1-chloronaphthoic acid are discussed as possible indicators for anaerobic degradation processes. Results of inorganic and compound specific stable carbon isotope analyses revealed only a minor degree of microbiological transformation. Thus, sorption was characterized as the main attenuation process within the aquifer affecting the contamination described.

  15. Assessment of rural ground-water contamination by agricultural chemicals in sensitive areas of Michigan

    SciTech Connect

    Ervin, J.L.; Kittleson, K.M.

    1988-04-01

    The vulnerability of drinking-water supplies to agricultural contamination in three Michigan counties is discussed. The results of nitrate and atrazine analysis of drinking water from 38 wells in those 3 counties is described. Widespread nitrate contamination was demonstrated in agricultural areas with vulnerable aquifers. In addition, atrazine, a widely used herbicide was found in 11 of the 38 wells samples, with concentrations and patterns not conforming to findings in other mid-western states. The need for a comprehensive inventory of the ground-water quality in rural areas of Michigan is emphasized in the report, which describes results from the first year of a 2-year study.

  16. Organic Contaminants in Riverine and Groundwater Systems: Aspects of the Anthropogenic Contribution

    NASA Astrophysics Data System (ADS)

    Schwarzbauer, Jan

    This book summarizes a selection of organic-geochemical investigations, which deal with the characterization and environmental behaviour of organic contaminations of German river and groundwater systems. The aim is to resume and present an overview of comprehensive current research activities, which have been published diversely in specialised scientific journals and, are therefore not easily available in a concise and clearly arranged way. Important topics include comprehensive non-target screening as well as isotope analysis of contaminants in water and sediments, detailed characterisation of bound residues, recording river ine pollution histories and an extensive application of the anthropogenic marker approach.

  17. Perchlorate contamination of groundwater from fireworks manufacturing area in South India.

    PubMed

    Isobe, Tomohiko; Ogawa, Shohei P; Sugimoto, Rina; Ramu, Karri; Sudaryanto, Agus; Malarvannan, Govindan; Devanathan, Gnanasekaran; Ramaswamy, Babu Rajendran; Munuswamy, Natesan; Ganesh, Deavaraj Sankar; Sivakumar, Jeyaraj; Sethuraman, A; Parthasarathy, V; Subramanian, Annamalai; Field, Jennifer; Tanabe, Shinsuke

    2013-07-01

    Perchlorate contamination was investigated in groundwater and surface water from Sivakasi and Madurai in the Tamil Nadu State of South India. Sensitive determination of perchlorate (LOQ = 0.005 μg/L) was achieved by large-volume (500 μL) injection ion chromatography coupled with tandem mass spectrometry. Concentrations of perchlorate were <0.005-7,690 μg/L in groundwater (n = 60), <0.005-30.2 μg/L in surface water (n = 11), and 0.063-0.393 μg/L in tap water (n = 3). Levels in groundwater were significantly higher in the fireworks factory area than in the other locations, indicating that the fireworks and safety match industries are principal sources of perchlorate pollution. This is the first study that reports the contamination status of perchlorate in this area and reveals firework manufacture to be the pollution source. Since perchlorate levels in 17 out of 57 groundwater samples from Sivakasi, and none from Madurai, exceeded the drinking water guideline level proposed by USEPA (15 μg/L), further investigation on human health is warranted.

  18. Granular activated carbon pilot treatment studies for explosives removal from contaminated groundwater

    SciTech Connect

    Wujcik, W.J.; Lowe, W.L.; Marks, P.J. ); Sisk, W.E. )

    1992-08-01

    Manufacturing activities at Army Ammunition Plants (AAPs) result in the production of organic wastewaters that contain both explosive residues and other organic chemicals. As a result of past waste practices at such plants, explosive residues may leach through the soil and contaminate groundwater. Two pilot studies were performed to evaluate the use of granular activated carbon (GAC) to treat groundwater contaminated with explosives at Badger AAP and Milan AAP. An additional goal of the Badger AAP study was to examine the potential discharge of explosives 2,4-DNT and 2,6-DNT from a packed column air stripper used to remove volatile organic compounds from groundwater. A laboratory method was developed for the BAAP study to permit lower detection levels for 2,4-DNT and 2,6-DNT (0.46[mu]g/L and 0.017 [mu]g/L, respectively). The studies concluded that removal of explosives from groundwater using continuous flow GAC is feasible. 14 refs., 10 figs., 11 tabs.

  19. Use of multivariate indicator kriging methods for assessing groundwater contamination extents for irrigation.

    PubMed

    Jang, Cheng-Shin

    2013-05-01

    Multivariate geostatistical approaches have been applied extensively in characterizing risks and uncertainty of pollutant concentrations exceeding anthropogenic regulatory limits. Spatially delineating an extent of contamination potential is considerably critical for regional groundwater resources protection and utilization. This study used multivariate indicator kriging (MVIK) to determine spatial patterns of contamination extents in groundwater for irrigation and made a predicted comparison between two types of MVIK, including MVIK of multiplying indicator variables (MVIK-M) and of averaging indicator variables (MVIK-A). A cross-validation procedure was adopted to examine the performance of predicted errors, and various probability thresholds used to calculate ratios of declared pollution area to total area were explored for the two MVIK methods. The assessed results reveal that the northern and central aquifers have excellent groundwater quality for irrigation use. Results obtained through a cross-validation procedure indicate that MVIK-M is more robust than MVIK-A. Furthermore, a low ratio of declared pollution area to total area in MVIK-A may result in an unrealistic and unreliable probability used to determine extents of pollutants. Therefore, this study suggests using MVIK-M to probabilistically determine extents of pollutants in groundwater.

  20. Identification of Groundwater Nitrate Contamination from Explosives Used in Road Construction: Isotopic, Chemical, and Hydrologic Evidence.

    PubMed

    Degnan, James R; Böhlke, J K; Pelham, Krystle; Langlais, David M; Walsh, Gregory J

    2016-01-19

    Explosives used in construction have been implicated as sources of NO3(-) contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3(-) can be complicated by other NO3(-) sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3(-) transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3(-) sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3(-) (low δ(15)N, high δ(18)O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3(-) subjected to partial denitrification (high δ(15)N, high δ(18)O); (3) relatively persistent concentrations of blasting-related biogenic NO3(-) derived from nitrification of NH4(+) (low δ(15)N, low δ(18)O); and (4) stable but spatially variable biogenic NO3(-) concentrations, consistent with recharge from septic systems (high δ(15)N, low δ(18)O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ(15)N/Δδ(18)O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  1. Wastewater-contaminated groundwater as a source of endogenous hormones and pharmaceuticals to surface water ecosystems.

    PubMed

    Standley, Laurel J; Rudel, Ruthann A; Swartz, Christopher H; Attfield, Kathleen R; Christian, Jeff; Erickson, Mike; Brody, Julia G

    2008-12-01

    Increasing residential development in watershed recharge areas increases the likelihood of groundwater and surface water contamination by wastewater effluent, particularly where on-site sewage treatment is employed. This effluent contains a range of compounds including those that have been demonstrated to mimic or interfere with the function of natural hormones in aquatic organisms and humans. To explore whether groundwater contaminated by discharge from on-site septic systems affects water quality in surface water ecosystems, we measured steroidal hormones, pharmaceuticals, and other organic wastewater compounds (OWCs) in water collected from six aquifer-fed ponds in areas of higher and lower residential density on Cape Cod (Massachusetts, USA). We detected both a greater number and higher concentrations of OWCs in samples collected from ponds located in higher residential density areas. Most often detected were the steroidal hormones androstenedione, estrone, and progesterone and the pharmaceuticals carbamazepine, pentoxifylline, sulfamethoxazole, and trimethoprim. Of particular concern, estrogenic hormones were present at concentrations approaching those that induce physiological responses in fish. While a number of papers have reported on surface water contamination by OWCs from wastewater treatment plants, our results show that surface water ecosystems in unconfined aquifer settings are susceptible to contamination by estrogenic and other biologically active OWCs through recharge from aquifers contaminated by residential septic systems.

  2. Wastewater-contaminated groundwater as a source of endogenous hormones and pharmaceuticals to surface water ecosystems.

    PubMed

    Standley, Laurel J; Rudel, Ruthann A; Swartz, Christopher H; Attfield, Kathleen R; Christian, Jeff; Erickson, Mike; Brody, Julia G

    2008-12-01

    Increasing residential development in watershed recharge areas increases the likelihood of groundwater and surface water contamination by wastewater effluent, particularly where on-site sewage treatment is employed. This effluent contains a range of compounds including those that have been demonstrated to mimic or interfere with the function of natural hormones in aquatic organisms and humans. To explore whether groundwater contaminated by discharge from on-site septic systems affects water quality in surface water ecosystems, we measured steroidal hormones, pharmaceuticals, and other organic wastewater compounds (OWCs) in water collected from six aquifer-fed ponds in areas of higher and lower residential density on Cape Cod (Massachusetts, USA). We detected both a greater number and higher concentrations of OWCs in samples collected from ponds located in higher residential density areas. Most often detected were the steroidal hormones androstenedione, estrone, and progesterone and the pharmaceuticals carbamazepine, pentoxifylline, sulfamethoxazole, and trimethoprim. Of particular concern, estrogenic hormones were present at concentrations approaching those that induce physiological responses in fish. While a number of papers have reported on surface water contamination by OWCs from wastewater treatment plants, our results show that surface water ecosystems in unconfined aquifer settings are susceptible to contamination by estrogenic and other biologically active OWCs through recharge from aquifers contaminated by residential septic systems. PMID:18616377

  3. A procedure to design a Permeable Adsorptive Barrier (PAB) for contaminated groundwater remediation.

    PubMed

    Erto, A; Lancia, A; Bortone, I; Di Nardo, A; Di Natale, M; Musmarra, D

    2011-01-01

    A procedure to optimize the design of a Permeable Adsorptive Barrier (PAB) for the remediation of a contaminated aqui