Science.gov

Sample records for adductor longus muscles

  1. A Rare Case of Adductor Longus Muscle Rupture

    PubMed Central

    van de Kimmenade, R. J. L. L.; van Bergen, C. J. A.; van Deurzen, P. J. E.; Verhagen, R. A. W.

    2015-01-01

    An adductor longus muscle rupture is a rare injury. This case report describes a 32-year-old patient with an adductor longus rupture. The trauma mechanism was a hyperabduction movement during a soccer game. Nonoperative treatment was initiated. After a follow-up of 4 years, the patient was without pain but a small swelling was still visible. This report describes the anatomy, pathophysiology, and evidence-based treatment of adductor longus rupture. PMID:25918663

  2. A rare case of adductor longus muscle rupture.

    PubMed

    van de Kimmenade, R J L L; van Bergen, C J A; van Deurzen, P J E; Verhagen, R A W

    2015-01-01

    An adductor longus muscle rupture is a rare injury. This case report describes a 32-year-old patient with an adductor longus rupture. The trauma mechanism was a hyperabduction movement during a soccer game. Nonoperative treatment was initiated. After a follow-up of 4 years, the patient was without pain but a small swelling was still visible. This report describes the anatomy, pathophysiology, and evidence-based treatment of adductor longus rupture. PMID:25918663

  3. Surgical management of a completely avulsed adductor longus muscle in a professional equestrian rider.

    PubMed

    Quah, Conal; Cottam, Andrew; Hutchinson, James

    2014-01-01

    Avulsion injuries of the adductor longus muscle tendon are rare and a challenge to manage especially in athletes. There has been little published literature on the outcome of conservative and operative treatment for these injuries. We report the first case of an acute adductor longus avulsion injury which was surgically repaired in a professional equestrian rider. Return to full preinjury function was achieved at 3 months with surgical repair using 3 suture anchors. PMID:24711943

  4. Adductor longus muscle metastasis of transitional cell carcinoma of the urinary bladder

    PubMed Central

    Koca, Irfan; Ucar, Mehmet; Bozdag, Zehra; Alkan, Samet

    2014-01-01

    Bladder cancer most commonly spreads to the lymph nodes, lungs, bones and adrenal glands. Metastasis of bladder cancer to the skeletal muscle is extremely rare, as is the case in other malignancies. We report a case of a 62-year-old male patient who presented with pain and swelling in the right lower extremity and had difficulty walking, and who was later found to have metastasis in the adductor longus muscle 3 months after the initial diagnosis of transitional cell carcinoma of the urinary bladder. The study also provides a review of the current literature. PMID:24827659

  5. Temporal changes in sarcomere lesions of rat adductor longus muscles during hindlimb reloading

    NASA Technical Reports Server (NTRS)

    Krippendorf, B. B.; Riley, D. A.

    1994-01-01

    Focal sarcomere disruptions were previously observed in adductor longus muscles of rats flown approximately two weeks aboard the Cosmos 1887 and 2044 biosatellite flights. These lesions, characterized by breakage and loss of myofilaments and Z-line streaming, resembled damage induced by unaccustomed exercise that includes eccentric contractions in which muscles lengthen as they develop tension. We hypothesized that sarcomere lesions in atrophied muscles of space flow rats were not produced in microgravity by muscle unloading but resulted from muscle reloading upon re-exposure to terrestrial gravity. To test this hypothesis, we examined temporal changes in sarcomere integrity of adductor longus muscles from rats subjected to 12.5 days of hindlimb suspension unloading and subsequent reloading by return to vivarium cages for 0, 6, 12, or 48 hours of normal weightbearing. Our ultrastructural observations suggested that muscle unloading (0 h reloading) induced myofibril misalignment associated with myofiber atrophy. Muscle reloading for 6 hours induced focal sarcomere lesions in which cross striations were abnormally widened. Such lesions were electron lucent due to extensive myofilament loss. Lesions in reloaded muscles showed rapid restructuring. By 12 hours of reloading, lesions were moderately stained foci and by 48 hours darkly stained foci in which the pattern of cross striations was indistinct at the light and electron microscopic levels. These lesions were spanned by Z-line-like electron dense filamentous material. Our findings suggest a new role for Z-line streaming in lesion restructuring: rather than an antecedent to damage, this type of Z-line streaming may be indicative of rapid, early sarcomere repair.

  6. Responses of Electromyogram Activity in Adductor Longus Muscle of Rats to the Altered Gravity Levels

    NASA Astrophysics Data System (ADS)

    Ohira, Takashi; Wang, Xiao Dong; Terada, Masahiro; Kawano, Fuminori; Higo, Yoko; Nakai, Naoya; Ochiai, Toshimasa; Gyotoku, Jyunichirou; Nishimoto, Norihiro; Ogura, Akihiko; Ohira, Yoshinobu

    2008-06-01

    Responses of electromyogram (EMG) activities in the rostral and caudal regions of adductor longus (AL) muscle to altered gravity levels during parabolic flight of a jet airplane, as well as hindlimb suspension, were investigated in adult rats. Tonic EMGs in both regions were noted when the rats were exposed to hyper-G, as well as 1-G. The hip joints were adducted and the sedental quadrupedal position was maintained at these G levels. However, the EMG activities in these regions decreased and became phasic, when the hip joints were abducted and extended backward in μ-G environment. Such changes of joint angles caused passive shortening of sarcomeres only in the caudal region of AL. Atrophy and shift toward fast-twitch type were noted in fibers of the caudal region after 16-day unloading. Although fiber transformation was also induced in the rostral region, no atrophy was seen in fast-twitch fibers. The data may suggest that the atrophy and shift of phenotype caused by gravitational unloading in fibers of the caudal region may be related to the decrease in the neural and mechanical activities. Fiber type transformation toward fast-twitch type may be also related to the change of muscle activity from tonic to phasic patterns, which are the typical characteristics of fast-twitch muscle. However, the responses to unloading in fibers of rostral region were not related to the reduction of mechanical load.

  7. Surgical treatment of the adductor longus muscle's distal tendon total rupture in a soccer player.

    PubMed

    Masionis, P; Popov, K; Kurtinaitis, J; Uvarovas, V; Porvaneckas, N

    2016-09-01

    Only a few cases of adductor longus tendon ruptures have been reported in the literature and - there are no clear criteria for conservative or surgical treatment. A case of traumatic rupture of the right distal adductor longus tendon is presented in an elite soccer player, which was surgically repaired. The condition was managed conservatively primarily. However, after 2 months, a palpable mass remained on the medial side of the thigh, and the patient had pain after moderate everyday load and insufficient strength of the right leg during physical exercise. It was decided to explore ruptured tendon surgically and reattach to the femur. Full function of the right leg was achieved at 3 months after surgical repair. At 6 months postoperatively, the patient had returned to soccer at the same level. PMID:27132783

  8. Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle--a test model

    NASA Technical Reports Server (NTRS)

    Thompson, J. L.; Balog, E. M.; Fitts, R. H.; Riley, D. A.

    1999-01-01

    Sarcomere disruptions are observed in the adductor longus (AL) muscles following voluntary reloading of spaceflown and hindlimb suspension unloaded (HSU) rat, which resemble lesions in eccentrically challenged muscle. We devised and tested an eccentric contraction (ECCON) test system for the 14-day HSU rat AL. Six to 7 hours following ECCON, ALs were fixed to allow immunostaining and electron microscopy (EM). Toluidine blue-stained histology semithin sections were screened for lesion density (#/mm2). Serial semithin sections from the ECCON group were characterized for myosin immunointensity of lesions. Five myofibrillar lesion types were identified in histological semithin sections: focal contractions; wide A-bands; opaque areas; missing A-bands; and hyperstretched sarcomeres. Lesion density by type was greater for ECCON than NonECCON ALs (P< or =0.05; focal contractions and opaque regions). Lesion density (#-of-all-five-types/mm2) was significantly different (ECCON: 23.91+/-10.58 vs. NonECCON: 5.48+/-1.28, P< or =0.05; ECCON vs. SHAM: 0.00+/-0.00; P< or = 0.025). PostECCON optimal tension decreased (Poi-drop, 17.84+/-4.22%) and was correlated to lesion density (R2=0.596), but prestretch tension demonstrated the highest correlation with lesion density (R2=0.994). In lesions, the darkly staining A-band lost the normally organized thick filament alignment to differing degrees across the different lesion types. Ranking the five lesion types by a measure of lesion length deformation (hypercontracted to hyperstretched) at the light microscopy level, related to the severity of thick filament registry loss across the lesion types at the electron microscopic level. This ranking suggested that the five lesion types seen in semithin sections at the light level represented a lesion progression sequence and paralleled myosin immunostaining loss as the distorted A-band filaments spread across the hyperlengthening lesion types. Lesion ultrastructure indicated damage involved

  9. Adductor Pollicis Longus Strain in a Professional Baseball Player

    PubMed Central

    Pinkowsky, Gregory J.; Roberts, John; Allred, Jeff; Pujalte, George G.; Gallo, Robert A.

    2013-01-01

    Thenar pain can represent a significant morbidity for a baseball player who relies on manual dexterity for gripping a bat and precise and accurate throws. While osseous, ligamentous, and neurovascular pathologies are commonly considered, musculotendinous injuries are often neglected in the differential diagnosis of thenar pain. We present a case of adductor pollicis longus strain as a cause of acute thenar pain in a baseball player. Adductor pollicis longus strains should be considered in any baseball player sustaining a hyperabduction force to the thumb. PMID:24459545

  10. Diagnosing adductor muscle avulsion at the symphysis pubis with ultrasound.

    PubMed

    Chen, David J; Caldera, Franklin E; Kim, Woojin

    2014-04-01

    A 58-yr-old woman presented after experiencing left hip and groin pain for 1 mo. She denies any history of trauma, falls or any bruising, or history of sports injury or extreme physical exertion before her symptoms. On ultrasonography, she was found to have an avulsion tear at the origin of the adductor muscles, predominantly involving the adductor longus and brevis muscles. The treatment course was conservative: nonsteroidal anti-inflammatory drugs for pain control and physical therapy for muscle strengthening and balance improvement. Upon follow-up, she demonstrated significant improvement and resolution of her pain. PMID:24196970

  11. Effects of spaceflight in the adductor longus muscle of rats flown in the Soviet Biosatellite COSMOS 2044. A study employing neural cell adhesion molecule (N-CAM) immunocytochemistry and conventional morphological techniques (light and electron microscopy)

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Daunton, N. G.

    1992-01-01

    The effects of spaceflight upon the "slow" muscle adductor longus were examined in rats flown in the Soviet Biosatellite COSMOS 2044. The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leukocytes and mononuclear cells. Neural cell adhesion molecule immunoreactivity (N-CAM-IR) was seen on the myofiber surface and in regenerating myofibers. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with apparent preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments. The principal electron microscopic changes of the neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles replaced by microtubules and neurofilaments, degeneration of axon terminals, vacant axonal spaces and changes suggestive of axonal sprouting. The present observations suggest that alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  12. Influence of electrical stimulation on hip joint adductor muscle activity during maximum effort

    PubMed Central

    Nakano, Sota; Wada, Chikamune

    2016-01-01

    [Purpose] This study investigated whether hip adductor activity was influenced by electrical stimulation of the tensor fascia lata muscle. [Subjects and Methods] The subjects were 16 nondisabled males. Each subject was asked to adduct the hip joint with maximum effort. The electromyogram of the adductor longus was recorded under two experimental conditions, with and without electrical stimulation of the tensor fascia lata. [Results] In the presence of electrical stimulation, muscle activity decreased to 72.9% (57.8–89.3%) of that without stimulation. [Conclusion] These results suggested that inactivation of the adductor group was promoted by electrical stimulation of the tensor fascia lata. PMID:27313387

  13. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 1; A Study Employing Neural Cell Adhesion Molecules (N-CAM) Immunocytochemistry and Conventional Morphological Techniques (Light and Electron Microscopy)

    NASA Technical Reports Server (NTRS)

    Daunton, N. G.; DAmelio, F.; Wu, L.; Ilyina-Kakueva, E. I.; Krasnov, I. B.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    The effects of spaceflight upon the 'slow' muscle adductor longus was examined in rats flown in the Soviet Biosatellite COSMOS 2044. Three groups - synchronous, vivarium and basal served as controls. The techniques employed included standard methods for light microscopy, N-CAM immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy, contraction bands and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leucocytes and mononuclear cells. N-CAM immunoreactivity was seen (N-CAM-IR) on the myofiber surface, satellite cells and in regenerating myofibers reminiscent of myotubes. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments that displayed varied distributive patterns. The principal electron microscopic changes of the neuromuscular junctions consisted of a decrease or absence of synaptic vesicles, degeneration of axon terminals, increased number of microtubules, vacant axonal spaces and axonal sprouting. The present observations indicate that major alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  14. Reversed palmaris longus muscle: Anatomical variant – case report and literature review

    PubMed Central

    Murabit, Amera; Gnarra, Maria; Mohamed, Adel

    2013-01-01

    The palmaris longus, a slender fusiform muscle, is especially prone to exhibiting anatomical variance relative to other muscles in the upper extremity. The most frequent anatomical variation is the completely absent palmaris longus, followed by the reversed, duplicated, bifid or hypertrophied palmaris longus muscles. The reversed palmaris longus muscle represents a structure that is tendinous proximally and muscular distally (opposite of the normal palmaris longus). The present report describes a case of reversed palmaris longus muscle, followed by a literature review to illustrate the wide spectrum of anatomical variations in the palmaris longus muscle and their clinical and surgical relevance. PMID:24431941

  15. Reversed palmaris longus muscle: Anatomical variant - case report and literature review.

    PubMed

    Murabit, Amera; Gnarra, Maria; Mohamed, Adel

    2013-01-01

    The palmaris longus, a slender fusiform muscle, is especially prone to exhibiting anatomical variance relative to other muscles in the upper extremity. The most frequent anatomical variation is the completely absent palmaris longus, followed by the reversed, duplicated, bifid or hypertrophied palmaris longus muscles. The reversed palmaris longus muscle represents a structure that is tendinous proximally and muscular distally (opposite of the normal palmaris longus). The present report describes a case of reversed palmaris longus muscle, followed by a literature review to illustrate the wide spectrum of anatomical variations in the palmaris longus muscle and their clinical and surgical relevance. PMID:24431941

  16. A Case of the Bilateral Duplicate Palmaris Longus Muscles Coupled with the Palmaris Profundus Muscle

    PubMed Central

    Takanashi, Yuichi; Eda, Masaki; Kaidoh, Toshiyuki; Inoué, Takao

    2012-01-01

    The palmaris longus muscle is one of the most variable muscles in human anatomy. During a routine anatomical dissection for medical students at Tottori University, we found duplicate palmaris longus muscles in the bilateral forearms together with the palmaris profundus muscle in the right forearm. The bilateral aberrant palmaris longus muscles were observed at the ulnar side of the palmaris longus muscle and their distal tendons were attached to the flexor retinaculum. The palmaris profundus muscle found in the right forearm was located at the radial side of the flexor digitorum superficialis muscle. The proximal tendon was originated from the anterior surface in the middle of the radius, while the distal tendon coursed radial to the median nerve through the carpal tunnel, finally inserting into the distal part of the flexor retinaculum. Both the palmaris longus and aberrant palmaris longus muscles were innervated by the median nerve. The palmaris profundus muscle was presumably supplied by the median nerve. PMID:24031143

  17. ADDUCTOR POLLICIS MUSCLE AS PREDICTOR OF MALNUTRITION IN SURGICAL PATIENTS

    PubMed Central

    de MELO, Camila Yandara Sousa Vieira; da SILVA, Silvia Alves

    2014-01-01

    Background In the compromised nutritional status, there is excessive skeletal muscle loss and decreased inflammatory response, contributing to increased morbidity and mortality and length of stay. Aim To estimate the prevalence of malnutrition by measuring adductor pollicis muscle using cutoffs for surgical patients suggested in the literature. Methods Cross-sectional study with 151 patients scheduled for elective surgical procedure. Nutritional assessment was performed by classical anthropometric measurements: arm circumference, triceps skinfold thickness, arm muscle circumference, corrected arm muscle area, BMI and percentage of weight loss and the extent of the adductor pollicis muscle in both hands. Results The prevalence of malnutrition in patients was high. A significant association between nutritional diagnosis according to the measures of adductor pollicis muscle and arm circumference, BMI and triceps skinfold thickness but there was no association with arm muscular circumference, arm muscular area or percentage of weight loss. Conclusion The adductor pollicis muscle has proved to be a good method to diagnose muscle depletion and malnutrition in surgical patients. PMID:24676291

  18. Scaling and Accommodation of Jaw Adductor Muscles in Canidae.

    PubMed

    Penrose, Fay; Kemp, Graham J; Jeffery, Nathan

    2016-07-01

    The masticatory apparatus amongst closely related carnivoran species raises intriguing questions about the interplay between allometry, function, and phylogeny in defining interspecific variations of cranial morphology. Here we describe the gross structure of the jaw adductor muscles of several species of canid, and then examine how the muscles are scaled across the range of body sizes, phylogenies, and trophic groups. We also consider how the muscles are accommodated on the skull, and how this is influenced by differences of endocranial size. Data were collected for a suite of morphological metrics, including body mass, endocranial volume, and muscle masses and we used geometric morphometric shape analysis to reveal associated form changes. We find that all jaw adductor muscles scale isometrically against body mass, regardless of phylogeny or trophic group, but that endocranial volume scales with negative allometry against body mass. These findings suggest that head shape is partly influenced by the need to house isometrically scaling muscles on a neurocranium scaling with negative allometry. Principal component analysis suggests that skull shape changes, such as the relatively wide zygomatic arches and large sagittal crests seen in species with higher body masses, allow the skull to accommodate a relative enlargement of the jaw adductors compared with the endocranium. Anat Rec, 299:951-966, 2016. © 2016 The Authors The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology Published by Wiley Periodicals, Inc. PMID:27103346

  19. Resisted adduction in hip neutral is a superior provocation test to assess adductor longus pain: An experimental pain study.

    PubMed

    Drew, M K; Palsson, T S; Izumi, M; Hirata, R P; Lovell, G; Chiarelli, P; Osmotherly, P G; Graven-Nielsen, T

    2016-08-01

    The criterion of long-standing groin pain diagnoses in athletes usually relies on palpation and clinical tests. An experimental pain model was developed to examine the clinical tests under standardized conditions. Pain was induced by hypertonic saline injected into the proximal adductor longus (AL) tendon or rectus femoris (RF) tendon in 15 healthy male participants. Isotonic saline was injected contralaterally as a control. Pain intensity was assessed on a visual analog scale (VAS). Resisted hip adduction at three different angles and trunk flexion were completed before, during, and after injections. Pain provocation in the presence of experimental pain was recorded as a true positive compared with pain provocation in the non-pain conditions. Similar peak VAS scores were found after hypertonic saline injections into the AL and RF and both induced higher VAS scores than isotonic saline (P < 0.01). Adduction at 0° had the greatest positive likelihood ratio (+LR = 2.8, 95%CI: 1.09-7.32) with 45° (-LR = 0.0, 95%CI: 0.00-1.90) and 90° (-LR = 0.0, 95%CI: 0.00-0.94) having the lowest negative LR. This study indicates that the 0° hip adduction test resisted at the ankles optimizes the diagnostic procedure without compromising diagnostic capacity to identify experimental groin pain. Validation in clinical populations is warranted. PMID:26247618

  20. Fibre type composition of female longus capitis and longus colli muscles.

    PubMed

    Miller, Alexandra; Woodley, Stephanie J; Cornwall, Jon

    2016-03-01

    Effective management of neck pain requires detailed knowledge of cervical muscle structure and function. Information on muscle fibre type assists in determining function; few data exist on the fibre type composition of many cervical muscles. The purpose of this study was to investigate the fibre type composition of longus capitis (LCa) and longus colli (LCo) to provide a better understanding of their function. Muscle sections were harvested unilaterally from LCa (C2-C7) and LCo (C3, C6, T1) in seven female cadavers (mean age 86 ± 9 years). Immunohistochemistry was used to identify type I and type II fibres, and stereology (random systematic sampling) used to determine fibre numbers. Data were assessed using descriptive statistics and one-way ANOVA (significance P < 0.05). Fifty-two sections were assessed (82,785 fibres; mean 1,592 ± 927 per section). LCa had a significantly greater proportion of type I fibres than LCo (64.3 % vs 55.7 %, P = 0.011). The percentage of fibre types varied significantly between individuals in LCa, but not LCo. No significant difference was found in the proportion of type I fibres between cervical levels for either LCa or LCo. LCa and LCo appear functionally different in elderly females, with LCa potentially having a more postural role (higher type I fibre proportion). Fibre types were homogenous throughout each muscle, indicating that contractile function is similar across the length of individual muscles. Further studies across a larger age-span and in males are required to determine whether results are representative of other populations. PMID:25794488

  1. Rehabilitation and Return to Sport Following Surgical Repair of the Rectus Abdominis and Adductor Longus in a Professional Basketball Player: A Case Report.

    PubMed

    Short, Steven M; Anloague, Philip A; Strack, Donald S

    2016-08-01

    Study Design Case report. Background Acute traumatic avulsion of the rectus abdominis and adductor longus is rare. Chronic groin injuries, often falling under the athletic pubalgia spectrum, have been reported to be more common. There is limited evidence detailing the comprehensive rehabilitation and return to sport of an athlete following surgical or conservative treatment of avulsion injuries of the pubis or other sports-related groin pathologies. Case Description A 29-year-old National Basketball Association player sustained a contact injury during a professional basketball game. This case report describes a unique clinical situation specific to professional sport, in which a surgical repair of an avulsed rectus abdominis and adductor longus was combined with a multimodal impairment- and outcomes-based rehabilitation program. Outcomes The patient returned to in-season competition at 5 weeks postoperation. Objective measures were tracked throughout rehabilitation and compared to baseline assessments. Measures such as the Copenhagen Hip and Groin Outcome Score and numeric pain-rating scale revealed progress beyond the minimal important difference. Discussion This case report details the clinical reasoning and evidence-informed interventions involved in the return to elite sport. Detailed programming and objective assessment may assist in achieving desired outcomes ahead of previously established timelines. Level of Evidence Therapy, level 4. J Orthop Sports Phys Ther 2016;46(8):697-706. Epub 3 Jul 2016. doi:10.2519/jospt.2016.6352. PMID:27374014

  2. Myofascial force transmission between transferred rat flexor carpi ulnaris muscle and former synergistic palmaris longus muscle

    PubMed Central

    Maas, Huub; Huijing, Peter A.

    2011-01-01

    Summary We investigated the extent of mechanical interaction between rat flexor carpi ulnaris (FCU) and palmaris longus (PL) muscles following transfer of FCU to the distal tendons of extensor carpi radialis brevis and longus (ECRB/L) muscles. Five weeks after recovery from surgery, isometric forces exerted at the distal tendons of FCU and PL were quantified at various FCU lengths. PL was kept at a constant length. Changing the muscle-tendon complex length of transferred FCU (by maximally 3.5 mm) decreased PL force significantly (by 7%). A linear relationship was found between changes in FCU muscle belly length, being a measure of muscle relative positions, and PL force. These results indicate that despite transfer of FCU muscle to the extensor side of the forearm, changing FCU length still affects force transmission of its, now, antagonistic PL muscle. We conclude that a transferred muscle may still be mechanically linked to its former synergistic muscles. PMID:23738260

  3. The hip adductor muscle group in caviomorph rodents: anatomy and homology.

    PubMed

    García-Esponda, César M; Candela, Adriana M

    2015-06-01

    Anatomical comparative studies including myological data of caviomorph rodents are relatively scarce, leading to a lack of use of muscular features in cladistic and morphofunctional analyses. In rodents, the hip adductor muscles constitute an important group of the hindlimb musculature, having an important function during the beginning of the stance phase. These muscles are subdivided in several distinct ways in the different clades of rodents, making the identification of their homologies hard to establish. In this contribution we provide a detailed description of the anatomical variation of the hip adductor muscle group of different genera of caviomorph rodents and identify the homologies of these muscles in the context of Rodentia. On this basis, we identify the characteristic pattern of the hip adductor muscles in Caviomorpha. Our results indicate that caviomorphs present a singular pattern of the hip adductor musculature that distinguishes them from other groups of rodents. They are characterized by having a single m. adductor brevis that includes solely its genicular part. This muscle, together with the m. gracilis, composes a muscular sheet that is medial to all other muscles of the hip adductor group. Both muscles probably have a synergistic action during locomotion, where the m. adductor brevis reinforces the multiple functions of the m. gracilis in caviomorphs. Mapping of analyzed myological characters in the context of Rodentia indicates that several features are recovered as potential synapomorphies of caviomorphs. Thus, analysis of the myological data described here adds to the current knowledge of caviomorph rodents from anatomical and functional points of view, indicating that this group has features that clearly differentiate them from other rodents. PMID:25911542

  4. Thickness of the adductor pollicis muscle in nutritional assessment of surgical patients

    PubMed Central

    Valente, Katarina Papera; Silva, Naira Marceli Fraga; Faioli, Amanda Barcelos; Barreto, Marina Abelha; de Moraes, Rafael Araújo Guedes; Guandalini, Valdete Regina

    2016-01-01

    ABSTRACT Objective To evaluate the correlation between thickness of the muscle adductor pollicis and anthropometric measurements, body mass index and Subjective Global Assessment in the nutritional assessment of surgical patients. Methods The study population comprised patients admitted to the general and reconstructive surgery unit of a university hospital in the city of Vitória (ES), Brazil. The inclusion criteria were patients evaluated in the first 48 hours of admission, aged ≥20 years, hemodynamically stable, with no edema or ascites. Data analysis was performed using the software Statistical Package for Social Science 21.0, significance level of 5%. Results The sample consisted of 150 patients that were candidates to surgery, mean age of 42.7±12.0 years. The most common reasons for hospitalization were surgical procedures, gastrintestinal diseases and neoplasm. Significant association was observed between thickness of adductor pollicis muscle and Subjective Global Assessment (p=0.021) and body mass index (p=0.008) for nutritional risk. Significant correlation was found between thickness of adductor pollicis muscle and arm muscle circumference, corrected arm muscle area, calf circumference and body mass index. There were no significant correlations between thickness of adductor pollicis muscle and triceps skinfold and age. Conclusion The use of thickness of adductor pollicis muscle proved to be an efficient method to detect malnutrition in surgical patients and it should be added to the screening process of hospitalized patients, since it is easy to perform, inexpensive and noninvasive. PMID:27074229

  5. Structure and function of the abductor pollicis longus muscle.

    PubMed Central

    van Oudenaarde, E

    1991-01-01

    The abductor pollicis longus muscle was examined in dissections and histologically to study the insertions around the CMC I joint. The APL consists fundamentally of a superficial and a deep division, both terminating in one or more tendons. The deep division is proximally situated, it is covered by the extensor digitorum muscle and consists of several muscle bellies; it terminates in a central tendon. The fibres are short, obliquely attached to the tendon in a pennate manner and close together. After the passage through the extensor retinaculum the tendon separates into many branches. The superficial division is more distally situated, not covered by other muscles, lying superficial to the tendon of the deep part. The fibres are long, parallel to one another and form a thin layer. The tendon passes, together with the deep division, through the same compartment of the extensor retinaculum and inserts into MC I. If the muscle contracts, then the structures around the CMC I joint will be tensed by the deep division and MC I will be affected by the superficial division. It is to be expected that in the appropriate thumb movements the superficial part will show an isotonic contraction and the deep part, an isometric action. The superficial part, with long thin fibres, presumably has the least strength while the deep part, with its larger number of fibres, is the most powerful. The functional analysis gives the impression that the deep head will mainly support the trapezium as a platform upon which MC I moves. The superficial head will be active in moving MC I. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:2032936

  6. Chronic exertional compartment syndrome in adductor pollicis muscle: case report.

    PubMed

    Lee, Chang-Hun; Lee, Kwang-Hyun; Lee, Seung-Hun; Kim, Yee-Suk; Chung, Ung-Seo

    2012-11-01

    We report a case of chronic exertional compartment syndrome in the adductor pollicis that was confirmed by measuring elevated compartment pressure. Specific finding of magnetic resonance imaging, increased T2 signal intensity in the involved compartment, was also useful for the diagnosis. Pain was relieved by fasciotomy through a volar approach. PMID:23040640

  7. The Jaw Adductor Muscle Complex in Teleostean Fishes: Evolution, Homologies and Revised Nomenclature (Osteichthyes: Actinopterygii)

    PubMed Central

    Datovo, Aléssio; Vari, Richard P.

    2013-01-01

    The infraclass Teleostei is a highly diversified group of bony fishes that encompasses 96% of all species of living fishes and almost half of extant vertebrates. Evolution of various morphological complexes in teleosts, particularly those involving soft anatomy, remains poorly understood. Notable among these problematic complexes is the adductor mandibulae, the muscle that provides the primary force for jaw adduction and mouth closure and whose architecture varies from a simple arrangement of two segments to an intricate complex of up to ten discrete subdivisions. The present study analyzed multiple morphological attributes of the adductor mandibulae in representatives of 53 of the 55 extant teleostean orders, as well as significant information from the literature in order to elucidate the homologies of the main subdivisions of this muscle. The traditional alphanumeric terminology applied to the four main divisions of the adductor mandibulae – A1, A2, A3, and Aω – patently fails to reflect homologous components of that muscle across the expanse of the Teleostei. Some features traditionally used as landmarks for identification of some divisions of the adductor mandibulae proved highly variable across the Teleostei; notably the insertion on the maxilla and the position of muscle components relative to the path of the ramus mandibularis trigeminus nerve. The evolutionary model of gain and loss of sections of the adductor mandibulae most commonly adopted under the alphanumeric system additionally proved ontogenetically incongruent and less parsimonious than a model of subdivision and coalescence of facial muscle sections. Results of the analysis demonstrate the impossibility of adapting the alphanumeric terminology so as to reflect homologous entities across the spectrum of teleosts. A new nomenclatural scheme is proposed in order to achieve congruence between homology and nomenclature of the adductor mandibulae components across the entire Teleostei. PMID

  8. The jaw adductor muscle complex in teleostean fishes: evolution, homologies and revised nomenclature (osteichthyes: actinopterygii).

    PubMed

    Datovo, Aléssio; Vari, Richard P

    2013-01-01

    The infraclass Teleostei is a highly diversified group of bony fishes that encompasses 96% of all species of living fishes and almost half of extant vertebrates. Evolution of various morphological complexes in teleosts, particularly those involving soft anatomy, remains poorly understood. Notable among these problematic complexes is the adductor mandibulae, the muscle that provides the primary force for jaw adduction and mouth closure and whose architecture varies from a simple arrangement of two segments to an intricate complex of up to ten discrete subdivisions. The present study analyzed multiple morphological attributes of the adductor mandibulae in representatives of 53 of the 55 extant teleostean orders, as well as significant information from the literature in order to elucidate the homologies of the main subdivisions of this muscle. The traditional alphanumeric terminology applied to the four main divisions of the adductor mandibulae - A1, A2, A3, and Aω - patently fails to reflect homologous components of that muscle across the expanse of the Teleostei. Some features traditionally used as landmarks for identification of some divisions of the adductor mandibulae proved highly variable across the Teleostei; notably the insertion on the maxilla and the position of muscle components relative to the path of the ramus mandibularis trigeminus nerve. The evolutionary model of gain and loss of sections of the adductor mandibulae most commonly adopted under the alphanumeric system additionally proved ontogenetically incongruent and less parsimonious than a model of subdivision and coalescence of facial muscle sections. Results of the analysis demonstrate the impossibility of adapting the alphanumeric terminology so as to reflect homologous entities across the spectrum of teleosts. A new nomenclatural scheme is proposed in order to achieve congruence between homology and nomenclature of the adductor mandibulae components across the entire Teleostei. PMID:23565279

  9. The Prevalence of Absence of the Palmaris Longus Muscle Tendon in the North of Iran: A Comparative Study

    PubMed Central

    Nasiri, Ebrahim; Pourghasem, Mohsen; Moladoust, Hassan

    2016-01-01

    Background: The palmaris longus is a degenerating weak flexor muscle in the anterior of the forearm. Many techniques for clinically determining the presence of the palmaris longus have been described. Ethnic variations in the prevalence of the absence of the palmaris longus are well known. Objectives: This study considered the prevalence of absence of the palmaris longus muscle tendon in the north of Iran. Patients and Methods: The presence of the palmaris longus was clinically determined in 562 men and women from the Guilan population, using the standard technique (Schaeffer’s test). In subjects with an absent palmaris longus, three other tests (Thompson, Pushpakumar and Mishra tests) were performed to confirm the absence. Results: The overall prevalence of right, left, bilateral and total absence of the palmaris longus were 4.1%, 5.2%, 3.9% and 13.2%, respectively. There was no significant difference in its absence with regard to the body side or gender (P > 0.05). Conclusions: This study demonstrated that the presence of the palmaris longus muscle tendon in the Guilan population was considerably higher than the absence of the palmaris longus tendon. The overall prevalence of right, left, bilateral and total absence of the palmaris longus was not significantly different between men and women. The prevalence of the left-absent palmaris longus was more common in the present study. PMID:27247789

  10. Extraction and Identification of the Pigment in the Adductor Muscle Scar of Pacific Oyster Crassostrea gigas.

    PubMed

    Hao, Shixin; Hou, Xin; Wei, Lei; Li, Jian; Li, Zhonghu; Wang, Xiaotong

    2015-01-01

    In this study, UV (ultraviolet) and IR (infrared radiation) spectral analysis were integrated to identify the pigment in the adductor muscle scar of the Pacific oyster Crassostrea gigas. The pigment was extracted from the adductor muscle scars of cleaned oyster shells that were pulverized, hydrolyzed in hot hydrochloric acid, purified with diethyl ether, and dissolved in 0.01 mL/L NaOH. The maximum absorption of the pigment in the UV absorption spectrum within the range of 190-500 nm was observed between 210-220 nm. The UV absorbance decreased with increasing wavelength which was consistent with the UV spectral absorption characteristics of melanin. In addition, Fourier transform infrared spectroscopy scanning revealed characteristic absorption peaks that emerged near 3440 cm-1 and 1630 cm-1, which was consistent with infrared scanning features of eumelanin (a type of melanin). This study has demonstrated for the first time that the pigment in the adductor muscle scar of the Pacific oyster is melanin, hinting that the adductor muscle could be another organ pigmenting the mollusc shell with melanin other than mantle. PMID:26555720

  11. Extraction and Identification of the Pigment in the Adductor Muscle Scar of Pacific Oyster Crassostrea gigas

    PubMed Central

    Wei, Lei; Li, Jian; Li, Zhonghu; Wang, Xiaotong

    2015-01-01

    In this study, UV (ultraviolet) and IR (infrared radiation) spectral analysis were integrated to identify the pigment in the adductor muscle scar of the Pacific oyster Crassostrea gigas. The pigment was extracted from the adductor muscle scars of cleaned oyster shells that were pulverized, hydrolyzed in hot hydrochloric acid, purified with diethyl ether, and dissolved in 0.01 mL/L NaOH. The maximum absorption of the pigment in the UV absorption spectrum within the range of 190–500 nm was observed between 210–220 nm. The UV absorbance decreased with increasing wavelength which was consistent with the UV spectral absorption characteristics of melanin. In addition, Fourier transform infrared spectroscopy scanning revealed characteristic absorption peaks that emerged near 3440 cm-1 and 1630 cm-1, which was consistent with infrared scanning features of eumelanin (a type of melanin). This study has demonstrated for the first time that the pigment in the adductor muscle scar of the Pacific oyster is melanin, hinting that the adductor muscle could be another organ pigmenting the mollusc shell with melanin other than mantle. PMID:26555720

  12. Surgical Anatomy of the Longus Colli Muscle and Uncinate Process in the Cervical Spine

    PubMed Central

    Moon, Seong-Hwan; Kim, Tae-Hwan; Oh, Jae Keun; Kim, Hyung Joon; Park, Kun-Tae; Riew, K. Daniel

    2016-01-01

    Purpose There have been a few previous reports regarding the distances between the medial borders of the longus colli to expose the disc space. However, to our knowledge, there are no reports concerning longus colli dissection to expose the uncinate processes. This study was undertaken to assess the surgical relationship between the longus colli muscle and the uncinate process in the cervical spine. Materials and Methods This study included 120 Korean patients randomly selected from 333 who had cervical spine MRIs and CTs from January 2003 to October 2013. They consisted of 60 males and 60 females. Each group was subdivided into six groups by age from 20 to 70 years or more. We measured three parameters on MRIs from C3 to T1: left and right longus colli distance and inter-longus colli distance. We also measured three parameters on CT: left and right uncinate distance and inter-uncinate distance. Results The longus colli distances, uncinate distances, and inter-uncinate distances increased from C3 to T1. The inter-longus colli distances increased from C3 to C7. There was no difference in longus colli distances and uncinate distances between males and females. There was no difference in the six parameters for the different age groups. Conclusion Although approximate guidelines, we recommend the longus colli be dissected approximately 5 mm at C3–5, 6 mm at C5–6, 7 mm at C6–7, and 8 mm at C7–T1 to expose the uncinate process to its lateral edge. PMID:27189293

  13. Relationship between adductor pollicis muscle thickness and subjective global assessment in a cardiac intensive care unit

    PubMed Central

    Karst, Fernanda Pickrodt; Vieira, Renata Monteiro; Barbiero, Sandra

    2015-01-01

    Objective To verify the relationship between the adductor pollicis muscle thickness test and the subjective global assessment and to correlate it with other anthropometric methods. Methods This observational cross-sectional study was conducted in the intensive care unit of a cardiology hospital in the state of Rio Grande do Sul, Brazil. The hospitalized patients underwent subjective global assessment and adductor pollicis muscle thickness tests on both hands, along with measurement of the right calf circumference. Laboratory parameters, length of stay, vital signs and electronic medical record data and tests were all collected. Results The study population included 83 patients, of whom 62% were men. The average age was 68.6 ± 12.5 years. The most common reason for hospitalization was acute myocardial infarction (34.9%), and the most common pathology was systolic blood pressure (63.9%), followed by diabetes mellitus (28.9%). According to subjective global assessment classifications, 62.7% of patients presented no nutritional risk, 20.5% were moderately malnourished and 16.9% were severely malnourished. Women had a higher nutritional risk, according to both the subjective global assessment and the adductor pollicis muscle thickness test, the cutoff for which was < 6.5mm (54.8%; p = 0.001). The pathology presenting the greatest nutritional risk was congestive heart failure (p = 0.001). Evaluation of the receiver operating characteristic (ROC) curve between adductor pollicis muscle thickness and subjective global assessment showed the accuracy of the former, with an area of 0.822. Conclusion Adductor pollicis muscle thickness proved to be a good method for evaluating nutritional risk. PMID:26761475

  14. Acute Compartment Syndrome after Non-Contact Peroneus Longus Muscle Rupture

    PubMed Central

    Merriman, Jarrad; Villacis, Diego; Kephart, Curtis; Romano, Russ; Hatch, George F. Rick

    2015-01-01

    This case demonstrates a rare variation in the pattern of injury and the presentation of acute lateral compartment syndrome of the leg. Although uncommon, lateral compartment syndrome of the leg after an ankle inversion leading to peroneus longus muscle rupture has been previously documented. This case was unusual because there was no overt ankle injury and the patient was able to continue physical activity, in spite of a significant rupture of the peroneus longus muscle that was determined later. This case highlights the necessary vigilance clinicians must maintain when assessing non-contact injuries in patients with possible compartment syndrome. PMID:26640640

  15. Symphysis Pubis Osteomyelitis with Bilateral Adductor Muscles Abscess

    PubMed Central

    Alqahtani, Saad M.; Gdalevitch, Marie

    2014-01-01

    Osteomyelitis of the pubis symphysis is a rare condition. There have been various reports in the literature of inflammation and osteomyelitis as well as septic arthritis of pubic symphysis. However, due to the fact that these conditions are rare and that the usual presenting symptoms are very nonspecific, osteomyelitis of the pubic symphysis is often misdiagnosed, thus delaying definitive treatment. We present a case that to our knowledge is the first case in literature of osteomyelitis of the pubic symphysis in a 17-year-old boy with juvenile idiopathic arthritis (JIA), which was initially misdiagnosed and progressed to bilateral adductor abscesses. A high suspicion of such condition should be considered in a JIA patient who presents with symphysis or thigh pain. PMID:25580335

  16. Effects of ankle extensor muscle afferent inputs on hip abductor and adductor activity in the decerebrate walking cat.

    PubMed

    Bolton, D A E; Misiaszek, J E

    2012-12-01

    Electrical stimulation of the lateral gastrocnemius-soleus (LGS) nerve at group I afferent strength leads to adaptations in the amplitude and timing of extensor muscle activity during walking in the decerebrate cat. Such afferent feedback in the stance leg might result from a delay in stance onset of the opposite leg. Concomitant adaptations in hip abductor and adductor activity would then be expected to maintain lateral stability and balance until the opposite leg is able to support the body. As many hip abductors and adductors are also hip extensors, we hypothesized that stimulation of the LGS nerve at group I afferent strength would produce increased activation and prolonged burst duration in hip abductor and adductor muscles in the premammillary decerebrate walking cat. LGS nerve stimulation during the extensor phase of the locomotor cycle consistently increased burst amplitude of the gluteus medius and adductor femoris muscles, but not pectineus or gracilis. In addition, LGS stimulation prolonged the burst duration of both gluteus medius and adductor femoris. Unexpectedly, long-duration LGS stimulus trains resulted in two distinct outcomes on the hip abductor and adductor bursting pattern: 1) a change of burst duration and timing similar to medial gastrocnemius; or 2) to continue rhythmically bursting uninterrupted. These results indicate that activation of muscle afferents from ankle extensors contributes to the regulation of activity of some hip abductor and adductor muscles, but not all. These results have implications for understanding the neural control of stability during locomotion, as well as the organization of spinal locomotor networks. PMID:22972967

  17. Effects of postmortem freezing on tensile failure properties of rabbit extensor digitorum longus muscle tendon complex.

    PubMed

    Leitschuh, P H; Doherty, T J; Taylor, D C; Brooks, D E; Ryan, J B

    1996-09-01

    The tensile failures of extensor digitorum longus muscle tendon units from 16 male New Zealand White rabbits were studied in the fresh state (less than 30 minutes after death) and in the frozen/thawed state (frozen at -80 degrees C for 28 days and then warmed to 38 degrees C). Frozen/thawed extensor digitorum longus muscle tendon units had significantly lower values for load to failure (p < 0.01), energy absorbed to failure (p < 0.01), and strain at failure (p < 0.01), and they tended to fail at a different anatomic location (p < 0.01) (broadly at the fascia-muscle interface as compared with horizontally at the musculotendinous junction) than fresh units. The results of this study suggest that freezing muscle tendon units significantly alters their tensile failure characteristics. PMID:8893779

  18. Histochemical and morphometric characteristics of the normal human vastus medialis longus and vastus medialis obliquus muscles.

    PubMed Central

    Travnik, L; Pernus, F; Erzen, I

    1995-01-01

    The histochemical and morphometric characteristics of the vastus medialis longus and vastus medialis obliquus muscles were studied and compared with data on vastus lateralis. Cross-sections of autopsied muscles from 9 healthy men, aged 18-44 y, who had died suddenly were analysed. Data were obtained on proportions, cross-sectional diameter, and on atrophy and hypertrophy factors, of type 1, 2a, 2b, and 2c fibres. The analysis showed that the anatomical differences and the different functional demands placed on vastus medialis longus and vastus medialis obliquus are also expressed in different proportions and sizes of fibre types in the two muscles. The proportion of type 1 fibres was significantly higher (P < 0.01), and the proportion of 2b fibres was significantly lower (P < 0.01) in vastus medialis longus than in vastus medialis obliquus. The diameters of type 1 and type 2a fibres were significantly smaller (P < 0.01) in vastus medialis longus than in vastus medialis obliquus, although the differences were small. Within muscles a nonrandom arrangement of fibre types existed with the deeper portions of the muscles having more type 1 fibres than the more superficial portions. The histochemical and morphometric characteristics of vastus lateralis and vastus medialis obliquus show great similarity, reflecting the common function of both muscles which is taking part in transverse knee stability. Estimates of the limits of normality of the proportion, diameter, atrophy and hypertrophy factors of type 1, 2a, 2b, and 2c fibres might be useful in obtaining information on how different physiological and pathological conditions influence the proportion and size of different fibre types.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7592003

  19. Palmaris Longus Muscle's Prevalence in Different Nations and Interesting Anatomical Variations: Review of the Literature.

    PubMed

    Ioannis, Dimitriou; Anastasios, Katsourakis; Konstantinos, Natsis; Lazaros, Kostretzis; Georgios, Noussios

    2015-11-01

    The prevalence of the palmaris longus (PL) muscle varies more than any other muscle in the human body. Its absence across the world ranges between 1.5% and 63.9%. It presents with many different anomalies, discovered either clinically, intraoperatively or after anatomical examination of cadavers. This paper includes recent studies and reports about the presence and variations of the PL muscle, thereby illustrating the differences between ethnic groups, as well as emphasizing the different ways of finding it, during daily clinical and surgical practice. PMID:26491493

  20. Kienbock’s Disease treated with Interposition Arthroplasty using Ipsilateral Palmaris Longus Tendon and Muscle Belly

    PubMed Central

    Dutta, Anshuman; Sipani, Arun Kumar; Agarwala, Vikash; Srikanth, Mudiganty

    2012-01-01

    Introduction: Kienbock’s disease is an osteonecrosis of lunate bone (lunatomalacia) seen more commonly in males in the second to fourth decade of life. The exact etiology is unknown and symptoms include wrist pain and stiffness of wrist. Advanced stages of disease may require lunate excision and filling of the void by various substitutes like silicone implants, tendon grafts etc. We report a case of Kienbock’s disease with lunate excision and filling of defect by coiled palmaris longus muscle and tendon unit. Case Report: An 18 year old male student presented with progressive wrist pain and difficulty in wrist movements. Investigations revealed a diagnosis of grade 4 Kienbock’s disease. Lunate excision by a palmar approach followed by interposition arthroplasty with ipsilateral coiled Palmaris longus muscle belly along with the tendon was done under regional anaesthesia. Nine months post-operatively patient is pain free and wrist movements are full and free. Conclusion: In advanced stages of Keinbock’s disease lunate excision surgery is recommended. Post excision void can be filled with coiled Palmaris longus tendon-muscle unit together to increase the volume of the graft. This achieves snug fit, avoids the need of internal fixation, and also prevent carpal collapse. Our case shows good clinical outcome in short term with no carpal collapse by use of this procedure.

  1. Hypogravity-induced atrophy of rat soleus and extensor digitorum longus muscles

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ellis, S.; Slocum, G. R.; Satyanarayana, T.; Bain, J. L.; Sedlak, F. R.

    1987-01-01

    Prolonged exposure of humans to hypogravity causes weakening of their skeletal muscles. This problem was studied in rats exposed to hypogravity for 7 days aboard Spacelab 3. Hindlimb muscles were harvested 12-16 hours postflight for histochemical, biochemical, and ultrastructural analyses. The majority of the soleus and extensor digitorum longus fibers exhibited simple cell shrinkage. However, approximately 1% of the fibers in flight soleus muscles appeared necrotic. Flight muscle fibers showed increased glycogen, lower subsarcolemmal staining for mitochondrial enzymes, and fewer subsarcolemmal mitochondria. During atrophy, myofibrils were eroded by multiple focal losses of myofilaments; lysosomal autophagy was not evident. Tripeptidylaminopeptidase and calcium-activated protease activities of flight soleus fibers were significantly increased, implying a role in myofibril breakdown. Simple fiber atrophy appears to account for muscle weakening during spaceflight, but fiber necrosis is also a contributing factor.

  2. Imaging of adductor-related groin pain.

    PubMed

    Pesquer, L; Reboul, G; Silvestre, A; Poussange, N; Meyer, P; Dallaudière, B

    2015-09-01

    Groin pain is a common condition in athletes and results from various causes. Osteitis pubis, adductor dysfunction, inguinal hernia, or a combination of all three entities, generally explains the onset of symptoms. Adductor longus tendinopathy is the main cause of adductor-related groin pain. It leads to a significant reduction of sports participation and can require surgical management. Diagnosis is based on ultrasonography and magnetic resonance imaging. Asymptomatic findings (tendinosis, calcifications, cortical erosions) are common in athletes and care should be taken when assessing groin pain. The most specific sign of tendinopathy is an intratendinous tear of the adductor longus. PMID:25823982

  3. Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L. W.; Ellis, Stanley

    1988-01-01

    The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.

  4. A Case of Reverse Palmaris Longus Muscle- An Additional Muscle in the Anterior Compartment of the Forearm

    PubMed Central

    Bhat, Ashwini Lagadamane Sathynarayana; Gadahad, Mohandas Rao Kappettu

    2016-01-01

    It is uncommon to have additional muscles in the upper limb. Some of them may restrict the movements or compress the nerves and vessels, while others may go unnoticed. During the routine dissection for undergraduate medical students, we observed an additional muscle in the anterior compartment of the forearm in about 60-year-old male cadaver. The muscle had a prominent belly and a long tendon. Distally, it was attached to the flexor retinaculum by a short and thick tendon. Proximally, long tendon of the muscle passed between the flexor carpi ulnaris and palmaris longus and was attached to the common aponeurosis shared by the extensor carpi ulnaris and flexor digitorum profundus muscles. The additional muscle belly was supplied by a branch from the anterior interosseous nerve. The ulnar nerve and artery was passing deep to the fleshy belly of the muscle. The muscle reported here might compress the ulnar nerve and artery and may produce neurovascular symptoms. On the other hand, the tendon and fleshy belly of the muscle could be useful in muscle/tendon grafts. The observations made by us in the present case will supplement our knowledge of variations of the muscles in this region which could be useful for surgeons during the forearm and hand surgeries. PMID:27134851

  5. A Case of Reverse Palmaris Longus Muscle- An Additional Muscle in the Anterior Compartment of the Forearm.

    PubMed

    Marpalli, Sapna; Bhat, Ashwini Lagadamane Sathynarayana; Gadahad, Mohandas Rao Kappettu

    2016-03-01

    It is uncommon to have additional muscles in the upper limb. Some of them may restrict the movements or compress the nerves and vessels, while others may go unnoticed. During the routine dissection for undergraduate medical students, we observed an additional muscle in the anterior compartment of the forearm in about 60-year-old male cadaver. The muscle had a prominent belly and a long tendon. Distally, it was attached to the flexor retinaculum by a short and thick tendon. Proximally, long tendon of the muscle passed between the flexor carpi ulnaris and palmaris longus and was attached to the common aponeurosis shared by the extensor carpi ulnaris and flexor digitorum profundus muscles. The additional muscle belly was supplied by a branch from the anterior interosseous nerve. The ulnar nerve and artery was passing deep to the fleshy belly of the muscle. The muscle reported here might compress the ulnar nerve and artery and may produce neurovascular symptoms. On the other hand, the tendon and fleshy belly of the muscle could be useful in muscle/tendon grafts. The observations made by us in the present case will supplement our knowledge of variations of the muscles in this region which could be useful for surgeons during the forearm and hand surgeries. PMID:27134851

  6. Muscles within muscles: a tensiomyographic and histochemical analysis of the normal human vastus medialis longus and vastus medialis obliquus muscles

    PubMed Central

    Travnik, Ludvik; Djordjevič, Srdjan; Rozman, Sergej; Hribernik, Marija; Dahmane, Raja

    2013-01-01

    The aim of this study was to show the connection between structure (anatomical and histochemical) and function (muscle contraction properties) of vastus medialis obliquus (VMO) and vastus medialis longus (VML). The non-invasive tensiomyography (TMG) method was used to determine the contractile properties (contraction time; Tc) of VML and VMO muscle, as a reflection of the ratio between the slow and fast fibers in two groups of nine young men. VML and VMO significantly (P < 0.01) differ in the proportion of type 1 (59.6: 44%) and type 2b (6.3: 15%) fibers. The VML muscle is almost entirely composed of type 1 and type 2a fibers. In many samples of this muscle no type 2b fibers were found. The proportion of slow-twitch type 1 fibers is nearly twice as high as the proportion of fast-twitch type 2a fibers. These observations indicate that VML is a slower and more fatigue-resistant muscle than VMO muscle. These characteristics correspond to the different functions of the VML, which is an extensor of the knee, and to the VMO, which maintains the stable position of the patella in the femoral groove. Our results obtained by TMG provided additional evidence that muscle fibers within the segments of VM muscle were not homogenous with regard to their contractile properties, thereby confirming the histochemical results. Tc can be attributed to the higher percentage of slow-twitch fibers – type 1. The statistically shorter Tc (P ≤ 0.001) of VMO (22.8 ± 4.0 ms) compared with VML (26.7 ± 4.0 ms) in our study is consistent with previously found differences in histochemical, morphological and electrophysiological data. In conclusion, the results of this study provide evidence that the VML and VMO muscles are not only anatomically and histochemically different muscles, but also functionally different biological structures. PMID:23586984

  7. Heat stress attenuates skeletal muscle atrophy of extensor digitorum longus in streptozotocin-induced diabetic rats.

    PubMed

    Nonaka, K; Une, S; Akiyama, J

    2015-09-01

    To investigate whether heat stress attenuates skeletal muscle atrophy of the extensor digitorum longus (EDL) muscle in streptozotocin-induced diabetic rats, 12-week-old male Wistar rats were randomly assigned to four groups (n = 6 per group): control (Con), heat stress (HS), diabetes mellitus (DM), and diabetes mellitus/heat stress (DM + HS). Diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg). Heat stress was induced in the HS and DM + HS groups by immersion of the lower half of the body in hot water at 42 °C for 30 min; it was initiated 7 days after injection of streptozotocin, and was performed once a day, five times a week for 3 weeks. The muscle fiber cross-sectional area of EDL muscles from diabetic and non-diabetic rats was determined; heat stress protein (HSP) 72 and HSP25 expression levels were also analyzed by western blotting. Diabetes-induced muscle fiber atrophy was attenuated upon heat stress treatment in diabetic rats. HSP72 and HSP25 expression was upregulated in the DM + HS group compared with the DM group. Our findings suggest that heat stress attenuates atrophy of the EDL muscle by upregulating HSP72 and HSP25 expression. PMID:26551745

  8. Low-intensity resistance training attenuates dexamethasone-induced atrophy in the flexor hallucis longus muscle.

    PubMed

    Macedo, Anderson G; Krug, André L O; Herrera, Naiara A; Zago, Anderson S; Rush, James W E; Amaral, Sandra L

    2014-09-01

    This study investigated the potential protective effect of low-intensity resistance training (RT) against dexamethasone (DEX) treatment induced muscle atrophy. Rats underwent either an 8 week period of ladder climbing RT or remained sedentary. During the last 10 days of the exercise protocol, animals were submitted to a DEX treatment or a control saline injection. Muscle weights were assessed and levels of AKT, mTOR, FOXO3a, Atrogin-1 and MuRF-1 proteins were analyzed in flexor hallucis longus (FHL), tibialis anterior (TA), and soleus muscles. DEX induced blood glucose increase (+46%), body weight reduction (-19%) and atrophy in FHL (-28%) and TA (-21%) muscles, which was associated with a decrease in AKT and an increase in MuRF-1 proteins levels. Low-intensity RT prevented the blood glucose increase, attenuated the FHL atrophy effects of DEX, and was associated with increased mTOR and reductions in Atrogin-1 and MuRF-1 in FHL. In contrast, TA muscle atrophy and signaling proteins were not affected by RT. These are the first data to demonstrate that low-intensity ladder-climbing RT specifically mitigates the FHL atrophy, which is the main muscle recruited during the training activity, while not preventing atrophy in other limb muscle not as heavily recruited. The recruitment-dependent prevention of atrophy by low intensity RT likely occurs by a combination of attenuated muscle protein degradation signals and enhanced muscle protein synthesis signals including mTOR, Atrogin-1 and MuRF-1. PMID:24861267

  9. Anomalous bilateral contribution of extensor pollicis longus and muscle fusion of the first compartment of the wrist

    PubMed Central

    Rosa, Rodrigo César; de Oliveira, Kennedy Martinez; Léo, Jorge Alfredo; Elias, Bruno Adriano Borges; dos Santos, Paulo Ricardo; de Santiago, Hildemberg Agostinho Rocha

    2016-01-01

    Knowledge of the anatomical variations of the muscles of the first dorsal compartments of the wrist is clinically relevant to De Quervain's tenosynovitis and to reconstructive surgeries. In the literature, there are many reports of the presence of multiple insertion tendons in the first dorsal compartment of the wrist, but few reports describe occurrences of fusion and muscle contributions. This case report describes an anomalous bilateral contribution of the extensor pollicis longus. This anomalous contribution was found through a slender auxiliary tendon that crossed laterally under the extensor retinaculum, entered the first dorsal compartment of the wrist and merged with the tendon of the extensor pollicis brevis muscle. In the same cadaver in which this contribution was present, there was atypical muscle fusion of the abductor pollicis longus muscle and extensor pollicis brevis muscle. In conclusion, anomalous bilateral contribution of the extensor pollicis longus muscle and atypical muscle fusion, concomitant with a variant insertion pattern, are the highlight of this case report. Furthermore, it is concluded that additional tendons may be effectively used in reconstructive surgeries, but that there is a need for knowledge of the possible numerical and positional variations of these tendons, with a view to making more effective surgical plans. PMID:27069895

  10. Diabetic Muscle Infarction of the Tibialis Anterior and Extensor Hallucis Longus Muscles Mimicking the Malignant Soft-Tissue Tumor

    PubMed Central

    Mimata, Yoshikuni; Sato, Kotaro; Tokunaga, Karen; Tsukimura, Itsuko; Tada, Hiroshi; Doita, Minoru

    2015-01-01

    One of the most common causes of skeletal muscle infarction is diabetic muscle infarction (DMI), a rare complication associated with poorly controlled diabetes. We report an atypical case of DMI localized in the tibialis anterior (TA) and extensor hallucis longus (EHL) muscles of an elderly individual. A 64-year-old man with type 2 diabetes mellitus presented with a 6-month history of a palpable mass in his lower left leg. Magnetic resonance imaging (MRI) revealed that the mass exhibited heterogeneous signals on T1- and T2-weighted images and slight heterogeneous enhancement within the muscles on fat suppressed T1-weighted images. Because histopathological analysis revealed mostly necrotic muscle tissues but no neoplastic cells, we resected the affected muscles. A typical symptom of DMI is severe abrupt-onset pain in the region of the affected muscles, but the patient did not complain of pain. Therefore, the diagnosis and treatment for DMI were delayed, and widespread irreversible muscle necrosis developed. MRI findings of DMI can be similar to that of a malignant soft-tissue tumor. So, it is necessary to consider the malignant soft-tissue tumor as one of the differential diagnoses of DMI. PMID:26236522

  11. RNA-seq transcriptome analysis of extensor digitorum longus and soleus muscles in large white pigs.

    PubMed

    Zhu, Jiayu; Shi, Xin'e; Lu, Hongzhao; Xia, Bo; Li, Yuefeng; Li, Xiao; Zhang, Qiangling; Yang, Gongshe

    2016-04-01

    Skeletal muscle fibers are mainly categorized into red and white fiber types, and the ratio of red/white fibers within muscle mass plays a crucial role in meat quality such as tenderness and flavor. To better understand the molecular difference between the two muscle fibers, this study takes advantage of RNA-seq to compare differences in the transcriptome between extensor digitorum longus (EDL; white fiber) and soleus (Sol; red fiber) muscles of large white pigs. In total, 89,658,562 and 46,723,568 raw reads from EDL and Sol were generated, respectively. Comparison between the two transcriptomes revealed 561 differentially expressed genes, with 408 displaying higher and 153 lower levels of expression in Sol. Quantitative real-time polymerase chain reaction validated the differential expression of nine genes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis discovered several differentially enriched biological functions and processes of the two muscles. Moreover, transcriptome comparison between EDL and Sol identified many muscle-related genes (CSRP3, ACTN2, MYL1, and MYH6) and pathways related to myofiber formation, such as focal adhesion, tight junction formation, extracellular matrix (ECM)-receptor pathway, calcium signaling, and Wnt signaling. In addition, 58,362 and 58,359 single nucleotide polymorphisms were identified in EDL and Sol, respectively, and the sequence of 9069 genes was refined at the 5', 3' or both ends. Numerous novel transcripts and alternatively spliced RNAs were also identified. Our transcriptome analysis constitutes valuable sequence resource for uncovering important genes and pathways involved in muscle fiber type determination, and might help further our understanding of the molecular mechanisms in different types of muscle. PMID:26520103

  12. Effects of methylmercury on the motor and sensory innervation of the rat extensor digitorum longus muscle

    SciTech Connect

    Yip, R.K.; Riley, D.A.

    1987-06-01

    The histochemical study examined the effects of chronic methylmercury (MeHg) intoxication on the motor and sensory innervation of extensor digitorum longus muscles. Light microscopic examination of silver-stained axons in the intramuscular nerve bundles of MeHg-treated rats showed Wallerian-like degeneration and a reduction in the number of nerve fibers. Disrupted axons were predominantly sensory because 22.2% of spindle afferents (I/sub a/) and 90.0% of Golgi tendon organ (I/sub b/) sensory fibers were completely degenerated whereas less than 1% of motor ending were totally destroyed. Partial disruption occurred in the cholinesterase and motor terminals of 13.7% of endplates. Their results demonstrated greater vulnerability of sensory nerves than of motor nerves to MeHg-induced degeneration. Thus, the abnormal reflexes, ataxia, and muscle weakness following MeHg poisoning appear related to reduction of proprioceptive feedback from muscles and tendons irradiation to the documented lesions in the central nervous system.

  13. The adductor pollicis muscle: a poor predictor of clinical outcome in ICU patients.

    PubMed

    Leong Shu-Fen, Claudia; Ong, Venetia; Kowitlawakul, Yanika; Ling, Teh Ai; Mukhopadhyay, Amartya; Henry, Jeya

    2015-01-01

    No nutrition assessment tools specifically tailored for intensive care unit (ICU) patients have been developed and validated in Singapore. Studies conducted in Brazilian populations suggest that the thickness of the adductor pollicis muscle (TAPM) may be used to assess nutritional status and predict mortality of critically ill patients. The aim of this study was to determine if TAPM can be used as a predictive indicator of mortality in Singapore ICU patients. TAPM values were obtained using skinfold calipers in 229 patients admitted to the medical ICU. TAPM measured in both hands showed no significant correlation with either the primary outcome (28-day mortality) or secondary outcomes (hospital outcome and hospital length of stay). This study demonstrated that TAPM does not predict 28-day mortality and hospital outcome, and is not correlated to length of stay in Singapore ICU patients. More studies are necessary to validate the use of TAPM as an anthropometric indicator of ICU outcome in other regions of the world. PMID:26693744

  14. The influence of passive stretch on the growth and protein turnover of the denervated extensor digitorum longus muscle.

    PubMed

    Goldspink, D F

    1978-08-15

    At 7 days after cutting the sciatic nerve, the extensor digitorum longus muscle was smaller and contained less protein than its innervated control. Correlating with these changes was the finding of elevated rates of protein degradation (measured in vitro) in the denervated tissue. However, at this time, rates of protein synthesis (measured in vitro) and nucleic acid concentrations were also higher in the denervated tissue, changes more usually associated with an active muscle rather than a disused one. These anabolic trends have, at least in part, been explained by the possible greater exposure of the denervated extensor digitorum longus to passive stretch. When immobilized under a maintained influence of stretch the denervated muscle grew to a greater extent. Although this stretch-induced growth appeared to occur predominantly through a stimulation of protein synthesis, it was opposed by smaller increases in degradative rates. Nucleic acids increased at a similar rate to the increase in muscle mass when a continuous influence of stretch was imposed on the denervated tissue. In contrast, immobilization of the denervated extensor digitorum longus in a shortened unstretched state reversed most of the stretch-induced changes; that is, the muscle became even smaller, with protein synthesis decreasing to a greater extent than breakdown after the removal of passive stretch. The present investigation suggests that stretch will promote protein synthesis and hence growth of the extensor digitorum longus even in the absence of an intact nerve supply. However, some factor(s), in addition to passive stretch, must contribute to the anabolic trends in this denervated muscle. PMID:708412

  15. Effect of hindlimb suspension and clenbuterol treatment on polyamine levels in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Abukhalaf, Imad K.; von Deutsch, Daniel A.; Wineski, Lawrence E.; Silvestrov, Natalia A.; Abera, Saare A.; Sahlu, Sinafikish W.; Potter, David E.; Thierry-Palmer, M. (Principal Investigator)

    2002-01-01

    Polyamines are unbiquitous, naturally occurring small aliphatic, polycationic, endogenous compounds. They are involved in many cellular processes and may serve as secondary or tertiary messengers to hormonal regulation. The relationship of polyamines and skeletal muscle mass of adductor longus, extensor digitorum longus, and gastrocnemius under unloading (hindlimb suspension) conditions was investigated. Unloading significantly affected skeletal muscle polyamine levels in a fiber-type-specific fashion. Under loading conditions, clenbuterol treatment increased all polyamine levels, whereas under unloading conditions, only the spermidine levels were consistently increased. Unloading attenuated the anabolic effects of clenbuterol in predominately slow-twitch muscles (adductor longus), but had little impact on clenbuterol's action as a countermeasure in fast- twitch muscles such as the extensor digitorum longus. Spermidine appeared to be the primary polyamine involved in skeletal muscle atrophy/hypertrophy. Copyright 2002 S. Karger AG, Basel.

  16. Morphological and biochemical changes in soleus and extensor digitorum longus muscles of rats orbited in Spacelab 3

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Slocum, T.; Bain, J. L. W.; Sedlak, F. R.; Elis, S.; Satyanarayana, T.

    1985-01-01

    Muscle atrophy in rats exposed to hypogravity for seven days aboard Spacelab 3 is examined. Hindlimb muscles were harvested 12-16 days postflight, and prepared for enzyme studies and electron microscopy. Simple cell shrinkage was found, with a mean fiber area decrease of 35.8 percent for soleus and 24.9 percent for extensor digitorum longus (EDL) flight muscle fibers, as compared with control muscle fibers. EDL and soleus muscles showed increases in alkaline myofibrillar ATPase, alpha glycerophosphate dehydrogenase, and glycogen, and a decrease in NADH dehydrogenase staining. The 26 percent increase in calcium activated protease suggests that the focal degradation of myofibrils is the key process of myofibril breakdown. The presence in the flight soleus muscles of one percent necrotic fibers is unexplained. The observed shift towards histochemical fast-muscle type properties is consistent with previous findings.

  17. Optimal Needle Placement for Extensor Hallucis Longus Muscle: A Cadaveric Study

    PubMed Central

    2016-01-01

    Objective To determine the midpoint (MD) of extensor hallucis longus muscle (EHL) and compare the accuracy of different needle electromyography (EMG) insertion techniques through cadaver dissection. Methods Thirty-eight limbs of 19 cadavers were dissected. The MD of EHL was marked at the middle of the musculotendinous junction and proximal origin of EHL. Three different needle insertion points of EHL were marked following three different textbooks: M1, 3 fingerbreadths above bimalleolar line (BML); M2, junction between the middle and lower third of tibia; M3, 15 cm proximal to the lower border of both malleoli. The distance from BML to MD (BML_MD), and the difference between 3 different points (M1–3) and MD were measured (designated D1, D2, and D3, respectively). The lower leg length (LL) was measured from BML to top of medial condyle of tibia. Results The median value of LL was 34.5 cm and BML_MD was 12.0 cm. The percentage of BML_MD to LL was 35.1%. D1, D2, and D3 were 7.0, 0.9, and 3.0 cm, respectively. D2 was the shortest, meaning needle placement following technique by Lee and DeLisa was closest to the actual midpoint of EHL. Conclusion The MD of EHL is approximately 12 cm above BML, and about distal 35% of lower leg length. Technique that recommends placing the needle at distal two-thirds of the lower leg (M2) is the most accurate method since the point was closest to muscle belly of EHL.

  18. Cranial muscles of the anurans Leiopelma hochstetteri and Ascaphus truei and the homologies of the mandibular adductors in Lissamphibia and other gnathostomes.

    PubMed

    Johnston, Peter

    2011-12-01

    The frogs Ascaphus truei and Leiopelma hochstetteri are members of the most basal lineages of extant anurans. Their cranial muscles have not been previously described in full and are investigated here by dissection. Comparison of these taxa is used to review a controversy regarding the homologies of the jaw adductor muscles in Lissamphibia, to place these homologies in a wider gnathostome context, and to define features that may be useful for cladistic analysis of Anura. A new muscle is defined in Ascaphus and is designated m. levator anguli oris. The differences noted between Ascaphus and Leiopelma are in the penetration of the jaw adductor muscles by the mandibular nerve (V3). In the traditional view of this anatomy, the paths of the trigeminal nerve branches define homologous muscles. This scheme results in major differences among frogs, salamanders, and caecilians. The alternative view is that the topology of origins, insertions, and fiber directions are defining features, and the nerves penetrate the muscle mass in a variable way. The results given here support the latter view. A new model is proposed for Lissamphibia, whereby the adductor posterior (levator articularis) is a separate entity, and the rest of the adductor mass is configured around it as a folded sheet. This hypothesis is examined in other gnathostomes, including coelacanth and lungfish, and a possible sequence for the evolution of the jaw muscles is demonstrated. In this system, the main jaw adductor in teleost fish is not considered homologous with that of tetrapods. This hypothesis is consistent with available data on the domain of expression of the homeobox gene engrailed 2, which has previously not been considered indicative of homology. Terminology is discussed, and "adductor mandibulae" is preferred to "levator mandibulae" to align with usage in other gnathostomes. PMID:21845732

  19. Resistance exercise training attenuates wasting of the extensor digitorum longus muscle in mice bearing the colon-26 adenocarcinoma.

    PubMed

    al-Majid, S; McCarthy, D O

    2001-01-01

    Progressive wasting of skeletal muscle is a significant side effect of malignancy. Perturbations in protein metabolism contribute to this state of wasting. Resistance exercise increases protein synthesis and mass of healthy muscles and counteracts muscle wasting associated with several catabolic conditions. It is not known whether resistance exercise training can counteract cancer-induced muscle wasting. This study examined the effect of resistance exercise training on muscle mass and protein content in 9 mice bearing the colon-26 adenocarcinoma. The dorsiflexor (extensor digitorum longus [EDL] and tibialis anterior) and plantar flexor (soleus, plantaris, and gastrocnemius) muscles of 1 leg of the tumor-bearing and the control mice were stimulated to contract eccentrically and concentrically, respectively, using an electrical stimulation protocol consisting of 10 sets of 6 repetitions per session. The muscles were stimulated on alternate days for a total of 8 sessions. The weight and protein content of the stimulated EDL muscle in the tumor-bearing mice were significantly higher (62% and 25%, respectively) than those of the nonstimulated EDL. Training did not have significant effects on the weight or protein content of the other muscles of the tumor-bearing mice, nor did it have significant effects on the muscles of the controls. These findings demonstrated that resistance training attenuated cancer-induced muscle wasting and protein depletion in the EDL muscle. The lack of an effect of the same training protocol on the EDL muscle in the control mice suggests that the amount and intensity of exercise training that is adequate to attenuate muscle wasting may not be adequate to induce hypertrophy of healthy muscles. PMID:11547537

  20. Intrarater reliabilities of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer for geriatric and stroke patients

    PubMed Central

    Hirano, Masahiro; Katoh, Munenori; Kawaguchi, Saori; Uemura, Tomomi

    2016-01-01

    [Purpose] This study aimed to verify the appropriate number of measurements and the intrarater reliabilities of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer (HHD) for geriatric and stroke patients. [Subjects and Methods] The subjects were 40 inpatients, who were divided into two groups: 20 stroke patients in the stroke group (SG), and 20 geriatric patients in the no-stroke group (N-SG). Measurements were performed three times using an HHD with a belt. The reliability was verified using Bland-Altman analysis and the intraclass correlation coefficient (ICC). [Results] ICC (1, 1) was >0.9. A systematic bias was not observed between the first and second measurement values except for the right side in N-SG. A systematic bias between the maximum value obtained during the first and second measurements and third measurement value was observed on the left side in N-SG, and on the non-paralyzed side in SG: the third measurement values were small in both cases. [Conclusion] Intrarater reliabilities were high for shoulder horizontal adductor strength measurements using an HHD with a belt for geriatric and stroke patients. Taking the systematic bias into consideration, these findings suggest that the required number of measurements is two. PMID:26957727

  1. Lower values of handgrip strength and adductor pollicis muscle thickness are associated with hepatic encephalopathy manifestations in cirrhotic patients.

    PubMed

    Augusti, L; Franzoni, L C; Santos, L A A; Lima, T B; Ietsugu, M V; Koga, K H; Moriguchi, S M; Betting, L E; Caramori, C A; Silva, G F; Romeiro, F G

    2016-08-01

    Hepatic encephalopathy (HE) is a late complication of liver cirrhosis and is clearly associated with poor outcomes. Chronic liver insufficiency leads to progressive muscle wasting, impairing ammonia metabolism and thus increasing the risk for HE. Given the association between lean mass and adductor pollicis muscle thickness (APMT), it has been used to predict outcome and complications in many conditions, but not yet in cirrhotic patients. Therefore, this article aimed to study the association between HE manifestations and measures related to muscle mass and strength. This cross-sectional study included 54 cirrhotic outpatients with HE varying from subclinical to grade II according to the West-Haven criteria, who were submitted to neuropsychometric tests, electroencephalogram, brain Single Photon Emission Computed Tomography (SPECT), anthropometric measurements, handgrip strength (HGS) and dual energy X-ray absorptiometry exam (DXA). Multiple logistic regression analysis was performed to investigate the association between body composition measures and HE grade. Analysis of the area under the receiver operator characteristic (AUROC) curve revealed the values related to neurological manifestations (HE grades I and II). Reductions in APMT and HGS were associated with higher HE grades, suggesting a big impact caused by the loss of muscle mass and function on HE severity. The link between HE manifestations and anthropometric measures, namely APMT and HGS, point to a significant relation concerning skeletal muscles and the neurological impairment in this population. PMID:27131802

  2. Hip adductor activations during run-to-cut manoeuvres in compression shorts: implications for return to sport after groin injury.

    PubMed

    Chaudhari, Ajit M W; Jamison, Steven T; McNally, Michael P; Pan, Xueliang; Schmitt, Laura C

    2014-01-01

    Athletes at high risk of groin strains in sports such as hockey and soccer often choose to wear shorts with directional compression to aid in prevention of or recovery from hip adductor strains. Large, eccentric contractions are known to result in or exacerbate strain injuries, but it is unknown if these shorts have a beneficial effect on hip adductor muscle activity. In this study, surface electromyography (EMG) of the adductor longus and ground reaction force (GRF) data were obtained simultaneously on 29 healthy individuals without previous history of serious injury while performing unanticipated 45° run-to-cut manoeuvres in a laboratory setting wearing shorts with non-directional compression (control, HeatGear, Under Armour, USA) or shorts with directional compression (directional, CoreShort PRO, Under Armour, USA), in random order. Average adductor activity in the stance leg was significantly lower in the directional condition than in the control condition during all parts of stance phase (all P < 0.042). From this preliminary analysis, wearing directional compression shorts appears to be associated with reduced stance limb hip adductor activity. Athletes seeking to reduce demand on the hip adductors as they approach full return to activities may benefit from the use of directional compression shorts. PMID:24669858

  3. Hip adductor activations during run-to-cut maneuvers in compression shorts: Implications for return to sport after groin injury

    PubMed Central

    CHAUDHARI, AJIT M. W.; JAMISON, STEVEN T.; MCNALLY, MICHAEL P.; PAN, XUELIANG; SCHMITT, LAURA C.

    2014-01-01

    Athletes at high risk of groin strains in sports such as hockey and soccer often choose to wear shorts with directional compression to aid in prevention or recovery from hip adductor strains. Large eccentric contractions are known to result in or exacerbate strain injuries, but it is unknown if these shorts have a beneficial effect on hip adductor muscle activity. In this study, surface electromyography of the adductor longus and ground reaction force (GRF) data were obtained simultaneously on 29 healthy individuals without previous history of serious injury while performing unanticipated 45° run-to-cut maneuvers in a laboratory setting wearing shorts with non-directional compression (control, HeatGear, Under Armour, USA) or shorts with directional compression (directional, CoreShort PRO, Under Armour, USA), in random order. Average adductor activity in the stance leg was significantly lower in the directional condition than in the control condition during all parts of stance phase (all p<0.042). From this preliminary analysis, wearing directional compression shorts appears to be associated with reduced stance limb hip adductor activity. Athletes seeking to reduce demand on the hip adductors as they approach full return to activities may benefit from the use of directional compression shorts. PMID:24669858

  4. S1P3 receptor influences key physiological properties of fast-twitch extensor digitorum longus muscle.

    PubMed

    Germinario, Elena; Bondì, Michela; Cencetti, Francesca; Donati, Chiara; Nocella, Marta; Colombini, Barbara; Betto, Romeo; Bruni, Paola; Bagni, Maria Angela; Danieli-Betto, Daniela

    2016-06-01

    To examine the role of sphingosine 1-phosphate (S1P) receptor 3 (S1P3) in modulating muscle properties, we utilized transgenic mice depleted of the receptor. Morphological analyses of extensor digitorum longus (EDL) muscle did not show evident differences between wild-type and S1P3-null mice. The body weight of 3-mo-old S1P3-null mice and the mean cross-sectional area of transgenic EDL muscle fibers were similar to those of wild-type. S1P3 deficiency enhanced the expression level of S1P1 and S1P2 receptors mRNA in S1P3-null EDL muscle. The contractile properties of S1P3-null EDL diverge from those of wild-type, largely more fatigable and less able to recover. The absence of S1P3 appears responsible for a lower availability of calcium during fatigue. S1P supplementation, expected to stimulate residual S1P receptors and signaling, reduced fatigue development of S1P3-null muscle. Moreover, in the absence of S1P3, denervated EDL atrophies less than wild-type. The analysis of atrophy-related proteins in S1P3-null EDL evidences high levels of the endogenous regulator of mitochondria biogenesis peroxisome proliferative-activated receptor-γ coactivator 1α (PGC-1α); preserving mitochondria could protect the muscle from disuse atrophy. In conclusion, the absence of S1P3 makes the muscle more sensitive to fatigue and slows down atrophy development after denervation, indicating that S1P3 is involved in the modulation of key physiological properties of the fast-twitch EDL muscle. PMID:26718782

  5. Numerical and areal density estimates of fibre type composition in a skeletal muscle (rat extensor digitorum longus).

    PubMed Central

    Egginton, S

    1990-01-01

    The composition of a mixed fast skeletal muscle (rat extensor digitorum longus) was examined to quantify the difference between the relative number of the three major fibre types in a representative muscle and their relative contribution to muscle cross-section, i.e. numerical (NN) and areal (AA) densities, respectively. These two indices clearly differ in their physiological relevance. While the former may be useful in describing hyperplasia, the latter allows for differences in size among fibre types. When estimated as NN, over 20% of fields contained 5-10% SO fibres and less than 5% had 75-80% FG fibres. In contrast, only 2% of fields had an AA of 5-10% for SO fibres while around 30% contained 75-80% FG fibres. The importance of a direct method for estimating AA is emphasised, as an indirect approach may have an error of 20-30% when used for oxidative fibre types. The use of an unbiased sampling regime to minimise error in determining both numerical and areal densities of different fibre types is illustrated. Images Fig. 1 Fig. 2 PMID:2139022

  6. Effect of acetoacetate on glucose metabolism in the soleus and extensor digitorum longus muscles of the rat.

    PubMed Central

    Maizels, E Z; Ruderman, N B; Goodman, M N; Lau, D

    1977-01-01

    1. The effect of acetoacetate on glucose metabolism was compared in the soleus, a slow-twitch red muscle, and the extensor digitorum longus, a muscle composed of 50% fast-twitch red and 50% white fibres. 2. When incubated for 2h in a medium containing 5 mM-glucose and 0.1 unit of insulin/ml, rates of glucose uptake, lactate release and glucose oxidation in the soleus were 19.6, 18.6 and 1.47 micronmol/h per g respectively. Acetoacetate (1.7 mM) diminished all three rates by 25-50%; however, it increased glucose conversion into glycogen. In addition, it caused increases in tissue glucose, glucose 6-phosphate and fructose 6-phosphate, suggesting inhibition of phosphofructokinase. The concentrations of citrate, an inhibitor of phosphofructokinase, and of malate were also increased. 3. Rates of glucose uptake and lactate release in the extensor digitorum longus were 50-80% of those in the soleus. Acetoacetate caused moderate increases in tissue glucose 6-phosphate and possibly citrate, but it did not decrease glucose uptake or lactate release. 4. The rate of glycolysis in the soleus was approximately five times that previously observed in the perfused rat hindquarter, a muscle preparation in which acetoacetate inhibits glucose oxidation, but does not alter glucose uptake or glycolysis. A similar rate of glycolysis was observed when the soleus was incubated with a glucose-free medium. Under these conditions, tissue malate and the lactate/pyruvate ratio in the medium were decreased, and acetoacetate did not decrease lactate release or increase tissue citrate or glucose 6-phosphate. An intermediate rate of glycolysis, which was not decreased by acetoacetate, was observed when the soleus was incubated with glucose, but not insulin. 5. The data suggest that acetoacetate glucose inhibits uptake and glycolysis in red muscle under conditions that resemble mild to moderate exercise. They also suggest that the accumulation of citrate in these circumstances is linked to the rate

  7. Potential use of fatty acid profiles of the adductor muscle of cockles (Cerastoderma edule) for traceability of collection site

    PubMed Central

    Ricardo, Fernando; Pimentel, Tânia; Moreira, Ana S. P.; Rey, Felisa; Coimbra, Manuel A.; Rosário Domingues, M.; Domingues, Pedro; Costa Leal, Miguel; Calado, Ricardo

    2015-01-01

    Geographic traceability of seafood is key for controlling its quality and safeguarding consumers’ interest. The present study assessed if the fatty acid (FA) profile of the adductor muscle (AM) of fresh cockles (Cerastoderma edule) can be used to discriminate the origin of specimens collected in different bivalve capture/production areas legally defined within a coastal lagoon. Results suggest that this biochemical approach holds the potential to trace sampling locations with a spatial resolution <10 Km, even for areas with identical classification for bivalve production. Cockles further away from the inlet, i.e. in areas exposed to a higher saline variation, exhibited lower levels of saturated fatty acids, which are key for stabilizing the bilayer structure of cell membranes, and a higher percentage of polyunsaturated fatty acids, which enhance bilayer fluidity. Results suggest that the structural nature of the lipids present in the AM provides a stable fatty acid signature and holds potential for tracing the origin of bivalves to their capture/production areas. PMID:26084395

  8. Potential use of fatty acid profiles of the adductor muscle of cockles (Cerastoderma edule) for traceability of collection site.

    PubMed

    Ricardo, Fernando; Pimentel, Tânia; Moreira, Ana S P; Rey, Felisa; Coimbra, Manuel A; Rosário Domingues, M; Domingues, Pedro; Costa Leal, Miguel; Calado, Ricardo

    2015-01-01

    Geographic traceability of seafood is key for controlling its quality and safeguarding consumers' interest. The present study assessed if the fatty acid (FA) profile of the adductor muscle (AM) of fresh cockles (Cerastoderma edule) can be used to discriminate the origin of specimens collected in different bivalve capture/production areas legally defined within a coastal lagoon. Results suggest that this biochemical approach holds the potential to trace sampling locations with a spatial resolution <10 Km, even for areas with identical classification for bivalve production. Cockles further away from the inlet, i.e. in areas exposed to a higher saline variation, exhibited lower levels of saturated fatty acids, which are key for stabilizing the bilayer structure of cell membranes, and a higher percentage of polyunsaturated fatty acids, which enhance bilayer fluidity. Results suggest that the structural nature of the lipids present in the AM provides a stable fatty acid signature and holds potential for tracing the origin of bivalves to their capture/production areas. PMID:26084395

  9. Aggressive Lymphoma "Sarcoma Mimicker" Originating in the Gluteus and Adductor Muscles: A Case Report and Literature Review.

    PubMed

    Elkourashy, Sarah A; Nashwan, Abdulqadir J; Alam, Syed I; Ammar, Adham A; El Sayed, Ahmed M; Omri, Halima El; Yassin, Mohamed A

    2016-01-01

    Extranodal lymphoma (ENL) occurs in approximately 30%-40% of all patients with non-Hodgkin lymphoma and has been described in almost all organs and tissues. However, diffuse large B-cell lymphoma is the most common histological subtype of non-Hodgkin lymphoma, primarily arising in the retroperitoneal region. In this article, we report a rare case of an adult male diagnosed with primary diffuse large B-cell lymphoma of the gluteal and adductor muscles with aggressive bone involvement. All appropriate radiological and histopathological studies were done for diagnosis and staging. After discussion with the lymphoma multidisciplinary team, it was agreed to start on R-CHOP protocol (rituximab, cyclophosphamide, doxorubicin (Adriamycin), vincristine (Oncovin®), and prednisone) as the standard of care, which was later changed to R-CODOX-M/R-IVAC protocol (rituximab, cyclophosphamide, vincristine (Oncovin®), doxorubicin, and high-dose methotrexate alternating with rituximab, ifosfamide, etoposide, and high-dose cytarabine) due to inadequate response. Due to the refractory aggressive nature of the disease, subsequent decision of the multidisciplinary team was salvage chemotherapy and autologous stem cell transplant. The aim of this case report was to describe and evaluate the clinical presentation and important radiological features of extranodal lymphoma affecting the musculoskeletal system. PMID:27398038

  10. Aggressive Lymphoma “Sarcoma Mimicker” Originating in the Gluteus and Adductor Muscles: A Case Report and Literature Review

    PubMed Central

    Elkourashy, Sarah A.; Nashwan, Abdulqadir J.; Alam, Syed I.; Ammar, Adham A.; El Sayed, Ahmed M.; Omri, Halima El; Yassin, Mohamed A.

    2016-01-01

    Extranodal lymphoma (ENL) occurs in approximately 30%–40% of all patients with non-Hodgkin lymphoma and has been described in almost all organs and tissues. However, diffuse large B-cell lymphoma is the most common histological subtype of non-Hodgkin lymphoma, primarily arising in the retroperitoneal region. In this article, we report a rare case of an adult male diagnosed with primary diffuse large B-cell lymphoma of the gluteal and adductor muscles with aggressive bone involvement. All appropriate radiological and histopathological studies were done for diagnosis and staging. After discussion with the lymphoma multidisciplinary team, it was agreed to start on R-CHOP protocol (rituximab, cyclophosphamide, doxorubicin (Adriamycin), vincristine (Oncovin®), and prednisone) as the standard of care, which was later changed to R-CODOX-M/R-IVAC protocol (rituximab, cyclophosphamide, vincristine (Oncovin®), doxorubicin, and high-dose methotrexate alternating with rituximab, ifosfamide, etoposide, and high-dose cytarabine) due to inadequate response. Due to the refractory aggressive nature of the disease, subsequent decision of the multidisciplinary team was salvage chemotherapy and autologous stem cell transplant. The aim of this case report was to describe and evaluate the clinical presentation and important radiological features of extranodal lymphoma affecting the musculoskeletal system. PMID:27398038

  11. Flexor digitorum accessorius longus muscle in resistant clubfoot patients: introduction of a new sign predicting its presence.

    PubMed

    Shaheen, Samir; Mursal, Haitham; Rabih, Mohamed; Johari, Ashok

    2015-03-01

    Clubfoot, talipes equino varus (TEV), is a common congenital foot anomaly. Some cases are resistant to conservative treatment. Many causes of resistance have been reported, among these, the presence of anomalous muscles; however, the effect of the presence of anomalous muscles on the outcome of conservative management is not well studied. These aberrant muscles are discovered during the extensive surgical release as an abnormal finding. The aim of this work is to study the demographic characteristics of patients with resistant TEV that necessitated extensive soft tissue release at Sudan Clubfoot Clinic and to document the prevalence of flexor digitorum accessorius longus (FDAL) muscle in a large series of clubfoot patients treated by extensive surgery: posteromedial release. Also, we introduce a new observation as an indication by which the surgeon can predict the presence of FDAL. On the basis of an observation that there is a special posture of the big toe in extension in relation to other flexed toes associated with the presence of FDAL, records of patients of clubfoot treated by extensive surgery between 2007 and 2012 at the Sudan Clubfoot Project were reviewed. Demographic characteristics were studied. Only patients with idiopathic TEV were included. Resistant clubfeet necessitated extensive release in 261 patients, 197 males and 64 females. Their ages ranged between 1 day and 15 years at presentation. FDAL muscle was found in 48 patients (54 feet) out of 261 patients (411 feet, 13.14%). In 46 of the 48 patients (95.8%), the presence of the FDAL could be predicted by a sign. FDAL is prevalent in 13% of resistant TEV cases requiring extensive soft tissue release, and the surgeon can expect resistant clubfoot and predict the presence of the FDAL in over 95% before he operates by observing the Samir-Adam sign. PMID:25493703

  12. Influence and interactions of laryngeal adductors and cricothyroid muscles on fundamental frequency and glottal posture control

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen; Sofer, Elazar; Berry, David A.

    2014-01-01

    The interactions of the intrinsic laryngeal muscles (ILMs) in controlling fundamental frequency (F0) and glottal posture remain unclear. In an in vivo canine model, three sets of intrinsic laryngeal muscles—the thyroarytenoid (TA), cricothyroid (CT), and lateral cricoarytenoid plus interarytenoid (LCA/IA) muscle complex—were independently and accurately stimulated in a graded manner using distal laryngeal nerve stimulation. Graded neuromuscular stimulation was used to independently activate these paired intrinsic laryngeal muscles over a range from threshold to maximal activation, to produce 320 distinct laryngeal phonatory postures. At phonation onset these activation conditions were evaluated in terms of their vocal fold strain, glottal width at the vocal processes, fundamental frequency (F0), subglottic pressure, and airflow. F0 ranged from 69 to 772 Hz and clustered into chest-like and falsetto-like groups. CT activation was always required to raise F0, but could also lower F0 at low TA and LCA/IA activation levels. Increasing TA activation first increased then decreased F0 in all CT and LCA/IA activation conditions. Increasing TA activation also facilitated production of high F0 at a lower onset pressure. Independent control of membranous (TA) and cartilaginous (LCA/IA) glottal closure enabled multiple pathways for F0 control via changes in glottal posture. PMID:25235003

  13. Effects of free oxygen radicals on Ca2+ release mechanisms in the sarcoplasmic reticulum of scallop (Pecten jacobaeus) adductor muscle.

    PubMed

    Burlando, B; Viarengo, A; Pertica, M; Ponzano, E; Orunesu, M

    1997-08-01

    In vitro oxyradical effects on SR Ca2+ regulation were studied by using a SR-containing cell-free preparation from scallop (Pecten jacobaeus) adductor muscle. Ca2+ variations were fluorimetrically detected after incubation with Fluo-3 in the presence of ATP. Exposure to Fe3+/ascorbate produced dose-dependent Ca2+ release from SR vesicles, eventually leading to massive Ca2+ loss. Exposure to hypoxanthine/xanthine oxidase also caused Ca2+ release but at a much slower rate. Pre-incubations with catalase or with the hydroxyl radical scavenger KMBA led to a significant decrease in the Fe3+/ascorbate-induced Ca2+ release rate and to a delay of massive Ca2+ loss. Pre-incubations with GSH or DTT strongly reduced the Ca2+ release caused by Fe3+/ascorbate and, moreover, they prevented massive Ca2+ loss from SR vesicles. Addition of GSH or DTT after Fe3+/ascorbate promptly reduced the Ca2+ release rate and delayed massive Ca2+ release. Pre-incubation with the SR Ca2+ channel blocker ruthenium red strongly reduced the Ca2+ release caused by Fe3+/ascorbate, and also prevented massive Ca2+ loss. In the presence of ruthenium red, Fe3+/ascorbate treatments followed by Ca2+ addition revealed that Ca2+ uptake inhibition was slower than Ca2+ release. Taken together, data showed that free radicals and, in particular, hydroxyl radicals, affected the scallop SR Ca2+ regulation. This mainly occurred through Ca2+ channel opening, most likely triggered by sulfhydryl oxidation, which eventually led to massive Ca2+ release from SR vesicles. The demonstration of a specific effect of oxyradicals on SR Ca2+ channels is in line with their possible involvement in cell signaling. PMID:9292226

  14. NMR-Based Metabolomic Investigations on the Differential Responses in Adductor Muscles from Two Pedigrees of Manila Clam Ruditapes philippinarum to Cadmium and Zinc

    PubMed Central

    Wu, Huifeng; Liu, Xiaoli; Zhao, Jianmin; Yu, Junbao

    2011-01-01

    Manila clam Ruditapes philippinarum is one of the most important economic species in shellfishery in China due to its wide geographic distribution and high tolerance to environmental changes (e.g., salinity, temperature). In addition, Manila clam is a good biomonitor/bioindicator in “Mussel Watch Programs” and marine environmental toxicology. However, there are several pedigrees of R. philippinarum distributed in the marine environment in China. No attention has been paid to the biological differences between various pedigrees of Manila clams, which may introduce undesirable biological variation in toxicology studies. In this study, we applied NMR-based metabolomics to detect the biological differences in two main pedigrees (White and Zebra) of R. philippinarum and their differential responses to heavy metal exposures (Cadmium and Zinc) using adductor muscle as a target tissue to define one sensitive pedigree of R. philippinarum as biomonitor for heavy metals. Our results indicated that there were significant metabolic differences in adductor muscle tissues between White and Zebra clams, including higher levels of alanine, glutamine, hypotaurine, phosphocholine and homarine in White clam muscles and higher levels of branched chain amino acids (valine, leucine and isoleucine), succinate and 4-aminobutyrate in Zebra clam muscles, respectively. Differential metabolic responses to heavy metals between White and Zebra clams were also found. Overall, we concluded that White pedigree of clam could be a preferable bioindicator/biomonitor in marine toxicology studies and for marine heavy metals based on the relatively high sensitivity to heavy metals. PMID:22131959

  15. Effect of Electroacupuncture on the Expression of Glycyl-tRNA Synthetase and Ultrastructure Changes in Atrophied Rat Peroneus Longus Muscle Induced by Sciatic Nerve Injection Injury.

    PubMed

    Wang, Meng; Zhang, Xiao Ming; Yang, Sheng Bo

    2016-01-01

    Glycyl-tRNA synthetase (GlyRS) is one of the key enzymes involved in protein synthesis. Its mutations have been reported to cause Charcot-Marie-Tooth disease which demonstrates muscular atrophy in distal extremities, particularly manifested in peroneus muscles. In this situation, the dysfunctions of mitochondria and sarcoplasmic reticulum (SR) affect energy supply and excitation-contraction coupling of muscle fibers, therefore resulting in muscular atrophy. Although the treatment of muscular atrophy is a global urgent problem, it can be improved by electroacupuncture (EA) treatment. To investigate the mechanism underlying EA treatment improving muscular atrophy, we focused on the perspective of protein synthesis by establishing a penicillin injection-induced sciatic nerve injury model. In our model, injured rats without treatment showed decreased sciatic functional index (SFI), decreased peroneus longus muscle weight and muscle fiber cross-sectional area, aggregated mitochondria with vacuoles appearing, swollen SR, and downregulated mRNA and protein expression levels of GlyRS and myosin heavy chain IIb (MHC-IIb). The injured rats with EA treatment showed significant recovery. These results indicated that EA stimulation can alleviate peroneus longus muscular atrophy induced by iatrogenic sciatic nerve injury through promoting the recovery of GlyRS and muscle ultrastructure and increasing muscle protein synthesis. PMID:27274754

  16. Effect of Electroacupuncture on the Expression of Glycyl-tRNA Synthetase and Ultrastructure Changes in Atrophied Rat Peroneus Longus Muscle Induced by Sciatic Nerve Injection Injury

    PubMed Central

    Wang, Meng; Zhang, Xiao Ming; Yang, Sheng Bo

    2016-01-01

    Glycyl-tRNA synthetase (GlyRS) is one of the key enzymes involved in protein synthesis. Its mutations have been reported to cause Charcot-Marie-Tooth disease which demonstrates muscular atrophy in distal extremities, particularly manifested in peroneus muscles. In this situation, the dysfunctions of mitochondria and sarcoplasmic reticulum (SR) affect energy supply and excitation-contraction coupling of muscle fibers, therefore resulting in muscular atrophy. Although the treatment of muscular atrophy is a global urgent problem, it can be improved by electroacupuncture (EA) treatment. To investigate the mechanism underlying EA treatment improving muscular atrophy, we focused on the perspective of protein synthesis by establishing a penicillin injection-induced sciatic nerve injury model. In our model, injured rats without treatment showed decreased sciatic functional index (SFI), decreased peroneus longus muscle weight and muscle fiber cross-sectional area, aggregated mitochondria with vacuoles appearing, swollen SR, and downregulated mRNA and protein expression levels of GlyRS and myosin heavy chain IIb (MHC-IIb). The injured rats with EA treatment showed significant recovery. These results indicated that EA stimulation can alleviate peroneus longus muscular atrophy induced by iatrogenic sciatic nerve injury through promoting the recovery of GlyRS and muscle ultrastructure and increasing muscle protein synthesis. PMID:27274754

  17. [Bilateral diabetic infarction of the thigh adductor muscles in a diabetic female patient-- A case report and review of the literature].

    PubMed

    Satoh, A; Watanabe, M; Ohkoshi, N; Tamaoka, A; Shoji, S

    1999-01-01

    A 30-year-old female complained of lancinating pain in the bilateral thighs for 10 days. The patient had a 22-year history of insulin-dependent diabetes mellitus. Physical examination revealed swelling of the bilateral lower extremities. There was exquisite tenderness on palpation over the medial thighs, with marked increase in pain on hip and knee flexion. Muscle strength of quadriceps, hamstrings, and hip adductor was decreased due to muscle pain. Pedal pulses were palpable bilaterally. Roentogenograms of the left femur revealed calcification of the left femoral arterial wall. Venogram revealed no obstruction with normal drainage. Complete blood cell count showed left shift of the neutrophils, markedly accelerated erythrocyte sedimentation rate, prolonged prothorombin time of 9 sec (normal 11.7 sec), C-reactive protein of 7.3 mg/dl and serum creatine kinase level of 175 IU/L. FBS was 225 mg/dl and Hb A 1 c was 16.4%. An MR imaging of the thighs revealed high signal intensities in the bilateral adductor muscles on T 2-weighted images. The symptoms resolved spontaneously over a three week period. From the course of the illness and MR imaging, the patient was diagnosed having diabetic muscle infarction (DMI), a rare complication of diabetes mellitus. To our knowledge, this is the first reported case of DMI in Japan. Diabetic microangiopathy and hypercoagulability are thought to be responsible for inducing DMI. Because the diagnosis can be made from the characteristic clinical and the typical MR imaging findings, muscle biopsy is not always necessary to obtain the diagnosis of DMI. PMID:10391074

  18. Arthroscopic pubic symphysis debridement and adductor enthesis repair in athletes with athletic pubalgia: technical note and video illustration.

    PubMed

    Hopp, Sascha; Tumin, Masjudin; Wilhelm, Peter; Pohlemann, Tim; Kelm, Jens

    2014-11-01

    We elaborately describe our novel arthroscopic technique of the symphysis pubis in athletes with osteitis pubis and concomitant adductor enthesopathy who fail to conservative treatment modalities. The symphysis pubis is debrided arthroscopically and the degenerated origin of adductor tendon (enthesis) is excised and reattached. With our surgical procedure the stability of the symphysis pubis is successfully preserved and the adductor longus enthesopathy simultaneously addressed in the same setting. PMID:25055756

  19. Changes in the Capillarity of the Rat Extensor Digitorum Longus Muscle 4 Weeks after Nerve Injury Studied by 2D Measurement Methods.

    PubMed

    Čebašek, Vita; Ribarič, Samo

    2016-01-01

    We have previously shown by 3D study that 2 weeks after nerve injury there was no change in the length of capillaries per muscle fibre length in rat extensor digitorum longus muscle (EDL). The primary goal of the present 2D study was to determine the capillarity of rat EDL 4 weeks after various modes of nerve injury. Additionally, we wished to calculate the same capillary/fibre parameters that were used in our 3D stereological study. EDL muscles derived from denervated (4 weeks after nerve injury), re-innervated (4 weeks after two successive nerve crushes) and age-matched controls from the beginning (CON-1) and the end (CON-2) of the experiment were analysed in two ways. Global indices of capillarity, such as capillary density (CD) and capillary/fibre (C/F) ratio, were determined by automatic analysis, local indices as the number (CAF) and the length of capillaries around individual muscle fibres (Lcap) in relation to muscle fibre size were estimated manually by tracing the muscle fibre outlines and the transversally and longitudinally cut segments of capillaries seen in 5-µm-thin muscle cross sections. Four weeks after both types of nerve injury, CD increased in comparison to the CON-2 group (p < 0.001) due to atrophied muscle fibres in denervated muscles and probably proliferation of capillaries in re-innervated ones. Higher C/F, CAF (both p < 0.001) and Lcap (p < 0.01) in re-innervated than denervated EDL confirmed this assumption. Calculated capillary/fibre parameters were comparable to our previous 3D study, which strengthens the practical value to the adapted 2D method used in this study. PMID:27023720

  20. Alteration of excitation-contraction coupling mechanism in extensor digitorum longus muscle fibres of dystrophic mdx mouse and potential efficacy of taurine

    PubMed Central

    De Luca, Annamaria; Pierno, Sabata; Liantonio, Antonella; Cetrone, Michela; Camerino, Claudia; Simonetti, Simonetta; Papadia, Francesco; Camerino, Diana Conte

    2001-01-01

    No clear data is available about functional alterations in the calcium-dependent excitation-contraction (e-c) coupling mechanism of dystrophin-deficient muscle of mdx mice. By means of the intracellular microelectrode ‘point' voltage clamp method, we measured the voltage threshold for contraction (mechanical threshold; MT) in intact extensor digitorum longus (EDL) muscle fibres of dystrophic mdx mouse of two different ages: 8–12 weeks, during the active regeneration of hind limb muscles, and 6–8 months, when regeneration is complete. The EDL muscle fibres of 8–12-week-old wildtype animals had a more negative rheobase voltage (potential of equilibrium for contraction- and relaxation-related calcium movements) with respect to control mice of 6–8 months. However, at both ages, the EDL muscle fibres of mdx mice contracted at more negative potentials with respect to age-matched controls and had markedly slower time constants to reach the rheobase. The in vitro application of 60 mM taurine, whose normally high intracellular muscle levels play a role in e-c coupling, was without effect on 6–8-month-old wildtype EDL muscle, while it significantly ameliorated the MT of mdx mouse. HPLC determination of taurine content at 6–8 months showed a significant 140% rise of plasma taurine levels and a clear trend toward a decrease in amino acid levels in hind limb muscles, brain and heart, suggesting a tissue difficulty in retaining appropriate levels of the amino acid. The data is consistent with a permanent alteration of e-c coupling in mdx EDL muscle fibres. The alteration could be related to the proposed increase in intracellular calcium, and can be ameliorated by taurine, suggesting a potential therapeutic role of the amino acid. PMID:11226135

  1. Extending the use of the gracilis muscle flap in perineal reconstruction surgery.

    PubMed

    Goldie, Stephen J; Almasharqah, Riyadh; Fogg, Quentin A; Anderson, William

    2016-08-01

    Reconstruction of the perineum is required following oncological resections. Plastic surgical techniques can be used to restore the aesthetics and function of the perineum. The gracilis myocutaneous flap provides a substantial skin paddle, with minimal donor site morbidity. The flap is pedicled on a perforator from the medial circumflex femoral artery, giving it limited reach across the perineum. Tunnelling the flap under the adductor longus muscle may free up more of the arterial pedicle, increasing its reach. On three female cadavers, bilateral gracilis flaps were raised in the standard surgical manner, giving six flaps in total. With the flaps pedicled across the perineum, the distance from the tip of each flap was measured to the anterior superior iliac spine (ASIS). The flaps were then tunnelled under the adductor longus muscle. The distances to the ASIS were measured again. The average pedicle length was greater than 7 cm. Tunnelling the flap under the adductor longus muscle increased the reach by more than 4 cm on average. Cadaveric dissection has shown that tunnelling of the flap in a novel way increase its reach across the perineum. This additional flexibility improves its use clinically and is of benefit to plastic surgeons operating in perineal reconstruction. PMID:27221783

  2. EMG and force production of the flexor hallucis longus muscle in isometric plantarflexion and the push-off phase of walking.

    PubMed

    Péter, Annamária; Hegyi, András; Stenroth, Lauri; Finni, Taija; Cronin, Neil J

    2015-09-18

    Large forces are generated under the big toe in the push-off phase of walking. The largest flexor muscle of the big toe is the flexor hallucis longus (FHL), which likely contributes substantially to these forces. This study examined FHL function at different levels of isometric plantarflexion torque and in the push-off phase at different speeds of walking. FHL and calf muscle activity were measured with surface EMG and plantar pressure was recorded with pressure insoles. FHL activity was compared to the activity of the calf muscles. Force and impulse values were calculated under the big toe, and were compared to the entire pressed area of the insole to determine the relative contribution of big toe flexion forces to the ground reaction force. FHL activity increased with increasing plantarflexion torque level (F=2.8, P=0.024) and with increasing walking speed (F=11.608, P<0.001). No differences were observed in the relative contribution of the force under the big toe to the entire sole between different plantarflexion torque levels (F=0.836, P=0.529). On the contrary, in the push-off phase of walking, peak force under the big toe increased at a higher rate than force under the other areas of the plantar surface (F=3.801, P=0.018), implying a greater relative contribution to total force at faster speeds. Moreover, substantial differences were found between isometric plantarflexion and walking concerning FHL activity relative to that of the calf muscles, highlighting the task-dependant behaviour of FHL. PMID:26100463

  3. Rerouting extensor pollicis longus tendon transfer.

    PubMed

    Colantoni Woodside, Julie; Bindra, Randip R

    2015-04-01

    Following radial nerve palsy, loss of the extensor pollicis longus (EPL), abductor pollicis longus and extensor pollicis brevis tendons results in loss of thumb extension and radial abduction. Multiple tendon transfers are described to address the loss of thumb extension following radial palsy utilizing the palmaris longus or flexor digitorum sublimis transferred to the EPL tendon. Owing to its ulnar vector of pull, the EPL tendon is a secondary adductor of the thumb, and in order to mitigate the tendency for thumb adduction, the EPL tendon is divided at the wrist and brought subcutaneously to the radial side of the wrist for repair to the donor tendon to improve the line of pull for the donor tendon. We describe the use of a technique to reroute the EPL tendon through the first compartment in a retrograde fashion prior to repair with the donor tendon on the radial side of the wrist. The use of the first dorsal compartment provides a pulley to maintain the position of the transfer and to prevent potential bowstringing of the tendon as wrist flexion and thumb extension are attempted. because the repair is performed proximal to the extensor retinaculum, the donor tendon length is not compromised. Because the tendon is redirected through the first dorsal compartment and inserts into the distal phalanx, a single transfer attempts to restores both thumb extension and radial abduction. PMID:25746145

  4. Midline lateralization thyroplasty for adductor spasmodic dysphonia.

    PubMed

    Isshiki, N; Tsuji, D H; Yamamoto, Y; Iizuka, Y

    2000-02-01

    Midline lateralization thyroplasty was successfully performed on a patient with adductor spasmodic dysphonia. The thyroid cartilage was incised at the midline, and a 3 x 2-mm perforation was made at the anterior commissure to widen it. The perforation was closed with a free composite graft taken from the upper edge of the thyroid ala, and the incised thyroid cartilage edges were kept separated 4 mm apart with silicone wedges. A part of the sternohyoid muscle was rotated to seal any leak from the perforation. The postoperative course was uneventful. The voice has been restored to normal, and there is no sign of recurrence of the symptom so far, as of 1 year 5 months postoperative. Although a longer follow-up is needed, this case indicates that midline type II thyroplasty could be a useful treatment for adductor spasmodic dysphonia. PMID:10685572

  5. Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading

    SciTech Connect

    Riley, D.A.; Ellis, S.; Giometti, C.S.; Hoh, J.F.Y.; Ilyina-Kakueva, E.I.; Oganov, V.S.; Slocum, G.R.; Bain, J.L.W.; Sedlak, F.R. )

    1992-08-01

    Extended exposure of humans to spaceflight produces a progressive loss of skeletal muscle strength. This process must be understood to design effective countermeasures. The present investigation examined hindlimb muscles from flight rats killed as close to landing as possible. Spaceflight and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to account for this apparent disagreement.In both conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic fibers. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the postcapillary venules and capillaries.

  6. Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ilyina-Kakueva, E. I.; Ellis, S.; Bain, J. L.; Slocum, G. R.; Sedlak, F. R.

    1990-01-01

    Histochemical and ultrastructural analyses were performed postflight on hind limb skeletal muscles of rats orbited for 12.5 days aboard the unmanned Cosmos 1887 biosatellite and returned to Earth 2 days before sacrifice. The antigravity adductor longus (AL), soleus, and plantaris muscles atrophied more than the non-weight-bearing extensor digitorum longus, and slow muscle fibers were more atrophic than fast fibers. Muscle fiber segmental necrosis occurred selectively in the AL and soleus muscles; primarily, macrophages and neutrophils infiltrated and phagocytosed cellular debris. Granule-rich mast cells were diminished in flight AL muscles compared with controls, indicating the mast cell secretion contributed to interstitial tissue edema. Increased ubiquitination of disrupted myofibrils implicated ubiquitin in myofilament degradation. Mitochondrial content and succinic dehydrogenase activity were normal, except for subsarcolemmal decreases. Myofibrillar ATPase activity of flight AL muscle fibers shifted toward the fast type. Absence of capillaries and extravasation of red blood cells indicated failed microcirculation. Muscle fiber regeneration from activated satellite cells was detected. About 17% of the flight AL end plates exhibited total or partial denervation. Thus, skeletal muscle weakness associated with spaceflight can result from muscle fiber atrophy and segmental necrosis, partial motor denervation, and disruption of the microcirculation.

  7. Swimming away or clamming up: the use of phasic and tonic adductor muscles during escape responses varies with shell morphology in scallops.

    PubMed

    Tremblay, Isabelle; Guderley, Helga E; Himmelman, John H

    2012-12-01

    The simple locomotor system of scallops facilitates the study of muscle use during locomotion. We compared five species of scallops with different shell morphologies to see whether shell morphology and muscle use change in parallel or whether muscle use can compensate for morphological constraints. Force recordings during escape responses revealed that the use of tonic and phasic contractions varied markedly among species. The active species, Amusium balloti, Placopecten magellanicus and Pecten fumatus, made more phasic contractions than the more sedentary species, Mimachlamys asperrima and Crassadoma gigantea. Tonic contractions varied considerably among these species, with the two more sedentary species often starting their response to the predator with a tonic contraction and the more active species using shorter tonic contractions between series of phasic contractions. Placopecten magellanicus made extensive use of short tonic contractions. Pecten fumatus mounted an intense series of phasic contractions at the start of its response, perhaps to overcome the constraints of its unfavourable shell morphology. Valve closure by the more sedentary species suggests that their shell morphology protects them against predation, whereas swimming by the more active species relies upon intense phasic contractions together with favourable shell characteristics. PMID:22972884

  8. Isolated Paralysis of the Adductor Pollicis: A Case Report

    PubMed Central

    De Maio, F.; Bisicchia, S.; Farsetti, P.; Ippolito, E.

    2011-01-01

    We report a case of isolated paralysis of the right adductor pollicis in a 30-year-old woman. Electromyographic study showed involvement of the deep motor branch of the ulnar nerve. A ganglion and an anomalous muscle were both ruled out clinically and by MRI as a possible cause of the paralysis. At surgical exploration, we found a fibrous band joining the pisiform and the hook of the hamate bone that compressed the deep motor branch of the ulnar nerve. The fibrous band was excised, and a neurolysis of the motor branch of the ulnar nerve was performed. At followup, eight months later, the patient had fully recovered strength of the adductor muscle. PMID:21991410

  9. MRI in DNM2-related centronuclear myopathy: evidence for highly selective muscle involvement.

    PubMed

    Schessl, Joachim; Medne, Livija; Hu, Ying; Zou, Yaqun; Brown, Mark J; Huse, Jason T; Torigian, Drew A; Jungbluth, Heinz; Goebel, Hans-Hilmar; Bönnemann, Carsten G

    2007-01-01

    Dynamin 2 has recently been recognized as a causative gene for the autosomal dominant form of centronuclear myopathy (dominant centronuclear myopathy). Here we report an affected father and daughter with dynamin 2 related AD CNM with predominantly distal onset of weakness. In addition to the diagnostic central location of myonuclei the muscle biopsy also showed core-like structures. Muscle MRI in the lower leg revealed prominent involvement of the soleus, but also of the gastrocnemius and the tibialis anterior whereas in the thigh there was a consistent pattern of selective involvement of adductor longus, semimembranosus, biceps femoris, rectus femoris, and vastus intermedius with relative sparing of vastus lateralis and medialis, sartorius, gracilis, and partly of the semitendinosus. These characteristic findings on muscle MRI confirm similar findings reported for CT imaging in dynamin 2 related dominant centronuclear myopathy and may help to differentiate this disorder from central core disease and other myopathies. PMID:17134899

  10. The Jaw Adductor Resultant and Estimated Bite Force in Primates

    PubMed Central

    Perry, Jonathan M. G.; Hartstone-Rose, Adam; Logan, Rachel L.

    2011-01-01

    We reconstructed the jaw adductor resultant in 34 primate species using new data on muscle physiological cross-sectional area (PCSA) and data on skull landmarks. Based on predictions by Greaves, the resultant should (1) cross the jaw at 30% of its length, (2) lie directly posterior to the last molar, and (3) incline more anteriorly in primates that need not resist large anteriorly-directed forces. We found that the resultant lies significantly posterior to its predicted location, is significantly posterior to the last molar, and is significantly more anteriorly inclined in folivores than in frugivores. Perhaps primates emphasize avoiding temporomandibular joint distraction and/or wide gapes at the expense of bite force. Our exploration of trends in the data revealed that estimated bite force varies with body mass (but not diet) and is significantly greater in strepsirrhines than in anthropoids. This might be related to greater contribution from the balancing-side jaw adductors in anthropoids. PMID:22611496

  11. Interactive effects of growth hormone and exercise on muscle mass in suspended rats

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, Roland R.; Edgerton, V. Reggie; Grossman, Elena J.; Mukku, Venkat R.; Jiang, Bian; Pierotti, David J.; Rudolph, Ingrid

    1994-01-01

    Measures to attenuate muscle atrophy in rats in response to simulated microgravity (hindlimb suspension (HS)) have been only partially successful. In the present study, hypophysectomized rats were in HS for 7 days, and the effects of recombinant human growth hormone (GH), exercise (Ex), or GH+Ex on the weights, protein concentrations, and fiber cross-sectional areas (CSAs) of hindlimb muscles were determined. The weights of four extensor muscles, i.e., the soleus (Sol), medial (MG) and lateral (LG) gastrocnemius, and plantaris (Plt), and one adductor, i.e., the adductor longus (AL), were decreased by 10-22% after HS. Fiber CSAs were decreased by 34% in the Sol and by 1 17% in the MG after HS. In contrast, two flexors, i.e., the tibialis anterior (TA) and extensor digitorum longus (EDL), did not atrophy. In HS rats, GH treatment alone maintained the weights of the fast extensors (MG, LG, Plt) and flexors (TA, EDL) at or above those of control rats. This effect was not observed in the slow extensor (Sol) or AL. Exercise had no significant effect on the weight of any muscle in HS rats. A combination of GH and Ex treatments yielded a significant increase in the weights of the fast extensors and in the CSA of both fast and slow fibers of the MG and significantly increased Sol weight and CSA of the slow fibers of the Sol. The AL was not responsive to either GH or Ex treatments. Protein concentrations of the Sol and MG were higher only in the Sol of Ex and GH+Ex rats. These results suggest that while GH treatment or intermittent high intensity exercise alone have a minimal effect in maintaining the mass of unloaded muscle, there is a strong interactive effect of these two treatments.

  12. Experiment K-6-09. Morphological and biochemical investigation of microgravity-induced nerve and muscle breakdown. Part 1: Investigation of nerve and muscle breakdown during spaceflight; Part 2: Biochemical analysis of EDL and PLT muscles

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ellis, S.; Bain, J.; Sedlak, F.; Slocum, G.; Oganov, V.

    1990-01-01

    The present findings on rat hindlimb muscles suggest that skeletal muscle weakness induced by prolonged spaceflight can result from a combination of muscle fiber atrophy, muscle fiber segmental necrosis, degeneration of motor nerve terminals and destruction of microcirculatory vessels. Damage was confined to the red adductor longus (AL) and soleus muscles. The midbelly region of the AL muscle had more segmental necrosis and edema than the ends. Macrophages and neutrophils were the major mononucleated cells infiltrating and phagocytosing the cellular debris. Toluidine blue-positive mast cells were significantly decreased in Flight AL muscles compared to controls; this indicated that degranulation of mast cells contributed to tissue edema. Increased ubiquitination of disrupted myofibrils may have promoted myofilament degradation. Overall, mitochondria content and SDH activity were normal, except for a decrease in the subsarcolemmal region. The myofibrillar ATPase activity shifted toward the fast type in the Flight AL muscles. Some of the pathological changes may have occurred or been exacerbated during the 2 day postflight period of readaptation to terrestrial gravity. While simple atrophy should be reversible by exercise, restoration of pathological changes depends upon complex processes of regeneration by stem cells. Initial signs of muscle and nerve fiber regeneration were detected. Even though regeneration proceeds on Earth, the space environment may inhibit repair and cause progressive irreversible deterioration during long term missions. Muscles obtained from Flight rats sacrificed immediately (within a few hours) after landing are needed to distinguish inflight changes from postflight readaptation.

  13. Vocal Fold Paralysis: Improved Adductor Recovery by Vincristine Blockade of Posterior Cricoarytenoid

    PubMed Central

    Paniello, Randal C.

    2014-01-01

    OBJECTIVES/HYPOTHESIS A new treatment for acute unilateral vocal fold paralysis was proposed, in which a drug is injected into the posterior cricoarytenoid muscle (PCA) shortly after nerve injury, before the degree of natural recovery is known, to prevent antagonistic synkinetic reinnervation. This concept was tested in a series of canine experiments using vincristine as the blocking agent. STUDY DESIGN Animal experiments. METHODS Laryngeal adductor function was measured at baseline and at 6 months following experimental recurrent laryngeal nerve (RLN) injuries, including complete transection, crush injury, and cautery. In the treatment animals, the PCA was injected with vincristine at the time of RLN injury. RESULTS Adductor function in the vincristine-treated hemilarynges was significantly improved compared with injury-matched noninjected controls (total n=43). Transection/repair controls recovered 56.1% of original adductor strength, vincristine-treated hemilarynges recovered to 73.1% (p=0.002). Cautery injuries also improved with vincristine block (60.7% vs 88.7%, p=0.031). Crush injuries recovered well even without vincristine (104.8% vs 111.2%, p=0.35). CONCLUSIONS These findings support a new paradigm of early, pre-emptive blockade of the antagonist muscle (PCA) to improve ultimate net adductor strength, which could potentially improve functional recovery in many UVFP patients and avoid the need for medialization procedures. Possible clinical aspects of this new approach are discussed. PMID:25267697

  14. Anatomy of the Adductor Magnus Origin

    PubMed Central

    Obey, Mitchel R.; Broski, Stephen M.; Spinner, Robert J.; Collins, Mark S.; Krych, Aaron J.

    2016-01-01

    Background: The adductor magnus (AM) has historically been a potential source of confusion in patients with suspected proximal hamstring avulsion injuries. Purpose: To investigate the anatomic characteristics of the AM, including its osseous origin, anatomic dimensions, and relationship to the proximal hamstring tendons. Study Design: Descriptive laboratory study. Methods: Dissection of the AM origin was performed in 11 (8 cadavers) fresh-frozen hip-to-foot cadaveric hemipelvis specimens. The gross anatomy and architecture of the proximal hamstring and AM tendons were studied. After dissecting the hamstring tendons away from their origin, the dimension, shape, and orientation of the tendon footprints on the ischial tuberosity were determined. Results: The AM was identified in all cadaveric specimens. The mean tendon thickness (anterior to posterior [AP]) was 5.7 ± 2.9 mm. The mean tendon width (medial to lateral [ML]) was 7.1 ± 2.2 mm. The mean tendon length was 13.1 ± 8.7 cm. The mean footprint height (AP dimension) was 12.1 ± 2.9 mm, and mean footprint width (ML dimension) was 17.3 ± 7.1 mm. The mean distance between the AM footprint and the most medial aspect of the conjoint tendon footprint was 8.5 ± 4.2 mm. Tendon measurements demonstrated a considerable degree of both intra- and interspecimen variability. Conclusion: The AM tendon is consistently present just medial to the conjoint tendon at the ischial tuberosity, representing the lateral-most portion of the AM muscle. This study found wide variation in the dimensional characteristics of the AM tendon between specimens. Its shape and location can mimic the appearance of an intact hamstring (conjoint or semimembranosus) tendon intraoperatively or on diagnostic imaging, potentially misleading surgeons and radiologists. Therefore, detailed knowledge of the AM tendon anatomy, footprint anatomy, and its relationship to the hamstring muscle complex is paramount when planning surgical approach and technique

  15. [Spasm of the adductor muscles, pre-dislocations and dislocations of the hip joints in children and adolescents with cerebral palsy. Clinical observations on aetiology, pathogenesis, therapy and rehabilitation. Part II. The importance of the iliopsoas tendon, its tenotomy, of the coxa valga antetorta, and correction through osteotomy turning the hip into varus (author's transl)].

    PubMed

    Fettweis, E

    1979-02-01

    The following factors besides spasm and contraction of the adductor muscles contribute to the occurrence of dislocations of the hip in spastic paralysis: Spasm and contraction of the iliopsoas muscle and enhanced valgus position and antetorsion. The author holds the opinion that in case of malformation of the proximal end of the femur, it is not only the indirect action of the spastic musculature via the proximal femur-epiphyseal cartilage which is responsible for this phenomen in accordance with the law on functional adaption through longitudinal growth (Pauwels), but also the direct traction of the iliopsoas tendon. A clue in this direction is the often very pronounced elongation or enlargement of the trochanter minor. The author demonstrates the pathogenetic importance of iliopsoas contracture and malpositioning of the neck of the femur by means of analyses of the course in two patients. The following principles of treatment are postulated for spastic dislocation of the hip: Elimination of the pathogenetic factors through myotenotomy of the adductor muscles and complete resection of the obturator nerve, with observation of strict aftertreatment criteria, tenotomy of the iliopsoas, repositioning and osteotomy with turning into varus. Osteotomy without previous elimination of the pathogenetically acting muscular forces does not appear useful. Likewise, permanent re-positioning by means of muscle-relaxing operation cannot be sufficiently safe-guarded without additional osteotomy once the dislocation has taken place. In twelve patients with spastic dislocation of the hip, treated in accordance with these guidelines (two without osteotomy) aged 6 6/12 and 19 5/12 years, a roentgenologically good result was obtained in half of the cases, whereas the functional result was satisfactory not only with these patients but also with part of the other patients. If surgical treatment is instituted early enough, and if the experiences described here are taken into consideration

  16. Speech Intelligibility in Severe Adductor Spasmodic Dysphonia

    ERIC Educational Resources Information Center

    Bender, Brenda K.; Cannito, Michael P.; Murry, Thomas; Woodson, Gayle E.

    2004-01-01

    This study compared speech intelligibility in nondisabled speakers and speakers with adductor spasmodic dysphonia (ADSD) before and after botulinum toxin (Botox) injection. Standard speech samples were obtained from 10 speakers diagnosed with severe ADSD prior to and 1 month following Botox injection, as well as from 10 age- and gender-matched…

  17. [Skeletal muscle magnetic resonance imaging study in a patient with diabetic lumbosacral radiculoplexus neuropathy].

    PubMed

    Matsuda, Nozomu; Kobayashi, Shunsuke; Ugawa, Yoshikazu

    2014-01-01

    A 63-year-old man with type 2 diabetes mellitus developed deep aching and numbness in the right hip and lower extremity with rapid body weight loss. Neurological examination revealed weakness of the right hamstrings, tibialis anterior, and peroneus longus muscles with diminished ankle tendon reflex. We diagnosed him with diabetic lumbosacral radicuoloplexus neuropathy (DLRPN) based on neurological, radiological, and neurophysiological findings. Magnetic resonance imaging (MRI) of skeletal muscles showed high intensity signals on T2-weighted images in bilateral hamstrings, adductor magnus and right tensor fasciae latae, and lower leg extensor muscles. The MRI findings suggested muscle edema caused by acute denervation. DLRPN, or diabetic amyotrophy, is known to be caused by ischemic axonal degeneration. Our patient showed good functional recovery, and abnormal MRI signals in the involved muscles mostly disappeared in parallel to the clinical course. Distribution of the denervated muscles suggested that our patient had either patchy lesions in the lumbosacaral plexus or mononeuropathy multiplex in the nerve branches. The current study highlights the potential of skeletal muscle MRI for clinical evaluation of DLRPN. PMID:25283832

  18. Three dimensional digital reconstruction of the jaw adductor musculature of the extinct marsupial giant Diprotodon optatum

    PubMed Central

    2014-01-01

    The morphology and arrangement of the jaw adductor muscles in vertebrates reflects masticatory style and feeding processes, diet and ecology. However, gross muscle anatomy is rarely preserved in fossils and is, therefore, heavily dependent on reconstructions. An undeformed skull of the extinct marsupial, Diprotodon optatum, recovered from Pleistocene sediments at Bacchus Marsh in Victoria, represents the most complete and best preserved specimen of the species offering a unique opportunity to investigate functional anatomy. Computed tomography (CT) scans and digital reconstructions make it possible to visualise internal cranial anatomy and predict location and morphology of soft tissues, including muscles. This study resulted in a 3D digital reconstruction of the jaw adductor musculature of Diprotodon, revealing that the arrangement of muscles is similar to that of kangaroos and that the muscle actions were predominantly vertical. 3D digital muscle reconstructions provide considerable advantages over 2D reconstructions for the visualisation of the spatial arrangement of the individual muscles and the measurement of muscle properties (length, force vectors and volume). Such digital models can further be used to estimate muscle loads and attachment sites for biomechanical analyses. PMID:25165628

  19. Evolutionary Trends in the Jaw Adductor Mechanics of Ornithischian Dinosaurs.

    PubMed

    Nabavizadeh, Ali

    2016-03-01

    Jaw mechanics in ornithischian dinosaurs have been widely studied for well over a century. Most of these studies, however, use only one or few taxa within a given ornithischian clade as a model for feeding mechanics across the entire clade. In this study, mandibular mechanical advantages among 52 ornithischian genera spanning all subclades are calculated using 2D lever arm methods. These lever arm calculations estimate the effect of jaw shape and difference in adductor muscle line of action on relative bite forces along the jaw. Results show major instances of overlap between taxa in tooth positions at which there was highest mechanical advantage. A relatively low bite force is seen across the tooth row among thyreophorans (e.g., stegosaurs and ankylosaurs), with variation among taxa. A convergent transition occurs from a more evenly distributed bite force along the jaw in basal ornithopods and basal marginocephalians to a strong distal bite force in hadrosaurids and ceratopsids, respectively. Accordingly, adductor muscle vector angles show repeated trends from a mid-range caudodorsal orientation in basal ornithischians to a decrease in vector angles indicating more caudally oriented jaw movements in derived taxa (e.g., derived thyreophorans, basal ornithopods, lambeosaurines, pachycephalosaurs, and derived ceratopsids). Analyses of hypothetical jaw morphologies were also performed, indicating that both the coronoid process and lowered jaw joint increase moment arm length therefore increasing mechanical advantage of the jaw apparatus. Adaptive trends in craniomandibular anatomy show that ornithischians evolved more complex feeding apparatuses within different clades as well as morphological convergences between clades. PMID:26692539

  20. The adductor part of the adductor magnus is innervated by both obturator and sciatic nerves.

    PubMed

    Takizawa, Megumi; Suzuki, Daisuke; Ito, Hajime; Fujimiya, Mineko; Uchiyama, Eiichi

    2014-07-01

    The hip adductor group, innervated predominantly by the obturator nerve, occupies a large volume of the lower limb. However, case reports of patients with obturator nerve palsy or denervation have described no more than minimal gait disturbance. Those facts are surprising, given the architectural characteristics of the hip adductors. Our aim was to investigate which regions of the adductor magnus are innervated by the obturator nerve and by which sciatic nerve and to consider the clinical implications. Twenty-one lower limbs were examined from 21 formalin-fixed cadavers, 18 males and 3 females. The adductor magnus was dissected and was divided into four parts (AM1-AM4) based on the locations of the perforating arteries and the adductor hiatus. AM1 was supplied solely by the obturator nerve. AM2, AM3, and AM4 received innervation from both the posterior branch of the obturator nerve and the tibial nerve portion of the sciatic nerve in 2 (9.5%), 20 (95.2%), and 6 (28.6%) of the cadavers, respectively. The double innervation in more than 90% of the AM3s is especially noteworthy. Generally, AM1-AM3 corresponds to the adductor part, traditionally characterized as innervated by the obturator nerve, and AM4 corresponds to the hamstrings part, innervated by the sciatic nerve. Here, we showed that the sciatic nerve supplies not only the hamstrings part but also the adductor part. These two nerves spread more widely than has generally been believed, which could have practical implications for the assessment and treatment of motor disability. PMID:23813615

  1. A Bitendinous Palmaris Longus: Aberrant Insertions and Its Clinical Impact - A Case Report

    PubMed Central

    Iqbal, Raiz; Iqbal, Faiz

    2015-01-01

    Palmaris longus, phylogenetically a retrogressive muscle, exhibits significant anatomical variations compared to other muscles of the upper extremity. It is of great surgical importance because, it is the first option tendon for graft procedures in various cosmetic, plastic and reconstructive surgeries. It has also been widely used in various tendon transfer procedures in treating facial paralysis, ptosis correction, lip augmentation and digital pulley reconstruction. We report a rare variant pattern of Palmaris longus with duplicated tendons and with multiple insertions to thenar and hypothenar muscles, fasciae and the flexor retinaculum along with its normal continuation as palmar aponeurosis. Variations in its insertions not only contribute, but also augment the various pathological processes such as Dupuytren’s contracture, Carpal tunnel and Guyon’s syndromes. So it is of utmost importance for surgeons, physicians and radiologists, to be aware of these variations, well in advance. PMID:26155469

  2. Late rupture of extensor pollicis longus after wrist arthroscopy.

    PubMed

    Fortems, Y; Mawhinney, I; Lawrence, T; Trial, I A; Stanley, J K

    1995-06-01

    The first cases of impending rupture of the extensor pollicis longus after wrist arthroscopy are reported and the etiology is compared with extensor pollicis longus ruptures after nondisplaced or minimally displaced Colles fractures. Both cases were treated with extensor indices proprius to extensor pollicis longus transfer with good clinical results. PMID:7632309

  3. Insertional tendinopathy of the adductors and rectus abdominis in athletes: a review.

    PubMed

    Valent, Alessandro; Frizziero, Antonio; Bressan, Stefano; Zanella, Elena; Giannotti, Erika; Masiero, Stefano

    2012-04-01

    Insertional tendinopathy of the adductors and rectus abdominis is common in male athletes, especially in soccer players. It may be worsened by physical activity and it usually limits sport performance. The management goal in the acute phase consists of analgesic and anti-inflammatory drugs and physical rehabilitation. In the early stages of rehabilitation, strengthening exercises of adductors and abdominal muscles, such as postural exercises, have been suggested. In the sub-acute phase, muscular strength is targeted by overload training in the gym or aquatherapy; core stability exercises seem to be useful in this phase. Finally, specific sport actions are introduced by increasingly complex exercises along with a preventive program to limit pain recurrences. PMID:23738289

  4. Insertional tendinopathy of the adductors and rectus abdominis in athletes: a review

    PubMed Central

    Valent, Alessandro; Frizziero, Antonio; Bressan, Stefano; Zanella, Elena; Giannotti, Erika; Masiero, Stefano

    2012-01-01

    Summary Insertional tendinopathy of the adductors and rectus abdominis is common in male athletes, especially in soccer players. It may be worsened by physical activity and it usually limits sport performance. The management goal in the acute phase consists of analgesic and anti-inflammatory drugs and physical rehabilitation. In the early stages of rehabilitation, strengthening exercises of adductors and abdominal muscles, such as postural exercises, have been suggested. In the sub-acute phase, muscular strength is targeted by overload training in the gym or aquatherapy; core stability exercises seem to be useful in this phase. Finally, specific sport actions are introduced by increasingly complex exercises along with a preventive program to limit pain recurrences. PMID:23738289

  5. Selection of optimal muscle set for 16-channel standing neuroprosthesis

    PubMed Central

    Gartman, Steven J.; Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.

    2009-01-01

    The Case Western Reserve University/Department of Veterans Affairs 8-channel lower-limb neuroprosthesis can restore standing to selected individuals with paraplegia by application of functional electrical stimulation. The second generation of this system will include 16 channels of stimulation and a closed-loop control scheme to provide automatic postural corrections. This study used a musculoskeletal model of the legs and trunk to determine which muscles to target with the new system in order to maximize the range of postures that can be statically maintained, which should increase the system’s ability to provide adequate support to maintain standing when the user’s posture moves away from a neutral stance, either by an external disturbance or a volitional change in posture by the user. The results show that the prime muscle targets should be the medial gastrocnemius, tibialis anterior, vastus lateralis, semimembranosus, gluteus maximus, gluteus medius, adductor magnus, and erector spinae. This set of 16 muscles supports 42 percent of the standing postures that are attainable by the nondisabled model. Coactivation of the lateral gastrocnemius and peroneus longus with the medial gastrocnemius and of the peroneus tertius with the tibialis anterior increased the percentage of feasible postures to 71 percent. PMID:16847793

  6. Rectus abdominis muscle injuries in elite handball players: management and rehabilitation

    PubMed Central

    Balius, Ramon; Pedret, Carles; Pacheco, Laura; Gutierrez, Josep Antoni; Vives, Joan; Escoda, Jaume

    2011-01-01

    Muscle injuries generally occur in two-joint muscles with a high percentage of type II fibers during the performance of eccentric activity. Some muscle injuries, such as those located in the adductor longus, a monoarticular muscle, as well as rectus abdominis do not fully comply with these requirements. This study examines five cases of elite handball players with ruptured rectus abdominals. Sonographically, lesions in rectus abdominis are shown as a disruption of the fibrillar pattern with a hematic suffusion that invades the entire lesion. In some of the cases, the ultrasound study was complemented with a MRI. A unified rehabilitation protocol was applied and the return to play time of each handball player ranged between 16 and 22 days, with an average of 18.2 days. Follow-up at 15 months showed no evidence of re-injury or residual discomfort and all of them are playing at their highest level. The aim of this study was to illustrate a feature of handball injury that, as in tennis and volleyball, is uncommon and so far has not been specifically reported. The phenomenon of contralateral abdominal hypertrophy in handball appears in the dominant arm as in tennis and volleyball. PMID:24198573

  7. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 2; Quantitative Autoradiographic Analysis of Gaba (Benzodiazepine) and Muscarinic (Cholinergic) Receptors in the Forebrain of Rats Flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Wu, L.; Daunton, N. G.; Krasnov, I. B.; DAmelio, F.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    Quantitative autoradiographic analysis of receptors for GABA and acetylcholine in the forebrain of rats flown on COSMOS 2044 was undertaken as part of a joint US-Soviet study to determine the effects of microgravity on the central nervous system, and in particular on the sensory and motor portions of the forebrain. Changes in binding of these receptors in tissue from animals exposed to microgravity would provide evidence for possible changes in neural processing as a result of exposure to microgravity. Tritium-labelled diazepam and Quinuclidinyl-benzilate (QNB) were used to visualize GABA (benzodiazepine) and muscarinic (cholinergic) receptors, respectively. The density of tritium-labelled radioligands bound to various regions in the forebrain of both flight and control animals were measured from autoradiograms. Data from rats flown in space and from ground-based control animals that were not exposed to microgravity were compared.

  8. The influence of changes in trunk and pelvic posture during single leg standing on hip and thigh muscle activation in a pain free population

    PubMed Central

    2014-01-01

    Background Thigh muscle injuries commonly occur during single leg loading tasks and patterns of muscle activation are thought to contribute to these injuries. The influence trunk and pelvis posture has on hip and thigh muscle activation during single leg stance is unknown and was investigated in a pain free population to determine if changes in body posture result in consistent patterns of changes in muscle activation. Methods Hip and thigh muscle activation patterns were compared in 22 asymptomatic, male subjects (20–45 years old) in paired functionally relevant single leg standing test postures: Anterior vs. Posterior Trunk Sway; Anterior vs. Posterior Pelvic Rotation; Left vs. Right Trunk Shift; and Pelvic Drop vs. Raise. Surface EMG was collected from eight hip and thigh muscles calculating Root Mean Square. EMG was normalized to an “upright standing” reference posture. Repeated measures ANOVA was performed along with associated F tests to determine if there were significant differences in muscle activation between paired test postures. Results In right leg stance, Anterior Trunk Sway (compared to Posterior Sway) increased activity in posterior sagittal plane muscles, with a concurrent deactivation of anterior sagittal plane muscles (p: 0.016 - <0.001). Lateral hip abductor muscles increased activation during Left Trunk Shift (compared to Right) (p :≤ 0.001). Lateral Pelvic Drop (compared to Raise) decreased activity in hip abductors and increased hamstring, adductor longus and vastus lateralis activity (p: 0.037 - <0.001). Conclusion Changes in both trunk and pelvic posture during single leg stance generally resulted in large, predictable changes in hip and thigh muscle activation in asymptomatic young males. Changes in trunk position in the sagittal plane and pelvis position in the frontal plane had the greatest effect on muscle activation. Investigation of these activation patterns in clinical populations such as hip and thigh muscle injuries may

  9. The use of botulinum toxin in the treatment of adductor spasmodic dysphonia.

    PubMed Central

    Whurr, R; Lorch, M; Fontana, H; Brookes, G; Lees, A; Marsden, C D

    1993-01-01

    Botulinum toxin injections have been used to treat 31 patients with adductor spasmodic dysphonia. Injections of 3.00-3.75 units of botulinum toxin were performed bilaterally into the thyroarytenoid muscle. This treatment significantly decreased the standard deviation of the fundamental frequency of the speech sample, indicating a reduction in the variability of pitch amongst patients. A total of 96% of patients' subjective diary reports showed an improvement with a median of 7 days to peak effect and a 5 week duration of peak effect. Images PMID:8505645

  10. Elbow joint adductor moment arm as an indicator of forelimb posture in extinct quadrupedal tetrapods

    PubMed Central

    Fujiwara, Shin-ichi; Hutchinson, John R.

    2012-01-01

    Forelimb posture has been a controversial aspect of reconstructing locomotor behaviour in extinct quadrupedal tetrapods. This is partly owing to the qualitative and subjective nature of typical methods, which focus on bony articulations that are often ambiguous and unvalidated postural indicators. Here we outline a new, quantitatively based forelimb posture index that is applicable to a majority of extant tetrapods. By determining the degree of elbow joint adduction/abduction mobility in several tetrapods, the carpal flexor muscles were determined to also play a role as elbow adductors. Such adduction may play a major role during the stance phase in sprawling postures. This role is different from those of upright/sagittal and sloth-like creeping postures, which, respectively, depend more on elbow extensors and flexors. Our measurements of elbow muscle moment arms in 318 extant tetrapod skeletons (Lissamphibia, Synapsida and Reptilia: 33 major clades and 263 genera) revealed that sprawling, sagittal and creeping tetrapods, respectively, emphasize elbow adductor, extensor and flexor muscles. Furthermore, scansorial and non-scansorial taxa, respectively, emphasize flexors and extensors. Thus, forelimb postures of extinct tetrapods can be qualitatively classified based on our quantitative index. Using this method, we find that Triceratops (Ceratopsidae), Anhanguera (Pterosauria) and desmostylian mammals are categorized as upright/sagittally locomoting taxa. PMID:22357261

  11. Elbow joint adductor moment arm as an indicator of forelimb posture in extinct quadrupedal tetrapods.

    PubMed

    Fujiwara, Shin-ichi; Hutchinson, John R

    2012-07-01

    Forelimb posture has been a controversial aspect of reconstructing locomotor behaviour in extinct quadrupedal tetrapods. This is partly owing to the qualitative and subjective nature of typical methods, which focus on bony articulations that are often ambiguous and unvalidated postural indicators. Here we outline a new, quantitatively based forelimb posture index that is applicable to a majority of extant tetrapods. By determining the degree of elbow joint adduction/abduction mobility in several tetrapods, the carpal flexor muscles were determined to also play a role as elbow adductors. Such adduction may play a major role during the stance phase in sprawling postures. This role is different from those of upright/sagittal and sloth-like creeping postures, which, respectively, depend more on elbow extensors and flexors. Our measurements of elbow muscle moment arms in 318 extant tetrapod skeletons (Lissamphibia, Synapsida and Reptilia: 33 major clades and 263 genera) revealed that sprawling, sagittal and creeping tetrapods, respectively, emphasize elbow adductor, extensor and flexor muscles. Furthermore, scansorial and non-scansorial taxa, respectively, emphasize flexors and extensors. Thus, forelimb postures of extinct tetrapods can be qualitatively classified based on our quantitative index. Using this method, we find that Triceratops (Ceratopsidae), Anhanguera (Pterosauria) and desmostylian mammals are categorized as upright/sagittally locomoting taxa. PMID:22357261

  12. RESULTS OF ADDUCTORS MUSCLE TENOTOMY IN SPASTIC CEREBRAL PALSY

    PubMed Central

    Guglielmetti, Luiz Gabriel Betoni; Santos, Ruy Mesquita Maranhao; Mendonça, Rodrigo Góes Medea de; Yamada, Helder Henzo; Assumpçao, Rodrigo Montezuma César de; Fucs, Patricia Maria de Moraes Barros

    2015-01-01

    Objective: Radiographic evaluation of the evolution of hips that underwent soft-tissue release. Methods: This was a retrospective evaluation on 101 spastic cerebral palsy patients who underwent soft-tissue release between 1991 and 2006. Forty-four patients met the inclusion criteria: 23 boys and 21 girls; 34 diparetic and 10 quadriparetic. Functionally, 29 were non-walkers, five were able to walk at home and 10 were able to walk within the community. Reimers' index (RI) and the acetabular index (AI) were measured on pre and postoperative radiographs, with a minimum follow-up of three years. The mean age at the time of surgery was 6.4 years. Results: The results were considered good if the RI had reduced, or had increased by less than 10%. This was found in 52% of this study. We observed a clear improvement in IR, along with worse results in patients with more than five years of postoperative follow-up. Conclusion: Soft-tissue release should be performed as early as possible, regardless of age, walking condition, clinical type, RI, AI or sex, and as soon as the patient clinically presents less than 30° abduction, because of the benefits relating to walking, prevention and treatment of subluxation, hygiene and pain relief. PMID:27022574

  13. Palmaris Longus Muscle’s Prevalence in Different Nations and Interesting Anatomical Variations: Review of the Literature

    PubMed Central

    Ioannis, Dimitriou; Anastasios, Katsourakis; Konstantinos, Natsis; Lazaros, Kostretzis; Georgios, Noussios

    2015-01-01

    The prevalence of the palmaris longus (PL) muscle varies more than any other muscle in the human body. Its absence across the world ranges between 1.5% and 63.9%. It presents with many different anomalies, discovered either clinically, intraoperatively or after anatomical examination of cadavers. This paper includes recent studies and reports about the presence and variations of the PL muscle, thereby illustrating the differences between ethnic groups, as well as emphasizing the different ways of finding it, during daily clinical and surgical practice. PMID:26491493

  14. Partial thyroarytenoid myectomy: an animal study investigating a proposed new treatment for adductor spasmodic dysphonia.

    PubMed

    Genack, S H; Woo, P; Colton, R H; Goyette, D

    1993-03-01

    A new surgical procedure with potential application for the treatment of adductor spasmodic dysphonia was performed on ten rabbits to assess surgical effects on laryngeal function. Using an external approach, partial unilateral thyroarytenoid (TA) muscle excision was performed through a thyroplasty cartilage window. The contralateral side was left undisturbed as a control. The animals were studied acutely and at 3 months using videolaryngoscopy. Electrophysiologic measurements were recorded at 3 months. The procedure was well tolerated by all animals, with no postoperative infection or aspiration. At 3 months, spontaneous and evoked (recurrent laryngeal nerve stimulation) TA muscle electromyographic potentials were measurable bilaterally. TA compound muscle action potential amplitudes were reduced on the side of myectomy. The threshold of recurrent laryngeal nerve stimulation needed to produce observable vocal fold adduction was increased on the side operated on. Perioperative and long-term (3 months) videolaryngoscopy demonstrated preservation of laryngeal competence with good true vocal cord adduction. Histologic analysis with whole organ sections showed replacement of excised muscle with loose fibroareolar tissue. No evidence of muscle regeneration was observed. The vocal ligament and vocal fold mucosa were intact and undistorted in all specimens. This procedure is technically simple and appears to effectively result in a functional yet weakened TA muscle. Because myectomy includes motor unit end-plate excision, problems associated with reinnervation may be circumvented. TA myectomy may be applicable in patients with focal laryngeal dystonia to decrease muscle spasm. PMID:8464639

  15. Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles

    NASA Technical Reports Server (NTRS)

    Vijayan, K.; Thompson, J. L.; Norenberg, K. M.; Fitts, R. H.; Riley, D. A.

    2001-01-01

    Slow oxidative (SO) fibers of the adductor longus (AL) were predominantly damaged during voluntary reloading of hindlimb unloaded (HU) rats and appeared explainable by preferential SO fiber recruitment. The present study assessed damage after eliminating the variable of voluntary recruitment by tetanically activating all fibers in situ through the motor nerve while applying eccentric (lengthening) or isometric contractions. Muscles were aldehyde fixed and resin embedded, and semithin sections were cut. Sarcomere lesions were quantified in toluidine blue-stained sections. Fibers were typed in serial sections immunostained with antifast myosin and antitotal myosin (which highlights slow fibers). Both isometric and eccentric paradigms caused fatigue. Lesions occurred only in eccentrically contracted control and HU muscles. Fatigue did not cause lesions. HU increased damage because lesioned- fiber percentages within fiber types and lesion sizes were greater than control. Fast oxidative glycolytic (FOG) fibers were predominantly damaged. In no case did damaged SO fibers predominate. Thus, when FOG, SO, and hybrid fibers are actively lengthened in chronically unloaded muscle, FOG fibers are intrinsically more susceptible to damage than SO fibers. Damaged hybrid-fiber proportions ranged between these extremes.

  16. Variant course of extensor pollicis longus tendon in the second wrist extensor compartment.

    PubMed

    Kim, Young Jun; Lee, Jae Hoon; Baek, Jong Hun

    2016-05-01

    Among the muscles involved in thumb movement, the extensor pollicis longus (EPL) tendon of the hand is considered the most consistent structure with the least variation among individuals. There have been a few reports regarding different types of supernumerary tendons; however, an abnormal course of the EPL tendon is extremely rare. We describe a case of a variant course of a single EPL tendon appearing in the second extensor compartment of the wrist. This case was observed incidentally during wrist surgery, and demonstrates a unique variation of tendon course, which has not been reported previously. The knowledge of this anatomic variation is helpful in surgical planning and for making accurate diagnoses. PMID:26253859

  17. Neuronal Activation in the Medulla Oblongata during Selective Elicitation of the Laryngeal Adductor Response

    PubMed Central

    Ambalavanar, Ranjinidevi; Tanaka, Yasumasa; Selbie, W. Scott; Ludlow, Christy L.

    2008-01-01

    Swallow and cough are complex motor patterns elicited by rapid and intense electrical stimulation of the internal branch of the superior laryngeal nerve (ISLN). The laryngeal adductor response (LAR) includes only a laryngeal response, is elicited by single stimuli to the ISLN, and is thought to represent the brain stem pathway involved in laryngospasm. To identify which regions in the medulla are activated during elicitation of the LAR alone, single electrical stimuli were presented once every 2 s to the ISLN. Two groups of 5 cats each were studied; an experimental group with unilateral ISLN stimulation at 0.5 Hz and a surgical control group. Three additional cats were studied to evaluate whether other oral, pharyngeal or respiratory muscles were activated during ISLN stimulation eliciting LAR. We quantified up to 22 sections for each of 14 structures in the medulla to determine if regions had increased Fos-like immunoreactive neurons in the experimental group. Significant increases (p <0.0033) occurred with unilateral ISLN stimulation in the interstitial subnucleus, the ventrolateral subnucleus, the commissural subnucleus of the nucleus tractus solitarius, the lateral tegmental field of the reticular formation, the area postrema and the nucleus ambiguus. Neither the dorsal motor nucleus of the vagus, usually active for swallow, nor the nucleus retroambiguus, retrofacial nucleus, or the lateral reticular nucleus, usually active for cough, were active with elicitation of the laryngeal adductor response alone. The results demonstrate that the laryngeal adductor pathway is contained within the broader pathways for cough and swallow in the medulla. PMID:15212423

  18. Arthroscopic Synovectomy for Zone 2 Flexor Hallucis Longus Tenosynovitis.

    PubMed

    Lui, Tun Hing

    2015-10-01

    Tenosynovitis of the flexor hallucis longus tendon is a condition typically found in ballet dancers and sometimes in soccer players and is related to chronic overuse. It mostly involves the portion of the tendon behind the ankle joint. However, the portion of the tendon under the sustentaculum tali can also be involved. Open synovectomy requires extensive dissection. We report the technique of arthroscopic synovectomy of the deep portion of the flexor hallucis longus. PMID:26697294

  19. Arthroscopic Synovectomy for Zone 2 Flexor Hallucis Longus Tenosynovitis

    PubMed Central

    Lui, Tun Hing

    2015-01-01

    Tenosynovitis of the flexor hallucis longus tendon is a condition typically found in ballet dancers and sometimes in soccer players and is related to chronic overuse. It mostly involves the portion of the tendon behind the ankle joint. However, the portion of the tendon under the sustentaculum tali can also be involved. Open synovectomy requires extensive dissection. We report the technique of arthroscopic synovectomy of the deep portion of the flexor hallucis longus. PMID:26697294

  20. Ganglion Cyst Contiguity of the Flexor Hallusis Longus Tendon in a National Swimmer

    PubMed Central

    Çirci, Esra; Özyalvaç, Osman Nuri; Tüzüner, Tolga; Ermutlu, Cenk

    2014-01-01

    Objectives: Tendinopathy of the flexor hallusis longus tendon is common in the athletes. This case is intended to be reported diagnose and treatment ganglion cyst contiguity of the flexor hallucis longus tendon that located atypical region and adversely affect the athlete's training program. Methods: 25-year-old male national swimmer was assessed with a left ankle pain. He had an intensive training program in the pool using pallets at the everyday. Pain in the left ankle was localized posterior and distal of the medial malleolus . Ankle range of motion and muscle strength was full. Neurovascular examination was normal. Radiography with anterior posterior, lateral and oblique analysis was not any unusual finding. In the evaluation with magnetic resonance imaging, thickening of the tendon sheath and effusion around the flexor hallucis longus was revealed and tendon integrity was exact. Results: Conservative treatment was planned. It was applied non-steroidal anti-inflammatory medicine, modification of the training (without or low weight pallet), platelet rich plasma (two weeks, two times peer weeks). During the six-month follow-up the patient's symptoms improved, but with the increased intensity of training at follow-up complaints started again. Professional athletes who did not respond adequately to conservative treatment surgical exposure were planned. Patient is approached the flexor hallucis longus musculotendinous junction from the posteromedial ankle at the level of the posterior talar tubercles. During the tendon exposure cyst was found at the level of talocalcaneal joint. Excision of the cyst was achieved; its size was 5x5 mm, looking transparent, well defined and soft consistency. Tenolysis is accomplished from superior to inferior to the level of the superior calcaneus. A histopathologic examination result of the cyst consistent with ganglion cyst was detected. Sport-specific training program started at the 6 weeks. There was no recurrence during the 6

  1. The growth patterns of three hindlimb muscles in the chicken.

    PubMed Central

    Helmi, C; Cracraft, J

    1977-01-01

    This study was designed to investigate the growth patterns of three hindlimb muscles of the chicken relative to the functional-biomechanical demands of increasing body size. The biceps femoris, a bipennate non-postural muscle, grew relatively faster in terms of wet and dry weight than did the parallel-fibred adductor superficialis or the unipennate adductor profundus, both postural muscles. All three muscles exhibited positive allometry (relative to body weight) in muscle length but only biceps femoris and adductor profundus showed positive allometry in cross sectional area adductor superficialis having isometric growth in this parameter. In biceps femoris and adductor superficialis the lengths of the longest and shortest fasciculi grew at equal rates, whereas in adductor profundus the shortest fasciculi grew faster than the longest. We conclude that muscle weight alone is an insufficient indicator of changing function in growing muscle. Hence, growth studies should include other functionally relevant parameters such as cross sectional area, which is proportional to the force-producing capabilities of the muscle, or fibre (fasciculus) length, which is indicative of the absolute amount of stretching or shortening that is possible and of the contraction velocity. PMID:885779

  2. Vocal aging and adductor spasmodic dysphonia: Response to botulinum toxin injection

    PubMed Central

    Cannito, Michael P; Kahane, Joel C; Chorna, Lesya

    2008-01-01

    Aging of the larynx is characterized by involutional changes which alter its biomechanical and neural properties and create a biological environment that is different from younger counterparts. Illustrative anatomical examples are presented. This natural, non-disease process appears to set conditions which may influence the effectiveness of botulinum toxin injection and our expectations for its success. Adductor spasmodic dysphonia, a type of laryngeal dystonia, is typically treated using botulinum toxin injections of the vocal folds in order to suppress adductory muscle spasms which are disruptive to production of speech and voice. A few studies have suggested diminished response to treatment in older patients with adductor spasmodic dysphonia. This retrospective study provides a reanalysis of existing pre-to-post treatment data as function of age. Perceptual judgments of speech produced by 42 patients with ADSD were made by two panels of professional listeners with expertise in voice or fluency of speech. Results demonstrate a markedly reduced positive response to botulinum toxin treatment in the older patients. Perceptual findings are further elucidated by means of acoustic spectrography. Literature on vocal aging is reviewed to provide a specific set of biological mechanisms that best account for the observed interaction of botulinum toxin treatment with advancing age. PMID:18488884

  3. The Results of Adductor Magnus Tenodesis in Adolescents with Recurrent Patellar Dislocation

    PubMed Central

    Malecki, Krzysztof; Fabis, Jaroslaw; Flont, Pawel; Niedzielski, Kryspin Ryszard

    2015-01-01

    Recurrent dislocation of the patella is a common orthopaedic problem which occurs in about 44% of cases after first-time dislocation. In most cases of first-time patellar dislocation, the medial patellofemoral ligament (MPFL) becomes damaged. Between 2010 and 2012, 33 children and adolescents (39 knees) with recurrent patellar dislocation were treated with MPFL reconstruction using the adductor magnus tendon. The aim of our study is to assess the effectiveness of this surgical procedure. The outcomes were evaluated functionally (Lysholm knee scale, the Kujala Anterior Knee Pain Scale, and isokinetic examination) and radiographically (Caton index, sulcus angle, congruence angle, and patellofemoral angle). Four patients demonstrated redislocation with MPFL graft failure, despite the fact that patellar tracking was found to be normal before the injury, and the patients had not reported any symptoms. Statistically significant improvements in Lysholm and Kujala scales, in patellofemoral and congruence angle, were seen (P < 0.001). A statistically significant improvement in the peak torque of the quadriceps muscle and flexor was observed for 60°/sec and 180°/sec angular velocities (P = 0.01). Our results confirm the efficacy of MPFL reconstruction using the adductor magnus tendon in children and adolescents with recurrent patellar dislocation. PMID:25785271

  4. Versatile but Temperamental: A Morphological Study of Palmaris Longus in the Cadaver

    PubMed Central

    Sukumaran, Tintu Thottiyil; Joseph, Susan

    2015-01-01

    Introduction: Palmaris longus (PL) is one of the most variable muscles in our body and is vestigial functionally. Its long tendon and its superficial location make it an ideal source for tendon harvesting. Variations such as absence, duplication and reversal have far reaching clinical impact. The aim of this study is to estimate the presence, variants and nerve supply of the PL. Materials and Methods: Upper extremity of 24 cadavers was dissected and PL was examined. The results were compared to other studies on the PL and literature survey was carried out. Results: Thirty nine specimens showed normal morphology and four showed complete agenesis. Other morphological variations seen included - reversed, hybrid, fusiform, fleshy and bifurcated tendon of insertion. Conclusion: Every surgeon must be aware of the variations of the versatile but temperamental PL. Prior knowledge of the layout of the muscle helps in planning intricate surgeries to which this tendon is put use to. PMID:25859436

  5. Neuroanatomy and clinical analysis of the cervical sympathetic trunk and longus colli

    PubMed Central

    Yin, Zhaoyang; Yin, Jian; Cai, Jun; Sui, Tao; Cao, Xiaojian

    2015-01-01

    Abstract Anterior cervical surgery is commonly used for cervical vertebral body lesions. However, the structure of blood vessels and nerve tissues along the route of anterior cervical surgery is complex. We aimed to measure the data of the longus colli, the sympathetic trunk and the cervical sympathetic trunk (CST) ganglia in Chinese cadaver specimens. A total of 32 adult cadavers were studied. We delineated the surgical anatomy of the CST. The superior and inferior/cervicothoracic ganglia of the sympathetic trunk consistently appeared. The middle ganglion was observed in 28.1% of the specimens and there were 2 cases of unilateral double middle cervical ganglia. The inferior ganglion was observed in 25.0% of the specimens and the cervicothoracic ganglion was observed in the remaining specimens. The distance between the CST gradually decreased from the top to the bottom, and the distance between the medial edges of the longus colli gradually broadened from the top down. The average angle between the bilateral CST and the midline of the vertebra was 11.2°±1.8° on the left side and 10.3°±1.4° on the right side. The average angle between the medial margins of longus colli of both sides was 11.1°±1.9°. The CST is at high risk when LC muscle is cut transversely or is dragged heavily, especially at the levels of C6 and C7. Awareness of the regional anatomy of the CST could help surgeons to identify and preserve it during anterior cervical surgeries. PMID:26668584

  6. Neuroanatomy and clinical analysis of the cervical sympathetic trunk and longus colli.

    PubMed

    Yin, Zhaoyang; Yin, Jian; Cai, Jun; Sui, Tao; Cao, Xiaojian

    2015-11-01

    Anterior cervical surgery is commonly used for cervical vertebral body lesions. However, the structure of blood vessels and nerve tissues along the route of anterior cervical surgery is complex. We aimed to measure the data of the longus colli, the sympathetic trunk and the cervical sympathetic trunk (CST) ganglia in Chinese cadaver specimens. A total of 32 adult cadavers were studied. We delineated the surgical anatomy of the CST. The superior and inferior/cervicothoracic ganglia of the sympathetic trunk consistently appeared. The middle ganglion was observed in 28.1% of the specimens and there were 2 cases of unilateral double middle cervical ganglia. The inferior ganglion was observed in 25.0% of the specimens and the cervicothoracic ganglion was observed in the remaining specimens. The distance between the CST gradually decreased from the top to the bottom, and the distance between the medial edges of the longus colli gradually broadened from the top down. The average angle between the bilateral CST and the midline of the vertebra was 11.2°±1.8° on the left side and 10.3°±1.4° on the right side. The average angle between the medial margins of longus colli of both sides was 11.1°±1.9°. The CST is at high risk when LC muscle is cut transversely or is dragged heavily, especially at the levels of C6 and C7. Awareness of the regional anatomy of the CST could help surgeons to identify and preserve it during anterior cervical surgeries. PMID:26668584

  7. Late-onset myopathy of the posterior calf muscles mimicking Miyoshi myopathy unrelated to dysferlin mutation: a case report

    PubMed Central

    2012-01-01

    Introduction Miyoshi myopathy, a type of distal myopathy with predominant involvement of the posterior calf muscles, has been assigned to mutations in the dysferlin gene. However, many of the late-onset limb-girdle and distal myopathies that resemble dysferlinopathy or Miyoshi myopathy remain unclassified, even after extensive immunohistological and genetic analysis. Case presentation We report the case of a 59-year-old Caucasian man with distal myopathy and exercise-induced myalgia, preferentially of the leg muscles, closely resembling the Miyoshi phenotype. Magnetic resonance imaging of his calf muscles showed typical fatty replacement of the medial heads of the gastrocnemius muscles and soleus muscles, with progression to the adductor longus muscles over a time course of two years. However, genetic analysis revealed that the phenotype of our patient was not related to a mutation in the dysferlin gene but to a novel homozygous splice mutation in the anoctamin 5 gene. Mutations in the anoctamin 5 gene have so far been identified only in some cases of limb-girdle and distal myopathy. Mutations in the anoctamin 5 gene have been assigned to limb-girdle muscular dystrophy type 2L, while distal Miyoshi-like phenotypes have been classified as Miyoshi myopathy type 3. Conclusion The case presented in this report further strengthens the underlying genetic heterogeneity in Miyoshi myopathy-like phenotypes and adds another family to non-dysferlin, Miyoshi myopathy type 3 of late-onset. Furthermore, our case supports the recent observation that anoctamin 5 mutations are a primary cause of distal non-dysferlin myopathies. Therefore, given the increasing number of anoctamin 5 mutations in Miyoshi-like phenotypes, genetic analysis should include an anoctamin 5 screen in late-onset limb-girdle and distal myopathies. PMID:23050857

  8. Use of adjunctive palmaris longus abductorplasty (Camitz) tendon transfer in pediatric median nerve injury.

    PubMed

    Baluch, Narges; Borschel, Gregory H

    2013-05-01

    A number of tendon transfers have been described for opponensplasty. Transfer of the palmaris longus (PL) tendon with a palmar fascial extension was initially described by Camitz. This technique has mostly been combined with carpal tunnel release in patients with long standing median neuropathy with atrophy of the thenar muscles. However, the Camitz transfer has not been previously described in the setting of pediatric median nerve injury. We report 4 cases of Camitz transfer in pediatric patients with median nerve injuries. Four children (all female; age range 3-15 yrs) underwent PL tendon transfer following median nerve injury. The causes of injury included trauma, iatrogenic injury, and neuritis of the brachial plexus. The Camitz procedure was performed at the time of median nerve decompression and/or reconstruction. All patients had excellent early return of function. Transfer of the palmaris longus tendon reliably restores palmar abduction, with minimal to no additional morbidity, in carefully selected pediatric patients with median nerve injury undergoing release of the carpal tunnel. PMID:22981385

  9. Effects of microgravity on muscle and cerebral cortex: a suggested interaction

    NASA Astrophysics Data System (ADS)

    D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.; Corcoran, M. L.

    The ``slow'' antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension (``simulated'' microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.

  10. Treatment of Progressive First Metatarsophalangeal Hallux Valgus Deformity: A Biomechanically Based Muscle-Strengthening Approach.

    PubMed

    Glasoe, Ward M

    2016-07-01

    Synopsis Hallux valgus is a progressive deformity of the first metatarsophalangeal joint that changes the anatomy and biomechanics of the foot. To date, surgery is the only treatment to correct this deformity, though the recurrence rate is as high as 15%. This clinical commentary provides instruction in a strengthening approach for treatment of hallux valgus deformity, by addressing the moment actions of 5 muscles identified as having the ability to counter the hallux valgus process. Unlike surgery, muscle strengthening does not correct the deformity, but, instead, reduces the pain and associated gait impairments that affect the mobility of people who live with the disorder. This review is organized in 4 parts. Part 1 defines the terms of foot motion and posture. Part 2 details the anatomy and biomechanics, and describes how the foot is changed with deformity. Part 3 details the muscles targeted for strengthening; the intrinsics being the abductor hallucis, adductor hallucis, and the flexor hallucis brevis; the extrinsics being the tibialis posterior and fibularis longus. Part 4 instructs the exercise and reviews the related literature. Instructions are given for the short-foot, the toe-spread-out, and the heel-raise exercises. The routine may be performed by almost anyone at home and may be adopted into physical therapist practice, with intent to strengthen the foot muscles as an adjunct to almost any protocol of care, but especially for the treatment of hallux valgus deformity. J Orthop Sports Phys Ther 2016;46(7):596-605. Epub 6 Jun 2016. doi:10.2519/jospt.2016.6704. PMID:27266887

  11. Parrotfish grazing ability: interspecific differences in relation to jaw-lever mechanics and relative weight of adductor mandibulae on an Okinawan coral reef

    PubMed Central

    2016-01-01

    Parrotfishes (family Labridae: Scarini) are regarded to have important roles for maintaining the ecosystem balance in coral reefs due to their removal of organic matter and calcic substrates by grazing. The purpose of the present study was to clarify the interspecific differences in grazing ability of five parrotfish species (Chlorurus sordidus, C. bowersi, Scarus rivulatus, S. niger and S. forsteni) in relation to interspecific differences in jaw-lever mechanics and the relative weight of the adductor mandibulae (muscles operating jaw closing). The grazing ability was calculated by using stomach contents (CaCO3 weight/organic matter weight) defined as the grazing ability index (GAI). There were significant interspecific differences in GAI (C. sordidus = C. bowersi > S. rivulatus > S. niger = S. forsteni). Teeth of C. sordidus and C. bowersi were protrusive-shape whereas teeth of S. rivulatus, S. niger and S. forsteni were flat-shape. C. sordidus and C. bowersihave jaw-lever mechanics producing a greater biting force and have a larger weight of adductor mandibulae. S. rivulatus has jaw-lever mechanics producing a greater biting force but a smaller weight of adductor mandibulae that produce an intermediate biting force. In contrast, S. niger and S. forsteni have jaw-lever mechanics producing a lesser biting force and have a smaller weight of adductor mandibulae. Feeding rates and foray size of S. rivulatus, S. niger and S. forsteni were greater than C. sordidus and C. bowersi. The degree in bioerosion (GAI × feeding rate) was the largest for S. rivulatusand the smallest for S. forsteni. The degree in bioerosion for C. sordidus was larger than S. niger whereas relatively equal between C. bowersi and S. niger. These results suggest that interspecific difference in GAI was explained by interspecific differences in teeth shape, jaw-lever mechanics and relative weight of adductor mandibulae. The interspecific difference in the degree of bioerosion suggests the

  12. Comparison of lower limb muscle activation with ballet movements (releve and demi-plie) and general movements (heel rise and squat) in healthy adults

    PubMed Central

    Kim, Min-Ju; Kim, Joong-Hwi

    2016-01-01

    [Purpose] The aim of this study was to demonstrate therapeutic grounds for rehabilitation exercise approach by comparing and analyzing muscular activities of Ballet movements: the releve movement (RM) and the demi-plie movement (DM). [Methods] Four types of movements such as RM vs. heel rise (HM) and DM vs. squat movement (SM) were randomized and applied in 30 healthy male and female individuals while measuring 10-s lower limb muscular activities (gluteus maximus [GMa], gluteus medius [GMe], rectus femoris [RF], adductor longus [AL], medial gastrocnemius [MG], and lateral gastrocnemius [LG]) by using surface electromyography (EMG). [Results] Significant differences were found in GMa, GMe, AL and MG activities for DM and in all of the six muscles for RM, in particular when the two groups were compared (RM vs HM and DM vs SM). [Conclusion] The RM and DM have a greater effect on lower limb muscular force activities compared to HM and SM and could be recommended as clinical therapeutic exercises for lower limb muscle enhancement. PMID:26957762

  13. Comparison of lower limb muscle activation with ballet movements (releve and demi-plie) and general movements (heel rise and squat) in healthy adults.

    PubMed

    Kim, Min-Ju; Kim, Joong-Hwi

    2016-01-01

    [Purpose] The aim of this study was to demonstrate therapeutic grounds for rehabilitation exercise approach by comparing and analyzing muscular activities of Ballet movements: the releve movement (RM) and the demi-plie movement (DM). [Methods] Four types of movements such as RM vs. heel rise (HM) and DM vs. squat movement (SM) were randomized and applied in 30 healthy male and female individuals while measuring 10-s lower limb muscular activities (gluteus maximus [GMa], gluteus medius [GMe], rectus femoris [RF], adductor longus [AL], medial gastrocnemius [MG], and lateral gastrocnemius [LG]) by using surface electromyography (EMG). [Results] Significant differences were found in GMa, GMe, AL and MG activities for DM and in all of the six muscles for RM, in particular when the two groups were compared (RM vs HM and DM vs SM). [Conclusion] The RM and DM have a greater effect on lower limb muscular force activities compared to HM and SM and could be recommended as clinical therapeutic exercises for lower limb muscle enhancement. PMID:26957762

  14. “Target” and “Sandwich” Signs in Thigh Muscles have High Diagnostic Values for Collagen VI-related Myopathies

    PubMed Central

    Fu, Jun; Zheng, Yi-Ming; Jin, Su-Qin; Yi, Jun-Fei; Liu, Xiu-Juan; Lyn, He; Wang, Zhao-Xia; Zhang, Wei; Xiao, Jiang-Xi; Yuan, Yun

    2016-01-01

    Background: Collagen VI-related myopathies are autosomal dominant and recessive hereditary myopathies, mainly including Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM). Muscle magnetic resonance imaging (MRI) has been widely used to diagnosis muscular disorders. The purpose of this study was to evaluate the diagnostic value of thigh muscles MRI for collagen VI-related myopathies. Methods: Eleven patients with collagen VI gene mutation-related myopathies were enrolled in this study. MRI of the thigh muscles was performed in all patients with collagen VI gene mutation-related myopathies and in 361 patients with other neuromuscular disorders (disease controls). T1-weighted images were used to assess fatty infiltration of the muscles using a modified Mercuri's scale. We assessed the sensitivity and specificity of the MRI features of collagen VI-related myopathies. The relationship between fatty infiltration of muscles and specific collagen VI gene mutations was also investigated. Results: Eleven patients with collagen VI gene mutation-related myopathies included six UCMD patients and five BM patients. There was no significant difference between UCMD and BM patients in the fatty infiltration of each thigh muscle except sartorius (P = 0.033); therefore, we combined the UCMD and BM data. Mean fatty infiltration scores were 3.1 and 3.0 in adductor magnus and gluteus maximus, while the scores were 1.3, 1.3, and 1.5 in gracilis, adductor longus, and sartorius, respectively. A “target” sign in rectus femoris (RF) was present in seven cases, and a “sandwich” sign in vastus lateralis (VL) was present in ten cases. The “target” and “sandwich” signs had sensitivities of 63.6% and 90.9% and specificities of 97.3% and 96.9% for the diagnosis of collagen VI-related myopathies, respectively. Fatty infiltration scores were 2.0–3.0 in seven patients with mutations in the triple-helical domain, and 1.0–1.5 in three of four patients with

  15. Scapholunate stabilization with dynamic extensor carpi radialis longus tendon transfer.

    PubMed

    Peterson, Steven L; Freeland, Alan E

    2010-12-01

    Dynamic extensor carpi radialis longus tendon transfer to the distal pole of the scaphoid acts synchronously and synergistically with wrist motion to restore the slider crank mechanism of the scaphoid after scapholunate interosseous ligament (SLIL) injury. The procedure is designed to simulate a hypothetical dorsal radioscaphoid ligament that more closely approximates the normal viscoelastic forces acting on the scaphoid throughout all phases of wrist motion than does the static checkrein effect and motion limitations of capsulodesis or tenodesis. Extensor carpi radialis longus transfer may be independently sufficient to support normal or near-normal scapholunate and midcarpal kinematics and prevent further injury propagation in patients with partial SLIL tears and dynamic scapholunate instability. Extensor carpi radialis longus transfer alone may improve carpal congruity in patients with static scapholunate instability, but SLIL and dorsal lunate ligament repair or reconstruction is essential for favorable durable outcomes. Extensor carpi radialis longus transfer offers a simple and reasonable alternative to capsulodesis or tenodesis to support these ligament repairs or reconstructions, does not require intercarpal fixation, and allows rehabilitation to proceed expeditiously at approximately 1 month after surgery. PMID:21134618

  16. Interfascial Spread of Injectate After Adductor Canal Injection in Fresh Human Cadavers.

    PubMed

    Goffin, Pierre; Lecoq, Jean-Pierre; Ninane, Vincent; Brichant, Jean Francois; Sala-Blanch, Xavi; Gautier, Philippe E; Bonnet, Pierre; Carlier, Alain; Hadzic, Admir

    2016-08-01

    The adductor canal block has become a common analgesic technique in patients undergoing knee arthroplasty. Dispersion of local anesthetic outside the adductor canal through interfascial layers and blockade of smaller nerves that confer innervation to the knee could contribute to the analgesic efficacy of the adductor canal block. We studied the diffusion of local anesthetic mixed with dye after injection into the adductor canal in fresh human cadavers. In all 8 legs, injectate was found in the popliteal fossa in contact with the sciatic nerve and/or popliteal blood vessels. Interfascial spread patterns were identified. PMID:27442773

  17. Differential regulation of the expression of lipid metabolism-related genes with skeletal muscle type in growing chickens.

    PubMed

    Saneyasu, Takaoki; Kimura, Sayaka; Kitashiro, Ayana; Tsuchii, Nami; Tsuchihashi, Tatsuya; Inui, Mariko; Honda, Kazuhisa; Kamisoyama, Hiroshi

    2015-11-01

    The regulatory mechanisms of carbohydrate and lipid metabolism are known to differ among skeletal muscle types in mammals. For example, glycolytic muscles prefer glucose as an energy source, whereas oxidative muscles prefer fatty acids (FA). We herein demonstrated differences in the expression of genes involved in carbohydrate and lipid metabolism in the pectoralis major (a glycolytic twitch muscle), adductor superficialis (an oxidative twitch muscle), and adductor profound (a tonic muscle) of 14-day-old chicks. Under ad libitum feeding conditions, the mRNA levels of muscle type phosphofructokinase-1 were markedly lower in the adductor superficialis muscle, suggesting that basal glycolytic activity is very low in this type of muscle. In contrast, high mRNA levels of lipoprotein lipase (LPL) and fatty acid translocase/cluster of differentiation 36 (FAT/CD36) in the adductor superficialis muscle suggest that FA uptake is high in this type of muscle. The mRNA levels of adipose triglyceride lipase (ATGL) and carnitine palmitoyltransferase 1b (CPT1b) were significantly higher in the adductor profound muscle than in other muscles, suggesting that basal lipolytic activity is high in this type of muscle. Furthermore, the mRNA levels of peroxisome proliferator activated receptor δ and CPT1b were significantly increased in the adductor superficialis muscle, but not in other muscles, after 24h of fasting. Therefore, the availability of FA in the oxidative twitch muscles in growing chickens appears to be upregulated by fasting. Our results suggest that lipid metabolism-related genes are upregulated under both basal and fasting conditions in the adductor superficialis in growing chickens. PMID:26188321

  18. Allograft reconstruction of peroneus longus and brevis tendons tears arising from a single muscular belly. Case report and surgical technique.

    PubMed

    Pellegrini, Manuel J; Adams, Samuel B; Parekh, Selene G

    2015-03-01

    Anatomic variants of the peroneal tendons may cause tendon disorders. Moreover, there is a lack of evidence on how to address chronic tendon pathology when a variant of the peroneal tendons is causing the patient's symptoms. We present a patient with an uncommon peroneal muscle presentation: a single muscular belly dividing into both the peroneus longus and brevis tendons. After extensive debridement of tendinopathic tissue, primary repair or tenodesis was not possible; therefore a unique solution for this problem was performed, reconstructing both peroneal tendons using a semitendinosus allograft. PMID:25682415

  19. Effects of aging and levodopa on the laryngeal adductor reflex in rats

    PubMed Central

    Feng, Xin; Xu, Zengrui; Butler, Susan G.; Leng, Iris; Zhang, Tan; Kritchevsky, Stephen B.

    2016-01-01

    Dopaminergic neurotransmission plays an essential role in sensorimotor function, and declines with age. Previously, we found the laryngeal adductor reflex (LAR) was increased in excitation by a dopamine receptor antagonist. If this airway-protective reflex is similarly affected by aging, it will interfere with volitional control in older adults. The current study tested whether the LAR was affected by aging, and whether such deficits were reversed by levodopa administration in aging rats. We recorded thyroarytenoid (TA) muscle activity at rest and during elicitation of LAR responses by stimulation of the internal branch of the superior laryngeal nerve (iSLN) in 6-, 18- and 30-month-old rats under alpha-chloralose anesthesia. Using paired stimuli at different inter-stimulus intervals (ISIs), LAR central conditioning, resting muscle activity, and reflex latency and amplitudes were quantified. Numbers of dopaminergic neurons in the substantia nigra pars compacta (SNpc) were measured using tyrosine hydroxylase staining. We found: (1) increased resting TA muscle activity and LAR amplitude occurred with fewer dopaminergic neurons in the SNpc in 18- and 30-month-old rats; (2) decreases in LAR latency and increases in amplitude correlated with reduced numbers of dopaminergic neurons in the SNpc; (3) test responses were greater at 1000 ms ISI in 18-month-old rats compared with 6-month-old rats; and (4) levodopa administration further increased response latency but did not alter muscle activity, response amplitude, or central conditioning. In conclusion, increases in laryngeal muscle activity levels and re-flex amplitudes accompanied age reductions in dopaminergic neurons but were not reversed with levodopa administration. PMID:22824541

  20. Deep peroneal nerve palsy with isolated lateral compartment syndrome secondary to peroneus longus tear: a report of two cases and a review of the literature.

    PubMed

    Hiramatsu, Kunihiko; Yonetani, Yasukazu; Kinugasa, Kazutaka; Nakamura, Norimasa; Yamamoto, Koji; Yoshikawa, Hideki; Hamada, Masayuki

    2016-06-01

    Drop foot is typically caused by neurologic disease such as lumbar disc herniation, but we report two rare cases of deep peroneal nerve palsy with isolated lateral compartment syndrome secondary to peroneus longus tears. Both patients developed mild pain in the lower legs while playing sport, and were aware of drop foot. As compartment pressures were elevated, fasciotomy was performed immediately, and the tendon of the peroneus longus was completely detached from its proximal origin. The patients were able to return their original sports after 3 months, and clinical examination revealed no hypesthesia or muscle weakness in the deep peroneal nerve area at the time of last follow-up. The common peroneal nerve pierced the deep fascia and lay over the fibular neck, which formed the floor of a short tunnel (the so-called fibular tunnel), then passed the lateral compartment just behind the peroneus longus. The characteristic anatomical situation between the fibular tunnel and peroneus longus might have caused deep peroneal nerve palsy in these two cases after hematoma adjacent to the fibular tunnel increased lateral compartment pressure. PMID:26362782

  1. Reduction-oxidation state and protein degradation in skeletal muscle of fasted and refed rats

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1986-01-01

    Redox state and protein degradation were measured in isolated muscles of fasted (up to 10 d) and refed (up to 4 d) 7- to 14-wk-old rats. Protein degradation in the extensor digitorum longus muscle, but not in the soleus muscle, was greater in the fasted rats than in weight-matched muscle from fed rats. The NAD couple was more oxidized in incubated and fresh extensor digitorum longus muscles and in some incubated soleus muscles of fasted rats than in weight-matched muscle from fed rats. In the extensor digitorum longus muscle of refed or prolonged fasted rats, protein degradation was slower and the NAD couple was more reduced than in the fed state. Therefore, oxidation of the NAD couple was associated with increased muscle breakdown during fasting, whereas reduction of the NAD couple was associated with muscle conservation and deposition.

  2. Spring ligament reconstruction using the autogenous flexor hallucis longus tendon.

    PubMed

    Lee, Woo-Chun; Yi, Young

    2014-07-01

    The calcaneonavicular (spring) ligament complex is the soft tissue most often seen to fail in flatfoot pathology and is associated with deformity of the talonavicular joint. The spring ligament complex supports the talar head, preventing it from displacing into excessive plantar flexion/adduction. An anatomical reconstruction of the spring ligament should replicate this function. A new method of spring ligament reconstruction using autogenous flexor hallucis longus tendon transfer is reported. PMID:24992052

  3. Flexor Digitorum Accessorius Longus: Importance of Posterior Ankle Endoscopy

    PubMed Central

    Batista, Jorge Pablo; del Vecchio, Jorge Javier; Golanó, Pau; Vega, Jordi

    2015-01-01

    Endoscopy for the posterior region of the ankle through two portals is becoming more widespread for the treatment of a large number of conditions which used to be treated with open surgery years ago. The tendon of the flexor hallucis longus (FHL) travels along an osteofibrous tunnel between the posterolateral and posteromedial tubercles of the talus. Chronic inflammation of this tendon may lead to painful stenosing tenosynovitis. The aim of this report is to describe two cases depicting an accessory tendon which is an anatomical variation of the flexor hallucis longus in patients with posterior friction syndrome due to posterior ankle impingement and associated with a posteromedial osteochondral lesion of the talus. The anatomical variation (FDAL) described was a finding during an endoscopy of the posterior region of the ankle, and we have spared it by sectioning the superior flexor retinaculum only. The accessory flexor digitorum longus is an anatomical variation and should be taken into account when performing an arthroscopy of the posterior region of the ankle. We recommend this treatment on this type of injury although we admit this does not make a definite conclusion. PMID:26060592

  4. Wound Complications Following Resection of Adductor Compartment Tumours

    PubMed Central

    Grimer, Robert J.; Carter, Simon R.; Tillman, Roger M.

    2001-01-01

    Purpose Limb salvage surgery of soft tissue sarcomas is associated with both a risk of local recurrence and wound complications. Although the lower limb appears to be at greater risk of wound-related morbidity, few studies separate anatomical compartments. We believe that the adductor compartment of the thigh has a particularly high rate of complications and so performed a retrospective analysis of all soft tissue sarcomas arising in this region undergoing limb salvage. Patients Patients with intermediate and high grade adductor compartment tumours were identified from our database and the case notes were reviewed for patient, tumour, surgical and wound variables, identifying those with wound complications both before and after discharge. Results Of 49 patients who underwent limb salvage surgery, 22 (42.9%) developed complications. Twelve patients (24.5%) required further surgery prior to wound healing and 10 patients had delays in post-operative radiotherapy. There were significant differences in the rates of preceding surgery, open biopsy performed at other centres and previous radiotherapy to this region between the complicated and uncomplicated groups. Discussion The management of these difficult tumours carries a high rate of wound complications and requires careful planning prior to tissue biopsy. Open biopsies should be performed by the tumour surgeon to allow easy inclusion of this site in the definitive procedure. In previously irradiated or operated limbs, alternative strategies for wound management may need to be considered. PMID:18521315

  5. Scallops show that muscle metabolic capacities reflect locomotor style and morphology.

    PubMed

    Tremblay, Isabelle; Guderley, Helga E

    2014-01-01

    Although all scallops swim using their adductor muscle to close their valves, scallop species differ considerably in how they use their muscle during escape responses, in parallel with the striking interspecific differences in shell morphology. This provides an excellent opportunity to study links between muscle metabolic capacities and animal performance. We found that the capacity for anaerobic glycolysis and aerobic metabolism, as well as phosphoarginine levels in the phasic adductor muscle, differ with escape response strategy. Phosphoarginine contents were high in species that rely on phasic contractions (Amusium balloti, Placopecten magellanicus, and Pecten fumatus). Arginine kinase activities reflect reliance on rapid initial bursts of phasic contractions. Scallops that maintain their valves in a closed position for prolonged periods (P. fumatus, Mimachlamys asperrima, and Crassadoma gigantea) have high activities of enzymes of anaerobic glycolysis in their phasic adductor muscle. Myosin ATPase activity was lower in the nonswimming scallop, C. gigantea, than in swimming scallops. The different patterns and roles of swimming are reflected in interspecific differences in the biochemical attributes of the phasic adductor muscle. These patterns suggest coevolution of muscle metabolic capacities, patterns of adductor muscle use, and shell morphology in scallops. PMID:24642541

  6. Anomalous course of the extensor pollicis longus: clinical relevance.

    PubMed

    Rubin, Guy; Wolovelsky, Alejandro; Rinott, Micha; Rozen, Nimrod

    2011-11-01

    The extensor pollicis longus (EPL) is a consistent structure with rare anomalies, the most common being a group of different tendon duplications passing through the fourth compartment without symptoms. The second form comprises anomalies in the course of the EPL having significant clinical importance due to the predisposition for creating tenosynovitis of the EPL mimicking other types of tendon tenosynovitis. Clinical symptoms of radial dorsal wrist pain mimicking intersection syndrome or de-Quervain disease with the "absent snuff box" sign should raise suspicions for an anomaly in the course of the EPL. PMID:21407056

  7. Current concepts of inguinal-related and adductor-related groin pain.

    PubMed

    Dimitrakopoulou, Alexandra; Schilders, Ernest

    2016-05-14

    Groin pain encompasses a number of conditions from the lower abdomen, inguinal region, proximal adductors, hip joint, upper anterior thigh and perineum. The complexity of the anatomy, the heterogeneous terminology and the overlapping symptoms of different conditions that may co-exist epitomise the challenges in diagnosis and treatment. Inguinal-related and adductor-related pain is the most common cause of groin pain and will be discussed in this article. PMID:27174069

  8. Comparative histochemical composition of muscle fibres in a pre- and a postvertebral muscle of the cervical spine

    PubMed Central

    BOYD-CLARK, L. C.; BRIGGS, C. A.; GALEA, M. P.

    2001-01-01

    References to histochemistry are extensive for human limb muscles but occur less frequently in relation to vertebral muscle. Most vertebral muscle literature has been concerned with muscle fibre characteristics in the lumbar and thoracic spine, due in large part to the incidence of low back pain and idiopathic scoliosis. However few studies have investigated the histochemical composition of neck muscles in humans: and, to our knowledge, no previous study has examined the antagonistic longus colli and multifidus muscle pair. In addition, while age-related segmental degeneration is most prominent between C5 and C7, it is not known whether these osteoligamentous changes are paralleled by changes in muscle fibre ratio. Tissue blocks comprising muscle and bone from C5–C7 segments were harvested at autopsy from 16 subjects with ages ranging from 4 to 77 years. The prevertebral longus colli and postvertebral multifidus muscle pairs were randomly selected from one or other side in each subject. The tissue was frozen, sectioned and histochemically stained for myofibrillar adenosine triphosphatase. Analysis of muscle fibre types was performed by light microscopy. Wilcoxon paired t-tests were used to ascertain whether intramuscular and intermuscular differences in fibre composition were significant. In addition, correlation and regression analyses were used to determine whether fibre type proportions changed in either muscle with increasing age. The present study has revealed histochemical differences between longus colli and multifidus at the level of the C5–C7 vertebral segments. Multifidus comprises a significantly greater proportion of type I than type II fibres. Longus colli comprises a significantly greater proportion of type II fibres than multifidus. Further there were no changes in fibre type proportion in either muscle with increasing age. These observations suggest that longus colli responds equally to postural and phasic demands, whereas multifidus is

  9. The action of the beta-agonist clenbuterol on protein metabolism in innervated and denervated phasic muscles.

    PubMed Central

    Maltin, C A; Hay, S M; Delday, M I; Lobley, G E; Reeds, P J

    1989-01-01

    1. Clenbuterol treatment in innervated and denervated phasic extensor digitorum longus, plantaris and gastrocnemius muscles from rats caused a significant increase in RNA and protein contents in all muscles except denervated extensor digitorum longus. 2. All muscles showed an increase in the fractional rate of protein synthesis (Ks) with clenbuterol, but the temporal response varied. 3. The data suggest that the effect of clenbuterol on protein metabolism in innervated muscles is muscle-type specific, and demonstrate the homology of response for denervated muscles. Images Fig. 1. PMID:2803256

  10. Peroneus longus transfer for drop foot in Hansen disease.

    PubMed

    Cohen, Jose Carlos; de Freitas Cabral, Elifaz

    2012-09-01

    Leprosy or Hansen's disease is a chronic infectious disease caused by the Mycobacterium leprae. Nerve injury is a central feature of the pathogenesis of leprosy that results in autonomic, sensory and motor neuropathy. One of the most common secondary disabilities caused by Hansen's disease is the drop foot and it is found in 2% to 5% of newly-diagnosed leprosy patients. Unlike the clinical picture of traumatic injury of the common peroneal nerve where both of its branches (the deep peroneal nerve and the superficial peroneal nerve) are involved, in leprosy there is the possibility of isolated involvement of the deep peroneal nerve branch, sparing the superficial peroneal branch. The article discusses the advantages of using the peroneus longus tendon transfer to the dorsum of the foot instead of the posterior tibial tendon for the correction of dropfoot in selected cases where the peroneals tendons are intact. PMID:22938641

  11. Abnormal motor cortex excitability during linguistic tasks in adductor-type spasmodic dysphonia.

    PubMed

    Suppa, A; Marsili, L; Giovannelli, F; Di Stasio, F; Rocchi, L; Upadhyay, N; Ruoppolo, G; Cincotta, M; Berardelli, A

    2015-08-01

    In healthy subjects (HS), transcranial magnetic stimulation (TMS) applied during 'linguistic' tasks discloses excitability changes in the dominant hemisphere primary motor cortex (M1). We investigated 'linguistic' task-related cortical excitability modulation in patients with adductor-type spasmodic dysphonia (ASD), a speech-related focal dystonia. We studied 10 ASD patients and 10 HS. Speech examination included voice cepstral analysis. We investigated the dominant/non-dominant M1 excitability at baseline, during 'linguistic' (reading aloud/silent reading/producing simple phonation) and 'non-linguistic' tasks (looking at non-letter strings/producing oral movements). Motor evoked potentials (MEPs) were recorded from the contralateral hand muscles. We measured the cortical silent period (CSP) length and tested MEPs in HS and patients performing the 'linguistic' tasks with different voice intensities. We also examined MEPs in HS and ASD during hand-related 'action-verb' observation. Patients were studied under and not-under botulinum neurotoxin-type A (BoNT-A). In HS, TMS over the dominant M1 elicited larger MEPs during 'reading aloud' than during the other 'linguistic'/'non-linguistic' tasks. Conversely, in ASD, TMS over the dominant M1 elicited increased-amplitude MEPs during 'reading aloud' and 'syllabic phonation' tasks. CSP length was shorter in ASD than in HS and remained unchanged in both groups performing 'linguistic'/'non-linguistic' tasks. In HS and ASD, 'linguistic' task-related excitability changes were present regardless of the different voice intensities. During hand-related 'action-verb' observation, MEPs decreased in HS, whereas in ASD they increased. In ASD, BoNT-A improved speech, as demonstrated by cepstral analysis and restored the TMS abnormalities. ASD reflects dominant hemisphere excitability changes related to 'linguistic' tasks; BoNT-A returns these excitability changes to normal. PMID:26061279

  12. Reconstruction of the dynamic velopharyngeal function by combined radial forearm-palmaris longus tenocutaneous free flap, and superiorly based pharyngeal flap in postoncologic total palatal defect.

    PubMed

    Nuri, Takashi; Ueda, Koichi; Yamada, Akira; Okada, Masashi; Hara, Mai

    2015-04-01

    We attempted to reconstruct dynamic palatal function using a radial forearm-palmaris longus tenocutaneous free flap in conjunction with a pharyngeal flap for a postoncologic total-palate defect in a 67-year-old male patient. This reconstruction involved 3 important tasks, namely, separating the oral and nasal cavities, preserving the velopharyngeal space to avoid sleep apnea, and maintaining velopharyngeal closure to avoid nasal regurgitation during swallowing. In our technique, the radial forearm flap separates the oral and nasal cavities with an open rhinopharyngeal space, and a superiorly based pharyngeal flap, which is sutured to the posterior end of the forearm flap, limits the rhinopharyngeal space, and forms the bilateral velopharyngeal port. Furthermore, the palmaris longus tendon, which is attached to the forearm flap, is secured to the superior constrictor muscle to create a horizontal muscle sling. Contraction of the superior constrictor muscle leads to shrinkage of the sling, resulting in velopharyngeal closure. Swallowing therapy was started 4 weeks after the surgery. The patient could resume oral intake without any difficulties 6 months after the surgery. Speech intelligibility changed from severe to minimal hypernasality. PMID:25749212

  13. Changes in Adductor Strength After Competition in Academy Rugby Union Players.

    PubMed

    Roe, Gregory A B; Phibbs, Padraic J; Till, Kevin; Jones, Ben L; Read, Dale B; Weakley, Jonathon J; Darrall-Jones, Joshua D

    2016-02-01

    This study determined the magnitude of change in adductor strength after a competitive match in academy rugby union players and examined the relationship between locomotive demands of match-play and changes in postmatch adductor strength. A within-subject repeated measures design was used. Fourteen academy rugby union players (age, 17.4 ± 0.8 years; height, 182.7 ± 7.6 cm; body mass, 86.2 ± 11.6 kg) participated in the study. Each player performed 3 maximal adductor squeezes at 45° of hip flexion before and immediately, 24, 48, and 72 hours postmatch. Global positioning system was used to assess locomotive demands of match-play. Trivial decreases in adductor squeeze scores occurred immediately (-1.3 ± 2.5%; effect size [ES] = -0.11 ± 0.21; likely, 74%) and 24 hours after match (-0.7 ± 3%; ES = -0.06 ± 0.25; likely, 78%), whereas a small but substantial increase occurred at 48 hours (3.8 ± 1.9%; ES = 0.32 ± 0.16; likely, 89%) before reducing to trivial at 72 hours after match (3.1 ± 2.2%; ES = 0.26 ± 0.18; possibly, 72%). Large individual variation in adductor strength was observed at all time points. The relationship between changes in adductor strength and distance covered at sprinting speed (VO2max ≥ 81%) was large immediately postmatch (p = 0.056, r = -0.521), moderate at 24 hours (p = 0.094, r = -0.465), and very large at 48 hours postmatch (p = 0.005, r = -0.707). Players who cover greater distances sprinting may suffer greater adductor fatigue in the first 48 hours after competition. The assessment of adductor strength using the adductor squeeze test should be considered postmatch to identify players who may require additional rest before returning to field-based training. PMID:26815174

  14. Motor units in cross-reinnervated fast and slow twitch muscle of the cat.

    PubMed Central

    Bagust, J; Lewis, D M; Westerman, R A

    1981-01-01

    1. Isometric contractile properties of motor units were measured in cross-reinnervated fast (flexor digitorum longus) and slow (soleus) twitch muscles of the cat. All but one cross was at least 95% pure. 2. There was a reduction in the number of motor units in all muscles, but totals remained about equal in cross-reinnervated soleus and flexor digitorum longus. 3. Motor unit tensions (mean and maximum values) were higher in cross-reinnervated soleus than in cross-reinnervated flexor digitorum longus, reversing the differences between normal muscles. This was due to increases in muscle mass and in the tension developed per unit cross-sectional area. There were motor unit tensions larger and smaller than those seen in normal muscle, but the range was comparable with that seen in self-reinnervated muscle. 4. The changes in twitch time to peak of whole muscle following cross-reinnervations resulted from a change over the whole range of motor units. The conversion of soleus was less complete than that of flexor digitorum longus, and the time to peak of its fastest motor unit was twice as long as any seen in normal flexor digitorum longus. 5. In neither of the cross-reinnervated muscles were the fast contracting motor units larger than the slow contracting ones, and in cross-reinnervated soleus they were smaller. 6. Axonal conduction velocity was correlated with motor unit tension in both muscles and with twitch time to peak in cross-reinnervated flexor digitorum longus, but in all cases less clearly than in normal muscles. 7. The ratio of twitch to tetanic tension increased with increasing twitch time to peak, as in normal muscles. PMID:7277217

  15. Peroneus longus tear and its relation to the peroneal tubercle: A review of the literature

    PubMed Central

    Palmanovich, Ezequiel; Laver, Lior; Brin, Yaron S.; Kotz, Evgeny; Hetsroni, Iftach; Mann, Gideon; Nyska, Meir

    2011-01-01

    Summary Tear of the peroneal tendon may occur in different anatomical sites. The most prevalent site is around the lateral malleolus. Tear of the peroneus longus at the level of the peroneal tubercle is unusual. Anatomically, the lateral surface of the calcaneous can be divided into thirds. The middle third includes the peroneal tubercle, which separates the peroneus longus tendon from the peroneus brevis. An anatomic variation of the peroneal tubercle may lead to chronic irritation of the peroneus longus tendon that could ultimately cause a longitudinal tear. We conducted this review aiming to clarify the anatomy, biomechanics of the tendon, and the clinical features of tear of the peroneus longus tendon on the lateral surface of the calcaneous due to an enlarged peroneal tubercle. In addition, we reviewed the diagnostic and treatment options of peroneal tendon tears at this site. PMID:23738264

  16. Tenosynovial Osteochondromatosis of the Flexor Hallucis Longus Tendon Treated by Tendoscopy.

    PubMed

    Lui, Tun Hing

    2015-01-01

    Tendosynovial chondromatosis of the foot and ankle is a rare disease entity. We reported 3 patients with tenosynovial osteochondromatosis of flexor hallucis longus. They were successfully treated by arthroscopic synovectomy and removal of the loose bodies. PMID:25979294

  17. Skeletal muscle metabolism in hypokinetic rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.

    1984-01-01

    Muscle growth, protein metabolism, and amino acid metabolism were studied in various groups of rats. Certain groups were adrenaliectomized; some rats were suspended while others (the controls) were weight bearing. Results show that: (1) metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating glucocorticoids; (2) metabolic changes in the soleus muscle due to higher steroid levels are probably potentiated by greater numbers of steroid receptors; and (3) not all metabolic responses of the soleus muscle to unloading are due to the elevated levels of glucocorticoids or the increased sensitivity of this muscle to these hormones.

  18. Adductor pollicis jamming injuries in the professional baseball player: 2 case reports.

    PubMed

    Altobelli, Grant G; Ruchelsman, David E; Belsky, Mark R; Graham, Thomas; Asnis, Peter; Leibman, Matthew I

    2013-06-01

    We characterize a mechanism of injury, injury pattern, and treatment algorithm for adductor pollicis myotendinous injuries in 2 professional baseball players. Similar to myotendinous eccentric injuries in other anatomical areas, the adductor pollicis sustains a sudden forceful eccentric load during a jammed swing, resulting in intramuscular strain or tendon rupture. Based on the reported injury mechanism, and magnetic resonance imaging features of these myotendinous injuries, the thumb of the top hand during a jammed swing was suddenly and forcefully eccentrically abducted from a contracted and adducted position, resulting in injury patterns. PMID:23707017

  19. Extensor Pollicis Longus Rupture after Mini TightRope Suspensionplasty.

    PubMed

    Seetharaman, Mani; Vitale, Mark A; Desai, Kapil; Crowe, John F

    2016-05-01

    Background Arthritis of the first carpometacarpal (CMC) joint has been surgically treated in multiple ways with varying levels of success as measured by subjective and objective measures. Trapeziectomy with numerous variations in suspensionplasty comprises one of the more commonly used surgical procedures. Recently, the Mini TightRope apparatus has been utilized as a new method for achieving suspensionplasty, and as such lacks significant review of use and safety in the literature. Case Description An extensor pollicis longus (EPL) rupture following a trapeziectomy and Mini TightRope suspensionplasty for CMC arthritis of the thumb is presented. The patient successfully underwent an extensor indicis proprius (EIP) to EPL transfer to treat this complication. Literature Review There is well-established documentation of injury to the extensor tendons from orthopedic hardware such as volar locking plates. Regarding use of the Mini TightRope apparatus, guidelines for placement of the suture button include caution to place the button away from the EPL tendon to minimize the chance of tendon irritation. Additionally, FiberWire sutures, a component of the apparatus, have been shown to demonstrate soft tissue reactions with adjacent inflammatory response. Published reports on adverse events utilizing this device have been limited to case reports including an index metacarpal fracture. Clinical Relevance The aim of this case report was to cite an occurrence of EPL rupture following its use and discuss the possibilities of its direct contribution. PMID:27104081

  20. Unilateral absence of thigh muscles confirmed by CT scan.

    PubMed

    Peterson, J E; Currarino, G

    1981-01-01

    A 5-month-old infant is presented with congenital absence of a group of muscles of the right thigh including the three adductors, gracilis, semimembranosus and semitendinosus. The diagnosis was suspected from the conventional radiographs and was confirmed by computerized tomography. PMID:7322654

  1. Motor innervation of respiratory muscles and an opercular display muscle in Siamese fighting fish Betta splendens.

    PubMed

    Gorlick, D L

    1989-12-15

    Horseradish peroxidase was used to identify motor neurons projecting to the adductor mandibulae, levator hyomandibulae, levator operculi, adductor operculi, and dilator operculi muscles in Siamese fighting fish, Betta splendens. These muscles participate in the production of respiratory and feeding movements in teleost fishes. The dilator operculi is also the effector muscle for gill-cover erection behavior that is part of Betta's aggressive display. The motor innervation of these muscles in Betta was compared to that previously described for carp. Motor neurons of the adductor mandibulae, levator hyomandibulae, and dilator operculi are located in the trigeminal motor nucleus, and motor neurons of the adductor operculi and levator operculi are located in the facial motor nucleus in Betta and in carp. The trigeminal motor nucleus in both species is divided into rostral and caudal subnuclei. However, there are substantial differences in the organization of the subnuclei, and in the distribution of motor neurons within them. In Betta, the rostral trigeminal subnucleus consists of a single part but the caudal subnucleus is divided into two parts. Motor neurons for the dilator operculi and levator hyomandibulae muscles are located in the lateral part of the caudal subnucleus; the medial part of the caudal subnucleus contains only dilator operculi motor neurons. The single caudal subnucleus in carp is located laterally, and contains motor neurons of both the dilator operculi and levator hyomandibulae muscles. Differences in the organization of the trigeminal motor nucleus may relate to the use of the dilator operculi muscle for aggressive display behavior by perciform fishes such as Betta but not by cypriniform fishes such as carp. Five species of perciform fishes that perform gill-cover erection behavior had a Betta-like pattern of organization of the caudal trigeminal nucleus and a similar distribution of dilator operculi motor neurons. Goldfish, which like carp are

  2. Acoustic Variations in Adductor Spasmodic Dysphonia as a Function of Speech Task.

    ERIC Educational Resources Information Center

    Sapienza, Christine M.; Walton, Suzanne; Murry, Thomas

    1999-01-01

    Acoustic phonatory events were identified in 14 women diagnosed with adductor spasmodic dysphonia (ADSD), a focal laryngeal dystonia that disturbs phonatory function, and compared with those of 14 age-matched women with no vocal dysfunction. Findings indicated ADSD subjects produced more aberrant acoustic events than controls during tasks of…

  3. Musculoskeletal Management of a Patient With a History of Chronic Ankle Sprains: Identifying Rupture of Peroneal Brevis and Peroneal Longus With Diagnostic Ultrasonography

    PubMed Central

    Bruin, Dick B.; von Piekartz, Harry

    2014-01-01

    Objective The purpose of this case report is to describe the use of mobilization and eccentric exercise training for a patient with ankle pain and a history of chronic ankle sprains and discuss the course of diagnostic decision making when the patient did not respond to care. Clinical Features A 48-year-old police officer who had sustained multiple ankle sprains throughout his life presented with pain and restriction in his ability to walk, run, and work. The Global Rating of Change Scale score was − 6, the Numeric Pain Rating Scale score was 7/10, and the Lower Extremity Functional Scale score was − 33. Palpation of the peroneus longus and brevis muscles and inversion with overpressure reproduced the chief concern (Numeric Pain Rating Scale 7/10). The patient was initially diagnosed with chronic peroneal tendinopathy. Intervention and Outcome Treatment included lateral translation mobilization of the talocrural joint combined with eccentric exercise using an elastic band for the peroneal muscles. The patient reported improvement in pain and function during the course of intervention but not as rapidly as expected. Therefore, follow-up ultrasonographic imaging and radiography were performed. These studies revealed partial rupture of the peroneal brevis muscle and total rupture of the peroneal longus muscle. Conclusion A patient with long-term concerns of the foot complex with a diagnosis of peroneal tendinopathy showed slight improvement with eccentric exercises combined with manual therapy of the talocrural joint. After a course of treatment but minimal response, a diagnosis of tendon rupture was confirmed with diagnostic ultrasonography. Clinicians should be aware that when injuries do not improve with care, tendon rupture should be considered. PMID:25225470

  4. "Modified Adductor Sling Technique"- a surgical therapy for patellar instability in children and adolescents

    PubMed Central

    Alm, Lena; Frosch, Karl-Heinz; Preiss, Achim; Heitmann, Maximilian; Akoto, Ralph

    2016-01-01

    Aims and Objectives: Due to open femoral physis, the therapy of patellar instability in children and adolescents is challenging. We developed a surgical technique, modified form of the "Adductor-Sling-Technique" by Sillanpää which offers a surgical treatment to avoid damage to the femoral physis. The purpose of this study is to determine whether there is a benefit in the clinical outcome for patients operated by the "modified Adductor Sling Technique" in comparison to patients with other surgical procedures. Materials and Methods: Twenty "modified Adductor Sling" reconstructions in 19 patients (age 11-24) were included in the study until now, 15 patients with open physis and 4 patients with closed physis with special indications. Since 2010 "modified Adductor Sling" reconstruction was performed by looping the gracilis tendon around the adductor magnus tendon and attaching it at the medial facette of the patella. Clinical outcome was retrospectively evaluated at a mean follow-up period of 1.3 years (range 0.5-3.6). The evaluation also included Lysholm Score, Kujala Score and DGU score. Statistical analysis was performed using IBM®SPSS®Statistics Version 21. A P value less than 0.5 was considered significant. Results: The average age at the time of operation was 14.9 years (range 11.2-24.3). Recurrent dislocation occurred in 4 out of 20 cases (20%). It was noticeable that out of those 4 patients 2 patients had a lateral release in addition to the "modified Adductor Sling Technique" due to lateral hyperpression. No other patients had a lateral release in our patient population. Also, out of those 4 patients 3 patients had an additional maltracking of the patella, caused by a high TTTG, severe trochlea dysplasia or additional axial deformity. The overall Kujala Score was 87 (range 46-100) points, in patients without re-dislocation it was 94 (range 46-100) points. The overall Lysholm Score was 85 (range 39-100) points, in the group without re-dislocation 90 (range

  5. Tendoscopic Excision of an Intratendinous Ganglion in the Flexor Hallucis Longus Tendon: A Case Report.

    PubMed

    Endo, Jun; Yamaguchi, Satoshi; Sasho, Takahisa

    2016-01-01

    Intratendinous ganglion cysts are rare lesions of unknown etiology that originate within a tendon. We report the case of a 34-year-old female with an intratendinous ganglion in the plantar portion of the flexor hallucis longus tendon. The intratendinous ganglion recurred after ultrasound-guided needle aspiration. Tendoscopic excision of the intratendinous ganglion cyst achieved a satisfactorily result without recurrence. PMID:25456345

  6. Laryngeal Adductor Function in Experimental Models of Recurrent Laryngeal Nerve Injury

    PubMed Central

    Paniello, Randal C.; Rich, Jason T.; Debnath, Nick L.

    2014-01-01

    Objectives/Hypothesis Most patients with unilateral vocal fold paralysis experience some degree of spontaneous reinnervation, which depends upon the type and severity of recurrent laryngeal nerve (RLN) injury. After partial recovery, the paretic vocal fold may or may not adduct adequately to allow glottic closure, which in turn affects phonatory and swallowing outcomes. This process was studied in a series of canine laryngeal nerve injury models. Study Design Animal (canine) experiments. Methods Maximum stimulable laryngeal adductor pressure (LAP) was measured pre-treatment (baseline) and at 6 months following experimental RLN injuries (total n=59). The 9 study groups were designed to simulate a range of severities of RLN injury. Results The greatest LAP recovery, at 108% of original baseline, was seen in a 50% transection model; the least recovery was seen when the RLN underwent complete transection with repair, at 56% with precise alignment and 50% with alignment reversed. Intermediate models (partial RLN injuries) gave intermediate results. Crush models recovered 105% of LAP, while a half-transection, half-crush injury recovered 72% and cautery injuries recovered 61%. Controls (complete transection without repair) had no measurable recovery. Conclusions The injured RLN has a strong tendency to recover. Restoration of adductor strength, as determined by the LAP, was predictably related to the severity of RLN injury. The model RLN injuries studied provide a range of expected outcomes that can be used for future experiments exploring interventions that may improve post-injury adductor function. PMID:25283381

  7. Increase of the cytotoxic effect of Bothrops jararacussu venom on mouse extensor digitorum longus and soleus by potassium channel blockers and by Na(+)/K(+)-ATPase inhibition.

    PubMed

    Tomaz, Marcelo A; Fernandes, Fabrício F A; El-Kik, Camila Z; Moraes, Raphael A M; Calil-Elias, Sabrina; Saturnino-Oliveira, Jeison; Martinez, Ana Maria B; Ownby, Charlotte L; Melo, Paulo A

    2008-09-15

    We investigated the myotoxicity of Bothrops jararacussu crude venom and other cytolytic agents on mouse isolated extensor digitorum longus (EDL) and soleus (SOL) muscles, which present distinct properties: EDL is a fast-twitch, white muscle with predominantly glycolytic fibers, while SOL is slow-twitch, red muscle with predominantly oxidative fibers. Muscles were exposed to B. jararacussu crude venom (25 microg/ml) and other crotaline venoms (Agkistrodon contortrix laticinctus; Crotalus viridis viridis; Crotalus durissus terrificus) at the same concentration. Basal creatine kinase (CK) release to bathing solution was 0.43+/-0.06 for EDL and 0.29+/-0.06 for SOL (U g(-)(1) h(-)(1), n=36 for each muscle). Sixty minutes after exposure to B. jararacussu venom, EDL presented higher increase in the rate of CK release than SOL, respectively, 13.2+/-1.5 and 2.9+/-0.7 U g(-)(1)h(-)(1), n=10-12. Muscle denervation, despite decreasing CK content, did not affect sensitivities to B. jararacussu venom. Ouabain and potassium channel blockers (TEA; clotrimazole; glibenclamide) increased the rate of CK release by B. jararacussu in EDL and SOL muscles, decreasing and almost abolishing the different sensitivity. When we exposed EDL or SOL muscles to Naja naja, Apis mellifera venoms (25 microg/ml), or Triton X-100 (0.01%), they showed similar rate of CK release. Our present data suggest that a mechanism involving intracellular calcium regulation or potassium channels may participate in the different sensitivity of EDL and SOL to B. jararacussu venom. PMID:18675839

  8. Flexor digitorum brevis tendon transfer to the flexor digitorum longus tendon according to Valtin in posttraumatic flexible claw toe deformity due to extrinsic toe flexor shortening.

    PubMed

    Gonçalves, H; Kajetanek, C; Graff, W; Thiongo, M; Laporte, C

    2015-04-01

    Claw toe deformity after posterior leg compartment syndrome is rare but incapacitating. When the mechanism is flexor digitorum longus (FDL) shortening due to ischemic contracture of the muscle after posterior leg syndrome, a good treatment option is the Valtin procedure in which the flexor digitorum brevis (FDB) is transferred to the FDL after FDL tenotomy. The Valtin procedure reduces the deformity by lengthening and reactivating the FDL. Here, we report the outcomes of FDB to FDL transfer according to Valtin in 10 patients with posttraumatic claw toe deformity treated a mean of 34 months after the injury. Toe flexion was restored in all 10 patients, with no claw toe deformity even during dorsiflexion of the ankle. PMID:25703152

  9. Hindlimb immobilization - Length-tension and contractile properties of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Kim, D. H.; Fitts, R. H.

    1982-01-01

    Casts were placed around rat feet in plantar flexion position to immobilize the soleus muscle in a shortened position, while the other foot was fixed in dorsal flexion to set the extensor digitorum longus in a shortened position. The total muscular atrophy and contractile properties were measured at 1, 2, 4, 7, 14, 21, 28, 35, and 42 days after immobilization, with casts being replaced every two weeks. The slow twitch soleus and the fast-twitch vastus lateralis and longus muscles were excised after termination of the experiment. The muscles were then stretched and subjected to electric shock to elicit peak tetanic tension and peak tetanic tension development. Force velocity features of the three muscles were assayed in a series of afterloaded contractions and fiber lengths were measured from subsequently macerated muscle. All muscles atrophied during immobilization, reaching a new steady state by day 21. Decreases in fiber and sarcomere lengths were also observed.

  10. Effect of diet and temperature upon muscle metabolic capacities and biochemical composition of gonad and muscle in Argopecten purpuratus Lamarck 1819.

    PubMed

    Martínez; Brokordt; Aguilera; Soto; Guderley

    2000-04-26

    Recently spawned Argopecten purpuratus broodstock were conditioned at two temperatures and fed three different diets (microalgae, microalgae mixed with lipids and microalgae mixed with carbohydrates) to examine changes in the biochemical composition of gonad and muscle as well as muscle metabolic capacities. During one experiment, scallops were fed at 3% of their dry mass per day whereas during a second experiment, they were fed at 6% of their dry mass per day. During both experiments, total gonadal levels of lipids and protein increased markedly during conditioning with the two mixed diets at 16 degrees C. These increases were less pronounced at 20 degrees C. Carbohydrate gonadal levels only increased during the second experiment at both temperatures and with the three diets. Of the major biochemical components of the adductor muscle, carbohydrate levels changed most during conditioning. Whereas muscle protein levels increased slightly with gonadal maturation, carbohydrate levels dropped considerably. Despite the marked drop in the levels of glycolytic substrates, only the activities of octopine dehydrogenase in the adductor muscle of the scallops conditioned at 16 degrees C consistently decreased. Muscle levels of glycogen phosphorylase were higher in mature than in recently spawned (control) scallops, suggesting a role in the transfer of glucose equivalents from the adductor muscle to other tissues. PMID:10727686

  11. Coexistence of twitch potentiation and tetanic force decline in rat hindlimb muscle

    NASA Technical Reports Server (NTRS)

    Rankin, Lucinda L.; Enoka, Roger M.; Volz, Kathryn A.; Stuart, Douglas G.

    1988-01-01

    The effect of whole-muscle fatigue on the isometric twitch was investigated in various hindlimb muscles of anesthetized rats, using an experimental protocol designed to assess the levels of fatigability in motor units. The results of EMG and force measurements revealed the existence of a linear relationship between fatigability and the magnitude of the twitch force following the fatigue test in both soleus and extensor digitorum longus muscles.

  12. Clenbuterol, a beta(2)-agonist, retards atrophy in denervated muscles

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Ludemann, Robert; Etlinger, Joseph D.

    1987-01-01

    The effects of a beta(2) agonist, clenbuterol, on the protein content as well as on the contractile strength and the muscle fiber cross-sectional area of various denervated muscles from rats were investigated. It was found that denervated soleus, anterior tibialis, and gastrocnemius muscles, but not the extensor digitorum longus, of rats treated for 2-3 weeks with clenbuterol contained 95-110 percent more protein than denervated controls. The twofold difference in the protein content of denervated solei was paralleled by similar changes in contractile strength and muscle fiber cross-sectional area.

  13. Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods

    PubMed Central

    Diogo, Rui; Hinits, Yaniv; Hughes, Simon M

    2008-01-01

    Background During vertebrate head evolution, muscle changes accompanied radical modification of the skeleton. Recent studies have suggested that muscles and their innervation evolve less rapidly than cartilage. The freshwater teleostean zebrafish (Danio rerio) is the most studied actinopterygian model organism, and is sometimes taken to represent osteichthyans as a whole, which include bony fishes and tetrapods. Most work concerning zebrafish cranial muscles has focused on larval stages. We set out to describe the later development of zebrafish head muscles and compare muscle homologies across the Osteichthyes. Results We describe one new muscle and show that the number of mandibular, hyoid and hypobranchial muscles found in four day-old zebrafish larvae is similar to that found in the adult. However, the overall configuration and/or the number of divisions of these muscles change during development. For example, the undivided adductor mandibulae of early larvae gives rise to the adductor mandibulae sections A0, A1-OST, A2 and Aω, and the protractor hyoideus becomes divided into dorsal and ventral portions in adults. There is not always a correspondence between the ontogeny of these muscles in the zebrafish and their evolution within the Osteichthyes. All of the 13 mandibular, hyoid and hypobranchial muscles present in the adult zebrafish are found in at least some other living teleosts, and all except the protractor hyoideus are found in at least some extant non-teleost actinopterygians. Of these muscles, about a quarter (intermandibularis anterior, adductor mandibulae, sternohyoideus) are found in at least some living tetrapods, and a further quarter (levator arcus palatini, adductor arcus palatini, adductor operculi) in at least some extant sarcopterygian fish. Conclusion Although the zebrafish occupies a rather derived phylogenetic position within actinopterygians and even within teleosts, with respect to the mandibular, hyoid and hypobranchial muscles it

  14. Rupture of a flexor pollicis longus tendon in Scheie's syndrome. Case report.

    PubMed

    Weiss, G G; Ritt, M J; Bos, K E

    1997-09-01

    We describe a case of Scheie's syndrome with a closed rupture of the flexor pollicis longus tendon, probably caused by a combination of extrinsic and intrinsic tendon changes. Early detection of carpal tunnel syndrome in all patients who have some form of mucopolysaccharidosis in which this is a universal occurrence (such as Scheie's syndrome), is recommended. Release of the carpal tunnel prevents long term complications, as described in this case report. PMID:9299691

  15. Effect of reproduction on escape responses and muscle metabolic capacities in the scallop Chlamys islandica Müller 1776.

    PubMed

    Brokordt; Himmelman; Guderley

    2000-08-30

    In scallops, gametogenesis leads to mobilization of glycogen and proteins from the adductor muscle towards the gonad. This mobilization is likely to diminish the metabolic capacities of the adductor muscle and thereby the scallops' escape response. We examined the escape response in terms of number of valve claps until exhaustion, rate of clapping and the recovery during and after valve closure in adult scallops, Chlamys islandica, sampled at different stages in the reproductive cycle (immature, mature, before and after spawning). In parallel, we measured muscle glycogen, protein and phosphoarginine contents, the oxidative capacity of mitochondria isolated from the adductor muscle and levels of muscle enzymes which are active during exercise and recovery. The number of claps (24-26), rate of clapping ( approximately 13 clapsmin(-1)) and phosphoarginine and arginine kinase levels were similar during the different reproductive stages. All immature scallops responded to restimulation immediately after opening their valves, while only 62% of mature, 82% of prespawned and 38% of spawned scallops responded. Immature animals completely recovered their initial swimming capacity within 4 h of opening their valves, but mature, prespawned and spawned scallops needed 18, 12 and 18 h, respectively. Overall phasic adductor muscle from mature, prespawned and spawned animals showed decreased glycogen phosphorylase, phosphofructokinase, pyruvate kinase (except for prespawned), octopine dehydrogenase and citrate synthase levels, a deterioration of the oxidative capacity of mitochondria and a marked decrease in glycogen content compared to immature scallops. Therefore, during gonadal maturation and spawning, C. islandica did not change its clapping capacity, but slowed its recuperation from exhausting burst exercise, both during and after valve closure, likely due to the decreased metabolic capacity of the adductor muscle. PMID:10960615

  16. Medial Tibial Stress Syndrome: Muscles Located at the Site of Pain.

    PubMed

    Brown, Ato Ampomah

    2016-01-01

    Objective. The purpose of this study was to examine the relationship between the location of the MTSS pain (posteromedial border of tibia) and the muscles that originate from that site. Method. The study was conducted in the Department of Anatomy of the School of Medical Sciences, University of Cape Coast, and involved the use of 22 cadaveric legs (9 paired and 4 unpaired) from 11 males and 2 females. Findings. The structures that were thus observed to attach directly to the posteromedial border of the tibia were the soleus, the flexor digitorum longus, and the deep crural fascia. The soleus and flexor digitorum longus muscles were observed to attach directly to the posteromedial border of the tibia. The tibialis posterior muscle had no attachment to this site. Conclusion. The findings of this study suggest that if traction is the cause of MTSS then soleus and the flexor digitorum muscles and not the tibialis posterior muscle are the likely cause of MTSS. PMID:27066291

  17. Medial Tibial Stress Syndrome: Muscles Located at the Site of Pain

    PubMed Central

    Brown, Ato Ampomah

    2016-01-01

    Objective. The purpose of this study was to examine the relationship between the location of the MTSS pain (posteromedial border of tibia) and the muscles that originate from that site. Method. The study was conducted in the Department of Anatomy of the School of Medical Sciences, University of Cape Coast, and involved the use of 22 cadaveric legs (9 paired and 4 unpaired) from 11 males and 2 females. Findings. The structures that were thus observed to attach directly to the posteromedial border of the tibia were the soleus, the flexor digitorum longus, and the deep crural fascia. The soleus and flexor digitorum longus muscles were observed to attach directly to the posteromedial border of the tibia. The tibialis posterior muscle had no attachment to this site. Conclusion. The findings of this study suggest that if traction is the cause of MTSS then soleus and the flexor digitorum muscles and not the tibialis posterior muscle are the likely cause of MTSS. PMID:27066291

  18. On the central muscle attachment scar pattern of Suchonella Spizharsky 1939

    USGS Publications Warehouse

    Sohn, I.G.

    1996-01-01

    The fortuitous spalling of a carapace of the nonmarine Permian Suchonella typica Spizharsky 1939 disclosed the adductor muscle attachment scar as well as two accessory scars on both the right side of the steinkern and the inside of the spalled right valve. This central muscle field is illustrated and discussed. An objective list of species described in or referred to Suchonella Spizharsky 1939 is appended.

  19. Muscle protein analysis. II. Two-dimensional electrophoresis of normal and diseased human skeletal muscle

    SciTech Connect

    Giometti, C.S.; Barany, M.; Danon, M.J.; Anderson, N.G.

    1980-07-01

    High-resolution two-dimensional electrophoresis was used to analyze the major proteins of normal and pathological human-muscle samples. The normal human-muscle pattern contains four myosin light chains: three that co-migrate with the myosin light chains from rabbit fast muscle (extensor digitorum longus), and one that co-migrates with the light chain 2 from rabbit slow muscle (soleus). Of seven Duchenne muscular dystrophy samples, four yielded patterns with decreased amounts of actin and myosin relative to normal muscle, while three samples gave patterns comparable to that for normal muscle. Six samples from patients with myotonic dystrophy also gave normal patterns. In nemaline rod myopathy, in contrast, the pattern was deficient in two of the fast-type myosin light chains.

  20. Toe Flexor Strength, Flexibility and Function and Flexor Hallucis Longus Tendon Morphology in Dancers and Non-Dancers.

    PubMed

    Rowley, K Michael; Jarvis, Danielle N; Kurihara, Toshiyuki; Chang, Yu-Jen; Fietzer, Abbigail L; Kulig, Kornelia

    2015-09-01

    Tendinopathy of the flexor hallucis longus (FHL), colloquially referred to as "dancer's tendinitis," is a common condition in dancers and attributed to high demand on this muscle in positions of extreme ankle plantarflexion and metatarsophalangeal (MTP)) flexion and extension. Despite such a high prevalence, there has been little research into preventative or nonsurgical interventions. As a means to identify potential targets for prevention and intervention, this study aimed to characterize toe flexors in dancers by measuring strength, flexibility, function, and FHL tendon morphology. Dancers (n=25) were compared to non-dancers (n=25) in toe flexor isometric strength, first MTP joint range of motion, foot longitudinal arch flexibility, balance ability, endurance during modified heel raises without use of the toes, and FHL tendon thickness, cross-sectional area, and peak spatial frequency. Significant differences were found in functional first MTP joint extension (dancers 101.95°, non-dancers 91.15°, p<0.001), balance ability during single-leg stance on the toes (dancers 11.43 s, non-dancers 5.90 s, p=0.013), and during modified heel raises (dancers 22.20 reps, non-dancers 28.80 reps, p=0.001). Findings indicate that dancers rely on toe flexors more than non-dancers to complete balance and heel raise tasks. Efficacy of using this modified heel raise task with the toes off the edge of a block as a means to train larger plantarflexors and as a nonsurgical intervention should be studied in the future. Improving interventions for FHL tendinopathy will be impactful for dancers, in whom this condition is highly prevalent. PMID:26395616

  1. Morphological and functional relationships with ultrasound measured muscle thickness of the lower extremity: a brief review.

    PubMed

    Abe, Takashi; Loenneke, Jeremy P; Thiebaud, Robert S

    2015-08-01

    Ultrasound is a potential method for assessing muscle size of the extremity and trunk. In a large muscle, however, a single image from portable ultrasound measures only muscle thickness (MT), not anatomical muscle cross-sectional area (CSA) or muscle volume (MV). Thus, it is important to know whether MT is related to anatomical CSA and MV in an individual muscle of the extremity and trunk. In this review, we summarize previously published articles in the lower extremity demonstrating the relationships between ultrasound MT and muscle CSA or MV as measured by magnetic resonance imaging and computed tomography scans. The relationship between MT and isometric and isokinetic joint performance is also reviewed. A linear relationship is observed between MT and muscle CSA or MV in the quadriceps, adductor, tibialis anterior, and triceps surae muscles. Intrarater correlation coefficients range from 0.90 to 0.99, except for one study. It would appear that anterior upper-thigh MT, mid-thigh MT and posterior thigh MT are the best predictors for evaluating adductor, quadriceps, and hamstrings muscle size, respectively. Despite a limited number of studies, anterior as well as posterior lower leg MT appear to reflect muscle CSA and MV of the lower leg muscles. Based on previous studies, ultrasound measured anterior thigh MT may be a valuable predictor of knee extension strength. Nevertheless, more studies are needed to clarify the relationship between lower extremity function and MT. PMID:27433253

  2. Effects of balance training by knee joint motions on muscle activity in adult men with functional ankle instability

    PubMed Central

    Nam, Seung-min; Kim, Won-bok; Yun, Chang-kyo

    2016-01-01

    [Purpose] This study examined the effects of balance training by applying knee joint movements on muscle activity in male adults with functional ankle instability. [Subjects and Methods] 28 adults with functional ankle instability, divided randomly into an experimental group, which performed balance training by applying knee joint movements for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Electromyographic values of the tibialis anterior, peroneus longus, peroneus brevis, and the lateral gastrocnemius muscles were obtained to compare and analyze muscle activity before and after the experiments in each group. [Results] The experimental group had significant increases in muscle activity in the tibialis anterior, peroneus longus, and lateral gastrocnemius muscles, while muscle activity in the peroneus brevis increased without significance. The control group had significant increases in muscle activity in the tibialis anterior and peroneus longus, while muscle activity in the peroneus brevis and lateral gastrocnemius muscles increased without significance. [Conclusion] In conclusion, balance training by applying knee joint movements can be recommended as a treatment method for patients with functional ankle instability. PMID:27313386

  3. Acute calcific tendinitis of the flexor pollicis longus in an 8-year-old boy.

    PubMed

    Kheterpal, Arvin; Zoga, Adam; McClure, Kristen

    2014-10-01

    Calcific tendinitis is a common source of musculoskeletal pain in adults; however, it is rarely encountered in children. Calcific tendinitis is the most commonly encountered manifestation of hydroxyapatite deposition disease, in which calcium hydroxyapatite crystal deposition occurs in tendons. It may cause acute or chronic pain, or may be entirely asymptomatic. We describe a case of acute calcific tendinitis of the flexor pollicis longus tendon in an 8-year-old boy, who initially presented to our department for workup of a mass felt along the volar aspect of the right wrist. PMID:24867130

  4. Muscle imaging in muscle dystrophies produced by mutations in the EMD and LMNA genes.

    PubMed

    Díaz-Manera, Jordi; Alejaldre, Aida; González, Laura; Olivé, Montse; Gómez-Andrés, David; Muelas, Nuria; Vílchez, Juan José; Llauger, Jaume; Carbonell, Pilar; Márquez-Infante, Celedonio; Fernández-Torrón, Roberto; Poza, Juan José; López de Munáin, Adolfo; González-Quereda, Lidia; Mirabet, Sonia; Clarimon, Jordi; Gallano, Pía; Rojas-García, Ricard; Gallardo, Eduard; Illa, Isabel

    2016-01-01

    Identifying the mutated gene that produces a particular muscle dystrophy is difficult because different genotypes may share a phenotype and vice versa. Muscle MRI is a useful tool to recognize patterns of muscle involvement in patients with muscle dystrophies and to guide the diagnosis process. The radiologic pattern of muscle involvement in patients with mutations in the EMD and LMNA genes has not been completely established. Our objective is to describe the pattern of muscle fatty infiltration in patients with mutations in the EMD and in the LMNA genes and to search for differences between the two genotypes that could be helpful to guide the genetic tests. We conducted a national multicenter study in 42 patients, 10 with mutations in the EMD gene and 32 with mutations in the LMNA gene. MRI or CT was used to study the muscles from trunk to legs. Patients had a similar pattern of fatty infiltration regardless of whether they had the mutation in the EMD or LMNA gene. The main muscles involved were the paravertebral, glutei, quadriceps, biceps, semitendinosus, semimembranosus, adductor major, soleus, and gastrocnemius. Involvement of peroneus muscle, which was more frequently affected in patients with mutations in the EMD gene, was useful to differentiate between the two genotypes. Muscle MRI/CT identifies a similar pattern of muscle fatty infiltration in patients with mutations in the EMD or the LMNA genes. The involvement of peroneus muscles could be useful to conduct genetic analysis in patients with an EDMD phenotype. PMID:26573435

  5. Isokinetic imbalance of hip muscles in soccer players with osteitis pubis.

    PubMed

    Mohammad, Walaa Sayed; Abdelraouf, Osama Ragaa; Elhafez, Salam Mohamed; Abdel-Aziem, Amr Almaz; Nassif, Nagui Sobhi

    2014-01-01

    In this study, we compared the isokinetic torques of hip flexors/extensors and abductors/adductors in soccer players suffering from osteitis pubis (OP), with normal soccer players. Twenty soccer male athletes with OP and 20 normal soccer athletes were included in this study. Peak torque/body weight (PT/BW) was recorded from hip flexor/extensor and abductor/adductor muscles during isokinetic concentric contraction modes at angular velocity of 2.1 rad · s(-1), for both groups. The results showed a significant difference between the normal and OP groups for hip flexors (P < 0.05). The normal group had significant, lower PT/BW value than the OP group for their hip flexors (P < 0.05). The hip flexor/extensor PT ratio of OP affected and non-affected limbs was significantly different from that of normal dominant and non-dominant limbs. There were no significant differences between the normal and OP groups for hip extensor, adductor and abductor muscles (P > 0.05). Regarding the hip adductor/abductor PT ratio, there was no significant difference between the normal and OP groups of athletes (P > 0.05). The OP group displayed increase in hip flexor strength that disturbed the hip flexor/extensor torque ratio of OP. Therefore, increasing the hip extensor strength should be part of rehabilitation programmes of patients with OP. PMID:24499182

  6. Femoral nerve block versus adductor canal block for postoperative pain control after anterior cruciate ligament reconstruction: A randomized controlled double blind study

    PubMed Central

    El Ahl, Mohamed Sayed

    2015-01-01

    Background: The objective of this study was to evaluate the reliability of the postoperative pain control using adductor canal block (ACB) compared that using the femoral nerve block (FNB) in patients with anterior cruciate ligament reconstructions (ACLR). Materials and methods: One hundred and twenty-eight patients who had been scheduled to patellar graft ACLR were included in this double blind study, and were randomly allocated into two groups; group ACB and group FNB (64 patients each). All patients received general anesthesia. At the end of the surgery, patients in group FNB received a FNB and those in group ACB received an ACB. The postoperative pain (visual analog scale [VAS]) and muscle weakness were assessed in the postoperative care unit and every 6 h thereafter for 24 h. The total morphine requirements were also recorded. Results: Patients in group ACB had significantly higher VAS (at 18 h and 24 h), higher morphine consumption, but significantly less quadriceps weakness than those in group FNB. Conclusion: In patients with patellar graft ACLR, the ACB can maintain a higher quadriceps power, but with lesser analgesia compared with the FNB. PMID:26240546

  7. Comparative jaw muscle anatomy in kangaroos, wallabies, and rat-kangaroos (marsupialia: macropodoidea).

    PubMed

    Warburton, Natalie Marina

    2009-06-01

    The jaw muscles were studied in seven genera of macropodoid marsupials with diets ranging from mainly fungi in Potorous to grass in Macropus. Relative size, attachments, and lamination within the jaw adductor muscles varied between macropodoid species. Among macropodine species, the jaw adductor muscle proportions vary with feeding type. The relative mass of the masseter is roughly consistent, but grazers and mixed-feeders (Macropus and Lagostrophus) had relatively larger medial pterygoids and smaller temporalis muscles than the browsers (Dendrolagus, Dorcopsulus, and Setonix). Grazing macropods show similar jaw muscle proportions to "ungulate-grinding" type placental mammals. The internal architecture of the jaw muscles also varies between grazing and browsing macropods, most significantly, the anatomy of the medial pterygoid muscle. Potoroines have distinctly different jaw muscle proportions to macropodines. The masseter muscle group, in particular, the superficial masseter is enlarged, while the temporalis group is relatively reduced. Lagostrophus fasciatus is anatomically distinct from other macropods with respect to its masticatory muscle anatomy, including enlarged superficial medial pterygoid and deep temporalis muscles, an anteriorly inflected masseteric process, and the shape of the mandibular condyle. The enlarged triangular pterygoid process of the sphenoid bone, in particular, is distinctive of Lagsotrophus. PMID:19462457

  8. Botulinum toxin type A injections for the management of muscle tightness following total hip arthroplasty: a case series

    PubMed Central

    Bhave, Anil; Zywiel, Michael G; Ulrich, Slif D; McGrath, Mike S; Seyler, Thorsten M; Marker, David R; Delanois, Ronald E; Mont, Michael A

    2009-01-01

    Background Development of hip adductor, tensor fascia lata, and rectus femoris muscle contractures following total hip arthroplasties are quite common, with some patients failing to improve despite treatment with a variety of non-operative modalities. The purpose of the present study was to describe the use of and patient outcomes of botulinum toxin injections as an adjunctive treatment for muscle tightness following total hip arthroplasty. Methods Ten patients (14 hips) who had hip adductor, abductor, and/or flexor muscle contractures following total arthroplasty and had been refractory to physical therapeutic efforts were treated with injection of botulinum toxin A. Eight limbs received injections into the adductor muscle, 8 limbs received injections into the tensor fascia lata muscle, and 2 limbs received injection into the rectus femoris muscle, followed by intensive physical therapy for 6 weeks. Results At a mean final follow-up of 20 months, all 14 hips had increased range in the affected arc of motion, with a mean improvement of 23 degrees (range, 10 to 45 degrees). Additionally all hips had an improvement in hip scores, with a significant increase in mean score from 74 points (range, 57 to 91 points) prior to injection to a mean of 96 points (range, 93 to 98) at final follow-up. There were no serious treatment-related adverse events. Conclusion Botulinum toxin A injections combined with intensive physical therapy may be considered as a potential treatment modality, especially in difficult cases of muscle tightness that are refractory to standard therapy. PMID:19709429

  9. Quantification of sarcomere length distribution in whole muscle frozen sections.

    PubMed

    O'Connor, Shawn M; Cheng, Elton J; Young, Kevin W; Ward, Samuel R; Lieber, Richard L

    2016-05-15

    Laser diffraction (LD) is a valuable tool for measuring sarcomere length (Ls), a major determinant of muscle function. However, this method relies on few measurements per sample that are often extrapolated to whole muscle properties. Currently it is not possible to measure Ls throughout an entire muscle and determine how Ls varies at this scale. To address this issue, we developed an actuated LD scanner for sampling large numbers of sarcomeres in thick whole muscle longitudinal sections. Sections of high optical quality and fixation were produced from tibialis anterior and extensor digitorum longus muscles of Sprague-Dawley rats (N=6). Scans produced two-dimensional Ls maps, capturing >85% of the muscle area per section. Individual Ls measures generated by automatic LD and bright-field microscopy showed excellent agreement over a large Ls range (ICC>0.93). Two-dimensional maps also revealed prominent regional Ls variations across muscles. PMID:26994184

  10. Skeletal muscle recovery after tenotomy and 7-day delayed muscle length restoration.

    PubMed

    Abrams, R A; Tsai, A M; Watson, B; Jamali, A; Lieber, R L

    2000-05-01

    Rabbit extensor digitorum longus (EDL) tendons were cut with the muscle active (active tenotomy, AT) or with the EDL at rest (passive tenotomy, PT). One, 7, and 21 days after tenotomy, contractile testing was performed. A second experiment was performed in which EDL tendons underwent PT and, after a 7-day delay, muscle-tendon units were restored to their original length. Maximum isometric tension dropped precipitously 1 day after either AT or PT to approximately 50% of normal and continued to decline by day 7. In contrast to PT, where peak tension (P(0)) decreased further by 21 days, after AT, P(0) partially recovered. Differences in muscle mass, cross-sectional area, fiber type, and sarcomere number did not explain the differential response. One day after length restoration of muscles, P(0) rapidly increased by approximately 40%. These observations have implications for understanding the outcome of muscle-tendon unit injury and surgical repair. PMID:10797393

  11. Influence of spaceflight on rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Martin, Thomas P.; Edgerton, V. Reggie; Grindeland, Richard E.

    1988-01-01

    The effect of a 7-day spaceflight (aboard NASA's SL-3) on the size and the metabolism of single fibers from several rat muscles was investigated along with the specificity of these responses as related to the muscle type and the size of fibers. It was found that the loss of mass after flight was varied from 36 percent in the soleus to 15 percent in the extensor digitorum longus. Results of histochemical analyses showed that the succinate dehydrogenase (SDH) activity in muscles of flight-exposed rats was maintained at the control levels, whereas the alpha-glycerol phosphate dehydrogenase (GPD) activity was either maintained or increased. The analyses of the metabolic profiles of ATPase, SDH, and GPD indicated that, in some muscles, there was an increase in the poportion of fast oxidative-glycolytic fibers.

  12. How human gait responds to muscle impairment in total knee arthroplasty patients: Muscular compensations and articular perturbations.

    PubMed

    Ardestani, Marzieh M; Moazen, Mehran

    2016-06-14

    Post-surgical muscle weakness is prevalent among patients who undergo total knee arthroplasty (TKA). We conducted a probabilistic multi-body dynamics (MBD) to determine whether and to what extent habitual gait patterns of TKA patients may accommodate strength deficits in lower extremity muscles. We analyzed muscular and articular compensations in response to various muscle impairments, and the minimum muscle strength requirements needed to preserve TKA gait patterns in its habitual status. Muscle weakness was simulated by reducing the strength parameter of muscle models in MBD analysis. Using impaired models, muscle and joint forces were calculated and compared versus those from baseline gait i.e. TKA habitual gait before simulating muscle weakness. Comparisons were conducted using a relatively new statistical approach for the evaluation of gait waveforms, i.e. Spatial Parameter Mapping (SPM). Principal component analysis was then conducted on the MBD results to quantify the sensitivity of every joint force component to individual muscle impairment. The results of this study contain clinically important, although preliminary, suggestions. Our findings suggested that: (1) hip flexor and ankle plantar flexor muscles compensated for hip extensor weakness; (2) hip extensor, hip adductor and ankle plantar flexor muscles compensated for hip flexor weakness; (3) hip and knee flexor muscles responded to hip abductor weakness; (4) knee flexor and hip abductor balanced hip adductor impairment; and (5) knee extensor and knee flexor weakness were compensated by hip extensor and hip flexor muscles. Future clinical studies are required to validate the results of this computational study. PMID:27063251

  13. Morphofunctional responses to anaemia in rat skeletal muscle

    PubMed Central

    Esteva, Santiago; Panisello, Pere; Casas, Mireia; Torrella, Joan Ramon; Pagés, Teresa; Viscor, Ginés

    2008-01-01

    Adult male Sprague-Dawley rats were randomly assigned to two groups: control and anaemic. Anaemia was induced by periodical blood withdrawal. Extensor digitorum longus and soleus muscles were excised under pentobarbital sodium total anaesthesia and processed for transmission electron microscopy, histochemical and biochemical analyses. Mitochondrial volume was determined by transmission electron microscopy in three different regions of each muscle fibre: pericapillary, sarcolemmal and sarcoplasmatic. Muscle samples sections were also stained with histochemical methods (SDH and m-ATPase) to reveal the oxidative capacity and shortening velocity of each muscle fibre. Determinations of fibre and capillary densities and fibre type composition were made from micrographs of different fixed fields selected in the equatorial region of each rat muscle. Determination of metabolites (ATP, inorganic phosphate, creatine, creatine phosphate and lactate) was done using established enzymatic methods and spectrophotometric detection. Significant differences in mitochondrial volumes were found between pericapillary, sarcolemmal and sarcoplasmic regions when data from animal groups were tested independently. Moreover, it was verified that anaemic rats had significantly lower values than control animals in all the sampled regions of both muscles. These changes were associated with a significantly higher proportion of fast fibres in anaemic rat soleus muscles (slow oxidative group = 63.8%; fast glycolytic group = 8.2%; fast oxidative glycolytic group = 27.4%) than in the controls (slow oxidative group = 79.0%; fast glycolytic group = 3.9%; fast oxidative glycolytic group = 17.1%). No significant changes were detected in the extensor digitorum longus muscle. A significant increase was found in metabolite concentration in both the extensor digitorum longus and soleus muscles of the anaemic animals as compared to the control group. In conclusion, hypoxaemic hypoxia causes a reduction in

  14. Prospective randomized comparison between ultrasound-guided saphenous nerve block within and distal to the adductor canal with low volume of local anesthetic

    PubMed Central

    Adoni, Areti; Paraskeuopoulos, Tilemachos; Saranteas, Theodosios; Sidiropoulou, Tatiana; Mastrokalos, Dimitrios; Kostopanagiotou, Georgia

    2014-01-01

    Background and Aims: The anatomic site and the volume of local anesthetic needed for an ultrasound-guided saphenous nerve block differ in the literature. The purpose of this study was to examine the effect of two different ultrasound-guided low volume injections of local anesthetic on saphenous and vastus medialis nerves. Materials and Methods: Recruited patients (N = 48) scheduled for orthopedic surgery were randomized in two groups; Group distal adductor canal (DAC): Ultrasound-guided injection (5 ml of local anesthetic) distal to the inferior foramina of the adductor canal. Group adductor canal (AC): Ultrasound-guided injection (5 ml local anesthetic) within the adductor canal. Following the injection of local anesthetic, block progression was monitored in 5 min intervals for 15 min in the sartorial branches of the saphenous nerve and vastus medialis nerve. Results: Twenty two patients in each group completed the study. Complete block of the saphenous nerve was observed in 55% and 59% in Group AC and DAC, respectively (P = 0.88). The proportion of patients with vastus medialis weakness at 15 min in Group AC, 36%, was significantly higher than in Group DAC (0/22), (P = 0.021). Conclusions: Low volume of local anesthetic injected within the adductor canal or distally its inferior foramina leads to moderate success rate of the saphenous nerve block, while only the injection within the adductor canal may result in vastus medialis nerve motor block. PMID:25190947

  15. Pattern of arborization of the motor nerve terminals in the fast and slow mammalian muscles.

    PubMed

    Tomas, J; Santafé, M; Fenoll, R; Mayayo, E; Batlle, J; Lanuza, A; Piera, V

    1992-01-01

    A silver impregnation method and a morphometric approach were used to define differences existing in the motor nerve terminal branching pattern between a fast-twitch muscle (extensor digitorum longus) and a slow-twitch one (soleus) of the normal adult rat. Because no single measure can describe precisely all geometrical properties (ie both topology and metrics) of the nerve terminals, we evaluated morphologic parameters defining length and angular characteristics in the different terminal segments classified according to their centrifugal order. The main results indicate that the distal free-end segments in the extensor digitorum longus muscle are shorter and less divergent than in the soleus nerve terminals. The endings in the two muscles have different fractal dimensions. Findings are discussed in the context of the hypothetical mechanisms governing motor nerve terminal size and complexity. PMID:1628112

  16. Insulin effect on amino acid uptake by unloaded rat hindlimb muscles

    NASA Technical Reports Server (NTRS)

    Jaspers, S. R.; Tischler, M. E.

    1988-01-01

    The effect of insulin on the uptake of alpha-amino-isobutyric acid (AIB) by unloaded rat hindlimb muscles was investigated using soleus and extensor digitorum longus (EDL) muscles from intact and adrenalectomized (ADX) rats that were tail-casted for six days. It was found that, at insulin levels above 0.00001 units/ml, the in vitro rate of AIB uptake by muscles from intact animals was stimulated more in the weight bearing muscles than in unloaded ones. In ADX animals, this differential response to insulin was abolished.

  17. Dystrophin expression following the transplantation of normal muscle precursor cells protects mdx muscle from contraction-induced damage.

    PubMed

    Rousseau, Joel; Dumont, Nicolas; Lebel, Carl; Quenneville, Simon P; Côté, Claude H; Frenette, Jérome; Tremblay, Jacques P

    2010-01-01

    Duchenne muscular dystrophy (DMD) is the most frequent muscular dystrophy. Currently, there is no cure for the disease. The transplantation of muscle precursor cells (MPCs) is one of the possible treatments, because it can restore the expression of dystrophin in DMD muscles. In this study, we investigated the effects of myoblasts injected with cardiotoxin on the contractile properties and resistance to eccentric contractions of transplanted and nontransplanted muscles. We used the extensor digitorum longus (EDL) as a model for our study. We conclude that the sole presence of dystrophin in a high percentage of muscle fibers is not sufficient by itself to increase the absolute or the specific force in the EDL of transplanted mdx muscle. This lack of strength increase may be due to the extensive damage that was produced by the cardiotoxin, which was coinjected with the myoblasts. However, the dystrophin presence is sufficient to protect muscle from eccentric damage as indicated by the force drop results. PMID:20650035

  18. Effect of unloading on muscle volume with and without resistance training

    NASA Astrophysics Data System (ADS)

    Akima, Hiroshi; Ushiyama, Jun-ichi; Kubo, Junjiro; Fukuoka, Hideoki; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2007-04-01

    The present study aimed to investigate the effect of resistance training on the volume of four muscle groups and/or 17 individual muscles of the human lower limb during 20 days of 6∘ head-down tilt bed rest. Twelve healthy men were divided into two groups: the resistance training group: BR-Tr (n=6) and the control group: BR-Cont (n=6). The volumes of the knee extensor, knee flexor, adductor, plantar flexor, and dorsiflexor muscle groups and their individual muscles were calculated. After the bed rest, the BR-Tr subjects showed no significant change in the volume in almost all tested muscles; in contrast, the volumes of the four muscle groups significantly decreased in the BR-Cont group ( -12% to -8%). These results suggest that resistance training during bed rest can prevent the deteriorating of thigh muscles and calf muscles.

  19. MRI of the tibioastragalus anticus of Gruber muscle: a rare accessory muscle and normal anatomical variant.

    PubMed

    Berkowitz, Yaron; Mushtaq, Nadeem; Amiras, Dimitri

    2016-06-01

    We present the case of a 31-year-old man who sustained a hyperplantar flexion injury of his right ankle, and was evaluated using computed tomography and MRI to assess for osseous and ligamentous injury. The MRI and CT studies demonstrated a tibioastragalus anticus of Gruber (TAAG) muscle in the lower limb's anterior compartment. To our knowledge, the imaging of this muscle has not been previously described. The TAAG muscle arises from the lower third of the anterolateral tibia and the interosseous membrane. Its tendon passes laterally, deep to the tibialis anterior and extensor hallucis longus tendons, and inserts onto the anterior superolateral neck of the talus in a fan-like manner. Knowledge and recognition of this tendon are important for both diagnostic accuracy and surgical planning, and could potentially be used as a tendon transfer or graft in the appropriate clinical setting. The presence of this accessory muscle should not be confused with a pathological condition. PMID:27037809

  20. Analysis of muscle forces acting on fragments in pelvic fractures.

    PubMed

    Elabjer, Esmat; Nikolić, Vasilije; Matejcić, Aljosa; Stancić, Marin; Kuzmanović Elabjer, Biljana

    2009-12-01

    CT was used in 50 adult pelvic fractures to determine the size and the position of relevant muscles with regard to bony elements in order to calculate muscle forces acting upon certain pelvic portions. Muscle length was measured to calculate muscle volume and physiological muscle cross-section. Among others, the size and direction of muscle forces were calculated for iliac, pubic and ischiadic fractures. The strongest muscle acting in iliac fractures is m. gluteus medius. The strongest upward pulling of iliac bone fragments is exerted by the erector muscles, while the major anterior, medial and downward pulling is performed by the iliopsoas muscle. In pubic bone fractures, eight muscles push bone fragments downward, the strongest among them being m. adductor magnus. Two muscles pull them upwards: m. rectus abdominis and m. obliquus externus. Nine muscles are responsible for downward displacement of bone fragments in ischiadic fractures, but the strongest is m. semitendinosus. Calculation of moments of muscle forces acting upon bone fragments using CT of pelvic fractures gives additional data for planning of optimal operative treatment that can guarantee stable fixation in individual patients. PMID:20102053

  1. Quantifying the aging response and nutrient composition for muscles of the beef round.

    PubMed

    Dixon, C L; Woerner, D R; Tokach, R J; Chapman, P L; Engle, T E; Tatum, J D; Belk, K E

    2012-03-01

    The objective of this study was to determine the optimal postmortem aging period and nutrient composition for Beef Value Cuts of the round. Forty USDA Select and 40 Premium USDA Choice beef carcasses were selected from a commercial beef packing plant in Colorado over a 12-wk period. The bottom and inside rounds were collected from both sides of each carcass for further fabrication into the following muscles: adductor, gastrocnemius, gracilis, pectineus, and superficial digital flexor. Each pair of muscles was cut into 7 steaks and randomly assigned to 1 of the following aging periods: 2, 4, 6, 10, 14, 21, and 28 d, and placed in refrigerated storage (2°C, never frozen). Upon completion of the designated aging period, steaks were removed from storage, cooked to a peak internal temperature of 72°C, and evaluated using Warner-Bratzler shear force (WBSF). A 2-way interaction was detected (P < 0.05) between individual muscle and postmortem aging period. The WBSF of all muscles except the superficial digital flexor decreased with increased time of postmortem aging. Quality grade did not affect (P > 0.05) WBSF values for the adductor, gastrocnemius, pectineus, and superficial digital flexor muscles. Exponential decay models were used to predict the change in WBSF from 2 to 28 d postmortem (aging response). The adductor, gastrocnemius, Select gracilis, Premium Choice gracilis, and pectineus required 21, 14, 23, 23, and 25 d, respectively, to complete the majority of the aging response. To determine the nutrient composition of the adductor, gastrocnemius, gracilis, pectineus, semimembranosus, and superficial digital flexor, bottom and inside rounds were collected from 10 USDA Select and 10 Premium USDA Choice carcasses and fabricated into the respective muscles, cut into 2.54-cm cubes, frozen (-20°C), and then homogenized. The adductor, gracilis, pectineus, semimembranosus, and superficial digital flexor were analyzed for DM, moisture, CP, and ash percentages. All

  2. Fat cell invasion in long-term denervated skeletal muscle.

    PubMed

    de Castro Rodrigues, Antonio; Andreo, Jesus Carlos; Rosa, Geraldo Marco; dos Santos, Nícolas Bertolaccini; Moraes, Luis Henrique Rapucci; Lauris, José Roberto P

    2007-01-01

    There are several differences between red and white muscles submitted to different experimental conditions, especially following denervation: a) denervation atrophy is more pronounced in red than white muscles; b) the size of the fibers in the red muscles does not vary between different parts of the muscle before and after denervation, when compared to white muscles; c) the regional difference in the white muscles initially more pronounced after denervation than red muscle; d) red muscle fibers and fibers of the deep white muscle present degenerative changes such as disordered myofibrils and sarcolemmal folds after long-term denervation; e) myotube-like fibers with central nuclei occur in the red muscle more rapidly than white after denervation. Denervation of skeletal muscles causes, in addition to fibers atrophy, loss of fibers with subsequent regeneration, but the extent of fat cell percentage invasion is currently unknown. The present article describes a quantitative study on fat cell invasion percentage in red m. soleus and white m. extensor digitorum longus (EDL) rat muscles at 7 weeks for up to 32 weeks postdenervation. The results indicate that the percentage of fat cells increase after denervation and it is steeper than the age-related fat invasion in normal muscles. The fat percentage invasion is more pronounced in red compared with white muscle. All experimental groups present a statistically significant difference as regard fat cell percentage invasion. PMID:17941108

  3. Tenosynovial chondromatosis of the flexor hallucis longus in a 17-year-old girl.

    PubMed

    Winters, Nichelle I; Thomson, A Brian; Flores, Raina R; Jordanov, Martin I

    2015-11-01

    Tenosynovial chondromatosis is a benign chondrogenic metaplasia of extra-articular synovial tissue. The most common locations for tenosynovial chondromatosis to develop are the hands and feet. The condition has rarely been reported in children. We present a case of tenosynovial chondromatosis of the flexor hallucis longus in a 17-year-old girl. The presentation was unusual not only due to the location and young age of the patient but also the absence of any palpable mass on physical exam and complete lack of calcification of the cartilage bodies. Initial diagnosis was made by MRI. The patient underwent tenosynovectomy with an excellent postoperative recovery at 6-month follow-up. Histopathology confirmed the diagnosis of tenosynovial chondromatosis. PMID:26008872

  4. Irreducible tongue-type calcaneal fracture due to interposition of flexor hallucis longus.

    PubMed

    Wong-Chung, John; O'Longain, Diarmaid; Lynch-Wong, Matthew; Julian, Harriet

    2016-06-01

    We present a rare case of interposition of the flexor hallucis longus (FHL) tendon blocking percutaneous closed reduction of a displaced tongue-type calcaneal fracture, and necessitating open repositioning of the tendon and internal fixation through a single extensile lateral approach. Although not recognized until during surgery, with a high index of suspicion, preoperative diagnosis of this injury combination should be possible on high resolution CT, thus enabling better planning of the procedure. The presence of a small sustentacular fragment, especially if markedly displaced or rotated, should further alert the physician as to increased likelihood of such tendon entrapment within the fracture. In the literature, fracture fixation and extrication of the FHL tendon have been performed via either or both lateral and medial approaches. A medial approach may prove necessary when there is severe displacement or rotation of the sustentacular fragment. Arthroscopically assisted surgery may aid in disengaging the tendon from within the fracture site. PMID:26802813

  5. Unusual case of acute neck pain: acute calcific longus colli tendinitis.

    PubMed

    Joshi, Gunjan S; Fomin, Daren A; Joshi, Gargi S; Serano, Richard D

    2016-01-01

    Acute calcific longus colli tendinitis (ACLCT), a very rare cause of severe neck pain, dysphagia and odynophagia, is often mistaken for other common causes of neck pain. However, prompt recognition of this uncommon presentation is important to prevent unnecessary medical and surgical intervention. A 46-year-old Caucasian man presented with a 1-day history of severe neck pain, headache and odynophagia. The patient was afebrile with stable vital signs, however, the laboratory data showed mildly elevated C reactive protein and erythrocyte sedimentation rate. The physical examination was remarkable for markedly reduced cervical range of motion. MRI revealed the pathognomonic findings of paravertebral oedema and calcification. The definitive diagnosis of ACLCT was made and the patient was successfully managed with a short course of oral steroid, benzodiazepine and aural acupuncture, with complete resolution of the condition within a week. PMID:27257001

  6. Closed traumatic rupture of the flexor pollicis longus tendon in zone T I: a case report.

    PubMed

    Uekubo, Kazuaki; Itoh, Soichiro; Yoshioka, Taro

    2015-01-01

    A healthy 41-year-old male suffered a direct blow on the palmar side of his right thumb when folding a table, which slipped along his thumb until it was stopped at the inter-phalangeal (IP) joint, resulting in a complete rupture of the flexor pollicis longus (FPL) tendon in zone T I. The proximal tendon stump was passed through the oblique pulley, fixed to the base of the distal phalanx with a pull-out wire technique and augmented on it using a part of the distal tendon remnant. After removal of the cast and the pull-out wire three weeks postoperatively, range of motion exercise was initiated and good functional recovery was obtained. PMID:25609290

  7. Structural characterization of CFA/III and Longus type IVb pili from enterotoxigenic Escherichia coli.

    PubMed

    Kolappan, Subramaniapillai; Roos, Justin; Yuen, Alex S W; Pierce, Owen M; Craig, Lisa

    2012-05-01

    The type IV pili are helical filaments found on many Gram-negative pathogenic bacteria, with multiple diverse roles in pathogenesis, including microcolony formation, adhesion, and twitching motility. Many pathogenic enterotoxigenic Escherichia coli (ETEC) isolates express one of two type IV pili belonging to the type IVb subclass: CFA/III or Longus. Here we show a direct correlation between CFA/III expression and ETEC aggregation, suggesting that these pili, like the Vibrio cholerae toxin-coregulated pili (TCP), mediate microcolony formation. We report a 1.26-Å resolution crystal structure of CofA, the major pilin subunit from CFA/III. CofA is very similar in structure to V. cholerae TcpA but possesses a 10-amino-acid insertion that replaces part of the α2-helix with an irregular loop containing a 3(10)-helix. Homology modeling suggests a very similar structure for the Longus LngA pilin. A model for the CFA/III pilus filament was generated using the TCP electron microscopy reconstruction as a template. The unique 3(10)-helix insert fits perfectly within the gap between CofA globular domains. This insert, together with differences in surface-exposed residues, produces a filament that is smoother and more negatively charged than TCP. To explore the specificity of the type IV pilus assembly apparatus, CofA was expressed heterologously in V. cholerae by replacing the tcpA gene with that of cofA within the tcp operon. Although CofA was synthesized and processed by V. cholerae, no CFA/III filaments were detected, suggesting that the components of the type IVb pilus assembly system are highly specific to their pilin substrates. PMID:22447901

  8. Single Shot Adductor Canal Block for Postoperative Analgesia of Pediatric Patellar Dislocation Surgery

    PubMed Central

    Chen, Jia-Yu; Li, Na; Xu, Yong-Qing

    2015-01-01

    Abstract Postoperative analgesia for the knee surgery in children can be challenging. Meanwhile acute pain management in pediatric patients is still often undertreated due to inadequate pain assessment or management. We reported the ultrasound-guided single-injection adductor canal block (ACB) with 0.2% ropivacaine and dexmedetomidine (0.5 μg/kg) in addition in a series of 6 children. Patients’ age was range from 7 to 15 years old with right or left habitual patellar dislocation needing an open reduction and internal refixation. Pain assessments using Numeric Rating Scale scores on the operative limb were made preoperatively and at 12, 24, 36, and 48 h postoperatively at rest. Medication consumption was calculated as well. The possible complications, such as hemodynamic changes, nausea, vomiting, and dysesthesia, were also recorded at 12, 24, 36, and 48 h postoperatively at rest. The pain scores were low, and analgesic medication consumption was minimal. Meanwhile, no adverse events were recorded in any of the subject. Single-injection ACB might be an optimal analgesia strategy for patellar dislocation surgery in pediatric patients. PMID:26632911

  9. Medullary mediation of the laryngeal adductor reflex: A possible role in sudden infant death syndrome.

    PubMed

    Wang, Xiaolu; Guo, Ruichen; Zhao, Wenjing; Pilowsky, Paul M

    2016-06-01

    The laryngeal adductor reflex (LAR) is a laryngeal protective reflex. Vagal afferent polymodal sensory fibres that have cell bodies in the nodose ganglion, originate in the sub-glottal area of the larynx and upper trachea. These polymodal sensory fibres respond to mechanical or chemical stimuli. The central axons of these sensory vagal neurons terminate in the dorsolateral subnuclei of the tractus solitarius in the medulla oblongata. The LAR is a critical, reflex in the pathways that play a protective role in the process of ventilation, and the sychronisation of ventilation with other activities that are undertaken by the oropharyngeal systems including: eating, speaking and singing. Failure of the LAR to operate properly at any time after birth can lead to SIDS, pneumonia or death. Despite the critical nature of this reflex, very little is known about the central pathways and neurotransmitters involved in the management of the LAR and any disorders associated with its failure to act properly. Here, we review current knowledge concerning the medullary nuclei and neurochemicals involved in the LAR and propose a potential neural pathway that may facilitate future SIDS research. PMID:26774498

  10. Your Muscles

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Your Muscles KidsHealth > For Kids > Your Muscles Print A A ... and skeletal (say: SKEL-uh-tul) muscle. Smooth Muscles Smooth muscles — sometimes also called involuntary muscles — are ...

  11. Fetal muscle-derived cells can repair dystrophic muscles in mdx mice

    SciTech Connect

    Auda-Boucher, Gwenola; Rouaud, Thierry; Lafoux, Aude; Levitsky, Dmitri; Huchet-Cadiou, Corinne; Feron, Marie; Guevel, Laetitia; Talon, Sophie; Fontaine-Perus, Josiane; Gardahaut, Marie-France . E-mail: Marie-France.Gardahaut@univ-nantes.fr

    2007-03-10

    We have previously reported that CD34{sup +} cells purified from mouse fetal muscles can differentiate into skeletal muscle in vitro and in vivo when injected into muscle tissue of dystrophic mdx mice. In this study, we investigate the ability of such donor cells to restore dystrophin expression, and to improve the functional muscle capacity of the extensor digitorum longus muscle (EDL) of mdx mice. For this purpose green fluorescent-positive fetal GFP{sup +}/CD34{sup +} cells or desmin{sup +}/{sup -}LacZ/CD34{sup +} cells were transplanted into irradiated or non-irradiated mdx EDL muscle. Donor fetal muscle-derived cells predominantly fused with existing fibers. Indeed more than 50% of the myofibers of the host EDL contained donor nuclei delivering dystrophin along 80-90% of the length of their sarcolemma. The presence of significant amounts of dystrophin (about 60-70% of that found in a control wild-type mouse muscle) was confirmed by Western blot analyses. Dystrophin expression also outcompeted that of utrophin, as revealed by a spatial shift in the distribution of utrophin. At 1 month post-transplant, the recipient muscle appeared to have greater resistance to fatigue than control mdx EDL muscle during repeated maximal contractions.

  12. Evaluation of muscle metabolic activity in the lower limb of a transfemoral amputee using a prosthesis by using (18)F-FDG PET imaging--an application of PET imaging to rehabilitation.

    PubMed

    Shinozaki, Tetsuya; Suzuki, Keiko; Yamaji, Takehiko; Ichikawa, Akihiro; Inoue, Tomio; Takagishi, Kenji; Endo, Keigo

    2004-07-01

    This study used FDG PET to evaluate the lower limb muscles metabolic activities of transfemoral amputees during walking with prostheses. As a preliminary study, FDG PET was applied for two normal adult volunteers to evaluate muscle activity in the lower extremities after gait exercise. This same method was applied for two amputee volunteers with prostheses. We found that FDG accumulated more in both gluteus medius muscles after gait exercise compared to other muscles in normal adult volunteers. In the skilled amputee volunteer, FDG uptake increased in the adductor and gluteus medius in the amputated side, while in the unskilled the adductor, gluteus maximus, and gluteus medius showed increased FDG uptake only in the normal side. This result suggests that basic metabolic changes such as an increase in oxidative metabolism and less reliance on glycolytic activity would occur as a result of skeletal muscle training in amputees. PMID:15183449

  13. Modulation of the cytosolic androgen receptor in striated muscle by sex steroids

    NASA Technical Reports Server (NTRS)

    Rance, N. E.; Max, S. E.

    1982-01-01

    The influence of orchiectomy (GDX) and steroid administration on the level of the cytosolic androgen receptor in the rat levator ani muscle and in rat skeletal muscles (tibialis anterior and extensor digitorum longus) was studied. Androgen receptor binding to muscle cytosol was measured using H-3 methyltrienolone (R1881) as ligand, 100 fold molar excess unlabeled R1881 to assess nonspecific binding, and 500 fold molar excess of triamcinolone acetonide to prevent binding to glucocorticoid and progestin receptors. Results demonstrate that modification of the levels of sex steroids can alter the content of androgen receptors of rat striated muscle. Data suggest that: (1) cytosolic androgen receptor levels increase after orchiectomy in both levator ani muscle and skeletal muscle; (2) the acute increase in receptor levels is blocked by an inhibitor of protein synthesis; and (3) administration of estradiol-17 beta to castrated animals increases receptor binding in levator ani muscle but not in skeletal muscle.

  14. Influences of laryngeal afferent inputs on intralaryngeal muscle activity during vocalization in the cat.

    PubMed

    Shiba, K; Yoshida, K; Nakajima, Y; Konno, A

    1997-01-01

    The present study was undertaken to elucidate the possible role of the laryngeal afferent inputs in the regulation of intralaryngeal muscle activity during vocalization. We studied the influences of airflow and/or pressure applied to the larynx on intralaryngeal muscle activity during vocalization in ketamine-anesthetized cats. Vocalization was induced by airflow applied to the upper airway, which was isolated from the lower airway, during pontine call site stimulation. When the upper airway was open to the atmosphere through the nostrils and mouth, the airflow increased not only the vocal fold adductor and tensor activities but also the duration of these activities. The adductor and tensor activities were increased suddenly at a critical subglottic pressure level equivalent to the subglottic pressure threshold for vocalization. These effects were significantly reduced by sectioning of the internal branch of the superior laryngeal nerve or by lidocaine application to the laryngeal mucosa. Sustained pressure applied to the isolated upper airway, when the mouth and nostrils were occluded, did not affect adductor or tensor activities. These results indicate that the afferent inputs evoked by vocal fold stretching or vibration play an important role in the motor control of intralaryngeal and respiratory muscles during vocalization. PMID:9089702

  15. Using mouse cranial muscles to investigate neuromuscular pathology in vivo.

    PubMed

    Murray, L M; Gillingwater, T H; Parson, S H

    2010-11-01

    Neuromuscular pathology is a classic hallmark of many diseases such as muscular dystrophy, myasthenia gravis, amyotrophic lateral sclerosis and spinal muscular atrophy. It is also a feature of many congenital and acquired myopathies and neuropathies such as diabetic neuropathy and toxin-exposure. The availability of experimentally accessible nerve-muscle preparations from rodent models in which pathological events can be studied in nerve and muscle, as well as at the neuromuscular junction, is therefore of fundamental importance for investigating neuromuscular disease. The group of small cranial muscles, which move the ear in the mouse provide ideal experimental preparations for the study of neuromuscular disease in vivo, but information regarding their anatomical and functional characteristics is currently lacking. Here, we provide a detailed description of the levator auris longus, auricularis superior, abductor auris longus and interscutularis muscles. In addition, we briefly review their differential fibre type and developmental characteristics, which can be exploited to aid our understanding of neuromuscular vulnerability and to provide preferable alternatives to more traditional muscle preparations such as gastrocnemius, soleus and diaphragm. PMID:20637618

  16. Thoracic epaxial muscles in living archosaurs and ornithopod dinosaurs.

    PubMed

    Organ, Christopher Lee

    2006-07-01

    Crocodylians possess the same thoracic epaxial muscles as most other saurians, but M. transversospinalis is modified by overlying osteoderms. Compared with crocodylians, the thoracic epaxial muscles of birds are reduced in size, disrupted by the synsacrum, and often modified by intratendinous ossification and the notarium. A phylogenetic perspective is used to determine muscle homologies in living archosaurs (birds and crocodylians), evaluate how the apparent disparity evolved, and reconstruct the thoracic epaxial muscles in ornithopod dinosaurs. The avian modifications of the epaxial musculoskeletal system appear to have coevolved with the synsacrum and notarium. The lattice of ossified tendons in iguanodontoidean dinosaurs (Hadrosauridae and Iguanodontidae) is homologized to M. transversospinalis in crocodylians and M. longus colli dorsalis, pars thoracica in birds. Birds have an arrangement of tendons within M. longus colli dorsalis, pars thoracica identical to that observed in the epaxial ossified tendons of iguanodontoid dinosaurs. Moreover, many birds (such as grebes and turkeys) ossify these tendons, resulting in a two- or three-layered lattice of ossified tendons, a morphology also seen in iguanodontoid dinosaurs. Although the structure of M. transversospinalis appears indistinguishable between birds and iguanodontoid dinosaurs, intratendinous ossification within this epaxial muscle evolved convergently. PMID:16779820

  17. Effects of stretching and disuse on amino acids in muscles of rat hind limbs

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik J.; Satarug, Soisungwan; Tischler, Marc E.

    1989-01-01

    The effects of disuse and passive stretch on the concentrations of amino acids and ammonia in the unloaded soleus muscle was investigated in hindquarter-suspended (for six days by casting one foot in dorsiflexion) tail-casted rats. For a comparison with the condition of unloading, amino acids and ammonia were also measured in shortened extensor digitorum longus in the same casted limb and in denervated leg muscles. The results obtained suggest that passive stretch diminishes some of the characteristic alterations of amino acid concentrations due to unloading. This effect of stretch is considered to be due to the maintenance of muscle tension.

  18. E-box sites and a proximal regulatory region of the muscle creatine kinase gene differentially regulate expression in diverse skeletal muscles and cardiac muscle of transgenic mice.

    PubMed Central

    Shield, M A; Haugen, H S; Clegg, C H; Hauschka, S D

    1996-01-01

    Previous analysis of the muscle creatine kinase (MCK) gene indicated that control elements required for transcription in adult mouse muscle differed from those required in cell culture, suggesting that distinct modes of muscle gene regulation occur in vivo. To examine this further, we measured the activity of MCK transgenes containing E-box and promoter deletions in a variety of striated muscles. Simultaneous mutation of three E boxes in the 1,256-bp MCK 5' region, which abolished transcription in muscle cultures, had strikingly different effects in mice. The mutations abolished transgene expression in cardiac and tongue muscle and caused a reduction in expression in the soleus muscle (a muscle with many slow fibers) but did not affect expression in predominantly fast muscles: quadriceps, abdominals, and extensor digitorum longus. Other regulatory sequences with muscle-type-specific activities were found within the 358-bp 5'-flanking region. This proximal region conferred relatively strong expression in limb and abdominal skeletal muscles but was inactive in cardiac and tongue muscles. However, when the 206-bp 5' enhancer was ligated to the 358-bp region, high levels of tissue-specific expression were restored in all muscle types. These results indicate that E boxes and a proximal regulatory region are differentially required for maximal MCK transgene expression in different striated muscles. The overall results also imply that within skeletal muscles, the steady-state expression of the MCK gene and possibly other muscle genes depends on transcriptional mechanisms that differ between fast and slow fibers as well as between the anatomical and physiological attributes of each specific muscle. PMID:8756664

  19. Anatomical reconstruction of the spring ligament using peroneus longus tendon graft.

    PubMed

    Choi, Kyungjin; Lee, Samuel; Otis, James C; Deland, Jonathan T

    2003-05-01

    Posterior tibial tendon insufficiency is often associated with failure of the spring ligament and flatfoot deformity. Arch correction procedures involving bony realignment, such as lateral column lengthening or joint fusions, can predispose to arthritis. Soft tissue reconstruction may provide a more anatomical correction without these complications. The purpose of this investigation was to compare the ability of three different spring ligament reconstruction procedures to correct flatfoot deformity. A deformity model of 5 degrees - 15 degrees talonavicular abduction was created in 10 cadaver foot-ankle specimens. Three reconstructions utilizing the peroneus longus tendon were evaluated for their ability to correct talonavicular abduction and subtalar eversion under 357 N vertical GRF load. A superomedial/plantar passage of the tendon through the calcaneus and navicular was shown to be more effective than either of the other two approaches, correcting the talonavicular joint from 9.1 degrees +/- 8.1 degrees abducted to 1.0 degree +/- 6.8 degrees adducted, and the subtalar joint from 3.1 degrees +/- 3.3 degrees everted to 0.4 degrees +/- 4.2 degrees inverted. Thus, an anatomical reconstruction of a model of a failed spring ligament was demonstrated to be effective in the correction of a flatfoot deformity produced in cadaver foot-ankle specimens. PMID:12801201

  20. Anatomical variation of abductor pollicis longus in Indian population: A cadaveric study

    PubMed Central

    Tewari, Jerina; Mishra, Pravash Ranjan; Tripathy, Sujit Kumar

    2015-01-01

    Background: Many authors have reported the anatomical variation of abductor pollicis longus (APL) around the wrist and its association with de Quervain tenosynovitis (DQT), first carpo-metacarpal arthritis, and trapezio-metacarpal subluxation. From Indian subcontinent, there is only one original article and a few case reports on the variability of APL tendon insertion. Materials and Methods: Fifty formaldehyde preserved cadaveric wrists were dissected to look for the anatomical variation of APL in the Indian population. Results: The APL was found with single tendon in 2, double in 31, triple in 8, and quadruple in 8 extremities. A maximum of 6 tendon-slips were found in one cadaveric wrist. In all hands, the APL had at least one attachment to first metacarpal bone and in 46 hands (92%), there was second insertion to the trapezium bone. Of all tendon-slips of APL (n = 126), 44% of tendons (68 tendons) were inserted into the base of the first metacarpal bone. This was followed by the insertion into the trapezium in 42% tendons (52 tendons). Conclusion: Bi-tendinous APL is commonly observed on the dorsal compartment of the wrist in Indian population and these tendon-slips are commonly attached to the first metacarpal base and trapezium. This variation must be understood by the Indian Orthopedic surgeons as the response to treatment of DQT and reason for first carpo-metacarpal arthritis can be dependent on this anatomical variation. PMID:26538762

  1. Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies

    PubMed Central

    Siebert, Tobias; Leichsenring, Kay; Rode, Christian; Wick, Carolin; Stutzig, Norman; Schubert, Harald; Blickhan, Reinhard; Böl, Markus

    2015-01-01

    The vastly increasing number of neuro-muscular simulation studies (with increasing numbers of muscles used per simulation) is in sharp contrast to a narrow database of necessary muscle parameters. Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set. However, in vivo muscles differ in their individual properties and architecture. Here we provide a comprehensive dataset of dynamic (n = 6 per muscle) and geometric (three-dimensional architecture, n = 3 per muscle) muscle properties of the rabbit calf muscles gastrocnemius, plantaris, and soleus. For completeness we provide the dynamic muscle properties for further important shank muscles (flexor digitorum longus, extensor digitorum longus, and tibialis anterior; n = 1 per muscle). Maximum shortening velocity (normalized to optimal fiber length) of the gastrocnemius is about twice that of soleus, while plantaris showed an intermediate value. The force-velocity relation is similar for gastrocnemius and plantaris but is much more bent for the soleus. Although the muscles vary greatly in their three-dimensional architecture their mean pennation angle and normalized force-length relationships are almost similar. Forces of the muscles were enhanced in the isometric phase following stretching and were depressed following shortening compared to the corresponding isometric forces. While the enhancement was independent of the ramp velocity, the depression was inversely related to the ramp velocity. The lowest effect strength for soleus supports the idea that these effects adapt to muscle function. The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components), enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic muscle models, or

  2. Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies.

    PubMed

    Siebert, Tobias; Leichsenring, Kay; Rode, Christian; Wick, Carolin; Stutzig, Norman; Schubert, Harald; Blickhan, Reinhard; Böl, Markus

    2015-01-01

    The vastly increasing number of neuro-muscular simulation studies (with increasing numbers of muscles used per simulation) is in sharp contrast to a narrow database of necessary muscle parameters. Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set. However, in vivo muscles differ in their individual properties and architecture. Here we provide a comprehensive dataset of dynamic (n = 6 per muscle) and geometric (three-dimensional architecture, n = 3 per muscle) muscle properties of the rabbit calf muscles gastrocnemius, plantaris, and soleus. For completeness we provide the dynamic muscle properties for further important shank muscles (flexor digitorum longus, extensor digitorum longus, and tibialis anterior; n = 1 per muscle). Maximum shortening velocity (normalized to optimal fiber length) of the gastrocnemius is about twice that of soleus, while plantaris showed an intermediate value. The force-velocity relation is similar for gastrocnemius and plantaris but is much more bent for the soleus. Although the muscles vary greatly in their three-dimensional architecture their mean pennation angle and normalized force-length relationships are almost similar. Forces of the muscles were enhanced in the isometric phase following stretching and were depressed following shortening compared to the corresponding isometric forces. While the enhancement was independent of the ramp velocity, the depression was inversely related to the ramp velocity. The lowest effect strength for soleus supports the idea that these effects adapt to muscle function. The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components), enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic muscle models, or

  3. Influence of icing on muscle regeneration after crush injury to skeletal muscles in rats.

    PubMed

    Takagi, Ryo; Fujita, Naoto; Arakawa, Takamitsu; Kawada, Shigeo; Ishii, Naokata; Miki, Akinori

    2011-02-01

    The influence of icing on muscle regeneration after crush injury was examined in the rat extensor digitorum longus. After the injury, animals were randomly divided into nonicing and icing groups. In the latter, ice packs were applied for 20 min. Due to the icing, degeneration of the necrotic muscle fibers and differentiation of satellite cells at early stages of regeneration were retarded by ∼1 day. In the icing group, the ratio of regenerating fibers showing central nucleus at 14 days after the injury was higher, and cross-sectional area of the muscle fibers at 28 days was evidently smaller than in the nonicing group. Besides, the ratio of collagen fibers area at 14 and 28 days after the injury in the icing group was higher than in the nonicing group. These findings suggest that icing applied soon after the injury not only considerably retarded muscle regeneration but also induced impairment of muscle regeneration along with excessive collagen deposition. Macrophages were immunohistochemically demonstrated at the injury site during degeneration and early stages of regeneration. Due to icing, chronological changes in the number of macrophages and immunohistochemical expression of transforming growth factor (TGF)-β1 and IGF-I were also retarded by 1 to 2 days. Since it has been said that macrophages play important roles not only for degeneration, but also for muscle regeneration, the influence of icing on macrophage activities might be closely related to a delay in muscle regeneration, impairment of muscle regeneration, and redundant collagen synthesis. PMID:21164157

  4. Physiological changes in fast and slow muscle with simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Dettbarn, W. D.; Misulis, K. E.

    1984-01-01

    A rat hindlimb suspension model of simulated weightlessness was used to examine the physiological characteristics of skeletal muscle. The physiological sequelae of hindlimb suspension were compared to those of spinal cord section, denervation by sciatic nerve crush, and control. Muscle examined were the predominantly slow (Type 1) soleus (SOL) and the predominantly fast (Type 2) extensor digitorum longus (EDL). Two procedures which alter motor unit activity, hindlimb suspension and spinal cord section, produce changes in characteristics of skeletal muscles that are dependent upon fiber type. The SOL develops characteristics more representative of a fast muscle, including smaller Type 1 fiber proportion and higher AChE activity. The EDL, which is already predominantly fast, loses most of its few Type 1 fibers, thus also becoming faster. These data are in agreement with the studies in which rats experienced actual weightlessness.

  5. Effect of hindlimb immobilization on the fatigability of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Kim, D. H.; Fitts, R. H.

    1983-01-01

    The effect of 6 weeks of disuse atrophy produced by hindlimb immobilization was studied in situ (33.5 C) in the soleus and extensor digitorum longus muscles of rats. The results indicate that disuse causes preferential alterations in the isometric contractile properties of slow-twitch, as opposed to fast-twitch, skeletal muscles. During continuous contractile activity, atrophied muscles were found to have lower ATP levels and an apparent increase in their dependence on anaerobic metabolism, as reflected by the more extensive depletion of glycogen and enhanced lactate formation. Although the atrophied muscles were determined to have fewer cross bridges and thus generated lower tension, the pattern of decline in active cross-bridge formation and tetanic tension during contractile activity was found to proceed in a manner similar to controls.

  6. Transcriptional regulation of decreased protein synthesis during skeletal muscle unloading

    NASA Technical Reports Server (NTRS)

    Howard, G.; Steffen, J. M.; Geoghegan, T. E.

    1989-01-01

    The regulatory role of transcriptional alterations in unloaded skeletal muscles was investigated by determining levels of total muscle RNA and mRNA fractions in soleus, gastrocnemius, and extensor digitorum longus (EDL) of rats subjected to whole-body suspension for up to 7 days. After 7 days, total RNA and mRNA contents were lower in soleus and gastrocnemius, compared with controls, but the concentrations of both RNAs per g muscle were unaltered. Alpha-actin mRNA (assessed by dot hybridization) was significantly reduced in soleus after 1, 3, and 7 days of suspension and in gastrocnemius after 3 and 7 days, but was unchanged in EDL. Protein synthesis directed by RNA extracted from soleus and EDL indicated marked alteration in mRNAs coding for several small proteins. Results suggest that altered transcription and availability of specific mRNAs contribute significantly to the regulation of protein synthesis during skeletal muscle unloading.

  7. Glucocorticoid sensitivity, disuse, and the regulation of muscle mass

    NASA Technical Reports Server (NTRS)

    Almon, R. R.; Dubois, D. C.

    1983-01-01

    A new noninvasive immobilization procedure to be used on rats has been developed to study immobilization-induced muscle hypersensitivity to normal glucocorticoid concentration, subsequent muscle atrophy, and atrophy recovery. The immobilization procedure involves encasing the hind limb in a light-weight plasticlike cast (10 percent the usual plaster weight), completely resistant to animal gnawing. The effects of right-angle immobilization of the ankle on the slow fiber soleus, and the fast fiber extensor digitorum longus, resemble the effects of weightlessness. The increased concentration of glucocorticoid receptor sites in immobilized and denervated muscle is discussed, along with the chronic loss of muscle mass that occurs in practically all dystrophies. It is concluded that lack of mechanical work in a zero gravity environment is a major cause of glucocorticoid hypersensitivity in the body's musculature.

  8. New Insights into Muscle Function during Pivot Feeding in Seahorses

    PubMed Central

    Van Wassenbergh, Sam; Dries, Billy; Herrel, Anthony

    2014-01-01

    Seahorses, pipefish and their syngnathiform relatives are considered unique amongst fishes in using elastic recoil of post-cranial tendons to pivot the head extremely quickly towards small crustacean prey. It is known that pipefish activate the epaxial muscles for a considerable time before striking, at which rotations of the head and the hyoid are temporarily prevented to allow energy storage in the epaxial tendons. Here, we studied the motor control of this system in seahorses using electromyographic recordings of the epaxial muscles and the sternohyoideus-hypaxial muscles with simultaneous high-speed video recordings of prey capture. In addition we present the results from a stimulation experiment including the muscle hypothesised to be responsible for the locking and triggering of pivot feeding in seahorses (m. adductor arcus palatini). Our data confirmed that the epaxial pre-activation pattern observed previously for pipefish also occurs in seahorses. Similar to the epaxials, the sternohyoideus-hypaxial muscle complex shows prolonged anticipatory activity. Although a considerable variation in displacements of the mouth via head rotation could be observed, it could not be demonstrated that seahorses have control over strike distance. In addition, we could not identify the source of the kinematic variability in the activation patterns of the associated muscles. Finally, the stimulation experiment supported the previously hypothesized role of the m. adductor arcus palatini as the trigger in this elastic recoil system. Our results show that pre-stressing of both the head elevators and the hyoid retractors is taking place. As pre-activation of the main muscles involved in pivot feeding has now been demonstrated for both seahorses and pipefish, this is probably a generalized trait of Syngnathidae. PMID:25271759

  9. Analysis of adductors angle measurement in Hammersmith infant neurological examinations using mean shift segmentation and feature point based object tracking.

    PubMed

    Dogra, D P; Majumdar, A K; Sural, S; Mukherjee, J; Mukherjee, S; Singh, A

    2012-09-01

    This paper presents image and video analysis based schemes to automate the process of adductors angle measurement which is carried out on infants as a part of Hammersmith Infant Neurological Examination (HINE). Image segmentation, thinning and feature point based object tracking are used for automating the analysis. Segmentation outputs are processed with a novel region merging algorithm. It is found that the refined segmentation outputs can successfully be used to extract features in the context of the application under consideration. Next, a heuristic based filtering algorithm is applied on the thinned structures for locating necessary points to measure adductors angle. A semi-automatic scheme based on the object tracking of a video has been proposed to minimize errors of the image based analysis. It is observed that the video-based analysis outperforms the image-based method. A fully automatic method has also been proposed and compared with the semi-automatic algorithm. The proposed methods have been tested with several videos recorded from hospitals and the results have been found to be satisfactory in the present context. PMID:22841364

  10. Comparison of catheter tip migration using flexible and stimulating catheters inserted into the adductor canal in a cadaver model.

    PubMed

    Webb, Christopher A J; Kim, T Edward; Funck, Natasha; Howard, Steven K; Harrison, T Kyle; Ganaway, Toni; Keng, Heidi; Mariano, Edward R

    2015-06-01

    Use of adductor canal blocks and catheters for perioperative pain management following total knee arthroplasty is becoming increasingly common. However, the optimal equipment, timing of catheter insertion, and catheter dislodgement rate remain unknown. A previous study has suggested, but not proven, that non-tunneled stimulating catheters may be at increased risk for catheter migration and dislodgement after knee manipulation. We designed this follow-up study to directly compare tip migration of two catheter types after knee range of motion exercises. In a male unembalmed human cadaver, 30 catheter insertion trials were randomly assigned to one of two catheter types: flexible or stimulating. All catheters were inserted using an ultrasound-guided short-axis in-plane technique. Intraoperative knee manipulation similar to that performed during surgery was simulated by five sequential range of motion exercises. A blinded regional anesthesiologist performed caliper measurements on the ultrasound images before and after exercise. Changes in catheter tip to nerve distance (p = 0.547) and catheter length within the adductor canal (p = 0.498) were not different between groups. Therefore, catheter type may not affect the risk of catheter tip migration when placed prior to knee arthroplasty. PMID:25510467

  11. Quantitative power measurement of extensor hallucis longus. A simple objective test in evaluation of low-back pain with neurological involvement.

    PubMed

    Finsterbush, A; Frankel, U; Arnon, R

    1983-03-01

    Clinical evaluation of a patient with low-back problem is based mainly upon the subjective impressions of the physician. Accuracy in neurologic evaluation and follow-up of these patients depends upon objective and quantitative procedures. A handy instrument, simple to use by the clinician in his office, was developed in our laboratory and tested on healthy volunteers and patients with low-back problems. The instrument measures or records the power of the extensor hallucis longus. Weakness of this muscle represents the vast majority of root involvement in discogenic lesions. The measurement is compared with the result obtained on the contralateral side. The instrument includes a mobile mechanical spring gauge of 100-2000-gr range and a leg splint. A single channel polygraph can be connected to record the measurement. The technique was tested on healthy volunteers and good reproducibility and accuracy were found. Seventy-five patients were examined and the power of EHL measured. The patients were divided into three groups according to the nature of their back problems: 1) acute discogenic; 2) chronic low back problems with acute exacerbations; and 3) acute trauma. The quantitative measurements of EHL were of great help in evaluating and following treatment of patients with discogenic lesions and in deciding further surgical treatments. The test was valuable in evaluating malingeres and compensation cases. Eight of the patients with chronic, recurrent low-back problems were found to have weakness of EHL; further investigations showed root pressure mostly due to osteophytes pressing on the nerve roots. After acute trauma, the EHL power test also revealed weakness in patients with higher lumbar injuries, probably because of spreading. PMID:6222488

  12. Effects of different types of exercise on muscle activity and balance control

    PubMed Central

    Kim, Mi-Kyoung; Choi, Jung-Hyun; Gim, Min-A; Kim, Young-Hwan; Yoo, Kyung-Tae

    2015-01-01

    [Purpose] This study analyzed the effects of isotonic, isokinetic, and isometric exercises of ankle joint muscles on lower extremity muscle activity and balance control. [Subjects and Methods] The subjects were 30 healthy adults (15 males) in their 20s who were randomly assigned to three different exercise method groups of 10 people each. The isokinetic exercise group performed three sets at an angular velocity of 60°/sec, including a single rest period after every set of 10 repetitions. The isometric exercise group performed three sets consisting of three 15 repetitions of a 15-second exercise followed by a 5-second rest. [Results] Multivariate analysis of variance revealed that depending on the exercise method, the non-dominant tibialis anterior, gastrocnemius muscle, and peroneus longus showed significant differences in muscle activity for weight-bearing non-dominant sides; when the dominant side was weight-bearing, the dominant gastrocnemius and peroneus longus showed significant differences in muscle activity; and the non-dominant and dominant sides showed significant differences in balance control depending on the duration of support in the area. [Conclusion] Muscle fatigue from the three exercise methods produced a decline in muscle activity and balance control; due to the fatigue before exercise, the side that did not perform the exercises was affected. PMID:26180340

  13. Results of Abductor Pollicis Longus Suspension Ligamentoplasty for Treatment of Advanced First Carpometacarpal Arthritis

    PubMed Central

    Lee, Hyun-Joo; Kim, Poong-Taek; Deslivia, Maria Florencia; Lee, Suk-Joong; Nam, Sang-Jin

    2015-01-01

    Background Suspension ligamentoplasty using abductor pollicis longus (APL) tendon without bone tunneling, was introduced as one of the techniques for treatment of advanced first carpometacarpal (CMC) arthritis. The purpose of this study was to evaluate the radiologic and clinical results of APL suspension ligamentoplasty. Methods The medical records of 19 patients who underwent APL suspension ligamentoplasty for advanced first CMC arthritis between January 2008 and May 2012 were reviewed retrospectively. The study included 13 female and 6 male patients, whose mean age was 62 years (range, 43 to 82 years). For clinical evaluation, we assessed the grip and pinch power, radial and volar abduction angle, thumb adduction (modified Kapandji index), including visual analogue scale (VAS) and Disabilities of the Arm, Shoulder and Hand (DASH) scores. Radiologic evaluation was performed using simple radiographs. Results The mean follow-up was 36 months (range, 19 to 73.7 months). Mean power improved from 18.3 to 27 kg for grip power, from 2.8 to 3.5 kg for tip pinch, and from 4.3 to 5.4 kg for power pinch. All patients showed decreased VAS from 7.2 to 1.7. Radial abduction improved from 71° preoperatively to 82° postoperatively. The modified Kapandji index showed improvement from 6 to 7.3, and mean DASH was improved from 41 to 17.8. The height of the space decreased from 10.8 to 7.1 mm. Only one case had a complication involving temporary sensory loss of the first dorsal web space, which resolved spontaneously. Conclusions The APL suspension ligamentoplasty for treatment of advanced first CMC arthritis yielded satisfactory functional results. PMID:26330961

  14. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy. Disuse atrophy occurs from a lack of physical activity. In most people, muscle atrophy is caused by not using the ...

  15. Muscle Disorders

    MedlinePlus

    Your muscles help you move and help your body work. Different types of muscles have different jobs. There are many problems that can affect muscles. Muscle disorders can cause weakness, pain or even ...

  16. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy: disuse and neurogenic. Disuse atrophy is caused by not using the muscles enough . This type of atrophy can often be ...

  17. Muscle Cramps

    MedlinePlus

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur after exercise or at night, ... to several minutes. It is a very common muscle problem. Muscle cramps can be caused by nerves ...

  18. Effect of inaction on function of fast and slow muscle spindles

    NASA Technical Reports Server (NTRS)

    Arutyunyan, R. S.

    1980-01-01

    There is no data on the comparative effect of tenotomy on the function of the muscle spindles of fast and slow muscles. This study covers this question. The experiments were conducted on cats. The musuculus extensor digitorum longus (m. EDL) was selected as the fast muscle, and the musculus soleus (m. Sol.) as the slow. In a comparison of the spontaneous activity of primary and secondary endings of the fast and slow muscle spindles (i.e., the activity with complete relaxation of the muscles) normally no difference between them was successfully found. The authors recorded the integrative, and not the individual activity, and secondly, under conditions of such recording technique, those slight changes that are observed in the fast muscle receptors could remain unnoticed.

  19. [Effects of surgery on muscles on clinical and radiographic findings in the hip joint region in cerebral palsy patients].

    PubMed

    Schejbalová, A; Havlas, V

    2008-10-01

    PURPOSE OF THE STUDY Isolated or combined surgical procedures on muscles around the hip joint are currently indicated by many authors. In cerebral palsy patients they are regarded as essential intervention. MATERIAL In the years 2005-2007, surgery in the hip joint region was essential for 150 children between 3 and 18 years of age. At the time of surgery, the patients' locomotion ranged from stage 1 to stage 7 of the Vojta system. METHODS The outcome was evaluated by clinical and radiographic examination at 2 and 6 months post-operatively and hip migration percentage and Wiberg's CE angle were measured. RESULTS The best clinical and radiographic outcomes were achieved in children younger than 6 years of age. On the other hand, isolated transfer of the distal rectus femoris muscle significantly affected pelvis anteflexion in adolescent patients. The most marked decrease in migration percentage was found after adductor tenotomy combined with surgery on the iliopsoas muscle (55.6 %) or when the two procedures were combined with distal rectus femoris transfer. DISCUSSION Combined surigical procedures, i.e., adductor tenotomy, surgery on the iliopsoas muscle or rectus femoris muscle and medial hamstrings, with fixation using an abduction modified Atlanta brace, are effective in patients with marked lateral hip migration who are younger that 6 years. Isolated adductor tenotomy and distal transfer of the rectus femoris muscle markedly improve standing position in walking patients. CONCLUSION An appropriate combination of surgical procedures on muscles in the hip region and on medial hamstrings can significantly improve the patient's locomotion and, if lateral migration is present, help to avoid surgery on bones. PMID:19026189

  20. Cerebral Palsy Tendon Transfers: Flexor Carpi Ulnaris to Extensor Carpi Radialis Brevis and Extensor Pollicis Longus Reroutement.

    PubMed

    Bansal, Anchal; Wall, Lindley B; Goldfarb, Charles A

    2016-08-01

    The flexor carpi ulnaris to extensor carpi radialis brevis transfer and extensor pollicis longus rerouting combined with thenar release are 2 successful surgical interventions for children with spastic cerebral palsy. The goal of both procedures is to improve quality of life for patients who have previously failed conservative management, and the degree of expected improvement is predicated on several patient variables, making careful patient selection crucial for ensuring successful outcomes. Here, surgical technique is described; risk factors are discussed, and outcomes related to both procedures are presented. PMID:27387086

  1. Efficacy of interference screw and double-docking methods using palmaris longus and GraftJacket for medial collateral ligament reconstruction of the elbow.

    PubMed

    Furukawa, Keizo; Pichora, Jamie; Steinmann, Scott; Faber, Kenneth J; Johnson, James A; King, Graham J W

    2007-01-01

    Single-strand elbow medial collateral ligament reconstruction strength was evaluated by use of double-docking and interference screw methods with either a palmaris longus tendon or GraftJacket as the reconstruction material. Thirteen upper extremities were mounted in 90 degrees of valgus orientation and subjected to cyclic valgus loading that increased progressively until failure occurred. The double-docking reconstructions outperformed the interference screw reconstructions (P < .05), whereas the palmaris longus and GraftJacket performed comparably (P > .05). The favorable initial strength of the GraftJacket make it a potentially viable alternative to the use of autogenous palmaris longus tendons; however, further studies are required to evaluate graft strength during healing. The clinical use of the double-docking technique of single-strand medial collateral ligament reconstruction should be considered because of its simplicity and initial strength. PMID:17368922

  2. Electromyographic analysis of lower limb muscles during the golf swing performed with three different clubs.

    PubMed

    Marta, Sérgio; Silva, Luís; Vaz, João Rocha; Castro, Maria António; Reinaldo, Gustavo; Pezarat-Correia, Pedro

    2016-01-01

    The aim of this study was to describe and compare the EMG patterns of select lower limb muscles throughout the golf swing, performed with three different clubs, in non-elite middle-aged players. Fourteen golfers performed eight swings each using, in random order, a pitching wedge, 7-iron and 4-iron. Surface electromyography (EMG) was recorded bilaterally from lower limb muscles: tibialis anterior, peroneus longus, gastrocnemius medialis, gastrocnemius lateralis, biceps femoris, semitendinosus, gluteus maximus, vastus medialis, rectus femoris and vastus lateralis. Three-dimensional high-speed video analysis was used to determine the golf swing phases. Results showed that, in average handicap golfers, the highest muscle activation levels occurred during the Forward Swing Phase, with the right semitendinosus and the right biceps femoris muscles producing the highest mean activation levels relative to maximal electromyography (70-76% and 68-73% EMG(MAX), respectively). Significant differences between the pitching wedge and the 4-iron club were found in the activation level of the left semitendinosus, right tibialis anterior, right peroneus longus, right vastus medialis, right rectus femuris and right gastrocnemius muscles. The lower limb muscles showed, in most cases and phases, higher mean values of activation on electromyography when golfers performed shots with a 4-iron club. PMID:26197882

  3. Individual muscle contributions to circular turning mechanics.

    PubMed

    Ventura, Jessica D; Klute, Glenn K; Neptune, Richard R

    2015-04-13

    Turning is an activity of daily living that involves both the acceleration of the body center-of-mass (COM) towards the center of curvature and rotation of the pelvis towards the new heading. The purpose of this study was to understand which muscles contribute to turning using experimentation, musculoskeletal modeling and simulation. Ten healthy adults consented to walk around a 1-m radius circular path at their self-selected walking speed and then along a straight line at the same speed. Forward dynamics simulations of the individual subjects during the turning and straight-line walking tasks were generated to identify the contributions of individual muscle groups to the body mediolateral and anterior-posterior COM acceleration impulse and to the pelvis angular acceleration impulse. The stance leg gluteus medius and ankle plantarflexor muscles and the swing leg adductor muscles were the primary contributors to redirect the body's COM relative to straight-line walking. In some cases, contributions to mediolateral COM acceleration were modulated through changes in leg orientation rather than through changes in muscle force. While modulation of the muscle contributions generally occurred in both the inner and outer legs, greater changes were observed during inner single-leg support than during outer single-leg support. Total pelvis angular acceleration was minimal during the single-support phase, but the swing leg muscles contributed significantly to balancing the internal and external rotation of the pelvis. The understanding of which muscles contribute to turning the body during walking may help guide the development of more effective locomotor therapies for those with movement impairments. PMID:25700608

  4. Adductor Canal Block for Postoperative Pain Treatment after Revision Knee Arthroplasty: A Blinded, Randomized, Placebo-Controlled Study

    PubMed Central

    Jæger, Pia; Koscielniak-Nielsen, Zbigniew J.; Schrøder, Henrik M.; Mathiesen, Ole; Henningsen, Maria H.; Lund, Jørgen; Jenstrup, Morten T.; Dahl, Jørgen B.

    2014-01-01

    Background Revision knee arthroplasty is assumed to be even more painful than primary knee arthroplasty and predominantly performed in chronic pain patients, which challenges postoperative pain treatment. We hypothesized that the adductor canal block, effective for pain relief after primary total knee arthroplasty, may reduce pain during knee flexion (primary endpoint: at 4 h) compared with placebo after revision total knee arthroplasty. Secondary endpoints were pain at rest, morphine consumption and morphine-related side effects. Methods We included patients scheduled for revision knee arthroplasty in general anesthesia into this blinded, placebo-controlled, randomized trial. Patients were allocated to an adductor canal block via a catheter with either ropivacaine or placebo; bolus of 0.75% ropivacaine/saline, followed by infusion of 0.2% ropivacaine/saline. Clinicaltrials.gov ID: NCT01191593. Results We enrolled 36 patients, of which 30 were analyzed. Mean pain scores during knee flexion at 4 h (primary endpoint) were: 52±22 versus 71±25 mm (mean difference 19, 95% CI: 1 to 37, P = 0.04), ropivacaine and placebo group respectively. When calculated as area under the curve (1–8 h/7 h) pain scores were 55±21 versus 69±21 mm during knee flexion (P = 0.11) and 39±18 versus 45±23 mm at rest (P = 0.43), ropivacaine and placebo group respectively. Groups were similar regarding morphine consumption and morphine-related side effects (P>0.05). Conclusions The only statistically significant difference found between groups was in the primary endpoint: pain during knee flexion at 4 h. However, due to a larger than anticipated dropout rate and heterogeneous study population, the study was underpowered. Trial Registration Clinicaltrials.gov NCT01191593 PMID:25386752

  5. Muscle Reaction Time During a Simulated Lateral Ankle Sprain After Wet-Ice Application or Cold-Water Immersion

    PubMed Central

    Thain, Peter K.; Bleakley, Christopher M.; Mitchell, Andrew C. S.

    2015-01-01

    Context Cryotherapy is used widely in sport and exercise medicine to manage acute injuries and facilitate rehabilitation. The analgesic effects of cryotherapy are well established; however, a potential caveat is that cooling tissue negatively affects neuromuscular control through delayed muscle reaction time. This topic is important to investigate because athletes often return to exercise, rehabilitation, or competitive activity immediately or shortly after cryotherapy. Objective To compare the effects of wet-ice application, cold-water immersion, and an untreated control condition on peroneus longus and tibialis anterior muscle reaction time during a simulated lateral ankle sprain. Design Randomized controlled clinical trial. Setting University of Hertfordshire human performance laboratory. Patients or Other Participants A total of 54 physically active individuals (age = 20.1 ± 1.5 years, height = 1.7 ± 0.07 m, mass = 66.7 ± 5.4 kg) who had no injury or history of ankle sprain. Intervention(s) Wet-ice application, cold-water immersion, or an untreated control condition applied to the ankle for 10 minutes. Main Outcome Measure(s) Muscle reaction time and muscle amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain were calculated. The ankle-sprain simulation incorporated a combined inversion and plantar-flexion movement. Results We observed no change in muscle reaction time or muscle amplitude after cryotherapy for either the peroneus longus or tibialis anterior (P > .05). Conclusions Ten minutes of joint cooling did not adversely affect muscle reaction time or muscle amplitude in response to a simulated lateral ankle sprain. These findings suggested that athletes can safely return to sporting activity immediately after icing. Further evidence showed that ice can be applied before ankle rehabilitation without adversely affecting dynamic neuromuscular control. Investigation in patients with acute ankle sprains is

  6. When phosphorylated at Thr148, the β2-subunit of AMP-activated kinase does not associate with glycogen in skeletal muscle.

    PubMed

    Xu, Hongyang; Frankenberg, Noni T; Lamb, Graham D; Gooley, Paul R; Stapleton, David I; Murphy, Robyn M

    2016-07-01

    The 5'-AMP-activated protein kinase (AMPK), a heterotrimeric complex that functions as an intracellular fuel sensor that affects metabolism, is activated in skeletal muscle in response to exercise and utilization of stored energy. The diffusibility properties of α- and β-AMPK were examined in isolated skeletal muscle fiber segments dissected from rat fast-twitch extensor digitorum longus and oxidative soleus muscles from which the surface membranes were removed by mechanical dissection. After the muscle segments were washed for 1 and 10 min, ∼60% and 75%, respectively, of the total AMPK pools were found in the diffusible fraction. After in vitro stimulation of the muscle, which resulted in an ∼80% decline in maximal force, 20% of the diffusible pool became bound in the fiber. This bound pool was not associated with glycogen, as determined by addition of a wash step containing amylase. Stimulation of extensor digitorum longus muscles resulted in 28% glycogen utilization and a 40% increase in phosphorylation of the downstream AMPK target acetyl carboxylase-CoA. This, however, had no effect on the proportion of total β2-AMPK that was phosphorylated in whole muscle homogenates measured by immunoprecipitation. These findings suggest that, in rat skeletal muscle, β2-AMPK is not associated with glycogen and that activation of AMPK by muscle contraction does not dephosphorylate β2-AMPK. These findings question the physiological relevance of the carbohydrate-binding function of β2-AMPK in skeletal muscle. PMID:27099349

  7. Role of glucocorticoids in increased muscle glutamine production in starvation

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Henriksen, Erik J.; Cook, Paul H.

    1988-01-01

    The role of glucocorticoids in the synthesis of muscle glutamine during starvation was investigated in adrenalectomized fasted rats injected with cortisol (1 mg/100 g body weight). It was found that administration of cortisol in vivo increased (compared to nontreated starved adrenalectomized controls) the glutamine/glutamate ratio and the activity of glutamine synthetase in the diaphragm and the extensor digitorum muscles, and that these effects were abolished by prior treatment with actinomycin D or proflavine. The results obtained in in vitro experiments, using fresh-frozen soleus, extensor digitorum longus, and diaphragm muscle preparations, supported the in vivo indications of the cortisol-enhanced glutamine synthesis and protein turnover in starved adrenalectomized animals.

  8. Problems in analysis of data from muscles of rats flown in space

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Henriksen, E.; Jacob, S.; Satarug, S.; Cook, P.

    1988-01-01

    Comparison of hindlimb muscles of rats flown on Spacelab-3 or tail-traction-suspended showed that 11-17 h reloading post-flight might have altered the results. Soleus atrophied, plantaris, gastrocnemius and extensor digitorum longus grew slower, and tibialis anterior grew normally. In both flight and simulated soleus and plantaris, higher tyrosine and greater glutamine/glutamate ratio indicated negative protein balance and increased glutamine production, respectively, relative to controls. Aspartate was lower in these muscles. Reloading generally decreased tyrosine, but increased aspartate and glutamine/glutamate. These data showed that at 12 h of reloading after flight is characterized by reversal to varying extents of effects of unloading.

  9. Problems in analysis of data from muscles of rats flow in space

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Henriksen, Erik; Jacob, Stephan; Satarug, Soisungwan; Cook, Paul

    1988-01-01

    Comparison of hind-limb muscles of rats flown on Spacelab-3 or tail-traction-suspended showed that 11-17 h reloading postflight might have altered the results. Soleus atrophied; plantaris, gastrocnemius, and extensor digitorum longus grew slower; and tibialis anteiror grew normally. In both flight and simulated soleus and plantaris, higher tyrosine and greater glutamine/glutamate ratio indicated negative protein balance and increased glutamine production, respectively, relative to controls. Aspartate was lower in these muscles. Reloading generally decreased tyrosine, but increased aspartate and glutamine/glutamate. These data showed that 12 h of reloading after flight is characterized by reversal, to varying extents, of the effects of unloading.

  10. beta-adrenergic effects on carbohydrate metabolism in the unweighted rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Kirby, Christopher R.; Tischler, Marc E.

    1990-01-01

    The effect of unweighting on the response of the soleus-muscle carbohydrate metabolism to a beta-adrenergic agonist (isoproterenol) was investigated in rats that were subjected to three days of tail-cast suspension. It was found that isoproterenol promoted glycogen degradation in soleus from suspended rats to a higher degree than in weighted soleus from control rats, and had no effect in unweighted digitorum longus. However, isoproterenol did not have a greater inhibitory effect on the net uptake of tritium-labeled 2-deoxy-glucose by the unweighted soleus and that isoproterenol inhibited hexose phosphorylation less in the unweighted than in the control muscle.

  11. Hallux checkrein deformity resulting from the scarring of long flexor muscle belly - case report.

    PubMed

    Boszczyk, Andrzej; Zakrzewski, Piotr; Pomianowski, Stanisław

    2015-01-01

    A case of posttraumatic checkrein deformity of the hallux is presented. This deformity is most often caused by scarring of the muscle belly or tethering of the tendon. A 22-year old woman developed a hallux checkrein deformity after a bimaleolar fracture. Intraoperatively, a linear scar tethering the muscle belly to the posterior tibia was observed. Resection of the scar allowed for full flexor hallucis longus mobility. Full hallux range of motion as well as foot function was restored. The cause of the checkrein deformity in our patient was a scar tethering the flexor hallucis belly to the posterior tibia. PMID:25759157

  12. Neural control of skeletal muscle cholinesterase: a study using organ-cultured rat muscle.

    PubMed Central

    Davey, B; Younkin, L H; Younkin, S G

    1979-01-01

    1. It has been proposed that the influence of innervation on the cholinesterase activity (ChE) of skeletal muscle and on end-plate ChE in particular is mediated by trophic substance(s) moved by axonal transport and released from nerve. We have tested this hypothesis using rat extensor digitorum longus (e.d.l.) and diaphragm muscles denervated in vitro for several days and then maintained in organ culture to assay putative trophic substance(s). 2. The cholinesterase activity (ChE) of rat extensor digitorum longus (e.d.l.) muscles decreased dramatically after 5 days of denervation in vivo as previously reported. The ChE of rat e.d.l. muscles denervated in vivo for 3 days and then maintained in organ culture for 2 days was essentially identical to that of muscles denervated 5 days in vivo. 3. The ChE OF E.D.L. MUSCLES DENERVATED IN VIVO FOR 3 DAYS AND THEN MAINTAINED FOR 2 DAYS IN CULTURE MEDIUM SUPPLEMENTED WITH SCIATIC NERVE OR INNERVATED MUSCLE EXTRACT WAS SIGNIFICANTLY HIGHER THAN THAT OF MUSCLES DENERVATED IN VIVO FOR 5 DAYS OR DENERVATED IN VIVO FOR 3 DAYS AND THEN CULTURED FOR 2 DAYS IN CULTURE MEDIUM ALONE. Supplementing the culture medium with brain or spinal cord extract also significantly increased the ChE of organ-cultured e.d.l. muscles. 4. Supplementing the culture medium with liver or spleen extract or with the extract of muscle denervated for 3--7 days in vivo before extraction did not increase the ChE or organ-cultured e.d.l. muscles. 5. The effect of muscle extract on the ChE of organ-cultured e.d.l. muscles was dose dependent and occurred gradually reaching a maximum after approximately 24 h of culture. 6. Substance(s) which increased the ChE of organ-cultured e.d.l. muscles were found to accumulate in transected sciatic nerve in the region just proximal to the site of transection where substances moved by axonal transport are known to accumulate. 7. Media conditioned with neurally stimulated e.d.l. or diaphragm muscles caused a substantial and

  13. Finite-element modelling reveals force modulation of jaw adductors in stag beetles

    PubMed Central

    Goyens, J.; Soons, J.; Aerts, P.; Dirckx, J.

    2014-01-01

    Male stag beetles carry large and heavy mandibles that arose through sexual selection over mating rights. Although the mandibles of Cyclommatus metallifer males are used in pugnacious fights, they are surprisingly slender. Our bite force measurements show a muscle force reduction of 18% for tip biting when compared with bites with the teeth located halfway along the mandibles. This suggests a behavioural adaptation to prevent failure. We confirmed this by constructing finite-element (FE) models that mimic both natural bite situations as well as the hypothetical situation of tip biting without muscle force modulation. These models, based on micro-CT images, investigate the material stresses in the mandibles for different combinations of bite location and muscle force. Young's modulus of the cuticle was experimentally determined to be 5.1 GPa with the double indentation method, and the model was validated by digital image correlation on living beetles. FE analysis proves to be a valuable tool in the investigation of the trade-offs of (animal) weapon morphology and usage. Furthermore, the demonstrated bite force modulation in male stag beetles suggests the presence of mechanosensors inside the armature. PMID:25297317

  14. Use and fibre type composition in limb muscles of cats.

    PubMed

    Kernell, D; Hensbergen, E

    1998-12-01

    As a background for studies concerning the effects of training on the properties and fibre type composition of skeletal muscle, information is needed concerning the normal duration of muscle use per day. Data of this kind were collected from adult cats, using implanted electrodes for electromyographic recording from hindlimb muscles acting across the ankle joint: extensor digitorum longus (EDL), tibialis anterior (TA), peroneus longus (PL), lateral gastrocnemius (LG) and soleus (SOL). The accumulated duration of any recorded activity was expressed, for each electrode site, as a percentage of total sampling time ("duty time"). As measured intermittently across 24 h periods (4 min sampling per 30 min), these duty times were markedly and significantly different among the various muscles, averages varying from 1.9% for EDL up to 9.5% for posterior PL and 13.9% for SOL. The distribution of activity across the various muscles was markedly different between highly active periods (mid-day) and periods of rest (mid-night). The 24 h duty times were strongly and significantly correlated to duty times obtained for only mid-day activity but not to those for only mid-night activity. Following the end of the physiological measurements, the animals were sacrificed and the muscles were analyzed with regard to fibre type composition (histochemistry). There was a significant positive correlation between the 24 h duty time and the percentage of type I fibres ("slow"). In the Discussion, the present results from cats are briefly compared to previously published data for humans. PMID:10099959

  15. Sex-specific prediction of neck muscle volumes

    PubMed Central

    Zheng, Liying; Siegmund, Gunter; Ozyigit, Gulsum; Vasavada, Anita

    2013-01-01

    Biomechanical analyses of the head and neck system require knowledge of neck muscle forces, which are often estimated from neck muscle volumes. Here we use magnetic resonance images (MRIs) of 17 subjects (6 females, 11 males) to develop a method to predict the volumes of 16 neck muscles by first predicting the total neck muscle volume (TMV) from subject sex and anthropometry, and then predicting individual neck muscle volumes using fixed volume proportions for each neck muscle. We hypothesized that the regression equations for total muscle volume as well as individual muscle volume proportions would be sex specific. We found that females have 59% lower TMV compared to males (females: 510±43 cm3, males: 814±64 cm3; p<0.0001) and that TMV (in cm3) was best predicted by a regression equation that included sex (male=0, female=1) and neck circumference (NC, in cm): TMV=269+13.7NC−233 Sex (adjusted R2=0.868; p<0.01). Individual muscle volume proportions were not sex specific for most neck muscles, although small sex differences existed for three neck muscles (obliqus capitis inferior, longus capitis, and sternocleidomastoid). When predicting individual muscle volumes in subjects not used to develop the model, coefficients of concordance ranged from 0.91 to 0.99. This method of predicting individual neck muscle volumes has the advantage of using only one sex-specific regression equation and one set of sex-specific volume proportions. These data can be used in biomechanical models to estimate muscle forces and tissue loads in the cervical spine. PMID:23351366

  16. PPARδ expression is influenced by muscle activity and induces slow muscle properties in adult rat muscles after somatic gene transfer

    PubMed Central

    Lunde, Ida G; Ekmark, Merete; Rana, Zaheer A; Buonanno, Andres; Gundersen, Kristian

    2007-01-01

    The effects of exercise on skeletal muscle are mediated by a coupling between muscle electrical activity and gene expression. Several activity correlates, such as intracellular Ca2+, hypoxia and metabolites like free fatty acids (FFAs), might initiate signalling pathways regulating fibre-type-specific genes. FFAs can be sensed by lipid-dependent transcription factors of the peroxisome proliferator-activated receptor (PPAR) family. We found that the mRNA for the predominant muscle isoform, PPARδ, was three-fold higher in the slow/oxidative soleus compared to the fast/glycolytic extensor digitorum longus (EDL) muscle. In histological sections of the soleus, the most oxidative fibres display the highest levels of PPARδ protein. When the soleus muscle was stimulated electrically by a pattern mimicking fast/glycolytic IIb motor units, the mRNA level of PPARδ was reduced to less than half within 24 h. In the EDL, a three-fold increase was observed after slow type I-like electrical stimulation. When a constitutively active form of PPARδ was overexpressed for 14 days in normally active adult fibres after somatic gene transfer, the number of I/IIa hybrids in the EDL more than tripled, IIa fibres increased from 14% to 25%, and IIb fibres decreased from 55% to 45%. The level of succinate dehydrogenase activity increased and size decreased, also when compared to normal fibres of the same type. Thus PPARδ can change myosin heavy chain, oxidative enzymes and size locally in muscle cells in the absence of general exercise. Previous studies on PPARδ in muscle have been performed in transgenic animals where the transgene has been present during muscle development. Our data suggest that PPARδ can mediate activity effects acutely in pre-existing adult fibres, and thus is an important link in excitation–transcription coupling. PMID:17463039

  17. Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy.

    PubMed

    de Theije, C C; Langen, R C J; Lamers, W H; Gosker, H R; Schols, A M W J; Köhler, S E

    2015-01-15

    Hypoxia as a consequence of acute and chronic respiratory disease has been associated with muscle atrophy. This study investigated the sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. Male mice were exposed to 8% normobaric oxygen for up to 21 days. Oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles were isolated, weighed, and assayed for expression profiles of the ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and glucocorticoid receptor (GR) and hypoxia-inducible factor-1α (HIF1α) signaling. Fiber-type composition and the capillary network were investigated. Hypoxia-induced muscle atrophy was more prominent in the EDL than the soleus muscle. Although increased expression of HIF1α target genes showed that both muscle types sensed hypoxia, their adaptive responses differed. Atrophy consistently involved a hypoxia-specific effect (i.e., not attributable to a hypoxia-mediated reduction of food intake) in the EDL only. Hypoxia-specific activation of the UPS and ALP and increased expression of the glucocorticoid receptor (Gr) and its target genes were also mainly observed in the EDL. In the soleus, stimulation of gene expression of those pathways could be mimicked to a large extent by food restriction alone. Hypoxia increased the number of capillary contacts per fiber cross-sectional area in both muscles. In the EDL, this was due to type II fiber atrophy, whereas in the soleus the absolute number of capillary contacts increased. These responses represent two distinct modes to improve oxygen supply to muscle fibers, but may aggravate muscle atrophy in chronic obstructive pulmonary disease patients who have a predominance of type II fibers. PMID:25429096

  18. Fatigue resistance of rat extraocular muscles does not depend on creatine kinase activity

    PubMed Central

    McMullen, Colleen A; Hayeß, Katrin; Andrade, Francisco H

    2005-01-01

    Background Creatine kinase (CK) links phosphocreatine, an energy storage system, to cellular ATPases. CK activity serves as a temporal and spatial buffer for ATP content, particularly in fast-twitch skeletal muscles. The extraocular muscles are notoriously fast and active, suggesting the need for efficient ATP buffering. This study tested the hypotheses that (1) CK isoform expression and activity in rat extraocular muscles would be higher, and (2) the resistance of these muscles to fatigue would depend on CK activity. Results We found that mRNA and protein levels for cytosolic and mitochondrial CK isoforms were lower in the extraocular muscles than in extensor digitorum longus (EDL). Total CK activity was correspondingly decreased in the extraocular muscles. Moreover, cytoskeletal components of the sarcomeric M line, where a fraction of CK activity is found, were downregulated in the extraocular muscles as was shown by immunocytochemistry and western blotting. CK inhibition significantly accelerated the development of fatigue in EDL muscle bundles, but had no major effect on the extraocular muscles. Searching for alternative ATP buffers that could compensate for the relative lack of CK in extraocular muscles, we determined that mRNAs for two adenylate kinase (AK) isoforms were expressed at higher levels in these muscles. Total AK activity was similar in EDL and extraocular muscles. Conclusion These data indicate that the characteristic fatigue resistance of the extraocular muscles does not depend on CK activity. PMID:16107216

  19. Skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  20. Chronic exercise increases insulin binding in muscles but not liver.

    PubMed

    Bonen, A; Clune, P A; Tan, M H

    1986-08-01

    It has been postulated that the improved glucose tolerance provoked by chronic exercise is primarily attributable to increased insulin binding in skeletal muscle. Therefore, we investigated the effects of progressively increased training (6 wk) on insulin binding by five hindlimb skeletal muscles and in liver. In the trained animals serum insulin levels at rest were lower either in a fed (P less than 0.05) or fasted (P less than 0.05) state and after an oral glucose tolerance test (n = 8) (P less than 0.05). Twenty-four hours after the last exercise bout sections of the liver, soleus (S), plantaris (P), extensor digitorum longus (EDL), and red (RG) and white gastrocnemius (WG) muscles were pooled from four to six rats. From control animals, killed at the same time of day, muscles and liver were also obtained. Insulin binding to plasma membranes increased in S, P, and EDL (P less than 0.05) but not in WG (P = 0.07), RG (P greater than 0.1), or in liver (P greater than 0.1). There were insulin binding differences among muscles (P less than 0.05). Comparison of rank orders of insulin binding data with published glucose transport data for the same muscles revealed that these parameters do not correspond well. In conclusion, insulin binding to muscle is shown to be heterogeneous and training can increase insulin binding to selected muscles but not liver. PMID:3526921

  1. Skeletal muscle response to spaceflight, whole body suspension, and recovery in rats

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Fell, R. D.; Dombrowski, M. J.

    1990-01-01

    The effects of a 7-day spaceflight (SF), 7- and 14-day-long whole body suspension (WBS), and 7-day-long recovery on the muscle weight and the morphology of the soleus and the extensor digitorum longus (EDL) of rats were investigated. It was found that the effect of 7-day-long SF and WBS were highly comparable for both the soleus and the EDL, although the soleus muscle from SF rats showed greater cross-sectional area reduction than that from WBS rats. With a longer duration of WBS, there was a continued reduction in cross-sectional fast-twitch fiber area. Muscle plasticity, in terms of fiber and capillary responses, showed differences in responses of the two types of muscles, indicating that antigravity posture muscles are highly susceptible to unloading.

  2. Muscle protein and glycogen responses to recovery from hypogravity and unloading by tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Tischler, M. E.; Jacob, S.; Cook, P. H.

    1985-01-01

    Previous studies in this laboratory using the tail-bast hindlimb suspension model have shown that there are specific changes in protein and carbohydrate metabolism in the soleus muscle due to unloading. For example, 6 days of unloading caused a 27% decrease in mass and a 60% increase in glycogen content in the soleus muscle, while the extensor digitorum longus muscle was unaffected. Also, fresh tissue tyrosine and its in vitro release from the muscle are increased in the unloaded soleus, indicating that this condition causes a more negative protein balance. With these results in mind, studies to investigate the effect of hypogravity on protein and carbohydrate metabolism in a number of rat hindlimb muscles were carried out.

  3. Muscle protein and glycogen responses to recovery from hypogravity and unloading by tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Tischler, M. E.; Jacob, S.; Cook, P. H.

    1985-01-01

    Previous studies in this laboratory using the tail-bast hindlimb suspension model have shown that there are specific changes in protein and carbohydrate metabolism in the soleus muscle due to unloading. For example, 6 days of unloading caused a 27 percent decrease in mass and a 60 percent increse in glycogen content in the soleus muscle, while the extensor digitorum longus muscle was unaffected. Also, fresh tissue tyrosine and its in vitro release from the muscle are increased in the unloaded soleus, indicating that this condition causes a more negative protein balance. With these results in mind, studies to investigate the effect of hypogravity on protein and carbohydrate metabolism in a number of rat hindlimb muscles were carried out.

  4. Effect of inactivity and passive stretch on protein turnover in phasic and postural rat muscles

    NASA Technical Reports Server (NTRS)

    Loughna, P.; Goldspink, G.; Goldspink, D. F.

    1986-01-01

    Muscle atrophy in humans can occur during prolonged bed rest, plaster cast immobilization, and space flight. In the present study, the suspension model used by Musacchia et al. (1983) is employed to investigate changes in protein synthesis and degradation in fast-twitch phasic (extensor digitorum longus) and slow-twitch postural (soleus) muscles in the rat, following hypokinesia and hypodynamia. In addition, the use of passive stretch was examined as a means of preventing atrophy. The obtained results suggest that the mechanisms controlling the processes of protein synthesis and protein breakdown during muscle disuse atrophy may be independent of each other. It appears, however, that the muscle atrophy due to hypokinesia and hypodynamia can be temporarily prevented by passively stretching a muscle.

  5. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  6. Electrical Muscle Stimulation: An Effective Form of Exercise and Early Mobilization to Preserve Muscle Strength in Critically Ill Patients

    PubMed Central

    Karatzanos, Eleftherios; Gerovasili, Vasiliki; Zervakis, Dimitrios; Tripodaki, Elli-Sophia; Apostolou, Kleovoulos; Vasileiadis, Ioannis; Papadopoulos, Emmanouil; Mitsiou, Georgios; Tsimpouki, Dimitra; Routsi, Christina; Nanas, Serafim

    2012-01-01

    Purpose. This is a secondary analysis of previously published data to investigate the effects of electrical muscle stimulation (EMS) on strength of various muscle groups in critically ill patients. Methods. One hundred forty-two consecutive patients, with APACHE II score ≥ 13, were randomly assigned to the EMS or the control group. EMS sessions were applied daily on vastus lateralis, vastus medialis, and peroneus longus of both lower extremities. Various muscle groups were evaluated with the Medical Research Council (MRC) scale for muscle strength. Handgrip strength assessment was also employed. Results. Twenty four patients in the EMS group and 28 patients in the control group were finally evaluated. EMS patients achieved higher MRC scores than controls (P ≤ 0.05) in wrist flexion, hip flexion, knee extension, and ankle dorsiflexion. Collectively, the EMS group performed higher (P < 0.01) in the legs and overall. Handgrip strength correlated (P ≤ 0.01) with the upper and lower extremities' muscle strength and the overall MRC scores. Conclusions. EMS has beneficial effects on the strength of critically ill patients mainly affecting muscle groups stimulated, while it may also affect muscle groups not involved presenting itself as a potential effective means of muscle strength preservation and early mobilization in this patient population. PMID:22545212

  7. Effect of sloped walking on lower limb muscle forces.

    PubMed

    Alexander, Nathalie; Schwameder, Hermann

    2016-06-01

    Lower limb joint loadings are increased during sloped walking compared to level walking and muscle forces are major contributors to lower limb joint forces. Therefore, the aim of this study was to analyze lower limb muscle forces during sloped walking at different inclinations. Eighteen healthy male participants (27.0±4.7y, 1.80±0.05m, 74.5±8.2kg) walked at a pre-set speed of 1.1m/s on a ramp at the inclinations of 0°, ±6°, ±12° and ±18°. Kinematic data were captured with a motion capture system and kinetic data were recorded with two force plates imbedded into the ramp. A musculoskeletal model was used to compute lower limb muscle forces (normalized to body weight and gait cycle duration). During downhill walking gluteus maximus, quadriceps, soleus, peroneus and tibialis anterior muscle forces increased (p≤0.002) compared to level walking, while gluteus minimus, piriformis, adductor, iliopsoas, hamstrings and gastrocnemii muscle forces decreased (p≤0.002). Uphill walking decreased gluteus minimus, iliopsoas and tibialis anterior muscle forces (p≤0.002), while all other muscle forces increased (p≤0.002, except gluteus medius). Joint-muscle-force waveforms provided information on possible muscle contributions to joint compression forces. The most important muscles were: gluteus medius for hip forces, quadriceps and gastrocnemii for tibiofemoral forces, quadriceps for patellofemoral forces and triceps surae for ankle forces. The contribution of each muscle changed with the inclination during sloped walking compared to level walking. The current study provided important information on muscle forces during sloped walking that can be useful for rehabilitation and training procedures. PMID:27264405

  8. Muscle disorder

    MedlinePlus

    Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs of a muscle disorder, tests such as an electromyogram , ...

  9. Muscle aches

    MedlinePlus

    ... common cause of muscle aches and pain is fibromyalgia , a condition that causes tenderness in your muscles ... imbalance, such as too little potassium or calcium Fibromyalgia Infections, including the flu, Lyme disease , malaria , muscle ...

  10. Muscle disorder

    MedlinePlus

    Myopathic changes; Myopathy; Muscle problem ... Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs ...

  11. Maintenance of skeletal muscle energy homeostasis during prolonged wintertime fasting in the raccoon dog (Nyctereutes procyonoides).

    PubMed

    Kinnunen, Sanni; Mänttäri, Satu; Herzig, Karl-Heinz; Nieminen, Petteri; Mustonen, Anne-Mari; Saarela, Seppo

    2015-05-01

    The raccoon dog (Nyctereutes procyonoides) is a canid species with autumnal fattening and prolonged wintertime fasting. Nonpathological body weight cycling and the ability to tolerate food deficiency make this species a unique subject for studying physiological mechanisms in energy metabolism. AMP-activated protein kinase (AMPK) is a cellular energy sensor regulating energy homeostasis. During acute fasting, AMPK promotes fatty acid oxidation and enhances glucose uptake. We evaluated the effects of prolonged fasting on muscle energy metabolism in farm-bred raccoon dogs. Total and phosphorylated AMPK and acetyl-CoA carboxylase (ACC), glucose transporter 4 (GLUT 4), insulin receptor and protein kinase B (Akt) protein expressions of hind limb muscles were determined by Western blot after 10 weeks of fasting. Plasma insulin, leptin, ghrelin, glucose and free fatty acid levels were measured, and muscle myosin heavy chain (MHC) isoform composition analyzed. Fasting had no effects on AMPK phosphorylation, but total AMPK expression decreased in m. rectus femoris, m. tibialis anterior and m. extensor digitorum longus resulting in a higher phosphorylation ratio. Decreased total expression was also observed for ACC. Fasting did not influence GLUT 4, insulin receptor or Akt expression, but Akt phosphorylation was lower in m. flexor digitorum superficialis and m. extensor digitorum longus. Three MHC isoforms (I, IIa and IIx) were detected without differences in composition between the fasted and control animals. The studied muscles were resistant to prolonged fasting indicating that raccoon dogs have an effective molecular regulatory system for preserving skeletal muscle function during wintertime immobility and fasting. PMID:25652584

  12. Noninvasive analysis of human neck muscle function

    NASA Technical Reports Server (NTRS)

    Conley, M. S.; Meyer, R. A.; Bloomberg, J. J.; Feeback, D. L.; Dudley, G. A.

    1995-01-01

    STUDY DESIGN. Muscle use evoked by exercise was determined by quantifying shifts in signal relaxation times of T2-weighted magnetic resonance images. Images were collected at rest and after exercise at each of two intensities (moderate and intense) for each of four head movements: 1) extension, 2) flexion, 3) rotation, and 4) lateral flexion. OBJECTIVE. This study examined the intensity and pattern of neck muscle use evoked by various movements of the head. The results will help elucidate the pathophysiology, and thus methods for treating disorders of the cervical musculoskeletal system. SUMMARY OF BACKGROUND DATA. Exercise-induced contrast shifts in T2 has been shown to indicate muscle use during the activity. The noninvasive nature of magnetic resonance imaging appears to make it an ideal approach for studying the function of the complex neuromuscular system of the neck. METHODS. The extent of T2 increase was examined to gauge how intensely nine different neck muscles or muscle pairs were used in seven subjects. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation was assessed to infer the pattern of use among and within individual neck muscles or muscle pairs. RESULTS. Signal relaxation increased with exercise intensity for each head movement. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation also increased with exercise load. Neck muscles or muscle pairs extensively used to perform each head movement were: extension--semispinalis capitis and cervicis and splenius capitis; flexion--sternocleidomastoid and longus capitis and colli; rotation--splenius capitis, levator scapulae, scalenus, semispinalis capitis ipsilateral to the rotation, and sternocleidomastoid contralateral; and lateral flexion--sternocleidomastoid CONCLUSION. The results of this study, in part, agree with the purported functions of neck muscles derived from anatomic location. This also was true for the few

  13. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles

    PubMed Central

    Neyroud, Daria; Cheng, Arthur J.; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan

    2016-01-01

    The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on–1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on–3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased “voluntary activation.” In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT.

  14. Synthesis of amino acids in weight bearing and non-weight bearing leg muscles of suspended rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.

    1982-01-01

    The effect of hypokinesia (HYP) for 6 days on the de novo synthesis of glutamine (GLN) and glutamate (GLU), and of alanine was tested in isolated leg muscles of intact, adrenalectomized (ADX) and ADX cortisol-treated rats. The net synthesis of GLN and GLU was lower in soleus muscles of HYP animals of these three groups of rats. The synthesis of alanine was lowered by HYP in ADX animals and apparently raised by HYP in ADX cortisol-treated rats. No HYP effect was seen in the extensor digitorum longus (EDL) muscles of these animals. Although ADX lowered the synthesis of GLN and GLU in soleus muscles of control rats, while cortisol treatment restored this process to near normal, neither ADX nor cortisol treatment produced any effect in the HYP animals. However, effects of ADX and cortisol treatment on synthesis of GLN and GLU in EDL muscles and of alanine in both muscles seemed normal in HYP animals.

  15. Cross-innervation of the thyroarytenoid muscle by a branch from the external division of the superior laryngeal nerve.

    PubMed

    Nasri, S; Beizai, P; Ye, M; Sercarz, J A; Kim, Y M; Berke, G S

    1997-07-01

    The neuroanatomy of the larynx was explored in seven dogs to assess whether there is motor innervation to the thyroarytenoid (TA) muscle from the external division of the superior laryngeal nerve (ExSLN). In 3 animals, such innervation was identified. Electrical stimulation of microelectrodes applied to the ExSLN resulted in contraction of the TA muscle, indicating that this nerve is motor in function. This was confirmed by electromyographic recordings from the TA muscle. Videolaryngostroboscopy revealed improvement in vocal fold vibration following stimulation of the ExSLN compared to without it. Previously, the TA muscle was thought to be innervated solely by the recurrent laryngeal nerve. This additional pathway from the ExSLN to the TA muscle may have important clinical implications in the treatment of neurologic laryngeal disorders such as adductor spasmodic dysphonia. PMID:9228862

  16. Variations in abductor pollicis longus and extensor pollicis brevis tendons in the Quervain syndrome: a surgical and anatomical study.

    PubMed

    Kulthanan, Teerawat; Chareonwat, Boonsong

    2007-01-01

    Eighty-two wrists of Thai cadavers and the wrists of 66 patients with de Quervain syndrome were studied, and the variation in the number of tendons and the fibro-osseous tunnel in the first extensor compartment were recorded. The abductor pollicis longus had more than one tendon in 73 of the cadavers (89%) and in 32 of the patients (49%) (p <0.001). The extensor pollicis brevis was a single tendon in 80 (98%) and 62 (94%) of cadavers and patients, respectively. There was division with the septum that made a fibro-osseous tunnel in the first extensor compartment in 30/82 (37%) cadavers and in 38/66 (58%) patients with de Quervain syndrome (p = 0.01). The results indicate that the number of fibro-osseous tunnels and multiple compartments in the first extensor compartment may be associated with a predisposition to de Quervain syndrome. PMID:17484184

  17. The effect of heat stress on skeletal muscle contractile properties.

    PubMed

    Locke, Marius; Celotti, Carlo

    2014-07-01

    An elevated heat-shock protein (HSP) content protects cells and tissues, including skeletal muscles, from certain stressors. We determined if heat stress and the elevated HSP content that results is correlated with protection of contractile characteristics of isolated fast and slow skeletal muscles when contracting at elevated temperatures. To elevate muscle HSP content, one hindlimb of Sprague-Dawley rats (21-28 days old, 70-90 g) was subjected to a 15 min 42 °C heat-stress. Twenty-four hours later, both extensor digitorum longus (EDL) and soleus muscles were removed, mounted in either 20 °C or 42 °C Krebs-Ringer solution, and electrically stimulated. Controls consisted of the same muscles from the contra-lateral (non-stressed) hindlimbs as well as muscles from other (unstressed) animals. Isolated muscles were twitched and brought to tetanus every 5 min for 30 min. As expected, HSP content was elevated in muscles from the heat-stressed limbs when compared with controls. Regardless of prior treatment, both EDL and soleus twitch tensions were lower at 42 °C when compared with 20 °C. In addition, when incubated at 42 °C, both muscles showed a drop in twitch tension between 5 and 30 min. For tetanic tension, both muscles also showed an increase in tension between 5 and 30 min when stimulated at 20 °C regardless of treatment but when stimulated at 42 °C no change was observed. No protective effect of an elevated HSP content was observed for either muscle. In conclusion, although heat stress caused an elevation in HSP content, no protective effects were conferred to isolated contracting muscles. PMID:24264930

  18. Subtalar arthrodesis with flexor digitorum longus transfer and spring ligament repair for treatment of posterior tibial tendon insufficiency.

    PubMed

    Johnson, J E; Cohen, B E; DiGiovanni, B F; Lamdan, R

    2000-09-01

    The surgical treatment of flexible pes planovalgus deformities resulting from Stage 2 posterior tibial tendon insufficiency is controversial and many techniques have been proposed. We retrospectively reviewed the results of subtalar arthrodesis combined with spring ligament repair/reefing and flexor digitorum longus (FDL) transfer to the navicular. There were sixteen patients (seventeen feet) with an average follow-up of 27 months (9-52). All deformities were passively correctable. The average age was 56 yrs (39-78). All patients had failed conservative management, 88% had previously been treated with orthotics, and 53% had lateral pain from subfibular impingement. Two patients were noted to have degenerative changes of the subtalar joint. Successful subtalar joint fusion occurred in all patients with an average time to radiographic union of 10.1 weeks (5-24). The average AOFAS hindfoot score and Maryland foot score postoperatively was 82 and 86 respectively. Standing radiographic analysis demonstrated an average improvement in the AP talo-1st metatarsal angle of 6 degrees (24 degrees preoperative, 18 degrees postoperative). The talonavicular coverage angle improved an average of 17 degrees (34 degrees preoperative, 17 degrees postoperative). The lateral talo-1st metatarsal angle improved an average of 10 degrees (18 degrees preoperative, 8 degrees postoperative). The lateral talocalcaneal angle decreased an average of 21o (55 degrees preoperative, 34 degrees postoperative). The distance of the medial cuneiform to the floor on the lateral radiograph averaged 12mm preoperatively and 18mm postoperatively (avg. improvement 6mm). The combination of the flexor digitorum longus tendon transfer and spring ligament repair with subtalar arthrodesis is an effective and reliable procedure which provides excellent correction of hindfoot valgus as well as forefoot abduction and restoration of the height of the longitudinal arch. These results compare favorably with flexor

  19. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    SciTech Connect

    Hamrick, Mark W.; Herberg, Samuel; Arounleut, Phonepasong; He, Hong-Zhi; Shiver, Austin; Qi, Rui-Qun; Zhou, Li; Isales, Carlos M.; and others

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  20. Digital image analysis of striated skeletal muscle tissue injury during reperfusion after induced ischemia

    NASA Astrophysics Data System (ADS)

    Rosero Salazar, Doris Haydee; Salazar Monsalve, Liliana

    2015-01-01

    Conditions such as surgical procedures or vascular diseases produce arterial ischemia and reperfusion injuries, which generate changes in peripheral tissues and organs, for instance, in striated skeletal muscle. To determine such changes, we conducted an experimental method in which 42 male Wistar rat were selected, to be undergone to tourniquet application on the right forelimb and left hind limb, to induce ischemia during one and three hours, followed by reperfusion periods starting at one hour and it was prolonged up to 32 days. Extensor carpi radialis longus and soleus respectively, were obtained to be processed for histochemical and morphometric analysis. By means of image processing and detection of regions of interest, variations of areas occupied by muscle fibers and intramuscular extracellular matrix (IM-ECM) throughout reperfusion were observed. In extensor carpi radialis longus, results shown reduction in the area occupied by muscle fibers; this change is significant between one hour and three hours ischemia followed by 16 hours, 48 hours and 32 days reperfusión (p˂0.005). To compare only periods of reperfusión that continued to three hours ischemia, were found significant differences, as well. For area occupied by IM-ECM, were identified increments in extensor carpi radialis longus by three hours ischemia and eight to 16 days reperfusion; in soleus, was observed difference by one hour ischemia with 42 hours reperfusion, and three hours ischemia followed by four days reperfusion (p˂0.005). Skeletal muscle develops adaptive changes in longer reperfusion, to deal with induced injury. Descriptions beyond 32 days reperfusion, can determine recovering normal pattern.

  1. An In Vitro Adult Mouse Muscle-nerve Preparation for Studying the Firing Properties of Muscle Afferents

    PubMed Central

    Franco, Joy A.; Kloefkorn, Heidi E.; Hochman, Shawn; Wilkinson, Katherine A.

    2014-01-01

    Muscle sensory neurons innervating muscle spindles and Golgi tendon organs encode length and force changes essential to proprioception. Additional afferent fibers monitor other characteristics of the muscle environment, including metabolite buildup, temperature, and nociceptive stimuli. Overall, abnormal activation of sensory neurons can lead to movement disorders or chronic pain syndromes. We describe the isolation of the extensor digitorum longus (EDL) muscle and nerve for in vitro study of stretch-evoked afferent responses in the adult mouse. Sensory activity is recorded from the nerve with a suction electrode and individual afferents can be analyzed using spike sorting software. In vitro preparations allow for well controlled studies on sensory afferents without the potential confounds of anesthesia or altered muscle perfusion. Here we describe a protocol to identify and test the response of muscle spindle afferents to stretch. Importantly, this preparation also supports the study of other subtypes of muscle afferents, response properties following drug application and the incorporation of powerful genetic approaches and disease models in mice. PMID:25285602

  2. Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle.

    PubMed

    Sylow, Lykke; Jensen, Thomas E; Kleinert, Maximilian; Mouatt, Joshua R; Maarbjerg, Stine J; Jeppesen, Jacob; Prats, Clara; Chiu, Tim T; Boguslavsky, Shlomit; Klip, Amira; Schjerling, Peter; Richter, Erik A

    2013-04-01

    In skeletal muscle, the actin cytoskeleton-regulating GTPase, Rac1, is necessary for insulin-dependent GLUT4 translocation. Muscle contraction increases glucose transport and represents an alternative signaling pathway to insulin. Whether Rac1 is activated by muscle contraction and regulates contraction-induced glucose uptake is unknown. Therefore, we studied the effects of in vivo exercise and ex vivo muscle contractions on Rac1 signaling and its regulatory role in glucose uptake in mice and humans. Muscle Rac1-GTP binding was increased after exercise in mice (~60-100%) and humans (~40%), and this activation was AMP-activated protein kinase independent. Rac1 inhibition reduced contraction-stimulated glucose uptake in mouse muscle by 55% in soleus and by 20-58% in extensor digitorum longus (EDL; P < 0.01). In agreement, the contraction-stimulated increment in glucose uptake was decreased by 27% (P = 0.1) and 40% (P < 0.05) in soleus and EDL muscles, respectively, of muscle-specific inducible Rac1 knockout mice. Furthermore, depolymerization of the actin cytoskeleton decreased contraction-stimulated glucose uptake by 100% and 62% (P < 0.01) in soleus and EDL muscles, respectively. These are the first data to show that Rac1 is activated during muscle contraction in murine and human skeletal muscle and suggest that Rac1 and possibly the actin cytoskeleton are novel regulators of contraction-stimulated glucose uptake. PMID:23274900

  3. Rac1 Is a Novel Regulator of Contraction-Stimulated Glucose Uptake in Skeletal Muscle

    PubMed Central

    Sylow, Lykke; Jensen, Thomas E.; Kleinert, Maximilian; Mouatt, Joshua R.; Maarbjerg, Stine J.; Jeppesen, Jacob; Prats, Clara; Chiu, Tim T.; Boguslavsky, Shlomit; Klip, Amira; Schjerling, Peter; Richter, Erik A.

    2013-01-01

    In skeletal muscle, the actin cytoskeleton-regulating GTPase, Rac1, is necessary for insulin-dependent GLUT4 translocation. Muscle contraction increases glucose transport and represents an alternative signaling pathway to insulin. Whether Rac1 is activated by muscle contraction and regulates contraction-induced glucose uptake is unknown. Therefore, we studied the effects of in vivo exercise and ex vivo muscle contractions on Rac1 signaling and its regulatory role in glucose uptake in mice and humans. Muscle Rac1-GTP binding was increased after exercise in mice (∼60–100%) and humans (∼40%), and this activation was AMP-activated protein kinase independent. Rac1 inhibition reduced contraction-stimulated glucose uptake in mouse muscle by 55% in soleus and by 20–58% in extensor digitorum longus (EDL; P < 0.01). In agreement, the contraction-stimulated increment in glucose uptake was decreased by 27% (P = 0.1) and 40% (P < 0.05) in soleus and EDL muscles, respectively, of muscle-specific inducible Rac1 knockout mice. Furthermore, depolymerization of the actin cytoskeleton decreased contraction-stimulated glucose uptake by 100% and 62% (P < 0.01) in soleus and EDL muscles, respectively. These are the first data to show that Rac1 is activated during muscle contraction in murine and human skeletal muscle and suggest that Rac1 and possibly the actin cytoskeleton are novel regulators of contraction-stimulated glucose uptake. PMID:23274900

  4. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  5. An ¹⁸F-FDG PET study of cervical muscle in parkinsonian anterocollis.

    PubMed

    Revuelta, Gonzalo J; Montilla, Jaime; Benatar, Michael; Freeman, Alan; Wichmann, Thomas; Jinnah, Hyder A; Delong, Mahlon R; Factor, Stewart A

    2014-05-15

    The underlying etiology of parkinsonian anterocollis has been the subject of recent debate. The purpose of this study is to test the hypothesis that anterocollis in parkinsonian syndromes is associated with dystonia of the deep cervical flexors (longus colli and capitis). Eight patients with anterocollis, six in the setting of parkinsonism and two primary cervical dystonia control subjects with anterocollis underwent prospective structured clinical evaluations (interview, examination and rating scales), systematic electromyography of the cervical extensor musculature and (18)F-FDG PET/CT studies of cervical muscles to examine evidence of hypermetabolism or overactivity of deep cervical flexors. Subjects with parkinsonian anterocollis were found to have hypermetabolism of the extensor and sub-occipital muscles but not in the cervical flexors (superficial or deep). EMG abnormalities were observed in all evaluated patients, but only one patient was definitely myopathic. Meanwhile, both dystonia controls exhibited hypermetabolism of cervical flexors (including the longus colli). In conclusion, we were able to demonstrate hypermetabolism of superficial and deep cervical flexors with muscle (18)F-FDG PET/CT in dystonic anterocollis patients, but not in parkinsonian anterocollis patients. The hypermetabolic changes seen in parkinsonian anterocollis patients in posterior muscles may be compensatory. Alternative explanations for anterocollis include myopathy of the cervical extensors, or unbalanced rigidity of the cervical flexors, but this remains to be proven. PMID:24725739

  6. Effects of subacute pyridostigmine administration on mammalian skeletal muscle function. (Reannouncement with new availability information)

    SciTech Connect

    Adler, M.; Deshpande, S.S.; Foster, R.E.; Maxwell, D.M.; Albuquerque, E.X.

    1992-12-31

    The subacute effects of pyridostigmine bromide were investigated on the contractile properties of rat extensor digitorum longus (EDL) and diaphragm muscles. The cholinesterase inhibitor was delivered via subcutaneously implanted osmotic minipumps (Alzet) at 9 microns g h-1 (low dose) or 60 micro g h-1 (high dose). Animals receiving high-dose pyridostigmine pumps exhibited marked alterations in muscle properties within the first day of exposure that persisted for the remaining 13 days. With 0.1 Hz stimulation, EDL twitch tensions of treated animals were elevated relative to control. Repetitive stimulation at frequencies > 1 Hz led a use-dependent depression in the amplitude of successive twitches during the train. Recovery from pyridostigmine was essentially complete by 1 day of withdrawal. Rats implanted with low-dose pyridostigmine pumps showed little or no alteration of in vivo twitch tensions during the entire 14 days of treatment. Diaphragm and EDL muscles excised from pyridostigmine-treated rats and tested in vitro showed no significant alterations in twitch and tetanic tensions and displayed the same sensitivity as muscles of control animals to subsequent pyridostigmine exposures. In the presence of atropine, subacutely administered pyridostigmine protected rats from two LD5O doses of the irreversible cholinesterase inhibitor, soman. In the absence of atropine, the LD50 of soman was not altered by subacute pyridostigmine treatment. Extensor digitorum longus; diaphragm; twitch tension; ACh release; subacute; Alzet pumps; tolerance; anticholinesterase; pyridostigmine; soman.

  7. Muscle Activation Patterns When Passively Stretching Spastic Lower Limb Muscles of Children with Cerebral Palsy

    PubMed Central

    Bar-On, Lynn; Aertbeliën, Erwin; Molenaers, Guy; Desloovere, Kaat

    2014-01-01

    The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex during a stretch to a passive muscle is the most widely accepted. However, other mechanisms are also thought to contribute to pathological muscle activity and, in patients post-stroke and spinal cord injury can result in different activation patterns. In the lower-limbs of children with spastic cerebral palsy (CP) these distinct activation patterns have not yet been thoroughly explored. The aim of the study was to apply an instrumented assessment to quantify different muscle activation patterns in four lower-limb muscles of children with CP. Fifty-four children with CP were included (males/females n = 35/19; 10.8±3.8 yrs; bilateral/unilateral involvement n =  32/22; Gross Motor Functional Classification Score I–IV) of whom ten were retested to evaluate intra-rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, and ankle were performed to stretch the lower-limb muscles at three increasing velocities. Muscle activity and joint motion were synchronously recorded using inertial sensors and electromyography (EMG) from the adductors, medial hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into activation patterns using average, normalized root mean square EMG (RMS-EMG) compared across increasing position zones and velocities. Based on the visual categorisation, quantitative parameters were defined using stretch-reflex thresholds and normalized RMS-EMG. These parameters were compared between muscles with different activation patterns. All patterns were dominated by high velocity-dependent muscle activation, but in more than half, low velocity-dependent activation was also observed. Muscle activation patterns were found to be both muscle- and subject-specific (p<0.01). The intra-rater reliability of all quantitative parameters was moderate to good. Comparing RMS-EMG between incremental

  8. Differential effect of denervation on free radical scavenging enzymes in slow and fast muscle of rat

    NASA Technical Reports Server (NTRS)

    Asayama, K.; Dettbarn, W. D.; Burr, I. M.

    1985-01-01

    To determine the effect of denervation on the free radical scavenging systems in relation to the mitochondrial oxidative metabolism in the slow twitch soleus and fast twitch extensor digitorum longus (EDL) muscles, the sciatic nerve of the rat was crushed in the mid-thigh region and the muscle tissue levels of 5 enzymes were studied 2 and 5 weeks following crush. Radioimmunoassays were utilized for the selective measurement of cuprozinc (cytosolic) and mangano (mitochondrial) superoxide dismutases. These data represent the first systematic report of free radical scavening systems in slow and fast muscles in response to denervation. Selective modification of cuprozinc and manganosuperoxide dismutases and differential regulation of GSH-peroxidase was demonstrated in slow and fast muscle.

  9. Contractile properties of rat fast-twitch skeletal muscle during reinnervation - Effects of testosterone and castration

    NASA Technical Reports Server (NTRS)

    Yeagle, S. P.; Mayer, R. F.; Max, S. R.

    1983-01-01

    The peroneal nerve of subject rats were crushed 1 cm from the muscle in order to examine the isometric contractile properties of skeletal muscle in the recovery sequency during reinnervation of normal, castrated, and testosterone-treated rats. The particular muscle studied was the extensor digitorum longus, with functional reinnervation first observed 8-9 days after nerve crush. No evidence was found that either castration or testosterone injections altered the process of reinnervation after the nerve crush, with the conclusion being valid at the 0.05 p level. The most reliable index of reinnervation was found to be the twitch:tetanus ratio, a factor of use in future studies of the reinnervation of skeletal muscle.

  10. Shear Modulus of the Lower Leg Muscles in Patients with Medial Tibial Stress Syndrome.

    PubMed

    Akiyama, Kei; Akagi, Ryota; Hirayama, Kuniaki; Hirose, Norikazu; Takahashi, Hideyuki; Fukubayshi, Toru

    2016-08-01

    This study aimed to investigate the in vivo kinematics of shear modulus of the lower leg muscles in patients with medial tibial stress syndrome (MTSS). The study population included 46 limbs with MTSS and 40 healthy limbs. The shear modulus of the medial head of the gastrocnemius, lateral head of the gastrocnemius, soleus, peroneus longus and tibialis anterior muscles were measured using shear wave ultrasound elastography. As a result, the shear modulus of the lower leg muscles was significantly greater in patients with MTSS than in healthy patients (p < 0.01). Based on the differences in shear modulus of lower leg muscles between the patients with MTSS and healthy patients, the measurements obtained via shear wave ultrasound elastography could be used to evaluate risk factors of MTSS. PMID:27129903

  11. Role of glucocorticoids in the response of rat leg muscles to reduced activity

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Tischler, Marc E.

    1986-01-01

    Adrenalectomy did not prevent atrophy of rat soleus muscle during 6 days of tail cast suspension. Cortisol treatment enhanced the atrophy and caused atrophy of the weight-bearing soleus and both extensor digitorum longus (EDL) muscles. Unloading led to increased sarcoplasmic protein concentration in the soleus but cortisol administration increased the myhofibrillar (+stromal) protein concentration in both muscles. Suspension of hindlimbs of adrenalectomized animals led to faster protein degradation, slower sarcoplasmic protein degradation, and faster myofibrillar protein synthesis in the isolated soleus, whereas with cortisol-treated animals, the difference in synthesis of myofibrillar proteins was enhanced and that of sarcoplasmic proteins was abolished. Both soleus and EDL of suspended, cortisol-treated animals showed faster protein degradation. It is unlikely that any elevation in circulating glucocorticoids was solely responsible for atrophy of the soleus in this model, but catabolic amounts of glucocorticoids could alter the response of muscle to unloading.

  12. Acute effects of hindlimb unweighting on satellite cells of growing skeletal muscle

    NASA Technical Reports Server (NTRS)

    Schultz, Edward; Darr, Kevin C.; Macius, Allison

    1994-01-01

    The proliferative behavior of satellite cells in growing rat soleus and extensor digitorum longus muscles was examined at short periods after initiation of hindlimb unweighting. Mitotic activity of satellite cells in both muscles decreased below weight-bearing control levels within 24 h of initiation of hindlimb unweighting. This satellite cell response was equal to or greater than 48 h before any atrophic morphological changes that take place in the muscles. Suppression of mitotic activity was most severe in the soleus muscle where continuous infusion of label demonstrated that virtually all mitotic activity was abolished between 3 and 5 days. The results of this study suggest that satellite cell mitotic activity is a sensitive indicator of primary atrophic changes occurring in growing myofibers and may be a predictor of future morphological changes.

  13. Abdominal muscle and quadriceps strength in chronic obstructive pulmonary disease

    PubMed Central

    Man, W; Hopkinson, N; Harraf, F; Nikoletou, D; Polkey, M; Moxham, J

    2005-01-01

    Background: Quadriceps muscle weakness is common in chronic obstructive pulmonary disease (COPD) but is not observed in a small hand muscle (adductor pollicis). Although this could be explained by reduced activity in the quadriceps, the observation could also be explained by anatomical location of the muscle or fibre type composition. However, the abdominal muscles are of a similar anatomical and fibre type distribution to the quadriceps, although they remain active in COPD. Cough gastric pressure is a recently described technique that assesses abdominal muscle (and hence expiratory muscle) strength more accurately than traditional techniques. A study was undertaken to test the hypothesis that more severe weakness exists in the quadriceps than in the abdominal muscles of patients with COPD compared with healthy elderly controls. Methods: Maximum cough gastric pressure and quadriceps isometric strength were measured in 43 patients with stable COPD and 25 healthy elderly volunteers matched for anthropometric variables. Results: Despite a significant reduction in mean quadriceps strength (29.9 kg v 41.2 kg; 95% CI –17.9 to –4.6; p = 0.001), cough gastric pressure was preserved in patients with COPD (227.3 cm H2O v 204.8 cm H2O; 95% CI –5.4 to 50.6; p = 0.11). Conclusions: Abdominal muscle strength is preserved in stable COPD outpatients in the presence of quadriceps weakness. This suggests that anatomical location and fibre type cannot explain quadriceps weakness in COPD. By inference, we conclude that disuse and consequent deconditioning are important factors in the development of quadriceps muscle weakness in COPD patients, or that activity protects the abdominal muscles from possible systemic myopathic processes. PMID:15923239

  14. Cranial myology and bite force performance of Erlikosaurus andrewsi: a novel approach for digital muscle reconstructions

    PubMed Central

    Lautenschlager, Stephan

    2013-01-01

    The estimation of bite force and bite performance in fossil and extinct animals is a challenging subject in palaeontology and is highly dependent on the reconstruction of the cranial myology. Furthermore, the morphology and arrangement of the adductor muscles considerably affect feeding processes and mastication and thus also have important dietary and ecological ramifications. However, in the past, the reconstruction of the (cranial) muscles was restricted to the identification of muscle attachment sites or simplified computer models. This study presents a detailed reconstruction of the adductor musculature of the Cretaceous therizinosaur Erlikosaurus andrewsi based on a stepwise and iterative approach. The detailed, three-dimensional models of the individual muscles allow for more accurate measurements of the muscle properties (length, cross-section, attachment angle and volume), from which muscle and bite force estimates are calculated. Bite force estimations are found to be the lowest at the tip of the snout (43–65 N) and respectively higher at the first (59–88 N) and last tooth (90–134 N) position. Nevertheless, bite forces are comparatively low for E. andrewsi, both in actual numbers as well as in comparison with other theropod dinosaurs. The results further indicate that the low bite performance was mainly used for leaf-stripping and plant cropping, rather than active mastication or chewing processes. Muscle and thus bite force in E. andrewsi (and most likely all therizinosaurs) is considerably constrained by the cranial anatomy and declines in derived taxa of this clade. This trend is reflected in the changes of dietary preferences from carnivory to herbivory in therizinosaurs. PMID:23061752

  15. Sarcolipin overexpression improves muscle energetics and reduces fatigue.

    PubMed

    Sopariwala, Danesh H; Pant, Meghna; Shaikh, Sana A; Goonasekera, Sanjeewa A; Molkentin, Jeffery D; Weisleder, Noah; Ma, Jianjie; Pan, Zui; Periasamy, Muthu

    2015-04-15

    Sarcolipin (SLN) is a regulator of sarcoendoplasmic reticulum calcium ATPase in skeletal muscle. Recent studies using SLN-null mice have identified SLN as a key player in muscle thermogenesis and metabolism. In this study, we exploited a SLN overexpression (Sln(OE)) mouse model to determine whether increased SLN level affected muscle contractile properties, exercise capacity/fatigue, and metabolic rate in whole animals and isolated muscle. We found that Sln(OE) mice are more resistant to fatigue and can run significantly longer distances than wild-type (WT). Studies with isolated extensor digitorum longus (EDL) muscles showed that Sln(OE) EDL produced higher twitch force than WT. The force-frequency curves were not different between WT and Sln(OE) EDLs, but at lower frequencies the pyruvate-induced potentiation of force was significantly higher in Sln(OE) EDL. SLN overexpression did not alter the twitch and force-frequency curve in isolated soleus muscle. However, during a 10-min fatigue protocol, both EDL and soleus from Sln(OE) mice fatigued significantly less than WT muscles. Interestingly, Sln(OE) muscles showed higher carnitine palmitoyl transferase-1 protein expression, which could enhance fatty acid metabolism. In addition, lactate dehydrogenase expression was higher in Sln(OE) EDL, suggesting increased glycolytic capacity. We also found an increase in store-operated calcium entry (SOCE) in isolated flexor digitorum brevis fibers of Sln(OE) compared with WT mice. These data allow us to conclude that increased SLN expression improves skeletal muscle performance during prolonged muscle activity by increasing SOCE and muscle energetics. PMID:25701006

  16. Jaw muscle fiber type distribution in Hawaiian gobioid stream fishes: histochemical correlations with feeding ecology and behavior.

    PubMed

    Maie, Takashi; Meister, Andrew B; Leonard, Gerald L; Schrank, Gordon D; Blob, Richard W; Schoenfuss, Heiko L

    2011-12-01

    Differences in fiber type distribution in the axial muscles of Hawaiian gobioid stream fishes have previously been linked to differences in locomotor performance, behavior, and diet across species. Using ATPase assays, we examined fiber types of the jaw opening sternohyoideus muscle across five species, as well as fiber types of three jaw closing muscles (adductor mandibulae A1, A2, and A3). The jaw muscles of some species of Hawaiian stream gobies contained substantial red fiber components. Some jaw muscles always had greater proportions of white muscle fibers than other jaw muscles, independent of species. In addition, comparing across species, the dietary generalists (Awaous guamensis and Stenogobius hawaiiensis) had a lower proportion of white muscle fibers in all jaw muscles than the dietary specialists (Lentipes concolor, Sicyopterus stimpsoni, and Eleotris sandwicensis). Among Hawaiian stream gobies, generalist diets may favor a wider range of muscle performance, provided by a mix of white and red muscle fibers, than is typical of dietary specialists, which may have a higher proportion of fast-twitch white fibers in jaw muscles to help meet the demands of rapid predatory strikes or feeding in fast-flowing habitats. PMID:21978841

  17. Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb.

    PubMed

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2014-02-15

    With fatiguing exercise, firing of group III/IV muscle afferents reduces voluntary activation and force of the exercised muscles. These afferents can also act across agonist/antagonist pairs, reducing voluntary activation and force in nonfatigued muscles. We hypothesized that maintained firing of group III/IV muscle afferents after a fatiguing adductor pollicis (AP) contraction would decrease voluntary activation and force of AP and ipsilateral elbow flexors. In two experiments (n = 10) we examined voluntary activation of AP and elbow flexors by measuring changes in superimposed twitches evoked by ulnar nerve stimulation and transcranial magnetic stimulation of the motor cortex, respectively. Inflation of a sphygmomanometer cuff after a 2-min AP maximal voluntary contraction (MVC) blocked circulation of the hand for 2 min and maintained firing of group III/IV muscle afferents. After a 2-min AP MVC, maximal AP voluntary activation was lower with than without ischemia (56.2 ± 17.7% vs. 76.3 ± 14.6%; mean ± SD; P < 0.05) as was force (40.3 ± 12.8% vs. 57.1 ± 13.8% peak MVC; P < 0.05). Likewise, after a 2-min AP MVC, elbow flexion voluntary activation was lower with than without ischemia (88.3 ± 7.5% vs. 93.6 ± 3.9%; P < 0.05) as was torque (80.2 ± 4.6% vs. 86.6 ± 1.0% peak MVC; P < 0.05). Pain during ischemia was reported as Moderate to Very Strong. Postfatigue firing of group III/IV muscle afferents from the hand decreased voluntary drive and force of AP. Moreover, this effect decreased voluntary drive and torque of proximal unfatigued muscles, the elbow flexors. Fatigue-sensitive group III/IV muscle nociceptors act to limit voluntary drive not only to fatigued muscles but also to unfatigued muscles within the same limb. PMID:24356522

  18. Recovery of slow and fast muscles following nerve injury during early post-natal development in the rat.

    PubMed Central

    Lowrie, M B; Krishnan, S; Vrbová, G

    1982-01-01

    1. The sciatic nerve was crushed in 5-6-day-old rats and the recovery of function of slow and fast muscles was studied. The first signs of recovery of function were seen 10-12 days after the operation. 2. Maximal tetanic tension developed by the reinnervated muscles was recorded and taken as an indication of their recovery. Two months after nerve crush, slow soleus muscles developed only slightly less tension than the control unoperated soleus muscles. The reinnervated fast muscles tibialis anterior (t.a.) and extensor digitorum longus (e.d.l.) developed only about 50% of the tension of the unoperated controls. 3. The fast muscles never recovered, remaining weaker and smaller throughout the animals' life. 4. The number of muscle fibres in the reinnervated fast muscles was substantially reduced and their fibre composition altered in that they contained mainly muscle fibres with high levels of oxidative enzymes. 5. The reinnervated fast muscles became much more fatigue resistant than the unoperated controls. 6. The possibility that these changes are due to motoneurone death was examined. The motoneurones innervating the fast muscles were labelled by retrograde transport of HRP. No significant reduction in the number of motoneurones innervating the operated muscles was found. 7. These results show that nerve injury during early post-natal life causes permanent changes in fast muscles that are not caused by motoneurone death. Images PLATE 1 (cont.) PLATE 1 PLATE 2 PMID:7153915

  19. Muscle imaging data in late-onset Pompe disease reveal a correlation between the pre-existing degree of lipomatous muscle alterations and the efficacy of long-term enzyme replacement therapy

    PubMed Central

    Gruhn, Kai Michael; Heyer, Christoph Malte; Güttsches, Anne-Katrin; Rehmann, Robert; Nicolas, Volkmar; Schmidt-Wilcke, Tobias; Tegenthoff, Martin; Vorgerd, Matthias; Kley, Rudolf Andre

    2015-01-01

    Background Late-onset Pompe disease (LOPD) is a metabolic myopathy caused by mutations in GAA and characterized by proximal muscle weakness and respiratory insufficiency. There is evidence from clinical studies that enzyme replacement therapy (ERT) with human recombinant alpha-glucosidase improves motor performance and respiratory function in LOPD. Objective We analyzed quantitative muscle MRI data of lower limbs to evaluate the effects of long-term ERT on muscle parameters. Methods Three symptomatic LOPD patients who received ERT for five years and four untreated presymptomatic LOPD patients were included in the study. T1-weighted MRI images were used to determine volumes of thigh and lower leg muscles. In addition, mean gray values of eight individual thigh muscles were calculated to assess the degree of lipomatous muscle alterations. Results We detected a decrease in thigh muscle volume of 6.7% (p < 0.001) and an increase in lower leg muscle volume of 8.2% (p = 0.049) after five years of ERT. Analysis of individual thigh muscles revealed a positive correlation between the degree of lipomatous muscle alterations at baseline and the increase of gray values after five years of ERT (R2 = 0.68, p < 0.001). Muscle imaging in presymptomatic patients showed in one case pronounced lipomatous alteration of the adductor magnus muscle and mild to moderate changes in further thigh muscles. Conclusions The results demonstrate that fatty muscle degeneration can occur before clinical manifestation of muscle weakness and suggest that mildly affected muscles may respond better to ERT treatment than severely involved muscles. If these findings can be validated by further studies, it should be discussed if muscle alterations detected by muscle MRI may be an objective sign of disease manifestation justifying an early start of ERT in clinically asymptomatic patients in order to improve the long-term outcome. PMID:26937398

  20. Myopathic changes in murine skeletal muscle lacking synemin

    PubMed Central

    García-Pelagio, Karla P.; Muriel, Joaquin; O'Neill, Andrea; Desmond, Patrick F.; Lovering, Richard M.; Lund, Linda; Bond, Meredith

    2015-01-01

    Diseases of striated muscle linked to intermediate filament (IF) proteins are associated with defects in the organization of the contractile apparatus and its links to costameres, which connect the sarcomeres to the cell membrane. Here we study the role in skeletal muscle of synemin, a type IV IF protein, by examining mice null for synemin (synm-null). Synm-null mice have a mild skeletal muscle phenotype. Tibialis anterior (TA) muscles show a significant decrease in mean fiber diameter, a decrease in twitch and tetanic force, and an increase in susceptibility to injury caused by lengthening contractions. Organization of proteins associated with the contractile apparatus and costameres is not significantly altered in the synm-null. Elastimetry of the sarcolemma and associated contractile apparatus in extensor digitorum longus myofibers reveals a reduction in tension consistent with an increase in sarcolemmal deformability. Although fatigue after repeated isometric contractions is more marked in TA muscles of synm-null mice, the ability of the mice to run uphill on a treadmill is similar to controls. Our results suggest that synemin contributes to linkage between costameres and the contractile apparatus and that the absence of synemin results in decreased fiber size and increased sarcolemmal deformability and susceptibility to injury. Thus synemin plays a moderate but distinct role in fast twitch skeletal muscle. PMID:25567810

  1. Optimization of Spinal Muscular Atrophy subject's muscle activity during gait

    NASA Astrophysics Data System (ADS)

    Umat, Gazlia; Rambely, Azmin Sham

    2014-06-01

    Spinal Muscular Atrophy (SMA) is a hereditary disease related muscle nerve disorder caused by degeneration of the anterior cells of the spinal cord. SMA is divided into four types according to the degree of seriousness. SMA patients show different gait with normal people. Therefore, this study focused on the effects of SMA patient muscle actions and the difference that exists between SMA subjects and normal subjects. Therefore, the electromyography (EMG) test will be used to track the behavior of muscle during walking and optimization methods are used to get the muscle stress that is capable of doing the work while walking. Involved objective function is non-linear function of the quadratic and cubic functions. The study concludes with a comparison of the objective function using the force that sought to use the moment of previous studies and the objective function using the data obtained from EMG. The results shows that the same muscles, peroneus longus and bisepsfemoris, were used during walking activity by SMA subjects and control subjects. Muscle stress force best solution achieved from part D in simulation carried out.

  2. Muscle recruitment variations during wrist flexion exercise: MR evaluation

    NASA Technical Reports Server (NTRS)

    Fleckenstein, J. L.; Watumull, D.; Bertocci, L. A.; Nurenberg, P.; Peshock, R. M.; Payne, J. A.; Haller, R. G.; Blomqvist, C. G. (Principal Investigator)

    1994-01-01

    OBJECTIVE: Many exercise protocols used in physiological studies assume homogeneous and diffuse muscle recruitment. To test this assumption during a "standard" wrist flexion protocol, variations in muscle recruitment were assessed using MRI in eight healthy subjects. MATERIALS AND METHODS: Variations were assessed by comparing the right to the left forearms and the effect of slight (15 degrees) pronation or supination at the wrist. RESULTS: Postexercise imaging showed focal regions of increased signal intensity (SI), indicating relatively strong recruitment, most often in entire muscles, although occasionally only in subvolumes of muscles. In 15 of 26 studies, flexor carpi radialis (FCR) showed more SI than flexor carpi ulnaris, while in 11 studies SI in these muscles increased equivalently. Relatively greater FCR recruitment was seen during pronation and/or use of the nondominant side. Palmaris longus, a wrist flexor, did not appear recruited in 4 of 11 forearms in which it was present. A portion of the superficial finger flexor became hyperintense in 89% of studies, while recruitment of the deep finger flexor was seen only in 43%. CONCLUSION: Inter- and intraindividual variations in forearm muscle recruitment should be anticipated in physiological studies of standard wrist flexion exercise protocols.

  3. Heat production during contraction in skeletal muscle of hypothyroid mice

    SciTech Connect

    Leijendekker, W.J.; van Hardeveld, C.; Elzinga, G. )

    1987-08-01

    The effect of hypothyroidism on tension-independent and -dependent heat produced during a twitch and a tetanic contraction of extensor digitorum longus (EDL) and soleus muscle of mice was examined. The amount of heat produced during a twitch and the rate of heat development during a tetanus of EDL and soleus were measured at and above optimal length. The effect of hypothyroidism on force production was <30%. Straight lines were used to fit the relation between heat production and force. Hypothyroidism significantly decreases tension-independent heat during contraction of EDL and soleus muscle. Because the tension-independent heat is considered to be related to the Ca{sup 2+} cycling, these findings suggest that ATP splitting due to the Ca{sup 2+} cycling is reduced in hypothyroid mice. This conclusion was strengthened by the observation that the oxalate-supported {sup 45}Ca{sup 2+}-uptake activity and {sup 45}Ca{sup 2+}-loading capacity of muscle homogenates from hypothyroid mice were reduced, respectively, to 51 and to 65% in soleus and to 63 and 73% in EDL muscle as compared with euthyroid mice. The tension-dependent rate of heat development during a tetanus was also decreased in soleus muscle of hypothyroid mice. This suggests a lower rate of ATP hydrolysis related to cross-bridge cycling in this muscle due to the hypothyroid state.

  4. Differentiation of fast and slow muscle fibers by bioimpedance

    NASA Astrophysics Data System (ADS)

    Moreno, M.-V.; Khider, N.; Ribbe, E.; Damez, J.-L.

    2010-04-01

    The differentiation of fast and slow muscle fibers in vivo still requires constraining equipment (ergometer, biopsy ...) and invasive techniques. These fibers conduct the electrical current differently. Therefore the aim of this study is to see if it is possible to differentiate quickly, by bioimpedance, fast and slow fibers, and firstly muscles which are typical composed by slow or fast fibers. To do this, we used a multifrequency impedancemeter Z-Metrix® (BioparHom© Company, France). We collected the electrical characteristics (Longitudinal and Transversal, from 1 to 1000 kHz) for a population of 20 rats aged 70 days, on Soleus muscles (composed principally of slow fibers) and Extensor Digitroum Longus (EDL) muscles (composed principally of fast fibers). We compared the means of alpha (L/T), R (L/T) and X (L/T) with Wilcoxon tests. We obtained non significant differences between electrical data obtained on EDL and Soleus muscles, but we could see differences on graphics representation and with the example of one rat. Therefore, we can assume that differentiation, by bioimpedance, of muscles typed slow and fast fibers, could be possible.

  5. Contribution of proteolysis and de novo synthesis to alanine production in diabetic rat skeletal muscle: a 15N/1H nuclear magnetic resonance study.

    PubMed

    Meynial-Denis, D; Chavaroux, A; Foucat, L; Mignon, M; Prugnaud, J; Bayle, G; Renou, J P; Arnal, M

    1997-10-01

    To assess the role of leucine as a precursor of alanine alpha-amino nitrogen in skeletal muscle during diabetes, extensor digitorum longus muscles from control (n = 7 experiments) and streptozotocin-diabetic rats (n = 8 experiments) were isolated and superfused with [15N]leucine (3 mmol/l) in the presence of glucose (10 mmol/l) for 2 h. Muscle perchloric acid extraction was performed at the end of superfusion in order to quantify newly synthesized alanine by 15N/1H nuclear magnetic resonance. Release of [15N]alanine in the superfusion medium was also measured. The pool of newly synthesized [15N]alanine was significantly increased (approximately 40%) in extensor digitorum longus muscles from streptozotocin-diabetic rats. Whereas a significant enhancement of total alanine release from muscle was induced by diabetes (20%), only a slight increase in [15N]alanine release was detectable under our experimental conditions. Consequently, we conclude that streptozotocin-diabetes in growing rats induces in skeletal muscle: 1) an increase in nitrogen exchange between leucine and alanine leading to newly synthesized [15N]alanine; and 2) an increase of total alanine release from muscle originating from both proteolysis and de novo synthesis. PMID:9349596

  6. Motor-Neuron Pool Excitability of the Lower Leg Muscles After Acute Lateral Ankle Sprain

    PubMed Central

    Klykken, Lindsey W.; Pietrosimone, Brian G.; Kim, Kyung-Min; Ingersoll, Christopher D.; Hertel, Jay

    2011-01-01

    Context: Neuromuscular deficits in leg muscles that are associated with arthrogenic muscle inhibition have been reported in people with chronic ankle instability, yet whether these neuromuscular alterations are present in individuals with acute sprains is unknown. Objective: To compare the effect of acute lateral ankle sprain on the motor-neuron pool excitability (MNPE) of injured leg muscles with that of uninjured contralateral leg muscles and the leg muscles of healthy controls. Design: Case-control study. Setting: Laboratory. Patients or Other Participants: Ten individuals with acute ankle sprains (6 females, 4 males; age = 19.2 ± 3.8 years, height = 169.4 ± 8.5 cm, mass = 66.3 ±11.6 kg) and 10 healthy individuals (6 females, 4 males; age = 20.6 ± 4.0 years, height = 169.9 ± 10.6 cm, mass = 66.3 ± 10.2 kg) participated. Intervention(s): The independent variables were group (acute ankle sprain, healthy) and limb (injured, uninjured). Separate dependent t tests were used to determine differences in MNPE between legs. Main Outcome Measure(s): The MNPE of the soleus, fibularis longus, and tibialis anterior was measured by the maximal Hoffmann reflex (Hmax) and maximal muscle response (Mmax) and was then normalized using the Hmax:Mmax ratio. Results: The soleus MNPE in the ankle-sprain group was higher in the injured limb (Hmax:Mmax = 0.63; 95% confidence interval [CI], 0.46, 0.80) than in the uninjured limb (Hmax:Mmax = 0.47; 95% CI, 0.08, 0.93) (t6 = 3.62, P = .01). In the acute ankle-sprain group, tibialis anterior MNPE tended to be lower in the injured ankle (Hmax:Mmax = 0.06; 95% CI, 0.01, 0.10) than in the uninjured ankle (Hmax:Mmax = 0.22; 95% CI, 0.09, 0.35), but this finding was not different (t9 = −2.01, P = .07). No differences were detected between injured (0.22; 95% CI, 0.14, 0.29) and uninjured (0.25; 95% CI, 0.12, 0.38) ankles for the fibularis longus in the ankle-sprain group (t9 = −0.739, P = .48). We found no side-to-side differences in

  7. Vitamin D deficiency impairs skeletal muscle function in a smoking mouse model.

    PubMed

    Cielen, Nele; Heulens, Nele; Maes, Karen; Carmeliet, Geert; Mathieu, Chantal; Janssens, Wim; Gayan-Ramirez, Ghislaine

    2016-05-01

    Chronic obstructive pulmonary disease (COPD) is associated with skeletal muscle dysfunction. Vitamin D plays an important role in muscle strength and performance in healthy individuals. Vitamin D deficiency is highly prevalent in COPD, but its role in skeletal muscle dysfunction remains unclear. We examined the time-course effect of vitamin D deficiency on limb muscle function in mice with normal or deficient vitamin D serum levels exposed to air or cigarette smoke for 6, 12 or 18 weeks. The synergy of smoking and vitamin D deficiency increased lung inflammation and lung compliance from 6 weeks on with highest emphysema scores observed at 18 weeks. Smoking reduced body and muscle mass of the soleus and extensor digitorum longus (EDL), but did not affect contractility, despite type II atrophy. Vitamin D deficiency did not alter muscle mass but reduced muscle force over time, downregulated vitamin D receptor expression, and increased muscle lipid peroxidation but did not alter actin and myosin expression, fiber dimensions or twitch relaxation time. The combined effect of smoking and vitamin D deficiency did not further deteriorate muscle function but worsened soleus mass loss and EDL fiber atrophy at 18 weeks. We conclude that the synergy of smoking and vitamin D deficiency in contrast to its effect on lung disease, had different, independent but important noxious effects on skeletal muscles in a mouse model of mild COPD. PMID:26906744

  8. Calcium homeostasis is altered in skeletal muscle of spontaneously hypertensive rats: cytofluorimetric and gene expression analysis.

    PubMed

    Liantonio, Antonella; Camerino, Giulia M; Scaramuzzi, Antonia; Cannone, Maria; Pierno, Sabata; De Bellis, Michela; Conte, Elena; Fraysse, Bodvael; Tricarico, Domenico; Conte Camerino, Diana

    2014-10-01

    Hypertension is often associated with skeletal muscle pathological conditions related to function and metabolism. The mechanisms underlying the development of these pathological conditions remain undefined. Because calcium homeostasis is a biomarker of muscle function, we assessed whether it is altered in hypertensive muscles. We measured resting intracellular calcium and store-operated calcium entry (SOCE) in fast- and slow-twitch muscle fibers from normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs) by cytofluorimetric technique and determined the expression of SOCE gene machinery by real-time PCR. Hypertension caused a phenotype-dependent dysregulation of calcium homeostasis; the resting intracellular calcium of extensor digitorum longus and soleus muscles of SHRs were differently altered with respect to the related muscle of normotensive animals. In addition, soleus muscles of SHR showed reduced activity of the sarcoplasmic reticulum and decreased sarcolemmal calcium permeability at rest and after SOCE activation. Accordingly, we found an alteration of the expression levels of some SOCE components, such as stromal interaction molecule 1, calcium release-activated calcium modulator 1, and transient receptor potential canonical 1. The hypertension-induced alterations of calcium homeostasis in the soleus muscle of SHRs occurred with changes of some functional outcomes as excitability and resting chloride conductance. We provide suitable targets for therapeutic interventions aimed at counterbalancing muscle performance decline in hypertension, and propose the reported calcium-dependent parameters as indexes to predict how the antihypertensive drugs could influence muscle function. PMID:25084345

  9. Changes of contractile responses due to simulated weightlessness in rat soleus muscle

    NASA Astrophysics Data System (ADS)

    Elkhammari, A.; Noireaud, J.; Léoty, C.

    1994-08-01

    Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspendede SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspencion. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted ina similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modification observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.

  10. Profile of biochemical traits influencing tenderness of muscles from the beef round.

    PubMed

    Anderson, M J; Lonergan, S M; Fedler, C A; Prusa, K J; Binning, J M; Huff-Lonergan, E

    2012-07-01

    The objective of this study was to define the biochemical differences that govern tenderness and palatability of economically important muscles from the beef round using cuts with known tenderness differences. At 24h postmortem, the longissimus dorsi (LD), gracillus (GR), adductor (AD), semimembranosus (SM), sartorius (SAR), vastus lateralis (VL), and vastus intermedius (VI) muscles were removed from ten market weight beef cattle. Sensory and biochemical characteristics were determined in each cut and compared with the LD. The GR, SAR and VI had sensory traits similar to the LD while the SM, AD and VL differed. The GR, SAR, AD, and SM all had multiple biochemical characteristics similar to the LD, while the VI and AD had numerous biochemical differences. While no one biochemical characteristic can be used to predict tenderness across all muscles, analysis of the biochemical characteristics revealed that in most beef round cuts postmortem proteolysis provided a good indication of the tenderization occurring during aging. PMID:22386323

  11. Changes in motor cortical excitability during human muscle fatigue.

    PubMed Central

    Taylor, J L; Butler, J E; Allen, G M; Gandevia, S C

    1996-01-01

    1. The excitability of the motor cortex was investigated during fatiguing con of the elbow flexors in human subjects. During sustained contractions at 30 and 1 voluntary force (MVC), the short-latency electromyographic responses (EMG) evoke brachii and brachioradialis by transcranial magnetic stimulation increased in si EMG in the elbow flexors following the evoked muscle potential (silent period), duration during a sustained MVC but not during 30% MVCs nor during a sustained M muscle (adductor pollicis). 2. When the blood supply to brachioradialis was blocked with sphygmomanometer cuff sustained MVC, the changes in EMG responses to transcranial stimulation rapidly control values, This suggests that changes in these responses during fatigue wer small-diameter muscle afferents. 3. Tendon vibration during sustained MVCs indicated that the changes in the resp cortial stimulation were not mediated by reduced muscle spindle inputs. 4. Muscle action potentials evoked in brachioradialis by electrical stimulation cervicomedullary junction did not increase in size during sustained MVCs. Thus, cortically evoked responses during sustained MVCs reflects a change in cortical Although the silent period following cervicomedullary stimulation lengthened, it substantially shorter than the cortically evoked silent period. 5. The altered EMG responses to transcranial stimulation during fatigue suggest exitation and increased inhibition in the motor cortex. As these changes were un manipulation of afferent input they presumably result from intrinsic cortical pr altered voluntary drive to the motor cortex. Images Figure 1 PMID:8821148

  12. Hormone Therapy and Skeletal Muscle Strength: A Meta-Analysis

    PubMed Central

    Greising, Sarah M.; Baltgalvis, Kristen A.; Warren, Gordon L.

    2009-01-01

    Background Our objective was to perform a systematic review and meta-analysis of the research literature that compared muscle strength in postmenopausal women who were and were not on estrogen-based hormone therapy (HT). Methods Twenty-three relevant studies were found. Effect sizes (ESs) were calculated as the standardized mean difference, and meta-analyses were completed using a random effects model. Results HT was found to result in a small beneficial effect on muscle strength in postmenopausal women (overall ES = 0.23; p = .003) that equated to an ∼5% greater strength for women on HT. Among the 23 studies, various muscle groups were assessed for strength, and those that benefitted the most were the thumb adductors (ES = 1.14; p < .001). Ten studies that compared muscle strength in rodents that were and were not estradiol deficient were also analyzed. The ES for absolute strength was moderate but not statistically significant (ES = 0.44; p = .12), whereas estradiol had a large effect on strength normalized to muscle size (ES = 0.66; p = .03). Conclusion Overall, estrogen-based treatments were found to beneficially affect strength. PMID:19561145

  13. Muscle biopsy

    MedlinePlus

    ... that affect the muscles (such as trichinosis or toxoplasmosis ) Muscle disorders such as muscular dystrophy or congenital ... nodosa Polymyalgia rheumatica Polymyositis - adult Thyrotoxic periodic paralysis Toxoplasmosis Trichinosis Update Date 9/8/2014 Updated by: ...

  14. Muscle Disorders

    MedlinePlus

    ... cause weakness, pain or even paralysis. Causes of muscle disorders include Injury or overuse, such as sprains or strains, cramps or tendinitis A genetic disorder, such as muscular dystrophy Some ... muscles Infections Certain medicines Sometimes the cause is not ...

  15. Extensor pollicis brevis tendon can hyperextend thumb interphalangeal joint in absence of extensor pollicis longus: Case report and review of the literature.

    PubMed

    Strauch, Robert J; Strauch, Carolyn B

    2016-07-18

    We are reporting a case of extensor pollicis longus tendon rupture which did not require tendon transfer owing to the ability of the intact extensor pollicis brevis (EPB) to fully hyperextend the thumb interphalangeal joint. The thumb metacarpophalangeal joint was also able to be fully actively extended by the EPB. Previous anatomical studies have demonstrated that the insertional anatomy of the EPB tendon is highly variable and sometimes inserts onto the extensor hood and distal phalanx, which is likely the mechanism by which our patient was able to fully extend the thumb interphalangeal joint. Despite the potential for the EPB to extend the IP joint of the thumb, virtually all previously reported cases of extensor pollicis longus (EPL) tendon rupture had deficits of thumb IP extension requiring tendon transfer. This case highlights the potential ability of the EPB tendon to completely substitute for the function of the EPL tendon in providing thumb IP joint extension. PMID:27458556

  16. Extensor pollicis brevis tendon can hyperextend thumb interphalangeal joint in absence of extensor pollicis longus: Case report and review of the literature

    PubMed Central

    Strauch, Robert J; Strauch, Carolyn B

    2016-01-01

    We are reporting a case of extensor pollicis longus tendon rupture which did not require tendon transfer owing to the ability of the intact extensor pollicis brevis (EPB) to fully hyperextend the thumb interphalangeal joint. The thumb metacarpophalangeal joint was also able to be fully actively extended by the EPB. Previous anatomical studies have demonstrated that the insertional anatomy of the EPB tendon is highly variable and sometimes inserts onto the extensor hood and distal phalanx, which is likely the mechanism by which our patient was able to fully extend the thumb interphalangeal joint. Despite the potential for the EPB to extend the IP joint of the thumb, virtually all previously reported cases of extensor pollicis longus (EPL) tendon rupture had deficits of thumb IP extension requiring tendon transfer. This case highlights the potential ability of the EPB tendon to completely substitute for the function of the EPL tendon in providing thumb IP joint extension. PMID:27458556

  17. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  18. Absence of insulin signalling in skeletal muscle is associated with reduced muscle mass and function: evidence for decreased protein synthesis and not increased degradation

    PubMed Central

    O’Neill, Elaine D.; Wilding, John P. H.; Kahn, C. Ronald; Van Remmen, Holly; McArdle, Anne; Jackson, Malcolm J.

    2010-01-01

    Loss of skeletal muscle mass and function is observed in many insulin-resistant disease states such as diabetes, cancer cachexia, renal failure and ageing although the mechanisms for this remain unclear. We hypothesised that impaired insulin signalling results in reduced muscle mass and function and that this decrease in muscle mass and function is due to both increased production of atrogenes and aberrant reactive oxygen species (ROS) generation. Maximum tetanic force of the extensor digitorum longus of muscle insulin receptor knockout (MIRKO) and lox/lox control mice was measured in situ. Muscles were removed for the measurement of mass, histological examination and ROS production. Activation of insulin signalling pathways, markers of muscle atrophy and indices of protein synthesis were determined in a separate group of MIRKO and lox/lox mice 15 min following treatment with insulin. Muscles from MIRKO mice had 36% lower maximum tetanic force generation compared with muscles of lox/lox mice. Muscle fibres of MIRKO mice were significantly smaller than those of lox/lox mice with no apparent structural abnormalities. Muscles from MIRKO mice demonstrated absent phosphorylation of AKT in response to exogenous insulin along with a failure to phosphorylate ribosomal S6 compared with lox/lox mice. Atrogin-1 and MuRF1 relative mRNA expression in muscles from MIRKO mice were decreased compared with muscles from lox/lox mice following insulin treatment. There were no differences in markers of reactive oxygen species damage between muscles from MIRKO mice and lox/lox mice. These data support the hypothesis that the absence of insulin signalling contributes to reduced muscle mass and function though decreased protein synthesis rather than proteasomal atrophic pathways. PMID:20431988

  19. Evaluation of an in vitro muscle contraction model in mouse primary cultured myotubes.

    PubMed

    Manabe, Yasuko; Ogino, Shinya; Ito, Miyuki; Furuichi, Yasuro; Takagi, Mayumi; Yamada, Mio; Goto-Inoue, Naoko; Ono, Yusuke; Fujii, Nobuharu L

    2016-03-15

    To construct an in vitro contraction model with the primary cultured myotubes, we isolated satellite cells from the mouse extensor digitorum longus. Differentiated myotubes possessed a greater number of sarcomere assemblies and higher expression levels of myosin heavy chain, cytochrome c oxidase IV, and myoglobin than in C2C12 myotubes. In agreement with these results regarding the sarcomere assemblies and protein expressions, the primary myotubes showed higher contractile activity stimulated by the electric pulses than that in the C2C12 myotubes. These data suggest that mouse primary myotubes will be a valuable research tool as an in vitro muscle contraction model. PMID:26548957

  20. Real-time ultrasound-guided comparison of adductor canal block and psoas compartment block combined with sciatic nerve block in laparoscopic knee surgeries

    PubMed Central

    Messeha, Medhat M.

    2016-01-01

    Background: Lumbar plexus block, combined with a sciatic nerve block, is an effective locoregional anesthetic technique for analgesia and anesthesia of the lower extremity. The aim of this study was to compare the clinical results outcome of the adductor canal block versus the psoas compartment block combined with sciatic nerve block using real time ultrasound guidance in patients undergoing elective laparoscopic knee surgeries. Patients and Methods: Ninety patients who were undergoing elective laparoscopic knee surgeries were randomly allocated to receive a sciatic nerve block in addition to lumbar plexus block using either an adductor canal block (ACB) or a posterior psoas compartment approach (PCB) using 25 ml of bupivacine 0.5% with adrenaline 1:400,000 injection over 2-3 minutes while observing the distribution of the local anesthetic in real time. Successful nerve block was defined as a complete loss of pinprick sensation in the region that is supplied by the three nerves along with adequate motor block, 30 minutes after injection. The degree of motor block was evaluated 30 minutes after the block procedure. The results of the present study showed that the real time ultrasound guidance of PCB is more effective than ACB approach. Although the sensory blockade of the femoral nerve achieved equally by both techniques, the LFC and OBT nerves were faster and more effectively blocked with PCB technique. Also PCB group showed significant complete sensory block without need for general anesthesia, significant decrease in the post-operative VAS and significant increase time of first analgesic requirement as compared to the ACB group. Result and Conclusion: The present study demonstrates that blockade of lumber plexus by psoas compartment block is more effective in complete sensory block without general anesthesia supplementation in addition to decrease post-operative analgesic requirement than adductor canal block. PMID:27212766

  1. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    SciTech Connect

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X.

    2010-04-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  2. A New Method to Control Tendon Tension in the Transfer of Extensor Indicis Proprius to Extensor Pollicis Longus Rupture.

    PubMed

    Lee, Jae Hoon; Cho, Young Joo; Chung, Duke Whan

    2015-12-01

    This study evaluated the outcomes of extensor indicis proprius (EIP) transfer based on varying degrees of thumb extension after EIP transfer and elongation of the EIP. A total of 24 cases with extensor pollicis longus (EPL) ruptures who underwent EIP to EPL transfer were analyzed prospectively. The EIP transfer was performed with neutral wrist positioning. In group I (12 cases), EIP and EPL were sutured on the thumb in neutral state at interphalangeal joint, and the mean EIP elongation of this group measured 0.2 cm (range, -0.5 to 0.5 cm). In group II (12 cases), EIP and EPL were sutured on the thumb in full extension state at interphalangeal joint, and the mean EIP elongation measured 0.7 cm (range, 0.5-1.5 cm). The mean follow-up period was 13.5 months. The 2 groups were compared based on thumb motion, grip strength, pinch power, and the Disabilities of the Arm, Shoulder, and Hand questionnaire score. Extension of the thumb at the interphalangeal joint was -5.2° in group I and 7.2° in group II, demonstrating statistically significant differences. No significant differences were found between the 2 groups in other parameters. In EIP transfer, thumb in extension after transfer and EIP elongation is recommended for restoring thumb extension at the interphalangeal joint. PMID:26418770

  3. Muscle function and hydrodynamics limit power and speed in swimming frogs.

    PubMed

    Clemente, Christofer J; Richards, Christopher

    2013-01-01

    Studies of the muscle force-velocity relationship and its derived n-shaped power-velocity curve offer important insights into muscular limits of performance. Given the power is maximal at 1/3 V(max), geometric scaling of muscle force coupled with fluid drag force implies that this optimal muscle-shortening velocity for power cannot be maintained across the natural body-size range. Instead, muscle velocity may decrease with increasing body size, conferring a similar n-shaped power curve with body size. Here we examine swimming speed and muscle function in the aquatic frog Xenopus laevis. Swimming speed shows an n-shaped scaling relationship, peaking at 47.35 g. Further, in vitro muscle function of the ankle extensor plantaris longus also shows an optimal body mass for muscle power output (47.27 g), reflecting that of swimming speed. These findings suggest that in drag-based aquatic systems, muscle-environment interactions vary with body size, limiting both the muscle's potential to produce power and the swimming speed. PMID:24177194

  4. A variant extensor indicis muscle and the branching pattern of the deep radial nerve could explain hand functionality and clinical symptoms in the living patient

    PubMed Central

    Kumka, Myroslava

    2015-01-01

    The purpose of this study is to document the topographic anatomy of an extensor indicis (EI) muscle with a double tendon and the associated distribution of the deep branch of the radial nerve (DBRN). Both EI tendons were positioned deep to the tendons of the extensor digitorum as they traversed the dorsal osseofibrous tunnel. They then joined the medial slips of the extensor expansion of the second and third digits. In all other dissected forearms, a tendon of the EI muscle joined the medial slip of the extensor expansion to the index finger. The DBRN provided short branches to the superficial extensor muscles, long branches to the abductor pollicis longus and extensor pollicis brevis muscles, and terminated as the posterior interosseous nerve. Descending deep to the extensor pollicis longus muscle, the posterior interosseous nerve sent branches to the extensor pollicis brevis and EI muscles. Understanding of the topographic anatomy of an EI with a double tendon, and the associated distribution of the DBRN, may contribute to accurate diagnosis and treatment of hand lesions. PMID:25729087

  5. Force, work and power output of lower limb muscles during human maximal-effort countermovement jumping.

    PubMed

    Nagano, Akinori; Komura, Taku; Fukashiro, Senshi; Himeno, Ryutaro

    2005-08-01

    The purpose of this study was to simulate human maximal-effort countermovement jumping with a three-dimensional neuromusculoskeletal model. The specific aim was to investigate muscle force, work and power output of major lower limb muscles during the motion. A neuromusculoskeletal model that has nine rigid body segments, 20 degrees of freedom, 32 Hill-type lower limb muscles was developed. The neural activation input signal was represented by a series of step functions with step duration of 0.05 s. The excitation-contraction dynamics of the contractile element, the tissues around the joints to limit the joint range of motion, as well as the foot-ground interaction were implemented. A simulation was started from a standing posture. Optimal pattern of the activation input signal was searched through numerical optimization with a goal of maximizing the height reached by the mass center of body after jumping up. As a result, feasible kinematics, ground reaction force profile and muscle excitation profile were generated. It was found that monoarticular muscles had major contributions of mechanical work and power output, whereas biarticular muscles had minor contributions. Hip adductors, abductors and external rotator muscles were vigorously activated, although their mechanical work and power output was minor because of their limited length change during the motion. Joint flexor muscles such as m. iliopsoas, m. biceps femoris short head and m. tibialis anterior were activated in the beginning of the motion with an effect of facilitating the generation of a countermovement. PMID:15811607

  6. Functional Overloading of Dystrophic Mice Enhances Muscle-Derived Stem Cell Contribution to Muscle Contractile Capacity

    PubMed Central

    Ambrosio, Fabrisia; Ferrari, Ricardo J.; Fitzgerald, G. Kelley; Carvell, George; Boninger, Michael L.; Huard, Johnny

    2016-01-01

    Objectives To evaluate the effect of functional overloading on the transplantation of muscle derived stem cells (MDSCs) into dystrophic muscle and the ability of transplanted cells to increase dystrophic muscle’s ability to resist overloading-induced weakness. Design Cross-sectional. Setting Laboratory. Animals Male mice (N=10) with a dystrophin gene mutation. Interventions MDSCs were intramuscularly transplanted into the extensor digitorum longus muscle (EDL). Functional overloading of the EDL was performed by surgical ablation of the EDL’s synergist. Main Outcome Measures The total number of dystrophin-positive fibers/cross-section (as a measure of stem cell engraftment), the average number of CD31+ cells (as a measure of capillarity), and in vitro EDL contractile strength. Independent t tests were used to investigate the effect of overloading on engraftment, capillarity, and strength. Paired t tests were used to investigate the effect of MDSC engraftment on strength and capillarity. Results MDSC transplantation protects dystrophic muscles against overloading-induced weakness (specific twitch force: control 4.5N/cm2±2.3; MDSC treated 7.9N/cm2±1.4) (P=.02). This improved force production following overloading is concomitant with an increased regeneration by transplanted MDSCs (MDSC: 26.6±20.2 dystrophin-positive fibers/cross-section; overloading + MDSC: 170.6±130.9 dystrophin-positive fibers/cross-section [P=.03]). Overloading-induced increases in skeletal muscle capillarity is significantly correlated with increased MDSC engraftment (R2=.80, P=.01). Conclusions These findings suggest that the functional contribution of transplanted MDSCs may rely on activity-dependent mechanisms, possibly mediated by skeletal muscle vascularity. Rehabilitation modalities may play an important role in the development of stem cell transplantation strategies for the treatment of muscular dystrophy. PMID:19154831

  7. Recovery in skeletal muscle contractile function after prolonged hindlimb immobilization

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Brimmer, C. J.

    1985-01-01

    The effect of three-month hindlimb immobilization (IM) in rats on contractile properties of slow-twitch soleus (SOL), fast-twitch extensor digitorum longus, and fast-twitch superficial region of the vastus lateralis were measured after 0, 14, 28, 60, and 90 days of recovery on excized, horizontally suspended muscles stimulated electrically to maximal twitch tension. IM caused decreases in muscle-to-body weight ratios for all muscles, with no complete recovery even after 90 days. The contractile properties of the fast-twitch muscles were less affected by IM than those of the slow-twitch SOL. The SOL isometric twitch duration was shortened, due to reduced contraction and half-relaxation time, both of which returned to control levels after 14 days of recovery. The peak tetanic tension, P(O), g/sq cm,, decreased with IM by 46 percent in the SOL, but recovered by the 28th day. The maximum shortening velocity was not altered by IM in any of the muscles. Thus, normal contractile function could recover after prolonged limb IM.

  8. Responses of skeletal muscle to unloading - A review

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.; Henriksen, E. J.; Jacob, S.

    1985-01-01

    Suspension models were used to study muscle response to reduced activity. During 6 days of tail casting, the soleus (SOL) atrophies while the extensor digitorum longus grows relatively normally. After discounting those changes in both muscles due primarily to increased secretion of adrenal hormones, the following conclusions regarding the specific responses of the SOL could be drawn: (1) Atrophy is probably due primarily to increased protein degradation; (2) Decreased synthesis of glutamine may result from reduced availability of ammonia due to diminished use of ATP; (3) Greater muscle glycogen seems to reflect an increased response to insulin of glucose uptake which leads to greater glucose metabolism; and (4) Faster catabolism of branched-chain amino acids can be attributed to enhanced flux through ketoacid dehydrogenase. Studies by others using tail casted suspended rats showed in the SOL: (1) a gradual switch from type 1 to type 2 fibers; (2) increased acid protease activity; and (3) altered muscle function and contractile duration. Using harness suspended rats, others showed in the SOL: (1) significant atrophy; (2) increased numbers of glucocorticoid receptors; and (3) no change in muscle fatigability.

  9. Rat hindlimb muscle responses to suspension hypokinesia/hypodynamia

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Deavers, D. R.

    1983-01-01

    Hypokinetic/hyupodynamic (H/H) whole body suspension of rats eliminates hindlimb load bearing functions while permitting continued use of the forelimbs. Responses of hindlimb muscles were assessed in terms of absolute and relative weights during 1 and 2 weeks of H/H suspension. Muscle mass loss was in the order soleus greater than gastrocnemius equal to plantaris greater than extensor digitorum longus (EDL). The soleus, a postural antigravity muscle composed mainly of slow twitch fibers, was most sensitive, losing 35 and 45 percent of its weight during the first and second weeks, respectively. The gastrocnemius and plantaris showed losses during the first week but no significant loss during the second wee. The EDL showed little or no weight loss. During post suspension recovery all muscles showed a weight gain. H/H suspended rats failed to grow; following removal from suspension they gained weight linearly, comparable to controls. Products of muscle metabolism including urea, ammonia, and 3-methylhistidine increased in the urine during H/H suspension and were significantly reduced approaching control levels during recovery. This suspension model offers considerable promise for comparison with H/H responses during weightlessness.

  10. Responses of skeletal muscle to unloading, a review

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.; Henriksen, E. J.; Jacob, S.

    1985-01-01

    Suspension models were used to study muscle response to reduced activity. During 6 days of tail casting, the soleus (SOL) atrophies while the extensor digitorum longus grows relatively normally. After discounting those changes in both muscles due primarily to increased secretion of adrenal hormones, the following conclusions regarding the specific responses of the SOL could be drawn: (1) Atrophy is probably due primarily to increased protein degradation; (2) Decreased synthesis of glutamine may result from reduced availability of ammonia due to diminished use of ATP; (3) Greater muscle glycogen seems to reflect an increased response to insulin of glucose uptake which leads to greater glucose metabolism; and (4) Faster catabolism of branched-chain amino acids can be attributed to enhanced flux through ketoacid dehydrogenase. Studies by others using tail casted suspended rats showed in the SOL: (1) a gradual switch from type 1 to type 2 fibers; (2) increased acid protease activity; and (3) altered muscle function and contractile duration. Using harness suspended rats, others showed in the SOL: (1) significant atrophy; (2) increased numbers of glucocorticoid receptors; and (3) no change in muscle fatigability.

  11. Effects of use and disuse on growing skeletal muscle

    SciTech Connect

    Darr, K.C.

    1988-01-01

    In the first series of experiments, the time course and extent of satellite cell activation were studied in the soleus and extensor digitorum longus (EDL) muscles of untrained growing and mature rats after a single bout of prolonged eccentric treadmill running. Satellite cell mitotic activity was quantitated in autoradiographs of whole-fiber segments after injection of {sup 3}H-thymidine. Labelling in growing muscles progressively increased to peak at 72 h postexercise, whereas mature muscles exhibited an earlier peak at 24 (soleus) and 48 (EDL) h, followed by a more rapid decline to control levels by 120 h postexercise. In all exercised muscles the calculated satellite cell activation was far greater than required to repair the small number of necrotic fibers identified at the light-microscopic levels. In a second series of experiments, postnatal growth of 20d old rat EDL and soleus muscles was studied after 3, 10, 20 and 30d of hindlimp suspension. Radial growth of suspended soleus myofibers was attenuated 76% over the total suspension period. Longitudinal growth rate, however, was accelerated 40% over weight-bearing controls. In contrast radial and longitudinal growth of EDL myofibers were minimally affected under similar conditions. Both the number and proliferative activity of satellite cells were severely reduced in individual myofibers by day 3 of suspension.

  12. Association of resistin with visceral fat and muscle insulin resistance.

    PubMed

    Borst, Stephen E; Conover, Christine F; Bagby, Gregory J

    2005-10-01

    Maturing Sprague-Dawley (S-D) rats develop obesity and skeletal muscle insulin resistance. To investigate the relationship between fat mass and insulin responses, we performed surgical removal of the epididymal and retroperitoneal depots of visceral adipose tissue (VF) or sham surgery (SHAM) in male rats aged 4 months. At sacrifice, 30 days later, the mass of visceral fat was 48% lower (p<0.05) in VF- compared to SHAM, while subcutaneous fat was essentially unchanged. VF- animals displayed increased insulin responses in isolated strips of skeletal muscle. Insulin-stimulated glucose transport was increased 28% in soleus muscle (p<0.05), with a trend toward a 31% increase in extensor digitorum longus muscle (p=0.058). Glucose tolerance was not significantly affected by surgical fat removal. In VF- animals, serum resistin was reduced 26% (p<0.05) and serum adiponectin was reduced 30% (p<0.05), with trends for reductions in IL-4 (58% reduction, p=0.084) and IL-6 (56% reduction, p=0.123). TNF-alpha, leptin and free fatty acids (NEFAs) were unchanged. We conclude that in maturing S-D rats, increased visceral adiposity leads to an increase in systemic release in resistin and possibly interleukins. Elevation of circulating cytokines may play a role in the development of muscle insulin resistance. PMID:16154759

  13. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle.

    PubMed

    Egner, Ingrid M; Bruusgaard, Jo C; Gundersen, Kristian

    2016-08-15

    The largest mammalian cells are the muscle fibers, and they have multiple nuclei to support their large cytoplasmic volumes. During hypertrophic growth, new myonuclei are recruited from satellite stem cells into the fiber syncytia, but it was recently suggested that such recruitment is not obligatory: overload hypertrophy after synergist ablation of the plantaris muscle appeared normal in transgenic mice in which most of the satellite cells were abolished. When we essentially repeated these experiments analyzing the muscles by immunohistochemistry and in vivo and ex vivo imaging, we found that overload hypertrophy was prevented in the satellite cell-deficient mice, in both the plantaris and the extensor digitorum longus muscles. We attribute the previous findings to a reliance on muscle mass as a proxy for fiber hypertrophy, and to the inclusion of a significant number of regenerating fibers in the analysis. We discuss that there is currently no model in which functional, sustainable hypertrophy has been unequivocally demonstrated in the absence of satellite cells; an exception is re-growth, which can occur using previously recruited myonuclei without addition of new myonuclei. PMID:27531949

  14. Nutrient Excess and AMPK Downregulation in Incubated Skeletal Muscle and Muscle of Glucose Infused Rats

    PubMed Central

    Valentine, Rudy J.; Petrocelli, Robert; Schultz, Vera; Brandon, Amanda; Cooney, Gregory J.; Kraegen, Edward W.; Ruderman, Neil B.; Saha, Asish K.

    2015-01-01

    We have previously shown that incubation for 1h with excess glucose or leucine causes insulin resistance in rat extensor digitorum longus (EDL) muscle by inhibiting AMP-activated protein kinase (AMPK). To examine the events that precede and follow these changes, studies were performed in rat EDL incubated with elevated levels of glucose or leucine for 30min-2h. Incubation in high glucose (25mM) or leucine (100μM) significantly diminished AMPK activity by 50% within 30min, with further decreases occurring at 1 and 2h. The initial decrease in activity at 30min coincided with a significant increase in muscle glycogen. The subsequent decreases at 1h were accompanied by phosphorylation of αAMPK at Ser485/491, and at 2h by decreased SIRT1 expression and increased PP2A activity, all of which have previously been shown to diminish AMPK activity. Glucose infusion in vivo, which caused several fold increases in plasma glucose and insulin, produced similar changes but with different timing. Thus, the initial decrease in AMPK activity observed at 3h was associated with changes in Ser485/491 phosphorylation and SIRT1 expression and increased PP2A activity was a later event. These findings suggest that both ex vivo and in vivo, multiple factors contribute to fuel-induced decreases in AMPK activity in skeletal muscle and the insulin resistance that accompanies it. PMID:25996822

  15. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    SciTech Connect

    Roberts, B.M.; Frye, G.S.; Ahn, B.; Ferreira, L.F.; Judge, A.R.

    2013-06-07

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  16. A Morphometric Study of the Obturator Nerve around the Obturator Foramen

    PubMed Central

    Jo, Se Yeong; Chang, Jae Chil; Bae, Hack Gun; Oh, Jae-Sang; Heo, Juneyoung

    2016-01-01

    Objective Obturator neuropathy is a rare condition. Many neurosurgeons are unfamiliar with the obturator nerve anatomy. The purpose of this study was to define obturator nerve landmarks around the obturator foramen. Methods Fourteen cadavers were studied bilaterally to measure the distances from the nerve root to relevant anatomical landmarks near the obturator nerve, including the anterior superior iliac spine (ASIS), the pubic tubercle, the inguinal ligament, the femoral artery, and the adductor longus. Results The obturator nerve exits the obturator foramen and travels infero-medially between the adductors longus and brevis. The median distances from the obturator nerve exit zone (ONEZ) to the ASIS and pubic tubercle were 114 mm and 30 mm, respectively. The median horizontal and vertical distances between the pubic tubercle and the ONEZ were 17 mm and 27 mm, respectively. The shortest median distance from the ONEZ to the inguinal ligament was 19 mm. The median inguinal ligament lengths from the ASIS and the median pubic tubercle to the shortest point were 103 mm and 24 mm, respectively. The median obturator nerve lengths between the ONEZ and the adductor longus and femoral artery were 41 mm and 28 mm, respectively. Conclusion The obturator nerve exits the foramen 17 mm and 27 mm on the horizontal and sagittal planes, respectively, from the pubic tubercle below the pectineus muscle. The shallowest area is approximately one-fifth medially from the inguinal ligament. This study will help improve the accuracy of obturator nerve surgeries to better establish therapeutic plans and decrease complications. PMID:27226861

  17. Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta(2)-receptor agonist

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Ludemann, Robert; Easton, Thomas G.; Etlinger, Joseph D.

    1988-01-01

    The effects of a beta(2)-receptor agonist, clenbuterol, and a beta(2) antagonist, butoxamine, on the skeletal muscle fibers of rats were investigated. It was found that chronic treatment of rats with clenbuterol caused hypertrophy of histochemically identified fast-twitch, but not slow-twitch, fibers within the soleus, while in the extensor digitorum longus the mean areas of both fiber types were increased; in both muscles, the ratio of the number of fast-twitch to slow-twitch fibers was increased. In contrast, a treatment with butoxamine caused a reduction of the fast-twitch fiber size in both muscles, and the ratio of the fast-twitch to slow-twitch fibers was decreased.

  18. The effects of cutting or of stretching skeletal muscle in vitro on the rates of protein synthesis and degradation

    NASA Technical Reports Server (NTRS)

    Seider, M. J.; Kapp, R.; Chen, C.-P.; Booth, F. W.

    1980-01-01

    Skeletal muscle preparations using cut muscle fibers have often been used in studies of protein metabolism. The present paper reports an investigation of the effect of muscle cutting or stretching in vitro on the rates of protein synthesis and/or degradation. Protein synthesis and content, and ATP and phosphocreatine levels were monitored in soleus and extensor digitorum longus muscles from the rat with various extents of muscle fiber cuts and following stretching to about 120% the resting length. Rates of protein synthesis are found to be significantly lower and protein degradation higher in the cut muscles than in uncut controls, while ATP and phosphocreatine concentrations decreased. Stretched intact muscles, on the other hand, are observed to have higher concentrations of high-energy phosphates than unstretched muscles, while rates of protein degradation were not affected. Results thus demonstrate that the cutting of skeletal muscle fibers alters many aspects of muscle metabolism, and that moderate decreases in ATP concentration do not alter rates of protein concentration in intact muscles in vitro.

  19. Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, L. L.; Convertino, V. A.; Dudley, G. A.

    1995-01-01

    The purpose of this study was to test the hypothesis that the reduction in plasma volume (PV) induced by resistance exercise reflects fluid loss to the extravascular space and subsequently selective increase in cross-sectional area (CSA) of active but not inactive skeletal muscle. We compared changes in active and inactive muscle CSA and PV after barbell squat exercise. Magnetic resonance imaging (MRI) was used to quantify muscle involvement in exercise and to determine CSA of muscle groups or individual muscles [vasti (VS), adductor (Add), hamstring (Ham), and rectus femoris (RF)]. Muscle involvement in exercise was determined using exercise-induced contrast shift in spin-spin relaxation time (T2)-weighted MR images immediately postexercise. Alterations in muscle size were based on the mean CSA of individual slices. Hematocrit, hemoglobin, and Evans blue dye were used to estimate changes in PV. Muscle CSA and PV data were obtained preexercise and immediately postexercise and 15 and 45 min thereafter. A hierarchy of muscle involvement in exercise was found such that VS > Add > Ham > RF, with the Ham and RF showing essentially no involvement. CSA of the VS and Add muscle groups were increased 10 and 5%, respectively, immediately after exercise in each thigh with no changes in Ham and RF CSA. PV was decreased 22% immediately following exercise. The absolute loss of PV was correlated (r2 = 0.75) with absolute increase in muscle CSA immediately postexercise, supporting the notion that increased muscle size after resistance exercise reflects primarily fluid movement from the vascular space into active but not inactive muscle.

  20. MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity.

    PubMed

    Punga, Anna R; Maj, Marcin; Lin, Shuo; Meinen, Sarina; Rüegg, Markus A

    2011-03-01

    Muscle-specific tyrosine kinase (MuSK) is involved in the formation and maintenance of the neuromuscular junction (NMJ), and is necessary for NMJ integrity. As muscle involvement is strikingly selective in pathological conditions in which MuSK is targeted, including congenital myasthenic syndrome with MuSK mutation and MuSK antibody-seropositive myasthenia gravis, we hypothesized that the postsynaptic response to MuSK-agrin signalling differs between adult muscles. Transcript levels of postsynaptic proteins were compared between different muscles in wild-type adult mice. MuSK expression was high in the soleus and sternomastoid muscles and low in the extensor digitorum longus (EDL) and omohyoid muscles. The acetylcholine receptor (AChR) α subunit followed a similar expression pattern, whereas expression of Dok-7, Lrp4 and rapsyn was comparable between the muscles. We subsequently examined muscles in mice that overexpressed a miniaturized form of neural agrin or MuSK. In these transgenic mice, the soleus and sternomastoid muscles responded with formation of ectopic AChR clusters, whereas such clusters were almost absent in the EDL and omohyoid muscles. Electroporation of Dok-7 revealed its important role as an activator of MuSK in AChR cluster formation in adult muscles. Together, our findings indicate for the first time that adult skeletal muscles harbour different endogenous levels of MuSK and that these levels determine the ability to form ectopic AChR clusters upon overexpression of agrin or MuSK. We believe that these findings are important for our understanding of adult muscle plasticity and the selective muscle involvement in neuromuscular disorders in which MuSK is diminished. PMID:21255125

  1. Brain Connectivity Associated with Muscle Synergies in Humans

    PubMed Central

    Rana, Manku; Yani, Moheb S.; Asavasopon, Skulpan; Fisher, Beth E.

    2015-01-01

    The human brain is believed to simplify the control of the large number of muscles in the body by flexibly combining muscle coordination patterns, termed muscle synergies. However, the neural connectivity allowing the human brain to access and coordinate muscle synergies to accomplish functional tasks remains unknown. Here, we use a surprising pair of synergists in humans, the flexor hallucis longus (FHL, a toe flexor) and the anal sphincter, as a model that we show to be well suited in elucidating the neural connectivity underlying muscle synergy control. First, using electromyographic recordings, we demonstrate that voluntary FHL contraction is associated with synergistic anal sphincter contraction, but voluntary anal sphincter contraction occurs without FHL contraction. Second, using fMRI, we show that two important medial wall motor cortical regions emerge in relation to these tasks: one located more posteriorly that preferentially activates during voluntary FHL contraction and one located more anteriorly that activates during both voluntary FHL contraction as well as voluntary anal sphincter contraction. Third, using transcranial magnetic stimulation, we demonstrate that the anterior region is more likely to generate anal sphincter contraction than FHL contraction. Finally, using a repository resting-state fMRI dataset, we demonstrate that the anterior and posterior motor cortical regions have significantly different functional connectivity with distinct and distant brain regions. We conclude that specific motor cortical regions in humans provide access to different muscle synergies, which may allow distinct brain networks to coordinate muscle synergies during functional tasks. SIGNIFICANCE STATEMENT How the human nervous system coordinates activity in a large number of muscles is a fundamental question. The brain and spinal cord are believed to simplify the control of muscles by grouping them into functional units called muscle synergies. Motor cortex is

  2. Effects of Muscle Atrophy on Motor Control: Cage-size Effects

    NASA Technical Reports Server (NTRS)

    Stuart, D. G.

    1985-01-01

    Two populations of male Sprague-Dawley rats were raised either in conventional minimum-specification cages or in a larger cage. When the animals were mature (125 to 150 d), the physiological status of the soleus (SOL) and extensor digitorum longus (EDL) muscles of the small- and large-cage animals were compared. Analysis of whole-muscle properties including the performance of the test muscle during a standardized fatigue test in which the nerve to the test muscle was subjected to supramaximal intermittent stimulation shows: (1) the amplitude, area, mean amplitude, and peak-to-peak rate of the compound muscle action potential decreased per the course of the fatigue test; (2) cage size did not affect the profile of changes for any of the action-potential measurements; (3) changes exhibited in the compound muscle action potential by SOL and EDL were substantially different; and (4) except for SOL of the large-cage rats, there was a high correlation between all four measures of the compound muscle action potential and the peak tetanic force during the fatigue test; i.e., either the electrical activity largely etermines the force profile during the fatigue test or else contractile-related activity substantially affects the compound muscle action potential.

  3. Force-velocity relations of nine load-moving skeletal muscles.

    PubMed

    Baratta, R V; Solomonow, M; Best, R; Zembo, M; D'Ambrosia, R

    1995-07-01

    The relationship between maximal velocity and load was studied in nine muscles of the cat's hind limb using a technique in which the initial and final muscle lengths are determined by equilibrium of a suspended mass and the muscle's passive and active forces elicited by tetanic stimulation. The maximal velocities of shortening during contraction under each of various loads was used to fit a Hill model using the least-squares method. It was shown that different muscles varied significantly in their ability to generate maximal velocity over a range of loads. The tibialis anterior muscle generate the highest velocity (28.4 cms-1), whereas the tibialis posterior generated the lowest maximal velocity (4.2 cms-1). In general, muscles with predominantly fast twitch fibres and with the largest elongation/shortening range displaced the load at the highest velocities, as compared with muscles with predominantly slow twitch and short excursion range which respond with low velocities. The a/P0 ratio of Hill's equation, which defines the curvature of the force velocity, also varied widely, being most monotonic (0.927) for the soleus and the steepest (0.067) for the extensor digitorum longus, further suggesting that fibre composition is also highly influential on the force-velocity relations of the muscle. PMID:7475384

  4. Induction of amino acid transporters expression by endurance exercise in rat skeletal muscle

    SciTech Connect

    Murakami, Taro Yoshinaga, Mariko

    2013-10-04

    Highlights: •Regulation of amino acid transporter expression in working muscle remains unclear. •Expression of amino acid transporters for leucine were induced by a bout of exercise. •Requirement of leucine in muscle cells might regulate expression of its transporters. •This information is beneficial for understanding the muscle remodeling by exercise. -- Abstract: We here investigated whether an acute bout of endurance exercise would induce the expression of amino acid transporters that regulate leucine transport across plasma and lysosomal membranes in rat skeletal muscle. Rats ran on a motor-driven treadmill at a speed of 28 m/min for 90 min. Immediately after the exercise, we observed that expression of mRNAs encoding L-type amino acid transporter 1 (LAT1) and CD98 was induced in the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles. Sodium-coupled neutral amino acid transporter 2 (SNAT2) mRNA was also induced by the exercise in those three muscles. Expression of proton-assisted amino acid transporter 1 (PAT1) mRNA was slightly but not significantly induced by a single bout of exercise in soleus and EDL muscles. Exercise-induced mRNA expression of these amino acid transporters appeared to be attenuated by repeated bouts of the exercise. These results suggested that the expression of amino acid transporters for leucine may be induced in response to an increase in the requirement for this amino acid in the cells of working skeletal muscles.

  5. Electrophysiological, histochemical, and hormonal adaptation of rat muscle after prolonged hindlimb suspension

    NASA Astrophysics Data System (ADS)

    Kourtidou-Papadeli, Chrysoula; Kyparos, Antonios; Albani, Maria; Frossinis, Athanasios; Papadelis, Christos L.; Bamidis, Panagiotis; Vivas, Ana; Guiba-Tziampiri, Olympia

    2004-05-01

    The perspective of long-duration flights for future exploration, imply more research in the field of human adaptation. Previous studies in rat muscles hindlimb suspension (HLS), indicated muscle atrophy and a change of fibre composition from slow-to-fast twitch types. However, the contractile responses to long-term unloading is still unclear. Fifteen adult Wistar rats were studied in 45 and 70 days of muscle unweighting and soleus (SOL) muscle as well as extensor digitorum longus (EDL) were prepared for electrophysiological recordings (single, twitch, tetanic contraction and fatigue) and histochemical stainings. The loss of muscle mass observed was greater in the soleus muscle. The analysis of electrophysiological properties of both EDL and SOL showed significant main effects of group, of number of unweighting days and fatigue properties. Single contraction for soleus muscle remained unchanged but there was statistically significant difference for tetanic contraction and fatigue. Fatigue index showed a decrease for the control rats, but increase for the HLS rats. According to the histochemical findings there was a shift from oxidative to glycolytic metabolism during HLS. The data suggested that muscles atrophied, but they presented an adaptation pattern, while their endurance in fatigue was decreased.

  6. Electromyographic analysis of thigh muscles during track cycling on a velodrome.

    PubMed

    Watanabe, Kohei; Sato, Takayuki; Mukaimoto, Takahiro; Takashima, Wataru; Yamagishi, Michio; Nishiyama, Tetsunari

    2016-08-01

    We aimed to investigate neuromuscular activation of thigh muscles during track cycling at various speeds. Eight male competitive cyclists volunteered to participate in this study. Surface electromyography of the vastus lateralis, biceps femoris and adductor magnus muscles of the bilateral legs was recorded during track cycling on velodromes with a 250-m track. The participants were instructed to maintain three different lap times: 20, 18 and 16 s. The average rectified value (ARV) was calculated from the sampled surface electromyography. Significantly higher ARVs were observed in the right compared to left leg for the biceps femoris muscle during both straight and curved sections at 18- and 16-s lap times (P < 0.05). In the biceps femoris muscle, significant changes in ARVs during the recovery phase with an increase in speed were seen in the right leg only (P < 0.05). There were no significant differences in ARVs between the straight and curved sections for all three muscles (P > 0.05). From our findings, it was suggested that during track cycling on a velodrome the laterality of the biceps femoris muscle activity is a key strategy to regulate the speed, and fixed neuromuscular strategies are adopted between straight and curved sections for thigh muscles. PMID:26571039

  7. Hoffmann's syndrome with unusually long duration: Report on clinical, laboratory and muscle imaging findings in two cases.

    PubMed

    Nalini, Atchayaram; Govindaraju, C; Kalra, Pramila; Kadukar, Prashanth

    2014-04-01

    Two adult men presented with the rare Hoffmann's syndrome (HS). Case 1: A 35-year-old male patient had progressive stiffness of lower limbs of 13 years and generalized muscle hypertrophy and myalgia of 3 years duration. Had periorbital edema, dry skin, generalized muscle hypertrophy and spastic dysarthria with hoarseness. Muscle power was normal. Jaw jerk and deep tendon reflexes were exaggerated. Case 2: A 24-year-old male patient presented with muscle hypertrophy from childhood, slowness in motor activities and hearing impairment. For 6 months, he had severe muscle pains, cramps and further increase in hypertrophy. He had yellow tinged, dry skin, hoarseness of voice, gross muscle hypertrophy and minimal weakness. Both had markedly elevated serum creatine kinase (CK) levels and high thyroid stimulating hormone, low free triiodothyronine and free thyroxine levels. Levothyroxine treatment demonstrated remarkable reduction in muscle bulk at 2 months in both and no symptoms at 6 months. Magnetic resonance imaging of lower limbs in both cases revealed almost identical features with involvement of the muscles of posterior and adductor compartment of thighs and posterior and lateral compartments of the legs. Differential diagnosis of long duration muscle pseudohypertrophy and elevated CK levels should include HS. PMID:25024579

  8. Hoffmann's syndrome with unusually long duration: Report on clinical, laboratory and muscle imaging findings in two cases

    PubMed Central

    Nalini, Atchayaram; Govindaraju, C.; Kalra, Pramila; Kadukar, Prashanth

    2014-01-01

    Two adult men presented with the rare Hoffmann's syndrome (HS). Case 1: A 35-year-old male patient had progressive stiffness of lower limbs of 13 years and generalized muscle hypertrophy and myalgia of 3 years duration. Had periorbital edema, dry skin, generalized muscle hypertrophy and spastic dysarthria with hoarseness. Muscle power was normal. Jaw jerk and deep tendon reflexes were exaggerated. Case 2: A 24-year-old male patient presented with muscle hypertrophy from childhood, slowness in motor activities and hearing impairment. For 6 months, he had severe muscle pains, cramps and further increase in hypertrophy. He had yellow tinged, dry skin, hoarseness of voice, gross muscle hypertrophy and minimal weakness. Both had markedly elevated serum creatine kinase (CK) levels and high thyroid stimulating hormone, low free triiodothyronine and free thyroxine levels. Levothyroxine treatment demonstrated remarkable reduction in muscle bulk at 2 months in both and no symptoms at 6 months. Magnetic resonance imaging of lower limbs in both cases revealed almost identical features with involvement of the muscles of posterior and adductor compartment of thighs and posterior and lateral compartments of the legs. Differential diagnosis of long duration muscle pseudohypertrophy and elevated CK levels should include HS. PMID:25024579

  9. Comparative functional anatomy of hindlimb muscles and bones with reference to aquatic adaptation of the sea otter.

    PubMed

    Mori, Kent; Suzuki, Satoshi; Koyabu, Daisuke; Kimura, Junpei; Han, Sung-Yong; Endo, Hideki

    2015-05-01

    Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids. PMID:25715875

  10. Comparative functional anatomy of hindlimb muscles and bones with reference to aquatic adaptation of the sea otter

    PubMed Central

    MORI, Kent; SUZUKI, Satoshi; KOYABU, Daisuke; KIMURA, Junpei; HAN, Sung-Yong; ENDO, Hideki

    2015-01-01

    Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids. PMID:25715875

  11. Upregulation of MHC class I in transgenic mice results in reduced force-generating capacity in slow-twitch muscle.

    PubMed

    Salomonsson, Stina; Grundtman, Cecilia; Zhang, Shi-Jin; Lanner, Johanna T; Li, Charles; Katz, Abram; Wedderburn, Lucy R; Nagaraju, Kanneboyina; Lundberg, Ingrid E; Westerblad, Håkan

    2009-05-01

    Expression of major histocompatibility complex (MHC) class I in skeletal muscle fibers is an early and consistent finding in inflammatory myopathies. To test if MHC class I has a primary role in muscle impairment, we used transgenic mice with inducible overexpression of MHC class I in their skeletal muscle cells. Contractile function was studied in isolated extensor digitorum longus (EDL, fast-twitch) and soleus (slow-twitch) muscles. We found that EDL was smaller, whereas soleus muscle was slightly larger. Both muscles generated less absolute force in myopathic compared with control mice; however, when force was expressed per cross-sectional area, only soleus muscle generated less force. Inflammation was markedly increased, but no changes were found in the activities of key mitochondrial and glycogenolytic enzymes in myopathic mice. The induction of MHC class I results in muscle atrophy and an intrinsic decrease in force-generation capacity. These observations may have important implications for our understanding of the pathophysiological processes of muscle weakness seen in inflammatory myopathies. Muscle Nerve, 2008. PMID:19229963

  12. Alterations in upper limb muscle synergy structure in chronic stroke survivors

    PubMed Central

    Rymer, William Z.; Perreault, Eric J.; Yoo, Seng Bum; Beer, Randall F.

    2013-01-01

    Previous studies in neurologically intact subjects have shown that motor coordination can be described by task-dependent combinations of a few muscle synergies, defined here as a fixed pattern of activation across a set of muscles. Arm function in severely impaired stroke survivors is characterized by stereotypical postural and movement patterns involving the shoulder and elbow. Accordingly, we hypothesized that muscle synergy composition is altered in severely impaired stroke survivors. Using an isometric force matching protocol, we examined the spatial activation patterns of elbow and shoulder muscles in the affected arm of 10 stroke survivors (Fugl-Meyer <25/66) and in both arms of six age-matched controls. Underlying muscle synergies were identified using non-negative matrix factorization. In both groups, muscle activation patterns could be reconstructed by combinations of a few muscle synergies (typically 4). We did not find abnormal coupling of shoulder and elbow muscles within individual muscle synergies. In stroke survivors, as in controls, two of the synergies were comprised of isolated activation of the elbow flexors and extensors. However, muscle synergies involving proximal muscles exhibited consistent alterations following stroke. Unlike controls, the anterior deltoid was coactivated with medial and posterior deltoids within the shoulder abductor/extensor synergy and the shoulder adductor/flexor synergy in stroke was dominated by activation of pectoralis major, with limited anterior deltoid activation. Recruitment of the altered shoulder muscle synergies was strongly associated with abnormal task performance. Overall, our results suggest that an impaired control of the individual deltoid heads may contribute to poststroke deficits in arm function. PMID:23155178

  13. Muscle cramps.

    PubMed

    Miller, Timothy M; Layzer, Robert B

    2005-10-01

    Muscle cramps are a common problem characterized by a sudden, painful, involuntary contraction of muscle. These true cramps, which originate from peripheral nerves, may be distinguished from other muscle pain or spasm. Medical history, physical examination, and a limited laboratory screen help to determine the various causes of muscle cramps. Despite the "benign" nature of cramps, many patients find the symptom very uncomfortable. Treatment options are guided both by experience and by a limited number of therapeutic trials. Quinine sulfate is an effective medication, but the side-effect profile is worrisome, and other membrane-stabilizing drugs are probably just as effective. Patients will benefit from further studies to better define the pathophysiology of muscle cramps and to find more effective medications with fewer side-effects. PMID:15902691

  14. Spaceflight effects on adult rat muscle protein, nucleic acids, and amino acids

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1986-01-01

    Exposure to conditions of weightlessness has been associated with decrements in muscle mass and strength. The present studies were undertaken to determine muscle responses at the cellular level. Male Sprague-Dawley rats (360-410 g) were exposed to 7 days of weightlessness during the Spacelab-3 shuttle flight (May 1985). Animals were killed 12 h postflight, and soleus (S), gastrocnemius (G), and extensor digitorum longus (EDL) muscles were excised. Muscle protein, RNA, and DNA were extracted and quantified. Differential muscle atrophy was accompanied by a significant (P less than 0.05) reduction in total protein only in S muscles. There were no significant changes in protein concentration (mg/g) in the muscles examined. In S muscles from flight animals, sarcoplasmic protein accounted for a significantly greater proportion of total protein that in ground controls (37.5 vs. 32.5%). Tissue concentrations (nmol/g) of asparagine-aspartate, glutamine-glutamate, glycine, histidine, and lysine were significantly reduced (from 17 to 63%) in S muscles from flight animals, but only glutamine-glutamate levels were decreased in the G and EDL. Muscle DNA content (microgram) was unchanged in the tissues examined, but S muscle DNA concentration (micrograms/mg) increased 27%. RNA content (micrograms) was significantly (P less than 0.025) reduced in S (-28%) and G(-22%) muscles following spaceflight. These results identify specific alterations in rat skeletal muscle during short term (7-day) exposure to weightlessness and compare favorably with observations previously obtained from ground-based suspension simulations.

  15. Ultrasound-guided botulinum toxin injection technique for the iliopsoas muscle.

    PubMed

    Westhoff, Bettina; Seller, Konrad; Wild, Alexander; Jaeger, Marcus; Krauspe, Ruediger

    2003-12-01

    an injection programme which also includes other muscles like the adductors and the medial hamstrings) for pain relief, reducing care difficulties and, possibly, prevention of further decentration (Porta 2000, Foster et al. 2001, Deleplanque et al. 2002, Lubik et al. 2002). In Perthes disease, BTX-A injections in the iliopsoas muscle and the adductors may prevent a fixed deformity, which is a negative prognostic factor. PMID:14667075

  16. Assessment of bioelectrical activity of synergistic muscles during pelvic floor muscles activation in postmenopausal women with and without stress urinary incontinence: a preliminary observational study

    PubMed Central

    Ptaszkowski, Kuba; Paprocka-Borowicz, Małgorzata; Słupska, Lucyna; Bartnicki, Janusz; Dymarek, Robert; Rosińczuk, Joanna; Heimrath, Jerzy; Dembowski, Janusz; Zdrojowy, Romuald

    2015-01-01

    Objective Muscles such as adductor magnus (AM), gluteus maximus (GM), rectus abdominis (RA), and abdominal external and internal oblique muscles are considered to play an important role in the treatment of stress urinary incontinence (SUI), and the relationship between contraction of these muscles and pelvic floor muscles (PFM) has been established in previous studies. Synergistic muscle activation intensifies a woman’s ability to contract the PFM. In some cases, even for continent women, it is not possible to fully contract their PFM without involving the synergistic muscles. The primary aim of this study was to assess the surface electromyographic activity of synergistic muscles to PFM (SPFM) during resting and functional PFM activation in postmenopausal women with and without SUI. Materials and methods This study was a preliminary, prospective, cross-sectional observational study and included volunteers and patients who visited the Department and Clinic of Urology, University Hospital in Wroclaw, Poland. Forty-two patients participated in the study and were screened for eligibility criteria. Thirty participants satisfied the criteria and were categorized into two groups: women with SUI (n=16) and continent women (n=14). The bioelectrical activity of PFM and SPFM (AM, RA, GM) was recorded with a surface electromyographic instrument in a standing position during resting and functional PFM activity. Results Bioelectrical activity of RA was significantly higher in the incontinent group than in the continent group. These results concern the RA activity during resting and functional PFM activity. The results for other muscles showed no significant difference in bioelectrical activity between groups. Conclusion In women with SUI, during the isolated activation of PFM, an increased synergistic activity of RA muscle was observed; however, this activity was not observed in asymptomatic women. This may indicate the important accessory contribution of these muscles in the

  17. Effect of sepsis on calcium uptake and content in skeletal muscle and regulation in vitro by calcium of total and myofibrillar protein breakdown in control and septic muscle: Results from a preliminary study

    SciTech Connect

    Benson, D.W.; Hasselgren, P.O.; Hiyama, D.T.; James, J.H.; Li, S.; Rigel, D.F.; Fischer, J.E.

    1989-07-01

    Because high calcium concentration in vitro stimulates muscle proteolysis, calcium has been implicated in the pathogenesis of increased muscle breakdown in different catabolic conditions. Protein breakdown in skeletal muscle is increased during sepsis, but the effect of sepsis on muscle calcium uptake and content is not known. In this study the influence of sepsis, induced in rats by cecal ligation and puncture, on muscle calcium uptake and content was studied. Sixteen hours after cecal ligation and puncture or sham operation, calcium content of the extensor digitorum longus (EDL) and soleus (SOL) muscles was determined with an atomic absorption spectrometer. Calcium uptake was measured in intact SOL muscles incubated in the presence of calcium 45 (45Ca) for between 1 and 120 minutes. Total and myofibrillar protein breakdown was determined in SOL muscles, incubated in the presence of different calcium concentrations (0; 2.5; 5.0 mmol/L), and measured as release into the incubation medium of tyrosine and 3-methylhistidine (3-MH), respectively. Calcium content was increased by 51% (p less than 0.001) during sepsis in SOL and by 10% (p less than 0.05) in EDL muscle. There was no difference in 45Ca uptake between control and septic muscles during the early phase (1 to 5 minutes) of incubation. During more extended incubation (30 to 120 minutes), muscles from septic rats took up significantly more 45Ca than control muscles (p less than 0.05). Tyrosine release by incubated SOL muscles from control and septic rats was increased when calcium was added to the incubation medium, and at a calcium concentration of 2.5 mmol/L, the increase in tyrosine release was greater in septic than in control muscle. Addition of calcium to the incubation medium did not affect 3-MH release in control or septic muscle.

  18. Fibrosis, adipogenesis, and muscle atrophy in congenital muscular torticollis.

    PubMed

    Chen, Huan-Xiong; Tang, Sheng-Ping; Gao, Fu-Tang; Xu, Jiang-Long; Jiang, Xian-Ping; Cao, Juan; Fu, Gui-Bing; Sun, Ke; Liu, Shi-Zhe; Shi, Wei

    2014-11-01

    In the traditional view, muscle atrophy and interstitial fibrosis were regarded as the basic pathological features of congenital muscular torticollis (CMT). But in the ultrastructure study, the mesenchyme-like cells, myoblasts, myofibroblasts, and fibroblasts were found in the proliferation of interstitium of CMT. To investigate the characteristics of pathological features and the mechanisms of muscle atrophy in CMT, we retrospectively reviewed the medical records of 185 CMT patients from July 2009 to July 2011 in Shenzhen Children's Hospital in China and performed pathological studies. According to age, the 185 CMT patients were divided into 4 groups. All resected surgical specimens were processed for hematoxylin and eosin staining and Masson trichromic staining. Sudan III staining was used for frozen sections, whereas immunohistochemical staining for S-100, calpain-1, ubiquitin, and 20S proteasome was carried out on 40 CMT specimens. Eight adductor muscle specimens from 8 patients with development dysplasia of the hip were taken as control group in the immunohistochemical staining. By Masson trichromic staining, the differences in the percent area of fibrous tissue in each CMT groups were significant. In Sudan III staining and immunostaining for S-100, adipocyte hyperplasia was the pathological feature of CMT. Moreover, compared with controls, most atrophic muscle fibers in CMT specimens were found to show strong immunoreactivity for calpain-1, ubiquitin, and 20S proteasome. With increasing age, fibrosis peaked at both sides and it was low in middle age group. Adipocytes increased with age. The characteristics of pathological features in CMT are changeable with age. The calpain and the ubiquitin-proteasome system may play a role in muscle atrophy of CMT. In the CMT, adipogenesis, fibrogenesis, and myogenesis may be the results of mesenchyme-like cells in SCM (sternocleidomastoid muscle). In conclusion, the present study furthermore supports maldevelopment of the

  19. Effects of elevated temperature on protein breakdown in muscles from septic rats

    SciTech Connect

    Hall-Angeras, M.A.; Angeras, U.H.; Hasselgren, P.O.; Fischer, J.E. )

    1990-04-01

    Elevated temperature has been proposed to contribute to accelerated muscle protein degradation during fever and sepsis. The present study examined the effect of increased temperature in vitro on protein turnover in skeletal muscles from septic and control rats. Sepsis was induced by cecal ligation and puncture (CLP); control rats were sham operated. After 16 h, the extensor digitorum longus (EDL) and soleus (SOL) muscles were incubated at 37 or 40 degrees C. Protein synthesis was determined by measuring incorporation of (14C)phenylalanine into protein. Total and myofibrillar protein breakdown was assessed from release of tyrosine and 3-methylhistidine (3-MH), respectively. Total protein breakdown was increased at 40 degrees C by 15% in EDL and by 29% in SOL from control rats, whereas 3-MH release was not affected. In muscles from septic rats, total and myofibrillar protein breakdown was increased by 22 and 30%, respectively, at 40 degrees C in EDL but was not altered in SOL. Protein synthesis was unaffected by high temperature both in septic and nonseptic muscles. The present results suggest that high temperature is not the primary mechanism of increased muscle protein breakdown in sepsis because the typical response to sepsis, i.e., a predominant increase in myofibrillar protein breakdown, was not induced by elevated temperature in normal muscle. It is possible, however, that increased temperature may potentiate protein breakdown that is already stimulated by sepsis because elevated temperature increased both total and myofibrillar protein breakdown in EDL from septic rats.

  20. The calcineurin antagonist RCAN1-4 is induced by exhaustive exercise in rat skeletal muscle.

    PubMed

    Emrani, Ramin; Rébillard, Amélie; Lefeuvre, Luz; Gratas-Delamarche, Arlette; Davies, Kelvin J A; Cillard, Josiane

    2015-10-01

    The aim of this work was to study the regulation of the calcineurin antagonist regulator of calcineurin 1 (RCAN1) in rat skeletal muscles after exhaustive physical exercise, which is a physiological modulator of oxidative stress. Three skeletal muscles, namely extensor digitorum longus (EDL), gastrocnemius, and soleus, were investigated. Exhaustive exercise increased RCAN1-4 protein levels in EDL and gastrocnemius, but not in soleus. Protein oxidation as an index of oxidative stress was increased in EDL and gastrocnemius, but remained unchanged in soleus. However, lipid peroxidation was increased in all three muscles. CuZnSOD and catalase protein levels were increased at 3 h postexercise in soleus, whereas they remained unchanged in EDL and gastrocnemius. Calcineurin enzymatic activity declined in EDL and gastrocnemius but not in soleus, and its protein expression was decreased in all three muscles. The level of PGC1-α protein remained unchanged, whereas the protein expression of the transcription factor NFATc4 was decreased in all three muscles. Adiponectin expression was increased in all three muscles. RCAN1-4 expression in EDL and gastrocnemius muscles was augmented by the oxidative stress generated from exhaustive exercise. We propose that increased RCAN1-4 expression and the signal transduction pathways it regulates represent important components of the physiological adaptation to exercise-induced oxidative stress. PMID:26122706

  1. HDAC4-Myogenin Axis As an Important Marker of HD-Related Skeletal Muscle Atrophy

    PubMed Central

    Smeets, Cleo J. L. M.; Franklin, Sophie A.; Bondulich, Marie K.; Jolinon, Nelly; Muller, Thomas; Ahmed, Mhoriam; Dick, James R. T.; Piotrowska, Izabela; Greensmith, Linda; Smolenski, Ryszard T.; Bates, Gillian P.

    2015-01-01

    Skeletal muscle remodelling and contractile dysfunction occur through both acute and chronic disease processes. These include the accumulation of insoluble aggregates of misfolded amyloid proteins that is a pathological feature of Huntington’s disease (HD). While HD has been described primarily as a neurological disease, HD patients’ exhibit pronounced skeletal muscle atrophy. Given that huntingtin is a ubiquitously expressed protein, skeletal muscle fibres may be at risk of a cell autonomous HD-related dysfunction. However the mechanism leading to skeletal muscle abnormalities in the clinical and pre-clinical HD settings remains unknown. To unravel this mechanism, we employed the R6/2 transgenic and HdhQ150 knock-in mouse models of HD. We found that symptomatic animals developed a progressive impairment of the contractile characteristics of the hind limb muscles tibialis anterior (TA) and extensor digitorum longus (EDL), accompanied by a significant loss of motor units in the EDL. In symptomatic animals, these pronounced functional changes were accompanied by an aberrant deregulation of contractile protein transcripts and their up-stream transcriptional regulators. In addition, HD mouse models develop a significant reduction in muscle force, possibly as a result of a deterioration in energy metabolism and decreased oxidation that is accompanied by the re-expression of the HDAC4-DACH2-myogenin axis. These results show that muscle dysfunction is a key pathological feature of HD. PMID:25748626

  2. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice.

    PubMed

    Ryder, J W; Kawano, Y; Galuska, D; Fahlman, R; Wallberg-Henriksson, H; Charron, M J; Zierath, J R

    1999-12-01

    To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4-deficient and wild-type mice were studied after a 3 h swim exercise. In wild-type mice, insulin and swimming each increased 2-deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2-deoxyglucose glucose uptake in muscle from GLUT4-null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4-null mice, with no effect noted in fasted GLUT4-null mice. This exercise-associated 2-deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4-null muscle was increased 1.6-fold over basal levels after electrical stimulation. Contraction-induced glucose transport activity was fourfold greater in wild-type vs. GLUT4-null muscle. Glycogen content in gastrocnemius muscle was similar between wild-type and GLUT4-null mice and was reduced approximately 50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild-type, with no change in GLUT4-null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4-null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise-induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild-type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4-null mice were totally restored after 24 h carbohydrate refeeding.-Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg-Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. PMID:10593872

  3. Effects of pleiotrophin overexpression on mouse skeletal muscles in normal loading and in actual and simulated microgravity.

    PubMed

    Camerino, Giulia Maria; Pierno, Sabata; Liantonio, Antonella; De Bellis, Michela; Cannone, Maria; Sblendorio, Valeriana; Conte, Elena; Mele, Antonietta; Tricarico, Domenico; Tavella, Sara; Ruggiu, Alessandra; Cancedda, Ranieri; Ohira, Yoshinobu; Danieli-Betto, Daniela; Ciciliot, Stefano; Germinario, Elena; Sandonà, Dorianna; Betto, Romeo; Camerino, Diana Conte; Desaphy, Jean-François

    2013-01-01

    Pleiotrophin (PTN) is a widespread cytokine involved in bone formation, neurite outgrowth, and angiogenesis. In skeletal muscle, PTN is upregulated during myogenesis, post-synaptic induction, and regeneration after crushing, but little is known regarding its effects on muscle function. Here, we describe the effects of PTN on the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles in mice over-expressing PTN under the control of a bone promoter. The mice were maintained in normal loading or disuse condition, induced by hindlimb unloading (HU) for 14 days. Effects of exposition to near-zero gravity during a 3-months spaceflight (SF) into the Mice Drawer System are also reported. In normal loading, PTN overexpression had no effect on muscle fiber cross-sectional area, but shifted soleus muscle toward a slower phenotype, as shown by an increased number of oxidative type 1 fibers, and increased gene expression of cytochrome c oxidase subunit IV and citrate synthase. The cytokine increased soleus and EDL capillary-to-fiber ratio. PTN overexpression did not prevent soleus muscle atrophy, slow-to-fast transition, and capillary regression induced by SF and HU. Nevertheless, PTN exerted various effects on sarcolemma ion channel expression/function and resting cytosolic Ca(2+) concentration in soleus and EDL muscles, in normal loading and after HU. In conclusion, the results show very similar effects of HU and SF on mouse soleus muscle, including activation of specific gene programs. The EDL muscle is able to counterbalance this latter, probably by activating compensatory mechanisms. The numerous effects of PTN on muscle gene expression and functional parameters demonstrate the sensitivity of muscle fibers to the cytokine. Although little benefit was found in HU muscle disuse, PTN may emerge useful in various muscle diseases, because it exerts synergetic actions on muscle fibers and vessels, which could enforce oxidative metabolism and ameliorate muscle

  4. Effects of Pleiotrophin Overexpression on Mouse Skeletal Muscles in Normal Loading and in Actual and Simulated Microgravity

    PubMed Central

    Liantonio, Antonella; De Bellis, Michela; Cannone, Maria; Sblendorio, Valeriana; Conte, Elena; Mele, Antonietta; Tricarico, Domenico; Tavella, Sara; Ruggiu, Alessandra; Cancedda, Ranieri; Ohira, Yoshinobu; Danieli-Betto, Daniela; Ciciliot, Stefano; Germinario, Elena; Sandonà, Dorianna; Betto, Romeo; Desaphy, Jean-François

    2013-01-01

    Pleiotrophin (PTN) is a widespread cytokine involved in bone formation, neurite outgrowth, and angiogenesis. In skeletal muscle, PTN is upregulated during myogenesis, post-synaptic induction, and regeneration after crushing, but little is known regarding its effects on muscle function. Here, we describe the effects of PTN on the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles in mice over-expressing PTN under the control of a bone promoter. The mice were maintained in normal loading or disuse condition, induced by hindlimb unloading (HU) for 14 days. Effects of exposition to near-zero gravity during a 3-months spaceflight (SF) into the Mice Drawer System are also reported. In normal loading, PTN overexpression had no effect on muscle fiber cross-sectional area, but shifted soleus muscle toward a slower phenotype, as shown by an increased number of oxidative type 1 fibers, and increased gene expression of cytochrome c oxidase subunit IV and citrate synthase. The cytokine increased soleus and EDL capillary-to-fiber ratio. PTN overexpression did not prevent soleus muscle atrophy, slow-to-fast transition, and capillary regression induced by SF and HU. Nevertheless, PTN exerted various effects on sarcolemma ion channel expression/function and resting cytosolic Ca2+ concentration in soleus and EDL muscles, in normal loading and after HU. In conclusion, the results show very similar effects of HU and SF on mouse soleus muscle, including activation of specific gene programs. The EDL muscle is able to counterbalance this latter, probably by activating compensatory mechanisms. The numerous effects of PTN on muscle gene expression and functional parameters demonstrate the sensitivity of muscle fibers to the cytokine. Although little benefit was found in HU muscle disuse, PTN may emerge useful in various muscle diseases, because it exerts synergetic actions on muscle fibers and vessels, which could enforce oxidative metabolism and ameliorate muscle

  5. Morphology of the jaw, suspensorial, and opercle musculature of Beloniformes and related species (Teleostei: Acanthopterygii), with a special reference to the m. adductor mandibulae complex

    PubMed Central

    2015-01-01

    The taxon Beloniformes represents a heterogeneous group of teleost fishes that show an extraordinary diversity of jaw morphology. I present new anatomical descriptions of the jaw musculature in six selected beloniforms and four closely related species. A reduction of the external jaw adductor (A1) and a changed morphology of the intramandibular musculature were found in many Beloniformes. This might be correlated with the progressively reduced mobility of the upper and lower jaw bones. The needlefishes and sauries, which are characterised by extremely elongated and stiffened jaws, show several derived characters, which in combination enable the capture of fish at high velocity. The ricefishes are characterised by several derived and many plesiomorphic characters that make broad scale comparisons difficult. Soft tissue characters are highly diverse among hemiramphids and flying fishes reflecting the uncertainty about their phylogenetic position and interrelationship. The morphological findings presented herein may help to interpret future phylogenetic analyses using cranial musculature in Beloniformes. PMID:25755920

  6. Morphology of the jaw, suspensorial, and opercle musculature of Beloniformes and related species (Teleostei: Acanthopterygii), with a special reference to the m. adductor mandibulae complex.

    PubMed

    Werneburg, Ingmar

    2015-01-01

    The taxon Beloniformes represents a heterogeneous group of teleost fishes that show an extraordinary diversity of jaw morphology. I present new anatomical descriptions of the jaw musculature in six selected beloniforms and four closely related species. A reduction of the external jaw adductor (A1) and a changed morphology of the intramandibular musculature were found in many Beloniformes. This might be correlated with the progressively reduced mobility of the upper and lower jaw bones. The needlefishes and sauries, which are characterised by extremely elongated and stiffened jaws, show several derived characters, which in combination enable the capture of fish at high velocity. The ricefishes are characterised by several derived and many plesiomorphic characters that make broad scale comparisons difficult. Soft tissue characters are highly diverse among hemiramphids and flying fishes reflecting the uncertainty about their phylogenetic position and interrelationship. The morphological findings presented herein may help to interpret future phylogenetic analyses using cranial musculature in Beloniformes. PMID:25755920

  7. Muscle cramps

    MedlinePlus

    ... The most common cause of muscle cramps during sports activity is not getting enough fluids. Often, drinking ... alone does not always help. Salt tablets or sports drinks, which also replenish lost minerals, can be ...

  8. Muscle aches

    MedlinePlus

    ... be done include: Complete blood count (CBC) Other blood tests to look at muscle enzymes (creatine kinase) and possibly a test for Lyme disease or a connective tissue disorder Physical therapy may be helpful.

  9. Preservation of Muscle Force in Mdx3cv Mice Correlates with Low-Level Expression of a Near Full-Length Dystrophin Protein

    PubMed Central

    Li, Dejia; Yue, Yongping; Duan, Dongsheng

    2008-01-01

    The complete absence of dystrophin causes Duchenne muscular dystrophy. Its restoration by greater than 20% is needed to reduce muscle pathology and improve muscle force. Dystrophin levels lower than 20% are considered therapeutically irrelevant but are associated with a less severe phenotype in certain Becker muscular dystrophy patients. To understand the role of low-level dystrophin expression, we compared muscle force and pathology in mdx3cv and mdx4cv mice. Dystrophin was eliminated in mdx4cv mouse muscle but was expressed in mdx3cv mice as a near full-length protein at ∼5% of normal levels. Consistent with previous reports, we found dystrophic muscle pathology in both mouse strains. Surprisingly, mdx3cv extensor digitorium longus muscle showed significantly higher tetanic force and was also more resistant to eccentric contraction-induced injury than mdx4cv extensor digitorium longus muscle. Furthermore, mdx3cv mice had stronger forelimb grip strength than mdx4cv mice. Immunostaining revealed utrophin up-regulation in both mouse strains. The dystrophin-associated glycoprotein complex was also restored in the sarcolemma in both strains although at levels lower than those in normal mice. Our results suggest that subtherapeutic expression levels of near full-length, membrane-bound dystrophin, possibly in conjunction with up-regulated utrophin levels, may help maintain minimal muscle force but not arrest muscle degeneration or necrosis. Our findings provide valuable insight toward understanding delayed clinical onset and/or slow disease progression in certain Becker muscular dystrophy patients. PMID:18385524

  10. Proteomic Changes in Rat Thyroarytenoid Muscle Induced by Botulinum Neurotoxin Injection

    PubMed Central

    Welham, Nathan V.; Marriott, Gerard; Tateya, Ichiro; Bless, Diane M.

    2009-01-01

    Botulinum neurotoxin (BoNT) injection into the thyroarytenoid (TA) muscle is a commonly performed medical intervention for adductor spasmodic dysphonia. The mechanism of action of BoNT at the neuromuscular junction is well understood, however, aside from reports focused on myosin heavy chain isoform abundance, there is a paucity of data addressing the effects of therapeutic BoNT injection on the TA muscle proteome. In this study, 12 adult Sprague Dawley rats underwent unilateral TA muscle BoNT serotype A injection followed by tissue harvest at 72 hrs, 7 days, 14 days, and 56 days post-injection. Three additional rats were reserved as controls. Proteomic analysis was performed using 2D SDS-PAGE followed by MALDI-MS. Vocal fold movement was significantly reduced by 72 hrs, with complete return of function by 56 days. Twenty-five protein spots demonstrated significant protein abundance changes following BoNT injection, and were associated with alterations in energy metabolism, muscle contractile function, cellular stress response, transcription, translation, and cell proliferation. A number of protein abundance changes persisted beyond the return of gross physiologic TA function. These findings represent the first report of BoNT induced changes in any skeletal muscle proteome, and reinforce the utility of applying proteomic tools to the study of system-wide biological processes in normal and perturbed TA muscle function. PMID:18442174

  11. Foot posture influences the electromyographic activity of selected lower limb muscles during gait

    PubMed Central

    2009-01-01

    Background Some studies have found that flat-arched foot posture is related to altered lower limb muscle function compared to normal- or high-arched feet. However, the results from these studies were based on highly selected populations such as those with rheumatoid arthritis. Therefore, the objective of this study was to compare lower limb muscle function of normal and flat-arched feet in people without pain or disease. Methods Sixty adults aged 18 to 47 years were recruited to this study. Of these, 30 had normal-arched feet (15 male and 15 female) and 30 had flat-arched feet (15 male and 15 female). Foot posture was classified using two clinical measurements (the arch index and navicular height) and four skeletal alignment measurements from weightbearing foot x-rays. Intramuscular fine-wire electrodes were inserted into tibialis posterior and peroneus longus under ultrasound guidance, and surface EMG activity was recorded from tibialis anterior and medial gastrocnemius while participants walked barefoot at their self-selected comfortable walking speed. Time of peak amplitude, peak and root mean square (RMS) amplitude were assessed from stance phase EMG data. Independent samples t-tests were performed to assess for significant differences between the normal- and flat-arched foot posture groups. Results During contact phase, the flat-arched group exhibited increased activity of tibialis anterior (peak amplitude; 65 versus 46% of maximum voluntary isometric contraction) and decreased activity of peroneus longus (peak amplitude; 24 versus 37% of maximum voluntary isometric contraction). During midstance/propulsion, the flat-arched group exhibited increased activity of tibialis posterior (peak amplitude; 86 versus 60% of maximum voluntary isometric contraction) and decreased activity of peroneus longus (RMS amplitude; 25 versus 39% of maximum voluntary isometric contraction). Effect sizes for these significant findings ranged from 0.48 to 1.3, representing moderate to

  12. The pectoral fin muscles of the coelacanth Latimeria chalumnae: Functional and evolutionary implications for the fin-to-limb transition and subsequent evolution of tetrapods.

    PubMed

    Miyake, Tsutomu; Kumamoto, Minayori; Iwata, Masamitsu; Sato, Ryuichi; Okabe, Masataka; Koie, Hiroshi; Kumai, Nori; Fujii, Kenichi; Matsuzaki, Koji; Nakamura, Chiho; Yamauchi, Shinya; Yoshida, Kosuke; Yoshimura, Kohtaroh; Komoda, Akira; Uyeno, Teruya; Abe, Yoshitaka

    2016-09-01

    To investigate the morphology and evolutionary origin of muscles in vertebrate limbs, we conducted anatomical dissections, computed tomography and kinematic analyses on the pectoral fin of the African coelacanth, Latimeria chalumnae. We discovered nine antagonistic pairs of pronators and supinators that are anatomically and functionally distinct from the abductor and adductor superficiales and profundi. In particular, the first pronator and supinator pair represents mono- and biarticular muscles; a portion of the muscle fibers is attached to ridges on the humerus and is separated into two monoarticular muscles, whereas, as a biarticular muscle, the main body is inserted into the radius by crossing two joints from the shoulder girdle. This pair, consisting of a pronator and supinator, constitutes a muscle arrangement equivalent to two human antagonistic pairs of monoarticular muscles and one antagonistic pair of biarticular muscles in the stylopod between the shoulder and elbow joints. Our recent kinesiological and biomechanical engineering studies on human limbs have demonstrated that two antagonistic pairs of monoarticular muscles and one antagonistic pair of biarticular muscles in the stylopod (1) coordinately control output force and force direction at the wrist and ankle and (2) achieve a contact task to carry out weight-bearing motion and maintain stable posture. Therefore, along with dissections of the pectoral fins in two lungfish species, Neoceratodus forsteri and Protopterus aethiopicus, we discuss the functional and evolutionary implications for the fin-to-limb transition and subsequent evolution of tetrapods. Anat Rec, 299:1203-1223, 2016. © 2016 Wiley Periodicals, Inc. PMID:27343022

  13. Role of Glucocorticoids in the Response to Unloading of Muscle Protein and Amino Acid Metabolism

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.

    1985-01-01

    Intact control (weight bearing) and suspended rats gained weight at a similar rate during a 6 day period. Adrenaectomized (adx) weight bearing rats gained less weight during this period while adrenalectomized suspended rats showed no significant weight gain. Cortisol treatment of both of these groups of animals caused a loss of body weight. Results from these studies show several important findings: (1) Metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating gluccorticoids; (2) Metabolic changes in the soleus due to higher steroid levels are probably potentiated by greater numbers of receptors; and (3) Not all metabolic responses in the unloaded soleus muscle are due to direct action of elevated glucocorticoids or increased sensitivity to these hormones.

  14. Metabolomic Analysis of Oxidative and Glycolytic Skeletal Muscles by Matrix-Assisted Laser Desorption/IonizationMass Spectrometric Imaging (MALDI MSI)

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Hsuan; Garrett, Timothy J.; Carter, Christy S.; Yost, Richard A.

    2015-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers.

  15. Metabolomic Analysis of Oxidative and Glycolytic Skeletal Muscles by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Imaging (MALDI MSI)

    PubMed Central

    Tsai, Yu-Hsuan; Garrett, Timothy J.; Carter, Christy S.; Yost, Richard A.

    2015-01-01

    Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers. PMID:25893271

  16. Regulation of dihydropyridine receptor gene expression in mouse skeletal muscles by stretch and disuse.

    PubMed

    Radzyukevich, Tatiana L; Heiny, Judith A

    2004-11-01

    This study examined dihydropyridine receptor (DHPR) gene expression in mouse skeletal muscles during physiological adaptations to disuse. Disuse was produced by three in vivo models-denervation, tenotomy, and immobilization-and DHPR alpha1s mRNA was measured by quantitative Northern blot. After 14-day simultaneous denervation of the soleus (Sol), tibialis anterior (TA), extensor digitorum longus (EDL), and gastrocnemius (Gastr) muscles by sciatic nerve section, DHPR mRNA increased preferentially in the Sol and TA (+1.6-fold), whereas it increased in the EDL (+1.6-fold) and TA (+1.8-fold) after selective denervation of these muscles by peroneal nerve section. It declined in all muscles (-1.3- to -2.6-fold) after 14-day tenotomy, which preserves nerve input but removes mechanical tension. Atrophy was comparable in denervated and tenotomized muscles. These results suggest that factor(s) in addition to inactivity per se, muscle phenotype, or associated atrophy can regulate DHPR gene expression. To test the contribution of passive tension to this regulation, we subjected the same muscles to disuse by limb immobilization in a maximally dorsiflexed position. DHPR alpha1s mRNA increased in the stretched muscles (Sol, +2.3-fold; Gastr, +1.5-fold) and decreased in the shortened muscles (TA, -1.4-fold; EDL, -1.3-fold). The effect of stretch was confirmed in vitro. DHPR protein did not change significantly after 4-day immobilization, suggesting that additional levels of regulation may exist. These results demonstrate that DHPR alpha1s gene expression is regulated as an integral part of the adaptive response of skeletal muscles to disuse in both slow- and fast-twitch muscles and identify passive tension as an important signal for its regulation in vivo. PMID:15294855

  17. Spatial and temporal aspects of muscle hyperalgesia induced by nerve growth factor in humans.

    PubMed

    Andersen, Helle; Arendt-Nielsen, Lars; Svensson, Peter; Danneskiold-Samsøe, Bente; Graven-Nielsen, Thomas

    2008-11-01

    Intramuscular injection of nerve growth factor (NGF) has been shown to induce long-term sensitisation and time-dependent hyperalgesia indicating potential involvement of both central and peripheral pain mechanisms. This double-blind placebo-controlled study was designed to describe the spatial distribution of muscle hyperalgesia over time (immediately after, 3 h, 1, 4, 7 and 21 days) after injecting NGF (5 mug) into the tibialis anterior (TA) muscle, to explore possibly involved central pain mechanisms and to investigate the effect of gender on development of hyperalgesia. Totally 20 healthy volunteers (10 men and 10 women) participated in the study. An isotonic saline injection into the contralateral TA muscle served as a control condition for the NGF injection. Pressure pain thresholds (PPT) were used to test for muscle hyperalgesia along the TA (seven sites) muscle at the extensor digitorum longus and at the web between 1st and 2nd metatarsal (central involvement). One day after the NGF/control injections, hypertonic saline (0.5 ml, 5.8%) was injected into the left and right TA to study the pain response to chemical stimulation of the hyperalgesic muscle tissue. Scores on a modified Likert scale were used to assess soreness during muscle function. An area of hyperalgesia was observed locally at the injected site 3 h after injection of NGF, which expanded both proximally and distally on day 1; this effect subsided on day 4. Decreased PPT was also found between 1st and 2nd metatarsal on day 1. Hypertonic saline evoked more pain in men when injected in the NGF treated TA compared to the control leg. Injection of NGF increased muscle soreness during muscle activity for 7 days. In this material there was no gender effect of NGF-induced muscle hyperalgesia. The expansion of muscle hyperalgesia to distant areas indicates that central mechanisms are involved. PMID:18813917

  18. Defective regulation of energy metabolism in mdx-mouse skeletal muscles.

    PubMed

    Even, P C; Decrouy, A; Chinet, A

    1994-12-01

    Our previous finding of a reduced energy metabolism in slow- and fast-twitch skeletal muscle fibres from the murine model of Duchenne muscular dystrophy (the mdx mouse) led us to examine the importance of intracellular glucose availability for a normal energy turnover. To this end, basal and KCl-stimulated (20.9 mM total extracellular K+) rates of glucose uptake (GUP) and heat production were measured in isolated, glucose-incubated (5 mM) soleus and extensor digitorum longus muscles from mdx and control C57B1/10 mice, in the presence and in the absence of insulin (1.7 nM). Under all conditions and for both muscle types, glucose uptake values for mdx and control muscles were similar although heat production was lower in mdx muscles. The marked stimulation of GUP by insulin in both mdx and control muscles had only minor effects on heat production. In contrast, glucose deprivation or inhibition of glycolysis with 2-deoxy-D-glucose (5 mM) significantly decreased heat production in control muscles only, which attenuated, although did not suppress, the difference in basal heat production between mdx and control muscles. Stimulation of heat production by a short-chain fatty acid salt (octanoate, 2 mM) was significantly less marked in mdx than in control muscles. Increased cytoplasmic synthesis of CoA by addition of 5 mM pantothenate (vitamin B5) increased the thermogenic response to glucose more in mdx than in control muscles. We conclude that the low energy turnover in mdx-mouse muscle fibres is not due to a decrease of intracellular glucose availability, but rather to a decreased oxidative utilization of glucose and free fatty acids. We suggest that some enzyme complex of the tricarboxylic acid cycle or inefficiency of CoA transport in the mitochondria could be involved. PMID:7999003

  19. Leg muscle volume during 30-day 6-degree head-down bed rest with isotonic and isokinetic exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Lee, P. L.; Ellis, S.; Selzer, R. H.; Ortendahl, D. A.

    1994-01-01

    Magnetic resonance imaging (MRI) was used to compare the effect of two modes of lower-extremity exercise training on the mass (volume) of posterior leg group (PLG) muscles (soleus, flexor hallucis longus, tibialis posterior, lateral and medial gastrocnemius, and flexor digitorum longus) on 19 men (ages 32-42 years) subjected to intense dynamic-isotonic (ITE, cycle ergometer, number of subjects (N) = 7), isokinetic (IKE, torque egrometer, N = 7), and no exercise (NOE, N = 5) training for 60 min/day during head-down bed rest (HDBR). Total volume of the PLG muscles decreased (p less than 0.05) similarly: ITE = 4.3 +/- SE 1.6%, IKE = 7.7 +/- 1.6%, and NOE = 6.3 +/- 0.8%; combined volume (N = 19) loss was 6.1 +/- 0.9%. Ranges of volume changes were 2.6% to -9.0% (ITE), -2.1% to -14.9% (IKE), and -3.4% to -8/1% (NOE). Correlation coefficients (r) of muscle volume versus thickness measured with ultrasonography were: ITE r + 0.79 (p less than 0.05), IKE r = 0.27 (not significant (NS)), and NOE r = 0.63 (NS). Leg-muscle volume and thickness were highly correlated (r = 0.79) when plasma volume was maintained during HDBR with ITE. Thus, neither intensive lower extremity ITE nor IKE training influence the normal non-exercised posterior leg muscle atrophy during HDBR. The relationship of muscle volume and thickness may depend on the mode of exercise training associated with the maintenance of plasma volume.

  20. Correction of Multiple Striated Muscles in Murine Pompe Disease Through Adeno-associated Virus-Mediated Gene Therapy

    PubMed Central

    Sun, Baodong; Young, Sarah P.; Li, Ping; Di, Chunhui; Brown, Talmage; Salva, Maia Z.; Li, Songtao; Bird, Andrew; Yan, Zhen; Auten, Richard; Hauschka, Stephen D.; Koeberl, Dwight D.

    2009-01-01

    Glycogen storage disease type II (GSD-II; Pompe disease; MIM 232300) stems from the deficiency of acid-α-glucosidase (GAA; acid maltase; EC 3.2.1.20), which primarily involves cardiac and skeletal muscles. We hypothesized that systemic administration of an adeno-associated virus (AAV) vector containing a muscle specific regulatory cassette could drive efficacious transgene expression in GAA-knockout (GAA-KO) mice. AAV2/8 vectors containing the muscle creatine kinase (CK1) or hybrid α-myosin heavy chain enhancer-/muscle creatine kinase enhancer-promoter (MHCK7) cassettes were compared. The CK1 reduced glycogen content by approximately 50% in the heart and quadriceps, in comparison to untreated GAA-KO mice, whereas the MHCK7 containing vector reduced glycogen content even further: >95% in heart and >75% in the diaphragm and quadriceps. Administration of the MHCK7-containing vector significantly increased striated muscle function as assessed by increased Rotarod times at 18 weeks post-injection, whereas the CK1-containing vector did not increase Rotarod performance. Transduction efficiency was evaluated with an AAV2/8 vector in which MHCK7 drives alkaline-phosphatase, revealing that many more myofibers were transduced in the quadriceps than in the gastrocnemius. An AAV2/9 vector containing the MHCK7 cassette corrected GAA deficiency in the skeletal muscles of the distal limb, including the gastrocnemius, extensor digitalis longus, and soleus; furthermore, glycogen accumulations were substantially cleared by hGAA expression therein. Importantly, type IIb myofibers in the extensor digitalis longus were transduced, thereby correcting a myofiber type that is unresponsive to enzyme replacement therapy. In summary, AAV8 and AAV9-pseudotyped vectors containing the MHCK7 regulatory cassette achieved enhanced efficacy in Pompe disease mice. PMID:18560415

  1. Effect of injecting primary myoblasts versus putative muscle-derived stem cells on mass and force generation in mdx mice.

    PubMed

    Mueller, Gunhild M; O'Day, Terry; Watchko, Jon F; Ontell, Marcia

    2002-06-10

    It is well established that the injection of normal myoblasts or of muscle-derived stem cells (MDSCs) into the muscle of dystrophin-deficient mdx mice results in the incorporation of a number of donor myoblasts into the host muscle. However, the effect of the injected exogenous cells on mdx muscle mass and functional capacity has not been evaluated. This study evaluates the mass and functional capacity of the extensor digitorum longus (EDL) muscles of adult, male mdx mice that received intramuscular injections of primary myoblasts or of MDSCs (isolated by a preplating technique; Qu, Z., Balkir, L., van Deutekom, J.C., Robbins, P.D., Pruchnic, R., and Huard, J., J. Cell Biol. 1998;142:1257-1267) derived from normal mice. Evaluations were made 9 weeks after cell transplantation. Uninjected mdx EDL muscles have a mass 50% greater than that of age-matched C57BL/10J (normal) EDL muscles. Injections of either primary myoblasts or MDSCs have no effect on the mass of mdx EDL muscles. EDL muscles of mdx mice generate 43% more absolute twitch tension and 43% less specific tetanic tension then do EDL muscles of C57BL/10J mice. However, the absolute tetanic and specific twitch tension of mdx and C57BL/10J EDL muscles are similar. Injection of either primary myoblasts or MDSCs has no effect on the absolute or specific twitch and tetanic tensions of mdx muscle. Approximately 25% of the myofibers in mdx EDL muscles that received primary myoblasts react positively with antibody to dystrophin. There is no significant difference in the number of dystrophin-positive myofibers when MDSCs are injected. Regardless of the source of donor cells, dystrophin is limited to short distances (60-900 microm) along the length of the myofibers. This may, in part, explain the failure of cellular therapy to alter the contractile properties of murine dystrophic muscle. PMID:12067441

  2. Defects in oxygen supply to skeletal muscle of prediabetic ZDF rats.

    PubMed

    Ellis, Christopher G; Goldman, Daniel; Hanson, Madelyn; Stephenson, Alan H; Milkovich, Stephanie; Benlamri, Amina; Ellsworth, Mary L; Sprague, Randy S

    2010-06-01

    In humans, prediabetes is characterized by marked increases in plasma insulin and near normal blood glucose levels as well as microvascular dysfunction of unknown origin. Using the extensor digitorum longus muscle of 7-wk inbred male Zucker diabetic fatty rats fed a high-fat diet as a model of prediabetes, we tested the hypothesis that hyperinsulinemia contributes to impaired O(2) delivery in skeletal muscle. Using in vivo video microscopy, we determined that the total O(2) supply to capillaries in the extensor digitorum longus muscle of prediabetic rats was reduced to 64% of controls with a lower O(2) supply rate per capillary and higher O(2) extraction resulting in a decreased O(2) saturation at the venous end of the capillary network. These findings suggest a lower average tissue Po(2) in prediabetic animals. In addition, we determined that insulin, at concentrations measured in humans and Zucker diabetic fatty rats with prediabetes, inhibited the O(2)-dependent release of ATP from rat red blood cells (RBCs). This inability to release ATP could contribute to the impaired O(2) delivery observed in rats with prediabetes, especially in light of the finding that the endothelium-dependent relaxation of resistance arteries from these animals is not different from controls and is not altered by insulin. Computational modeling confirmed a significant 8.3-mmHg decrease in average tissue Po(2) as well as an increase in the heterogeneity of tissue Po(2), implicating a failure of a regulatory system for O(2) supply. The finding that insulin attenuates the O(2)-dependent release of ATP from RBCs suggests that this defect in RBC physiology could contribute to a failure in the regulation of O(2) supply to meet the demand in skeletal muscle in prediabetes. PMID:20207810

  3. Hydrostatic Isolated Limb Perfusion with Adeno-associated Virus Vectors Enhances Correction of Skeletal Muscle in Pompe Disease

    PubMed Central

    Sun, Baodong; Li, Songtao; Bird, Andrew; Koeberl, Dwight D.

    2010-01-01

    Glycogen storage disease type II (GSD-II; Pompe disease; MIM 232300) stems from the inherited deficiency of acid-α-glucosidase (GAA; acid maltase; EC 3.2.1.20), which primarily involves cardiac and skeletal muscles. We hypothesized that hydrostatic isolated limb perfusion (ILP) administration of an adeno-associated virus (AAV) vector containing a muscle specific promoter could achieve relatively higher transgene expression in the hindlimb muscles of GAA-knockout (GAA-KO) mice, in comparison with intravenous (IV) administration. ILP adminstration of AAV2/8 vectors encoding alkaline phosphatase or human GAA transduced skeletal muscles of the hindlimb widely, despite the relatively low number of vector particles administered (1×1011), and IV administration of an equivalent vector dose failed to transduce skeletal muscle detectably. Similarly, ILP administration of fewer vector particles of the AAV2/9 vector encoding human GAA (3×1010) transduced skeletal muscles of the hindlimb widely and significantly reduced glycogen content to, in comparison with IV administration. The only advantage for IV administration was moderately high level transduction of cardiac muscle, which demonstrated compellingly that ILP administration sequestered vector particles within the perfused limb. Reduction of glycogen storage in the extensor digitorum longus demonstrated the potential advantage of ILP-mediated delivery of AAV vectors in Pompe disease, because type II myofibers are resistant to enzyme replacement therapy. Thus, ILP will enhance AAV transduction of multiple skeletal muscles while reducing the required dosages in terms of vector particle numbers. PMID:20686508

  4. Changes in the cholinergic system of rat sciatic nerve and skeletal muscle following suspension induced disuse

    NASA Technical Reports Server (NTRS)

    Gupta, R. C.; Misulis, K. E.; Dettbarn, W. D.

    1984-01-01

    Muscle disused induced changes in the cholinergic system of sciatic nerve, slow twitch soleus (SOL) and fast twitch extensor digitorum longus (EDL) muscle were studied in rats. Rats with hindlimbs suspended for 2 to 3 weeks showed marked elevation in the activity of choline acetyltransferase (ChAT) in sciatic nerve (38%), in SOL (108%) and in EDL (67%). Acetylcholinesterase (AChE) activity in SOL increased by 163% without changing the molecular forms pattern of 4S, 10S, 12S, and 16S. No significant changes in activity and molecular forms pattern of AChE were seen in EDL or in AChE activity of sciatic nerve. Nicotinic receptor binding of 3H-acetylcholine was increased in both muscles. When measured after 3 weeks of hindlimb suspension the normal distribution of type 1 fibers in SOL was reduced and a corresponding increase in type IIa and IIb fibers is seen. In EDL no significant change in fiber proportion is observed. Muscle activity, such as loadbearing, appears to have a greater controlling influence on the characteristics of the slow twitch SOL muscle than upon the fast twitch EDL muscle.

  5. Impaired insulin-stimulated glucose transport in ATM-deficient mouse skeletal muscle.

    PubMed

    Ching, James Kain; Spears, Larry D; Armon, Jennifer L; Renth, Allyson L; Andrisse, Stanley; Collins, Roy L; Fisher, Jonathan S

    2013-06-01

    There are reports that ataxia telangiectasia mutated (ATM) plays a role in insulin-stimulated Akt phosphorylation, although this is not the case in some cell types. Because Akt plays a key role in insulin signaling, which leads to glucose transport in skeletal muscle, the predominant tissue in insulin-stimulated glucose disposal, we examined whether insulin-stimulated Akt phosphorylation and (or) glucose transport would be decreased in skeletal muscle of mice lacking functional ATM, compared with muscle from wild-type mice. We found that in vitro insulin-stimulated Akt phosphorylation was normal in soleus muscle from mice with 1 nonfunctional allele of ATM (ATM+/-) and from mice with 2 nonfunctional alleles (ATM-/-). However, insulin did not stimulate glucose transport or the phosphorylation of AS160 in ATM-/- soleus. ATM protein level was markedly higher in wild-type extensor digitorum longus (EDL) than in wild-type soleus. In EDL from ATM-/- mice, insulin did not stimulate glucose transport. However, in contrast to findings for soleus, insulin-stimulated Akt phosphorylation was blunted in ATM-/- EDL, concomitant with a tendency for insulin-stimulated phosphatidylinositol 3-kinase activity to be decreased. Together, the findings suggest that ATM plays a role in insulin-stimulated glucose transport at the level of AS160 in muscle comprised of slow and fast oxidative-glycolytic fibers (soleus) and at the level of Akt in muscle containing fast glycolytic fibers (EDL). PMID:23724874

  6. Muscle-Activation Onset Times With Shoes and Foot Orthoses in Participants With Chronic Ankle Instability

    PubMed Central

    Dingenen, Bart; Peeraer, Louis; Deschamps, Kevin; Fieuws, Steffen; Janssens, Luc; Staes, Filip

    2015-01-01

    Context Participants with chronic ankle instability (CAI) use an altered neuromuscular strategy to shift weight from double-legged to single-legged stance. Shoes and foot orthoses may influence these muscle-activation patterns. Objective To evaluate the influence of shoes and foot orthoses on onset times of lower extremity muscle activity in participants with CAI during the transition from double-legged to single-legged stance. Design Cross-sectional study. Setting Musculoskeletal laboratory. Patients or Other Participants A total of 15 people (9 men, 6 women; age = 21.8 ± 3.0 years, height = 177.7 ± 9.6 cm, mass = 72.0 ± 14.6 kg) who had CAI and wore foot orthoses were recruited. Intervention(s) A transition task from double-legged to single-legged stance was performed with eyes open and with eyes closed. Both limbs were tested in 4 experimental conditions: (1) barefoot (BF), (2) shoes only, (3) shoes with standard foot orthoses, and (4) shoes with custom foot orthoses (SCFO). Main Outcome Measure(s) The onset of activity of 9 lower extremity muscles was recorded using surface electromyography and a single force plate. Results Based on a full-factorial (condition, region, limb, vision) linear model for repeated measures, we found a condition effect (F3,91.8 = 9.39, P < .001). Differences among experimental conditions did not depend on limb or vision condition. Based on a 2-way (condition, muscle) linear model within each region (ankle, knee, hip), earlier muscle-activation onset times were observed in the SCFO than in the BF condition for the peroneus longus (P < .001), tibialis anterior (P = .003), vastus medialis obliquus (P = .04), and vastus lateralis (P = .005). Furthermore, the peroneus longus was activated earlier in the shoes-only (P = .02) and shoes-with-standard-foot-orthoses (P = .03) conditions than in the BF condition. No differences were observed for the hip muscles. Conclusions Earlier onset of muscle activity was most apparent in the SCFO

  7. A myostatin inhibitor (propeptide-Fc) increases muscle mass and muscle fiber size in aged mice but does not increase bone density or bone strength.

    PubMed

    Arounleut, Phonepasong; Bialek, Peter; Liang, Li-Fang; Upadhyay, Sunil; Fulzele, Sadanand; Johnson, Maribeth; Elsalanty, Mohammed; Isales, Carlos M; Hamrick, Mark W

    2013-09-01

    Loss of muscle and bone mass with age are significant contributors to falls and fractures among the elderly. Myostatin deficiency is associated with increased muscle mass in mice, dogs, cows, sheep and humans, and mice lacking myostatin have been observed to show increased bone density in the limb, spine, and jaw. Transgenic overexpression of myostatin propeptide, which binds to and inhibits the active myostatin ligand, also increases muscle mass and bone density in mice. We therefore sought to test the hypothesis that in vivo inhibition of myostatin using an injectable myostatin propeptide (GDF8 propeptide-Fc) would increase both muscle mass and bone density in aged (24 mo) mice. Male mice were injected weekly (20 mg/kg body weight) with recombinant myostatin propeptide-Fc (PRO) or vehicle (VEH; saline) for four weeks. There was no difference in body weight between the two groups at the end of the treatment period, but PRO treatment significantly increased mass of the tibialis anterior muscle (+ 7%) and increased muscle fiber diameter of the extensor digitorum longus (+ 16%) and soleus (+ 6%) muscles compared to VEH treatment. Bone volume relative to total volume (BV/TV) of the femur calculated by microCT did not differ significantly between PRO- and VEH-treated mice, and ultimate force (Fu), stiffness (S), toughness (U) measured from three-point bending tests also did not differ significantly between groups. Histomorphometric assays also revealed no differences in bone formation or resorption in response to PRO treatment. These data suggest that while developmental perturbation of myostatin signaling through either gene knockout or transgenic inhibition may alter both muscle and bone mass in mice, pharmacological inhibition of myostatin in aged mice has a more pronounced effect on skeletal muscle than on bone. PMID:23832079

  8. Test-retest reliability of innovated strength tests for hip muscles.

    PubMed

    Meyer, Christophe; Corten, Kristoff; Wesseling, Mariska; Peers, Koen; Simon, Jean-Pierre; Jonkers, Ilse; Desloovere, Kaat

    2013-01-01

    The burden of hip muscles weakness and its relation to other impairments has been well documented. It is therefore a pre-requisite to have a reliable method for clinical assessment of hip muscles function allowing the design and implementation of a proper strengthening program. Motor-driven dynamometry has been widely accepted as the gold-standard for lower limb muscle strength assessment but is mainly related to the knee joint. Studies focusing on the hip joint are less exhaustive and somewhat discrepant with regard to optimal participants position, consequently influencing outcome measures. Thus, we aimed to develop a standardized test setup for the assessment of hip muscles strength, i.e. flexors/extensors and abductors/adductors, with improved participant stability and to define its psychometric characteristics. Eighteen participants performed unilateral isokinetic and isometric contractions of the hip muscles in the sagittal and coronal plane at two separate occasions. Peak torque and normalized peak torque were measured for each contraction. Relative and absolute measures of reliability were calculated using the intraclass correlation coefficient and standard error of measurement, respectively. Results from this study revealed higher levels of between-day reliability of isokinetic/isometric hip abduction/flexion peak torque compared to existing literature. The least reliable measures were found for hip extension and adduction, which could be explained by a less efficient stabilization technique. Our study additionally provided a first set of reference normalized data which can be used in future research. PMID:24260550

  9. Evaluation of the cytotoxic effects of Cyperus longus extract, fractions and its essential oil on the PC3 and MCF7 cancer cell lines

    PubMed Central

    MEMARIANI, TOKTAM; HOSSEINI, TOKTAM; KAMALI, HOSSEIN; MOHAMMADI, AMENEH; GHORBANI, MARYAM; SHAKERI, ABDOREZA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.; SHAHSAVAND, SHABNAM

    2016-01-01

    Cyperus longus is one of the Iranian endemic species. However, to date, and to the best of our knowledge, there are no availale academic reports on the cytotoxicity of this plant. Thus, this study was carried out to examine the in vitro anti-proliferative and anti-apoptotic effects of Cyperus longus extract, fractions and essential oil (EO) on MCF7 and PC3 cell lines. The chemical constituents of EO were identified using gas chromatography (GC)-mass spectrometry (MS) analysis. The cells were cultured in RPMI-1640 medium and incubated with various concentrations of the plant extract and fractions. Cell viability was quantified by MTT assay following 24, 48 and 72 h of exposure to (12.5–200 µg/ml) of the methanol extract, the dichloromethane (CH2Cl2), ethyl acetate (EtOAc) and water fractions, as well as the EO of the plant. The percentage of apoptotic cells was determined using propidium iodide staining of DNA fragments by flow cytometry (sub-G1 peak). The most effective fraction in the MCF7 cell line was the CH2Cl2 fraction (IC50 after 48 h, 25.34±2.01). The EtOAc fraction (IC50 after 48 h, 35.2±2.69) and the methanol extract (IC50 after 48 h, 64.64±1.64) were also found to be effective. The IC50 values obtained for the PC3 cell line were 37.97±3.87, 51.57±3.87 and 70.33±2.36 for the CH2Cl2 fraction, the EtOAc fraction and the methanol extract, respectively. Based on these data and due to the partial polarity of the most effective fraction (the CH2Cl2 fraction), we also examined the cytotoxicity of the plant EO. The IC50 values after 48 h were 22.25±4.25 and 12.55±3.65 in the PC3 and MCF7 cell lines, respectively. DNA fragmentation assay also confirmed these data. Performing GC-MS analysis for the plant EO revealed that β-himachalene (10.81%), α-caryophyllene oxide (7.6%), irisone (4.78%), β-caryophyllene oxide (4.36%), humulene oxide (12%), viridiflorol (4.73%), aristolone (6.39%) and longiverbenone (6.04%) were the main constituents. Our results

  10. Muscle contribution to elbow joint valgus stability.

    PubMed

    Lin, Fang; Kohli, Navjot; Perlmutter, Sam; Lim, Dohyung; Nuber, Gordon W; Makhsous, Mohsen

    2007-01-01

    Repetitive valgus stress of the elbow can result in excessive strain or rupture of the native medial ulnar collateral ligament (MUCL). The flexor-pronator mass (FPM) may be particularly important for elbow valgus stability in overhead-throwing athletes. The aim of this study was to identify the relative contribution of each muscle of the FPM--that is, the flexor carpi ulnaris (FCU), flexor digitorum superficialis (FDS), flexor carpi radialis (FCR), and pronator teres (PT)--and of the extensor-supinator mass, including the extensor carpi ulnaris (ECU), extensor digitorum communis (EDC), extensor carpi radialis longus and brevus, and brachioradialis, to elbow valgus stability at 45 degrees and 90 degrees of elbow flexion angles. Eight fresh-frozen elbow specimens (mean age at death, 73.75 +/- 14.07 years) were tested. With the skin and subcutaneous tissue removed but all muscles left intact, each individual muscle of the FPM and extensor-supinator mass was loaded at 3 levels of force. During loading, strain on the MUCL and the kinematics of the elbow were measured simultaneously. Kinematic measurements were later repeated when the MUCL was fully cut. At 45 degrees and 90 degrees of elbow flexion, individual loading of the FCU, FDS, and FCR caused significant relief to the MUCL whereas the PT produced no significant change. Furthermore, of these flexor muscles, the FCU provided the greatest MUCL relief at both 45 degrees and 90 degrees . In contrast, loading of the ECU at 45 degrees of elbow flexion produced a significant increase in MUCL strain. All FPM muscles caused significant elbow varus movement at both 45 degrees and 90 degrees when loaded individually. At 90 degrees , the FCU created more motion than both the FCR and PT but not the FDS, and the FDS created more motion than the PT. The EDC and ECU created significant valgus movement at 45 degrees and 90 degrees , which became insignificant when the MUCL was transected. Our study suggested that the FCU, FDS, and

  11. Shank Muscle Strength Training Changes Foot Behaviour during a Sudden Ankle Supination

    PubMed Central

    Hagen, Marco; Lescher, Stephanie; Gerhardt, Andreas; Lahner, Matthias; Felber, Stephan; Hennig, Ewald M.

    2015-01-01

    Background The peroneal muscles are the most effective lateral stabilisers whose tension braces the ankle joint complex against excessive supination. The purpose of this study was to identify the morphological and biomechanical effects of two machine-based shank muscle training methods. Methods Twenty-two healthy male recreationally active sports students performed ten weeks of single-set high resistance strength training with 3 training sessions per week. The subjects conducted subtalar pronator/supinator muscle training (ST) with the right leg by using a custom-made apparatus; the left foot muscles were exercised with machine-based talocrural plantar and dorsiflexor training (TT). Muscle strength (MVIC), muscle volume and foot biomechanics (rearfoot motion, ground reaction forces, muscle reaction times) during a sudden ankle supination were recorded before and after the intervention. Results Compared to TT, ST resulted in significantly higher pronator (14% vs. 8%, P<0.01) and supinator MVIC (25% vs. 12%, P<0.01). During sudden foot inversions, both ST and TT resulted in reduced supination velocity (-12%; P<0.01). The muscle reaction onset time was faster after the training in peroneus longus (PL) (P<0.01). Muscle volume of PL (P<0.01) and TA (P<0.01) increased significantly after both ST and TT. Conclusion After both ST and TT, the ankle joint complex is mechanically more stabilised against sudden supinations due to the muscle volume increase of PL and TA. As the reduced supination velocities indicate, the strength training effects are already present during free-fall. According to a sudden ankle supination in standing position, both machine-based dorsiflexor and pronator strength training is recommended for enhancing the mechanical stability of the ankle. PMID:26110847

  12. Contractile activity restores insulin responsiveness in skeletal muscle of obese Zucker rats.

    PubMed Central

    Dolan, P L; Tapscott, E B; Dorton, P J; Dohm, G L

    1993-01-01

    Both insulin and contraction stimulate glucose transport in skeletal muscle. Insulin-stimulated glucose transport is decreased in obese humans and rats. The aims of this study were (1) to determine if contraction-stimulated glucose transport was also compromised in skeletal muscle of genetically obese insulin-resistant Zucker rats, and (2) to determine whether the additive effects of insulin and contraction previously observed in muscle from lean subjects were evident in muscle from the obese animals. To measure glucose transport, hindlimbs from lean and obese Zucker rats were perfused under basal, insulin-stimulated (0.1 microM), contraction-stimulated (electrical stimulation of the sciatic nerve) and combined insulin-(+)contraction-stimulated conditions. One hindlimb was stimulated to contract while the contralateral leg served as an unstimulated control. 2-Deoxyglucose transport rates were measured in the white gastrocnemius, red gastrocnemius and extensor digitorum longus muscles. As expected, the insulin-stimulated glucose transport rate in each of the three muscles was significantly slower (P < 0.05) in obese rats when compared with lean animals. When expressed as fold stimulation over basal, there was no significant difference in contraction-induced muscle glucose transport rates between lean and obese animals. Insulin-(+)contraction-stimulation was additive in skeletal muscle of lean animals, but synergistic in skeletal muscle of obese animals. Prior contraction increased insulin responsiveness of glucose transport 2-5-fold in the obese rats, but had no effect on insulin responsiveness in the lean controls. This contraction-induced improvement in insulin responsiveness could be of clinical importance to obese subjects as a way to improve insulin-stimulated glucose uptake in resistant skeletal muscle. PMID:8424787

  13. External potassium and action potential propagation in rat fast and slow twitch muscles.

    PubMed

    Kössler, F; Lange, F; Caffier, G; Küchler, G

    1991-10-01

    The role of extracellular K+ concentration in the propagation velocity of action potential was tested in isolated rat skeletal muscles. Different K+ concentrations were produced by KCl additions to extracellular solution. Action potentials were measured extracellularly by means of two annular platinum electrodes. Fibre bundles of m. soleus (SOL), m. extensor digitorum longus (EDL), red (SMR) and white (SMW) part of m. sternomastoideus were maximum stimulated. The conduction velocity (c.v.) was calculated from the distance between the electrodes and the time delay of the potentials measured at 22 degrees C. In Tyrode solution containing 5 mmol/l K+, the c.v. was close to 1 m.s-1. Bundles of the fast muscle type seemed to have a somewhat higher c.v. The differences observed in these studies were not significant. At higher temperatures, the c.v. increased (Q10 of approx. 2) and a dissociation between SMR and SMW muscles appeared. An elevation of K+ concentration to 10 mmol/l induced a drop of the c.v. by approx. 25% and 15% in EDL and SOL muscles, respectively. After return to normal solution, the recovery was not complete within 30 min. In K+ free solution the c.v. of EDL and SM muscles rose by a factor of 1.5, but less in SOL muscles. The weaker response of SOL to K+ modification was related to the higher resistance of this muscle to fatigue. This suggestion was supported by experiments on fatigued fibre bundles. Immediately after a tetanic stimulation producing fatigue, the c.v. of EDL and SOL muscles dropped similarly as in 10 mmol/l K+; again, the drop was less for SOL muscles. Adrenaline (0.5-10.0 mumol/l) enhanced both the c.v. and the twitch amplitude. The results support the suggestion that extracellular K+ accumulation during activity is an essential factor of muscle fatigue. PMID:1816028

  14. Muscle strain (image)

    MedlinePlus

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  15. Vertebral muscles of the back and tail of the albino rat (Rattus norvegicus albinus).

    PubMed

    Brink, E E; Pfaff, D W

    1980-01-01

    longus; and the ventral and lateral set of segmental tail muscles. The innervation of the lumbar transversospinalis muscles by the medial branches and of lateral longissimus by the lateral branches of the dorsal rami of the spinal nerves was traced and confirmed by electrical stimulation of the nerve branches. The innervation of medial longissimus is also described. Additionally, movements of the vertebral column produced by direct unilateral or bilateral muscle stimulation were observed for a number of the muscles. PMID:7370723

  16. The miRNA Transcriptome Directly Reflects the Physiological and Biochemical Differences between Red, White, and Intermediate Muscle Fiber Types

    PubMed Central

    Ma, Jideng; Wang, Hongmei; Liu, Rui; Jin, Long; Tang, Qianzi; Wang, Xun; Jiang, Anan; Hu, Yaodong; Li, Zongwen; Zhu, Li; Li, Ruiqiang; Li, Mingzhou; Li, Xuewei

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that can regulate their target genes at the post-transcriptional level. Skeletal muscle comprises different fiber types that can be broadly classified as red, intermediate, and white. Recently, a set of miRNAs was found expressed in a fiber type-specific manner in red and white fiber types. However, an in-depth analysis of the miRNA transcriptome differences between all three fiber types has not been undertaken. Herein, we collected 15 porcine skeletal muscles from different anatomical locations, which were then clearly divided into red, white, and intermediate fiber type based on the ratios of myosin heavy chain isoforms. We further illustrated that three muscles, which typically represented each muscle fiber type (i.e., red: peroneal longus (PL), intermediate: psoas major muscle (PMM), white: longissimus dorsi muscle (LDM)), have distinct metabolic patterns of mitochondrial and glycolytic enzyme levels. Furthermore, we constructed small RNA libraries for PL, PMM, and LDM using a deep sequencing approach. Results showed that the differentially expressed miRNAs were mainly enriched in PL and played a vital role in myogenesis and energy metabolism. Overall, this comprehensive analysis will contribute to a better understanding of the miRNA regulatory mechanism that achieves the phenotypic diversity of skeletal muscles. PMID:25938964

  17. Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    PubMed Central

    Kristensen, Jonas Møller; Treebak, Jonas T.; Schjerling, Peter; Goodyear, Laurie

    2014-01-01

    Metformin-induced activation of the 5′-AMP-activated protein kinase (AMPK) has been associated with enhanced glucose uptake in skeletal muscle, but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent on AMPK signaling. Oral doses of metformin or saline treatment were given to muscle-specific kinase dead (KD) AMPKα2 mice and wild-type (WT) littermates either once or chronically for 2 wk. Soleus and extensor digitorum longus muscles were used for measurements of glucose transport and Western blot analyses. Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (∼45%, P < 0.01) but not of AMPK KD mice. Insulin signaling at the level of Akt protein expression or Thr308 and Ser473 phosphorylation was not changed by metformin treatment. Insulin signaling at the level of Akt and TBC1D4 protein expression as well as Akt Thr308/Ser473 and TBC1D4 Thr642/Ser711 phosphorylation were not changed by metformin treatment. Also, protein expressions of Rab4, GLUT4, and hexokinase II were unaltered after treatment. The acute metformin treatment did not affect glucose uptake in muscle of either of the genotypes. In conclusion, we provide novel evidence for a role of AMPK in potentiating the effect of insulin on glucose uptake in soleus muscle in response to chronic metformin treatment. PMID:24644243

  18. Hypertrophy in the cervical muscles and thoracic discs in bed rest?

    PubMed

    Belavý, Daniel L; Miokovic, Tanja; Armbrecht, Gabriele; Felsenberg, Dieter

    2013-09-01

    The impact of prolonged bed rest on the cervical and upper thoracic spine is unknown. In the 2nd Berlin BedRest Study (BBR2-2), 24 male subjects underwent 60-day bed rest and performed either no exercise, resistive exercise, or resistive exercise with whole body vibration. Subjects were followed for 2 yr after bed rest. On axial cervical magnetic resonance images from the skull to T3, the volumes of the semispinalis capitis, splenius capitis, spinalis cervicis, longus capitis, longus colli, levator scapulae, sternocleidomastoid, middle and posterior scalenes, and anterior scalenes were measured. Disc height, anteroposterior width, and volume were measured from C2/3 to T6/7 on sagittal images. The volume of all muscles, with the exception of semispinalis capitis, increased during bed rest (P < 0.025). There were no significant differences between the groups for changes in the muscles. Increased upper and midthoracic spine disc height and volume (P < 0.001) was seen during bed rest, and disc height increases persisted at least 6 mo after bed rest. Increases in thoracic disc height were greater (P = 0.003) in the resistive vibration exercise group than in control. On radiological review, two subjects showed new injuries to the mid-lower thoracic spine. One of these subjects reported a midthoracic pain incident during maximal strength testing before bed rest and the other after countermeasure exercise on day 3 of bed rest. We conclude that bed rest is associated with increased disc size in the thoracic region and increases in muscle volume at the neck. The exercise device needs to be modified to ensure that load is distributed in a more physiological fashion. PMID:23813530

  19. Capillary muscle

    PubMed Central

    Cohen, Caroline; Mouterde, Timothée; Quéré, David; Clanet, Christophe

    2015-01-01

    The contraction of a muscle generates a force that decreases when increasing the contraction velocity. This “hyperbolic” force–velocity relationship has been known since the seminal work of A. V. Hill in 1938 [Hill AV (1938) Proc R Soc Lond B Biol Sci 126(843):136–195]. Hill’s heuristic equation is still used, and the sliding-filament theory for the sarcomere [Huxley H, Hanson J (1954) Nature 173(4412):973–976; Huxley AF, Niedergerke R (1954) Nature 173(4412):971–973] suggested how its different parameters can be related to the molecular origin of the force generator [Huxley AF (1957) Prog Biophys Biophys Chem 7:255–318; Deshcherevskiĭ VI (1968) Biofizika 13(5):928–935]. Here, we develop a capillary analog of the sarcomere obeying Hill’s equation and discuss its analogy with muscles. PMID:25944938

  20. Capillary muscle.

    PubMed

    Cohen, Caroline; Mouterde, Timothée; Quéré, David; Clanet, Christophe

    2015-05-19

    The contraction of a muscle generates a force that decreases when increasing the contraction velocity. This "hyperbolic" force-velocity relationship has been known since the seminal work of A. V. Hill in 1938 [Hill AV (1938) Proc R Soc Lond B Biol Sci 126(843):136-195]. Hill's heuristic equation is still used, and the sliding-filament theory for the sarcomere [Huxley H, Hanson J (1954) Nature 173(4412):973-976; Huxley AF, Niedergerke R (1954) Nature 173(4412):971-973] suggested how its different parameters can be related to the molecular origin of the force generator [Huxley AF (1957) Prog Biophys Biophys Chem 7:255-318; Deshcherevskiĭ VI (1968) Biofizika 13(5):928-935]. Here, we develop a capillary analog of the sarcomere obeying Hill's equation and discuss its analogy with muscles. PMID:25944938

  1. Use of superfused rat skeletal muscle for metabolic studies: assessment of pH by 31P n.m.r.

    PubMed Central

    Meynial-Denis, D; Mignon, M; Foucat, L; Bonnet, Y; Bielicki, G; Renou, J P; Lacourt, P; Lacourt, A; Arnal, M

    1993-01-01

    We developed a muscle superfusion system suitable for metabolic studies of small isolated rat muscle ex vivo in real time and in a non-destructive manner by n.m.r. spectroscopy. In order to determine biochemical stability of superfused extensor digitorum longus (EDL) muscle (from fasted 45 and 100 g rats), the energy state and the pH of muscle were continuously monitored by 31P n.m.r. spectroscopy. ATP and phosphocreatine remained stable during 2 h whatever the muscle size (20 or 45 mg). Neither metabolite was a sensitive probe of possible metabolic compartmentation within muscle under our experimental conditions. By contrast, the chemical shift of Pi by its sensitivity to pH was a discriminant factor in the assessment of muscle stability. Indeed, heterogeneity of pH was observed only in the 45 mg EDL muscle resulting from a core region with loss of glycogen. Together, these observations suggest deviations of energy metabolism to supply ATP. Consequently, pH may be considered as a new real-time criterion for monitoring a metabolic heterogeneity due to changes in energy metabolism of muscle preparations ex vivo. Images Figure 1 PMID:8343121

  2. The Role of Magnetic Resonance Imaging in Athletic Pubalgia and Core Muscle Injury.

    PubMed

    Coker, Dana J; Zoga, Adam C

    2015-08-01

    Magnetic resonance imaging (MRI) has become the standard of care imaging modality for a difficult, often misunderstood spectrum of musculoskeletal injury termed athletic pubalgia or core muscle injury. Armed with a dedicated noncontrast athletic pubalgia protocol and a late model phased array receiver coil, the musculoskeletal imager can play a great role in effective diagnosis and treatment planning for lesions, including osteitis pubis, midline pubic plate lesions, and rectus abdominis/adductor aponeurosis injury. Beyond these established patterns of MRI findings, there are many confounders and contributing pathologies about the pelvis in patients with activity related groin pain, including internal and periarticular derangements of the hip. The MRI is ideally suited to delineate the extent of expected injury and to identify the unexpected visceral and musculoskeletal lesions. PMID:26244616

  3. Built for rowing: frog muscle is tuned to limb morphology to power swimming

    PubMed Central

    Richards, Christopher T.; Clemente, Christofer J.

    2013-01-01

    Rowing is demanding, in part, because drag on the oars increases as the square of their speed. Hence, as muscles shorten faster, their force capacity falls, whereas drag rises. How do frogs resolve this dilemma to swim rapidly? We predicted that shortening velocity cannot exceed a terminal velocity where muscle and fluid torques balance. This terminal velocity, which is below Vmax, depends on gear ratio (GR = outlever/inlever) and webbed foot area. Perhaps such properties of swimmers are ‘tuned’, enabling shortening speeds of approximately 0.3Vmax for maximal power. Predictions were tested using a ‘musculo-robotic’ Xenopus laevis foot driven either by a living in vitro or computational in silico plantaris longus muscle. Experiments verified predictions. Our principle finding is that GR ranges from 11.5 to 20 near the predicted optimum for rowing (GR ≈ 11). However, gearing influences muscle power more strongly than foot area. No single morphology is optimal for producing muscle power. Rather, the ‘optimal’ GR decreases with foot size, implying that rowing ability need not compromise jumping (and vice versa). Thus, despite our neglect of additional forces (e.g. added mass), our model predicts pairings of physiological and morphological properties to confer effective rowing. Beyond frogs, the model may apply across a range of size and complexity from aquatic insects to human-powered rowing. PMID:23676897

  4. Pulsed ultrasound therapy accelerates the recovery of skeletal muscle damage induced by Bothrops jararacussu venom.

    PubMed

    Saturnino-Oliveira, J; Tomaz, M A; Fonseca, T F; Gaban, G A; Monteiro-Machado, M; Strauch, M A; Cons, B L; Calil-Elias, S; Martinez, A M B; Melo, P A

    2012-06-01

    We studied the effect of pulsed ultrasound therapy (UST) and antibothropic polyvalent antivenom (PAV) on the regeneration of mouse extensor digitorum longus muscle following damage by Bothrops jararacussu venom. Animals (Swiss male and female mice weighing 25.0 ± 5.0 g; 5 animals per group) received a perimuscular injection of venom (1 mg/kg) and treatment with UST was started 1 h later (1 min/day, 3 MHz, 0.3 W/cm(2), pulsed mode). Three and 28 days after injection, muscles were dissected and processed for light microscopy. The venom caused complete degeneration of muscle fibers. UST alone and combined with PAV (1.0 mL/kg) partially protected these fibers, whereas muscles receiving no treatment showed disorganized fascicules and fibers with reduced diameter. Treatment with UST and PAV decreased the effects of the venom on creatine kinase content and motor activity (approximately 75 and 48%, respectively). Sonication of the venom solution immediately before application decreased the in vivo and ex vivo myotoxic activities (approximately 60 and 50%, respectively). The present data show that UST counteracts some effects of B. jararacussu venom, causing structural and functional improvement of the regenerated muscle after venom injury. PMID:22415117

  5. Muscle imaging in patients with tubular aggregate myopathy caused by mutations in STIM1

    PubMed Central

    Tasca, Giorgio; D'Amico, Adele; Monforte, Mauro; Nadaj-Pakleza, Aleksandra; Vialle, Marc; Fattori, Fabiana; Vissing, John; Ricci, Enzo; Bertini, Enrico

    2015-01-01

    Tubular aggregate myopathy is a genetically heterogeneous disease characterized by tubular aggregates as the hallmark on muscle biopsy. Mutations in STIM1 have recently been identified as one genetic cause in a number of tubular aggregate myopathy cases. To characterize the pattern of muscle involvement in this disease, upper and lower girdles and lower limbs were imaged in five patients with mutations in STIM1, and the scans were compared with two patients with tubular aggregate myopathy not caused by mutations in STIM1. A common pattern of involvement was found in STIM1-mutated patients, although with variable extent and severity of lesions. In the upper girdle, the subscapularis muscle was invariably affected. In the lower limbs, all the patients showed a consistent involvement of the flexor hallucis longus, which is very rarely affected in other muscle diseases, and a diffuse involvement of thigh and posterior leg with sparing of gracilis, tibialis anterior and, to a lesser extent, short head of biceps femoris. Mutations in STIM1 are associated with a homogeneous involvement on imaging despite variable clinical features. Muscle imaging can be useful in identifying STIM1-mutated patients especially among other forms of tubular aggregate myopathy. PMID:26255678

  6. Muscle imaging in patients with tubular aggregate myopathy caused by mutations in STIM1.

    PubMed

    Tasca, Giorgio; D'Amico, Adele; Monforte, Mauro; Nadaj-Pakleza, Aleksandra; Vialle, Marc; Fattori, Fabiana; Vissing, John; Ricci, Enzo; Bertini, Enrico

    2015-11-01

    Tubular aggregate myopathy is a genetically heterogeneous disease characterized by tubular aggregates as the hallmark on muscle biopsy. Mutations in STIM1 have recently been identified as one genetic cause in a number of tubular aggregate myopathy cases. To characterize the pattern of muscle involvement in this disease, upper and lower girdles and lower limbs were imaged in five patients with mutations in STIM1, and the scans were compared with two patients with tubular aggregate myopathy not caused by mutations in STIM1. A common pattern of involvement was found in STIM1-mutated patients, although with variable extent and severity of lesions. In the upper girdle, the subscapularis muscle was invariably affected. In the lower limbs, all the patients showed a consistent involvement of the flexor hallucis longus, which is very rarely affected in other muscle diseases, and a diffuse involvement of thigh and posterior leg with sparing of gracilis, tibialis anterior and, to a lesser extent, short head of biceps femoris. Mutations in STIM1 are associated with a homogeneous involvement on imaging despite variable clinical features. Muscle imaging can be useful in identifying STIM1-mutated patients especially among other forms of tubular aggregate myopathy. PMID:26255678

  7. Proteomic and Carbonylation Profile Analysis of Rat Skeletal Muscles following Acute Swimming Exercise

    PubMed Central

    Pietrovito, Laura; Fiaschi, Tania; Bini, Luca; Esposito, Fabio; Marini, Marina; Abruzzo, Provvidenza Maria; Gulisano, Massimo; Modesti, Alessandra

    2013-01-01

    Previous studies by us and other groups characterized protein expression variation following long-term moderate training, whereas the effects of single bursts of exercise are less known. Making use of a proteomic approach, we investigated the effects of acute swimming exercise (ASE) on protein expression and carbonylation patterns in two hind limb muscles: the Extensor Digitorum Longus (EDL) and the Soleus, mostly composed of fast-twitch and slow-twitch fibres, respectively. Carbonylation is one of the most common oxidative modifications of proteins and a marker of oxidative stress. In fact, several studies suggest that physical activity and the consequent increase in oxygen consumption can lead to increase in reactive oxygen and nitrogen species (RONS) production, hence the interest in examining the impact of RONS on skeletal muscle proteins following ASE. Results indicate that protein expression is unaffected by ASE in both muscle types. Unexpectedly, the protein carbonylation level was reduced following ASE. In particular, the analysis found 31 and 5 spots, in Soleus and EDL muscles respectively, whose carbonylation is reduced after ASE. Lipid peroxidation levels in Soleus were markedly reduced as well. Most of the decarbonylated proteins are involved either in the regulation of muscle contractions or in the regulation of energy metabolism. A number of hypotheses may be advanced to account for such results, which will be addressed in future studies. PMID:23967250

  8. Built for rowing: frog muscle is tuned to limb morphology to power swimming.

    PubMed

    Richards, Christopher T; Clemente, Christofer J

    2013-07-01

    Rowing is demanding, in part, because drag on the oars increases as the square of their speed. Hence, as muscles shorten faster, their force capacity falls, whereas drag rises. How do frogs resolve this dilemma to swim rapidly? We predicted that shortening velocity cannot exceed a terminal velocity where muscle and fluid torques balance. This terminal velocity, which is below Vmax, depends on gear ratio (GR = outlever/inlever) and webbed foot area. Perhaps such properties of swimmers are 'tuned', enabling shortening speeds of approximately 0.3Vmax for maximal power. Predictions were tested using a 'musculo-robotic' Xenopus laevis foot driven either by a living in vitro or computational in silico plantaris longus muscle. Experiments verified predictions. Our principle finding is that GR ranges from 11.5 to 20 near the predicted optimum for rowing (GR ≈ 11). However, gearing influences muscle power more strongly than foot area. No single morphology is optimal for producing muscle power. Rather, the 'optimal' GR decreases with foot size, implying that rowing ability need not compromise jumping (and vice versa). Thus, despite our neglect of additional forces (e.g. added mass), our model predicts pairings of physiological and morphological properties to confer effective rowing. Beyond frogs, the model may apply across a range of size and complexity from aquatic insects to human-powered rowing. PMID:23676897

  9. Losartan decreases cardiac muscle fibrosis and improves cardiac function in dystrophin-deficient mdx mice.

    PubMed

    Spurney, Christopher F; Sali, Arpana; Guerron, Alfredo D; Iantorno, Micaela; Yu, Qing; Gordish-Dressman, Heather; Rayavarapu, Sree; van der Meulen, Jack; Hoffman, Eric P; Nagaraju, Kanneboyina

    2011-03-01

    Recent studies showed that chronic administration of losartan, an angiotensin II type I receptor antagonist, improved skeletal muscle function in dystrophin-deficient mdx mice. In this study, C57BL/10ScSn-Dmd(mdx)/J female mice were either untreated or treated with losartan (n = 15) in the drinking water at a dose of 600 mg/L over a 6-month period. Cardiac function was assessed via in vivo high frequency echocardiography and skeletal muscle function was assessed using grip strength testing, Digiscan monitoring, Rotarod timing, and in vitro force testing. Fibrosis was assessed using picrosirius red staining and Image J analysis. Gene expression was evaluated using real-time polymerized chain reaction (RT-PCR). Percentage shortening fraction was significantly decreased in untreated (26.9% ± 3.5%) mice compared to losartan-treated (32.2% ± 4.2%; P < .01) mice. Systolic blood pressure was significantly reduced in losartan-treated mice (56 ± 6 vs 69 ± 7 mm Hg; P < .0005). Percentage cardiac fibrosis was significantly reduced in losartan-treated hearts (P < .05) along with diaphragm (P < .01), extensor digitorum longus (P < .05), and gastrocnemius (P < .05) muscles compared to untreated mdx mice. There were no significant differences in skeletal muscle function between treated and untreated groups. Chronic treatment with losartan decreases cardiac and skeletal muscle fibrosis and improves cardiac systolic function in dystrophin-deficient mdx mice. PMID:21304057

  10. Effects of lactic acid and catecholamines on contractility in fast-twitch muscles exposed to hyperkalemia.

    PubMed

    Hansen, Anders Krogh; Clausen, Torben; Nielsen, Ole Baekgaard

    2005-07-01

    Intensive exercise is associated with a pronounced increase in extracellular K+ ([K+]o). Because of the ensuing depolarization and loss of excitability, this contributes to muscle fatigue. Intensive exercise also increases the level of circulating catecholamines and lactic acid, which both have been shown to alleviate the depressing effect of hyperkalemia in slow-twitch muscles. Because of their larger exercise-induced loss of K+, fast-twitch muscles are more prone to fatigue caused by increased [K+]o than slow-twitch muscles. Fast-twitch muscles also produce more lactic acid. We therefore compared the effects of catecholamines and lactic acid on the maintenance of contractility in rat fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles. Intact muscles were mounted on force transducers and stimulated electrically to evoke short isometric tetani. Elevated [K+]o (11 and 13 mM) was used to reduce force to approximately 20% of control force at 4 mM K+. In EDL, the beta2-agonist salbutamol (10(-5) M) restored tetanic force to 83 +/- 2% of control force, whereas in soleus salbutamol restored tetanic force to 93 +/- 1%. In both muscles, salbutamol induced hyperpolarization (5-8 mV), reduced intracellular Na+ content and increased Na+-K+ pump activity, leading to an increased K+ tolerance. Lactic acid (24 mM) restored force from 22 +/- 4% to 58 +/- 2% of control force in EDL, an effect that was significantly lower than in soleus muscle. These results amplify and generalize the concept that the exercise-induced acidification and increase in plasma catecholamines counterbalance fatigue arising from rundown of Na+ and K+ gradients. PMID:15743886

  11. Studies on the possible role of thyroid hormone in altered muscle protein turnover during sepsis

    SciTech Connect

    Hasselgren, P.O.; Chen, I.W.; James, J.H.; Sperling, M.; Warner, B.W.; Fischer, J.E.

    1987-07-01

    Five days after thyroidectomy (Tx) or sham-Tx in young male Sprague-Dawley rats, sepsis was induced by cecal ligation and puncture (CLP). Control animals underwent laparotomy and manipulation of the cecum without ligation or puncture. Sixteen hours after CLP or laparotomy, protein synthesis and degradation were measured in incubated extensor digitorum longus (EDL) and soleus (SOL) muscles by determining rate of /sup 14/C-phenylalanine incorporation into protein and tyrosine release into incubation medium, respectively. Triiodothyronine (T3) was measured in serum and muscle tissue. Protein synthesis was reduced by 39% and 22% in EDL and SOL, respectively, 16 hours after CLP in sham-Tx rats. The response to sepsis of protein synthesis was abolished in Tx rats. Protein breakdown was increased by 113% and 68% in EDL and SOL, respectively, 16 hours after CLP in sham-Tx animals. The increase in muscle proteolysis during sepsis was blunted in hypothyroid animals and was 42% and 49% in EDL and SOL, respectively. T3 in serum was reduced by sepsis, both in Tx and sham-Tx rats. T3 in muscle, however, was maintained or increased during sepsis. Abolished or blunted response of muscle protein turnover after CLP in hypothyroid animals may reflect a role of thyroid hormones in altered muscle protein metabolism during sepsis. Reduced serum levels of T3, but maintained or increased muscle concentrations of the hormone, suggests that increased T3 uptake by muscle may be one mechanism of low T3 syndrome in sepsis, further supporting the concept of a role for thyroid hormone in metabolic alterations in muscle during sepsis.

  12. The Body Action Coding System II: muscle activations during the perception and expression of emotion

    PubMed Central

    Huis In ‘t Veld, Elisabeth M. J.; van Boxtel, Geert J. M.; de Gelder, Beatrice

    2014-01-01

    Research into the expression and perception of emotions has mostly focused on facial expressions. Recently, body postures have become increasingly important in research, but knowledge on muscle activity during the perception or expression of emotion is lacking. The current study continues the development of a Body Action Coding System (BACS), which was initiated in a previous study, and described the involvement of muscles in the neck, shoulders and arms during expression of fear and anger. The current study expands the BACS by assessing the activity patterns of three additional muscles. Surface electromyography of muscles in the neck (upper trapezius descendens), forearms (extensor carpi ulnaris), lower back (erector spinae longissimus) and calves (peroneus longus) were measured during active expression and passive viewing of fearful and angry body expressions. The muscles in the forearm were strongly active for anger expression and to a lesser extent for fear expression. In contrast, muscles in the calves were recruited slightly more for fearful expressions. It was also found that muscles automatically responded to the perception of emotion, without any overt movement. The observer's forearms responded to the perception of fear, while the muscles used for leaning backwards were activated when faced with an angry adversary. Lastly, the calf responded immediately when a fearful person was seen, but responded slower to anger. There is increasing interest in developing systems that are able to create or recognize emotional body language for the development of avatars, robots, and online environments. To that end, multiple coding systems have been developed that can either interpret or create bodily expressions based on static postures, motion capture data or videos. However, the BACS is the first coding system based on muscle activity. PMID:25294993

  13. Local subcutaneous and muscle pain impairs detection of passive movements at the human thumb

    PubMed Central

    Weerakkody, N S; Blouin, J S; Taylor, J L; Gandevia, S C

    2008-01-01

    Activity in both muscle spindle endings and cutaneous stretch receptors contributes to the sensation of joint movement. The present experiments assessed whether muscle pain and subcutaneous pain distort proprioception in humans. The ability to detect the direction of passive movements at the interphalangeal joint of the thumb was measured when pain was induced experimentally in four sites: the flexor pollicis longus (FPL), the subcutaneous tissue overlying this muscle, the flexor carpi radialis (FCR) muscle and the subcutaneous tissue distal to the metacarpophalangeal joint of thumb. Tests were conducted when pain was at a similar subjective intensity. There was no significant difference in the ability to detect flexion or extension under any painful or non-painful condition. The detection of movement was significantly impaired when pain was induced in the FPL muscle, but pain in the FCR, a nearby muscle that does not act on the thumb, had no effect. Subcutaneous pain also significantly impaired movement detection when initiated in skin overlying the thumb, but not in skin overlying the FPL muscle in the forearm. These findings suggest that while both muscle and skin pain can disturb the detection of the direction of movement, the impairment is site-specific and involves regions and tissues that have a proprioceptive role at the joint. Also, pain induced in FPL did not significantly increase the perceived size of the thumb. Proprioceptive mechanisms signalling perceived body size are less disturbed by a relevant muscle nociceptive input than those subserving movement detection. The results highlight the complex relationship between nociceptive inputs and their influence on proprioception and motor control. PMID:18467366

  14. Clearance of extracellular K+ during muscle contraction--roles of membrane transport and diffusion.

    PubMed

    Clausen, Torben

    2008-05-01

    Excitation of muscle often leads to a net loss of cellular K + and a rise in extracellular K+([K+]o), which in turn inhibits excitability and contractility. It is important, therefore, to determine how this K+ is cleared by diffusion into the surroundings or by reaccumulation into the muscle cells. The inhibitory effects of the rise in [K+] o may be assessed from the time course of changes in tetanic force in isolated muscles where diffusional clearance of K+ is eliminated by removing the incubation medium and allowing the muscles to contract in air. Measurements of tetanic force, endurance, and force recovery showed that in rat soleus and extensor digitorum longus (EDL) muscles there was no significant difference between the performance of muscles contracting in buffer or in air for up to 8 min. Ouabain-induced inhibition of K+ clearance via the Na+,K+ pumps markedly reduced contractile endurance and force recovery in air. Incubation in buffer containing 10 mM K+ clearly inhibited force development and endurance,and these effects were considerably reduced by stimulating Na+,K+ pumps with the 2 -agonist salbutamol. Following 30-60 s of continuous stimulation at 60 Hz, the amount of K + released into the extracellular space was assessed from washout experiments. The release of intracellular K+ per pulse was fourfold larger in EDL than in soleus,and in the two muscles, the average [K+] o reached 52.4 and 26.0 mM, respectively, appreciably higher than previously detected. In conclusion, prevention of diffusion of K+ from the extracellular space of isolated working muscles causes only modest interference with contractile performance. The Na+,K+ pumps play a major role in the clearance of K+ and the maintenance of force. This new information is important for the evaluation of K+ -induced inhibition in muscles, where diffusional clearance of K+ is reduced by tension development sufficient to suppress circulation. PMID:18411333

  15. Local overexpression of the myostatin propeptide increases glucose transporter expression and enhances skeletal muscle glucose disposal

    PubMed Central

    Jarmin, S.; Eilers, W.; Elashry, M.; Andersen, D. K.; Dickson, G.; Foster, K.

    2014-01-01

    Insulin resistance (IR) in skeletal muscle is a prerequisite for type 2 diabetes and is often associated with obesity. IR also develops alongside muscle atrophy in older individuals in sarcopenic obesity. The molecular defects that underpin this syndrome are not well characterized, and there is no licensed treatment. Deletion of the transforming growth factor-β family member myostatin, or sequestration of the active peptide by overexpression of the myostatin propeptide/latency-associated peptide (ProMyo) results in both muscle hypertrophy and reduced obesity and IR. We aimed to establish whether local myostatin inhibition would have a paracrine/autocrine effect to enhance glucose disposal beyond that simply generated by increased muscle mass, and the mechanisms involved. We directly injected adeno-associated virus expressing ProMyo in right tibialis cranialis/extensor digitorum longus muscles of rats and saline in left muscles and compared the effects after 17 days. Both test muscles were increased in size (by 7 and 11%) and showed increased radiolabeled 2-deoxyglucose uptake (26 and 47%) and glycogen storage (28 and 41%) per unit mass during an intraperitoneal glucose tolerance test. This was likely mediated through increased membrane protein levels of GLUT1 (19% higher) and GLUT4 (63% higher). Interestingly, phosphorylation of phosphoinositol 3-kinase signaling intermediates and AMP-activated kinase was slightly decreased, possibly because of reduced expression of insulin-like growth factor-I in these muscles. Thus, myostatin inhibition has direct effects to enhance glucose disposal in muscle beyond that expected of hypertrophy alone, and this approach may offer potential for the therapy of IR syndromes. PMID:24473441

  16. Urocortin 3 activates AMPK and AKT pathways and enhances glucose disposal in rat skeletal muscle

    PubMed Central

    Roustit, Manon M; Vaughan, Joan M; Jamieson, Pauline M; Cleasby, Mark E

    2014-01-01

    Insulin resistance (IR) in skeletal muscle is an important component of both type 2 diabetes and the syndrome of sarcopaenic obesity, for which there are no effective therapies. Urocortins (UCNs) are not only well established as neuropeptides but also have their roles in metabolism in peripheral tissues. We have shown recently that global overexpression of UCN3 resulted in muscular hypertrophy and resistance to the adverse metabolic effects of a high-fat diet. Herein, we aimed to establish whether short-term local UCN3 expression could enhance glucose disposal and insulin signalling in skeletal muscle. UCN3 was found to be expressed in right tibialis cranialis and extensor digitorum longus muscles of rats by in vivo electrotransfer and the effects studied vs the contralateral muscles after 1 week. No increase in muscle mass was detected, but test muscles showed 19% larger muscle fibre diameter (P=0.030), associated with increased IGF1 and IGF1 receptor mRNA and increased SER256 phosphorylation of forkhead transcription factor. Glucose clearance into the test muscles after an intraperitoneal glucose load was increased by 23% (P=0.018) per unit mass, associated with increased GLUT1 (34% increase; P=0.026) and GLUT4 (48% increase; P=0.0009) proteins, and significantly increased phosphorylation of insulin receptor substrate-1, AKT, AKT substrate of 160 kDa, glycogen synthase kinase-3β, AMP-activated protein kinase and its substrate acetyl coA carboxylase. Thus, UCN3 expression enhances glucose disposal and signalling in muscle by an autocrine/paracrine mechanism that is separate from its pro-hypertrophic effects, implying that such a manipulation may have promised for the treatment of IR syndromes including sarcopaenic obesity. PMID:25122003

  17. Sevoflurane enhances neuromuscular blockade by increasing the sensitivity of skeletal muscle to neuromuscular blockers

    PubMed Central

    Ye, Ling; Zuo, Yunxia; Zhang, Peng; Yang, Pingliang

    2015-01-01

    The aim of this study was to investigate the effects of sevoflurane on skeletal muscle contractility. In the first part, twenty-two American Society of Anesthesiology (ASA I-II) female adult patients undergoing elective hysterectomy surgery inhaled sevoflurane 1.0, 1.5 and 2.0 minimum alveolar concentrations (MAC) in succession. Neuromuscular function was assessed at each dose. In the second part, forty-four ASA I-II female adult patients were randomized into four groups: group 1 (propofol + atracurium, sevoflurane 0 MAC), and groups 2 to 4 (atracurium + sevoflurane 1.0, 1.5 and 2.0 MAC, respectively). In group 1, patients were anesthetized by propofol. Then 0.01 mg/kg atracurium was injected into the tested arm intravenously after the arterial blood flow was blocked using a tourniquet. For the other 3 groups, patients inhaled 1.0 MAC, 1.5 MAC, or 2.0 MAC of sevoflurane. Then 0.01 mg/kg atracurium was injected. Neuromuscular function was recorded for the 4 groups. Neuromuscular function was assessed by acceleromyography measurement of evoked responses to train-of four (TOF) stimuli (2 Hz for 2 s applied every 12 s) at the adductor pollicis using a TOF-GuardTM neuromuscular transmission monitor. Amplitudes of first response (T1) in each TOF sequence and the ratios of fourth TOF response (T4) to the first were similar at 1.0 MAC, 1.5 MAC, and 2.0 MAC sevoflurane. Compared to baseline, there was no significant change in the TOF value after inhaling 1.0 MAC, 1.5 MAC, or 2.0 MAC sevoflurane. Compared to group 1, there was no significant difference in atracurium onset time (time to reach TOF ratio = 0.25) in group 2 ( 5.6 ± 1.8 min vs. 6.5 ± 1.7 min, P>0.05), or degree of adductor pollicis block (subject number with TOF ratio = 0, 5 vs. 2 subjects, p = 0.3). However, inhaling 1.5 or 2.0 MAC sevoflurane decreased atracurium onset time (4.6 ± 1.5 min and 4.0 ± 1.3 min vs. 6.5 ± 1.7 min, P<0.01 and P<0.001, respectively), and enhanced the block degree (9 and 10 vs. 2

  18. Relative Importance of Four Muscle Groups for Indoor Rock Climbing Performance.

    PubMed

    Deyhle, Michael R; Hsu, Hung-Sheng; Fairfield, Timothy J; Cadez-Schmidt, Taryn L; Gurney, Burke A; Mermier, Christine M

    2015-07-01

    Little research is available to guide training programs for rock climbers. To help meet this need, we sought to determine the relative importance of 4 muscle groups for rock climbing performance. Eleven male climbers were familiarized with an indoor climbing route before 5 separate days of testing. On testing days, subjects were randomly assigned to climb with no prefatiguing exercise (control climb) or after a prefatiguing exercise designed to specifically target the digit flexors (DF), shoulder adductors (SA), elbow flexors (EF), or lumbar flexors (LF). Immediately after the prefatiguing exercise, the subject climbed the route as far as possible without rest until failure. The number of climbing moves was recorded for each climb. Surface electromyography of the target muscles was recorded during the prefatigue. Fewer climbing moves were completed after prefatigue of the DF (50 ± 18%) and EF (78 ± 22%) (p ≤ 0.05) compared with the control climb. The number of moves completed after prefatigue of the LF and SA were not statistically significant compared with the control climb (p > 0.05). The short time lapse between the end of prefatiguing exercise and the start of climbing (transit time), which may have allowed for some recovery, was not different among trials (p > 0.05). Electromyography median frequency was reduced from beginning to end of each prefatiguing exercise. These results suggest that among the muscle groups studied in men, muscular endurance of DF and EF muscle groups is especially important for rock climbing on 40° overhanging terrain. PMID:25574609

  19. Effect of malnutrition on aerobic and anaerobic performance of fast- and slow-twitch muscles of rats.

    PubMed

    Nishio, M L; Jeejeebhoy, K N

    1992-01-01

    The effect of malnutrition on the functional properties of fast- and slow-twitch muscles from rats was studied using aerobic and anaerobic preparations. A 2-day fast and hypocaloric feeding to a weight loss of 25% were used as models of malnutrition. Soleus (slow-twitch) and extensor digitorum longus (EDL) (fast-twitch) muscles were studied using an in situ preparation with the blood supply intact and an in vitro preparation to which cyanide had been added to render the muscles anaerobic. We found that a 2-day fast had little effect on the function of muscles stimulated in situ, whereas anaerobic stimulation produced a decrease in force per gram of muscle weight in the soleus, but not in the EDL, compared with control values. Hypocaloric feeding resulted in a slowed relaxation rate, an increased Fs/Fmax ratio, and an upward shift of the force-frequency curve relative to controls when studied in situ. Under anaerobic conditions, soleus muscles from hypocaloric rats continued to show a slow relaxation rate and demonstrated a loss of force per gram of muscle weight compared with controls, particularly at low stimulation frequencies. EDL muscles from hypocaloric rats had an increased relaxation rate and were able to maintain force with anaerobic stimulation. Soleus and EDL muscles from the fasted and hypocaloric groups had lower activities of phosphofructokinase. We conclude that slow-twitch muscles from malnourished rats are at a disadvantage when required to function under anaerobic conditions. These findings suggest that muscle performance may be impaired in malnourished patients subjected to hypoxia. PMID:1386893

  20. Tenderization potential of Hanwoo beef muscles from carcasses with differed genders and loin intramuscular fat content levels during post mortem ageing.

    PubMed

    Park, Beom Young; Seong, Pil Nam; Ba, Hoa Van; Park, Kyoung Mi; Cho, Soo Hyun; Moon, Sung Sil; Kang, Geun Ho

    2015-06-01

    Carcasses from Hanwoo steers (n = 15) and cows (n = 15) were classified into three groups: group 1 (G1), the carcasses had 10% to < 11.5% intramuscular fat (IMF) in loin muscles; group 2 (G2), the carcasses had 13% to < 4.5% IMF in loin muscles; and group 3(G3), the carcasses had 17% to < 18.5% IMF in loin muscles. These were used to evaluate the effects of gender and carcass group on quality traits and Warner-Bratzler shear force (WBSF) of Psoas major (PM), Longissimus thoracis (LT), Longissimus lumborum (LL), Longus colli (LC), Supraspinatus (SS), Latissimus dorsi (LAD), Semimembranosus (SM), Quadriceps femoris (QF), Biceps femoris (BF) and Semitendinosus (ST) muscles. Our results showed that pH values of LT, LL, LC, BF and QF muscles were lower in steers than in cows (P < 0.05). Water holding capacity (WHC) was found higher in LC, SS, LAD and QF muscles of steers (P < 0.05). At day 2 of ageing, gender affected the WBSF values of only PM, LD and QF muscles in G1, and QF muscle in G3; however, with additional ageing, the gender effect was observed for most of the muscles. Most muscles showed ageing responses; however, the rates of ageing response significantly varied depending on gender and carcass groups. The muscles of G1 and G2 had generally higher tenderization potentials than those of G3. Furthermore, most muscles in G3 had generally lower WBSF values than in G1 and G2. These results clearly indicate that ageing has a significant effect on quality and WBSF of beef muscles, and the classification by loin IMF level may be useful for prediction of the tenderness of other muscles. PMID:25491951

  1. Muscle disease.

    PubMed

    Tsao, Chang-Yong

    2014-02-01

    On the basis of strong research evidence, Duchenne muscular dystrophy (DMD), the most common severe childhood form of muscular dystrophy, is an X-linked recessive disorder caused by out-of-frame mutations of the dystrophin gene. Thus, it is classified asa dystrophinopathy. The disease onset is before age 5 years. Patients with DMD present with progressive symmetrical limb-girdle muscle weakness and become wheelchair dependent after age 12 years. (2)(3). On the basis of some research evidence,cardiomyopathy and congestive heart failure are usually seen in the late teens in patients with DMD. Progressive scoliosis and respiratory in sufficiency often develop once wheelchair dependency occurs. Respiratory failure and cardiomyopathy are common causes of death, and few survive beyond the third decade of life. (2)(3)(4)(5)(6)(7). On the basis of some research evidence, prednisone at 0.75 mg/kg daily (maximum dose, 40 mg/d) or deflazacort at 0.9 mg/kg daily (maximum dose, 39 mg/d), a derivative of prednisolone (not available in the United States), as a single morning dose is recommended for DMD patients older than 5 years, which may prolong independent walking from a few months to 2 years. (2)(3)(16)(17). Based on some research evidence, treatment with angiotensin-converting enzyme inhibitors, b-blockers, and diuretics has been reported to be beneficial in DMD patients with cardiac abnormalities. (2)(3)(5)(18). Based on expert opinion, children with muscle weakness and increased serum creatine kinase levels may be associated with either genetic or acquired muscle disorders (Tables 1 and 3). (14)(15) PMID:24488829

  2. Spaceflight on STS-48 and earth-based unweighting produce similar effects on skeletal muscle of young rats.

    PubMed

    Tischler, M E; Henriksen, E J; Munoz, K A; Stump, C S; Woodman, C R; Kirby, C R

    1993-05-01

    Our knowledge of the effects of unweighting on skeletal muscle of juvenile rapidly growing rats has been obtained entirely by using hindlimb-suspension models. No spaceflight data on juvenile animals are available to validate these models of simulated weightlessness. Therefore, eight 26-day-old female Sprague-Dawley albino rats were exposed to 5.4 days of weightlessness aboard the space shuttle Discovery (mission STS-48, September 1991). An asynchronous ground control experiment mimicked the flight cage condition, ambient shuttle temperatures, and mission duration for a second group of rats. A third group of animals underwent hindlimb suspension for 5.4 days at ambient temperatures. Although all groups consumed food at a similar rate, flight animals gained a greater percentage of body mass per day (P < 0.05). Mass and protein data showed weight-bearing hindlimb muscles were most affected, with atrophy of the soleus and reduced growth of the plantaris and gastrocnemius in both the flight and suspended animals. In contrast, the non-weight-bearing extensor digitorum longus and tibialis anterior muscles grew normally. Earlier suspension studies showed that the soleus develops an increased sensitivity to insulin during unweighting atrophy, particularly for the uptake of 2-[1,2-3H]deoxyglucose. Therefore, this characteristic was studied in isolated muscles within 2 h after cessation of spaceflight or suspension. Insulin increased uptake 2.5- and 2.7-fold in soleus of flight and suspended animals, respectively, whereas it increased only 1.6-fold in control animals. In contrast, the effect of insulin was similar among the three groups for the extensor digitorum longus, which provides a control for potential systemic differences in the animals.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8335544

  3. No effect of hypergravity on adult rat ventral horn neuron size or SDH activity

    NASA Technical Reports Server (NTRS)

    Roy, R. R.; Ishihara, A.; Moran, M. M.; Wade, C. E.; Edgerton, V. R.

    2001-01-01

    BACKGROUND: Spaceflights of short duration (approximately 2 wk) result in adaptations in the size and/or metabolic properties of a select population of motoneurons located in the lumbosacral region of the rat spinal cord. A decrease in succinate dehydrogenase (SDH, an oxidative marker enzyme) activity of moderately sized (500-800 microm2) motoneurons in the retrodorsolateral region of the spinal cord (L6) has been observed after a 14-d flight. HYPOTHESIS: Our hypothesis was that exposure to short-term hypergravity would result in adaptations in the opposite direction, reflecting a continuum of morphological and biochemical responses in the spinal motoneurons from zero gravity to hypergravity. METHODS: Young, male rats were centrifuged at either 1.5 or 2.0 G for 2 wk. The size and SDH activity of a population of motoneurons in the retrodorsolateral region of the spinal cord (L5) were determined and compared with age-matched rats maintained at 1.0 G. The absolute and relative (to body weight) masses of the soleus, gastrocnemius, adductor longus and tibialis anterior muscles were compared among the three groups. RESULTS: There were no effects of either hypergravity intervention on the motoneuron properties. Rats maintained under hypergravity conditions gained less body mass than rats kept at 1.0 G. For the 1.5 and 2.0 G groups, the muscle absolute mass was smaller and relative mass similar to that observed in the 1.0 G rats, except for the adductor longus. The adductor longus absolute mass was similar to and the relative mass larger in both hypergravity groups than in the 1.0 G group. CONCLUSIONS: Our hypothesis was rejected. The findings suggest that rat motoneurons are more responsive to short-term chronic exposure to spaceflight than to hypergravity conditions.

  4. Acute molecular response of mouse hindlimb muscles to chronic stimulation

    PubMed Central

    Jayaraman, R. C.; Bombach, K. L.; Ankrapp, D. P.; Krill-Burger, J. M.; Sciulli, C. M.; Petrosko, P.; Wiseman, R. W.

    2009-01-01

    Stimulation of the mouse hindlimb via the sciatic nerve was performed for a 4-h period to investigate acute muscle gene activation in a model of muscle phenotype conversion. Initial force production (1.6 ± 0.1 g/g body wt) declined 45% within 10 min and was maintained for the remainder of the experiment. Force returned to initial levels upon study completion. An immediate-early growth response was present in the extensor digitorum longus (EDL) muscle (FOS, JUN, activating transcription factor 3, and musculoaponeurotic fibrosarcoma oncogene) with a similar but attenuated pattern in the soleus muscle. Transcript profiles showed decreased fast fiber-specific mRNA (myosin heavy chains 2A and 2B, fast troponins T3 and I, α-tropomyosin, muscle creatine kinase, and parvalbumin) and increased slow transcripts (myosin heavy chain-1β/slow, troponin C slow, and tropomyosin 3y) in the EDL versus soleus muscles. Histological analysis of the EDL revealed glycogen depletion without inflammatory cell infiltration in stimulated versus control muscles, whereas ultrastructural analysis showed no evidence of myofiber damage after stimulation. Multiple fiber type-specific transcription factors (tea domain family member 1, nuclear factor of activated T cells 1, peroxisome proliferator-activated receptor-γ coactivator-1α and -β, circadian locomotor output cycles kaput, and hypoxia-inducible factor-1α) increased in the EDL along with transcription factors characteristic of embryogenesis (Kruppel-like factor 4; SRY box containing 17; transcription factor 15; PBX/knotted 1 homeobox 1; and embryonic lethal, abnormal vision). No established in vivo satellite cell markers or genes activated in our parallel experiments of satellite cell proliferation in vitro (cyclins A2, B2, C, and E1 and MyoD) were differentially increased in the stimulated muscles. These results indicated that the molecular onset of fast to slow phenotype conversion occurred in the EDL within 4 h of stimulation

  5. Isolation and Culture of Skeletal Muscle Myofibers as a Means to Analyze Satellite Cells

    PubMed Central

    Keire, Paul; Shearer, Andrew; Shefer, Gabi; Yablonka-Reuveni, Zipora

    2012-01-01

    Multinucleated myofibers are the functional contractile units of skeletal muscle. In adult muscle, mononuclear satellite cells, located between the basal lamina and the plasmalemma of the myofiber, are the primary myogenic stem cells. This chapter describes protocols for isolation, culturing and immunostaining of myofibers from mouse skeletal muscle. Myofibers are isolated intact and retain their associated satellite cells. The first protocol discusses myofiber isolation from the flexor digitorum brevis (FDB) muscle. These short myofibers are cultured in dishes coated with PureCol collagen (formerly known as Vitrogen) using a serum replacement medium. Employing such culture conditions, satellite cells remain associated with the myofibers, undergoing proliferation and differentiation on the myofiber surface. The second protocol discusses the isolation of longer myofibers from the extensor digitorum longus (EDL) muscle. Different from the FDB preparation, where multiple myofibers are processed together, the longer EDL myofibers are typically processed and cultured individually in dishes coated with Matrigel using a growth factor rich medium. Under these conditions, satellite cells initially remain associated with the parent myofiber and later migrate away, giving rise to proliferating and differentiating progeny. Myofibers from other types of muscles, such as diaphragm, masseter, and extraocular muscles can also be isolated and analyzed using protocols described herein. Overall, cultures of isolated myofibers provide essential tools for studying the interplay between the parent myofiber and its associated satellite cells. The current chapter provides background, procedural, and reagent updates, and step-by-step images of FDB and EDL muscle isolations, not included in our 2005 publication in this series. PMID:23179849

  6. Overload-induced skeletal muscle hypertrophy is not impaired in STZ-diabetic rats

    PubMed Central

    Fortes, Marco Aurélio S; Pinheiro, Carlos Hermano J; Guimarães-Ferreira, Lucas; Vitzel, Kaio F; Vasconcelos, Diogo A A; Curi, Rui

    2015-01-01

    The aim of this study was to evaluate the effect of overload-induced hypertrophy on extensor digitorum longus (EDL) and soleus muscles of streptozotocin-induced diabetic rats. The overload-induced hypertrophy and absolute tetanic and twitch forces increases in EDL and soleus muscles were not different between diabetic and control rats. Phospho-Akt and rpS6 contents were increased in EDL muscle after 7 days of overload and returned to the pre-overload values after 30 days. In the soleus muscle, the contents of total and phospho-Akt and total rpS6 were increased in both groups after 7 days. The contents of total Akt in controls and total rpS6 and phospho-Akt in the diabetic rats remained increased after 30 days. mRNA expression after 7 days of overload in the EDL muscle of control and diabetic animals showed an increase in MGF and follistatin and a decrease in myostatin and Axin2. The expression of FAK was increased and of MuRF-1 and atrogin-1 decreased only in the control group, whereas Ankrd2 expression was enhanced only in diabetic rats. In the soleus muscle caused similar changes in both groups: increase in FAK and MGF and decrease in Wnt7a, MuRF-1, atrogin-1, and myostatin. Differences between groups were observed only in the increased expression of follistatin in diabetic animals and decreased Ankrd2 expression in the control group. So, insulin deficiency does not impair the overload-induced hypertrophic response in soleus and EDL muscles. However, different mechanisms seem to be involved in the comparable hypertrophic responses of skeletal muscle in control and diabetic animals. PMID:26197932

  7. Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission.

    PubMed

    Sandonà, Dorianna; Desaphy, Jean-Francois; Camerino, Giulia M; Bianchini, Elisa; Ciciliot, Stefano; Danieli-Betto, Daniela; Dobrowolny, Gabriella; Furlan, Sandra; Germinario, Elena; Goto, Katsumasa; Gutsmann, Martina; Kawano, Fuminori; Nakai, Naoya; Ohira, Takashi; Ohno, Yoshitaka; Picard, Anne; Salanova, Michele; Schiffl, Gudrun; Blottner, Dieter; Musarò, Antonio; Ohira, Yoshinobu; Betto, Romeo; Conte, Diana; Schiaffino, Stefano

    2012-01-01

    The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5-20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca(2+)-activated K(+) channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures. PMID:22470446

  8. Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of β-catenin.

    PubMed

    Jähn, K; Lara-Castillo, N; Brotto, L; Mo, C L; Johnson, M L; Brotto, M; Bonewald, L F

    2012-01-01

    It is a widely held belief that the sole effect of muscle on bone is through mechanical loading. However, as the two tissues are intimately associated, we hypothesized that muscle myokines may have positive effects on bone. We found that factors produced by muscle will protect osteocytes from undergoing cell death induced by dexamethasone (dex), a glucocorticoid known to induce osteocyte apoptosis thereby compromising their capacity to regulate bone remodeling. Both the trypan blue exclusion assay for cell death and nuclear fragmentation assay for apoptosis were used. MLO-Y4 osteocytes, primary osteocytes, and MC3T3 osteoblastic cells were protected against dex-induced apoptosis by C2C12 myotube conditioned media (MT-CM) or by CM from ex vivo electrically stimulated, intact extensor digitorum longus (EDL) or soleus muscle derived from 4 month-old mice. C2C12 MT-CM, but not undifferentiated myoblast CM prevented dex-induced cell apoptosis and was potent down to 0.1 % CM. The CM from EDL muscle electrically stimulated tetanically at 80 Hz was more potent (10 fold) in prevention of dex-induced osteocyte death than CM from soleus muscle stimulated at the same frequency or CM from EDL stimulated at 1 Hz. This suggests that electrical stimulation increases production of factors that preserve osteocyte viability and that type II fibers are greater producers than type I fibers. The muscle factor(s) appears to protect osteocytes from cell death through activation of the Wnt/β-catenin pathway, as MT-CM induces β-catenin nuclear translocation and β-catenin siRNA abrogated the positive effects of MT-CM on dex-induced apoptosis. We conclude that muscle cells naturally secrete factor(s) that preserve osteocyte viability. PMID:22972510

  9. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats

    PubMed Central

    Mendias, Christopher L; Lynch, Evan B; Gumucio, Jonathan P; Flood, Michael D; Rittman, Danielle S; Van Pelt, Douglas W; Roche, Stuart M; Davis, Carol S

    2015-01-01

    Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN+/+) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTNΔ/Δ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTNΔ/Δ rats demonstrated 20–33% increases in mass, 35–45% increases in fibre number, 20–57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTNΔ/Δ muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTNΔ/Δ rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling. PMID:25640143

  10. Selective modulation through the glucocorticoid receptor ameliorates muscle pathology in mdx mice

    PubMed Central

    Huynh, Tony; Uaesoontrachoon, Kitipong; Quinn, James L; Tatem, Kathleen S; Heier, Christopher R; Van Der Meulen, Jack H; Yu, Qing; Harris, Mark; Nolan, Christopher J; Haegeman, Guy; Grounds, Miranda D; Nagaraju, Kanneboyina

    2014-01-01

    The over-expression of NF-κB signalling in both muscle and immune cells contribute to the pathology in dystrophic muscle. The anti-inflammatory properties of glucocorticoids, mediated predominantly through monomeric glucocorticoid receptor inhibition of transcription factors such as NF-κB (transrepression), are postulated to be an important mechanism for their beneficial effects in Duchenne muscular dystrophy. Chronic glucocorticoid therapy is associated with adverse effects on metabolism, growth, bone mineral density and the maintenance of muscle mass. These detrimental effects result from direct glucocorticoid receptor homodimer interactions with glucocorticoid response elements of the relevant genes. Compound A, a non-steroidal selective glucocorticoid receptor modulator, is capable of transrepression without transactivation. We confirm the in vitro NF-κB inhibitory activity of compound A in H-2Kb-tsA58 mdx myoblasts and myotubes, and demonstrate improvements in disease phenotype of dystrophin deficient mdx mice. Compound A treatment in mdx mice from 18 days of post-natal age to 8 weeks of age increased the absolute and normalized forelimb and hindlimb grip strength, attenuated cathepsin-B enzyme activity (a surrogate marker for inflammation) in forelimb and hindlimb muscles, decreased serum creatine kinase levels and reduced IL-6, CCL2, IFNγ, TNF and IL-12p70 cytokine levels in gastrocnemius (GA) muscles. Compared with compound A, treatment with prednisolone, a classical glucocorticoid, in both wild-type and mdx mice was associated with reduced body weight, reduced GA, tibialis anterior and extensor digitorum longus muscle mass and shorter tibial lengths. Prednisolone increased osteopontin (Spp1) gene expression and osteopontin protein levels in the GA muscles of mdx mice and had less favourable effects on the expression of Foxo1, Foxo3, Fbxo32, Trim63, Mstn and Igf1 in GA muscles, as well as hepatic Igf1 in wild-type mice. In conclusion, selective

  11. Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission

    PubMed Central

    Camerino, Giulia M.; Bianchini, Elisa; Ciciliot, Stefano; Danieli-Betto, Daniela; Dobrowolny, Gabriella; Furlan, Sandra; Germinario, Elena; Goto, Katsumasa; Gutsmann, Martina; Kawano, Fuminori; Nakai, Naoya; Ohira, Takashi; Ohno, Yoshitaka; Picard, Anne; Salanova, Michele; Schiffl, Gudrun; Blottner, Dieter; Musarò, Antonio; Ohira, Yoshinobu; Betto, Romeo; Conte, Diana; Schiaffino, Stefano

    2012-01-01

    The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5–20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca2+-activated K+ channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures. PMID:22470446

  12. Low-frequency electrical stimulation attenuates muscle atrophy in CKD--a potential treatment strategy.

    PubMed

    Hu, Li; Klein, Janet D; Hassounah, Faten; Cai, Hui; Zhang, Cong; Xu, Ping; Wang, Xiaonan H

    2015-03-01

    Effective therapeutic strategies to treat CKD-induced muscle atrophy are urgently needed. Low-frequency electrical stimulation (LFES) may be effective in preventing muscle atrophy, because LFES is an acupuncture technique that mimics resistance exercise by inducing muscle contraction. To test this hypothesis, we treated 5/6-nephrectomized mice (CKD mice) and control mice with LFES for 15 days. LFES prevented soleus and extensor digitorum longus muscle weight loss and loss of hind-limb muscle grip in CKD mice. LFES countered the CKD-induced decline in the IGF-1 signaling pathway and led to increases in markers of protein synthesis and myogenesis and improvement in muscle protein metabolism. In control mice, we observed an acute response phase immediately after LFES, during which the expression of inflammatory cytokines (IFN-γ and IL-6) increased. Expression of the M1 macrophage marker IL-1β also increased acutely, but expression of the M2 marker arginase-1 increased 2 days after initiation of LFES, paralleling the change in IGF-1. In muscle cross-sections of LFES-treated mice, arginase-1 colocalized with IGF-1. Additionally, expression of microRNA-1 and -206, which inhibits IGF-1 translation, decreased in the acute response phase after LFES and increased at a later phase. We conclude that LFES ameliorates CKD-induced skeletal muscle atrophy by upregulation of the IGF-1 signaling pathway, which improves protein metabolism and promotes myogenesis. The upregulation of IGF-1 may be mediated by decreased expression of microRNA-1 and -206 and/or activation of M2 macrophages. PMID:25228359

  13. Effects provoked by chronic undernourishment on the fibre type composition and contractility of fast muscles in male and female developing rats.

    PubMed

    Pereyra-Venegas, J; Segura-Alegría, B; Guadarrama-Olmos, J C; Mariscal-Tovar, S; Quiróz-González, S; Jiménez-Estrada, I

    2015-10-01

    In this study, we compare the effects of pre- and post-natal food deprivation on the relative proportion of fibre types and contractile responses in the extensor digitorum longus (EDL) muscle of female and male rats at different post-natal ages. EDL muscles from undernourished male (UM) rats showed a higher proportion of Type IIB than IIA fibres and larger normalized twitch responses (with respect to muscle weight) than those of controls (CM). In contrast, EDL muscles from control (CF) and undernourished female rats (UF) showed no significant differences in their fibre type composition and normalized twitch forces at most of the ages analysed. Our data are indicative that the EDL muscles from undernourished males are more susceptible to the effects exerted by low food income than the EDL muscles from female rats. It is proposed that changes in the reactive oxygen species (ROS) concentration and hormonal factors, due to undernutrition, are involved in the alterations observed in the fibre type composition and force production of EDL muscles in undernourished male rats and that estrogens may have an antioxidant protective role on the undernourished EDL muscles in female rats. PMID:25495590

  14. Effect of denervation and reinnervation on oxidation of 6-(C-14) glucose by rat skeletal muscle homogenates

    NASA Technical Reports Server (NTRS)

    Dubois, D. C.; Max, S. R.

    1983-01-01

    The effects of denervation and reinnervation of the rat extensor digitorum longus muscle on the oxidation of 6-(C-14) glucose to (C-14)O2 is investigated. Results show that the rate of (C-14)O2 production decreased dramatically following denervation and the decrease became significant 20 days after nerve section. The changes which occurred prior to day 20 apparently reflected the decline of muscle mass. The decreased (C-14)O2 production was found to be due to reduced capacity of the enzymatic system, while there was no change in the apparent affinity for glucose. Results of mixing experiments showed that the loss of oxidative capacity following denervation is not caused by the production of soluble inhibitors by degenerating muscle. Measurements of the (C-14)O2 revealed that oxidative metabolism recovered during reinnervation. The specific activity in reinnervated muscles displayed an 'overshoot' of approximately 50 percent, which returned to control levels by day 60. The time-course of the denervation-mediated change indicates that altered oxidative capacity is secondary to events that initiate dennervation changes in muscle, although diminished oxidative capacity may be of considerable metabolic significance in denervated muscle.

  15. Enzyme replacement therapy rescues weakness and improves muscle pathology in mice with X-linked myotubular myopathy

    PubMed Central

    Lawlor, Michael W.; Armstrong, Dustin; Viola, Marissa G.; Widrick, Jeffrey J.; Meng, Hui; Grange, Robert W.; Childers, Martin K.; Hsu, Cynthia P.; O'Callaghan, Michael; Pierson, Christopher R.; Buj-Bello, Anna; Beggs, Alan H.

    2013-01-01

    No effective treatment exists for patients with X-linked myotubular myopathy (XLMTM), a fatal congenital muscle disease caused by deficiency of the lipid phosphatase, myotubularin. The Mtm1δ4 and Mtm1 p.R69C mice model severely and moderately symptomatic XLMTM, respectively, due to differences in the degree of myotubularin deficiency. Contractile function of intact extensor digitorum longus (EDL) and soleus muscles from Mtm1δ4 mice, which produce no myotubularin, is markedly impaired. Contractile forces generated by chemically skinned single fiber preparations from Mtm1δ4 muscle were largely preserved, indicating that weakness was largely due to impaired excitation contraction coupling. Mtm1 p.R69C mice, which produce small amounts of myotubularin, showed impaired contractile function only in EDL muscles. Short-term replacement of myotubularin with a prototypical targeted protein replacement agent (3E10Fv-MTM1) in Mtm1δ4 mice improved contractile function and muscle pathology. These promising findings suggest that even low levels of myotubularin protein replacement can improve the muscle weakness and reverse the pathology that characterizes XLMTM. PMID:23307925

  16. Reversal of Peroneal Tenodesis With Allograft Reconstruction of the Peroneus Brevis and Longus: Case Report and Surgical Technique.

    PubMed

    Pellegrini, Manuel J; Adams, Samuel B; Parekh, Selene G

    2014-06-24

    Chronic peroneal tendinopathy and tears represent a challenging clinical situation. Traditionally, tenodesis of the torn tendon to the remaining healthy tendon has been advocated if more than half of the tendon is compromised. Allograft reconstructions have been reserved for patients with functional muscles and both peroneal tendons extensively compromised. We report a unique case of a peroneal tenodesis takedown and reconstruction of both peroneal tendons using semitendinosus allograft. A description of the surgical technique and tips are provided. Peroneal tendon function is crucial to maintain a balanced hindfoot. To the best of our knowledge, reconstruction of both peroneal tendons after a tenodesis has not been previously reported. Allograft reconstruction of the peroneal tendons arises as a feasible alternative in patients with residual pain and weakness after a failed tenodesis surgery LEVELS OF EVIDENCE: Therapeutic Level IV, case study. PMID:24962697

  17. Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb

    PubMed Central

    Charles, James P.; Cappellari, Ornella; Spence, Andrew J.; Hutchinson, John R.; Wells, Dominic J.

    2016-01-01

    Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion. PMID:27115354

  18. Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb.

    PubMed

    Charles, James P; Cappellari, Ornella; Spence, Andrew J; Hutchinson, John R; Wells, Dominic J

    2016-01-01

    Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion. PMID:27115354

  19. Effects of pelvic suspension of beef carcasses on quality and physical traits of five muscles from four gender-age groups.

    PubMed

    Ahnström, Maria Lundesjö; Hunt, Melvin C; Lundström, Kerstin

    2012-03-01

    Pelvic and Achilles suspension methods for beef carcasses were compared for four gender-age groups (24month bulls, 34month bulls, heifers, and cows) and five muscles [M. longissimus dorsi (LD), M. semimembranosus (SM), M. adductor (AD), M. psoas major (PM), and M. gluteus medius (GM)]. Pelvic suspension increased muscle and sarcomere lengths in the SM, LD, GM, and AD muscles. The following effects were significant (p<0.05). Peak force was reduced by pelvic suspension in the LD and GM of bulls-24 and bulls-34, but not heifers and cows. Furthermore, peak forces decreased for the SM after pelvic suspension in bulls-24, bulls-34, and heifers. For the AD, the only decrease in peak force was for bulls-34. Water-holding capacity increased and purge in vacuum bags decreased for pelvic suspension of all muscles except the PM. Although the effects of pelvic suspension varied somewhat between gender-age groups and muscles, this method of hanging carcasses merits industrial consideration because it improves muscle yields, tenderness, and reduces variation within muscles. PMID:22077997

  20. Eye muscle repair - discharge

    MedlinePlus

    ... Lazy eye repair - discharge; Strabismus repair - discharge; Extraocular muscle surgery - discharge ... You or your child had eye muscle repair surgery to correct eye muscle ... term for crossed eyes is strabismus. Children most often ...

  1. Extraocular muscle function testing

    MedlinePlus

    Extraocular muscle function testing examines the function of the eye muscles. A health care provider observes the movement of ... evaluate weakness or other problem in the extraocular muscles. These problems may result in double vision or ...

  2. Eye muscle repair - discharge

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000111.htm Eye muscle repair - discharge To use the sharing features on ... enable JavaScript. You or your child had eye muscle repair surgery to correct eye muscle problems that ...

  3. Muscle strain treatment

    MedlinePlus

    Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...

  4. Insertional Characteristics of the Peroneus Tertius Tendon: Revisiting the Anatomy of an Underestimated Muscle.

    PubMed

    Ercikti, Nurcan; Apaydin, Nihal; Kocabiyik, Necdet; Yazar, Fatih

    2016-01-01

    The present study was performed to describe the morphologic characteristics of the peroneus tertius (PT) tendon, evaluate the variations in its insertion point, investigate the interconnections with the tendons of the extensor digitorum longus, and discuss whether these insertion differences of the muscle tension might have an effect on fracture formation. The length and width of the PT tendon and the width at its midpoint were measured in 44 lower extremities. The data obtained were compared statistically. The PT was found to occur in 2 types according to the number of tendons: type 1, a single tendon without a slip; and type 2, 2 tendons with a slip. It has been suggested that the PT tendon could contribute to avulsion fractures of the tuberosity of the fifth metatarsal bone. Therefore, to understand the mechanism of Jones fracture, knowledge of the PT tendon would be beneficial to determine the insertion points. PMID:26860045

  5. Brown muscle disease (BMD), an emergent pathology affecting Manila clam Ruditapes philippinarum in Arcachon Bay (SW France).

    PubMed

    Dang, Cécile; de Montaudouin, Xavier; Gonzalez, Patrice; Mesmer-Dudons, Nathalie; Caill-Milly, Nathalie

    2008-08-01

    We describe an emerging pathology, brown muscle disease (BMD), which specifically affects the Manila clam Ruditapes philippinarum in Arcachon Bay (France). BMD induces a transformation of the posterior adductor muscle, which becomes infused by conchiolin and calcified, reducing the ability of clams to bury. The disease affects both types of muscular tissue, with striated muscle becoming affected to a higher degree than smooth muscle. Two indices were created to quantify the symptoms: the Muscle Print Index, used for empty and live shells, and the Final Disease Index, utilized for live clams only. Histological sections were made and observed under light microscopy to examine the muscular damage and to investigate a causal agent. Sections revealed an important inflammatory response with a large invasion of hemocytes into tissues and a heavy necrosis of muscular fibers. Additionally, molecular biology analyses were carried out to search for bacteria and protozoan agents using generic primers. In both histological and molecular assays, bacteria and protozoans were discounted. We monitored 4 sites scattered around the bay over 2 yr. The mean prevalence was <12% without seasonal variation in 3 sites against 30% and a winter peak in 1 site. The latter site was accurately surveyed and revealed that clams at the sediment surface (abnormal position) were affected 3 times more frequently than buried clams (normal position). PMID:18814547

  6. Conditional knockout of Mn-SOD targeted to type IIB skeletal muscle fibers increases oxidative stress and is sufficient to alter aerobic exercise capacity

    PubMed Central

    Lustgarten, Michael S.; Jang, Youngmok C.; Liu, Yuhong; Muller, Florian L.; Qi, Wenbo; Steinhelper, Mark; Brooks, Susan V.; Larkin, Lisa; Shimizu, Takahiko; Shirasawa, Takuji; McManus, Linda M.; Bhattacharya, Arunabh; Richardson, Arlan

    2009-01-01

    In vitro studies of isolated skeletal muscle have shown that oxidative stress is limiting with respect to contractile function. Mitochondria are a potential source of muscle function-limiting oxidants. To test the hypothesis that skeletal muscle-specific mitochondrial oxidative stress is sufficient to limit muscle function, we bred mice expressing Cre recombinase driven by the promoter for the inhibitory subunit of troponin (TnIFast-iCre) with mice containing a floxed Sod2 (Sod2fl/fl) allele. Mn-SOD activity was reduced by 82% in glycolytic (mainly type II) muscle fiber homogenates from young TnIFastCreSod2fl/fl mice. Furthermore, Mn-SOD content was reduced by 70% only in type IIB muscle fibers. Aconitase activity was decreased by 56%, which suggests an increase in mitochondrial matrix superoxide. Mitochondrial superoxide release was elevated more than twofold by mitochondria isolated from glycolytic skeletal muscle in TnIFastCreSod2fl/fl mice. In contrast, the rate of mitochondrial H2O2 production was reduced by 33%, and only during respiration with complex II substrate. F2-isoprostanes were increased by 36% in tibialis anterior muscles isolated from TnIFastCreSod2fl/fl mice. Elevated glycolytic muscle-specific mitochondrial oxidative stress and damage in TnIFastCreSod2fl/fl mice were associated with a decreased ability of the extensor digitorum longus and gastrocnemius muscles to produce contractile force as a function of time, whereas force production by the soleus muscle was unaffected. TnIFastCreSod2fl/fl mice ran 55% less distance on a treadmill than wild-type mice. Collectively, these data suggest that elevated mitochondrial oxidative stress and damage in glycolytic muscle fibers are sufficient to reduce contractile muscle function and aerobic exercise capacity. PMID:19776389

  7. Differential regulation of apoptosis in slow and fast twitch muscles of aged female F344BN rats

    SciTech Connect

    Rice, Kevin M.; Manne, Nandini D. P. K.; Gadde, Murali K.; Paturi, Satyanarayana; Arvapalli, Ravikumar; Blough, Eric

    2015-03-28

    Age-related muscle atrophy is characterized by decreases in muscle mass and is thought be mediated, at least in part, by increases in myocyte apoptosis. Recent data has demonstrated that the degree of muscle loss with aging may differ between males and females while other work has suggested that apoptosis as indicated by DNA fragmentation may be regulated differently in fast- and slow-twitch muscles. Herein, we investigate how aging affects the regulation of muscle apoptosis in the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of young (6-month), aged (26-month), and very aged (30-month) female Fischer 344/NNiaHSD × Brown Norway/BiNia (F344BN) rats. Tissue sections were stained with hydroethidium for ROS and protein extract was subjected to immunoblotting for assessing apoptotic markers. Our data suggest that decreases in muscle mass were associated with increased DNA fragmentation (TUNEL positive) and increases in reactive oxygen species (ROS) as determined by hydroethidium staining in both the EDL and soleus. Similar to our previous work using aged male animals, we observed that the time course and magnitude of changes in Bax, Bcl-2, caspase-3, caspase-9, and cleavage of α-fodrin protein were regulated differently between muscles. As a result, These data suggest that aging in the female F344BN rat is associated with decreases in muscle mass, elevations in ROS level, increased muscle cell DNA fragmentation, and alterations in cell membrane integrity and that apoptotic mechanisms may differ between fiber types.

  8. Differential regulation of apoptosis in slow and fast twitch muscles of aged female F344BN rats

    DOE PAGESBeta

    Rice, Kevin M.; Manne, Nandini D. P. K.; Gadde, Murali K.; Paturi, Satyanarayana; Arvapalli, Ravikumar; Blough, Eric

    2015-03-28

    Age-related muscle atrophy is characterized by decreases in muscle mass and is thought be mediated, at least in part, by increases in myocyte apoptosis. Recent data has demonstrated that the degree of muscle loss with aging may differ between males and females while other work has suggested that apoptosis as indicated by DNA fragmentation may be regulated differently in fast- and slow-twitch muscles. Herein, we investigate how aging affects the regulation of muscle apoptosis in the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of young (6-month), aged (26-month), and very aged (30-month) female Fischer 344/NNiaHSD × Brown Norway/BiNiamore » (F344BN) rats. Tissue sections were stained with hydroethidium for ROS and protein extract was subjected to immunoblotting for assessing apoptotic markers. Our data suggest that decreases in muscle mass were associated with increased DNA fragmentation (TUNEL positive) and increases in reactive oxygen species (ROS) as determined by hydroethidium staining in both the EDL and soleus. Similar to our previous work using aged male animals, we observed that the time course and magnitude of changes in Bax, Bcl-2, caspase-3, caspase-9, and cleavage of α-fodrin protein were regulated differently between muscles. As a result, These data suggest that aging in the female F344BN rat is associated with decreases in muscle mass, elevations in ROS level, increased muscle cell DNA fragmentation, and alterations in cell membrane integrity and that apoptotic mechanisms may differ between fiber types.« less

  9. Effects of jump training on procollagen alpha(1)(i) mRNA expression and its relationship with muscle collagen concentration.

    PubMed

    Ducomps, Christophe; Larrouy, Dominique; Mairal, Aline; Doutreloux, Jean-Paul; Lebas, Francois; Mauriege, Pascale

    2004-04-01

    The aim of this study was to examine the effects of a prolonged high-intensity exercise, jumping, on procollagen alpha(1)(I) mRNA level and collagen concentration in different muscles of trained (T) and control (C) rabbits. Procollagen alpha(1)(I) mRNA expression was much higher (2.8 to 23.5 times) in semimembranosus proprius (SMP), a slow-twitch oxidative muscle, than in extensor digitorum longus (EDL), rectus femoris (RF), and psoas major (Psoas) muscles, both fast-twitch mixed and glycolytic, whatever group was considered (p < 0.001). Procollagen alpha(1)(I) mRNA level also decreased significantly between 50 and 140 days in all muscles (0.001< p < 0.01). However, mRNA levels were 16 to 97% greater at 140 days in all muscles of T animals compared to C ones (0.01< p <0.05). Collagen concentrations of EDL and RF muscles were also higher (14 to 19%) in T than in C rabbits at 90 and 140 days (0.001 < p < 0.05). In the whole sample, collagen concentration was negatively associated with the procollagen alpha(1)(I) mRNA level in EDL and RF muscles (- 0.49 < r < (- 0.44, p < 0.05), while being positively related to mRNA expression in SMP and Psoas muscles (0.65 < r < 0.85, p < 0.01). It is concluded that jump training clearly restricts the decrease of procollagen (I) mRNA level and probably affects collagen synthesis level. In trained rabbit muscles, the maintenance of a better synthesis level could partly explain the higher collagen concentrations found in EDL and RF at 140 days. Nevertheless, the collagen degradation process seems to play the main role in the increase of total collagen concentration with age in EDL and RF muscles. PMID:15064425

  10. Histological Changes in Skeletal Muscle During Death by Drowning: An Experimental Study.

    PubMed

    Girela-López, Eloy; Ruz-Caracuel, Ignacio; Beltrán, Cristina; Jimena, Ignacio; Leiva-Cepas, Fernando; Jiménez-Reina, Luis; Peña, José

    2016-06-01

    A diagnosis of drowning is a challenge in legal medicine as there is generally a lack of pathognomonic findings indicative of drowning. This article investigates whether the skeletal muscle undergoes structural changes during death by drowning. Eighteen Wistar rats were divided into 3 equal groups according to the cause of death: drowning, exsanguination, and cervical dislocation. Immediately after death, samples of the masseter, sternohyoid, diaphragm, anterior tibial, soleus, and extensor digitorum longus muscles were obtained and examined by light and electron microscopy.In the drowning group, all muscles except the masseter displayed scattered evidence of fiber degeneration, and modified Gomori trichrome staining revealed structural changes in the form of abnormal clumps of red material and ragged red fibers. Under the electron microscope, there was myofibrillar disruption and large masses of abnormal mitochondria. In the exsanguination group, modified Gomori trichrome staining disclosed structural changes and mitochondrial abnormalities were apparent under light microscopy; however, there was no evidence of degeneration. No alterations were observed in the cervical dislocation group.As far as we know, this is the first time that these histological findings are described in death by drowning and are consistent with rhabdomyolysis and intense anoxia of skeletal muscle. PMID:27043461

  11. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  12. Androgens enhance in vivo 2-deoxyglucose uptake by rat striated muscle

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Toop, J.

    1983-01-01

    It is shown that testosterone propionate (TP) causes a striking increase in the in vivo uptake of 2-deoxyglucose (2-DG) by the levator ani muscle of immature male rats, which was found to be uniformly distributed over the entire muscle. After a single subcutaneous injection of TP, no enhancement of 2-DG was observed before 3.5 hr, at which time uptake was increased 2-fold; maximum enhancement (4-fold) was attained at 12 hr. At 72 hr, 2-DG uptake remained elevated at twice the control value. It was determined that the effect of TP probably is mediated by specific androgen receptors. In addition, it was found that the effect of TP was blocked by the simultaneous administration of an androgen antagonist, cyproterone acetate. TP also was found to enhance the uptake of 2-DG in the bulbocavernosus (253 percent over control) and extensor digitorum longus muscles (150 percent over control), but not in the biceps brachii or soleus. It is suggested that the increased uptake of glucose may be an important early step in the anabolic response of muscle to androgens.

  13. Isolation and Culture of Skeletal Muscle Myofibers as a Means to Analyze Satellite Cells

    PubMed Central

    Shefer, Gabi; Yablonka-Reuveni, Zipora

    2012-01-01

    Summary Myofibers are the functional contractile units of skeletal muscle. Mononuclear satellite cells located between the basal lamina and the plasmalemma of the myofiber are the primary source of myogenic precursor cells in postnatal muscle. This chapter describes protocols used in our laboratory for isolation, culturing and immunostaining of single myofibers from mouse skeletal muscle. The isolated myofibers are intact and retain their associated satellite cells underneath the basal lamina. The first protocol discusses myofiber isolation from the flexor digitorum brevis (FDB) muscle. Myofibers are cultured in dishes coated with Vitrogen collagen and satellite cells remain associated with the myofibers undergoing proliferation and differentiation on the myofiber surface. The second protocol discusses the isolation of longer myofibers from the extensor digitorum longus (EDL). Different from the FDB myofibers, the longer EDL myofibers tend to tangle and break if cultured together; therefore, EDL myofibers are cultured individually. These myofibers are cultured in dishes coated with Matrigel. The satellite cells initially remain associated with the myofiber and later migrate away to its vicinity, resulting in extensive cell proliferation and differentiation. These culture protocols allow studies on the interplay between the myofiber and its associated satellite cells. PMID:15361669

  14. Expression of Dihydropyridine and Ryanodine Receptors in Type IIA Fibers of Rat Skeletal Muscle

    PubMed Central

    Anttila, Katja; Mänttäri, Satu; Järvilehto, Matti

    2007-01-01

    In this study, the fiber type specificity of dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs) in different rat limb muscles was investigated. Western blot and histochemical analyses provided for the first time evidence that the expression of both receptors correlates to a specific myosin heavy chain (MHC) composition. We observed a significant (p=0.01) correlation between DHP as well as Ry receptor density and the expression of MHC IIa (correlation factor r=0.674 and r=0.645, respectively) in one slow-twitch, postural muscle (m. soleus), one mixed, fast-twitch muscle (m. gastrocnemius) and two fast-twitch muscles (m. rectus femoris, m. extensor digitorum longus). The highest DHP and Ry receptor density was found in the white part of m. rectus femoris (0.058±0.0060 and 0.057±0.0158 ODu, respectively). As expected, the highest relative percentage of MHC IIa was also found in the white part of m. rectus femoris (70.0±7.77%). Furthermore, histochemical experiments revealed that the IIA fibers stained most strongly for the fluorophore-conjugated receptor blockers. Our data clearly suggest that the expression of DHPRs and RyRs follows a fiber type-specific pattern, indicating an important role for these proteins in the maintenance of an effective Ca2+ cycle in the fast contracting fiber type IIA. PMID:17576431

  15. The effects of smartphone use on upper extremity muscle activity and pain threshold.

    PubMed

    Lee, Minkyung; Hong, Yunkyung; Lee, Seunghoon; Won, Jinyoung; Yang, Jinjun; Park, Sookyoung; Chang, Kyu-Tae; Hong, Yonggeun

    2015-06-01

    [Purpose] The purpose of this study was to determine whether muscle activity and pressure-induced pain in the upper extremities are affected by smartphone use, and to compare the effects of phone handling with one hand and with both hands. [Subjects] The study subjects were asymptomatic women 20-22 years of age. [Methods] The subjects sat in a chair with their feet on the floor and the elbow flexed, holding a smartphone positioned on the thigh. Subsequently, the subjects typed the Korean anthem for 3 min, one-handed or with both hands. Each subject repeated the task three times, with a 5-min rest period between tasks to minimize fatigue. Electromyography (EMG) was used to record the muscle activity of the upper trapezius (UT), extensor pollicis longus (EPL), and abductor pollicis (AP) during phone operation. We also used a dolorimeter to measure the pressure-induced pain threshold in the UT. [Results] We observed higher muscle activity in the UT, AP, and EPL in one-handed smartphone use than in its two-handed use. The pressure-induced pain threshold of the UT was lower after use of the smartphone, especially after one-handed use. [Conclusion] Our results show that smartphone operation with one hand caused greater UT pain and induced increased upper extremity muscle activity. PMID:26180311

  16. The effects of smartphone use on upper extremity muscle activity and pain threshold

    PubMed Central

    Lee, Minkyung; Hong, Yunkyung; Lee, Seunghoon; Won, Jinyoung; Yang, Jinjun; Park, Sookyoung; Chang, Kyu-Tae; Hong, Yonggeun

    2015-01-01

    [Purpose] The purpose of this study was to determine whether muscle activity and pressure-induced pain in the upper extremities are affected by smartphone use, and to compare the effects of phone handling with one hand and with both hands. [Subjects] The study subjects were asymptomatic women 20–22 years of age. [Methods] The subjects sat in a chair with their feet on the floor and the elbow flexed, holding a smartphone positioned on the thigh. Subsequently, the subjects typed the Korean anthem for 3 min, one-handed or with both hands. Each subject repeated the task three times, with a 5-min rest period between tasks to minimize fatigue. Electromyography (EMG) was used to record the muscle activity of the upper trapezius (UT), extensor pollicis longus (EPL), and abductor pollicis (AP) during phone operation. We also used a dolorimeter to measure the pressure-induced pain threshold in the UT. [Results] We observed higher muscle activity in the UT, AP, and EPL in one-handed smartphone use than in its two-handed use. The pressure-induced pain threshold of the UT was lower after use of the smartphone, especially after one-handed use. [Conclusion] Our results show that smartphone operation with one hand caused greater UT pain and induced increased upper extremity muscle activity. PMID:26180311

  17. The effect of the weight of equipment on muscle activity of the lower extremity in soldiers.

    PubMed

    Lindner, Tobias; Schulze, Christoph; Woitge, Sandra; Finze, Susanne; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    Due to their profession and the tasks it entails, soldiers are exposed to high levels of physical activity and strain. This can result in overexertion and pain in the locomotor system, partly caused by carrying items of equipment. The aim of this study was to analyse the extent of muscle activity in the lower extremities caused by carrying specific items of equipment. For this purpose, the activity of selected groups of muscles caused by different items of equipment (helmet, carrying strap, backpack, and rifle) in the upper and lower leg was measured by recording dynamic surface electromyograms. Electrogoniometers were also used to measure the angle of the knee over the entire gait cycle. In addition to measuring muscle activity, the study also aimed to determine out what influence increasing weight load has on the range of motion (ROM) of the knee joint during walking. The activity of recorded muscles of the lower extremity, that is, the tibialis anterior, peroneus longus, gastrocnemius lateralis, gastrocnemius medialis, rectus femoris, and biceps femoris, was found to depend on the weight of the items of equipment. There was no evidence, however, that items of equipment weighing a maximum of 34% of their carrier's body weight had an effect on the ROM of the knee joint. PMID:22973179

  18. Fingertip contact suppresses the destabilizing influence of leg muscle vibration

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Rabin, E.; DiZio, P.

    2000-01-01

    Touch of the hand with a stationary surface at nonmechanically supportive force levels (<1 N) greatly attenuates postural sway during quiet stance. We predicted such haptic contact would also suppress the postural destabilization caused by vibrating the right peroneus brevis and longus muscles of subjects standing heel-to-toe with eyes closed. In experiment 1, ten subjects were tested under four conditions: no-vibration, no-touch; no-vibration, touch; vibration, no-touch; and vibration, touch. A hand-held physiotherapy vibrator (120 Hz) was applied approximately 5 cm above the malleolous to stimulate the peroneus longus and brevis tendons. Touch conditions involved contact of the right index finger with a laterally positioned surface (<1 N of force) at waist height. Vibration in the absence of finger contact greatly increased the mean sway amplitude of the center of pressure and of the head relative to the no-vibration, no-touch control condition (P < 0.001). The touch, no-vibration and touch-vibration conditions were not significantly different (P > 0.05) from each other and both had significantly less mean sway amplitude of head and of center of pressure than the other conditions (P < 0.01). In experiment 2, eight subjects stood heel-to-toe under touch and no-touch conditions involving 40-s duration trials of peroneus tendon vibration at different duty cycles: 1-, 2-, 3-, and 4-s ON and OFF periods. The vibrator was attached to the subject's leg and remotely activated. In the no-touch conditions, subjects showed periodic postural disruptions contingent on the duty cycle and mirror image rebounds with the offset of vibration. In the touch conditions, subjects were much less disrupted and showed compensations occurring within 500 ms of vibration onset and mirror image rebounds with vibration offset. Subjects were able to suppress almost completely the destabilizing influence of the vibration in the 3- and 4-s duty cycle trials. These experiments show that haptic

  19. New method for determining total calcium content in tissue applied to skeletal muscle with and without calsequestrin

    PubMed Central

    Lamboley, Cédric R.H.; Kake Guena, Sandrine A.; Touré, Fatou; Hébert, Camille; Yaddaden, Louiza; Nadeau, Stephanie; Bouchard, Patrice; Wei-LaPierre, Lan; Lainé, Jean; Rousseau, Eric C.; Frenette, Jérôme; Protasi, Feliciano; Dirksen, Robert T.

    2015-01-01

    We describe a new method for determining the concentration of total Ca in whole skeletal muscle samples ([CaT]WM in units of mmoles/kg wet weight) using the Ca-dependent UV absorbance spectra of the Ca chelator BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid). Muscle tissue was homogenized in a solution containing 0.15 mM BAPTA and 0.5% sodium dodecyl sulfate (to permeabilize membranes and denature proteins) and then centrifuged. The solution volume was adjusted so that BAPTA captured essentially all of the Ca. [CaT]WM was obtained with Beer’s law from the absorbance change produced by adding 1 mM EGTA to capture Ca from BAPTA. Results from mouse, rat, and frog muscles were reasonably consistent with results obtained using other methods for estimating total [Ca] in whole muscles and in single muscle fibers. Results with external Ca removed before determining [CaT]WM indicate that most of the Ca was intracellular, indicative of a lack of bound Ca in the extracellular space. In both fast-twitch (extensor digitorum longus, EDL) and slow-twitch (soleus) muscles from mice, [CaT]WM increased approximately linearly with decreasing muscle weight, increasing approximately twofold with a twofold decrease in muscle weight. This suggests that the Ca concentration of smaller muscles might be increased relative to that in larger muscles, thereby increasing the specific force to compensate for the smaller mass. Knocking out the high capacity Ca-binding protein calsequestrin (CSQ) did not significantly reduce [CaT]WM in mouse EDL or soleus muscle. However, in EDL muscles lacking CSQ, muscle weights were significantly lower than in wild-type (WT) muscles and the values of [CaT]WM were, on average, about half the expected WT values, taking into account the above [CaT]WM versus muscle weight relationship. Because greater reductions in [CaT]WM would be predicted in both muscle types, we hypothesize that there is a substantial increase in Ca bound to other sites

  20. New method for determining total calcium content in tissue applied to skeletal muscle with and without calsequestrin.

    PubMed

    Lamboley, Cédric R H; Kake Guena, Sandrine A; Touré, Fatou; Hébert, Camille; Yaddaden, Louiza; Nadeau, Stephanie; Bouchard, Patrice; Wei-LaPierre, Lan; Lainé, Jean; Rousseau, Eric C; Frenette, Jérôme; Protasi, Feliciano; Dirksen, Robert T; Pape, Paul C

    2015-02-01

    We describe a new method for determining the concentration of total Ca in whole skeletal muscle samples ([CaT]WM in units of mmoles/kg wet weight) using the Ca-dependent UV absorbance spectra of the Ca chelator BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid). Muscle tissue was homogenized in a solution containing 0.15 mM BAPTA and 0.5% sodium dodecyl sulfate (to permeabilize membranes and denature proteins) and then centrifuged. The solution volume was adjusted so that BAPTA captured essentially all of the Ca. [CaT]WM was obtained with Beer's law from the absorbance change produced by adding 1 mM EGTA to capture Ca from BAPTA. Results from mouse, rat, and frog muscles were reasonably consistent with results obtained using other methods for estimating total [Ca] in whole muscles and in single muscle fibers. Results with external Ca removed before determining [CaT]WM indicate that most of the Ca was intracellular, indicative of a lack of bound Ca in the extracellular space. In both fast-twitch (extensor digitorum longus, EDL) and slow-twitch (soleus) muscles from mice, [CaT]WM increased approximately linearly with decreasing muscle weight, increasing approximately twofold with a twofold decrease in muscle weight. This suggests that the Ca concentration of smaller muscles might be increased relative to that in larger muscles, thereby increasing the specific force to compensate for the smaller mass. Knocking out the high capacity Ca-binding protein calsequestrin (CSQ) did not significantly reduce [CaT]WM in mouse EDL or soleus muscle. However, in EDL muscles lacking CSQ, muscle weights were significantly lower than in wild-type (WT) muscles and the values of [CaT]WM were, on average, about half the expected WT values, taking into account the above [CaT]WM versus muscle weight relationship. Because greater reductions in [CaT]WM would be predicted in both muscle types, we hypothesize that there is a substantial increase in Ca bound to other sites in the

  1. Arthroscopic Release of Flexor Hallucis Longus Tendon Sheath in Female Ballet Dancers: Dynamic Pathology, Surgical Technique, and Return to Dancing Performance.

    PubMed

    Funasaki, Hiroki; Hayashi, Hiroteru; Sakamoto, Kanako; Tsuruga, Rei; Marumo, Keishi

    2015-12-01

    Stenosing tenosynovitis of the flexor hallucis longus (FHL) tendon is known as a major overuse lesion in female dancers. We describe arthroscopic surgical techniques in relation to the dynamic pathology of the disease. Crepitus and pain on moving the great toe with the ankle in plantar flexion on preoperative examination confirm the diagnosis of FHL stenosing tenosynovitis even if the os trigonum is not evident. The ankle is approached through standard posterolateral and posteromedial portals. A 4.0-mm-diameter 30° arthroscope is used. Soft tissues around the talus are cleared with a motorized shaver and a radiofrequency device. The posterior aspects of the talus, os trigonum, and FHL tendon surrounded by the tendon sheath are visualized. The dynamic pathology of the FHL tendon is well observed on passive motion of the great toe. The prominent bone fragment of the talus is removed and the tendon sheath is cut with a retrograde knife and a motorized shaver from the superior border down to the entrance of the fibro-osseous tunnel. Arthroscopic release of the FHL tendon sheath is a useful and easy method to directly approach the dynamic pathology of FHL tenosynovitis in female ballet dancers. PMID:27284509

  2. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery.

    PubMed

    Py, G; Ramonatxo, C; Sirvent, P; Sanchez, A M J; Philippe, A G; Douillard, A; Galbès, O; Lionne, C; Bonnieu, A; Chopard, A; Cazorla, O; Lacampagne, A; Candau, R B

    2015-04-15

    Clenbuterol is a β2 -adrenergic receptor agonist known to induce skeletal muscle hypertrophy and a slow-to-fast phenotypic shift. The aim of the present study was to test the effects of chronic clenbuterol treatment on contractile efficiency and explore the underlying mechanisms, i.e. the muscle contractile machinery and calcium-handling ability. Forty-three 6-week-old male Wistar rats were randomly allocated to one of six groups that were treated with either subcutaneous equimolar doses of clenbuterol (4 mg kg(-1) day(-1) ) or saline solution for 9, 14 or 21 days. In addition to the muscle hypertrophy, although an 89% increase in absolute maximal tetanic force (Po ) was noted, specific maximal tetanic force (sPo) was unchanged or even depressed in the slow twitch muscle of the clenbuterol-treated rats (P < 0.05). The fit of muscle contraction and relaxation force kinetics indicated that clenbuterol treatment significantly reduced the rate constant of force development and the slow and fast rate constants of relaxation in extensor digitorum longus muscle (P < 0.05), and only the fast rate constant of relaxation in soleus muscle (P < 0.05). Myofibrillar ATPase activity increased in both relaxed and activated conditions in soleus (P < 0.001), suggesting that the depressed specific tension was not due to the myosin head alteration itself. Moreover, action potential-elicited Ca(2+) transients in flexor digitorum brevis fibres (fast twitch fibres) from clenbuterol-treated animals demonstrated decreased amplitude after 14 days (-19%, P < 0.01) and 21 days (-25%, P < 0.01). In conclusion, we showed that chronic clenbuterol treatment reduces contractile efficiency, with altered contraction and relaxation kinetics, but without directly altering the contractile machinery. Lower Ca(2+) release during contraction could partially explain these deleterious effects. PMID:25656230

  3. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery

    PubMed Central

    Py, G; Ramonatxo, C; Sirvent, P; Sanchez, A M J; Philippe, A G; Douillard, A; Galbès, O; Lionne, C; Bonnieu, A; Chopard, A; Cazorla, O; Lacampagne, A; Candau, R B

    2015-01-01

    Clenbuterol is a β2-adrenergic receptor agonist known to induce skeletal muscle hypertrophy and a slow-to-fast phenotypic shift. The aim of the present study was to test the effects of chronic clenbuterol treatment on contractile efficiency and explore the underlying mechanisms, i.e. the muscle contractile machinery and calcium-handling ability. Forty-three 6-week-old male Wistar rats were randomly allocated to one of six groups that were treated with either subcutaneous equimolar doses of clenbuterol (4 mg kg−1 day−1) or saline solution for 9, 14 or 21 days. In addition to the muscle hypertrophy, although an 89% increase in absolute maximal tetanic force (Po) was noted, specific maximal tetanic force (sPo) was unchanged or even depressed in the slow twitch muscle of the clenbuterol-treated rats (P < 0.05). The fit of muscle contraction and relaxation force kinetics indicated that clenbuterol treatment significantly reduced the rate constant of force development and the slow and fast rate constants of relaxation in extensor digitorum longus muscle (P < 0.05), and only the fast rate constant of relaxation in soleus muscle (P < 0.05). Myofibrillar ATPase activity increased in both relaxed and activated conditions in soleus (P < 0.001), suggesting that the depressed specific tension was not due to the myosin head alteration itself. Moreover, action potential-elicited Ca2+ transients in flexor digitorum brevis fibres (fast twitch fibres) from clenbuterol-treated animals demonstrated decreased amplitude after 14 days (−19%, P < 0.01) and 21 days (−25%, P < 0.01). In conclusion, we showed that chronic clenbuterol treatment reduces contractile efficiency, with altered contraction and relaxation kinetics, but without directly altering the contractile machinery. Lower Ca2+ release during contraction could partially explain these deleterious effects. PMID:25656230

  4. Deletion of connexin43 in osteoblasts/osteocytes leads to impaired muscle formation in mice

    PubMed Central

    Shen, Hua; Grimston, Susan; Civitelli, Roberto; Thomopoulos, Stavros

    2015-01-01

    It is well-established that muscle forces are necessary for bone development as well as proper bone modeling and remodeling. Recent work has also suggested that bone acts as an endocrine organ that can influence the development of other organs. Connexin43 (Cx43), a gap junction protein that transduces mechanical signals, is an important determinant of cortical bone modeling. Using an osteoblast/osteocyte-specific ablation of the Cx43 gene (Gja1) driven by the 2.3 kb Col1α1 promoter (cKO) in the mouse, this study confirmed reduced cortical bone thickness and density with expanded bone marrow cavity in the cKO humerus. Surprisingly, Gja1 deletion in bone cells also affected skeletal muscle development, resulting in lower fast muscle weight, grip strength, and maximum absolute and specific tetanic forces (60–80%, 85%, and 50%, respectively, of WT mice). The normally fast twitch extensor digitorium longus (EDL) muscle exhibited increased slow twitch fibers in cKO mice. These muscle defects were accompanied by a 40–60% reduction in mRNA abundance for genes encoding osteocalcin in the humerus, relative to WT mice. Accordingly, both carboxylated and undercarboxylated isoforms of osteocalcin were reduced by over 30% in the circulation of cKO mice. Moreover, the active, undercarboxylated isoform of osteocalcin (glu-OC) promoted myotube formation in C2C12 myoblast cultures, and glu-OC injections to cKO mice rescued EDL muscle cross section area and grip strength in vivo. These findings demonstrate that Cx43 in osteoblasts/osteocytes indirectly modulates skeletal muscle growth and function, potentially via an endocrine effect of glu-OC. PMID:25348938

  5. Quantitative determination of Ca2+-dependent Mg2+-ATPase from sarcoplasmic reticulum in muscle biopsies.

    PubMed Central

    Everts, M E; Andersen, J P; Clausen, T; Hansen, O

    1989-01-01

    The possibility of quantifying the total concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum was investigated by measurement of the Ca2+-dependent steady-state phosphorylation from [gamma-32P]ATP and the Ca2+-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase) activity in crude muscle homogenates. The Ca2+-dependent phosphorylation at 0 degree C (mean +/- S.E.) was 40.0 +/- 2.5 (n = 6) and 6.2 +/- 0.7 (n = 4) nmol/g wet wt. in rat extensor digitorum longus (EDL) and soleus muscle, respectively (P less than 0.001). The Ca2+-dependent 3-O-MFPase activity at 37 degrees C was 1424 +/- 238 (n = 6) and 335 +/- 56 (n = 4) nmol/min per g wet wt. in rat EDL and soleus muscle, respectively (P less than 0.01). The molecular activity calculated from these measurements amounted to 35 +/- 5 min-1 (n = 6) and 55 +/- 10 min-1 (n = 4) for EDL and soleus muscle respectively. These values were not different from the molecular activity calculated for purified Ca2+-ATPase (36 min-1). The Ca2+-dependent 32P incorporation in soleus muscle decreased in the order mice greater than rats greater than guinea pigs. In EDL muscles from hypothyroid rats at a 30% reduction of the Ca2+-dependent phosphorylation was observed. The Ca2+-dependent phosphorylation in vastus lateralis muscle from three human subjects amounted to 4.5 +/- 0.8 nmol/g wet wt. It is concluded that measurement of the Ca2+-dependent phosphorylation allows rapid and reproducible quantification of the concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum. Since only 20-60 mg of tissue is required for the measurements, the method can also be used for biopsies obtained in clinical studies. PMID:2548478

  6. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults

    PubMed Central

    Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.

    2014-01-01

    Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203

  7. Magnetic Resonance Assessment of Hypertrophic and Pseudo-Hypertrophic Changes in Lower Leg Muscles of Boys with Duchenne Muscular Dystrophy and Their Relationship to Functional Measurements

    PubMed Central

    Vohra, Ravneet S.; Lott, Donovan; Mathur, Sunita; Senesac, Claudia; Deol, Jasjit; Germain, Sean; Bendixen, Roxanna; Forbes, Sean C.; Sweeney, H. Lee; Walter, Glenn A.; Vandenborne, Krista

    2015-01-01

    Introduction The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD) and determine the relationships between non-contractile content and functional abilities. Methods Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus) were assessed by magnetic resonance imaging (MRI). Muscle strength, timed functional tests and the Brooke lower extremity score were also assessed. Results Non-contractile content of lower leg muscles (peroneal, medial gastrocnemius, and soleus) was significantly greater than control group (p<0.05). Non-contractile content of lower leg muscles correlated with Brooke score (rs = 0.64-0.84) and 30 feet walk (rs = 0.66-0.80). Dorsiflexor (DF) and plantarflexor (PF) specific torque was significantly different between the groups. Discussion Overall, non-contractile c