Science.gov

Sample records for adductor longus muscles

  1. Temporal changes in sarcomere lesions of rat adductor longus muscles during hindlimb reloading

    NASA Technical Reports Server (NTRS)

    Krippendorf, B. B.; Riley, D. A.

    1994-01-01

    Focal sarcomere disruptions were previously observed in adductor longus muscles of rats flown approximately two weeks aboard the Cosmos 1887 and 2044 biosatellite flights. These lesions, characterized by breakage and loss of myofilaments and Z-line streaming, resembled damage induced by unaccustomed exercise that includes eccentric contractions in which muscles lengthen as they develop tension. We hypothesized that sarcomere lesions in atrophied muscles of space flow rats were not produced in microgravity by muscle unloading but resulted from muscle reloading upon re-exposure to terrestrial gravity. To test this hypothesis, we examined temporal changes in sarcomere integrity of adductor longus muscles from rats subjected to 12.5 days of hindlimb suspension unloading and subsequent reloading by return to vivarium cages for 0, 6, 12, or 48 hours of normal weightbearing. Our ultrastructural observations suggested that muscle unloading (0 h reloading) induced myofibril misalignment associated with myofiber atrophy. Muscle reloading for 6 hours induced focal sarcomere lesions in which cross striations were abnormally widened. Such lesions were electron lucent due to extensive myofilament loss. Lesions in reloaded muscles showed rapid restructuring. By 12 hours of reloading, lesions were moderately stained foci and by 48 hours darkly stained foci in which the pattern of cross striations was indistinct at the light and electron microscopic levels. These lesions were spanned by Z-line-like electron dense filamentous material. Our findings suggest a new role for Z-line streaming in lesion restructuring: rather than an antecedent to damage, this type of Z-line streaming may be indicative of rapid, early sarcomere repair.

  2. Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle--a test model

    NASA Technical Reports Server (NTRS)

    Thompson, J. L.; Balog, E. M.; Fitts, R. H.; Riley, D. A.

    1999-01-01

    Sarcomere disruptions are observed in the adductor longus (AL) muscles following voluntary reloading of spaceflown and hindlimb suspension unloaded (HSU) rat, which resemble lesions in eccentrically challenged muscle. We devised and tested an eccentric contraction (ECCON) test system for the 14-day HSU rat AL. Six to 7 hours following ECCON, ALs were fixed to allow immunostaining and electron microscopy (EM). Toluidine blue-stained histology semithin sections were screened for lesion density (#/mm2). Serial semithin sections from the ECCON group were characterized for myosin immunointensity of lesions. Five myofibrillar lesion types were identified in histological semithin sections: focal contractions; wide A-bands; opaque areas; missing A-bands; and hyperstretched sarcomeres. Lesion density by type was greater for ECCON than NonECCON ALs (P< or =0.05; focal contractions and opaque regions). Lesion density (#-of-all-five-types/mm2) was significantly different (ECCON: 23.91+/-10.58 vs. NonECCON: 5.48+/-1.28, P< or =0.05; ECCON vs. SHAM: 0.00+/-0.00; P< or = 0.025). PostECCON optimal tension decreased (Poi-drop, 17.84+/-4.22%) and was correlated to lesion density (R2=0.596), but prestretch tension demonstrated the highest correlation with lesion density (R2=0.994). In lesions, the darkly staining A-band lost the normally organized thick filament alignment to differing degrees across the different lesion types. Ranking the five lesion types by a measure of lesion length deformation (hypercontracted to hyperstretched) at the light microscopy level, related to the severity of thick filament registry loss across the lesion types at the electron microscopic level. This ranking suggested that the five lesion types seen in semithin sections at the light level represented a lesion progression sequence and paralleled myosin immunostaining loss as the distorted A-band filaments spread across the hyperlengthening lesion types. Lesion ultrastructure indicated damage involved

  3. Adductor Pollicis Longus Strain in a Professional Baseball Player

    PubMed Central

    Pinkowsky, Gregory J.; Roberts, John; Allred, Jeff; Pujalte, George G.; Gallo, Robert A.

    2013-01-01

    Thenar pain can represent a significant morbidity for a baseball player who relies on manual dexterity for gripping a bat and precise and accurate throws. While osseous, ligamentous, and neurovascular pathologies are commonly considered, musculotendinous injuries are often neglected in the differential diagnosis of thenar pain. We present a case of adductor pollicis longus strain as a cause of acute thenar pain in a baseball player. Adductor pollicis longus strains should be considered in any baseball player sustaining a hyperabduction force to the thumb. PMID:24459545

  4. PET/CT imaging in polymyalgia rheumatica: praepubic 18F-FDG uptake correlates with pectineus and adductor longus muscles enthesitis and with tenosynovitis

    PubMed Central

    Sprlakova-Pukova, Andrea; Bortlicek, Zbynek; Fojtik, Zdenek; Kazda, Tomas; Joukal, Marek; Koukalova, Renata; Vasina, Jiri; Eremiasova, Jana; Nemec, Petr

    2017-01-01

    diminished in all patients (15/15, 100%) after treatment with steroids. Conclusions Increased praepubic 18F-FDG uptake in patients with PMR is relatively common and this region should be systematically evaluated during differential diagnosis of rheumatic and malignant disease. Praepubic inflammation is probably related to enthesitis and tenosynovitis at the origin of pectineus and adductor longus muscles ventrally from the pubis. PMID:28265227

  5. Effects of spaceflight in the adductor longus muscle of rats flown in the Soviet Biosatellite COSMOS 2044. A study employing neural cell adhesion molecule (N-CAM) immunocytochemistry and conventional morphological techniques (light and electron microscopy)

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Daunton, N. G.

    1992-01-01

    The effects of spaceflight upon the "slow" muscle adductor longus were examined in rats flown in the Soviet Biosatellite COSMOS 2044. The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leukocytes and mononuclear cells. Neural cell adhesion molecule immunoreactivity (N-CAM-IR) was seen on the myofiber surface and in regenerating myofibers. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with apparent preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments. The principal electron microscopic changes of the neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles replaced by microtubules and neurofilaments, degeneration of axon terminals, vacant axonal spaces and changes suggestive of axonal sprouting. The present observations suggest that alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  6. Influence of electrical stimulation on hip joint adductor muscle activity during maximum effort.

    PubMed

    Nakano, Sota; Wada, Chikamune

    2016-05-01

    [Purpose] This study investigated whether hip adductor activity was influenced by electrical stimulation of the tensor fascia lata muscle. [Subjects and Methods] The subjects were 16 nondisabled males. Each subject was asked to adduct the hip joint with maximum effort. The electromyogram of the adductor longus was recorded under two experimental conditions, with and without electrical stimulation of the tensor fascia lata. [Results] In the presence of electrical stimulation, muscle activity decreased to 72.9% (57.8-89.3%) of that without stimulation. [Conclusion] These results suggested that inactivation of the adductor group was promoted by electrical stimulation of the tensor fascia lata.

  7. Influence of electrical stimulation on hip joint adductor muscle activity during maximum effort

    PubMed Central

    Nakano, Sota; Wada, Chikamune

    2016-01-01

    [Purpose] This study investigated whether hip adductor activity was influenced by electrical stimulation of the tensor fascia lata muscle. [Subjects and Methods] The subjects were 16 nondisabled males. Each subject was asked to adduct the hip joint with maximum effort. The electromyogram of the adductor longus was recorded under two experimental conditions, with and without electrical stimulation of the tensor fascia lata. [Results] In the presence of electrical stimulation, muscle activity decreased to 72.9% (57.8–89.3%) of that without stimulation. [Conclusion] These results suggested that inactivation of the adductor group was promoted by electrical stimulation of the tensor fascia lata. PMID:27313387

  8. Jaw adductor muscles across lepidosaurs: a reappraisal.

    PubMed

    Daza, Juan Diego; Diogo, Rui; Johnston, Peter; Abdala, Virginia

    2011-10-01

    The exact homologies of tetrapod jaw muscles remain unresolved, and this provides a barrier for phylogenetic analysis and tracing character evolution. Here, lepidosaur jaw muscles are surveyed using direct examination of species from 23 families and published descriptions of species from 10 families. A revised nomenclature is applied according to proposed homologies with Latimeria. Among lepidosaurs, variation was found in many aspects of jaw muscle anatomy. The superficial layers mm. levator and retractor anguli oris (LAO and RAO) are present in Sphenodon but not all squamates. The external jaw adductor muscles universally present in lepidosaurs are homologous with the main adductor muscle, A2, of Latimeria and include four layers: superficialis (A2-SUP), medialis (A2-M), profundus (A2-PRO), and posterior (A2-PVM). The A2-SUP appears divided in Agamidae, Gekkota, Xantusiidae, and Varanidae. The A2-M is layered lateromedial in lizards but anteroposterior in snakes. The names pseudotemporalis (PS) and pterygomandibularis (PTM) are recommended for subdivisions of the internal adductors of reptiles and amphibians, because the homology of this muscle with the A3' and A3 ″ of Latimeria remains inconclusive. The intramandibularis of lepidosaurs and Latimeria (A-ω) are homologous. The distribution of six jaw muscle characters was found to plot more parsimoniously on phylogenies based on morphological rather than and molecular data. Character mapping indicates that Squamata presents reduction in the divisions of the A2-M, Scincoidea presents reduction or loss of LAO, and two apomorphic features are found for the Gekkota.

  9. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 1; A Study Employing Neural Cell Adhesion Molecules (N-CAM) Immunocytochemistry and Conventional Morphological Techniques (Light and Electron Microscopy)

    NASA Technical Reports Server (NTRS)

    Daunton, N. G.; DAmelio, F.; Wu, L.; Ilyina-Kakueva, E. I.; Krasnov, I. B.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    The effects of spaceflight upon the 'slow' muscle adductor longus was examined in rats flown in the Soviet Biosatellite COSMOS 2044. Three groups - synchronous, vivarium and basal served as controls. The techniques employed included standard methods for light microscopy, N-CAM immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy, contraction bands and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leucocytes and mononuclear cells. N-CAM immunoreactivity was seen (N-CAM-IR) on the myofiber surface, satellite cells and in regenerating myofibers reminiscent of myotubes. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments that displayed varied distributive patterns. The principal electron microscopic changes of the neuromuscular junctions consisted of a decrease or absence of synaptic vesicles, degeneration of axon terminals, increased number of microtubules, vacant axonal spaces and axonal sprouting. The present observations indicate that major alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  10. Isokinetic imbalance of adductor-abductor hip muscles in professional soccer players with chronic adductor-related groin pain.

    PubMed

    Belhaj, K; Meftah, S; Mahir, L; Lmidmani, F; Elfatimi, A

    2016-11-01

    This study aims to compare the isokinetic profile of hip abductor and adductor muscle groups between soccer players suffering from chronic adductor-related groin pain (ARGP), soccer players without ARGP and healthy volunteers from general population. Study included 36 male professional soccer players, who were randomly selected and followed-up over two years. Of the 21 soccer players eligible to participate in the study, 9 players went on to develop chronic ARGP and 12 players did not. Ten healthy male volunteers were randomly selected from the general population as a control group. Comparison between the abductor and adductor muscle peak torques for players with and without chronic ARGP found a statistically significant difference on the dominant and non-dominant sides (p < .005), with the abductor muscle significantly stronger than the adductor muscle. In the group of healthy volunteers, the adductor muscle groups were significantly stronger than the abductor muscle groups on both dominant and non-dominant sides (p < .05). For the group of players who had developed chronic ARGP, abductor-adductor torque ratios were significantly higher on the affected side (p = .008). The adductor muscle strength was also significantly decreased on the affected side. This imbalance appears to be a risk factor for adductor-related groin injury. Therefore, restoring the correct relationship between these two agonist and antagonist hip muscles may be an important preventative measure that should be a primary concern of training and rehabilitation programmes.

  11. Scaling and Accommodation of Jaw Adductor Muscles in Canidae

    PubMed Central

    Kemp, Graham J.; Jeffery, Nathan

    2016-01-01

    ABSTRACT The masticatory apparatus amongst closely related carnivoran species raises intriguing questions about the interplay between allometry, function, and phylogeny in defining interspecific variations of cranial morphology. Here we describe the gross structure of the jaw adductor muscles of several species of canid, and then examine how the muscles are scaled across the range of body sizes, phylogenies, and trophic groups. We also consider how the muscles are accommodated on the skull, and how this is influenced by differences of endocranial size. Data were collected for a suite of morphological metrics, including body mass, endocranial volume, and muscle masses and we used geometric morphometric shape analysis to reveal associated form changes. We find that all jaw adductor muscles scale isometrically against body mass, regardless of phylogeny or trophic group, but that endocranial volume scales with negative allometry against body mass. These findings suggest that head shape is partly influenced by the need to house isometrically scaling muscles on a neurocranium scaling with negative allometry. Principal component analysis suggests that skull shape changes, such as the relatively wide zygomatic arches and large sagittal crests seen in species with higher body masses, allow the skull to accommodate a relative enlargement of the jaw adductors compared with the endocranium. Anat Rec, 299:951–966, 2016. © 2016 The Authors The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology Published by Wiley Periodicals, Inc. PMID:27103346

  12. Bilateral Tensor Fasciae Suralis Muscles in a Cadaver with Unilateral Accessory Flexor Digitorum Longus Muscle

    PubMed Central

    Herrin, Sean O.

    2017-01-01

    Muscle variants are routinely encountered in the dissection laboratory and in clinical practice and therefore anatomists and clinicians need to be aware of their existence. Here we describe two different accessory muscles identified while performing educational dissection of a 51-year-old male cadaver. Tensor fasciae suralis, a rare muscle variant, was identified bilaterally and accessory flexor digitorum longus, a more common muscle variant, was present unilaterally. Tensor fasciae suralis and accessory flexor digitorum longus are clinically relevant muscle variants. To our knowledge, the coexistence of tensor fasciae suralis and accessory flexor digitorum longus in the same individual has not been reported in either cadaveric or imaging studies. PMID:28210274

  13. Bilateral Tensor Fasciae Suralis Muscles in a Cadaver with Unilateral Accessory Flexor Digitorum Longus Muscle.

    PubMed

    Bale, Logan S W; Herrin, Sean O

    2017-01-01

    Muscle variants are routinely encountered in the dissection laboratory and in clinical practice and therefore anatomists and clinicians need to be aware of their existence. Here we describe two different accessory muscles identified while performing educational dissection of a 51-year-old male cadaver. Tensor fasciae suralis, a rare muscle variant, was identified bilaterally and accessory flexor digitorum longus, a more common muscle variant, was present unilaterally. Tensor fasciae suralis and accessory flexor digitorum longus are clinically relevant muscle variants. To our knowledge, the coexistence of tensor fasciae suralis and accessory flexor digitorum longus in the same individual has not been reported in either cadaveric or imaging studies.

  14. Why adductor magnus muscle is large: the function based on muscle morphology in cadavers.

    PubMed

    Takizawa, M; Suzuki, D; Ito, H; Fujimiya, M; Uchiyama, E

    2014-02-01

    The aim of this study was to examine anatomical properties of the adductor magnus through a detailed classification, and to hypothesize its function and size to gather enough information about morphology. Ten cadaveric specimens of the adductor magnus were used. The muscle was separated into four portios (AM1-AM4) based on the courses of the corresponding perforating arteries, and its volume, muscle length, muscle fiber length and physiological cross-sectional area were assessed. The architectural characteristics of these four portions of the adductor magnus were then classified with the aid of principal component analysis. The results led us into demarcating the most proximal part of the adductor magnus (AM1) from the remaining parts (AM2, AM3, and AM4). Classification of the adductor magnus in terms of architectural characteristics differed from the more traditional anatomical distinction. The AM2, AM3, and AM4, having longer muscle fiber lengths than the AM1, appear to be designed as displacers for moving the thigh through a large range of motion. The AM1 appears instead to be oriented principally toward stabilizing the hip joint. The large mass of the adductor magnus should thus be regarded as a complex of functionally differentiable muscle portions.

  15. Effects of Postmortem Freezing on Passive Properties of Rabbit Extensor Digtorum Longus Muscle Tendon Complex

    DTIC Science & Technology

    1993-06-14

    AD-A266 429 INSTITUTE REPORT NO. 483 Effects of Postmortem Freezing on Passive Properties of Rabbit Extensor Digtorum Longus Muscle Tendon Complex D...Extensor Digtorum Longus Muscle Tendon Complex -- Paul H. Leitschuh, Tammy J. Doherty, Dean C. Taylor, Daniel E. Brooks, John B. Ryan This document has...ABSTRACT The tensile properties of the extensor digitorum longus muscle tendon unit (EDL MTU) were studied in 16 white male New Zealand rabbits in both

  16. Rehabilitation and Return to Sport Following Surgical Repair of the Rectus Abdominis and Adductor Longus in a Professional Basketball Player: A Case Report.

    PubMed

    Short, Steven M; Anloague, Philip A; Strack, Donald S

    2016-08-01

    Study Design Case report. Background Acute traumatic avulsion of the rectus abdominis and adductor longus is rare. Chronic groin injuries, often falling under the athletic pubalgia spectrum, have been reported to be more common. There is limited evidence detailing the comprehensive rehabilitation and return to sport of an athlete following surgical or conservative treatment of avulsion injuries of the pubis or other sports-related groin pathologies. Case Description A 29-year-old National Basketball Association player sustained a contact injury during a professional basketball game. This case report describes a unique clinical situation specific to professional sport, in which a surgical repair of an avulsed rectus abdominis and adductor longus was combined with a multimodal impairment- and outcomes-based rehabilitation program. Outcomes The patient returned to in-season competition at 5 weeks postoperation. Objective measures were tracked throughout rehabilitation and compared to baseline assessments. Measures such as the Copenhagen Hip and Groin Outcome Score and numeric pain-rating scale revealed progress beyond the minimal important difference. Discussion This case report details the clinical reasoning and evidence-informed interventions involved in the return to elite sport. Detailed programming and objective assessment may assist in achieving desired outcomes ahead of previously established timelines. Level of Evidence Therapy, level 4. J Orthop Sports Phys Ther 2016;46(8):697-706. Epub 3 Jul 2016. doi:10.2519/jospt.2016.6352.

  17. Myofascial force transmission between transferred rat flexor carpi ulnaris muscle and former synergistic palmaris longus muscle

    PubMed Central

    Maas, Huub; Huijing, Peter A.

    2011-01-01

    Summary We investigated the extent of mechanical interaction between rat flexor carpi ulnaris (FCU) and palmaris longus (PL) muscles following transfer of FCU to the distal tendons of extensor carpi radialis brevis and longus (ECRB/L) muscles. Five weeks after recovery from surgery, isometric forces exerted at the distal tendons of FCU and PL were quantified at various FCU lengths. PL was kept at a constant length. Changing the muscle-tendon complex length of transferred FCU (by maximally 3.5 mm) decreased PL force significantly (by 7%). A linear relationship was found between changes in FCU muscle belly length, being a measure of muscle relative positions, and PL force. These results indicate that despite transfer of FCU muscle to the extensor side of the forearm, changing FCU length still affects force transmission of its, now, antagonistic PL muscle. We conclude that a transferred muscle may still be mechanically linked to its former synergistic muscles. PMID:23738260

  18. The hip adductor muscle group in caviomorph rodents: anatomy and homology.

    PubMed

    García-Esponda, César M; Candela, Adriana M

    2015-06-01

    Anatomical comparative studies including myological data of caviomorph rodents are relatively scarce, leading to a lack of use of muscular features in cladistic and morphofunctional analyses. In rodents, the hip adductor muscles constitute an important group of the hindlimb musculature, having an important function during the beginning of the stance phase. These muscles are subdivided in several distinct ways in the different clades of rodents, making the identification of their homologies hard to establish. In this contribution we provide a detailed description of the anatomical variation of the hip adductor muscle group of different genera of caviomorph rodents and identify the homologies of these muscles in the context of Rodentia. On this basis, we identify the characteristic pattern of the hip adductor muscles in Caviomorpha. Our results indicate that caviomorphs present a singular pattern of the hip adductor musculature that distinguishes them from other groups of rodents. They are characterized by having a single m. adductor brevis that includes solely its genicular part. This muscle, together with the m. gracilis, composes a muscular sheet that is medial to all other muscles of the hip adductor group. Both muscles probably have a synergistic action during locomotion, where the m. adductor brevis reinforces the multiple functions of the m. gracilis in caviomorphs. Mapping of analyzed myological characters in the context of Rodentia indicates that several features are recovered as potential synapomorphies of caviomorphs. Thus, analysis of the myological data described here adds to the current knowledge of caviomorph rodents from anatomical and functional points of view, indicating that this group has features that clearly differentiate them from other rodents.

  19. Thickness of the adductor pollicis muscle in nutritional assessment of surgical patients

    PubMed Central

    Valente, Katarina Papera; Silva, Naira Marceli Fraga; Faioli, Amanda Barcelos; Barreto, Marina Abelha; de Moraes, Rafael Araújo Guedes; Guandalini, Valdete Regina

    2016-01-01

    ABSTRACT Objective To evaluate the correlation between thickness of the muscle adductor pollicis and anthropometric measurements, body mass index and Subjective Global Assessment in the nutritional assessment of surgical patients. Methods The study population comprised patients admitted to the general and reconstructive surgery unit of a university hospital in the city of Vitória (ES), Brazil. The inclusion criteria were patients evaluated in the first 48 hours of admission, aged ≥20 years, hemodynamically stable, with no edema or ascites. Data analysis was performed using the software Statistical Package for Social Science 21.0, significance level of 5%. Results The sample consisted of 150 patients that were candidates to surgery, mean age of 42.7±12.0 years. The most common reasons for hospitalization were surgical procedures, gastrintestinal diseases and neoplasm. Significant association was observed between thickness of adductor pollicis muscle and Subjective Global Assessment (p=0.021) and body mass index (p=0.008) for nutritional risk. Significant correlation was found between thickness of adductor pollicis muscle and arm muscle circumference, corrected arm muscle area, calf circumference and body mass index. There were no significant correlations between thickness of adductor pollicis muscle and triceps skinfold and age. Conclusion The use of thickness of adductor pollicis muscle proved to be an efficient method to detect malnutrition in surgical patients and it should be added to the screening process of hospitalized patients, since it is easy to perform, inexpensive and noninvasive. PMID:27074229

  20. A Study on the Accessory Head of the Flexor Pollicis Longus Muscle (Gantzer’s Muscle)

    PubMed Central

    S.A., Gunnal; A.U., Siddiqui; S.R., Daimi; M.S., Farooqui; R.N., Wabale

    2013-01-01

    Introduction: The present study was planned to analyze the Accessory Head of the Flexor Pollicis Longus muscle’ (AHFPL) or Gantzer’s muscle and its incidence. It is an additional muscle in the forearm which might cause pressure symptoms to the underlying structures, especially to the anterior interosseus nerve. Materials and Methods: This study was performed on 180 upper limbs (90 right and 90 left). The morphology and the morphometry of AHFPL was done. In this investigation, we observed the various shapes, origins, insertions, nerve supplies and relations of the muscle. Observations and Results: The incidence of the accessory head of the flexor pollicis longus muscle was seen in 92 cases (51.11%). It was found bilaterally in 66 (71.73%) cases and unilaterally in 26 cases (28.26%), among which, in 16, it was seen on the right side and in 10 on the left side. With the increasing incidence of the Gantzer’s muscle, one can call it as an evolutionary muscle. Conclusion: The present study supplements the knowledge on the morphology of AHFPL muscle and its relationship with the anterior interosseus nerve. An increased incidence of this muscle may be the causative factor for the complete anterior interosseous nerve syndrome. PMID:23634387

  1. The Jaw Adductor Muscle Complex in Teleostean Fishes: Evolution, Homologies and Revised Nomenclature (Osteichthyes: Actinopterygii)

    PubMed Central

    Datovo, Aléssio; Vari, Richard P.

    2013-01-01

    The infraclass Teleostei is a highly diversified group of bony fishes that encompasses 96% of all species of living fishes and almost half of extant vertebrates. Evolution of various morphological complexes in teleosts, particularly those involving soft anatomy, remains poorly understood. Notable among these problematic complexes is the adductor mandibulae, the muscle that provides the primary force for jaw adduction and mouth closure and whose architecture varies from a simple arrangement of two segments to an intricate complex of up to ten discrete subdivisions. The present study analyzed multiple morphological attributes of the adductor mandibulae in representatives of 53 of the 55 extant teleostean orders, as well as significant information from the literature in order to elucidate the homologies of the main subdivisions of this muscle. The traditional alphanumeric terminology applied to the four main divisions of the adductor mandibulae – A1, A2, A3, and Aω – patently fails to reflect homologous components of that muscle across the expanse of the Teleostei. Some features traditionally used as landmarks for identification of some divisions of the adductor mandibulae proved highly variable across the Teleostei; notably the insertion on the maxilla and the position of muscle components relative to the path of the ramus mandibularis trigeminus nerve. The evolutionary model of gain and loss of sections of the adductor mandibulae most commonly adopted under the alphanumeric system additionally proved ontogenetically incongruent and less parsimonious than a model of subdivision and coalescence of facial muscle sections. Results of the analysis demonstrate the impossibility of adapting the alphanumeric terminology so as to reflect homologous entities across the spectrum of teleosts. A new nomenclatural scheme is proposed in order to achieve congruence between homology and nomenclature of the adductor mandibulae components across the entire Teleostei. PMID

  2. Extraction and Identification of the Pigment in the Adductor Muscle Scar of Pacific Oyster Crassostrea gigas.

    PubMed

    Hao, Shixin; Hou, Xin; Wei, Lei; Li, Jian; Li, Zhonghu; Wang, Xiaotong

    2015-01-01

    In this study, UV (ultraviolet) and IR (infrared radiation) spectral analysis were integrated to identify the pigment in the adductor muscle scar of the Pacific oyster Crassostrea gigas. The pigment was extracted from the adductor muscle scars of cleaned oyster shells that were pulverized, hydrolyzed in hot hydrochloric acid, purified with diethyl ether, and dissolved in 0.01 mL/L NaOH. The maximum absorption of the pigment in the UV absorption spectrum within the range of 190-500 nm was observed between 210-220 nm. The UV absorbance decreased with increasing wavelength which was consistent with the UV spectral absorption characteristics of melanin. In addition, Fourier transform infrared spectroscopy scanning revealed characteristic absorption peaks that emerged near 3440 cm-1 and 1630 cm-1, which was consistent with infrared scanning features of eumelanin (a type of melanin). This study has demonstrated for the first time that the pigment in the adductor muscle scar of the Pacific oyster is melanin, hinting that the adductor muscle could be another organ pigmenting the mollusc shell with melanin other than mantle.

  3. Relationship between adductor pollicis muscle thickness and subjective global assessment in a cardiac intensive care unit

    PubMed Central

    Karst, Fernanda Pickrodt; Vieira, Renata Monteiro; Barbiero, Sandra

    2015-01-01

    Objective To verify the relationship between the adductor pollicis muscle thickness test and the subjective global assessment and to correlate it with other anthropometric methods. Methods This observational cross-sectional study was conducted in the intensive care unit of a cardiology hospital in the state of Rio Grande do Sul, Brazil. The hospitalized patients underwent subjective global assessment and adductor pollicis muscle thickness tests on both hands, along with measurement of the right calf circumference. Laboratory parameters, length of stay, vital signs and electronic medical record data and tests were all collected. Results The study population included 83 patients, of whom 62% were men. The average age was 68.6 ± 12.5 years. The most common reason for hospitalization was acute myocardial infarction (34.9%), and the most common pathology was systolic blood pressure (63.9%), followed by diabetes mellitus (28.9%). According to subjective global assessment classifications, 62.7% of patients presented no nutritional risk, 20.5% were moderately malnourished and 16.9% were severely malnourished. Women had a higher nutritional risk, according to both the subjective global assessment and the adductor pollicis muscle thickness test, the cutoff for which was < 6.5mm (54.8%; p = 0.001). The pathology presenting the greatest nutritional risk was congestive heart failure (p = 0.001). Evaluation of the receiver operating characteristic (ROC) curve between adductor pollicis muscle thickness and subjective global assessment showed the accuracy of the former, with an area of 0.822. Conclusion Adductor pollicis muscle thickness proved to be a good method for evaluating nutritional risk. PMID:26761475

  4. Morphometric and Statistical Analysis of the Palmaris Longus Muscle in Human and Non-Human Primates

    PubMed Central

    Aversi-Ferreira, Roqueline A. G. M. F.; Bretas, Rafael Vieira; Maior, Rafael Souto; Davaasuren, Munkhzul; Paraguassú-Chaves, Carlos Alberto; Nishijo, Hisao; Aversi-Ferreira, Tales Alexandre

    2014-01-01

    The palmaris longus is considered a phylogenetic degenerate metacarpophalangeal joint flexor muscle in humans, a small vestigial forearm muscle; it is the most variable muscle in humans, showing variation in position, duplication, slips and could be reverted. It is frequently studied in papers about human anatomical variations in cadavers and in vivo, its variation has importance in medical clinic, surgery, radiological analysis, in studies about high-performance athletes, in genetics and anthropologic studies. Most studies about palmaris longus in humans are associated to frequency or case studies, but comparative anatomy in primates and comparative morphometry were not found in scientific literature. Comparative anatomy associated to morphometry of palmaris longus could explain the degeneration observed in this muscle in two of three of the great apes. Hypothetically, the comparison of the relative length of tendons and belly could indicate the pathway of the degeneration of this muscle, that is, the degeneration could be associated to increased tendon length and decreased belly from more primitive primates to those most derivate, that is, great apes to modern humans. In conclusion, in primates, the tendon of the palmaris longus increase from Lemuriformes to modern humans, that is, from arboreal to terrestrial primates and the muscle became weaker and tending to be missing. PMID:24860810

  5. Defining the Location of the Adductor Canal Using Ultrasound

    PubMed Central

    Wong, Wan Yi; Bjørn, Siska; Strid, Jennie Maria Christin; Børglum, Jens; Bendtsen, Thomas Fichtner

    2017-01-01

    Background and Objectives The precise location of the adductor canal remains controversial among anesthesiologists. In numerous studies of the analgesic effect of the so-called adductor canal block for total knee arthroplasty, the needle insertion point has been the midpoint of the thigh, determined as the midpoint between the anterior superior iliac spine and base of patella. “Adductor canal block” may be a misnomer for an approach that is actually an injection into the femoral triangle, a “femoral triangle block.” This block probably has a different analgesic effect compared with an injection into the adductor canal. We sought to determine the exact location of the adductor canal using ultrasound and relate it to the midpoint of the thigh. Methods Twenty-two volunteers were examined using ultrasound. The proximal end of the adductor canal was identified where the medial border of the sartorius muscle intersects the medial border of the adductor longus muscle. The distal end of the adductor canal is the adductor hiatus, which was also visualized ultrasonographically. Results The mean distance from the anterior superior iliac spine to the midpoint of the thigh was 22.9 cm (range, 20.3–24.9 cm). The mean distance from the anterior superior iliac spine to the proximal end of the adductor canal was 27.4 cm (range, 24.0–31.4 cm). Consequently, the mean distance from the midpoint of the thigh to the proximal end of the adductor canal was 4.6 cm (range, 2.3–7.0 cm). Conclusions In all volunteers, the midpoint of the thigh was proximal to the beginning of the adductor canal, suggesting that an injection performed at this level is in fact a femoral triangle block. PMID:28002228

  6. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    PubMed

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P < 0.01) twitch and tetanus contraction times compared with BEH+/+ mice, but only EDL displayed lower (P < 0.05) specific force. SOL and EDL of age-matched but not younger BEH mice showed greater exercise-induced CK efflux compared with BEH+/+ mice. In summary, myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  7. Acute iliopsoas and adductor brevis abscesses presenting with proximal leg muscle weakness.

    PubMed

    Devetag Chalaupka, F

    2006-06-01

    Pyomyositis is a bacterial infection of skeletal muscle. We describe the clinical case of a 77-year-old woman affected by gait disturbance, repetitive falls, low back pain and left thigh and groin pain, but without symptoms of systemic infection. Computed tomography and magnetic resonance imaging of the abdomen and pelvis showed abscesses in the left psoas and adductor brevis muscles. Investigations of urogenital tract and gastrointestinal system were normal. Systemic antibiotic treatment alone was not efficient, while surgical drainage improved the clinical picture. The aetiological organism, isolated from the abscess, was Staphylococcus aureus. We suggest that this patient had a primary pyomyositis rather than a secondary form. This is the first report of concomitant abscesses of psoas and adductor brevis muscles with early neurological involvement.

  8. Truncated dystrophins reduce muscle stiffness in the extensor digitorum longus muscle of mdx mice

    PubMed Central

    Hakim, Chady H.

    2013-01-01

    Muscle stiffness is a major clinical feature in Duchenne muscular dystrophy (DMD). DMD is the most common lethal inherited muscle-wasting disease in boys, and it is caused by the lack of the dystrophin protein. We recently showed that the extensor digitorum longus (EDL) muscle of mdx mice (a DMD mouse model) exhibits disease-associated muscle stiffness. Truncated micro- and mini-dystrophins are the leading candidates for DMD gene therapy. Unfortunately, it has never been clear whether these truncated genes can mitigate muscle stiffness. To address this question, we examined the passive properties of the EDL muscle in transgenic mdx mice that expressed a representative mini- or micro-gene (ΔH2-R15, ΔR2-15/ΔR18-23/ΔC, or ΔR4-23/ΔC). The passive properties were measured at the ages of 6 and 20 mo and compared with those of age-matched wild-type and mdx mice. Despite significant truncation of the gene, surprisingly, the elastic and viscous properties were completely restored to the wild-type level in every transgenic strain we examined. Our results demonstrated for the first time that truncated dystrophin genes may effectively treat muscle stiffness in DMD. PMID:23221959

  9. Catalase overexpression does not impair extensor digitorum longus muscle function in normal mice.

    PubMed

    Liu, Mingju; Yue, Yongping; Li, Dejia; Duan, Dongsheng

    2007-12-01

    Catalase is a major antioxidant enzyme. Increasing catalase expression represents a promising avenue to improve muscle function in certain physiological conditions and in some muscle diseases. We hypothesized that catalase overexpression should not impair normal muscle contraction. We delivered a hemagglutinin (HA)-tagged human catalase gene to normal mouse muscle by an adeno-associated viral vector (AAV). Western blot and immunostaining revealed efficient expression of HA-tagged catalase. Enzymatic assay demonstrated an approximately threefold increase in catalase activity in AAV-infected muscles. Catalase overexpression impaired neither twitch nor tetanic tension in the extensor digitorum longus (EDL) muscle. Furthermore, EDL fatigue response was not altered. Taken together, we have developed a novel AAV vector to enhance catalase expression. Lack of apparent toxicity in normal muscle strongly supports further exploration of this vector to reduce oxidative stress-induced muscle damage.

  10. Cortical silent period reveals differences between adductor spasmodic dysphonia and muscle tension dysphonia

    PubMed Central

    Samargia, Sharyl; Schmidt, Rebekah; Kimberley, Teresa Jacobson

    2015-01-01

    Background The pathophysiology of adductor spasmodic dysphonia (AdSD), like other focal dystonias, is largely unknown. Objective The purposes of this study were to determine 1) cortical excitability differences between AdSD, muscle tension dysphonia (MTD) and healthy controls 2) distribution of potential differences in cranial or skeletal muscle, and 3) if cortical excitability measures assist in the differential diagnosis of AdSD and MTD. Methods 10 participants with adductor spasmodic dysphonia, 8 with muscle tension dysphonia and 10 healthy controls received single and paired pulse transcranial magnetic stimulation (TMS) to the primary motor cortex contralateral to tested muscles, first dorsal interosseus (FDI) and masseter. We tested the hypothesis that cortical excitability measures in AdSD would be significantly different than in MTD and healthy. In addition, we hypothesized there would be a correlation between cortical excitability measures and clinical voice severity in AdSD. Results Cortical silent period (CSP) duration in masseter and FDI was significantly shorter in AdSD than MTD and healthy controls. Other measures failed to demonstrate differences. Conclusion There are differences in cortical excitability between AdSD, MTD and healthy controls. These differences in the cortical measure of both the FDI and masseter muscles in AdSD suggest widespread dysfunction of the GABAB mechanism may be a pathophysiologic feature of AdSD, similar to other forms of focal dystonia. Further exploration of the use of TMS to assist in the differential diagnosis of AdSD and MTD is warranted. PMID:26089309

  11. Palmaris longus muscle substituting for the ring finger slip of flexor digitorum superficialis.

    PubMed

    Cassell, M D; Bergman, R A

    1990-01-01

    An unusual and unrecorded variation in palmaris longus muscle is described. The muscle had a normal appearance and origin from the common tendon arising from the medial epicondyle of the humerus and from the surrounding intermuscular septa. The distal tendon however entered the hand via the carpal tunnel medial and deep to the median nerve, split and inserted into the lateral and medial sides of the middle phalanx of the ring finger. It therefore substituted completely for the slip to the ring finger from flexor digitorum superficials, which was absent.

  12. Magnetic resonance diagnosis of tarsal tunnel syndrome due to flexor digitorum accessorius longus and peroneocalcaneus internus muscles.

    PubMed

    Duran-Stanton, Amelia M; Bui-Mansfield, Liem T

    2010-01-01

    Anomalous muscles of the ankle are common. Although they are often asymptomatic, they can sometimes cause tarsal tunnel syndrome. We report a case of tarsal tunnel syndrome due to flexor digitorum accessorius longus and peroneocalcaneus internus muscles diagnosed on magnetic resonance imaging. Recognition of the most common accessory muscles of the ankle on magnetic resonance imaging and tarsal tunnel syndrome are also reviewed.

  13. Hypogravity-induced atrophy of rat soleus and extensor digitorum longus muscles

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ellis, S.; Slocum, G. R.; Satyanarayana, T.; Bain, J. L.; Sedlak, F. R.

    1987-01-01

    Prolonged exposure of humans to hypogravity causes weakening of their skeletal muscles. This problem was studied in rats exposed to hypogravity for 7 days aboard Spacelab 3. Hindlimb muscles were harvested 12-16 hours postflight for histochemical, biochemical, and ultrastructural analyses. The majority of the soleus and extensor digitorum longus fibers exhibited simple cell shrinkage. However, approximately 1% of the fibers in flight soleus muscles appeared necrotic. Flight muscle fibers showed increased glycogen, lower subsarcolemmal staining for mitochondrial enzymes, and fewer subsarcolemmal mitochondria. During atrophy, myofibrils were eroded by multiple focal losses of myofilaments; lysosomal autophagy was not evident. Tripeptidylaminopeptidase and calcium-activated protease activities of flight soleus fibers were significantly increased, implying a role in myofibril breakdown. Simple fiber atrophy appears to account for muscle weakening during spaceflight, but fiber necrosis is also a contributing factor.

  14. Force depression following muscle shortening in sub-maximal voluntary contractions of human adductor pollicis.

    PubMed

    Rousanoglou, Elissavet N; Oskouei, Ali E; Herzog, Walter

    2007-01-01

    Mechanical properties of skeletal muscles are often studied for controlled, electrically induced, maximal, or supra-maximal contractions. However, many mechanical properties, such as the force-length relationship and force enhancement following active muscle stretching, are quite different for maximal and sub-maximal, or electrically induced and voluntary contractions. Force depression, the loss of force observed following active muscle shortening, has been observed and is well documented for electrically induced and maximal voluntary contractions. Since sub-maximal voluntary contractions are arguably the most important for everyday movement analysis and for biomechanical models of skeletal muscle function, it is important to study force depression properties under these conditions. Therefore, the purpose of this study was to examine force depression following sub-maximal, voluntary contractions. Sets of isometric reference and isometric-shortening-isometric test contractions at 30% of maximal voluntary effort were performed with the adductor pollicis muscle. All reference and test contractions were executed by controlling force or activation using a feedback system. Test contractions included adductor pollicis shortening over 10 degrees, 20 degrees, and 30 degrees of thumb adduction. Force depression was assessed by comparing the steady-state isometric forces (activation control) or average electromyograms (EMGs) (force control) following active muscle shortening with those obtained in the corresponding isometric reference contractions. Force was decreased by 20% and average EMG was increased by 18% in the shortening test contractions compared to the isometric reference contractions. Furthermore, force depression was increased with increasing shortening amplitudes, and the relative magnitudes of force depression were similar to those found in electrically stimulated and maximal contractions. We conclude from these results that force depression occurs in sub

  15. Imaging of adductor-related groin pain.

    PubMed

    Pesquer, L; Reboul, G; Silvestre, A; Poussange, N; Meyer, P; Dallaudière, B

    2015-09-01

    Groin pain is a common condition in athletes and results from various causes. Osteitis pubis, adductor dysfunction, inguinal hernia, or a combination of all three entities, generally explains the onset of symptoms. Adductor longus tendinopathy is the main cause of adductor-related groin pain. It leads to a significant reduction of sports participation and can require surgical management. Diagnosis is based on ultrasonography and magnetic resonance imaging. Asymptomatic findings (tendinosis, calcifications, cortical erosions) are common in athletes and care should be taken when assessing groin pain. The most specific sign of tendinopathy is an intratendinous tear of the adductor longus.

  16. Incidence and morphology of accessory heads of flexor pollicis longus and flexor digitorum profundus (Gantzer's muscles)

    PubMed Central

    JONES, M.; ABRAHAMS, P. H.; SAÑUDO, J. R.; CAMPILLO, M.

    1997-01-01

    In 1813 Gantzer described 2 accessory muscles in the human forearm which bear his name (Wood, 1868; Macalister, 1875; Testut, 1884; Le Double, 1897). The more frequent of the 2 accessory muscles or ‘accessorius ad pollicem’ was found to arise from the coronoid process of the ulna, coursing distally to attach into the flexor pollicis longus muscle (flexor pollicis longus accessory head, FPLah). The less frequently observed or ‘accessorius ad flexorem profundum digitorum’ was again found to arise from the coronoid process and course to join into the flexor digitorum profundus (flexor digitorum profundus accessory head, FDPah). Since their initial description, they have been examined in further detail by a number of authors (Wood, 1868; Macalister, 1875; Le Double, 1897; Dykes & Anson, 1944; Mangini, 1960; Malhotra et al. 1982; Dellon & McKinnon, 1987; Kida, 1988). These studies, most of them focusing on the FPLah, all show different results of prevalence, origin, insertion, relations and nerve supply. We undertook this study with the aim of providing a more accurate account of the detailed morphology of both accessory muscles because of the above-mentioned inconsistent anatomical descriptions and the lack of information as to important aspects such as vascular supply, morphology (shape and length) and the coexistence of both accessory heads. PMID:9419002

  17. Absolute reliability of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer.

    PubMed

    Hirano, Masahiro; Katoh, Munenori

    2015-07-01

    [Purpose] The aim of this study was to verify the absolute reliability of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer (HHD). [Subjects and Methods] The subjects were 33 healthy college students. The measurements were made three times with the HHD fixed using a belt (BFHHD) or with the examiner's hand (conventional method; HFHHD). The absolute reliability of measurements was verified using Bland-Altman analysis, both in the all subjects group and a group of subjects showing measurements less than a fixed limit of 30 kgf. [Results] In the <30 kgf group, a systematic bias was not observed, and BFHHD values were greater than HFHHD values. BFHHD values in the all subjects group showed a systematic bias; the 3rd measurement value was less than the maximum value obtained during the 1st and 2nd measurements. [Conclusion] For obtaining an acceptable value during clinical measurements of horizontal adductor muscle strength, single measurements obtained using an HFHHD in the case of a <30 kgf group and the maximum value of two measurements obtained using a BFHHD are reliable.

  18. Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L. W.; Ellis, Stanley

    1988-01-01

    The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.

  19. Detection of localized methylmercury contamination by use of the mussel adductor muscle in Minamata Bay and Kagoshima Bay, Japan.

    PubMed

    Haraguchi, K; Ando, T; Sato, M; Kawaguchi, C; Tomiyasu, T; Horvat, M; Akagi, H

    2000-10-16

    Based on our previous finding that the concentrations of total mercury in mussel adductor muscle approximated those of methylmercury, we compared concentrations of total mercury in the adductor muscle of the mussel Mytilus galloprovincialis, collected from four sites around Minamata City from 1993 to 1995 and four sites in Kagoshima Bay from 1997 to 1998, to assess the level of localized methylmercury contamination. Though the input of mercury from the chemical plant had stopped by around 1970, concentrations of total mercury in the mussel adductor muscle were higher at two sites (26-121 ng/g, n = 135) near the main fallout of wastewater from the chemical plant in Minamata Bay than at the other sites, i.e. two sites 1-5 km from the former sites in Minamata City (6-28 ng/g, n = 52), and all sites in Kagoshima Bay (2-30 ng/g, n = 287). The localized methylmercury contamination around the chemical plant in Minamata Bay was documented also by our sensitive analysis of mercury concentrations in seawater and sediment samples. The survey of concentrations of total mercury in the mussel adductor muscle seems to be useful for monitoring the methylmercury contamination in coastal areas.

  20. Contractile properties of the striated adductor muscle in the bay scallop Argopecten irradians at several temperatures.

    PubMed

    Olson, J M; Marsh, R L

    1993-03-01

    The isometric and isotonic contractile properties of the cross-striated adductor muscle of the bay scallop (Argopecten irradians) were measured in vitro at 10, 15 and 20 degrees C. The length at which twitch force was maximal as a function of the closed length in situ (L0/Lcl) averaged 1.38 +/- 0.01 (mean +/- S.E.M.) at 10 degrees C. This length is very close to the typical length at maximum gape during natural swimming at this temperature. Passive force was very low over the range of lengths measured here; at L0, passive force averaged approximately 0.08 N cm-2, or only 0.5% of the corresponding peak twitch force. The mean peak isometric twitch force (Ptw,max) at 10 degrees C was 21.43 +/- 0.68 N cm-2 (S.E.M.), and the ratio of peak twitch force to tetanic force (Ptw,max/P0) averaged 0.89 +/- 0.01. Temperature did not affect either twitch force (Ptw), once fatigue was taken into account, or Ptw,max/P0. In contrast, the time-related properties of twitch contractions (latent period, tL; time to peak tension, tPtw; and time from peak tension to half-relaxation, t50%R) were positively modified by temperature at all temperatures measured (Q10 > 1.8). All three properties were more temperature-sensitive over the range 10-15 degrees C than over the range 15-20 degrees C. The force-velocity relationships of the striated adductor muscle were fitted to the hyperbolic-linear (HYP-LIN) equation. The force-velocity curves of the striated adductor muscle of the scallop were strongly influenced by temperature. Maximal velocity at zero force (Vmax), and therefore maximal power output, increased significantly with temperature. The Q10 over the temperature range 10-15 degrees C (1.42) was significantly lower than that over the range 15-20 degrees C (2.41). The shape of the force-velocity relationship, assessed through comparisons of the power ratio (Wmax/VmaxP0), was not influenced by temperature.

  1. A Case of Reverse Palmaris Longus Muscle- An Additional Muscle in the Anterior Compartment of the Forearm

    PubMed Central

    Bhat, Ashwini Lagadamane Sathynarayana; Gadahad, Mohandas Rao Kappettu

    2016-01-01

    It is uncommon to have additional muscles in the upper limb. Some of them may restrict the movements or compress the nerves and vessels, while others may go unnoticed. During the routine dissection for undergraduate medical students, we observed an additional muscle in the anterior compartment of the forearm in about 60-year-old male cadaver. The muscle had a prominent belly and a long tendon. Distally, it was attached to the flexor retinaculum by a short and thick tendon. Proximally, long tendon of the muscle passed between the flexor carpi ulnaris and palmaris longus and was attached to the common aponeurosis shared by the extensor carpi ulnaris and flexor digitorum profundus muscles. The additional muscle belly was supplied by a branch from the anterior interosseous nerve. The ulnar nerve and artery was passing deep to the fleshy belly of the muscle. The muscle reported here might compress the ulnar nerve and artery and may produce neurovascular symptoms. On the other hand, the tendon and fleshy belly of the muscle could be useful in muscle/tendon grafts. The observations made by us in the present case will supplement our knowledge of variations of the muscles in this region which could be useful for surgeons during the forearm and hand surgeries. PMID:27134851

  2. Anomalous bilateral contribution of extensor pollicis longus and muscle fusion of the first compartment of the wrist.

    PubMed

    Rosa, Rodrigo César; de Oliveira, Kennedy Martinez; Léo, Jorge Alfredo; Elias, Bruno Adriano Borges; Dos Santos, Paulo Ricardo; de Santiago, Hildemberg Agostinho Rocha

    2016-01-01

    Knowledge of the anatomical variations of the muscles of the first dorsal compartments of the wrist is clinically relevant to De Quervain's tenosynovitis and to reconstructive surgeries. In the literature, there are many reports of the presence of multiple insertion tendons in the first dorsal compartment of the wrist, but few reports describe occurrences of fusion and muscle contributions. This case report describes an anomalous bilateral contribution of the extensor pollicis longus. This anomalous contribution was found through a slender auxiliary tendon that crossed laterally under the extensor retinaculum, entered the first dorsal compartment of the wrist and merged with the tendon of the extensor pollicis brevis muscle. In the same cadaver in which this contribution was present, there was atypical muscle fusion of the abductor pollicis longus muscle and extensor pollicis brevis muscle. In conclusion, anomalous bilateral contribution of the extensor pollicis longus muscle and atypical muscle fusion, concomitant with a variant insertion pattern, are the highlight of this case report. Furthermore, it is concluded that additional tendons may be effectively used in reconstructive surgeries, but that there is a need for knowledge of the possible numerical and positional variations of these tendons, with a view to making more effective surgical plans.

  3. Anomalous bilateral contribution of extensor pollicis longus and muscle fusion of the first compartment of the wrist

    PubMed Central

    Rosa, Rodrigo César; de Oliveira, Kennedy Martinez; Léo, Jorge Alfredo; Elias, Bruno Adriano Borges; dos Santos, Paulo Ricardo; de Santiago, Hildemberg Agostinho Rocha

    2016-01-01

    Knowledge of the anatomical variations of the muscles of the first dorsal compartments of the wrist is clinically relevant to De Quervain's tenosynovitis and to reconstructive surgeries. In the literature, there are many reports of the presence of multiple insertion tendons in the first dorsal compartment of the wrist, but few reports describe occurrences of fusion and muscle contributions. This case report describes an anomalous bilateral contribution of the extensor pollicis longus. This anomalous contribution was found through a slender auxiliary tendon that crossed laterally under the extensor retinaculum, entered the first dorsal compartment of the wrist and merged with the tendon of the extensor pollicis brevis muscle. In the same cadaver in which this contribution was present, there was atypical muscle fusion of the abductor pollicis longus muscle and extensor pollicis brevis muscle. In conclusion, anomalous bilateral contribution of the extensor pollicis longus muscle and atypical muscle fusion, concomitant with a variant insertion pattern, are the highlight of this case report. Furthermore, it is concluded that additional tendons may be effectively used in reconstructive surgeries, but that there is a need for knowledge of the possible numerical and positional variations of these tendons, with a view to making more effective surgical plans. PMID:27069895

  4. Effects of methylmercury on the motor and sensory innervation of the rat extensor digitorum longus muscle

    SciTech Connect

    Yip, R.K.; Riley, D.A.

    1987-06-01

    The histochemical study examined the effects of chronic methylmercury (MeHg) intoxication on the motor and sensory innervation of extensor digitorum longus muscles. Light microscopic examination of silver-stained axons in the intramuscular nerve bundles of MeHg-treated rats showed Wallerian-like degeneration and a reduction in the number of nerve fibers. Disrupted axons were predominantly sensory because 22.2% of spindle afferents (I/sub a/) and 90.0% of Golgi tendon organ (I/sub b/) sensory fibers were completely degenerated whereas less than 1% of motor ending were totally destroyed. Partial disruption occurred in the cholinesterase and motor terminals of 13.7% of endplates. Their results demonstrated greater vulnerability of sensory nerves than of motor nerves to MeHg-induced degeneration. Thus, the abnormal reflexes, ataxia, and muscle weakness following MeHg poisoning appear related to reduction of proprioceptive feedback from muscles and tendons irradiation to the documented lesions in the central nervous system.

  5. Cross-reinnervated motor units in cat muscle. I. Flexor digitorum longus muscle units reinnervated by soleus motoneurons.

    PubMed

    Dum, R P; O'Donovan, M J; Toop, J; Burke, R E

    1985-10-01

    The properties of flexor digitorum longus (FDL) muscles and of individual motor units were studied in cats 30-50 wk after self-reinnervation by FDL motoneurons (FDL----FDL) or cross-reinnervation by soleus (SOL) motoneurons (SOL----FDL). Individual motor units were functionally isolated by intracellular recording and stimulation of identified SOL alpha-motoneurons. Glycogen-depletion methods permitted histochemical study of muscle fibers belonging to physiologically characterized muscle units. The observations were compared with data from normal cat FDL muscles and motor units (27). Intentionally self-reinnervated FDL muscles (FDL----FDL; n = 5) were normal in size and wet weight. FDL----FDL motor units could be classified into the same physiological categories found in normal FDL [types: fast contracting, fatigable (FF), fast contracting, fatigue resistant (FR), and slow (S); n = 24], with approximately the same proportions as normal. The histochemical muscle fiber types associated with these categories were also qualitatively normal although there was evidence of marked distortion of the normal histochemical mosaic. These data confirm other studies of self-reinnervation and suggest that self-reinnervation can produce complete interconversion of muscle fiber types. Cross-reinnervation of FDL muscle by SOL motoneurons (SOL----FDL; n = 12) produced muscles that were smaller (about half the normal wet weight) and more red than normal. SOL----FDL muscle contracted more slowly than normal or FDL----FDL muscles and had much higher proportions of histochemical type I muscle fibers. In those SOL----FDL muscles, in which little or no unwanted self-reinnervation could be demonstrated, greater than 95% of the muscle fibers were type I. Forty-one individual motor units in SOL----FDL muscles were isolated by intracellular penetration in functionally identified SOL alpha-motoneurons. Their muscle units were all type S by physiological criteria (absence of "sag" in unfused

  6. Phonatory air flow characteristics of adductor spasmodic dysphonia and muscle tension dysphonia.

    PubMed

    Higgins, M B; Chait, D H; Schulte, L

    1999-02-01

    The purpose of this study was to determine if phonatory air flow characteristics differed among women with adductor spasmodic dysphonia (AdSD), muscle tension dysphonia (MTD), and normal phonation. Phonatory air flow signals were gathered during [pa] syllable repetitions. Mean phonatory air flow, coefficients of variation, and the presence of large air flow perturbations (75 ml/s or more) were examined for the three groups of speakers. There was no significant difference in mean phonatory air flow across groups, and very large intersubject variation in mean phonatory air flow occurred for both the AdSD and MTD groups. Coefficients of variation were similar for the groups of women with MTD and normal phonation but were significantly larger for the group with AdSD. Air flow perturbations were common with AdSD and rare with MTD. Relatively large coefficients of variation and air flow perturbations of at least 75 ml/s did occur for some women with normal voices who were 70 years of age or older. It appears that intrasubject variability in phonatory air flow may aid in the differentiation of AdSD and MTD when used in conjunction with other elements of a thorough voice evaluation. However, the potential contribution of aging to increased intrasubject variability in phonatory air flow must be considered when interpreting findings.

  7. The palmaris longus muscle and its relations with the antebrachial fascia and the palmar aponeurosis.

    PubMed

    Stecco, Carla; Lancerotto, Luca; Porzionato, Andrea; Macchi, Veronica; Tiengo, Cesare; Parenti, Anna; Sanudo, Jose Ramon; De Caro, Raffaele

    2009-03-01

    The palmaris longus (PL) is a muscle of the forearm with a long distal tendon that is continuous with the palmar aponeurosis (PA). It is generally assumed that the muscle lies deep to the antebrachial fascia from origin to termination, but a detailed description is lacking. The relationship of the PL tendon with the antebrachial fascia was studied in 30 dissections. The PL was completely absent in six specimens (20%), whereas the PA was identified in all. Average length of the forearm was 25.5 cm (SD: 2.1 cm, range 22-29 cm), overall length of the PL muscle 26.9 cm (SD: 2.6 cm, range 22.5-31.5 cm), muscular belly 13.8 cm (SD: 3.4 cm, range 9.5-23 cm), tendon 13.1 cm (SD: 3.3 cm, range 8-15.5 cm). Proximally, the PL was situated deep to the antebrachial fascia, then in the lower third of the forearm its tendon perforated the antebrachial fascia (at 4.7 +/- 1.7 cm from the bistyloid line) moving to a suprafascial plane, inserting in the PA. The PA could be divided into two layers: the superficial one formed by longitudinal fibers and adherent to the skin, the deep one formed by transverse fibers continuous laterally with the deep fascia of the hand. The PL tendon was found to be in continuity only with the longitudinal fibers of the PA. Based on the anatomical findings, it may be suggested that the superficial part of the PA is situated in the subcutaneous planes of the palm, and that the muscle should be considered as a tensor of the superficial fascial system of the subcutaneous tissue.

  8. Cross-reinnervated motor units in cat muscle. II. Soleus muscle reinnervated by flexor digitorum longus motoneurons.

    PubMed

    Dum, R P; O'Donovan, M J; Toop, J; Tsairis, P; Pinter, M J; Burke, R E

    1985-10-01

    The properties of whole soleus (SOL) muscles and of individual motor units were studied in cats 30-50 wk after self-reinnervation by soleus (SOL) motoneurons (SOL----SOL) or cross-reinnervation by flexor digitorum longus (FDL) motoneurons (FDL----SOL). As in the preceding paper (22), intracellular and glycogen-depletion methods were used to examine the physiological and histochemical properties of individual motor units. The results were compared with data from normal SOL motor units (8, 12). Intentionally self-reinnervated SOL muscles (SOL----SOL; n = 6) were normal in size and wet weight, and all of the five SOL----SOL motor units studied had physiological and histochemical characteristics that matched those of normal SOL units. Cross-reinnervation of SOL by FDL alpha-motoneurons (FDL----SOL; n = 7) produced muscles with wet weights and appearance essentially identical to normal SOL. However, whole-muscle twitch contraction times were much shorter (mean 60.4 ms) than those of normal (mean 136.9 ms, n = 18) or SOL----SOL muscles (mean 115.3 ms; n = 6). Despite this difference, none of the FDL----SOL muscles contained more than 7% histochemical type II muscle fibers, all of which were type IIA. Normal cat SOL muscles can contain up to 5% type IIA fibers, but none of our SOL----SOL muscles showed any type II fibers. Two FDL----SOL muscles had significant amounts of unintended self-reinnervation, permitting side-by-side comparison of FDL----SOL and SOL----SOL muscle fibers. The twitch contraction times of the two populations differed markedly, but they were histochemically indistinguishable except for the fact that SOL----SOL fibers had high neutral fat content (as do normal SOL fibers), whereas FDL----SOL showed much lower fat content. The 23 FDL----SOL muscle units studied were classified as physiological type S by criteria ("sag" test and fatigue resistance) used to identify motor-unit types in normal cat muscles. All five of the FDL----SOL units studied

  9. Evidence of isometric function of the flexor hallucis longus muscle in normal gait.

    PubMed

    Kirane, Y M; Michelson, J D; Sharkey, N A

    2008-01-01

    Studying mechanics of the muscles spanning multiple joints provides insights into intersegmental dynamics and movement coordination. Multiarticular muscles are thought to function at "near-isometric" lengths to transfer mechanical energy between the adjacent body segments. Flexor hallucis longus (FHL) is a multiarticular flexor of the great toe; however, its potential isometric function has received little attention. We used a robotic loading apparatus to investigate FHL mechanics during simulated walking in cadaver feet, and hypothesized that physiological force transmission across the foot can occur with isometric FHL function. The extrinsic foot tendons, stripped of the muscle fibers, were connected to computer-controlled linear actuators. The FHL activity was controlled using force-feedback (FC) based upon electromyographic data from healthy subjects, and subsequently, isometric positional feedback (PC), maintaining the FHL myotendinous junction stationary during simulated walking. Tendon forces and excursions were recorded, as were the strains within the first metatarsal. Forces in the metatarsal and metatarsophalangeal joint were derived from these strains. The FHL tendon excursion under FC was 6.57+/-3.13mm. The forces generated in the FHL tendon, metatarsal and metatarsophalangeal joint with the FHL under isometric PC were not significantly different in pattern from FC. These observations provide evidence that physiological forces could be generated along the great toe with isometric FHL function. A length servo mechanism such as the stretch reflex could likely control the isometric FHL function during in vivo locomotion; this could have interesting implications regarding the conditions of impaired stretch reflex such as spastic paresis and peripheral neuropathies.

  10. Morphological and biochemical changes in soleus and extensor digitorum longus muscles of rats orbited in Spacelab 3

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Slocum, T.; Bain, J. L. W.; Sedlak, F. R.; Elis, S.; Satyanarayana, T.

    1985-01-01

    Muscle atrophy in rats exposed to hypogravity for seven days aboard Spacelab 3 is examined. Hindlimb muscles were harvested 12-16 days postflight, and prepared for enzyme studies and electron microscopy. Simple cell shrinkage was found, with a mean fiber area decrease of 35.8 percent for soleus and 24.9 percent for extensor digitorum longus (EDL) flight muscle fibers, as compared with control muscle fibers. EDL and soleus muscles showed increases in alkaline myofibrillar ATPase, alpha glycerophosphate dehydrogenase, and glycogen, and a decrease in NADH dehydrogenase staining. The 26 percent increase in calcium activated protease suggests that the focal degradation of myofibrils is the key process of myofibril breakdown. The presence in the flight soleus muscles of one percent necrotic fibers is unexplained. The observed shift towards histochemical fast-muscle type properties is consistent with previous findings.

  11. The contribution of the palmaris longus muscle to the strength of thumb abduction.

    PubMed

    Gangata, Hope; Ndou, Robert; Louw, Graham

    2010-05-01

    The palmaris longus muscle (PLM) is described as a weak flexor of the wrist and a tensor of the palmar aponeurosis, but not a thumb abductor. The PLM is believed to aid thumb abduction through its insertion onto the thenar eminence. Two groups, both right hand dominant, were selected from 1,200 sampled participants. The first group comprised of 38 subjects with unilateral presence of the PLM and was used to determine the strength of thumb abduction. The second group comprised of 30 subjects, with bilateral presence of the PLM, and it was used to calculate the effects of hand dominance. A significant number of subjects with bilateral absence of the PLM were observed and undocumented. Using a dynamometer in subjects with unilateral presence of the PLM, the force of thumb abduction was significantly greater on the hand with a PLM than the one without it (P = 0.014), irrespective of hand dominance. In the second sample with bilateral PLM, thumb abduction on the dominant hand was 10% stronger than on the nondominant hand and was similar to the universally accepted average of 10% increase in grip strength of the dominant hand. Thus, 10% was deducted from all the dominant hands, and the force of thumb abduction remained greater on the hand with PLM than the hand without it (P = 0.049). The results of this study demonstrated the PLM to be involved in thumb abduction, and the authors therefore recommend that this action of the muscle be universally accepted by anatomists and hand surgeons.

  12. Effect of hindlimb suspension and clenbuterol treatment on polyamine levels in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Abukhalaf, Imad K.; von Deutsch, Daniel A.; Wineski, Lawrence E.; Silvestrov, Natalia A.; Abera, Saare A.; Sahlu, Sinafikish W.; Potter, David E.; Thierry-Palmer, M. (Principal Investigator)

    2002-01-01

    Polyamines are unbiquitous, naturally occurring small aliphatic, polycationic, endogenous compounds. They are involved in many cellular processes and may serve as secondary or tertiary messengers to hormonal regulation. The relationship of polyamines and skeletal muscle mass of adductor longus, extensor digitorum longus, and gastrocnemius under unloading (hindlimb suspension) conditions was investigated. Unloading significantly affected skeletal muscle polyamine levels in a fiber-type-specific fashion. Under loading conditions, clenbuterol treatment increased all polyamine levels, whereas under unloading conditions, only the spermidine levels were consistently increased. Unloading attenuated the anabolic effects of clenbuterol in predominately slow-twitch muscles (adductor longus), but had little impact on clenbuterol's action as a countermeasure in fast- twitch muscles such as the extensor digitorum longus. Spermidine appeared to be the primary polyamine involved in skeletal muscle atrophy/hypertrophy. Copyright 2002 S. Karger AG, Basel.

  13. Cranial muscles of the anurans Leiopelma hochstetteri and Ascaphus truei and the homologies of the mandibular adductors in Lissamphibia and other gnathostomes.

    PubMed

    Johnston, Peter

    2011-12-01

    The frogs Ascaphus truei and Leiopelma hochstetteri are members of the most basal lineages of extant anurans. Their cranial muscles have not been previously described in full and are investigated here by dissection. Comparison of these taxa is used to review a controversy regarding the homologies of the jaw adductor muscles in Lissamphibia, to place these homologies in a wider gnathostome context, and to define features that may be useful for cladistic analysis of Anura. A new muscle is defined in Ascaphus and is designated m. levator anguli oris. The differences noted between Ascaphus and Leiopelma are in the penetration of the jaw adductor muscles by the mandibular nerve (V3). In the traditional view of this anatomy, the paths of the trigeminal nerve branches define homologous muscles. This scheme results in major differences among frogs, salamanders, and caecilians. The alternative view is that the topology of origins, insertions, and fiber directions are defining features, and the nerves penetrate the muscle mass in a variable way. The results given here support the latter view. A new model is proposed for Lissamphibia, whereby the adductor posterior (levator articularis) is a separate entity, and the rest of the adductor mass is configured around it as a folded sheet. This hypothesis is examined in other gnathostomes, including coelacanth and lungfish, and a possible sequence for the evolution of the jaw muscles is demonstrated. In this system, the main jaw adductor in teleost fish is not considered homologous with that of tetrapods. This hypothesis is consistent with available data on the domain of expression of the homeobox gene engrailed 2, which has previously not been considered indicative of homology. Terminology is discussed, and "adductor mandibulae" is preferred to "levator mandibulae" to align with usage in other gnathostomes.

  14. Intrarater reliabilities of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer for geriatric and stroke patients.

    PubMed

    Hirano, Masahiro; Katoh, Munenori; Kawaguchi, Saori; Uemura, Tomomi

    2016-01-01

    [Purpose] This study aimed to verify the appropriate number of measurements and the intrarater reliabilities of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer (HHD) for geriatric and stroke patients. [Subjects and Methods] The subjects were 40 inpatients, who were divided into two groups: 20 stroke patients in the stroke group (SG), and 20 geriatric patients in the no-stroke group (N-SG). Measurements were performed three times using an HHD with a belt. The reliability was verified using Bland-Altman analysis and the intraclass correlation coefficient (ICC). [Results] ICC (1, 1) was >0.9. A systematic bias was not observed between the first and second measurement values except for the right side in N-SG. A systematic bias between the maximum value obtained during the first and second measurements and third measurement value was observed on the left side in N-SG, and on the non-paralyzed side in SG: the third measurement values were small in both cases. [Conclusion] Intrarater reliabilities were high for shoulder horizontal adductor strength measurements using an HHD with a belt for geriatric and stroke patients. Taking the systematic bias into consideration, these findings suggest that the required number of measurements is two.

  15. Anatomy and vascularization of the flexor hallucis longus muscle and its implication in free fibula flap transfer: an anatomical study.

    PubMed

    Sassu, Paolo; Acland, Robert D; Salgado, Christopher John; Mardini, Samir; Ozyurekoglu, Tuna

    2010-02-01

    Contracture as well as weakness of the flexor hallucis longus (FHL) are possible complications following free fibula flap harvest. Possible causes have been related to fibrotic change of the muscle either due to devascularization or compartment-like syndrome after a tight wound closure. This study elucidates the vascularization and nerve supply of the FHL muscle after fibula flap harvest in a fresh cadaver model.A fibula bone flap was harvested through a lateral approach in 20 fresh limbs. The popliteal artery was isolated and injected with a silicone compound, the muscle isolated, and its neurovascular supply visualized.The distal third and fourth portion of the FHL muscle was always found to be located in a more compressed and deeper compartment. The peroneal artery was entirely filled by the silicone compound in 17 fresh cadaver limbs with at least one branch supplying the distal fourth of the FHL. The posterior tibialis artery was filled in all limbs and an average of 2 branches was found to supply the muscle. In all dissections, the nerve supplying the FHL originated from the tibialis nerve with an average of three branches perforating the muscle.Following fibula harvest, the FHL muscle will maintain vascular supply through the distal portion of the peroneal artery and the posterior tibialis artery. Nerve injury to the FHL muscle is unlikely during flap harvest.

  16. Changes in antioxidant enzymes and lipid peroxidation in extensor digitorum longus muscles of streptozotocin-diabetic rats may contribute to muscle atrophy.

    PubMed

    Nonaka, Koji; Une, S; Tatsuta, N; Ito, K; Akiyama, J

    2014-12-01

    We investigated muscle atrophy, major antioxidant enzymes and lipid peroxidation in the extensor digitorum longus (EDL, predominantly fast fibers) and soleus (predominantly slow fibers) muscle of streptozotocin-diabetic rats. Female Wistar rats were divided into a control (n = 5) and streptozotocin-induced diabetic group (n = 5). Eight weeks after diabetes induction the EDL and soleus muscles were removed and catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase activity (SOD), and thiobarbituric acid reactive substances (TBARS) levels measured. The CAT activity increased in both the EDL and soleus muscles of the diabetic rats (p < 0.01), whereas the GPX and SOD activities were increased only in the EDL muscle (p < 0.01 and p < 0.05). The TBARS levels were only increased in the EDL muscle of the diabetic rats (p < 0.01). Both muscles showed significant atrophy but the EDL muscle elicited the greatest atrophy. In conclusion, it appears that adaptive responses to oxidative stress were adequate in the soleus muscle, but not in the EDL muscle, of diabetic rats. Thus fast twitch muscle fibers may be more susceptible to oxidative stress than slow twitch muscle fibers and this may contribute to muscle atrophy under diabetic conditions.

  17. Hip adductor activations during run-to-cut manoeuvres in compression shorts: implications for return to sport after groin injury.

    PubMed

    Chaudhari, Ajit M W; Jamison, Steven T; McNally, Michael P; Pan, Xueliang; Schmitt, Laura C

    2014-01-01

    Athletes at high risk of groin strains in sports such as hockey and soccer often choose to wear shorts with directional compression to aid in prevention of or recovery from hip adductor strains. Large, eccentric contractions are known to result in or exacerbate strain injuries, but it is unknown if these shorts have a beneficial effect on hip adductor muscle activity. In this study, surface electromyography (EMG) of the adductor longus and ground reaction force (GRF) data were obtained simultaneously on 29 healthy individuals without previous history of serious injury while performing unanticipated 45° run-to-cut manoeuvres in a laboratory setting wearing shorts with non-directional compression (control, HeatGear, Under Armour, USA) or shorts with directional compression (directional, CoreShort PRO, Under Armour, USA), in random order. Average adductor activity in the stance leg was significantly lower in the directional condition than in the control condition during all parts of stance phase (all P < 0.042). From this preliminary analysis, wearing directional compression shorts appears to be associated with reduced stance limb hip adductor activity. Athletes seeking to reduce demand on the hip adductors as they approach full return to activities may benefit from the use of directional compression shorts.

  18. Hip adductor activations during run-to-cut maneuvers in compression shorts: Implications for return to sport after groin injury

    PubMed Central

    CHAUDHARI, AJIT M. W.; JAMISON, STEVEN T.; MCNALLY, MICHAEL P.; PAN, XUELIANG; SCHMITT, LAURA C.

    2014-01-01

    Athletes at high risk of groin strains in sports such as hockey and soccer often choose to wear shorts with directional compression to aid in prevention or recovery from hip adductor strains. Large eccentric contractions are known to result in or exacerbate strain injuries, but it is unknown if these shorts have a beneficial effect on hip adductor muscle activity. In this study, surface electromyography of the adductor longus and ground reaction force (GRF) data were obtained simultaneously on 29 healthy individuals without previous history of serious injury while performing unanticipated 45° run-to-cut maneuvers in a laboratory setting wearing shorts with non-directional compression (control, HeatGear, Under Armour, USA) or shorts with directional compression (directional, CoreShort PRO, Under Armour, USA), in random order. Average adductor activity in the stance leg was significantly lower in the directional condition than in the control condition during all parts of stance phase (all p<0.042). From this preliminary analysis, wearing directional compression shorts appears to be associated with reduced stance limb hip adductor activity. Athletes seeking to reduce demand on the hip adductors as they approach full return to activities may benefit from the use of directional compression shorts. PMID:24669858

  19. A Rare Cause of Dysphagia to Remember: Calcific Tendinitis of the Longus Colli Muscle

    PubMed Central

    Colella, Dominic M.; Calderón Sandoval, Fiorela; Powers, David W.; Patel, Nimal; Sobrado, Javier

    2016-01-01

    Longus colli tendinitis (LCT) is an acute inflammatory condition with symptoms typically consisting of acute neck pain and stiffness with or without dysphagia. Once more severe etiologies for these symptoms are ruled out, this self-limiting condition usually resolves spontaneously with nonsteroidal anti-inflammatory drugs and corticosteroids. We present a case of LCT that presented as acute neck pain, dysphagia, and odynophagia that rapidly resolved once diagnosed and treated with anti-inflammatory agents. Though exceedingly rare, LCT must be considered in the differential diagnosis of acute neck pain, dysphagia, and odynophagia when more common etiologies do not correlate with the clinical presentation. PMID:28100997

  20. Comparative proteomic profiling of soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne muscular dystrophy

    PubMed Central

    CARBERRY, STEVEN; BRINKMEIER, HEINRICH; ZHANG, YAXIN; WINKLER, CLAUDIA K.; OHLENDIECK, KAY

    2013-01-01

    Duchenne muscular dystrophy is due to genetic abnormalities in the dystrophin gene and represents one of the most frequent genetic childhood diseases. In the X-linked muscular dystrophy (mdx) mouse model of dystrophinopathy, different subtypes of skeletal muscles are affected to a varying degree albeit the same single base substitution within exon 23 of the dystrophin gene. Thus, to determine potential muscle subtype-specific differences in secondary alterations due to a deficiency in dystrophin, in this study, we carried out a comparative histological and proteomic survey of mdx muscles. We intentionally included the skeletal muscles that are often used for studying the pathomechanism of muscular dystrophy. Histological examinations revealed a significantly higher degree of central nucleation in the soleus and extensor digitorum longus muscles compared with the flexor digitorum brevis and interosseus muscles. Muscular hypertrophy of 20–25% was likewise only observed in the soleus and extensor digitorum longus muscles from mdx mice, but not in the flexor digitorum brevis and interosseus muscles. For proteomic analysis, muscle protein extracts were separated by fluorescence two-dimensional (2D) gel electrophoresis. Proteins with a significant change in their expression were identified by mass spectrometry. Proteomic profiling established an altered abundance of 24, 17, 19 and 5 protein species in the dystrophin-deficient soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscle, respectively. The key proteomic findings were verified by immunoblot analysis. The identified proteins are involved in the contraction-relaxation cycle, metabolite transport, muscle metabolism and the cellular stress response. Thus, histological and proteomic profiling of muscle subtypes from mdx mice indicated that distinct skeletal muscles are differentially affected by the loss of the membrane cytoskeletal protein, dystrophin. Varying degrees of perturbed protein

  1. Comparative proteomic profiling of soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne muscular dystrophy.

    PubMed

    Carberry, Steven; Brinkmeier, Heinrich; Zhang, Yaxin; Winkler, Claudia K; Ohlendieck, Kay

    2013-09-01

    Duchenne muscular dystrophy is due to genetic abnormalities in the dystrophin gene and represents one of the most frequent genetic childhood diseases. In the X-linked muscular dystrophy (mdx) mouse model of dystrophinopathy, different subtypes of skeletal muscles are affected to a varying degree albeit the same single base substitution within exon 23 of the dystrophin gene. Thus, to determine potential muscle subtype-specific differences in secondary alterations due to a deficiency in dystrophin, in this study, we carried out a comparative histological and proteomic survey of mdx muscles. We intentionally included the skeletal muscles that are often used for studying the pathomechanism of muscular dystrophy. Histological examinations revealed a significantly higher degree of central nucleation in the soleus and extensor digitorum longus muscles compared with the flexor digitorum brevis and interosseus muscles. Muscular hypertrophy of 20-25% was likewise only observed in the soleus and extensor digitorum longus muscles from mdx mice, but not in the flexor digitorum brevis and interosseus muscles. For proteomic analysis, muscle protein extracts were separated by fluorescence two-dimensional (2D) gel electrophoresis. Proteins with a significant change in their expression were identified by mass spectrometry. Proteomic profiling established an altered abundance of 24, 17, 19 and 5 protein species in the dystrophin-deficient soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscle, respectively. The key proteomic findings were verified by immunoblot analysis. The identified proteins are involved in the contraction-relaxation cycle, metabolite transport, muscle metabolism and the cellular stress response. Thus, histological and proteomic profiling of muscle subtypes from mdx mice indicated that distinct skeletal muscles are differentially affected by the loss of the membrane cytoskeletal protein, dystrophin. Varying degrees of perturbed protein

  2. Common phenotype of resting mouse extensor digitorum longus and soleus muscles: equal ATPase and glycolytic flux during transient anoxia.

    PubMed

    Vinnakota, Kalyan C; Rusk, Joshua; Palmer, Lauren; Shankland, Eric; Kushmerick, Martin J

    2010-06-01

    Rates of ATPase and glycolysis are several times faster in actively contracting mouse extensor digitorum longus muscle (EDL) than soleus (SOL), but we find these rates are not distinguishable at rest. We used a transient anoxic perturbation of steady state energy balance to decrease phosphocreatine (PCr) reversibly and to measure the rates of ATPase and of lactate production without muscle activation or contraction. The rate of glycolytic ATP synthesis is less than the ATPase rate, accounting for the continual PCr decrease during anoxia in both muscles. We fitted a mathematical model validated with properties of enzymes and solutes measured in vitro and appropriate for the transient perturbation of these muscles to experimental data to test whether the model accounts for the results. Simulations showed equal rates of ATPase and lactate production in both muscles. ATPase controls glycolytic flux by feedback from its products. Adenylate kinase function is critical because a rise in [AMP] is necessary to activate glycogen phosphorylase. ATPase is the primary source of H+ production. The sum of contributions of the 13 reactions of the glycogenolytic and glycolytic network to total proton load is negligible. The stoichiometry of lactate and H+ production is near unity. These results identify a default state of energy metabolism for resting muscle in which there is no difference in the metabolic phenotype of EDL and SOL. Therefore, additional control mechanisms, involving higher ATPase flux and [Ca2+], must exist to explain the well-known difference in glycolytic rates in fast-twitch and slow-twitch muscles in actively contracting muscle.

  3. Potential use of fatty acid profiles of the adductor muscle of cockles (Cerastoderma edule) for traceability of collection site

    PubMed Central

    Ricardo, Fernando; Pimentel, Tânia; Moreira, Ana S. P.; Rey, Felisa; Coimbra, Manuel A.; Rosário Domingues, M.; Domingues, Pedro; Costa Leal, Miguel; Calado, Ricardo

    2015-01-01

    Geographic traceability of seafood is key for controlling its quality and safeguarding consumers’ interest. The present study assessed if the fatty acid (FA) profile of the adductor muscle (AM) of fresh cockles (Cerastoderma edule) can be used to discriminate the origin of specimens collected in different bivalve capture/production areas legally defined within a coastal lagoon. Results suggest that this biochemical approach holds the potential to trace sampling locations with a spatial resolution <10 Km, even for areas with identical classification for bivalve production. Cockles further away from the inlet, i.e. in areas exposed to a higher saline variation, exhibited lower levels of saturated fatty acids, which are key for stabilizing the bilayer structure of cell membranes, and a higher percentage of polyunsaturated fatty acids, which enhance bilayer fluidity. Results suggest that the structural nature of the lipids present in the AM provides a stable fatty acid signature and holds potential for tracing the origin of bivalves to their capture/production areas. PMID:26084395

  4. Potential use of fatty acid profiles of the adductor muscle of cockles (Cerastoderma edule) for traceability of collection site.

    PubMed

    Ricardo, Fernando; Pimentel, Tânia; Moreira, Ana S P; Rey, Felisa; Coimbra, Manuel A; Rosário Domingues, M; Domingues, Pedro; Costa Leal, Miguel; Calado, Ricardo

    2015-06-18

    Geographic traceability of seafood is key for controlling its quality and safeguarding consumers' interest. The present study assessed if the fatty acid (FA) profile of the adductor muscle (AM) of fresh cockles (Cerastoderma edule) can be used to discriminate the origin of specimens collected in different bivalve capture/production areas legally defined within a coastal lagoon. Results suggest that this biochemical approach holds the potential to trace sampling locations with a spatial resolution <10 Km, even for areas with identical classification for bivalve production. Cockles further away from the inlet, i.e. in areas exposed to a higher saline variation, exhibited lower levels of saturated fatty acids, which are key for stabilizing the bilayer structure of cell membranes, and a higher percentage of polyunsaturated fatty acids, which enhance bilayer fluidity. Results suggest that the structural nature of the lipids present in the AM provides a stable fatty acid signature and holds potential for tracing the origin of bivalves to their capture/production areas.

  5. Aggressive Lymphoma “Sarcoma Mimicker” Originating in the Gluteus and Adductor Muscles: A Case Report and Literature Review

    PubMed Central

    Elkourashy, Sarah A.; Nashwan, Abdulqadir J.; Alam, Syed I.; Ammar, Adham A.; El Sayed, Ahmed M.; Omri, Halima El; Yassin, Mohamed A.

    2016-01-01

    Extranodal lymphoma (ENL) occurs in approximately 30%–40% of all patients with non-Hodgkin lymphoma and has been described in almost all organs and tissues. However, diffuse large B-cell lymphoma is the most common histological subtype of non-Hodgkin lymphoma, primarily arising in the retroperitoneal region. In this article, we report a rare case of an adult male diagnosed with primary diffuse large B-cell lymphoma of the gluteal and adductor muscles with aggressive bone involvement. All appropriate radiological and histopathological studies were done for diagnosis and staging. After discussion with the lymphoma multidisciplinary team, it was agreed to start on R-CHOP protocol (rituximab, cyclophosphamide, doxorubicin (Adriamycin), vincristine (Oncovin®), and prednisone) as the standard of care, which was later changed to R-CODOX-M/R-IVAC protocol (rituximab, cyclophosphamide, vincristine (Oncovin®), doxorubicin, and high-dose methotrexate alternating with rituximab, ifosfamide, etoposide, and high-dose cytarabine) due to inadequate response. Due to the refractory aggressive nature of the disease, subsequent decision of the multidisciplinary team was salvage chemotherapy and autologous stem cell transplant. The aim of this case report was to describe and evaluate the clinical presentation and important radiological features of extranodal lymphoma affecting the musculoskeletal system. PMID:27398038

  6. What are the stimulation parameters that affect the extent of twitch force potentiation in the adductor pollicis muscle?

    PubMed

    Mettler, Joni A; Griffin, Lisa

    2010-12-01

    Muscle force potentiation affects force output during electrical stimulation. Few studies have examined stimulation train parameters that influence potentiation such as pulse number, stimulation frequency, train duration, and force-time integral and peak force produced during the train. Pulse-matched trains (100 pulses) at 7.5, 15, 25, 30, 50, and 100 Hz, and trains of varying pulse number (50, 100, and 200 pulses) at 30 and 50 Hz were delivered to the ulnar nerve of 10 (5 male, 5 female; 23.4 ± 0.9 years), healthy individuals in random order. Single twitches of the adductor pollicis muscle were elicited before and after each train with a rest interval of at least 5 min between each train. No differences in potentiation occurred across the pulse-matched trains at frequencies of 15-50 Hz (38.9 ± 5.4-44.6 ± 5.5%). Twitch force potentiation following the highest (100 Hz) and lowest (7.5 Hz) frequency trains were not significantly different and were lower than the other 100 pulse-matched trains. As pulse number increased, potentiation increased for both the 30 and 50-Hz trains. There was a significant positive correlation between force potentiation and force-time integral produced by the stimulation train, r = 0.70. The results indicate that potentiation magnitude is dependent on the force-time integral produced during the test train and the number of pulses delivered, independent of stimulation frequency.

  7. Effects of free oxygen radicals on Ca2+ release mechanisms in the sarcoplasmic reticulum of scallop (Pecten jacobaeus) adductor muscle.

    PubMed

    Burlando, B; Viarengo, A; Pertica, M; Ponzano, E; Orunesu, M

    1997-08-01

    In vitro oxyradical effects on SR Ca2+ regulation were studied by using a SR-containing cell-free preparation from scallop (Pecten jacobaeus) adductor muscle. Ca2+ variations were fluorimetrically detected after incubation with Fluo-3 in the presence of ATP. Exposure to Fe3+/ascorbate produced dose-dependent Ca2+ release from SR vesicles, eventually leading to massive Ca2+ loss. Exposure to hypoxanthine/xanthine oxidase also caused Ca2+ release but at a much slower rate. Pre-incubations with catalase or with the hydroxyl radical scavenger KMBA led to a significant decrease in the Fe3+/ascorbate-induced Ca2+ release rate and to a delay of massive Ca2+ loss. Pre-incubations with GSH or DTT strongly reduced the Ca2+ release caused by Fe3+/ascorbate and, moreover, they prevented massive Ca2+ loss from SR vesicles. Addition of GSH or DTT after Fe3+/ascorbate promptly reduced the Ca2+ release rate and delayed massive Ca2+ release. Pre-incubation with the SR Ca2+ channel blocker ruthenium red strongly reduced the Ca2+ release caused by Fe3+/ascorbate, and also prevented massive Ca2+ loss. In the presence of ruthenium red, Fe3+/ascorbate treatments followed by Ca2+ addition revealed that Ca2+ uptake inhibition was slower than Ca2+ release. Taken together, data showed that free radicals and, in particular, hydroxyl radicals, affected the scallop SR Ca2+ regulation. This mainly occurred through Ca2+ channel opening, most likely triggered by sulfhydryl oxidation, which eventually led to massive Ca2+ release from SR vesicles. The demonstration of a specific effect of oxyradicals on SR Ca2+ channels is in line with their possible involvement in cell signaling.

  8. NMR-based metabolomic investigations on the differential responses in adductor muscles from two pedigrees of Manila clam Ruditapes philippinarum to Cadmium and Zinc.

    PubMed

    Wu, Huifeng; Liu, Xiaoli; Zhao, Jianmin; Yu, Junbao

    2011-01-01

    Manila clam Ruditapes philippinarum is one of the most important economic species in shellfishery in China due to its wide geographic distribution and high tolerance to environmental changes (e.g., salinity, temperature). In addition, Manila clam is a good biomonitor/bioindicator in "Mussel Watch Programs" and marine environmental toxicology. However, there are several pedigrees of R. philippinarum distributed in the marine environment in China. No attention has been paid to the biological differences between various pedigrees of Manila clams, which may introduce undesirable biological variation in toxicology studies. In this study, we applied NMR-based metabolomics to detect the biological differences in two main pedigrees (White and Zebra) of R. philippinarum and their differential responses to heavy metal exposures (Cadmium and Zinc) using adductor muscle as a target tissue to define one sensitive pedigree of R. philippinarum as biomonitor for heavy metals. Our results indicated that there were significant metabolic differences in adductor muscle tissues between White and Zebra clams, including higher levels of alanine, glutamine, hypotaurine, phosphocholine and homarine in White clam muscles and higher levels of branched chain amino acids (valine, leucine and isoleucine), succinate and 4-aminobutyrate in Zebra clam muscles, respectively. Differential metabolic responses to heavy metals between White and Zebra clams were also found. Overall, we concluded that White pedigree of clam could be a preferable bioindicator/biomonitor in marine toxicology studies and for marine heavy metals based on the relatively high sensitivity to heavy metals.

  9. Effect of Electroacupuncture on the Expression of Glycyl-tRNA Synthetase and Ultrastructure Changes in Atrophied Rat Peroneus Longus Muscle Induced by Sciatic Nerve Injection Injury.

    PubMed

    Wang, Meng; Zhang, Xiao Ming; Yang, Sheng Bo

    2016-01-01

    Glycyl-tRNA synthetase (GlyRS) is one of the key enzymes involved in protein synthesis. Its mutations have been reported to cause Charcot-Marie-Tooth disease which demonstrates muscular atrophy in distal extremities, particularly manifested in peroneus muscles. In this situation, the dysfunctions of mitochondria and sarcoplasmic reticulum (SR) affect energy supply and excitation-contraction coupling of muscle fibers, therefore resulting in muscular atrophy. Although the treatment of muscular atrophy is a global urgent problem, it can be improved by electroacupuncture (EA) treatment. To investigate the mechanism underlying EA treatment improving muscular atrophy, we focused on the perspective of protein synthesis by establishing a penicillin injection-induced sciatic nerve injury model. In our model, injured rats without treatment showed decreased sciatic functional index (SFI), decreased peroneus longus muscle weight and muscle fiber cross-sectional area, aggregated mitochondria with vacuoles appearing, swollen SR, and downregulated mRNA and protein expression levels of GlyRS and myosin heavy chain IIb (MHC-IIb). The injured rats with EA treatment showed significant recovery. These results indicated that EA stimulation can alleviate peroneus longus muscular atrophy induced by iatrogenic sciatic nerve injury through promoting the recovery of GlyRS and muscle ultrastructure and increasing muscle protein synthesis.

  10. Treatment with Riluzole Restores Normal Control of Soleus and Extensor Digitorum Longus Muscles during Locomotion in Adult Rats after Sciatic Nerve Crush at Birth

    PubMed Central

    Cabaj, Anna M.; Sławińska, Urszula

    2017-01-01

    The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2–8 and 10–28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15–29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23–33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24–28 vs 8 and 23–26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement. PMID:28095499

  11. Arthroscopic pubic symphysis debridement and adductor enthesis repair in athletes with athletic pubalgia: technical note and video illustration.

    PubMed

    Hopp, Sascha; Tumin, Masjudin; Wilhelm, Peter; Pohlemann, Tim; Kelm, Jens

    2014-11-01

    We elaborately describe our novel arthroscopic technique of the symphysis pubis in athletes with osteitis pubis and concomitant adductor enthesopathy who fail to conservative treatment modalities. The symphysis pubis is debrided arthroscopically and the degenerated origin of adductor tendon (enthesis) is excised and reattached. With our surgical procedure the stability of the symphysis pubis is successfully preserved and the adductor longus enthesopathy simultaneously addressed in the same setting.

  12. [Spasm of the adductor muscles, pre-dislocation and dislocations of the hip joints in children and adolescents with cerebral palsy. Clinical observations on aetiology, pathogenesis, therapy and rehabilitation. Part I: The effect of open myotenotomy of the gracilis muscle and of the long and short adductor muscles in connection with total extrapelvine resection of the obturator nerve, on the hip joints and static function (author's transl)].

    PubMed

    Fettweis, E

    1979-02-01

    Spasm and contraction of the adductor muscles involve, on the one hand, danger in respect of the development of a dislocation of the hip, and are a serious impediment to a walking ability on the other. Hence, surgery is often necessary. The article reports on the results of consequent weakening of the adductor muscles as a result of open myotenotomy in association with complete extrapelvine resection of the obturator nerve. 27 patients were subjected to surgery--in most cases bilaterally--at an age between 2 years and 5 months and 18 years, with a follow-up period of up to 15 years. The study does not include patients with spastic dislocation of the hip in whom this method was applied on the non-dislocated side and on the dislocated side in combination with iliopsoas tenotomy. This method makes it possible to achieve regression of existing defective positions of the hip joints. In a few cases, the valgus position of the neck of the femur was corrected to some extent. In two patients it was not possible to prevent the progress of a developing dislocation of the hip. These results show that, whereas the adductor muscles represent an essential factor for the occurrence of a spastic dislocation of the hip, other forces are most probably also involved. In the majority of cases, results were favourable in respect of the static function, although in some cases the success became evident after several years only, especially in mentally retarded patients and in apathetic individuals. Important for therapeutic success is the follow-up. The principles of its therapy are thoroughly discussed. Surgery is indicated only in special cases. Indications must be observed very strictly, since the risk of excessive weakening of the adductor muscles should not be underestimated.

  13. 70 microM caffeine treatment enhances in vitro force and power output during cyclic activities in mouse extensor digitorum longus muscle.

    PubMed

    James, Rob S; Kohlsdorf, Tiana; Cox, Val M; Navas, Carlos A

    2005-09-01

    Caffeine ingestion by human athletes has been found to improve endurance performance primarily acting via the central nervous system as an adenosine receptor antagonist. However, a few studies have implied that the resultant micromolar levels of caffeine in blood plasma (70 microM maximum for humans) may directly affect skeletal muscle causing enhanced force production. In the present study, the effects of 70 microM caffeine on force and power output in isolated mouse extensor digitorum longus muscle were investigated in vitro at 35 degrees C. Muscle preparations were subjected to cyclical sinusoidal length changes with electrical stimulation conditions optimised to produce maximal work. 70 microM caffeine caused a small but significant increase (2-3%) in peak force and net work produced during work loops (where net work represents the work input required to lengthen the muscle subtracted from the work produced during shortening). However, these micromolar caffeine levels did not affect the overall pattern of fatigue or the pattern of recovery from fatigue. Our results suggest that the plasma concentrations found when caffeine is used to enhance athletic performance in human athletes might directly enhance force and power during brief but not prolonged activities. These findings potentially confirm previous in vivo studies, using humans, which implied caffeine ingestion may cause acute improvements in muscle force and power output but would not enhance endurance.

  14. Alteration of excitation-contraction coupling mechanism in extensor digitorum longus muscle fibres of dystrophic mdx mouse and potential efficacy of taurine

    PubMed Central

    De Luca, Annamaria; Pierno, Sabata; Liantonio, Antonella; Cetrone, Michela; Camerino, Claudia; Simonetti, Simonetta; Papadia, Francesco; Camerino, Diana Conte

    2001-01-01

    No clear data is available about functional alterations in the calcium-dependent excitation-contraction (e-c) coupling mechanism of dystrophin-deficient muscle of mdx mice. By means of the intracellular microelectrode ‘point' voltage clamp method, we measured the voltage threshold for contraction (mechanical threshold; MT) in intact extensor digitorum longus (EDL) muscle fibres of dystrophic mdx mouse of two different ages: 8–12 weeks, during the active regeneration of hind limb muscles, and 6–8 months, when regeneration is complete. The EDL muscle fibres of 8–12-week-old wildtype animals had a more negative rheobase voltage (potential of equilibrium for contraction- and relaxation-related calcium movements) with respect to control mice of 6–8 months. However, at both ages, the EDL muscle fibres of mdx mice contracted at more negative potentials with respect to age-matched controls and had markedly slower time constants to reach the rheobase. The in vitro application of 60 mM taurine, whose normally high intracellular muscle levels play a role in e-c coupling, was without effect on 6–8-month-old wildtype EDL muscle, while it significantly ameliorated the MT of mdx mouse. HPLC determination of taurine content at 6–8 months showed a significant 140% rise of plasma taurine levels and a clear trend toward a decrease in amino acid levels in hind limb muscles, brain and heart, suggesting a tissue difficulty in retaining appropriate levels of the amino acid. The data is consistent with a permanent alteration of e-c coupling in mdx EDL muscle fibres. The alteration could be related to the proposed increase in intracellular calcium, and can be ameliorated by taurine, suggesting a potential therapeutic role of the amino acid. PMID:11226135

  15. Alteration of excitation-contraction coupling mechanism in extensor digitorum longus muscle fibres of dystrophic mdx mouse and potential efficacy of taurine.

    PubMed

    De Luca, A; Pierno, S; Liantonio, A; Cetrone, M; Camerino, C; Simonetti, S; Papadia, F; Camerino, D C

    2001-03-01

    No clear data is available about functional alterations in the calcium-dependent excitation-contraction (e-c) coupling mechanism of dystrophin-deficient muscle of mdx mice. By means of the intracellular microelectrode "point" voltage clamp method, we measured the voltage threshold for contraction (mechanical threshold; MT) in intact extensor digitorum longus (EDL) muscle fibres of dystrophic mdx mouse of two different ages: 8 - 12 weeks, during the active regeneration of hind limb muscles, and 6 - 8 months, when regeneration is complete. The EDL muscle fibres of 8 - 12-week-old wildtype animals had a more negative rheobase voltage (potential of equilibrium for contraction- and relaxation-related calcium movements) with respect to control mice of 6 - 8 months. However, at both ages, the EDL muscle fibres of mdx mice contracted at more negative potentials with respect to age-matched controls and had markedly slower time constants to reach the rheobase. The in vitro application of 60 mM taurine, whose normally high intracellular muscle levels play a role in e-c coupling, was without effect on 6 - 8-month-old wildtype EDL muscle, while it significantly ameliorated the MT of mdx mouse. HPLC determination of taurine content at 6 - 8 months showed a significant 140% rise of plasma taurine levels and a clear trend toward a decrease in amino acid levels in hind limb muscles, brain and heart, suggesting a tissue difficulty in retaining appropriate levels of the amino acid. The data is consistent with a permanent alteration of e-c coupling in mdx EDL muscle fibres. The alteration could be related to the proposed increase in intracellular calcium, and can be ameliorated by taurine, suggesting a potential therapeutic role of the amino acid.

  16. A simulation analysis of the combined effects of muscle strength and surgical tensioning on lateral pinch force following brachioradialis to flexor pollicis longus transfer.

    PubMed

    Mogk, Jeremy P M; Johanson, M Elise; Hentz, Vincent R; Saul, Katherine R; Murray, Wendy M

    2011-02-24

    Biomechanical simulations of tendon transfers performed following tetraplegia suggest that surgical tensioning influences clinical outcomes. However, previous studies have focused on the biomechanical properties of only the transferred muscle. We developed simulations of the tetraplegic upper limb following transfer of the brachioradialis (BR) to the flexor pollicis longus (FPL) to examine the influence of residual upper limb strength on predictions of post-operative transferred muscle function. Our simulations included the transfer, ECRB, ECRL, the three heads of the triceps, brachialis, and both heads of the biceps. Simulations were integrated with experimental data, including EMG and joint posture data collected from five individuals with tetraplegia and BR-FPL tendon transfers during maximal lateral pinch force exertions. Given a measured co-activation pattern for the non-paralyzed muscles in the tetraplegic upper limb, we computed the highest activation for the transferred BR for which neither the elbow nor the wrist flexor moment was larger than the respective joint extensor moment. In this context, the effects of surgical tensioning were evaluated by comparing the resulting pinch force produced at different muscle strength levels, including patient-specific scaling. Our simulations suggest that extensor muscle weakness in the tetraplegic limb limits the potential to augment total pinch force through surgical tensioning. Incorporating patient-specific muscle volume, EMG activity, joint posture, and strength measurements generated simulation results that were comparable to experimental results. Our study suggests that scaling models to the population of interest facilitates accurate simulation of post-operative outcomes, and carries utility for guiding and developing rehabilitation training protocols.

  17. Ischemia Increases the Twitch Latent Period in the Soleus and Extensor Carpi Radialis Longus Muscles from Adult Rats.

    PubMed

    Morales, Camilo; Fierro, Leonardo

    2016-10-27

    Complete ischemia and reperfusion effects on twitch force (∫(F·t)), twitch latent period (TLP), maximal rate of rise of twitch tension (δF/δt)max, and twitch maximum relaxation rate (TMRR) were assessed. We divided 36 adult rats into four groups; two control groups (n = 9), a group undergoing 1 hour of ischemia followed by 1 hour of reperfusion (n = 9), and one group exposed to 2 hours of ischemia followed by 1 hour of reperfusion (n = 9). We have induced twitch contractions every 10 minutes in the soleus and the extensor carpi radialis longus (ECRL). Twitch contractions were recorded and then analyzed for ∫(F·t), TLP, (δF/δt)max, and TMRR. During 1 hour and 40 minutes of ischemia, TLP increased to 179 ± 24% (p < 0.05) in the soleus and to 184 ± 16% (p < 0.05) in the ECRL, an effect that was partially recovered during 1 hour of reperfusion. This increase started after 20 minutes of ischemia in the soleus and after 40 minutes of ischemia in the ECRL. The increase was faster in the ECRL and peaked at the same time for both muscular groups. ∫(F·t) and (δF/δt)max decreased during 1 hour of ischemia to 46 ± 7% (p < 0.05) in the soleus and to 40 ± 7% (p < 0.05) in the ECRL. TMRR decreased during 1 hour of ischemia to 39 ± 5% (p < 0.05) in the soleus and to 54 ± 8% (p < 0.05) in the ECRL. During 1 hour of reperfusion all of them recovered close to control values.

  18. The clinical surface anatomy anomalies of the palmaris longus muscle in the Black African population of Zimbabwe and a proposed new testing technique.

    PubMed

    Gangata, Hope

    2009-03-01

    The presence of the palmaris longus muscle (PLM) is highly variable. Rates of absence vary from 0.6% in the Korean population to as high as 63.9% in the Turkish population. The tendon of PLM may be absent on one or both forearms, may have duplicated tendons on one forearm or may be laterally shifted to the extent that the tendon of the PLM lies superficial to that of flexor carpi radialis muscle. Among Black American populations, in which there is usually mixed ancestry, rates of absence are 3.5%. Only two studies have been performed on Black African populations: in Republic of Congo and Uganda, and each showed widely differing rates of absence of 3.0% and 14.6%, respectively. In this study, a total of 890 Black Zimbabwean subjects in Harare aged between 8 and 13 years, were examined for clinical surface anatomy anomalies of the tendon of PLM. The results showed that the tendon of the PLM was absent unilaterally in 0.9% of the population, and bilaterally absent in 0.6% with an overall rate of absence of 1.5%. Other variations noted were a laterally shifted PLM in 1.1% of subjects and duplicated tendons on one forearm, which was the least prevalent anomaly, in 0.2% of subjects. The author proposes a new technique to test the tendon of PLM, which combines resisted thumb abduction and resisted wrist flexion. The proposed technique capitalizes on the role of the PLM as an important abductor of the thumb.

  19. The prevalence of accessory heads of the flexor pollicis longus and the flexor digitorum profundus muscles in Egyptians and their relations to median and anterior interosseous nerves.

    PubMed

    El Domiaty, M A; Zoair, M M; Sheta, A A

    2008-02-01

    Entrapment neuropathy in the forearm is not uncommon. Surgical interference for nerve decompression should be preceded by accurate diagnosis of the exact cause and site of the nerve entrapment. The aim of the present study was to investigate the prevalence of accessory heads of the flexor pollicis longus and flexor digitorum profundus muscles (FPLah) and (FDPah) in Egyptians and their topographical relationship with both the median nerve and its anterior interosseous branch. A total of 42 upper limbs of embalmed cadavers, 36 from males and 6 from females, were examined to elucidate the prevalence of both the FPLah and the FDPah muscles, their origin, insertion, nerve supply and morphology. The distribution of these two muscles in the right and left male and female upper limbs and their relationship to the anterior interosseous and median nerves were recorded. The total lengths of both accessory muscles and the lengths of their fleshy bellies and tendons were also measured. The FPLah was found to be present more frequently (61.9%) than it was absent, whereas the FDPah was observed in only 14.24% of the specimens examined. The combination of the accessory muscles in the same forearm was noticed in 9.52% of cases. As regards side, the FPLah appeared in 77.7% of the right forearms and in 50% of the left, while the FDPah was found in only 25% of the left forearms. The accessory muscles showed no single morphology, as the FPLah appeared fusiform in 53.8%, slender in 30.8% and voluminous fusiform in 15.4%, while the FDPah was slender in 66.6% and triangular in 33.3% of specimens. The FPLah arose mainly from the under surface of flexor digitorum superficialis, while the FDPah took its origin from the under surface of flexor digitorum superficialis or from the medial epicondyle. The insertion of the FPLah was mainly into the upper third of the FPL tendon, while the FDPah tendon joined the tendons of the flexor digitorum profundus muscle to the index or middle and ring

  20. Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading

    SciTech Connect

    Riley, D.A.; Ellis, S.; Giometti, C.S.; Hoh, J.F.Y.; Ilyina-Kakueva, E.I.; Oganov, V.S.; Slocum, G.R.; Bain, J.L.W.; Sedlak, F.R. )

    1992-08-01

    Extended exposure of humans to spaceflight produces a progressive loss of skeletal muscle strength. This process must be understood to design effective countermeasures. The present investigation examined hindlimb muscles from flight rats killed as close to landing as possible. Spaceflight and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to account for this apparent disagreement.In both conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic fibers. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the postcapillary venules and capillaries.

  1. Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ilyina-Kakueva, E. I.; Ellis, S.; Bain, J. L.; Slocum, G. R.; Sedlak, F. R.

    1990-01-01

    Histochemical and ultrastructural analyses were performed postflight on hind limb skeletal muscles of rats orbited for 12.5 days aboard the unmanned Cosmos 1887 biosatellite and returned to Earth 2 days before sacrifice. The antigravity adductor longus (AL), soleus, and plantaris muscles atrophied more than the non-weight-bearing extensor digitorum longus, and slow muscle fibers were more atrophic than fast fibers. Muscle fiber segmental necrosis occurred selectively in the AL and soleus muscles; primarily, macrophages and neutrophils infiltrated and phagocytosed cellular debris. Granule-rich mast cells were diminished in flight AL muscles compared with controls, indicating the mast cell secretion contributed to interstitial tissue edema. Increased ubiquitination of disrupted myofibrils implicated ubiquitin in myofilament degradation. Mitochondrial content and succinic dehydrogenase activity were normal, except for subsarcolemmal decreases. Myofibrillar ATPase activity of flight AL muscle fibers shifted toward the fast type. Absence of capillaries and extravasation of red blood cells indicated failed microcirculation. Muscle fiber regeneration from activated satellite cells was detected. About 17% of the flight AL end plates exhibited total or partial denervation. Thus, skeletal muscle weakness associated with spaceflight can result from muscle fiber atrophy and segmental necrosis, partial motor denervation, and disruption of the microcirculation.

  2. Muscle strain injuries.

    PubMed

    Garrett, W E

    1996-01-01

    One of the most common injuries seen in the office of the practicing physician is the muscle strain. Until recently, little data were available on the basic science and clinical application of this basic science for the treatment and prevention of muscle strains. Studies in the last 10 years represent action taken on the direction of investigation into muscle strain injuries from the laboratory and clinical fronts. Findings from the laboratory indicate that certain muscles are susceptible to strain injury (muscles that cross multiple joints or have complex architecture). These muscles have a strain threshold for both passive and active injury. Strain injury is not the result of muscle contraction alone, rather, strains are the result of excessive stretch or stretch while the muscle is being activated. When the muscle tears, the damage is localized very near the muscle-tendon junction. After injury, the muscle is weaker and at risk for further injury. The force output of the muscle returns over the following days as the muscle undertakes a predictable progression toward tissue healing. Current imaging studies have been used clinically to document the site of injury to the muscle-tendon junction. The commonly injured muscles have been described and include the hamstring, the rectus femoris, gastrocnemius, and adductor longus muscles. Injuries inconsistent with involvement of a single muscle-tendon junction proved to be at tendinous origins rather than within the muscle belly. Important information has also been provided regarding injuries with poor prognosis, which are potentially repairable surgically, including injuries to the rectus femoris muscle, the hamstring origin, and the abdominal wall. Data important to the management of common muscle injuries have been published. The risks of reinjury have been documented. The early efficacy and potential for long-term risks of nonsteroidal antiinflammatory agents have been shown. New data can also be applied to the field

  3. Electromyographic Analysis of the Peroneous Longus during Bicycle Ergometry across Work Load and Pedal Type.

    DTIC Science & Technology

    1983-01-01

    monitored with EMG . These muscles consisted of flexors and extensors of the hip , knee, and ankle, but did not include the peroneous longus. The...electrodes but a curvilinear relationship with bipolar electrodes. 3 5 Vigreux and associates reported stronger EMG signals with longitudinal place- ment...pedaling is not known. The purpose of this study was to analyze the electromyo- graphic ( EMG ) activity of the peroneous longus across work load (1, 2, and

  4. Progression and variation of fatty infiltration of the thigh muscles in Duchenne muscular dystrophy, a muscle magnetic resonance imaging study.

    PubMed

    Li, Wenzhu; Zheng, Yiming; Zhang, Wei; Wang, Zhaoxia; Xiao, Jiangxi; Yuan, Yun

    2015-05-01

    The purpose of this study was to assess the progression and variation of fatty infiltration of the thigh muscles of Duchenne muscular dystrophy patients. Muscle magnetic resonance imaging was used to measure the degree of fatty infiltration of the thigh muscles of 171 boys with Duchenne muscular dystrophy (mean age, 6.09 ± 2.30 years). Fatty infiltration was assigned using a modified Mercuri's scale 0-5 (normal-severe). The gluteus maximus and adductor magnus were affected in patients less than two years old, followed by the biceps femoris. Quadriceps and semimembranosus were first affected at the age of five to six years; the sartorius, gracilis and adductor longus remained apparently unaffected until seven years of age. Fatty infiltration of all the thigh muscles developed rapidly after seven years of age. The standard deviation of the fatty infiltration scores ranged from 2.41 to 4.87 before five years old, and from 6.84 to 11.66 between six and ten years old. This study provides evidence of highly variable degrees of fatty infiltration in children of different ages with Duchenne muscular dystrophy, and indicates that fatty infiltration progresses more quickly after seven years of age. These findings may be beneficial for the selection of therapeutic regimens and the analysis of future clinical trials.

  5. Same but different: ontogeny and evolution of the Musculus adductor mandibulae in the Tetraodontiformes.

    PubMed

    Konstantinidis, P; Harris, M P

    2011-01-15

    The morphological diversity of fishes provides a rich source to address questions regarding the evolution of complex and novel forms. The Tetraodontiformes represent an order of highly derived teleosts including fishes, such as the pelagic ocean sunfishes, triggerfishes, and pufferfishes. This makes the order attractive for comparative analyses to understand the role of development in generating new forms during evolution. The adductor mandibulae complex, the main muscle associated with jaw closure, represents an ideal model system within the Tetraodontiformes. The adductor mandibulae differs in terms of partitions and their attachment sites between members of the different tetraodontiform families. In order to understand the evolution of the jaws among the Tetraodontiformes, we investigate the development of the adductor mandibulae in pufferfishes and triggerfishes as representatives of two different suborders (Balistoidei and Tetraodontoidei) that follows two different adaptations to a durophagous feeding mode. We show that the varied patterns of the adductor mandibulae derive from similar developmental sequence of subdivision of the partitions. We propose a conserved developmental program for partitioning of the adductor mandibulae as a foundation for the evolution of different patterns of subdivisions in Tetraodontiformes. Furthermore, we argue that derived conditions in the higher taxa are realized by supplementary subdivisions and altered attachment sites. These findings support a reinterpretation of homology of different muscle partitions among the Tetraodontiformes, as muscle partitions previously thought to be disparate, are now clearly related.

  6. Adductor tenotomy as a treatment for groin pain in professional soccer players.

    PubMed

    Mei-Dan, Omer; Lopez, Vicente; Carmont, Michael R; McConkey, Mark O; Steinbacher, Gilbert; Alvarez, Pedro D; Cugat, Ramon B

    2013-09-01

    Chronic, exercise-related groin pain is a debilitating condition. Nonoperative treatment has limited efficacy, but surgical intervention on the adductor-abdomino complex may be used to alleviate symptoms and allow return to play (RTP). The purpose of this study was to report the outcome of adductor tenotomy and hernioplasty for professional soccer players with groin pain. Between 2000 and 2006, a total of 155 professional and recreational soccer players with recalcitrant groin pain (with or without lower abdominal pain) and resistance to conservative treatment were included in this retrospective analysis. Ninety-six patients were treated with adductor tenotomy and 59 patients were treated with combined adductor tenotomy and hernioplasty. No difference in pre- or postoperative parameters was detected between groups, apart from abdominal wall muscle defects revealed during ultrasound for patients in the combined group. The RTP time and subjective and objective outcome measures were compared. A combined score was developed to evaluate outcomes that consisted of overall satisfaction (50%), RTP time (15%), and Tegner scores (35%). Mean RTP was 11 weeks (range, 4-36 weeks). Postoperative Tegner score remained 8.2 (same as the preinjury Tegner score). Subjective outcome was rated 4.3 of 5. The combined score indicated 80% of good or excellent results for both groups. Surgical intervention allows RTP at the same level in professional soccer players following failure of nonoperative treatments. Athletes with adductor syndrome and accompanying sportsman's hernia may benefit from adductor tenotomy alone.

  7. Tarsal tunnel syndrome and flexor hallucis longus tendon hypertrophy.

    PubMed

    Rodriguez, D; Devos Bevernage, B; Maldague, P; Deleu, P-A; Leemrijse, T

    2010-11-01

    Tarsal tunnel syndrome (TTS) defines an entrapment neuropathy of the posterior tibial nerve or one of its branches, within the tarsal tunnel. Numerous etiologies have been described explaining this entrapment, including trauma, space-occupying lesions, foot deformities, etc. We present an unreported cause of a space-occupying lesion in the etiology of TTS, namely the combination of a hypertrophic long distally extended muscle belly of the flexor hallucis longus and repetitive ankle motion. Surgical debulking of the muscle belly in the posterior ankle compartment resolved all symptoms.

  8. Interactive effects of growth hormone and exercise on muscle mass in suspended rats

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, Roland R.; Edgerton, V. Reggie; Grossman, Elena J.; Mukku, Venkat R.; Jiang, Bian; Pierotti, David J.; Rudolph, Ingrid

    1994-01-01

    Measures to attenuate muscle atrophy in rats in response to simulated microgravity (hindlimb suspension (HS)) have been only partially successful. In the present study, hypophysectomized rats were in HS for 7 days, and the effects of recombinant human growth hormone (GH), exercise (Ex), or GH+Ex on the weights, protein concentrations, and fiber cross-sectional areas (CSAs) of hindlimb muscles were determined. The weights of four extensor muscles, i.e., the soleus (Sol), medial (MG) and lateral (LG) gastrocnemius, and plantaris (Plt), and one adductor, i.e., the adductor longus (AL), were decreased by 10-22% after HS. Fiber CSAs were decreased by 34% in the Sol and by 1 17% in the MG after HS. In contrast, two flexors, i.e., the tibialis anterior (TA) and extensor digitorum longus (EDL), did not atrophy. In HS rats, GH treatment alone maintained the weights of the fast extensors (MG, LG, Plt) and flexors (TA, EDL) at or above those of control rats. This effect was not observed in the slow extensor (Sol) or AL. Exercise had no significant effect on the weight of any muscle in HS rats. A combination of GH and Ex treatments yielded a significant increase in the weights of the fast extensors and in the CSA of both fast and slow fibers of the MG and significantly increased Sol weight and CSA of the slow fibers of the Sol. The AL was not responsive to either GH or Ex treatments. Protein concentrations of the Sol and MG were higher only in the Sol of Ex and GH+Ex rats. These results suggest that while GH treatment or intermittent high intensity exercise alone have a minimal effect in maintaining the mass of unloaded muscle, there is a strong interactive effect of these two treatments.

  9. Experiment K-6-09. Morphological and biochemical investigation of microgravity-induced nerve and muscle breakdown. Part 1: Investigation of nerve and muscle breakdown during spaceflight; Part 2: Biochemical analysis of EDL and PLT muscles

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ellis, S.; Bain, J.; Sedlak, F.; Slocum, G.; Oganov, V.

    1990-01-01

    The present findings on rat hindlimb muscles suggest that skeletal muscle weakness induced by prolonged spaceflight can result from a combination of muscle fiber atrophy, muscle fiber segmental necrosis, degeneration of motor nerve terminals and destruction of microcirculatory vessels. Damage was confined to the red adductor longus (AL) and soleus muscles. The midbelly region of the AL muscle had more segmental necrosis and edema than the ends. Macrophages and neutrophils were the major mononucleated cells infiltrating and phagocytosing the cellular debris. Toluidine blue-positive mast cells were significantly decreased in Flight AL muscles compared to controls; this indicated that degranulation of mast cells contributed to tissue edema. Increased ubiquitination of disrupted myofibrils may have promoted myofilament degradation. Overall, mitochondria content and SDH activity were normal, except for a decrease in the subsarcolemmal region. The myofibrillar ATPase activity shifted toward the fast type in the Flight AL muscles. Some of the pathological changes may have occurred or been exacerbated during the 2 day postflight period of readaptation to terrestrial gravity. While simple atrophy should be reversible by exercise, restoration of pathological changes depends upon complex processes of regeneration by stem cells. Initial signs of muscle and nerve fiber regeneration were detected. Even though regeneration proceeds on Earth, the space environment may inhibit repair and cause progressive irreversible deterioration during long term missions. Muscles obtained from Flight rats sacrificed immediately (within a few hours) after landing are needed to distinguish inflight changes from postflight readaptation.

  10. Does the longus colli have an effect on cervical vertigo?

    PubMed Central

    Liu, Xiao-Ming; Pan, Fu-Min; Yong, Zhi-Yao; Ba, Zhao-yu; Wang, Shan-Jin; Liu, Zheng; Zhao, Wei-dong; Wu, De-Sheng

    2017-01-01

    Abstract The aim of the study was to evaluate the role of the longus colli muscles in cervical vertigo. We retrospectively analyzed 116 adult patients who underwent anterior cervical discectomy and fusion (ACDF) during 2014 in our department. Patients were assigned to the vertigo group or the nonvertigo group. Demographic data were recorded. Inner distance and cross-sectional area (CSA) of longus colli were measured using coronal magnetic resonance imaging (MRI). The vertigo group (n = 44) and the nonvertigo group (n = 72) were similar in demographic data. Mean preoperative Japanese Orthopaedic Association (JOA) score was higher in the vertigo group than in the nonvertigo group (P = 0.037), but no difference postoperatively. Mean JOA scores increased significantly postoperatively in both groups (P = 0.002 and P = 0.001). The mean vertigo score decreased significantly from pre- to postoperatively in the vertigo group (P = 0.023). The mean preoperative Cobb angle was significantly smaller in the vertigo group than in the nonvertigo group (P <0.001), but no significant difference postoperatively. After ACDF, the mean Cobb angle increased significantly in the vertigo group (P <0.001). The instability rates of C3/4 and C4/5 were significantly higher in the vertigo group (P <0.001 and P <0.001). The inner distance of longus colli was significantly shorter (P = 0.032 and P = 0.026) and CSA significantly smaller (P = 0.041 and P = 0.035), at C3/4 and C4/5 in the vertigo group than in the nonvertigo group. Mean Miyazaki scores were significantly higher in the vertigo group at C3/4 and C4/5 (P = 0.044 and P = 0.037). Moreover, a shorter inner distance and smaller CSA were related to a higher Miyazaki score. Inner distance and cross-sectional area (CSA) of longus colli are associated closely with cervical vertigo. Shorter inner distance and smaller CSA of the longus colli muscles might be risk factors for cervical vertigo. ACDF

  11. Evolutionary Trends in the Jaw Adductor Mechanics of Ornithischian Dinosaurs.

    PubMed

    Nabavizadeh, Ali

    2016-03-01

    Jaw mechanics in ornithischian dinosaurs have been widely studied for well over a century. Most of these studies, however, use only one or few taxa within a given ornithischian clade as a model for feeding mechanics across the entire clade. In this study, mandibular mechanical advantages among 52 ornithischian genera spanning all subclades are calculated using 2D lever arm methods. These lever arm calculations estimate the effect of jaw shape and difference in adductor muscle line of action on relative bite forces along the jaw. Results show major instances of overlap between taxa in tooth positions at which there was highest mechanical advantage. A relatively low bite force is seen across the tooth row among thyreophorans (e.g., stegosaurs and ankylosaurs), with variation among taxa. A convergent transition occurs from a more evenly distributed bite force along the jaw in basal ornithopods and basal marginocephalians to a strong distal bite force in hadrosaurids and ceratopsids, respectively. Accordingly, adductor muscle vector angles show repeated trends from a mid-range caudodorsal orientation in basal ornithischians to a decrease in vector angles indicating more caudally oriented jaw movements in derived taxa (e.g., derived thyreophorans, basal ornithopods, lambeosaurines, pachycephalosaurs, and derived ceratopsids). Analyses of hypothetical jaw morphologies were also performed, indicating that both the coronoid process and lowered jaw joint increase moment arm length therefore increasing mechanical advantage of the jaw apparatus. Adaptive trends in craniomandibular anatomy show that ornithischians evolved more complex feeding apparatuses within different clades as well as morphological convergences between clades.

  12. Speech Intelligibility in Severe Adductor Spasmodic Dysphonia

    ERIC Educational Resources Information Center

    Bender, Brenda K.; Cannito, Michael P.; Murry, Thomas; Woodson, Gayle E.

    2004-01-01

    This study compared speech intelligibility in nondisabled speakers and speakers with adductor spasmodic dysphonia (ADSD) before and after botulinum toxin (Botox) injection. Standard speech samples were obtained from 10 speakers diagnosed with severe ADSD prior to and 1 month following Botox injection, as well as from 10 age- and gender-matched…

  13. Three dimensional digital reconstruction of the jaw adductor musculature of the extinct marsupial giant Diprotodon optatum

    PubMed Central

    2014-01-01

    The morphology and arrangement of the jaw adductor muscles in vertebrates reflects masticatory style and feeding processes, diet and ecology. However, gross muscle anatomy is rarely preserved in fossils and is, therefore, heavily dependent on reconstructions. An undeformed skull of the extinct marsupial, Diprotodon optatum, recovered from Pleistocene sediments at Bacchus Marsh in Victoria, represents the most complete and best preserved specimen of the species offering a unique opportunity to investigate functional anatomy. Computed tomography (CT) scans and digital reconstructions make it possible to visualise internal cranial anatomy and predict location and morphology of soft tissues, including muscles. This study resulted in a 3D digital reconstruction of the jaw adductor musculature of Diprotodon, revealing that the arrangement of muscles is similar to that of kangaroos and that the muscle actions were predominantly vertical. 3D digital muscle reconstructions provide considerable advantages over 2D reconstructions for the visualisation of the spatial arrangement of the individual muscles and the measurement of muscle properties (length, force vectors and volume). Such digital models can further be used to estimate muscle loads and attachment sites for biomechanical analyses. PMID:25165628

  14. The adductor part of the adductor magnus is innervated by both obturator and sciatic nerves.

    PubMed

    Takizawa, Megumi; Suzuki, Daisuke; Ito, Hajime; Fujimiya, Mineko; Uchiyama, Eiichi

    2014-07-01

    The hip adductor group, innervated predominantly by the obturator nerve, occupies a large volume of the lower limb. However, case reports of patients with obturator nerve palsy or denervation have described no more than minimal gait disturbance. Those facts are surprising, given the architectural characteristics of the hip adductors. Our aim was to investigate which regions of the adductor magnus are innervated by the obturator nerve and by which sciatic nerve and to consider the clinical implications. Twenty-one lower limbs were examined from 21 formalin-fixed cadavers, 18 males and 3 females. The adductor magnus was dissected and was divided into four parts (AM1-AM4) based on the locations of the perforating arteries and the adductor hiatus. AM1 was supplied solely by the obturator nerve. AM2, AM3, and AM4 received innervation from both the posterior branch of the obturator nerve and the tibial nerve portion of the sciatic nerve in 2 (9.5%), 20 (95.2%), and 6 (28.6%) of the cadavers, respectively. The double innervation in more than 90% of the AM3s is especially noteworthy. Generally, AM1-AM3 corresponds to the adductor part, traditionally characterized as innervated by the obturator nerve, and AM4 corresponds to the hamstrings part, innervated by the sciatic nerve. Here, we showed that the sciatic nerve supplies not only the hamstrings part but also the adductor part. These two nerves spread more widely than has generally been believed, which could have practical implications for the assessment and treatment of motor disability.

  15. Saphenous and Infrapatellar Nerves at the Adductor Canal: Anatomy and Implications in Regional Anesthesia.

    PubMed

    Anagnostopoulou, Sofia; Anagnostis, George; Saranteas, Theodosios; Mavrogenis, Andreas F; Paraskeuopoulos, Tilemachos

    2016-01-01

    Conflicting data exist regarding the anatomical relationship of the saphenous and infrapatellar nerves at the adductor canal and the location of the superior foramen of the canal. Therefore, the authors performed a cadaveric study to detail the relationship and course of the saphenous and infrapatellar nerves and the level of the superior foramen of the canal. The adductor canal and subsartorial compartment were dissected in 17 human cadavers. The distance between the superior foramen of the canal and the mid-distance (MD) between the base of the patella and the anterior superior iliac crest were measured; the course of the saphenous and infrapatellar nerves and the level of origin of the infrapatellar branch were detailed. In 13 of 17 specimens, the superior foramen of the adductor canal was distal to the MD (mean, 6.5 cm); in the remaining specimens, it was proximal to the MD. In 12 of 17 specimens, the infrapatellar branch exited the canal separately from the saphenous nerve; in the remaining specimens, it originated caudally to the canal. In all dissections, the infrapatellar branch had a constant course in close proximity to the saphenous nerve within the canal and between the sartorious muscle and femoral artery caudally to the canal. Most commonly, the superior foramen of the adductor canal is located caudally to the MD; the infrapatellar branch originates from the saphenous nerve within the canal and has a constant course in close proximity to the saphenous nerve. These observations should be considered for regional anesthesia techniques at the adductor canal.

  16. Radiological findings in symphyseal and adductor-related groin pain in athletes: a critical review of the literature.

    PubMed

    Branci, Sonia; Thorborg, Kristian; Nielsen, Michael Bachmann; Hölmich, Per

    2013-07-01

    Long-standing symphyseal and adductor-related groin pain is a common problem for many athletes, and requires a multidisciplinary approach. Radiological evaluation of symptomatic individuals is a cornerstone in the diagnostic workup, and should be based on precise and reliable diagnostic terms and imaging techniques. The authors performed a review of the existing original evidence-based radiological literature involving radiography, ultrasonography and MRI in athletes with long-standing symphyseal and adductor-related groin pain. Our search yielded 17 original articles, of which 12 were dedicated to MRI, four to radiography and one to ultrasonography. Four main radiological findings seem to consistently appear: degenerative changes at the pubic symphyseal joint, pathology at the adductor muscle insertions, pubic bone marrow oedema and the secondary cleft sign. However, the existing diagnostic terminology is confusing, and the interpretation of radiological findings would benefit from imaging studies using a more systematic approach.

  17. Insertional tendinopathy of the adductors and rectus abdominis in athletes: a review

    PubMed Central

    Valent, Alessandro; Frizziero, Antonio; Bressan, Stefano; Zanella, Elena; Giannotti, Erika; Masiero, Stefano

    2012-01-01

    Summary Insertional tendinopathy of the adductors and rectus abdominis is common in male athletes, especially in soccer players. It may be worsened by physical activity and it usually limits sport performance. The management goal in the acute phase consists of analgesic and anti-inflammatory drugs and physical rehabilitation. In the early stages of rehabilitation, strengthening exercises of adductors and abdominal muscles, such as postural exercises, have been suggested. In the sub-acute phase, muscular strength is targeted by overload training in the gym or aquatherapy; core stability exercises seem to be useful in this phase. Finally, specific sport actions are introduced by increasingly complex exercises along with a preventive program to limit pain recurrences. PMID:23738289

  18. Autologous split peroneus longus lateral ankle stabilization.

    PubMed

    Budny, Adam M; Schuberth, John M

    2012-01-01

    Lateral ankle instability is a common clinical entity, and a variety of surgical procedures are available for stabilization after conservative management fails. Herein the authors reviewed outcomes after performing autologous split peroneus longus lateral ankle stabilization, using a previously described surgical technique to anatomically recreate the anterior talofibular and calcaneofibular ligaments. Twenty-five consecutive patients from 2 surgeons' practices underwent reconstruction between March 2007 and January 2011 with a minimum follow-up of 12 (range 12 to 51) months (mean 29.5 months). Follow-up interviews demonstrated 92.0% good or excellent outcomes with only 8.0% rating the outcome as fair and none as poor; 92.0% had no recurrent sprains or difficulty going up or down hills; 88.0% related no difficulty with uneven ground. The authors conclude that the autologous split peroneus longus lateral ankle stabilization results in a stable ankle with a low rate of complications and high patient satisfaction.

  19. CLINICAL APPLICATION OF THE RIGHT SIDELYING RESPIRATORY LEFT ADDUCTOR PULL BACK EXERCISE

    PubMed Central

    2013-01-01

    Problem: Lumbopelvic‐femoral conditions are common and may be associated with asymmetrical musculoskeletal and respiratory impairments and postural mal‐alignment called a Left Anterior Interior Chain (AIC) pattern. An inherent pattern of asymmetry involves the trunk/ribs/spine/pelvis/hip joints and includes the tendency to stand on the right leg and shift the center of gravity to the right which may result for example, in a tight left posterior hip capsule, poorly approximated left hip, long/weak left adductors, internal obliques (IO) and transverse abdominus (TA), short/strong/over active paraspinals and muscles on the right anterior outlet (adductors, levator ani and obturator internus), a left rib flare and a decreased respiratory diaphragm zone of apposition (ZOA). The Solution: A therapeutic exercise technique that can address impairments associated with postural asymmetry may be beneficial in improving function, reducing and/or eliminating pain causation, and improving breathing. The Right Sidelying Left Respiratory Adductor Pull Back is an exercise designed to affect alignment of the lumbopelvic‐femoral region by influencing the left posterior ischiofemoral ligament, ZOA and right anterior outlet and left anterior inlet (rectus femoris, sartorius), activating/shortening the left adductors, left IO/TA's and inhibiting/lengthening the paraspinals, bilaterally. Discussion: The exercise technique is often used by Physical Therapists, Physical Therapist assistants and Athletic Trainers as an initial exercise to positively affect position/alignment of the lumbopelvic‐femoral region, referred to as “repositioning,” by clinicians who use it. Four published case studies have used similar exercises to address the above impairments associated with a Left AIC pattern and in each 100% improvement in function and pain intensity was described. This particular exercise technique is relatively new and warrants future research. PMID:23772350

  20. Fibromatosis of the flexor pollicus longus tendon

    PubMed Central

    Damkat-Thomas, L; Black, CE; Herbert, K

    2010-01-01

    An unusual case of fibromatosis of the dominant left flexor pollicus longus (FPL) in a thirteen year old schoolboy. Initially presenting with pain in the thenar eminence and difficulty flexing the metacarpal phalangeal joint (MPJ), other symptoms include locking, triggering and difficulty writing. MRI showed a 4cm segment of thickened abnormal tendon. Intra-operatively three 1cm nodules were excised from the FPL while preserving the tendon. Histopathology reported the nodules as fibromatosis. A literature search revealed that this has not previously been reported although symptomatic tendon sheath fibromas have. Our patient achieved a good result following surgical intervention and the two year review has shown no complications. PMID:24946359

  1. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 2; Quantitative Autoradiographic Analysis of Gaba (Benzodiazepine) and Muscarinic (Cholinergic) Receptors in the Forebrain of Rats Flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Wu, L.; Daunton, N. G.; Krasnov, I. B.; DAmelio, F.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    Quantitative autoradiographic analysis of receptors for GABA and acetylcholine in the forebrain of rats flown on COSMOS 2044 was undertaken as part of a joint US-Soviet study to determine the effects of microgravity on the central nervous system, and in particular on the sensory and motor portions of the forebrain. Changes in binding of these receptors in tissue from animals exposed to microgravity would provide evidence for possible changes in neural processing as a result of exposure to microgravity. Tritium-labelled diazepam and Quinuclidinyl-benzilate (QNB) were used to visualize GABA (benzodiazepine) and muscarinic (cholinergic) receptors, respectively. The density of tritium-labelled radioligands bound to various regions in the forebrain of both flight and control animals were measured from autoradiograms. Data from rats flown in space and from ground-based control animals that were not exposed to microgravity were compared.

  2. Distribution of different fibre types of M. extensor carpi radialis longus of the rat.

    PubMed

    Rodrigues, A de C; Silva M dal, D; Pai, V D

    1994-12-01

    As revealed by the NADH-diaphorase and myosine ATPase, the M. extensor carpi radialis longus of the rat possesses at least 3 main kinds of fibres, with different distribution on the superficial and deep portions of the muscle. The superficial portion revealed that 67.68% are FG (fast-twitch-glycolytic) fibres, 14.72% are FOG (fast-twitch-oxidative) fibres and 17.60% are SO (slow-twitch-glycolytic) fibres. Already the deep portion revealed that 71.29% are SO (slow-twitch-glycolytic) fibres, 17.46% are FOG (fast-twitch-oxidative-glycolytic) fibres and 11.25% are FG (fast-twitch-glycolytic) fibres. The miosine ATPase reaction was used to demonstrate contracting characteristics. These findings suggest that the movements of fast contraction of the M. extensor carpi radialis longus are predominant.

  3. Adductor T reflex abnormalities in patients with decreased patellar reflexes.

    PubMed

    Tataroglu, Cengiz; Deneri, Ersin; Ozkul, Ayca; Sair, Ahmet; Yaycioglu, Soner

    2009-08-01

    The adductor reflex (AR) is a tendon reflex that has various features that differ from other tendon reflexes. This reflex was tested in different disorders presenting with diminished patellar reflexes such as diabetic lumbosacral radiculoplexus neuropathy (DLRPN), L2-L4 radiculopathy, and distal symmetric diabetic neuropathy (diabetic PNP). The AR and crossed-AR (elicited by tapping the contralateral patellar tendon) were recorded using concentric needle electrodes. Additionally, the patellar T reflex (vm-TR) and vastus medialis H reflex (vm-HR) were recorded using surface electrodes. AR was recorded in only one out of eight patients with DLRPN, but it was recorded in 21 out of 22 patients with L2-L4 radiculopathy (95.5%). Of these reflexes, only AR showed prolonged latency in the L2-L4 radiculopathy group. The latencies of AR, vm-TR, and vm-HR were prolonged in patients with diabetic PNP. We conclude that AR can be useful in the differential diagnosis of some lower motor neuron disorders that present with patellar reflex disturbance. Muscle Nerve 40: 264-270, 2009.

  4. Rectus abdominis muscle injuries in elite handball players: management and rehabilitation.

    PubMed

    Balius, Ramon; Pedret, Carles; Pacheco, Laura; Gutierrez, Josep Antoni; Vives, Joan; Escoda, Jaume

    2011-01-01

    Muscle injuries generally occur in two-joint muscles with a high percentage of type II fibers during the performance of eccentric activity. Some muscle injuries, such as those located in the adductor longus, a monoarticular muscle, as well as rectus abdominis do not fully comply with these requirements. This study examines five cases of elite handball players with ruptured rectus abdominals. Sonographically, lesions in rectus abdominis are shown as a disruption of the fibrillar pattern with a hematic suffusion that invades the entire lesion. In some of the cases, the ultrasound study was complemented with a MRI. A unified rehabilitation protocol was applied and the return to play time of each handball player ranged between 16 and 22 days, with an average of 18.2 days. Follow-up at 15 months showed no evidence of re-injury or residual discomfort and all of them are playing at their highest level. The aim of this study was to illustrate a feature of handball injury that, as in tennis and volleyball, is uncommon and so far has not been specifically reported. The phenomenon of contralateral abdominal hypertrophy in handball appears in the dominant arm as in tennis and volleyball.

  5. Rectus abdominis muscle injuries in elite handball players: management and rehabilitation

    PubMed Central

    Balius, Ramon; Pedret, Carles; Pacheco, Laura; Gutierrez, Josep Antoni; Vives, Joan; Escoda, Jaume

    2011-01-01

    Muscle injuries generally occur in two-joint muscles with a high percentage of type II fibers during the performance of eccentric activity. Some muscle injuries, such as those located in the adductor longus, a monoarticular muscle, as well as rectus abdominis do not fully comply with these requirements. This study examines five cases of elite handball players with ruptured rectus abdominals. Sonographically, lesions in rectus abdominis are shown as a disruption of the fibrillar pattern with a hematic suffusion that invades the entire lesion. In some of the cases, the ultrasound study was complemented with a MRI. A unified rehabilitation protocol was applied and the return to play time of each handball player ranged between 16 and 22 days, with an average of 18.2 days. Follow-up at 15 months showed no evidence of re-injury or residual discomfort and all of them are playing at their highest level. The aim of this study was to illustrate a feature of handball injury that, as in tennis and volleyball, is uncommon and so far has not been specifically reported. The phenomenon of contralateral abdominal hypertrophy in handball appears in the dominant arm as in tennis and volleyball. PMID:24198573

  6. Jar-opening challenges. Part 2: estimating the force-generating capacity of thumb muscles in healthy young adults during jar-opening tasks.

    PubMed

    Kuo, L C; Chang, J H; Lin, C F; Hsu, H Y; Ho, K Y; Su, F C

    2009-07-01

    This study discusses the force-generating capacity of thumb muscles during jar-opening tasks using two grip patterns: the power grip and the precision grip. This study develops a three-dimensional biomechanical model of the thumb to predict muscle forces in jar-opening activities based on external forces measured by a custom-designed jar device. Ten healthy subjects participated in the study. Each participant turned a jar lid of 66 mm diameter counterclockwise with maximal effort and preferred speed using both grip patterns. The average normal and tangential forces applied by the thumb to the jar lid show that the normal force is the primary contributive force for opening a jar. This normal force is approximately three times the tangential force. Muscular force-generating capacity measurements show that the major active muscles during a jar-opening activity for both grips include the flexor pollicis longus, flexor pollicis brevis, abductor pollicis brevis, adductor pollicis, and opponens pollicis. The total muscle force ratios for the precision grip and power grip with respect to externally applied forces are 5.6 and 4.7 respectively. These ratios indicate that the power grip pattern produces less muscle force per unit of external applied load. The technique proposed in this study provides a proper apparatus and model for measuring three-dimensional loads and estimating the force-generating capacity of each muscle and tendon of the thumb during jar-opening tasks.

  7. Abductor pollicis longus tendon division with swan neck thumb deformity.

    PubMed

    Zacharia, Balaji; Puthezhath, Kishore

    2012-08-01

    Swan neck thumb deformity can be caused by osteoarthritis, rheumatoid arthritis, systemic lupus erythematosus, tendon transfers and paralytic diseases. Abductor pollicis longus is one of the major stabilizing tendon of the carpometacarpal joint of thumb. To the best of our knowledge, swan neck thumb deformity owing to division of abductor pollicis longus tendon is rare. In this article, we describe a case of isolated division of abductor pollicis longus tendon presenting with swan-neck deformity of thumb and discuss the mechanism, management and outcome. The patient was treated by repair of the divided tendon using palmaris longus tendon graft. At approximately 107 weeks following treatment, the patient was having full range of thumb movement and the deformity completely disappeared. We also describe the unusual mechanism whereby an isolated division of abductor pollicis longus tendon results in swan neck thumb deformity. Level of clinical evidence IV.

  8. Chronic triceps insufficiency managed with extensor carpi radialis longus and palmaris longus tendon grafts.

    PubMed

    Singh, Dhanpal; Kumar, K Arun; Dinesh, Mc; Raj, Ranju

    2012-03-01

    Chronic triceps insufficiency, causing prolonged disability, occurs due to a missed diagnosis of an acute rupture. We report a 25 year old male with history of a significant fall sustaining multiple injuries. Since then, he had inability in extending his right elbow for which he sought intervention after a year. Diagnosis of triceps rupture was made clinicoradiologically and surgery was planned. Intraoperative findings revealed a deficient triceps with a fleck of avulsed bone from olecranon. Ipsilateral double tendon graft including extensor carpi radialis longus and palmaris longus were anchored to triceps and secured with the olecranon. Six-months follow revealed a complete active extension of elbow and a full function at the donor site.

  9. Anatomical description of the muscles of the pelvic limb in the ostrich (Struthio camelus).

    PubMed

    Gangl, D; Weissengruber, G E; Egerbacher, M; Forstenpointner, G

    2004-04-01

    Dissections of 12 formalin-fixed ostriches were performed to give anatomical descriptions of the muscles and tendons of the pelvic, femoral, tibiotarsal, tarsometatarsal and digital regions. In the pelvic limb of the ostrich, 36 muscles can be determined. The ostrich lacks those muscles to the first and second toes (with exception of the M. flexor hallucis longus), which can be found in birds with four toes. The Mm. iliotrochantericus medius, plantaris, extensor proprius digiti IV and adductor digiti IV, which are present in other birds, are also absent, whereas the Mm. pectineus and femorotibialis accessorius additionally occur in the ostrich. The Pars supramedialis is a tendineous part of the M. gastrocnemius, on which the Mm. flexor cruris lateralis and flexor cruris medialis insert by means of a fascial sheet. The caudal part of the M. iliofibularis terminates within the caudal aspect of the superficial fascia cruris. The caudal heads of the Mm. flexor perforatus digiti III and flexor perforatus digiti IV as well as the M. flexor hallucis longus have a common origin on the Fossa poplitea of the femur. The lateral head of the M. flexor perforatus digiti IV and the femoral head of the M. flexor perforans et perforatus digiti III originate on the tendon of origin of the Caput laterale of the M. flexor perforatus digiti III. Furthermore, the last named tendon fuses with the tendon of insertion of the M. ambiens. The M. extensor proprius digiti III originates on a plate-like fascial sheet part of the dorsal joint capsule of the intertarsal joint.

  10. Arthroscopic Synovectomy for Zone 2 Flexor Hallucis Longus Tenosynovitis.

    PubMed

    Lui, Tun Hing

    2015-10-01

    Tenosynovitis of the flexor hallucis longus tendon is a condition typically found in ballet dancers and sometimes in soccer players and is related to chronic overuse. It mostly involves the portion of the tendon behind the ankle joint. However, the portion of the tendon under the sustentaculum tali can also be involved. Open synovectomy requires extensive dissection. We report the technique of arthroscopic synovectomy of the deep portion of the flexor hallucis longus.

  11. Differential contributions of vision, touch and muscle proprioception to the coding of hand movements.

    PubMed

    Blanchard, Caroline; Roll, Régine; Roll, Jean-Pierre; Kavounoudias, Anne

    2013-01-01

    To further elucidate the mechanisms underlying multisensory integration, this study examines the controversial issue of whether congruent inputs from three different sensory sources can enhance the perception of hand movement. Illusory sensations of clockwise rotations of the right hand were induced by either separately or simultaneously stimulating visual, tactile and muscle proprioceptive channels at various intensity levels. For this purpose, mechanical vibrations were applied to the pollicis longus muscle group in the subjects' wrists, and a textured disk was rotated under the palmar skin of the subjects' right hands while a background visual scene was projected onto the rotating disk. The elicited kinaesthetic illusions were copied by the subjects in real time and the EMG activity in the adductor and abductor wrist muscles was recorded. The results show that the velocity of the perceived movements and the amplitude of the corresponding motor responses were modulated by the nature and intensity of the stimulation. Combining two sensory modalities resulted in faster movement illusions, except for the case of visuo-tactile co-stimulation. When a third sensory input was added to the bimodal combinations, the perceptual responses increased only when a muscle proprioceptive stimulation was added to a visuo-tactile combination. Otherwise, trisensory stimulation did not override bimodal conditions that already included a muscle proprioceptive stimulation. We confirmed that vision or touch alone can encode the kinematic parameters of hand movement, as is known for muscle proprioception. When these three sensory modalities are available, they contribute unequally to kinaesthesia. In addition to muscle proprioception, the complementary kinaesthetic content of visual or tactile inputs may optimize the velocity estimation of an on-going movement, whereas the redundant kinaesthetic content of the visual and tactile inputs may rather enhance the latency of the perception.

  12. Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles

    NASA Technical Reports Server (NTRS)

    Vijayan, K.; Thompson, J. L.; Norenberg, K. M.; Fitts, R. H.; Riley, D. A.

    2001-01-01

    Slow oxidative (SO) fibers of the adductor longus (AL) were predominantly damaged during voluntary reloading of hindlimb unloaded (HU) rats and appeared explainable by preferential SO fiber recruitment. The present study assessed damage after eliminating the variable of voluntary recruitment by tetanically activating all fibers in situ through the motor nerve while applying eccentric (lengthening) or isometric contractions. Muscles were aldehyde fixed and resin embedded, and semithin sections were cut. Sarcomere lesions were quantified in toluidine blue-stained sections. Fibers were typed in serial sections immunostained with antifast myosin and antitotal myosin (which highlights slow fibers). Both isometric and eccentric paradigms caused fatigue. Lesions occurred only in eccentrically contracted control and HU muscles. Fatigue did not cause lesions. HU increased damage because lesioned- fiber percentages within fiber types and lesion sizes were greater than control. Fast oxidative glycolytic (FOG) fibers were predominantly damaged. In no case did damaged SO fibers predominate. Thus, when FOG, SO, and hybrid fibers are actively lengthened in chronically unloaded muscle, FOG fibers are intrinsically more susceptible to damage than SO fibers. Damaged hybrid-fiber proportions ranged between these extremes.

  13. The results of adductor magnus tenodesis in adolescents with recurrent patellar dislocation.

    PubMed

    Malecki, Krzysztof; Fabis, Jaroslaw; Flont, Pawel; Niedzielski, Kryspin Ryszard

    2015-01-01

    Recurrent dislocation of the patella is a common orthopaedic problem which occurs in about 44% of cases after first-time dislocation. In most cases of first-time patellar dislocation, the medial patellofemoral ligament (MPFL) becomes damaged. Between 2010 and 2012, 33 children and adolescents (39 knees) with recurrent patellar dislocation were treated with MPFL reconstruction using the adductor magnus tendon. The aim of our study is to assess the effectiveness of this surgical procedure. The outcomes were evaluated functionally (Lysholm knee scale, the Kujala Anterior Knee Pain Scale, and isokinetic examination) and radiographically (Caton index, sulcus angle, congruence angle, and patellofemoral angle). Four patients demonstrated redislocation with MPFL graft failure, despite the fact that patellar tracking was found to be normal before the injury, and the patients had not reported any symptoms. Statistically significant improvements in Lysholm and Kujala scales, in patellofemoral and congruence angle, were seen (P < 0.001). A statistically significant improvement in the peak torque of the quadriceps muscle and flexor was observed for 60°/sec and 180°/sec angular velocities (P = 0.01). Our results confirm the efficacy of MPFL reconstruction using the adductor magnus tendon in children and adolescents with recurrent patellar dislocation.

  14. Reconstruction after chronic extensor pollicis longus ruptures: a new technique.

    PubMed

    Bullón, Adrián; Bravo, Elena; Zarbahsh, Shirin; Barco, Raúl

    2007-09-01

    Different types of secondary reconstruction of extensor pollicis longus tendon injuries have been reported, with repair using the extensor indicis proprius being the gold standard. This technique, however, may decrease extension strength and independent extension of the index finger. We presumed repair with the accessory abductor pollicis longus would achieve functional motion of the thumb and avoid donor site morbidity. We retrospectively report the results for 11 consecutive patients who had repair with the accessory abductor pollicis longus and were followed prospectively for a minimum of 2 years. Study-specific outcome measures were used to assess function in activities of daily living, pain, and patient satisfaction. According to the score described by Geld-macher et al, good or excellent results were achieved in all cases. Mean abduction deficit of the thumb was 10 degrees compared with the uninjured side. Using a 0- to 10-point visual analog scale self-reporting questionnaire, patients obtained mean results of 7.9 points for pain, 7.5 points for activities of daily living, and 7.6 points for patient satisfaction. We recommend the accessory abductor pollicis longus as an alternative for extensor pollicis longus tendon repair.

  15. The growth patterns of three hindlimb muscles in the chicken.

    PubMed Central

    Helmi, C; Cracraft, J

    1977-01-01

    This study was designed to investigate the growth patterns of three hindlimb muscles of the chicken relative to the functional-biomechanical demands of increasing body size. The biceps femoris, a bipennate non-postural muscle, grew relatively faster in terms of wet and dry weight than did the parallel-fibred adductor superficialis or the unipennate adductor profundus, both postural muscles. All three muscles exhibited positive allometry (relative to body weight) in muscle length but only biceps femoris and adductor profundus showed positive allometry in cross sectional area adductor superficialis having isometric growth in this parameter. In biceps femoris and adductor superficialis the lengths of the longest and shortest fasciculi grew at equal rates, whereas in adductor profundus the shortest fasciculi grew faster than the longest. We conclude that muscle weight alone is an insufficient indicator of changing function in growing muscle. Hence, growth studies should include other functionally relevant parameters such as cross sectional area, which is proportional to the force-producing capabilities of the muscle, or fibre (fasciculus) length, which is indicative of the absolute amount of stretching or shortening that is possible and of the contraction velocity. PMID:885779

  16. Different pattern of aquaporin-4 expression in extensor digitorum longus and soleus during early development.

    PubMed

    Nicchia, Grazia P; Mola, Maria G; Pisoni, Michela; Frigeri, Antonio; Svelto, Maria

    2007-05-01

    Aquaporin-4 (AQP4) is the neuromuscular water channel expressed at the sarcolemma of mammalian fast-twitch fibers that mediates a high water transport rate, which is important during muscle activity. Clinical interest in the neuromuscular expression of AQP4 has increased as it is associated with the protein complex formed by dystrophin, the product of the gene affected in Duchenne muscular dystrophy. The expression of AQP4 during development has not been characterized. In this study, we analyzed the expression of AQP4 in extensor digitorum longus (EDL) and soleus, a fast- and slow-twitch muscle, respectively, during the first weeks after birth. The results show that AQP4 expression in both types of skeletal muscle occurs postnatally. The time course of expression of AQP4 in the two types of muscles was also different. Whereas the expression of AQP4 protein levels in the EDL showed a progressive increase during the first month after birth, reaching levels found in adults by day 24, the levels of the protein in the soleus showed a transient peak between day 12 and day 24 and declined thereafter, an effect that may be related to the transient high number of fast motor units innervating the soleus muscle during this time. The results suggest that AQP4 expression in skeletal muscle is under neuronal influence and contribute to the understanding of the molecular events of fiber differentiation during development.

  17. Psoas and adductor release in children with cerebral palsy.

    PubMed

    Spruit, M; Fabry, G

    1997-06-01

    In a retrospective study of 12 cerebral palsy patients with 17 hips treated for subluxation, clinical and radiographic results of psoas and adductor releases were reviewed. With an average follow-up of 4.05 years, the functional ability was improved in 3 spastic quadriplegics and 3 diplegics and maintained in 6 other patients. The CE-angle and femoral head coverage did not change significantly. The AC-index improved significantly (p = 0.01).

  18. Parrotfish grazing ability: interspecific differences in relation to jaw-lever mechanics and relative weight of adductor mandibulae on an Okinawan coral reef.

    PubMed

    Nanami, Atsushi

    2016-01-01

    Parrotfishes (family Labridae: Scarini) are regarded to have important roles for maintaining the ecosystem balance in coral reefs due to their removal of organic matter and calcic substrates by grazing. The purpose of the present study was to clarify the interspecific differences in grazing ability of five parrotfish species (Chlorurus sordidus, C. bowersi, Scarus rivulatus, S. niger and S. forsteni) in relation to interspecific differences in jaw-lever mechanics and the relative weight of the adductor mandibulae (muscles operating jaw closing). The grazing ability was calculated by using stomach contents (CaCO3 weight/organic matter weight) defined as the grazing ability index (GAI). There were significant interspecific differences in GAI (C. sordidus = C. bowersi > S. rivulatus > S. niger = S. forsteni). Teeth of C. sordidus and C. bowersi were protrusive-shape whereas teeth of S. rivulatus, S. niger and S. forsteni were flat-shape. C. sordidus and C. bowersihave jaw-lever mechanics producing a greater biting force and have a larger weight of adductor mandibulae. S. rivulatus has jaw-lever mechanics producing a greater biting force but a smaller weight of adductor mandibulae that produce an intermediate biting force. In contrast, S. niger and S. forsteni have jaw-lever mechanics producing a lesser biting force and have a smaller weight of adductor mandibulae. Feeding rates and foray size of S. rivulatus, S. niger and S. forsteni were greater than C. sordidus and C. bowersi. The degree in bioerosion (GAI × feeding rate) was the largest for S. rivulatusand the smallest for S. forsteni. The degree in bioerosion for C. sordidus was larger than S. niger whereas relatively equal between C. bowersi and S. niger. These results suggest that interspecific difference in GAI was explained by interspecific differences in teeth shape, jaw-lever mechanics and relative weight of adductor mandibulae. The interspecific difference in the degree of bioerosion suggests the

  19. Effects of microgravity on muscle and cerebral cortex: a suggested interaction

    NASA Astrophysics Data System (ADS)

    D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.; Corcoran, M. L.

    The ``slow'' antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension (``simulated'' microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.

  20. Comparison of lower limb muscle activation with ballet movements (releve and demi-plie) and general movements (heel rise and squat) in healthy adults

    PubMed Central

    Kim, Min-Ju; Kim, Joong-Hwi

    2016-01-01

    [Purpose] The aim of this study was to demonstrate therapeutic grounds for rehabilitation exercise approach by comparing and analyzing muscular activities of Ballet movements: the releve movement (RM) and the demi-plie movement (DM). [Methods] Four types of movements such as RM vs. heel rise (HM) and DM vs. squat movement (SM) were randomized and applied in 30 healthy male and female individuals while measuring 10-s lower limb muscular activities (gluteus maximus [GMa], gluteus medius [GMe], rectus femoris [RF], adductor longus [AL], medial gastrocnemius [MG], and lateral gastrocnemius [LG]) by using surface electromyography (EMG). [Results] Significant differences were found in GMa, GMe, AL and MG activities for DM and in all of the six muscles for RM, in particular when the two groups were compared (RM vs HM and DM vs SM). [Conclusion] The RM and DM have a greater effect on lower limb muscular force activities compared to HM and SM and could be recommended as clinical therapeutic exercises for lower limb muscle enhancement. PMID:26957762

  1. “Target” and “Sandwich” Signs in Thigh Muscles have High Diagnostic Values for Collagen VI-related Myopathies

    PubMed Central

    Fu, Jun; Zheng, Yi-Ming; Jin, Su-Qin; Yi, Jun-Fei; Liu, Xiu-Juan; Lyn, He; Wang, Zhao-Xia; Zhang, Wei; Xiao, Jiang-Xi; Yuan, Yun

    2016-01-01

    Background: Collagen VI-related myopathies are autosomal dominant and recessive hereditary myopathies, mainly including Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM). Muscle magnetic resonance imaging (MRI) has been widely used to diagnosis muscular disorders. The purpose of this study was to evaluate the diagnostic value of thigh muscles MRI for collagen VI-related myopathies. Methods: Eleven patients with collagen VI gene mutation-related myopathies were enrolled in this study. MRI of the thigh muscles was performed in all patients with collagen VI gene mutation-related myopathies and in 361 patients with other neuromuscular disorders (disease controls). T1-weighted images were used to assess fatty infiltration of the muscles using a modified Mercuri's scale. We assessed the sensitivity and specificity of the MRI features of collagen VI-related myopathies. The relationship between fatty infiltration of muscles and specific collagen VI gene mutations was also investigated. Results: Eleven patients with collagen VI gene mutation-related myopathies included six UCMD patients and five BM patients. There was no significant difference between UCMD and BM patients in the fatty infiltration of each thigh muscle except sartorius (P = 0.033); therefore, we combined the UCMD and BM data. Mean fatty infiltration scores were 3.1 and 3.0 in adductor magnus and gluteus maximus, while the scores were 1.3, 1.3, and 1.5 in gracilis, adductor longus, and sartorius, respectively. A “target” sign in rectus femoris (RF) was present in seven cases, and a “sandwich” sign in vastus lateralis (VL) was present in ten cases. The “target” and “sandwich” signs had sensitivities of 63.6% and 90.9% and specificities of 97.3% and 96.9% for the diagnosis of collagen VI-related myopathies, respectively. Fatty infiltration scores were 2.0–3.0 in seven patients with mutations in the triple-helical domain, and 1.0–1.5 in three of four patients with

  2. Flexor Digitorum Accessorius Longus: Importance of Posterior Ankle Endoscopy

    PubMed Central

    Batista, Jorge Pablo; del Vecchio, Jorge Javier; Golanó, Pau; Vega, Jordi

    2015-01-01

    Endoscopy for the posterior region of the ankle through two portals is becoming more widespread for the treatment of a large number of conditions which used to be treated with open surgery years ago. The tendon of the flexor hallucis longus (FHL) travels along an osteofibrous tunnel between the posterolateral and posteromedial tubercles of the talus. Chronic inflammation of this tendon may lead to painful stenosing tenosynovitis. The aim of this report is to describe two cases depicting an accessory tendon which is an anatomical variation of the flexor hallucis longus in patients with posterior friction syndrome due to posterior ankle impingement and associated with a posteromedial osteochondral lesion of the talus. The anatomical variation (FDAL) described was a finding during an endoscopy of the posterior region of the ankle, and we have spared it by sectioning the superior flexor retinaculum only. The accessory flexor digitorum longus is an anatomical variation and should be taken into account when performing an arthroscopy of the posterior region of the ankle. We recommend this treatment on this type of injury although we admit this does not make a definite conclusion. PMID:26060592

  3. Diagnosis and surgical management of flexor digitorum accessorius longus-induced tarsal tunnel syndrome.

    PubMed

    Wittmayer, Brian C; Freed, Lewis

    2007-01-01

    The flexor digitorum accessorius longus is a rare muscular occurrence in the lower extremity. It has been reported as an etiology of tarsal tunnel syndrome through prior case reports. By means of individual case study, we revisit flexor digitorum accessorius longus as a cause of tarsal tunnel syndrome. This case study discusses diagnosis along with surgical treatment of tarsal tunnel syndrome induced by the presence of flexor digitorum accessorius longus.

  4. Reduction-oxidation state and protein degradation in skeletal muscle of fasted and refed rats

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1986-01-01

    Redox state and protein degradation were measured in isolated muscles of fasted (up to 10 d) and refed (up to 4 d) 7- to 14-wk-old rats. Protein degradation in the extensor digitorum longus muscle, but not in the soleus muscle, was greater in the fasted rats than in weight-matched muscle from fed rats. The NAD couple was more oxidized in incubated and fresh extensor digitorum longus muscles and in some incubated soleus muscles of fasted rats than in weight-matched muscle from fed rats. In the extensor digitorum longus muscle of refed or prolonged fasted rats, protein degradation was slower and the NAD couple was more reduced than in the fed state. Therefore, oxidation of the NAD couple was associated with increased muscle breakdown during fasting, whereas reduction of the NAD couple was associated with muscle conservation and deposition.

  5. Anomalous course of the extensor pollicis longus: clinical relevance.

    PubMed

    Rubin, Guy; Wolovelsky, Alejandro; Rinott, Micha; Rozen, Nimrod

    2011-11-01

    The extensor pollicis longus (EPL) is a consistent structure with rare anomalies, the most common being a group of different tendon duplications passing through the fourth compartment without symptoms. The second form comprises anomalies in the course of the EPL having significant clinical importance due to the predisposition for creating tenosynovitis of the EPL mimicking other types of tendon tenosynovitis. Clinical symptoms of radial dorsal wrist pain mimicking intersection syndrome or de-Quervain disease with the "absent snuff box" sign should raise suspicions for an anomaly in the course of the EPL.

  6. Changes in Adductor Strength After Competition in Academy Rugby Union Players.

    PubMed

    Roe, Gregory A B; Phibbs, Padraic J; Till, Kevin; Jones, Ben L; Read, Dale B; Weakley, Jonathon J; Darrall-Jones, Joshua D

    2016-02-01

    This study determined the magnitude of change in adductor strength after a competitive match in academy rugby union players and examined the relationship between locomotive demands of match-play and changes in postmatch adductor strength. A within-subject repeated measures design was used. Fourteen academy rugby union players (age, 17.4 ± 0.8 years; height, 182.7 ± 7.6 cm; body mass, 86.2 ± 11.6 kg) participated in the study. Each player performed 3 maximal adductor squeezes at 45° of hip flexion before and immediately, 24, 48, and 72 hours postmatch. Global positioning system was used to assess locomotive demands of match-play. Trivial decreases in adductor squeeze scores occurred immediately (-1.3 ± 2.5%; effect size [ES] = -0.11 ± 0.21; likely, 74%) and 24 hours after match (-0.7 ± 3%; ES = -0.06 ± 0.25; likely, 78%), whereas a small but substantial increase occurred at 48 hours (3.8 ± 1.9%; ES = 0.32 ± 0.16; likely, 89%) before reducing to trivial at 72 hours after match (3.1 ± 2.2%; ES = 0.26 ± 0.18; possibly, 72%). Large individual variation in adductor strength was observed at all time points. The relationship between changes in adductor strength and distance covered at sprinting speed (VO2max ≥ 81%) was large immediately postmatch (p = 0.056, r = -0.521), moderate at 24 hours (p = 0.094, r = -0.465), and very large at 48 hours postmatch (p = 0.005, r = -0.707). Players who cover greater distances sprinting may suffer greater adductor fatigue in the first 48 hours after competition. The assessment of adductor strength using the adductor squeeze test should be considered postmatch to identify players who may require additional rest before returning to field-based training.

  7. Shortened cortical silent period in adductor spasmodic dysphonia: evidence for widespread cortical excitability.

    PubMed

    Samargia, Sharyl; Schmidt, Rebekah; Kimberley, Teresa Jacobson

    2014-02-07

    The purpose of this study was to compare cortical inhibition in the hand region of the primary motor cortex between subjects with focal hand dystonia (FHD), adductor spasmodic dysphonia (AdSD), and healthy controls. Data from 28 subjects were analyzed (FHD n=11, 53.25 ± 8.74 y; AdSD: n=8, 56.38 ± 7.5 y; and healthy controls: n=941.67 ± 10.85 y). All subjects received single pulse TMS to the left motor cortex to measure cortical silent period (CSP) in the right first dorsal interosseus (FDI) muscle. Duration of the CSP was measured and compared across groups. A one-way ANCOVA with age as a covariate revealed a significant group effect (p<0.001). Post hoc analysis revealed significantly longer CSP duration in the healthy group vs. AdSD group (p<0.001) and FHD group (p<0.001). These results suggest impaired intracortical inhibition is a neurophysiologic characteristic of FHD and AdSD. In addition, the shortened CSP in AdSD provides evidence to support a widespread decrease in cortical inhibition in areas of the motor cortex that represent an asymptomatic region of the body. These findings may inform future investigations of differential diagnosis as well as alternative treatments for focal dystonias.

  8. Partial peroneus longus tendon rupture in professional basketball players: a report of 2 cases.

    PubMed

    Cooper, Mitchell E; Selesnick, F Harlan; Murphy, Brian J

    2002-12-01

    Partial tears of the peroneal tendons are rare. Partial longitudinal tears of the peroneus longus tendon are even more rare. We report on 2 professional basketball players who had partial peroneus longus tendon tears beneath the cuboid. A literature review and discussion of treatment is included.

  9. Skeletal muscle fiber atrophy: altered thin filament density changes slow fiber force and shortening velocity.

    PubMed

    Riley, D A; Bain, J L W; Romatowski, J G; Fitts, R H

    2005-02-01

    Single skinned fibers from soleus and adductor longus (AL) muscles of weight-bearing control rats and rats after 14-day hindlimb suspension unloading (HSU) were studied physiologically and ultrastructurally to investigate how slow fibers increase shortening velocity (V0) without fast myosin. We hypothesized that unloading and shortening of soleus during HSU reduces densities of thin filaments, generating wider myofilament separations that increase V0 and decrease specific tension (kN/m2). During HSU, plantarflexion shortened soleus working length 23%. AL length was unchanged. Both muscles atrophied as shown by reductions in fiber cross-sectional area. For AL, the 60% atrophy accounted fully for the 58% decrease in absolute tension (mN). In the soleus, the 67% decline in absolute tension resulted from 58% atrophy plus a 17% reduction in specific tension. Soleus fibers exhibited a 25% reduction in thin filaments, whereas there was no change in AL thin filament density. Loss of thin filaments is consistent with reduced cross bridge formation, explaining the fall in specific tension. V0 increased 27% in soleus but was unchanged in AL. The V0 of control and HSU fibers was inversely correlated (R = -0.83) with thin filament density and directly correlated (R = 0.78) with thick-to-thin filament spacing distance in a nonlinear fashion. These data indicate that reduction in thin filament density contributes to an increased V0 in slow fibers. Osmotically compacting myofilaments with 5% dextran returned density, spacing, and specific tension and slowed V0 to near-control levels and provided evidence for myofilament spacing modulating tension and V0.

  10. An anatomic and clinical study of the adductor magnus tendon-descending genicular artery bone flap.

    PubMed

    Huang, Dong; Wang, Hai-Wen; Xu, Da-Chuan; Wang, Hong-Gang; Wu, Wei-Zhi; Zhang, Hui-Ru

    2011-01-01

    The composite tissue flap of the descending genicular vessels with the adductor magnus tendon is a newly developed, reliable method to repair the Achilles tendon and relevant skin defects. The aim of this study was to evaluate the anatomy of the adductor magnus tendon-descending genicular artery bone flap, and the feasibility and value for the repair of the Achilles tendon and relevant skin defects. There were 34 adult specimens used for the anatomy of this flap. The descending genicular artery originates 10.5 ± 1.6 cm above the adductor tubercle, with a diameter of 1.8 ± 0.6 mm and a length of 1.2 ± 0.5 cm. Its articular branch is distributed in the adductor magnus tendon and the medial condyle of the femur. The saphenous branch has a diameter of 1.1 ± 0.3 mm and is distributed in the skin of the upper medial calf. A total of 16 cases of trauma-induced Achilles tendon damage and calcaneus and skin defects were repaired with the vascularized adductor magnus tendon bone flap, including the reconstruction of Achilles tendon insertion and repair of relevant skin defects. All of the composite tissue flaps were viable, the skin sensation of the flaps was recovered, and all patients walked with a normal gait. Our results suggested that the adductor magnus tendon-descending genicular artery bone flap is an alternative method to repair composite tissue defects of the Achilles tendon.

  11. Parrotfish grazing ability: interspecific differences in relation to jaw-lever mechanics and relative weight of adductor mandibulae on an Okinawan coral reef

    PubMed Central

    2016-01-01

    Parrotfishes (family Labridae: Scarini) are regarded to have important roles for maintaining the ecosystem balance in coral reefs due to their removal of organic matter and calcic substrates by grazing. The purpose of the present study was to clarify the interspecific differences in grazing ability of five parrotfish species (Chlorurus sordidus, C. bowersi, Scarus rivulatus, S. niger and S. forsteni) in relation to interspecific differences in jaw-lever mechanics and the relative weight of the adductor mandibulae (muscles operating jaw closing). The grazing ability was calculated by using stomach contents (CaCO3 weight/organic matter weight) defined as the grazing ability index (GAI). There were significant interspecific differences in GAI (C. sordidus = C. bowersi > S. rivulatus > S. niger = S. forsteni). Teeth of C. sordidus and C. bowersi were protrusive-shape whereas teeth of S. rivulatus, S. niger and S. forsteni were flat-shape. C. sordidus and C. bowersihave jaw-lever mechanics producing a greater biting force and have a larger weight of adductor mandibulae. S. rivulatus has jaw-lever mechanics producing a greater biting force but a smaller weight of adductor mandibulae that produce an intermediate biting force. In contrast, S. niger and S. forsteni have jaw-lever mechanics producing a lesser biting force and have a smaller weight of adductor mandibulae. Feeding rates and foray size of S. rivulatus, S. niger and S. forsteni were greater than C. sordidus and C. bowersi. The degree in bioerosion (GAI × feeding rate) was the largest for S. rivulatusand the smallest for S. forsteni. The degree in bioerosion for C. sordidus was larger than S. niger whereas relatively equal between C. bowersi and S. niger. These results suggest that interspecific difference in GAI was explained by interspecific differences in teeth shape, jaw-lever mechanics and relative weight of adductor mandibulae. The interspecific difference in the degree of bioerosion suggests the

  12. A pedicled muscle flap based solely on a neural pedicle.

    PubMed

    Avci, Gulden; Akan, Mithat; Akoz, Tayfun; Kuzon, William; Gul, Aylin Ege

    2009-01-01

    We tested the hypothesis that the intrinsic vascular plexus of the motor nerve could support viability in a rat hindlimb muscle flap. In a preliminary study, we examined the course and vascularity of the sciatic nerve, the peroneal nerve, and the peroneous longus muscle in the rat hindlimb via anatomic dissection, microangiography, and histologic study (n = 10 animals). On the basis of this examination, the peroneous longus muscle was chosen as our experimental model in this study. In 12 animals, the peroneus longus was acutely elevated, which severed all tendinous and vascular structures, this left the muscle pedicled on the motor nerve only (Group I). Animals in Group II underwent a staged elevation of the flap with division of the vascular pedicle, the tendon of insertion, and the tendon of origin during separate procedures that were 5 days apart (n = 12). Muscle viability was evaluated by gross inspection, measurement of muscle weight and length, nitroblue tetrazlium (NBT) staining, microangiography, and histology. NBT staining demonstrated that immediate elevation of the peroneus longus muscle flaps led to an average necrotic area of 80.6% +/- 9.8% (Group I). A significant improvement in viability was observed for muscle flaps of animals in Group II, with peroneus longus muscle necrosis averaging 25.6% +/- 9.3%. Microangiography demonstrated that the intrinsic vascularity of nerve was increased dramatically in Group II. These data support the hypothesis that the intrinsic vascular plexus of the motor nerve of a skeletal muscle can support at least partial viability of a muscle flap. However, this vascular axis is inadequate to support complete viability of a muscle flap if the flap is elevated immediately. If a staged elevation affects a surgical delay, the viability of a muscle flap elevated on a neural pedicle can be increased significantly. With adjustments in the delay procedure, this strategy may allow transfer of muscle flaps when maintenance or

  13. Determination of Injection Site in Flexor Digitorum Longus for Effective and Safe Botulinum Toxin Injection

    PubMed Central

    Kim, Hong Geum; Chung, Myung Eun; Song, Dae Heon; Kim, Ju Yong; Sul, Bo Mi; Oh, Chang Hoon

    2015-01-01

    Objective To determine the optimal injection site in the flexor digitorum longus (FDL) muscle for effective botulinum toxin injection. Methods Fourteen specimens from eight adult Korean cadavers were used in this study. The most proximal medial point of the tibia plateau was defined as the proximal reference point; the most distal tip of the medial malleolus was defined as the distal reference point. The distance of a line connecting the proximal and distal reference points was defined as the reference length. The X-coordinate was the distance from the proximal reference point to the intramuscular motor endpoint (IME), or motor entry point (MEP) on the reference line, and the Y-coordinate was the distance from the nearest point from MEP on the medial border of the tibia to the MEP. IME and MEP distances from the proximal reference point were evaluated using the raw value and the X-coordinate to reference length ratio was determined as a percentage. Results The majority of IMEs were located within 30%-60% of the reference length from the proximal reference point. The majority of the MEPs were located within 40%-60% of the reference length from the proximal reference point. Conclusion We recommend the anatomical site for a botulinum toxin injection in the FDL to be within a region 30%-60% of the reference length from the proximal reference point. PMID:25750869

  14. Comparative histochemical composition of muscle fibres in a pre- and a postvertebral muscle of the cervical spine.

    PubMed

    Boyd-Clark, L C; Briggs, C A; Galea, M P

    2001-12-01

    References to histochemistry are extensive for human limb muscles but occur less frequently in relation to vertebral muscle. Most vertebral muscle literature has been concerned with muscle fibre characteristics in the lumbar and thoracic spine, due in large part to the incidence of low back pain and idiopathic scoliosis. However few studies have investigated the histochemical composition of neck muscles in humans: and, to our knowledge, no previous study has examined the antagonistic longus colli and multifidus muscle pair. In addition, while age-related segmental degeneration is most prominent between C5 and C7, it is not known whether these osteoligamentous changes are paralleled by changes in muscle fibre ratio. Tissue blocks comprising muscle and bone from C5-C7 segments were harvested at autopsy from 16 subjects with ages ranging from 4 to 77 years. The prevertebral longus colli and postvertebral multifidus muscle pairs were randomly selected from one or other side in each subject. The tissue was frozen, sectioned and histochemically stained for myofibrillar adenosine triphosphatase. Analysis of muscle fibre types was performed by light microscopy. Wilcoxon paired t-tests were used to ascertain whether intramuscular and intermuscular differences in fibre composition were significant. In addition, correlation and regression analyses were used to determine whether fibre type proportions changed in either muscle with increasing age. The present study has revealed histochemical differences between longus colli and multifidus at the level of the C5-C7 vertebral segments. Multifidus comprises a significantly greater proportion of type I than type II fibres. Longus colli comprises a significantly greater proportion of type II fibres than multifidus. Further there were no changes in fibre type proportion in either muscle with increasing age. These observations suggest that longus colli responds equally to postural and phasic demands, whereas multifidus is

  15. Abnormal motor cortex excitability during linguistic tasks in adductor-type spasmodic dysphonia.

    PubMed

    Suppa, A; Marsili, L; Giovannelli, F; Di Stasio, F; Rocchi, L; Upadhyay, N; Ruoppolo, G; Cincotta, M; Berardelli, A

    2015-08-01

    In healthy subjects (HS), transcranial magnetic stimulation (TMS) applied during 'linguistic' tasks discloses excitability changes in the dominant hemisphere primary motor cortex (M1). We investigated 'linguistic' task-related cortical excitability modulation in patients with adductor-type spasmodic dysphonia (ASD), a speech-related focal dystonia. We studied 10 ASD patients and 10 HS. Speech examination included voice cepstral analysis. We investigated the dominant/non-dominant M1 excitability at baseline, during 'linguistic' (reading aloud/silent reading/producing simple phonation) and 'non-linguistic' tasks (looking at non-letter strings/producing oral movements). Motor evoked potentials (MEPs) were recorded from the contralateral hand muscles. We measured the cortical silent period (CSP) length and tested MEPs in HS and patients performing the 'linguistic' tasks with different voice intensities. We also examined MEPs in HS and ASD during hand-related 'action-verb' observation. Patients were studied under and not-under botulinum neurotoxin-type A (BoNT-A). In HS, TMS over the dominant M1 elicited larger MEPs during 'reading aloud' than during the other 'linguistic'/'non-linguistic' tasks. Conversely, in ASD, TMS over the dominant M1 elicited increased-amplitude MEPs during 'reading aloud' and 'syllabic phonation' tasks. CSP length was shorter in ASD than in HS and remained unchanged in both groups performing 'linguistic'/'non-linguistic' tasks. In HS and ASD, 'linguistic' task-related excitability changes were present regardless of the different voice intensities. During hand-related 'action-verb' observation, MEPs decreased in HS, whereas in ASD they increased. In ASD, BoNT-A improved speech, as demonstrated by cepstral analysis and restored the TMS abnormalities. ASD reflects dominant hemisphere excitability changes related to 'linguistic' tasks; BoNT-A returns these excitability changes to normal.

  16. Tenosynovial Osteochondromatosis of the Flexor Hallucis Longus Tendon Treated by Tendoscopy.

    PubMed

    Lui, Tun Hing

    2015-01-01

    Tendosynovial chondromatosis of the foot and ankle is a rare disease entity. We reported 3 patients with tenosynovial osteochondromatosis of flexor hallucis longus. They were successfully treated by arthroscopic synovectomy and removal of the loose bodies.

  17. Endoscopic Loose Body Removal From Zone 2 Flexor Hallucis Longus Tendon Sheath.

    PubMed

    Lui, Tun Hing

    2016-06-01

    Tenosynovial chondromatosis can occur in the flexor hallucis longus tendon sheath. Complete synovectomy and removal of the loose bodies comprise the treatment of choice. An open procedure requires extensive soft-tissue dissection because the flexor hallucis longus tendon is a deep structure except at the hallux. A tendoscopy approach to synovectomy and removal of loose bodies has the advantage of minimally invasive surgery. This technical note outlines pearls and pitfalls and provides a step-by-step guide to performing this procedure.

  18. The connective tissue of the adductor canal--a morphological study in fetal and adult specimens.

    PubMed

    de Oliveira, Flavia; de Vasconcellos Fontes, Ricardo Bragança; da Silva Baptista, Josemberg; Mayer, William Paganini; de Campos Boldrini, Silvia; Liberti, Edson Aparecido

    2009-03-01

    The adductor canal is a conical or pyramid-shaped pathway that contains the femoral vessels, saphenous nerve and a varying amount of fibrous tissue. It is involved in adductor canal syndrome, a claudication syndrome involving young individuals. Our objective was to study modifications induced by aging on the connective tissue and to correlate them to the proposed pathophysiological mechanism. The bilateral adductor canals and femoral vessels of four adult and five fetal specimens were removed en bloc and analyzed. Sections 12 microm thick were obtained and the connective tissue studied with Sirius Red, Verhoeff, Weigert and Azo stains. Scanning electron microscopy (SEM) photomicrographs of the surfaces of each adductor canal were also analyzed. Findings were homogeneous inside each group. The connective tissue of the canal was continuous with the outer layer of the vessels in both groups. The pattern of concentric, thick collagen type I bundles in fetal specimens was replaced by a diffuse network of compact collagen bundles with several transversal fibers and an impressive content of collagen III fibers. Elastic fibers in adults were not concentrated in the thick bundles but dispersed in line with the transversal fiber system. A dynamic compression mechanism with or without an evident constricting fibrous band has been proposed previously for adductor canal syndrome, possibly involving the connective tissue inside the canal. The vessels may not slide freely during movement. These age-related modifications in normal individuals may represent necessary conditions for this syndrome to develop.

  19. The connective tissue of the adductor canal – a morphological study in fetal and adult specimens

    PubMed Central

    de Oliveira, Flavia; de Vasconcellos Fontes, Ricardo Bragança; da Silva Baptista, Josemberg; Mayer, William Paganini; de Campos Boldrini, Silvia; Liberti, Edson Aparecido

    2009-01-01

    The adductor canal is a conical or pyramid-shaped pathway that contains the femoral vessels, saphenous nerve and a varying amount of fibrous tissue. It is involved in adductor canal syndrome, a claudication syndrome involving young individuals. Our objective was to study modifications induced by aging on the connective tissue and to correlate them to the proposed pathophysiological mechanism. The bilateral adductor canals and femoral vessels of four adult and five fetal specimens were removed en bloc and analyzed. Sections 12 µm thick were obtained and the connective tissue studied with Sirius Red, Verhoeff, Weigert and Azo stains. Scanning electron microscopy (SEM) photomicrographs of the surfaces of each adductor canal were also analyzed. Findings were homogeneous inside each group. The connective tissue of the canal was continuous with the outer layer of the vessels in both groups. The pattern of concentric, thick collagen type I bundles in fetal specimens was replaced by a diffuse network of compact collagen bundles with several transversal fibers and an impressive content of collagen III fibers. Elastic fibers in adults were not concentrated in the thick bundles but dispersed in line with the transversal fiber system. A dynamic compression mechanism with or without an evident constricting fibrous band has been proposed previously for adductor canal syndrome, possibly involving the connective tissue inside the canal. The vessels may not slide freely during movement. These age-related modifications in normal individuals may represent necessary conditions for this syndrome to develop. PMID:19245505

  20. Computer modeling of the pathomechanics of spastic hip dislocation in children.

    PubMed

    Miller, F; Slomczykowski, M; Cope, R; Lipton, G E

    1999-01-01

    Spastic muscles about the hip cause subluxation, dislocation, and lead to acetabular dysplasia. Spastic hip disease occurs when the muscles about the hip exert forces that are too high or in the wrong direction or both. To determine the role of the hip forces in the progression of spastic hip disease and the effect of both muscle-lengthening and bony reconstructive surgeries, a computerized mathematical model of a spastic hip joint was created. The magnitude and direction of the forces of spastic hips undergoing surgery were analyzed preoperatively and postoperatively to determine which procedure is best suited for the treatment of spastic hip disease. The muscle-lengthening procedures included (a) the adductor longus, (b) the psoas, iliacus, gracilis, adductor brevis, and adductor longus, and (3) the psoas, iliacus, gracilis, adductor brevis, adductor longus, semimembranosus, and semitendinosus. The bony reconstructive and muscle-lengthening procedures included (a) lengthening the psoas, iliacus, gracilis, adductor brevis, adductor longus, semimembranosus, and semitendinosus combined with changing femoral neck anteversion from 45 to 10 degrees , (b) lengthening of the psoas, iliacus, gracilis, adductor brevis, adductor longus, semimembranosus, and semitendinosus combined with changing neck-shaft angle from 165 to 135 degrees , and (c) lengthening of the psoas, iliacus, gracilis, adductor brevis, adductor longus, semimembranosus, and semitendinosus combined with changing femoral neck anteversion from 45 to 10 degrees and neck-shaft angle from 165 to 135 degrees . Results show that a child with spastic hip disease has a hip-force magnitude 3 times that of the a child with a normal hip in the normal physiologic position. Based on this mathematical model the best to normalize the magnitude of the hip-joint reaction force, the muscles to be lengthened should include the psoas, iliacus, gracilis, adductor brevis, and the adductor longus. To normalize the direction of

  1. Homology of the jaw muscles in lizards and snakes-a solution from a comparative gnathostome approach.

    PubMed

    Johnston, Peter

    2014-03-01

    Homology or shared evolutionary origin of jaw adductor muscles in lizards and snakes has been difficult to establish, although snakes clearly arose within the lizard radiation. Lizards typically have temporal adductors layered lateral to medial, and in snakes the muscles are arranged in a rostral to caudal pattern. Recent work has suggested that the jaw adductor group in gnathostomes is arranged as a folded sheet; when this theory is applied to snakes, homology with lizard morphology can be seen. This conclusion revisits the work of S.B. McDowell, J Herpetol 1986; 20:353-407, who proposed that homology involves identity of m. levator anguli oris and the loss of m. adductor mandibulae externus profundus, at least in "advanced" (colubroid) snakes. Here I advance the folded sheet hypothesis across the whole snake tree using new and literature data, and provide a solution to this homology problem.

  2. Gantzer muscle. An anatomical study

    PubMed Central

    Caetano, Edie Benedito; Sabongi, João José; Vieira, Luiz Ângelo; Caetano, Maurício Ferreira; Moraes, Daniel Vinhais

    2015-01-01

    OBJECTIVE: The relationship of Gantzer muscle to the median and anterior interosseous nerve is debated. METHODS: Ìn an anatomical study with 80 limbs from 40 cadavers the incidence, origin, insertion, nerve supply and relations of Gantzer muscle have been documented. RESULTS: The muscle was found in 54 forearms (68% of limbs) and was supplied by the anterior interosseous nerve. It arose from the deep surface of the flexor digitorum superficialis muscle, (42 limbs), coronoid process (eight limbs) and medial epicondyle (seven limbs). Its insertion was to the ulnar part of flexor pollicis longus muscle. The Gantzer muscle always lay posterior to both the median and anterior interosseous nerve. CONCLUSION: The Gantzer muscle may contribute to the median nerve and anterior interosseous nerve compression. The muscle was found in 68% of limbs and should be considered a normal anatomical pattern rather than an anatomical variation. Level of Evidence IV, Case Series . PMID:27069404

  3. Anatomy and adaptations of the chewing muscles in Daubentonia (Lemuriformes).

    PubMed

    Perry, Jonathan M G; Macneill, Kristen E; Heckler, Amanda L; Rakotoarisoa, Gilbert; Hartstone-Rose, Adam

    2014-02-01

    The extractive foraging behavior in aye-ayes (Daubentonia madagascariensis) is unique among primates and likely has led to selection for a specialized jaw adductor musculature. Although this musculature has previously been examined in a subadult, until now, no one has reported the fascicle length, weight, and physiological cross-sectional area (PCSA) for these muscles in an adult aye-aye specimen. For the present study, we dissected an adult wild-born aye-aye from the Tsimbazaza Botanical and Zoological Park, Antananarivo, Madagascar. The aye-aye follows the general strepsirrhine pattern in its overall jaw adductor muscle anatomy, but has very large muscles and PCSA relative to body size. Fascicle length is also relatively great, but not nearly as much as in the juvenile aye-aye previously dissected. Perhaps chewing muscle fascicles begin relatively long, but shorten through use and growth as connective tissue sheets expand and allow for pinnation and increased PCSA. Alternately, it may be that aye-ayes develop fascicular adaptation to wide gapes early in ontogeny, only to increase PCSA through later development into adulthood. The functional demands related to their distinctive manner of extractive foraging are likely responsible for the great PCSA in the jaw adductor muscles of the adult aye-aye. It may be that great jaw adductor PCSA in the adult, as compared to the juvenile, is a means of increasing foraging efficiency in the absence of parental assistance. Anat Rec, 297:308-316, 2014. © 2013 Wiley Periodicals, Inc.

  4. New insights into dinosaur jaw muscle anatomy.

    PubMed

    Holliday, Casey M

    2009-09-01

    Jaw muscles are key components of the head and critical to testing hypotheses of soft-tissue homology, skull function, and evolution. Dinosaurs evolved an extraordinary diversity of cranial forms adapted to a variety of feeding behaviors. However, disparate evolutionary transformations in head shape and function among dinosaurs and their living relatives, birds and crocodylians, impair straightforward reconstructions of muscles, and other important cephalic soft tissues. This study presents the osteological correlates and inferred soft tissue anatomy of the jaw muscles and relevant neurovasculature in the temporal region of the dinosaur head. Hypotheses of jaw muscle homology were tested across a broad range archosaur and sauropsid taxa to more accurately infer muscle attachments in the adductor chambers of non-avian dinosaurs. Many dinosaurs likely possessed m. levator pterygoideus, a trait shared with lepidosaurs but not extant archosaurs. Several major clades of dinosaurs (e.g., Ornithopoda, Ceratopsidae, Sauropoda) eliminated the epipterygoid, thus impacting interpretations of m. pseudotemporalis profundus. M. pseudotemporalis superficialis most likely attached to the caudoventral surface of the laterosphenoid, a trait shared with extant archosaurs. Although mm. adductor mandibulae externus profundus and medialis likely attached to the caudal half of the dorsotemporal fossa and coronoid process, clear osteological correlates separating the individual bellies are rare. Most dinosaur clades possess osteological correlates indicative of a pterygoideus ventralis muscle that attaches to the lateral surface of the mandible, although the muscle may have extended as far as the jugal in some taxa (e.g., hadrosaurs, tyrannosaurs). The cranial and mandibular attachments of mm adductor mandibulae externus superficialis and adductor mandibulae posterior were consistent across all taxa studied. These new data greatly increase the interpretive resolution of head anatomy in

  5. Description and scaling of pectoral muscles in ictalurid catfishes.

    PubMed

    Miano, Joseph Paul; Loesser-Casey, Kathryn E; Fine, Michael L

    2013-04-01

    The pectoral spine of catfishes is an antipredator adaptation that can be bound, locked, and rubbed against the cleithrum to produce stridulation sounds. We describe muscle morphology of the pectoral spines and rays in six species in four genera of North American ictalurid catfishes. Since homologies of catfish pectoral muscles have not been universally accepted, we designate them functionally as the spine abductor and adductor and the arrector dorsalis and ventralis. The four muscles of the remaining pectoral rays are the superficial and deep (profundal) abductors and adductors. The large spine abductor and spine adductor are responsible for large amplitude movements, and the smaller arrector dorsalis and arrector ventralis have more specialized functions, that is, spine elevation and depression, respectively, although they also contribute to spine abduction. Three of the four spine muscles were pennate (the abductor and two arrectors), the spine adductor can be pennate or parallel, and ray muscles have parallel fibers. Insertions of pectoral muscles are similar across species, but there is a shift of origins in some muscles, particularly of the superficial abductor of the pectoral rays, which assumes a midline position in Ictalurus and increasingly more lateral placement in Ameiurus (one quarter way out from the midline), and Pylodictis and Noturus (half way out). Coincident with this lateral shift, the attachments of the hypaxial muscle to the ventral girdle become more robust. Comparison with its sister group supports the midline position as basal and lateral migration as derived. The muscles of the pectoral spine are heavier than muscles of the remaining rays in all species but the flathead, supporting the importance of specialized spine functions above typical movement. Further, spine muscles were larger than ray muscles in all species but the flathead catfish, which lives in water with the fastest currents.

  6. Anticipatory and Reactive Response to Falls: Muscle Synergy Activation of Forearm Muscles.

    PubMed

    Couzens, Greg; Kerr, Graham

    2015-10-01

    We investigated the surface electromyogram response of six forearm muscles to falls onto the outstretched hand. The extensor carpi radialis longus, extensor carpi radialis brevis, extensor carpi ulnaris, abductor pollicis longus, flexor carpi radialis and flexor carpi ulnaris muscles were sampled from eight volunteers who underwent ten self-initiated falls. All muscles initiated prior to impact. Co-contraction is the most obvious surface electromyogram feature. The predominant response is in the radial deviators. The surface electromyogram timing we recorded would appear to be a complex anticipatory response to falling modified by the effect on the forearm muscles following impact. The mitigation of the force of impact is probably more importantly through shoulder abduction and extension and elbow flexion rather than action of the forearm muscles.

  7. Skeletal muscle metabolism in hypokinetic rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.

    1984-01-01

    Muscle growth, protein metabolism, and amino acid metabolism were studied in various groups of rats. Certain groups were adrenaliectomized; some rats were suspended while others (the controls) were weight bearing. Results show that: (1) metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating glucocorticoids; (2) metabolic changes in the soleus muscle due to higher steroid levels are probably potentiated by greater numbers of steroid receptors; and (3) not all metabolic responses of the soleus muscle to unloading are due to the elevated levels of glucocorticoids or the increased sensitivity of this muscle to these hormones.

  8. A pilot study to assess adductor canal catheter tip migration in a cadaver model.

    PubMed

    Leng, Jody C; Harrison, T Kyle; Miller, Brett; Howard, Steven K; Conroy, Myles; Udani, Ankeet; Shum, Cynthia; Mariano, Edward R

    2015-04-01

    An adductor canal catheter may facilitate early ambulation after total knee arthroplasty, but there is concern over preoperative placement since intraoperative migration of catheters may occur from surgical manipulation and result in ineffective analgesia. We hypothesized that catheter type and subcutaneous tunneling may influence tip migration for preoperatively inserted adductor canal catheters. In a male unembalmed human cadaver, 20 catheter insertion trials were divided randomly into one of four groups: flexible epidural catheter either tunneled or not tunneled; or rigid stimulating catheter either tunneled or not tunneled. Intraoperative patient manipulation was simulated by five range-of-motion exercises of the knee. Distance and length measurements were performed by a blinded regional anesthesiologist. Changes in catheter tip to nerve distance (p = 0.225) and length of catheter within the adductor canal (p = 0.467) were not different between the four groups. Two of five non-tunneled stimulating catheters (40 %) were dislodged compared to 0/5 in all other groups (p = 0.187). A cadaver model may be useful for assessing migration of regional anesthesia catheters; catheter type and subcutaneous tunneling may not affect migration of adductor canal catheters based on this preliminary study. However, future studies involving a larger sample size, actual patients, and other catheter types are warranted.

  9. Acoustic Variations in Adductor Spasmodic Dysphonia as a Function of Speech Task.

    ERIC Educational Resources Information Center

    Sapienza, Christine M.; Walton, Suzanne; Murry, Thomas

    1999-01-01

    Acoustic phonatory events were identified in 14 women diagnosed with adductor spasmodic dysphonia (ADSD), a focal laryngeal dystonia that disturbs phonatory function, and compared with those of 14 age-matched women with no vocal dysfunction. Findings indicated ADSD subjects produced more aberrant acoustic events than controls during tasks of…

  10. Musculoskeletal Management of a Patient With a History of Chronic Ankle Sprains: Identifying Rupture of Peroneal Brevis and Peroneal Longus With Diagnostic Ultrasonography

    PubMed Central

    Bruin, Dick B.; von Piekartz, Harry

    2014-01-01

    Objective The purpose of this case report is to describe the use of mobilization and eccentric exercise training for a patient with ankle pain and a history of chronic ankle sprains and discuss the course of diagnostic decision making when the patient did not respond to care. Clinical Features A 48-year-old police officer who had sustained multiple ankle sprains throughout his life presented with pain and restriction in his ability to walk, run, and work. The Global Rating of Change Scale score was − 6, the Numeric Pain Rating Scale score was 7/10, and the Lower Extremity Functional Scale score was − 33. Palpation of the peroneus longus and brevis muscles and inversion with overpressure reproduced the chief concern (Numeric Pain Rating Scale 7/10). The patient was initially diagnosed with chronic peroneal tendinopathy. Intervention and Outcome Treatment included lateral translation mobilization of the talocrural joint combined with eccentric exercise using an elastic band for the peroneal muscles. The patient reported improvement in pain and function during the course of intervention but not as rapidly as expected. Therefore, follow-up ultrasonographic imaging and radiography were performed. These studies revealed partial rupture of the peroneal brevis muscle and total rupture of the peroneal longus muscle. Conclusion A patient with long-term concerns of the foot complex with a diagnosis of peroneal tendinopathy showed slight improvement with eccentric exercises combined with manual therapy of the talocrural joint. After a course of treatment but minimal response, a diagnosis of tendon rupture was confirmed with diagnostic ultrasonography. Clinicians should be aware that when injuries do not improve with care, tendon rupture should be considered. PMID:25225470

  11. Motor innervation of respiratory muscles and an opercular display muscle in Siamese fighting fish Betta splendens.

    PubMed

    Gorlick, D L

    1989-12-15

    Horseradish peroxidase was used to identify motor neurons projecting to the adductor mandibulae, levator hyomandibulae, levator operculi, adductor operculi, and dilator operculi muscles in Siamese fighting fish, Betta splendens. These muscles participate in the production of respiratory and feeding movements in teleost fishes. The dilator operculi is also the effector muscle for gill-cover erection behavior that is part of Betta's aggressive display. The motor innervation of these muscles in Betta was compared to that previously described for carp. Motor neurons of the adductor mandibulae, levator hyomandibulae, and dilator operculi are located in the trigeminal motor nucleus, and motor neurons of the adductor operculi and levator operculi are located in the facial motor nucleus in Betta and in carp. The trigeminal motor nucleus in both species is divided into rostral and caudal subnuclei. However, there are substantial differences in the organization of the subnuclei, and in the distribution of motor neurons within them. In Betta, the rostral trigeminal subnucleus consists of a single part but the caudal subnucleus is divided into two parts. Motor neurons for the dilator operculi and levator hyomandibulae muscles are located in the lateral part of the caudal subnucleus; the medial part of the caudal subnucleus contains only dilator operculi motor neurons. The single caudal subnucleus in carp is located laterally, and contains motor neurons of both the dilator operculi and levator hyomandibulae muscles. Differences in the organization of the trigeminal motor nucleus may relate to the use of the dilator operculi muscle for aggressive display behavior by perciform fishes such as Betta but not by cypriniform fishes such as carp. Five species of perciform fishes that perform gill-cover erection behavior had a Betta-like pattern of organization of the caudal trigeminal nucleus and a similar distribution of dilator operculi motor neurons. Goldfish, which like carp are

  12. Adductor canal block versus femoral nerve block for total knee arthroplasty: a meta-analysis of randomized controlled trials

    PubMed Central

    Wang, Duan; Yang, Yang; Li, Qi; Tang, Shen-Li; Zeng, Wei-Nan; Xu, Jin; Xie, Tian-Hang; Pei, Fu-Xing; Yang, Liu; Li, Ling-Li; Zhou, Zong-Ke

    2017-01-01

    Femoral nerve blocks (FNB) can provide effective pain relief but result in quadriceps weakness with increased risk of falls following total knee arthroplasty (TKA). Adductor canal block (ACB) is a relatively new alternative providing pure sensory blockade with minimal effect on quadriceps strength. The meta-analysis was designed to evaluate whether ACB exhibited better outcomes with respect to quadriceps strength, pain control, ambulation ability, and complications. PubMed, Embase, Web of Science, Wan Fang, China National Knowledge Internet (CNKI) and the Cochrane Database were searched for RCTs comparing ACB with FNB after TKAs. Of 309 citations identified by our search strategy, 12 RCTs met the inclusion criteria. Compared to FNB, quadriceps maximum voluntary isometric contraction (MVIC) was significantly higher for ACB, which was consistent with the results regarding quadriceps strength assessed with manual muscle strength scale. Moreover, ACB had significantly higher risk of falling versus FNB. At any follow-up time, ACB was not inferior to FNB regarding pain control or opioid consumption, and showed better range of motion in comparison with FNB. ACB is superior to the FNB regarding sparing of quadriceps strength and faster knee function recovery. It provides pain relief and opioid consumption comparable to FNB and is associated with decreased risk of falls. PMID:28079176

  13. Spontaneous Rupture of the Extensor Pollicis Longus Tendon due to Unusual Etiology

    PubMed Central

    Taş, Süleyman; Balta, Serkan; Benlier, Erol

    2014-01-01

    Background: The etiology of spontaneous rupture of the extensor pollicis longus tendon includes systemic or local steroid injections, wrist fracture, tenosynovitis, synovitis, rheumatoid arthritis, and repetitive wrist motions. Case Report: We encountered a case of extensor pollicis longus tendon rupture with an unusual etiology, cow milking. In this case, transfer of the extensor indicis proprius tendon was performed successfully. At 1 year after surgery, extension of the thumb was sufficient. Conclusion: It appears that patients with occupations involving repetitive motions are at a high risk of closed tendon ruptures. PMID:25207178

  14. One-stage treatment of deep infection following repair of Achilles tendon rupture with flexor hallucis longus transfer.

    PubMed

    Lee, Kang; Moon, Jeong Seok; Seo, Jeong Gook; Lee, Woo Chun

    2009-03-01

    We present one-stage treatment of deep infection following repair of Achilles tendon rupture using flexor hallucis longus transfer. Flexor hallucis longus was used not only to connect the defect in Achillles tendon, but also to control the soft tissue infection with its abundant blood supply, simultaneously. The clinical results for the two patients in this report were excellent without major complication.

  15. Immediate Effect of Patterned Electrical Neuromuscular Stimulation on Pain and Muscle Activation in Individuals With Patellofemoral Pain

    PubMed Central

    Glaviano, Neal R.; Saliba, Susan A.

    2016-01-01

    Context:  For individuals with patellofemoral pain (PFP), altered muscle activity and pain are common during functional tasks. Clinicians often seek interventions to improve muscle activity and reduce impairments. One intervention that has not been examined in great detail is electrical stimulation. Objective:  To determine whether a single patterned electrical neuromuscular stimulation (PENS) treatment would alter muscle activity and pain in individuals with PFP during 2 functional tasks, a single-legged squat and a lateral step down. Design:  Cohort study. Setting:  Sports medicine research laboratory. Patients of Other Participants:  A total of 22 individuals with PFP (15 women, 7 men; age = 26.0 ± 7.9 years, height = 173.8 ± 8.1 cm, mass = 75.1 ± 17.9 kg). Intervention(s):  Participants were randomized into 2 intervention groups: a 15-minute PENS treatment that produced a strong motor response or a 15-minute 1-mA subsensory (sham) treatment. Main Outcome Measure(s):  Before and immediately after the intervention, we assessed normalized electromyography amplitude, percentage of activation time across functional tasks, and onset of activation for the vastus medialis oblique, vastus lateralis, gluteus medius, adductor longus, biceps femoris, and medial gastrocnemius muscles during a single-legged squat and a lateral step down. Scores on the visual analog scale for pain were recorded before and after the intervention. Results:  After a single treatment of PENS, the percentage of gluteus medius activation increased (0.024) during the lateral step down. Visual analog scores decreased during both the single-legged squat (PENS: preintervention = 2.7 ± 1.9, postintervention = 0.9 ± 0.7; sham: preintervention = 3.2 ± 1.6, postintervention = 2.8 ± 1.9; group × time interaction: P = .041) and lateral step down (PENS: preintervention = 3.4 ± 2.4, postintervention = 1.1 ± 0.8; sham: preintervention = 3.9 ± 1.7, postintervention = 3.3 ± 2.0; group

  16. De Quervain disease caused by abductor pollicis longus tenosynovitis: a report of three cases.

    PubMed

    Maruyama, Masahiro; Takahara, Masatoshi; Kikuchi, Noriaki; Ito, Kazuo; Watanabe, Tadayoshi; Ogino, Toshihiko

    2009-01-01

    De Quervain disease is caused by a stenosing tenosynovitis in the first dorsal compartment, and the main aetiology is extensor pollicis brevis (EPB) tenosynovitis. We encountered three cases in which EPB tenosynovitis was absent and abductor pollicis longus (APL) tenosynovitis was confirmed during operation. In the treatment of de Quervain disease, APL tenosynovitis should be paid as much attention as EPB tenosynovitis.

  17. A rare case of neck pain: acute longus colli calcific tendinitis in a possibly immunocompromised individual.

    PubMed

    Estimable, Kerlie; Rizk, Cynthia; Pujalte, George G A

    2015-01-01

    We present a rare case of severe neck pain in a 45-year-old man with severe hidradenitis suppurativa who was participating in a study involving adalimumab. The neck pain was associated with acute longus colli calcific tendinitis, which is a noninfectious inflammatory response in the longus colli tendons secondary to deposition of calcium hydroxyapatite crystal. The diagnosis was made by computed tomography, which showed calcifications and deposits, and magnetic resonance imaging, which showed a retropharyngeal effusion. Ears, Nose, and Throat Services performed a fiberoptic scope examination, which revealed a patent airway and no drainable abscess. Nonsteroidal anti-inflammatory drugs resulted in a dramatic improvement in the patient's clinical symptoms. In acute longus colli tendinitis, differentiating retropharyngeal aseptic effusion from infection is important. Of note, the confounding factor in this case was that the patient was blinded to whether he was receiving the placebo or adalimumab, so whether the patient was immunosuppressed and at risk for infection was unknown. Clinician familiarity and education concerning acute calcific longus colli tendinitis may lead to decreased costs stemming from incorrect diagnosis and unnecessary treatment.

  18. Reconstruction of a congenitally absent flexor pollicis longus in an adult

    PubMed Central

    Shamsian, Negin; Exton, Rebecca; Shibu, MM

    2010-01-01

    Congenital absence of the flexor pollicis longus (FPL) is an unusual finding that is frequently associated with thumb hypoplasia. Isolated FPL absence is the rarest of the congenital thumb anomalies. The present article describes a patient with a congenitally absent FPL, and discusses the chosen method of reconstruction. PMID:22131842

  19. Tendoscopic Excision of an Intratendinous Ganglion in the Flexor Hallucis Longus Tendon: A Case Report.

    PubMed

    Endo, Jun; Yamaguchi, Satoshi; Sasho, Takahisa

    2016-01-01

    Intratendinous ganglion cysts are rare lesions of unknown etiology that originate within a tendon. We report the case of a 34-year-old female with an intratendinous ganglion in the plantar portion of the flexor hallucis longus tendon. The intratendinous ganglion recurred after ultrasound-guided needle aspiration. Tendoscopic excision of the intratendinous ganglion cyst achieved a satisfactorily result without recurrence.

  20. Increase of the cytotoxic effect of Bothrops jararacussu venom on mouse extensor digitorum longus and soleus by potassium channel blockers and by Na(+)/K(+)-ATPase inhibition.

    PubMed

    Tomaz, Marcelo A; Fernandes, Fabrício F A; El-Kik, Camila Z; Moraes, Raphael A M; Calil-Elias, Sabrina; Saturnino-Oliveira, Jeison; Martinez, Ana Maria B; Ownby, Charlotte L; Melo, Paulo A

    2008-09-15

    We investigated the myotoxicity of Bothrops jararacussu crude venom and other cytolytic agents on mouse isolated extensor digitorum longus (EDL) and soleus (SOL) muscles, which present distinct properties: EDL is a fast-twitch, white muscle with predominantly glycolytic fibers, while SOL is slow-twitch, red muscle with predominantly oxidative fibers. Muscles were exposed to B. jararacussu crude venom (25 microg/ml) and other crotaline venoms (Agkistrodon contortrix laticinctus; Crotalus viridis viridis; Crotalus durissus terrificus) at the same concentration. Basal creatine kinase (CK) release to bathing solution was 0.43+/-0.06 for EDL and 0.29+/-0.06 for SOL (U g(-)(1) h(-)(1), n=36 for each muscle). Sixty minutes after exposure to B. jararacussu venom, EDL presented higher increase in the rate of CK release than SOL, respectively, 13.2+/-1.5 and 2.9+/-0.7 U g(-)(1)h(-)(1), n=10-12. Muscle denervation, despite decreasing CK content, did not affect sensitivities to B. jararacussu venom. Ouabain and potassium channel blockers (TEA; clotrimazole; glibenclamide) increased the rate of CK release by B. jararacussu in EDL and SOL muscles, decreasing and almost abolishing the different sensitivity. When we exposed EDL or SOL muscles to Naja naja, Apis mellifera venoms (25 microg/ml), or Triton X-100 (0.01%), they showed similar rate of CK release. Our present data suggest that a mechanism involving intracellular calcium regulation or potassium channels may participate in the different sensitivity of EDL and SOL to B. jararacussu venom.

  1. [A method for reconstruction of the A1 retinaculum in the flexor pollicis longus sheath with extensor pollicis brevis tendon].

    PubMed

    Chmiel, Z

    1996-01-01

    An original method for A1 retinaculum reconstruction of flexor pollicis longus sheath with extensor pollicis brevis tendon is presented. Reconstructed retinaculum is very strong. Loss of extensor pollicis brevis did not impaired thumb function.

  2. Spontaneous rupture of extensor pollicis longus tendon in a kick boxer.

    PubMed

    Lloyd, T W; Tyler, M P; Roberts, A H

    1998-06-01

    A 23 year old male kick boxer presented with a 24 hour history of pain and being unable to extend the interphalangeal joint of the left thumb. There was no history of trauma or any other risk factor for spontaneous rupture of the extensor pollicis longus tendon. On the previous day, he had been doing reverse press ups on the dorsum of his hands with his wrists hyperflexed as part of his training for kick boxing. At operation the extensor pollicis longus tendon was found to be divided at the level of the dorsal tubercle of the radius and was not directly repairable. The treatment was an extensor indicis proprius transfer. We suggest that the cause of the tendon rupture was direct pressure on the dorsal tubercle of the radius sustained while performing reverse press ups.

  3. Spontaneous Rupture of the Extensor Pollicis Longus Tendon in a Tailor

    PubMed Central

    Choi, Jun Cheol; Na, Hwa Yeop; Lee, Young Sang; Song, Woo Suk; Kim, Dae Hyeon; Park, Tae Hoon

    2011-01-01

    A spontaneous rupture of the extensor pollicis longus (EPL) tendon is associated with rheumatoid arthritis, fractures of the wrist, systemic or local steroids and repetitive, and excessive abnormal motion of the wrist joint. The authors encountered a case of a spontaneous rupture of the EPL tendon. The patient had no predisposing factors including trauma or steroid injection. Although the patient had a positive rheumatoid factor, he did not demonstrate other clinical or radiological findings of rheumatoid arthritis. During surgery, the EPL tendon was found to be ruptured at the extensor retinaculum (third compartment). Reconstruction of the extensor tendon using the palmaris longus tendon was performed. At the 18-month follow-up, the patient showed satisfactory extension of the thumb and 40° extension and flexion at the wrist. PMID:21629480

  4. Spontaneous rupture of extensor pollicis longus tendon in a kick boxer

    PubMed Central

    Lloyd, T. W.; Tyler, M. P.; Roberts, A. H.

    1998-01-01

    A 23 year old male kick boxer presented with a 24 hour history of pain and being unable to extend the interphalangeal joint of the left thumb. There was no history of trauma or any other risk factor for spontaneous rupture of the extensor pollicis longus tendon. On the previous day, he had been doing reverse press ups on the dorsum of his hands with his wrists hyperflexed as part of his training for kick boxing. At operation the extensor pollicis longus tendon was found to be divided at the level of the dorsal tubercle of the radius and was not directly repairable. The treatment was an extensor indicis proprius transfer. We suggest that the cause of the tendon rupture was direct pressure on the dorsal tubercle of the radius sustained while performing reverse press ups. 


 PMID:9631230

  5. Myofiber turnover is used to retrofit frog jaw muscles during metamorphosis.

    PubMed

    Alley, K E

    1989-01-01

    Metamorphic reorganization of the head in anuran amphibians entails abrupt restructuring of the jaw complex as larval feeding structures are transformed into their adult configurations. In this morphometric study, light microscopy wa used to analyze the larval maturation and metamorphic transfiguration of the adductor jaw muscles in the leopard frog (Rana pipiens). Larval jaw muscles, first established during embryogenesis, continue to grow by fiber addition until prometamorphosis, stage XII. Thereafter, fiber number remains stable but additional muscle growth continues by hypertrophy of the individual fibers until metamorphic climax. During metamorphic stages XIX-XXIII, a complete involution of all larval myofibers occurs. Simultaneously, within the same muscle beds, a second wave of myogenesis produces myoblasts which are the precursors of adult jaw myofibers. New muscle fibers continue to be added to these muscles well after the completion of metamorphosis; however, the total duration of the postmetamorphic myogenic period has not been defined. These observations provide clear evidence that the entir population of primary myofibers used in larval oral activity disappears from the adductor muscle beds and is replaced by a second wave of myogenesis commencing during climax. These findings indicate that the adductor jaw muscles are prepared for adult feeding by a complicated cellular process that retrofits existing muscle beds with a completely new complement of myofibers.

  6. A rare case of an accessory flexor hallucis longus causing tarsal tunnel syndrome.

    PubMed

    Lin, D; Williams, C; Zaw, H

    2014-09-01

    Tarsal tunnel syndrome (TTS) is a rare entrapment neuropathy of the tibial nerve within the fibro-osseous tarsal tunnel for which multiple etiologies, including trauma, congenital foot abnormalities and space occupying lesions, have been described. We present an unusual case of TTS caused by an accessory Flexor Hallucis Longus (FHL) tendon. Surgical excision led to a complete resolution of symptoms and improved the quality of life of our patient.

  7. Direct end-to-end repair of flexor pollicis longus tendon lacerations.

    PubMed

    Nunley, J A; Levin, L S; Devito, D; Goldner, R D; Urbaniak, J R

    1992-01-01

    Between 1976 and 1986, 38 consecutive acute isolated flexor pollicis longus lacerations were repaired. This study excluded all replanted or mutilated digits and all lacerations with associated fracture. Average follow-up was 26 months. Tendon rehabilitation was standardized. Range of motion and pinch strength were measured postoperatively. Seventy-four percent (28/38) of the flexor pollicis longus injuries occurred in zone II. Neurovascular injury occurred in 82% of the lacerations, and this correlated with the zone of tendon injury. In 21% of the patients (8/38) both digital nerves and arteries were transected. Postoperative thumb interphalangeal motion averaged 35 degrees and key pinch strength was 81% that of the uninjured thumb. One rupture occurred in a child. Laceration of the flexor pollicis longus is likely to involve damage to neurovascular structures, and repair may be necessary. Direct end-to-end repairs within the pulley system do at least as well as delayed tendon reconstruction and do not require additional procedures.

  8. Vibration-induced muscle injury. An experimental model and preliminary findings.

    PubMed

    Necking, L E; Dahlin, L B; Fridén, J; Lundborg, G; Lundström, R; Thornell, L E

    1992-06-01

    The hind paws of rats were subjected to vibration at a frequency of 80 Hz., an acceleration of 32 m./s.2 rms (i.e. ah.w approximately 6.3 m./s.2 rms) for five hours daily during five consecutive days. Morphological, histochemical and immunohistochemical analyses of the soleus, extensor digitorum longus and the plantar muscles in the vibrated limb and the contralateral control limb were performed. No changes were seen in the soleus or extensor digitorum longus muscles but different degrees of degeneration of the muscle fibres were seen in the plantar muscle sections as well as signs of regeneration. No changes were observed in the contralateral unexposed limb. It is concluded that it is not only nervous tissue but also muscle tissue that can be affected by vibration. The changes seem to be confined to muscles close to the vibration exciter.

  9. Hindlimb immobilization - Length-tension and contractile properties of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Kim, D. H.; Fitts, R. H.

    1982-01-01

    Casts were placed around rat feet in plantar flexion position to immobilize the soleus muscle in a shortened position, while the other foot was fixed in dorsal flexion to set the extensor digitorum longus in a shortened position. The total muscular atrophy and contractile properties were measured at 1, 2, 4, 7, 14, 21, 28, 35, and 42 days after immobilization, with casts being replaced every two weeks. The slow twitch soleus and the fast-twitch vastus lateralis and longus muscles were excised after termination of the experiment. The muscles were then stretched and subjected to electric shock to elicit peak tetanic tension and peak tetanic tension development. Force velocity features of the three muscles were assayed in a series of afterloaded contractions and fiber lengths were measured from subsequently macerated muscle. All muscles atrophied during immobilization, reaching a new steady state by day 21. Decreases in fiber and sarcomere lengths were also observed.

  10. Coexistence of twitch potentiation and tetanic force decline in rat hindlimb muscle

    NASA Technical Reports Server (NTRS)

    Rankin, Lucinda L.; Enoka, Roger M.; Volz, Kathryn A.; Stuart, Douglas G.

    1988-01-01

    The effect of whole-muscle fatigue on the isometric twitch was investigated in various hindlimb muscles of anesthetized rats, using an experimental protocol designed to assess the levels of fatigability in motor units. The results of EMG and force measurements revealed the existence of a linear relationship between fatigability and the magnitude of the twitch force following the fatigue test in both soleus and extensor digitorum longus muscles.

  11. Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods

    PubMed Central

    Diogo, Rui; Hinits, Yaniv; Hughes, Simon M

    2008-01-01

    Background During vertebrate head evolution, muscle changes accompanied radical modification of the skeleton. Recent studies have suggested that muscles and their innervation evolve less rapidly than cartilage. The freshwater teleostean zebrafish (Danio rerio) is the most studied actinopterygian model organism, and is sometimes taken to represent osteichthyans as a whole, which include bony fishes and tetrapods. Most work concerning zebrafish cranial muscles has focused on larval stages. We set out to describe the later development of zebrafish head muscles and compare muscle homologies across the Osteichthyes. Results We describe one new muscle and show that the number of mandibular, hyoid and hypobranchial muscles found in four day-old zebrafish larvae is similar to that found in the adult. However, the overall configuration and/or the number of divisions of these muscles change during development. For example, the undivided adductor mandibulae of early larvae gives rise to the adductor mandibulae sections A0, A1-OST, A2 and Aω, and the protractor hyoideus becomes divided into dorsal and ventral portions in adults. There is not always a correspondence between the ontogeny of these muscles in the zebrafish and their evolution within the Osteichthyes. All of the 13 mandibular, hyoid and hypobranchial muscles present in the adult zebrafish are found in at least some other living teleosts, and all except the protractor hyoideus are found in at least some extant non-teleost actinopterygians. Of these muscles, about a quarter (intermandibularis anterior, adductor mandibulae, sternohyoideus) are found in at least some living tetrapods, and a further quarter (levator arcus palatini, adductor arcus palatini, adductor operculi) in at least some extant sarcopterygian fish. Conclusion Although the zebrafish occupies a rather derived phylogenetic position within actinopterygians and even within teleosts, with respect to the mandibular, hyoid and hypobranchial muscles it

  12. Clenbuterol, a beta(2)-agonist, retards atrophy in denervated muscles

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Ludemann, Robert; Etlinger, Joseph D.

    1987-01-01

    The effects of a beta(2) agonist, clenbuterol, on the protein content as well as on the contractile strength and the muscle fiber cross-sectional area of various denervated muscles from rats were investigated. It was found that denervated soleus, anterior tibialis, and gastrocnemius muscles, but not the extensor digitorum longus, of rats treated for 2-3 weeks with clenbuterol contained 95-110 percent more protein than denervated controls. The twofold difference in the protein content of denervated solei was paralleled by similar changes in contractile strength and muscle fiber cross-sectional area.

  13. Extensor-tendons reconstruction using autogenous palmaris longus tendon grafting for rheumatoid arthritis patients

    PubMed Central

    Chu, Po-Jung; Lee, Hung-Maan; Hou, Yao-Tung; Hung, Sheng-Tsai; Chen, Jung-Kuei; Shih, Jui-Tien

    2008-01-01

    Background The purpose of the study is to retrospectively review the clinical outcome of our study population of middle-aged RA patients who had suffered extensor-tendon rupture. We reported the outcome of autogenous palmaris tendon grafting of multiple extensor tendons at wrist level in 14 middle-aged rheumatoid patients. Methods Between Feb. 2000 to Feb. 2004, thirty-six ruptured wrist level extensor tendons were reconstructed in fourteen rheumatoid patients (11 women and three men) using autogenous palmaris longus tendon as a free interposition graft. In each case, the evaluation was based on both subjective and objective criteria, including the range of MCP joint flexion after surgery, the extension lag at the metacarpophalangeal joint before and after surgery, and the ability of the patient to work. Results and Discussion The average of follow-up was 54.1 months (range, 40 to 72 months). The average range of MCP joint flexion after reconstruction was 66°. The extension lag at the metacarpophalangeal joint significantly improved from a preoperative mean of 38° (range, 25°–60°) to a postoperative mean of 16° (range, 0°–30°). Subjectively all patients were satisfied with the clinical results, and achieved a return to their level of ability before tendon rupture. We found good functional results in our series of interposition grafting using palmaris longus to reconstruct extensor tendon defects in the rheumatoid patients. Conclusion Reconstruction for multiple tendon ruptures is a salvage procedure that is often associated with extensor lag and impairment of overall function. Early aggressive treatment of extensor tendon reconstruction using autogenous palmaris longus tendon as a free interposition graft in the rheumatoid wrist is another viable option to achieve good clinical functional result. PMID:18435845

  14. Reduction-oxidation state and protein degradation in skeletal muscles of growing rats

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1986-01-01

    The relationship between the NAD redox state and protein degradation during growth was studied in isolated soleus and extensor digitorum longus muscles of 4- to 14-week-old rats. As muscle size increased with age, protein breakdown slowed and the muscles became progressively more reduced as shown by higher ratios of lactate/pyruvate in incubated and fresh-frozen muscle. Correlations were strong between redox state of protein degradation, and muscle mass, and between redox state and protein degradation. This relationship may be important in the slowing of muscle breakdown that occurs with age.

  15. Acute calcific tendinitis of the flexor pollicis longus in an 8-year-old boy.

    PubMed

    Kheterpal, Arvin; Zoga, Adam; McClure, Kristen

    2014-10-01

    Calcific tendinitis is a common source of musculoskeletal pain in adults; however, it is rarely encountered in children. Calcific tendinitis is the most commonly encountered manifestation of hydroxyapatite deposition disease, in which calcium hydroxyapatite crystal deposition occurs in tendons. It may cause acute or chronic pain, or may be entirely asymptomatic. We describe a case of acute calcific tendinitis of the flexor pollicis longus tendon in an 8-year-old boy, who initially presented to our department for workup of a mass felt along the volar aspect of the right wrist.

  16. Tuberculous extensor tenosynovitis of the wrist with extensor pollicis longus rupture: a case report

    PubMed Central

    2009-01-01

    Introduction The tendon sheaths constitute an uncommon target of extra-articular tuberculosis. Case presentation We present a rare case of tuberculous tenosynovitis of the wrist involving the extensor tendon with rupture of the extensor pollicis longus tendon in a 55-year-old Indian man. Conclusion Prompt surgical debridement and tissue diagnosis are essential for the diagnosis and treatment of this type of infection. With an accurate and timely diagnosis, appropriate surgery and antituberculous treatment may eradicate these infections and prevent complications. PMID:20062777

  17. Medial Tibial Stress Syndrome: Muscles Located at the Site of Pain

    PubMed Central

    Brown, Ato Ampomah

    2016-01-01

    Objective. The purpose of this study was to examine the relationship between the location of the MTSS pain (posteromedial border of tibia) and the muscles that originate from that site. Method. The study was conducted in the Department of Anatomy of the School of Medical Sciences, University of Cape Coast, and involved the use of 22 cadaveric legs (9 paired and 4 unpaired) from 11 males and 2 females. Findings. The structures that were thus observed to attach directly to the posteromedial border of the tibia were the soleus, the flexor digitorum longus, and the deep crural fascia. The soleus and flexor digitorum longus muscles were observed to attach directly to the posteromedial border of the tibia. The tibialis posterior muscle had no attachment to this site. Conclusion. The findings of this study suggest that if traction is the cause of MTSS then soleus and the flexor digitorum muscles and not the tibialis posterior muscle are the likely cause of MTSS. PMID:27066291

  18. Stepping before standing: hip muscle function in stepping and standing balance after stroke

    PubMed Central

    Kirker, S; Simpson, D; Jenner, J; Wing, A

    2000-01-01

    OBJECTIVE—To compare the pattern of pelvic girdle muscle activation in normal subjects and hemiparetic patients while stepping and maintaining standing balance.
DESIGN—Group comparison.
METHOD—Seventeen patients who had regained the ability to walk after a single hemiparetic stroke were studied together with 16 normal controls. Median interval between stroke and testing was 17 months. Amplitude and onset latency of surface EMG activity in hip abductors and adductors were recorded in response to sideways pushes in either direction while standing. Similar recordings were made in the same subjects during gait initiation and a single stride.
RESULTS—In the standing balance task, normal subjects resisted a sideways push to the left with the left gluteus medius (74 ms) and with the right adductor (111 ms), and vice versa. In hemiparetic patients, the amplitude of activity was reduced in the hemiparetic muscles, the onset latencies of which were delayed (gluteus medius 96 ms, adductor 144 ms). Contralateral, non-paretic, adductor activity was increased after a push towards the hemiparetic side of patients with stroke and the latency was normal (110 ms). During self initiated sideways weight shifts at gait initiation, hemiplegic muscle activation was impaired. By contrast, the pattern and peak amplitude of hip muscle activation in stepping was normal in both hemiparetic and non-hemiparetic muscles of the subjects with stroke.
CONCLUSIONS—In ambulant patients with stroke, a normal pattern of activation of hemiparetic muscles is seen in stepping whereas the response of these muscles to a perturbation while standing remains grossly impaired and is compensated by increased activity of the contralateral muscles. This suggests that hemiparetic patients should be able to step before regaining standing balance.

 PMID:10727481

  19. Muscle stiffness of posterior lower leg in runners with a history of medial tibial stress syndrome.

    PubMed

    Saeki, Junya; Nakamura, Masatoshi; Nakao, Sayaka; Fujita, Kosuke; Yanase, Ko; Ichihashi, Noriaki

    2017-02-16

    Previous history of medial tibial stress syndrome (MTSS) is a risk factor for MTSS relapse, which suggests that there might be some physical factors that are related to MTSS development in runners with a history of MTSS. The relationship between MTSS and muscle stiffness can be assessed in a cross-sectional study that measures muscle stiffness in subjects with a history of MTSS, who do not have pain at the time of measurement, and in those without a history of MTSS. The purpose of this study was to compare the shear elastic modulus, which is an index of muscle stiffness, of all posterior lower leg muscles of subjects with a history of MTSS and those with no history and investigate which muscles could be related to MTSS. Twenty-four male collegiate runners (age, 20.0 ± 1.7 years; height, 172.7 ± 4.8 cm; weight, 57.3 ± 3.7 kg) participated in this study; 14 had a history of MTSS, and 10 did not. The shear elastic moduli of the lateral gastrocnemius, medial gastrocnemius, soleus, peroneus longus, peroneus brevis, flexor hallucis longus, flexor digitorum longus, and tibialis posterior were measured using shear wave elastography. The shear elastic moduli of the flexor digitorum longus and tibialis posterior were significantly higher in subjects with a history of MTSS than in those with no history. However, there was no significant difference in the shear elastic moduli of other muscles. The results of this study suggest that flexor digitorum longus and tibialis posterior stiffness could be related to MTSS. This article is protected by copyright. All rights reserved.

  20. The giant fiber and pectoral fin adductor motoneuron system in the hatchetfish.

    PubMed

    Gilat, E; Hall, D H; Bennett, M V

    1986-02-12

    In the medulla of the hatchetfish each Mauthner fiber forms chemical synapses on a number of large myelinated axons termed giant fibers. The giant fibers form rectifying electrotonic synapses on pectoral fin adductor motoneurons, and in this fish bilateral pectoral fin adduction is an important component of the Mauthner fiber-mediated escape reflex. The branching patterns of giant fibers were determined by intracellular injection of Lucifer yellow. Dye coupling to the motoneuron somata was not observed, although a low level of transfer might have been obscured by autofluorescence. Individual giant fibers terminate primarily on pectoral fin motoneurons contralateral to their cell bodies, but may also send a branch back across the midline to ipsilateral motoneurons. The rostral process of each giant fiber ends on neurons presumably associated with cranial musculature. The number and geometry of the pectoral fin motoneurons were determined using Golgi and Nissl staining and serial reconstruction methods.

  1. Muscle protein analysis. II. Two-dimensional electrophoresis of normal and diseased human skeletal muscle

    SciTech Connect

    Giometti, C.S.; Barany, M.; Danon, M.J.; Anderson, N.G.

    1980-07-01

    High-resolution two-dimensional electrophoresis was used to analyze the major proteins of normal and pathological human-muscle samples. The normal human-muscle pattern contains four myosin light chains: three that co-migrate with the myosin light chains from rabbit fast muscle (extensor digitorum longus), and one that co-migrates with the light chain 2 from rabbit slow muscle (soleus). Of seven Duchenne muscular dystrophy samples, four yielded patterns with decreased amounts of actin and myosin relative to normal muscle, while three samples gave patterns comparable to that for normal muscle. Six samples from patients with myotonic dystrophy also gave normal patterns. In nemaline rod myopathy, in contrast, the pattern was deficient in two of the fast-type myosin light chains.

  2. Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles.

    PubMed

    Dufresne, Sébastien S; Dumont, Nicolas A; Boulanger-Piette, Antoine; Fajardo, Val A; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M; Pape, Paul C; Tupling, A Russell; Frenette, Jérôme

    2016-04-15

    Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca(2+)sensor, and altered activity of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) modulating Ca(2+)storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca(2+)storage and SERCA activity, ultimately affecting denervated skeletal muscle function.

  3. Muscle weakness in respiratory and peripheral skeletal muscles in a mouse model for nebulin-based nemaline myopathy.

    PubMed

    Joureau, Barbara; de Winter, Josine M; Stam, Kelly; Granzier, Henk; Ottenheijm, Coen A C

    2017-01-01

    Nemaline myopathy is among the most common non-dystrophic congenital myopathies, and is characterized by the presence of nemaline rods in skeletal muscles fibers, general muscle weakness, and hypotonia. Although respiratory failure is the main cause of death in nemaline myopathy, only little is known regarding the contractile strength of the diaphragm, the main muscle of inspiration. To investigate diaphragm contractility, in the present study we took advantage of a mouse model for nebulin-based nemaline myopathy that we recently developed. In this mouse model, exon 55 of Neb is deleted (Neb(ΔExon55)), a mutation frequently found in patients. Diaphragm contractility was determined in permeabilized muscle fibers and was compared to the contractility of permeabilized fibers from three peripheral skeletal muscles: soleus, extensor digitorum longus, and gastrocnemius. The force generating capacity of diaphragm muscle fibers of Neb(ΔExon55) mice was reduced to 25% of wildtype levels, indicating severe contractile weakness. The contractile weakness of diaphragm fibers was more pronounced than that observed in soleus muscle, but not more pronounced than that observed in extensor digitorum longus and gastrocnemius muscles. The reduced muscle contractility was at least partly caused by changes in cross-bridge cycling kinetics which reduced the number of bound cross-bridges. The severe diaphragm weakness likely contributes to the development of respiratory failure in Neb(ΔExon55) mice and might explain their early, postnatal death.

  4. Isokinetic imbalance of hip muscles in soccer players with osteitis pubis.

    PubMed

    Mohammad, Walaa Sayed; Abdelraouf, Osama Ragaa; Elhafez, Salam Mohamed; Abdel-Aziem, Amr Almaz; Nassif, Nagui Sobhi

    2014-01-01

    In this study, we compared the isokinetic torques of hip flexors/extensors and abductors/adductors in soccer players suffering from osteitis pubis (OP), with normal soccer players. Twenty soccer male athletes with OP and 20 normal soccer athletes were included in this study. Peak torque/body weight (PT/BW) was recorded from hip flexor/extensor and abductor/adductor muscles during isokinetic concentric contraction modes at angular velocity of 2.1 rad · s(-1), for both groups. The results showed a significant difference between the normal and OP groups for hip flexors (P < 0.05). The normal group had significant, lower PT/BW value than the OP group for their hip flexors (P < 0.05). The hip flexor/extensor PT ratio of OP affected and non-affected limbs was significantly different from that of normal dominant and non-dominant limbs. There were no significant differences between the normal and OP groups for hip extensor, adductor and abductor muscles (P > 0.05). Regarding the hip adductor/abductor PT ratio, there was no significant difference between the normal and OP groups of athletes (P > 0.05). The OP group displayed increase in hip flexor strength that disturbed the hip flexor/extensor torque ratio of OP. Therefore, increasing the hip extensor strength should be part of rehabilitation programmes of patients with OP.

  5. Characteristic MRI Findings of upper Limb Muscle Involvement in Myotonic Dystrophy Type 1.

    PubMed

    Sugie, Kazuma; Sugie, Miho; Taoka, Toshio; Tonomura, Yasuyo; Kumazawa, Aya; Izumi, Tesseki; Kichikawa, Kimihiko; Ueno, Satoshi

    2015-01-01

    The objective of our study was to evaluate the relation between muscle MRI findings and upper limb weakness with grip myotonia in patients with myotonic dystrophy type 1 (DM1). Seventeen patients with DM1 were evaluated by manual muscle strength testing and muscle MRI of the upper limbs. Many DM1 patients presenting with decreased grasping power frequently showed high intensity signals in the flexor digitorum profundus (FDP) muscles on T1-weighted imaging. Patients presenting with upper limb weakness frequently also showed high intensity signals in the flexor pollicis longus, abductor pollicis longus, and extensor pollicis muscles. Disturbances of the distal muscles of the upper limbs were predominant in all DM1 patients. Some DM1 patients with a prolonged disease duration showed involvement of not only distal muscles but also proximal muscles in the upper limbs. Muscle involvement of the upper limbs on MRI strongly correlated positively with the disease duration or the numbers of CTG repeats. To our knowledge, this is the first study to provide a detailed description of the distribution and severity of affected muscles of the upper limbs on MRI in patients with DM1. We conclude that muscle MRI findings are very useful for identifying affected muscles and predicting the risk of muscle weakness in the upper limbs of DM1 patients.

  6. Comparative jaw muscle anatomy in kangaroos, wallabies, and rat-kangaroos (marsupialia: macropodoidea).

    PubMed

    Warburton, Natalie Marina

    2009-06-01

    The jaw muscles were studied in seven genera of macropodoid marsupials with diets ranging from mainly fungi in Potorous to grass in Macropus. Relative size, attachments, and lamination within the jaw adductor muscles varied between macropodoid species. Among macropodine species, the jaw adductor muscle proportions vary with feeding type. The relative mass of the masseter is roughly consistent, but grazers and mixed-feeders (Macropus and Lagostrophus) had relatively larger medial pterygoids and smaller temporalis muscles than the browsers (Dendrolagus, Dorcopsulus, and Setonix). Grazing macropods show similar jaw muscle proportions to "ungulate-grinding" type placental mammals. The internal architecture of the jaw muscles also varies between grazing and browsing macropods, most significantly, the anatomy of the medial pterygoid muscle. Potoroines have distinctly different jaw muscle proportions to macropodines. The masseter muscle group, in particular, the superficial masseter is enlarged, while the temporalis group is relatively reduced. Lagostrophus fasciatus is anatomically distinct from other macropods with respect to its masticatory muscle anatomy, including enlarged superficial medial pterygoid and deep temporalis muscles, an anteriorly inflected masseteric process, and the shape of the mandibular condyle. The enlarged triangular pterygoid process of the sphenoid bone, in particular, is distinctive of Lagsotrophus.

  7. Thyroarytenoid muscle activity during hypocapnic central apneas in awake nonsedated lambs.

    PubMed

    Kianicka, I; Leroux, J F; Praud, J P

    1994-03-01

    In this study, we examined whether the glottis is open or closed during central apnea and the effect of arterial PO2 (PaO2) on this control. We hyperventilated nine 11- to 30-day-old awake nonsedated lambs via a tracheostomy for 1 min to induce central apnea. Four gas mixtures (8, 15, 21, and 30% O2) were used. At the end of the hyperventilation period, the lambs were allowed to breathe spontaneously through intact upper airways. Using a pneumotachograph attached to a face mask, we measured airflow, and we continuously recorded electromyographic (EMG) activity of the thyroarytenoid (TA), the main glottic adductor muscle. We also studied the lateral cricoarytenoid muscle (LCA, laryngeal adductor), the posterior cricoarytenoid muscle (PCA, laryngeal abductor), the cricothyroid muscle (CT), and the diaphragm. We found that hyperventilation consistently induced hypocapnic central apnea in all nine lambs in hyperoxic conditions [30% inspiratory fraction of O2 (FIO2)], in eight of nine lambs in normoxia or mild hypoxia (15 and 21% FIO2), and in four of seven lambs in hypoxia (8% FIO2). During baseline room air breathing, there was no glottic adductor muscle expiratory EMG activity or expiratory airflow braking. Continuous TA EMG activity began early during hyperventilation and continued throughout the central apnea, regardless of PaO2. The first subsequent breathing efforts were marked by expiratory flow braking and expiratory activity of the TA. The LCA and the TA demonstrated the same EMG activity pattern.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Calf muscle activity alteration with foot orthoses insertion during walking measured by fine-wire electromyography

    PubMed Central

    Akuzawa, Hiroshi; Imai, Atsushi; Iizuka, Satoshi; Matsunaga, Naoto; Kaneoka, Koji

    2016-01-01

    [Purpose] The purpose of the study was to assess the muscle activity change of the tibialis posterior, flexor digitorum longus, and peroneus longus during gait with orthoses. [Subjects and Methods] Sixteen healthy males participated in this study. Activity of each muscle was measured by using fine-wire and surface electromyography. Gait task was performed by the participants barefoot, with footwear and with orthoses. The electromyography data from a stance phase of each gait trial were used for analysis. The stance phase was divided into contact, midstance, and propulsion phases. The data from ten participants were extracted for final analysis, as electromyography measurements were unsuccessful for the other six. [Results] The results demonstrated that orthoses significantly reduced the tibialis posterior muscle activity in the propulsion phase compared to that in the barefoot condition. Although there was a significant difference in the midstance phase, post hoc analysis did not indicate significant differences among the phases. No significant electromyography amplitude change was detected in flexor digitorum longus and peroneus longus. [Conclusion] Orthothes reduced the tibialis posterior activity level during gait. This result may be beneficial for patients with injuries related to excessive activity of tibialis posterior. PMID:28174473

  9. Anatomic Variations of the First Extensor Compartment and Abductor Pollicis Longus Tendon in Trapeziometacarpal Arthritis

    PubMed Central

    Opreanu, Razvan C.; Wechter, John; Tabbaa, Hazem; Kepros, John P.; Baulch, Michelle; Xie, Yan; Lackey, Wendy

    2009-01-01

    Anatomic variation of the trapeziometacarpal joint stabilizing structures is one of the concepts proposed to explain the pathogenesis of trapeziometacarpal arthritis. We undertook this study to test the hypothesis that septation of the first extensor compartment or variation of the abductor pollicis longus (APL) tendon (supernumerary insertions) are more frequently associated with the progression or severity of trapeziometacarpal arthritis. Septation within the first extensor compartment was significantly associated with trapeziometacarpal arthritis (p = 0.013), whereas supernumerary APL insertions (trapezium or thenar) did not reveal a significant association (p = 0.811 and p = 0.937, respectively). The results of this study do not support a role for variations of APL tendon insertions in trapeziometacarpal arthritis. Yet, the presence of septation within the first extensor compartment may play an important role in the pathogenesis of trapeziometacarpal arthritis. PMID:19834771

  10. Unusual case of acute neck pain: acute calcific longus colli tendinitis.

    PubMed

    Joshi, Gunjan S; Fomin, Daren A; Joshi, Gargi S; Serano, Richard D

    2016-06-02

    Acute calcific longus colli tendinitis (ACLCT), a very rare cause of severe neck pain, dysphagia and odynophagia, is often mistaken for other common causes of neck pain. However, prompt recognition of this uncommon presentation is important to prevent unnecessary medical and surgical intervention. A 46-year-old Caucasian man presented with a 1-day history of severe neck pain, headache and odynophagia. The patient was afebrile with stable vital signs, however, the laboratory data showed mildly elevated C reactive protein and erythrocyte sedimentation rate. The physical examination was remarkable for markedly reduced cervical range of motion. MRI revealed the pathognomonic findings of paravertebral oedema and calcification. The definitive diagnosis of ACLCT was made and the patient was successfully managed with a short course of oral steroid, benzodiazepine and aural acupuncture, with complete resolution of the condition within a week.

  11. Case report: the cleidocervical muscle with speculation as to its origin.

    PubMed Central

    Tomo, S; Toh, H; Hirakawa, T; Tomo, I; Kobayashi, S

    1994-01-01

    The occurrence of a cleidocervical muscle, which arose from the anterior tubercle of the transverse process of the 6th cervical vertebra and was inserted onto the superior margin of the clavicle, is described. Detailed observations on its innervation, which was derived from the 5th cervical nerve, and its topographic anatomy suggest that the muscle originated from longus colli. Images Fig. 1 PMID:8157489

  12. Influence of spaceflight on rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Martin, Thomas P.; Edgerton, V. Reggie; Grindeland, Richard E.

    1988-01-01

    The effect of a 7-day spaceflight (aboard NASA's SL-3) on the size and the metabolism of single fibers from several rat muscles was investigated along with the specificity of these responses as related to the muscle type and the size of fibers. It was found that the loss of mass after flight was varied from 36 percent in the soleus to 15 percent in the extensor digitorum longus. Results of histochemical analyses showed that the succinate dehydrogenase (SDH) activity in muscles of flight-exposed rats was maintained at the control levels, whereas the alpha-glycerol phosphate dehydrogenase (GPD) activity was either maintained or increased. The analyses of the metabolic profiles of ATPase, SDH, and GPD indicated that, in some muscles, there was an increase in the poportion of fast oxidative-glycolytic fibers.

  13. A mini-invasive adductor magnus tendon transfer technique for medial patellofemoral ligament reconstruction: a technical note.

    PubMed

    Sillanpää, Petri J; Mäenpää, Heikki M; Mattila, Ville M; Visuri, Tuomo; Pihlajamäki, Harri

    2009-05-01

    Patellar dislocations are associated with injuries to the medial patellofemoral ligament (MPFL). Several techniques for MPFL reconstruction have been recently published with some disadvantages involved, including large skin incisions and donor site morbidity. Arthroscopic stabilizing techniques carry the potential of inadequate restoration of MPFL function. We present a minimally invasive technique for MPFL reconstruction using adductor magnus tendon autograft. This technique is easily performed, safe, and provides a stabilizing effect equal to current MPFL reconstructions. Skin incision of only 3-4 cm is located at the level of the proximal half of the patella. After identifying the distal insertion of the adductor magnus tendon, a tendon harvester is introduced to harvest the medial two-thirds of the tendon, while the distal insertion is left intact. The adductor magnus tendon is cut at 12-14 cm from its distal insertion and transferred into the patellar medial margin. Two suture anchors are inserted through the same incision at the superomedial aspect of the patella in the anatomic MPFL origin. The graft is tightened at 30 degrees knee flexion. Aftercare includes 4 weeks of brace treatment with restricted range of motion.

  14. Simultaneous Knee Extensor Muscle Action Induces an Increase in Voluntary Force Generation of Plantar Flexor Muscles.

    PubMed

    Suzuki, Takahito; Shioda, Kohei; Kinugasa, Ryuta; Fukashiro, Senshi

    2017-02-01

    Suzuki, T, Shioda, K, Kinugasa, R, and Fukashiro, S. Simultaneous knee extensor muscle action induces an increase in voluntary force generation of plantar flexor muscles. J Strength Cond Res 31(2): 365-371, 2017-Maximum activation of the plantar flexor muscles is required for various sporting activities that involve simultaneous plantar flexion and knee extension. During a multi-joint movement, activation of the plantar flexor muscles is affected by the activity of the knee extensor muscles. We hypothesized that coactivation of the plantar flexor muscles and knee extensor muscles would result in a higher plantar flexion torque. To test this hypothesis, 8 male volunteers performed maximum voluntary isometric action of the plantar flexor muscles with and without isometric action of the knee extensor muscles. Surface electromyographic data were collected from 8 muscles of the right lower limb. Voluntary activation of the triceps surae muscles, evaluated using the interpolated twitch technique, significantly increased by 6.4 percentage points with intentional knee extensor action (p = 0.0491). This finding is in line with a significant increase in the average rectified value of the electromyographic activity of the vastus lateralis, fibularis longus, and soleus muscles (p = 0.013, 0.010, and 0.045, respectively). The resultant plantar flexion torque also significantly increased by 11.5% of the predetermined maximum (p = 0.031). These results suggest that higher plantar flexor activation coupled with knee extensor activation facilitates force generation during a multi-joint task.

  15. Muscle silent period in Parkinson's disease.

    PubMed

    Higgins, D C; Haidri, N H; Wilbourn, A J

    1971-10-01

    The muscle silent period was measured in 11 patients with moderate to severe rigidity associated with Parkinson's disease. The determinations were made under conditions of maximum disability for each patient, since all medications had been withdrawn before testing. The duration of the EMG silence, produced by small and large electrical twitch contractions of the adductor pollicis muscle, fell within a range of values previously determined for normal individuals. Major alleviation of the rigidity and bradykinesia with chronic oral l-dopa therapy was not accompanied by any change in the silent period. It was concluded that in untreated Parkinsonism, and also after its treatment with l-dopa, the functioning of the muscle spindles and local inhibitory reflexes remains normal.

  16. Tridimensional assessment of adductor spasmodic dysphonia pre- and post-treatment with Botulinum toxin.

    PubMed

    Dejonckere, P H; Neumann, K J; Moerman, M B J; Martens, J P; Giordano, A; Manfredi, C

    2012-04-01

    Spasmodic dysphonia voices form, in the same way as substitution voices, a particular category of dysphonia that seems not suited for a standardized basic multidimensional assessment protocol, like the one proposed by the European Laryngological Society. Thirty-three exhaustive analyses were performed on voices of 19 patients diagnosed with adductor spasmodic dysphonia (SD), before and after treatment with Botulinum toxin. The speech material consisted of 40 short sentences phonetically selected for constant voicing. Seven perceptual parameters (traditional and dedicated) were blindly rated by a panel of experienced clinicians. Nine acoustic measures (mainly based on voicing evidence and periodicity) were achieved by a special analysis program suited for strongly irregular signals and validated with synthesized deviant voices. Patients also filled in a VHI-questionnaire. Significant improvement is shown by all three approaches. The traditional GRB perceptual parameters appear to be adequate for these patients. Conversely, the special acoustic analysis program is successful in objectivating the improved regularity of vocal fold vibration: the basic jitter remains the most valuable parameter, when reliably quantified. The VHI is well suited for the voice-related quality of life. Nevertheless, when considering pre-therapy and post-therapy changes, the current study illustrates a complete lack of correlation between the perceptual, acoustic, and self-assessment dimensions. Assessment of SD-voices needs to be tridimensional.

  17. Everyday listeners' impressions of speech produced by individuals with adductor spasmodic dysphonia.

    PubMed

    Nagle, Kathleen F; Eadie, Tanya L; Yorkston, Kathryn M

    2015-01-01

    Individuals with adductor spasmodic dysphonia (ADSD) have reported that unfamiliar communication partners appear to judge them as sneaky, nervous or not intelligent, apparently based on the quality of their speech; however, there is minimal research into the actual everyday perspective of listening to ADSD speech. The purpose of this study was to investigate the impressions of listeners hearing ADSD speech for the first time using a mixed-methods design. Everyday listeners were interviewed following sessions in which they made ratings of ADSD speech. A semi-structured interview approach was used and data were analyzed using thematic content analysis. Three major themes emerged: (1) everyday listeners make judgments about speakers with ADSD; (2) ADSD speech does not sound normal to everyday listeners; and (3) rating overall severity is difficult for everyday listeners. Participants described ADSD speech similarly to existing literature; however, some listeners inaccurately extrapolated speaker attributes based solely on speech samples. Listeners may draw erroneous conclusions about individuals with ADSD and these biases may affect the communicative success of these individuals. Results have implications for counseling individuals with ADSD, as well as the need for education and awareness about ADSD.

  18. Perioperative complications and safety of type II thyroplasty (TPII) for adductor spasmodic dysphonia.

    PubMed

    Mizoguchi, Kenji; Hatakeyama, Hiromitsu; Yanagida, Saori; Nishizawa, Noriko; Oridate, Nobuhiko; Fukuda, Satoshi; Homma, Akihiro

    2017-02-22

    Type II thyroplasty (TPII) is one of the surgical options offered in the management of adductor spasmodic dysphonia (AdSD); however, there have been no detailed reports of its safety and associated complications during the perioperative period. Our aim was to assess the complications and safety of TPII. TPII was performed for consecutive 15 patients with AdSD from April 2012 through May 2014. We examined retrospectively the perioperative complications, the degree of surgical invasion, and recovery process from surgery. All patients underwent successful surgery under only local anesthesia. Vocal fold erythema was observed in 14 patients and vocal fold edema in 10 patients; however, all of them showed complete resolution within 1 month. No patient experienced severe complications such as acute airway distress or hemorrhage. Fourteen patients were able to have oral from the 1st postoperative morning, with the remaining patient able to have oral intake from the 2nd postoperative day. In addition, no patient experienced aspiration postoperatively. In conclusion, only minor complications were observed in association with TPII in this study. No dysphagia was observed postoperatively, which is an advantage over other treatments. The results of our study suggest that TPII is a safe surgical treatment for AdSD.

  19. Medullary mediation of the laryngeal adductor reflex: A possible role in sudden infant death syndrome.

    PubMed

    Wang, Xiaolu; Guo, Ruichen; Zhao, Wenjing; Pilowsky, Paul M

    2016-06-01

    The laryngeal adductor reflex (LAR) is a laryngeal protective reflex. Vagal afferent polymodal sensory fibres that have cell bodies in the nodose ganglion, originate in the sub-glottal area of the larynx and upper trachea. These polymodal sensory fibres respond to mechanical or chemical stimuli. The central axons of these sensory vagal neurons terminate in the dorsolateral subnuclei of the tractus solitarius in the medulla oblongata. The LAR is a critical, reflex in the pathways that play a protective role in the process of ventilation, and the sychronisation of ventilation with other activities that are undertaken by the oropharyngeal systems including: eating, speaking and singing. Failure of the LAR to operate properly at any time after birth can lead to SIDS, pneumonia or death. Despite the critical nature of this reflex, very little is known about the central pathways and neurotransmitters involved in the management of the LAR and any disorders associated with its failure to act properly. Here, we review current knowledge concerning the medullary nuclei and neurochemicals involved in the LAR and propose a potential neural pathway that may facilitate future SIDS research.

  20. Evaluation of voice quality in adductor spasmodic dysphonia before and after botulinum toxin treatment.

    PubMed

    Langeveld, T P; van Rossum, M; Houtman, E H; Zwinderman, A H; Briaire, J J; Baatenburg de Jong, R J

    2001-07-01

    In this prospective study, the efficacy of botulinum toxin (Botox) injections in patients with adductor spasmodic dysphonia (AdSD) was assessed by 3 different modalities: perceptual and acoustic analyses and subjective self-assessment. This was done by comparing AdSD patients' pretreatment and posttreatment values and comparing these values with those of normal control speakers. In contrast to most other studies, the posttreatment status was defined as the optimal voice quality as judged by the patient. The aim of the study was to assess to what extent Botox injections actually improve voice quality and function. The AdSD subjects rated a significantly improved voice quality and function after Botox treatment. However, the results were never within normal limits. Perceptually, the characteristic and severely impaired AdSD voice improved, but another "type" of pathological voice was detected after Botox treatment. Acoustic analyses demonstrated a significant improvement, as well. Nevertheless, the "optimally" treated AdSD voice still remained significantly deviant as compared to normal voice production. Currently, Botox injection is the therapy of first choice for AdSD. Although significant improvement could be measured in our study perceptually, acoustically, and subjectively, the optimal voice that was achieved never fully matched normal voice quality or function.

  1. Muscle lengthening surgery causes differential acute mechanical effects in both targeted and non-targeted synergistic muscles.

    PubMed

    Ateş, Filiz; Özdeşlik, Rana N; Huijing, Peter A; Yucesoy, Can A

    2013-10-01

    Epimuscular myofascial force transmission (EMFT) is a major determinant of muscle force exerted, as well as length range of force exertion. Therefore, EMFT is of importance in remedial surgery performed, e.g., in spastic paresis. We aimed to test the following hypotheses: (1) muscle lengthening surgery (involving preparatory dissection (PD) and subsequent proximal aponeurotomy (AT)) affects the target muscle force exerted at its distal and proximal tendons differentially, (2) forces of non-operated synergistic muscles are affected as well, (3) PD causes some of these effects. In three conditions (control, post-PD, and post-AT exclusively on m. extensor digitorum longus (EDL)), forces exerted by rat anterior crural muscles were measured simultaneously. Our results confirm hypotheses (1-2), and hypothesis (3) in part: Reduction of EDL maximal force differed by location (i.e. 26.3% when tested distally and 44.5% when tested proximally). EDL length range of active force exertion increased only distally. Force reductions were shown also for non-operated tibialis anterior (by 11.9%), as well as for extensor hallucis longus (by 8.4%) muscles. In tibialis anterior only, part of the force reduction (4.9%) is attributable to PD. Due to EMFT, remedial surgery should be considered to have differential effects for targeted and non-targeted synergistic muscles.

  2. Insulin effect on amino acid uptake by unloaded rat hindlimb muscles

    NASA Technical Reports Server (NTRS)

    Jaspers, S. R.; Tischler, M. E.

    1988-01-01

    The effect of insulin on the uptake of alpha-amino-isobutyric acid (AIB) by unloaded rat hindlimb muscles was investigated using soleus and extensor digitorum longus (EDL) muscles from intact and adrenalectomized (ADX) rats that were tail-casted for six days. It was found that, at insulin levels above 0.00001 units/ml, the in vitro rate of AIB uptake by muscles from intact animals was stimulated more in the weight bearing muscles than in unloaded ones. In ADX animals, this differential response to insulin was abolished.

  3. Motor unit estimation in a muscle supplied by the radial nerve.

    PubMed Central

    Defaria, C R; Toyonaga, K

    1978-01-01

    The number of motor units in a muscle, the abductor pollicis longus (APL), supplied by the radial nerve was estimated. In 40 APL muscles of control subjects, the mean number of motor units was found to be 421 +/- 99 (SD). Ten patients underwent conventional EMG examination to confirm the clinical suspicion of denervation in radial nerve territory. All presented a significant reduction in the number of motor units in the APL muscle. These results show that this method is useful in the evaluation of muscles supplied by the radial nerve. PMID:690650

  4. Depressed tetanic contactile function cannot be compensated by increasing stimulating frequency in unloaded soleus muscle

    NASA Astrophysics Data System (ADS)

    Gao, Fang; Yu, Zhi-Bin

    2005-08-01

    The weightlessness-induced muscle atrophy is associated with a reduced force and power and with an increased fatigability [1]. In prolonged manned space missions, these alterations in skeletal muscles could limit the crew's ability to work in space and to rapidly egress in an emergency on return to Earth. In order to elucidate the underlying mechanisms of the increased fatigability in the atrophic skeletal muscle, we isolated the typically fast and slow muscle, extensor digitorum longus (EDL) and soleus (SOL), to observe the changes in maximal contraction tension, optimal stimulating frequency, and recovery features after fatigue in the intermittent tetanic contraction.

  5. Endoscopic-Assisted Flexor Hallucis Longus Transfer: Harvest of the Tendon at Zone 2 or Zone 3.

    PubMed

    Lui, Tun Hing

    2015-12-01

    Flexor hallucis longus (FHL) tendon transfer is indicated for reconstruction of the Achilles tendon with a gap larger than 5 cm. The tendon can be harvested at zone 2 or zone 3 by minimally invasive techniques with the advantage of minimal soft-tissue dissection. The tendon can be harvested under the sustentaculum tali by zone 2 FHL tendoscopy. It is adequate for FHL transfer to the posterior calcaneal tubercle. If a double-thickness reconstruction of a huge gap of the Achilles tendon is indicated, the tendon can be harvested at the level of the hallux by means of a tendon stripper. However, the interconnection tendon of the master knot of Henry can be split together with the FHL or flexor digitorum longus tendon instead of being cut. Zone 2 FHL tendoscopy can be used to release the split tendon to complete the FHL harvest.

  6. The effects of horseback riding simulator exercises on the muscle activity of the lower extremities according to changes in arm posture

    PubMed Central

    Park, Jungseo; Lee, Sangyong; Lee, Daehee

    2015-01-01

    [Purpose] This study aimed to determine the effects of horseback riding simulator exercise on the muscle activities of the lower extremities according to changes in arm posture. [Subjects] The subjects of this study were 30 normal adult males and females. [Methods] The horseback riding simulator exercise used a horseback riding simulator device; two arm postures were used, posture 1 (holding the handle of the device) and posture 2 (crossing both arms, with both hands on the shoulders). Electromyography was used to compare the muscle activities of the rectus femoris, biceps femoris, and hip adductors in the lower extremities. [Results] Posture 2 had significantly higher muscle activity than posture 1. [Conclusion] Posture 2, which entailed crossing both arms with both hands on the shoulders, was an effective intervention for improved muscle activity in the hip adductors. PMID:26504280

  7. Effects of Growth on Muscle, Tendon, and Aponeurosis Tissues in Rabbit Shank Musculature.

    PubMed

    Böl, Markus; Leichsenring, Kay; Siebert, Tobias

    2016-12-20

    There exist several studies using morphological analyses of skeletal muscles to obtain a better understanding of muscle structure. The structural information obtained are primarily determined from single muscle components using individual animals of discrete ages. Further, little is known about changing dimensions of the aponeurosis, which is an important load-transferring interface in muscle mechanics. Thus, the aim of the present study was to determine how the muscle, tendon, and particularly the aponeurosis geometry of the rabbit shank musculature (M. soleus, M. extensor digitorum longus, and M. plantaris) change during growth. In doing so, morphological studies on muscles of eighty-nine female rabbits aged between 18 and 108 days were conducted. We found an almost linear increase over time in all of the geometrical parameters observed. The aponeurosis of the muscles exhibited lower growth rates in width than in length. The distal and proximal aponeurosis areas were nearly identical. The ratio of aponeurosis area to the physiological cross-sectional area was 2.54, 2.54, and 1.88 for M. soleus, M. extensor digitorum longus, and M. plantaris, respectively. M. extensor digitorum longus and M. soleus exhibited a nearly similar tendon-muscle fascicle length ratio during growth, increasing from 2.86 to 5.30 and 3.48 to 6.16, respectively. Interestingly, the tendon-muscle fascicle length ratio of the M. plantaris started initially with a much higher value (∼8) and increased to ∼18. Taken together, these results provide insight into the structure of the muscle-tendon complex and thus, a general understanding of muscle growth. Anat Rec, 2016. © 2016 Wiley Periodicals, Inc.

  8. Analysis of dimensions, activation and median frequency of cervical flexor muscles in young women with migraine or tension-type headache

    PubMed Central

    Wanderley, Débora; Moura, Alberto G.; Costa, Joaquim J. S.; Siqueira, Gisela R.; de Oliveira, Daniella A.

    2015-01-01

    Background: Central and peripheral mechanisms may be involved in migraine and tension-type headache pathogenesis, however the role of muscle disorders in their pathophysiological mechanisms remains unclear. Objectives: To assess the association between the presence of migraine or tension-type headache and changes in longus colli muscle dimensions and sternocleidomastoid muscle activity. Method: An observational study with 48 women comparing the following groups: migraine (n=21), tension-type headache (n=16), and control (n=11). The cross-sectional area, lateral and anteroposterior dimensions, and shape ratio of the longus colli muscle were measured using ultrasound. The activation of the sternocleidomastoid muscle was assessed by signal amplitude and the decline in median frequency using surface electromyographic analysis. Results: The dimensions of the longus colli muscle did not differ between groups (p>0.05). Post-test analysis showed lower sternocleidomastoid muscle activation on both sides, at the onset of contraction, in the group with tension-type headache when compared to the control group {right sternocleidomastoid [tension-type headache: 0.39 (0.30-0.49); control: 0.58 (0.42-0.76); p=0.026] and left sternocleidomastoid [tension-type headache: 0.39 (0.31-0.48); control: 0.60 (0.42-0.79); p=0.039], Tukey's post hoc test}. There was no difference between the three groups in sternocleidomastoid muscle activation, on both sides, at the end of contraction (p>0.05). Intergroup analysis showed no difference in the rate of decline in median frequency (p>0.05). Conclusion: The group with tension-type headache exhibited less activation at the onset of sternocleidomastoid muscle contraction. No association was observed between the presence of headache and alterations in longus colli muscle dimensions, median frequency, and sternocleidomastoid muscle activation at the end of contraction. PMID:26083605

  9. Minimally invasive flexor hallucis longus transfer in management of acute achilles tendon rupture associated with tendinosis: a case report.

    PubMed

    Lui, Tun Hing

    2012-04-01

    Chronic tendinopathy is characterized by pain in the tendon, generally at the start and completion of exercise. However, tendinosis may lead to decreased blood flow, increased stiffness of the tendon and reduced tensile strength, and predispose to rupture. Operative treatment is indicated to restore the function of the Achilles tendon and alleviate the prerupture heel cord pain. A case of acute Achilles tendon rupture with extensive tendinosis that was successfully treated with minimally invasive flexor hallucis longus transfer is reported.

  10. The effect of hip abduction on the EMG activity of vastus medialis obliquus, vastus lateralis longus and vastus lateralis obliquus in healthy subjects

    PubMed Central

    Bevilaqua-Grossi, Débora; Monteiro-Pedro, Vanessa; de Vasconcelos, Rodrigo Antunes; Arakaki, Juliano Coelho; Bérzin, Fausto

    2006-01-01

    Study design Controlled laboratory study. Objectives The purposes of this paper were to investigate (d) whether vastus medialis obliquus (VMO), vastus lateralis longus (VLL) and vastus lateralis obliquus (VLO) EMG activity can be influenced by hip abduction performed by healthy subjects. Background Some clinicians contraindicate hip abduction for patellofemoral patients (with) based on the premise that hip abduction could facilitate the VLL muscle activation leading to a VLL and VMO imbalance Methods and measures Twenty-one clinically healthy subjects were involved in the study, 10 women and 11 men (aged X = 23.3 ± 2.9). The EMG signals were collected using a computerized EMG VIKING II, with 8 channels and three pairs of surface electrodes. EMG activity was obtained from MVIC knee extension at 90° of flexion in a seated position and MVIC hip abduction at 0° and 30° with patients in side-lying position with the knee in full extension. The data were normalized in the MVIC knee extension at 50° of flexion in a seated position, and were submitted to ANOVA test with subsequent application of the Bonferroni multiple comparisons analysis test. The level of significance was defined as p ≤ 0.05. Results The VLO muscle demonstrated a similar pattern to the VMO muscle showing higher EMG activity in MVIC knee extension at 90° of flexion compared with MVIC hip abduction at 0° and 30° of abduction for male (p < 0.0007) and MVIC hip abduction at 0° of abduction for female subjects (p < 0.02196). There were no statistically significant differences in the VLL EMG activity among the three sets of exercises tested. Conclusion The results showed that no selective EMG activation was observed when comparison was made between the VMO, VLL and VLO muscles while performing MVIC hip abduction at 0° and 30° of abduction and MVIC knee extension at 90° of flexion in both male and female subjects. Our findings demonstrate that hip abduction do not facilitated VLL and VLO activity

  11. Epimuscular myofascial force transmission occurs in the rat between the deep flexor muscles and their antagonistic muscles.

    PubMed

    Yucesoy, Can A; Baan, Guus; Huijing, Peter A

    2010-02-01

    The goal of the present study was to test the hypothesis that epimuscular myofascial force transmission occurs between deep flexor muscles of the rat and their antagonists: previously unstudied mechanical effects of length changes of deep flexors on the anterior crural muscles (i.e., extensor digitorum longus (EDL), as well as tibialis anterior and extensor hallucis longus muscle complex (TA+EHL) and peroneal (PER) muscles were assessed experimentally. These muscles or muscle groups were kept at constant length, whereas, distal length changes were imposed on deep flexor (DF) muscles before performing isometric contractions. Distal forces of all muscle-tendon complexes were measured simultaneously, in addition to EDL proximal force. Distal lengthening of DF caused substantial significant effects on its antagonistic muscles: (1) increase in proximal EDL total force (maximally 19.2%), (2) decrease in distal EDL total (maximally 8.4%) and passive (maximally 49%) forces, (3) variable proximo-distal total force differences indicating net proximally directed epimuscular myofascial loads acting on EDL at lower DF lengths and net distally directed loads at higher DF lengths, (4) decrease in TA+EHL total (maximally 50%) and passive (maximally 66.5%) forces and (5) decrease in PER total force (maximally 51.3%). It is concluded that substantial inter-antagonistic epimuscular myofascial force transmission occurs between deep flexor, anterior crural and peroneal muscles. In the light of our present results and recently reported evidence on inter-antagonistic interaction between anterior crural, peroneal and triceps surae muscles, we concluded that epimuscular myofascial force transmission is capable of causing major effects within the entire lower leg of the rat. Implications of such large scale myofascial force transmission are discussed and expected to be crucial to muscle function in healthy, as well as pathological conditions.

  12. Combined adductor canal block with periarticular infiltration versus periarticular infiltration for analgesia after total knee arthroplasty

    PubMed Central

    Ma, Jinhui; Gao, Fuqiang; Sun, Wei; Guo, Wanshou; Li, Zirong; Wang, Weiguo

    2016-01-01

    Abstract Background: Both adductor canal block (ACB) and periarticular infiltration (PI) have been shown to reduce pain after total knee arthroplasty (TKA) without the motor blockade. However, the efficacy and safety of combined ACB with PI (ACB + PI) as compared to PI alone for analgesia after TKA remains controversial. We therefore performed a meta-analysis to compare the effects of ACB + PI with PI alone on pain controll after TKA. Methods: PubMed, Medline, Embase, Web of Science, and the Cochrane Library were searched to identify studies comparing ACB + PI with PI alone for TKA patients. The primary outcomes included pain score with rest or activity and morphine consumption. Secondary outcomes were distance walked, length of hospital stay, and postoperative complications. Relevant data were analyzed using RevMan v5.3. Results: Three studies involving 337 patients were included. Combined ACB with PI was associated with longer distances walked than PI alone (MD = 7.27, 95% CI: 0.43–14.12, P = 0.04) on postoperative day 1. The outcomes of pain, morphine consumption, length of hospital stay, and postoperative complications were not statistically different between the 2 groups (P > 0.05). Conclusion: Our meta-analysis suggests that combined ACB with PI may achieve earlier ambulation for patients after TKA without a reduction in analgesia when compared to PI alone in the early postoperative period. There were no significant differences in morphine consumption, length of hospital stay, and postoperative complications between the 2 groups. However, owing to the variation of included studies, no firm conclusions can be drawn. PMID:28033266

  13. Effect of adductor canal block on medial compartment knee pain in patients with knee osteoarthritis

    PubMed Central

    Lee, Doo-Hyung; Lee, Michael Y.; Kwack, Kyu-Sung; Yoon, Seung-Hyun

    2017-01-01

    Abstract Knee osteoarthritis (KOA) is a common disease in middle-aged and elderly people. Pain is the chief complaint of symptomatic KOA and a leading cause of chronic disability, which is most often found in medial knees. The aim of this study is to evaluate the efficacy of pain relief and functional improvement in KOA patients treated with ultrasound-guided adductor canal block (ACB). This is a 3-month retrospective case-controlled comparative study. Two hundred patients with anteromedial knee pain owing to KOA that was unresponsive to 3-month long conservative treatments. Ninety-two patients received ACB with 9 mL of 1% of lidocaine and 1 mL of 10 mg triamcinolone acetonide (ACB group), and 108 continued conservative treatments (control group). The main outcome measure was visual analog scale (VAS) of the average knee pain level for the past one week. Secondary outcomes were the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), the timed up and go test, numbers of analgesic ingestion per day, and opioid consumption per day. During the 3-month follow-up, 86 patients in ACB group and 92 in control group were analyzed. There was no significant difference, with the exception of the duration of symptoms, between the 2 groups in age, sex, body mass index, and Kellgren-Lawrence grade. Repeated-measures analysis of variance and post hoc tests showed improvement of VAS (at month 1), WOMAC (at month 1), and opioid consumption per day (at month 1 and 2) in ACB group. No adverse events were reported. To our knowledge, this is the first study to assess the efficacy of ACB for patients with KOA. ACB is an effective and safe treatment and can be an option for patients who are either unresponsive or unable to take analgesics. PMID:28328826

  14. Vocal outcome after endoscopic thyroarytenoid myoneurectomy in patients with adductor spasmodic dysphonia.

    PubMed

    Gandhi, Sachin; Remacle, Marc; Mishra, Prasun; Desai, Vrushali

    2014-12-01

    Spasmodic dysphonia (SD) remains one of the most difficult of laryngeal pathologies to treat. With limited role for speech therapy, various surgical modalities have been tried with various success rates. The objective of the study is to report the results of vocal outcome after thyroarytenoid myoneurectomy in patients of adductor spasmodic dysphonia (ASD). 15 patients of ASD were selected. GRBAS, and voice handicap index (VHI) were used for perceptual evaluation of voice. Thyroarytenoid myoneurectomy was performed by vaporizing the muscular layer of the vocal fold with CO2 laser, at an intensity of 6 W with 1.2 mm diameter in scanner mode. Voice analysis was repeated at 12, 24 and 48 months follow-up. Preoperative GRBAS scores and VHI score of all the patients were poor. At 12 months 12/15 (80 %) patients having strain score of 0. There was marked improvement in VHI scores at 6 months. 10/15 (67 %) patients have been followed up for 24 months. 5/10 (50 %) patients have strain (S) value of 0. VHI scoring of 5/10 (50 %) patients was <30. Two of the four patients completed 48 months follow-up had a strain (S) value of 0, one patient has strain value of 1 and one patient had strain value of 2. 2/4 patients had VHI score of <30; one patient had that of 40. Trans-oral CO2 laser thyroarytenoid myoneurectomy shows significant long-term improvement in voice quality in terms of reduced speech brakes, effort and strain in voice.

  15. Anatomical variation of abductor pollicis longus in Indian population: A cadaveric study

    PubMed Central

    Tewari, Jerina; Mishra, Pravash Ranjan; Tripathy, Sujit Kumar

    2015-01-01

    Background: Many authors have reported the anatomical variation of abductor pollicis longus (APL) around the wrist and its association with de Quervain tenosynovitis (DQT), first carpo-metacarpal arthritis, and trapezio-metacarpal subluxation. From Indian subcontinent, there is only one original article and a few case reports on the variability of APL tendon insertion. Materials and Methods: Fifty formaldehyde preserved cadaveric wrists were dissected to look for the anatomical variation of APL in the Indian population. Results: The APL was found with single tendon in 2, double in 31, triple in 8, and quadruple in 8 extremities. A maximum of 6 tendon-slips were found in one cadaveric wrist. In all hands, the APL had at least one attachment to first metacarpal bone and in 46 hands (92%), there was second insertion to the trapezium bone. Of all tendon-slips of APL (n = 126), 44% of tendons (68 tendons) were inserted into the base of the first metacarpal bone. This was followed by the insertion into the trapezium in 42% tendons (52 tendons). Conclusion: Bi-tendinous APL is commonly observed on the dorsal compartment of the wrist in Indian population and these tendon-slips are commonly attached to the first metacarpal base and trapezium. This variation must be understood by the Indian Orthopedic surgeons as the response to treatment of DQT and reason for first carpo-metacarpal arthritis can be dependent on this anatomical variation. PMID:26538762

  16. Scapholunate ligament reconstruction using the palmaris longus tendon and suture anchor fixation in chronic scapholunate instability

    PubMed Central

    Gandhi, Maulik Jagdish; Knight, Timothy Paul; Ratcliffe, Peter John

    2016-01-01

    Background: Multiple reconstruction techniques have been described in the management of chronic scapholunate (SL) instability, either based on the capsulodesis or tenodesis principle. It is uncertain which surgical method produces the best patient outcomes. We describe results of a technique using palmaris longus (PL) tendon for surgical reconstruction of the SL ligament and provide functional outcomes scores. Materials and Methods: We surgically reconstructed the SL ligament using a PL tendon graft secured with Mitek® bone anchors. Surgical technique with photographs is provided in the main text. Functional outcomes were measured using the disabilities of the arm, shoulder, and hand and Mayo wrist scores. Patient satisfaction was assessed using a simple measure. Results: Eleven patients attended mid-term followup (mean 45.8 months post-surgery) and had functional outcomes and satisfaction of this procedure that compared favorably to case series that used tenodesis for chronic SL ligament injuries. Almost all patients (n = 10) were able to return to regular employment. The majority of patients (n = 10) were satisfied with their primary reconstruction procedure. Conclusion: This technique avoids the use of drill holes to weave tendon through bone, uses an easy to access graft, and exploits the superior pullout strength of anchors while offering satisfactory functional outcomes that are comparable to alternative tenodesis techniques. PMID:27904216

  17. Mycobacterium fortuitum infection following primary achilles tendon debridement with flexor hallucis longus augmentation: a case report.

    PubMed

    Jacoby, Sidney M; Sivalingam, Jocelyn J; Raikin, Steven Mark

    2008-05-01

    Mycobacterium fortuitum (M. fortuitum), a rapidly growing non-tuberculous mycobacterium is a well-recognized, yet uncommon cause of soft tissue infection. The incidence of post surgical wound infections from this organism is increasing. The presentation of infection is atypical and failure to consider this pathogen can cause diagnostic delay and increased morbidity. Achilles tendon debridement with FHL augmentation is commonly used in patients with chronic Achilles tendinosis. Wound-edge necrosis is the most common surgical complication of this procedure, and superficial and deep infections are potentially devastating complications. We report the case of a patient who underwent Achilles tendon debridement with flexor hallucis longus augmentation, whose postoperative course was complicated by a deep M. FORTUITUM infection. Critical to the identification and ultimate treatment of this particular pathogen is the utilization of appropriate intraoperative cultures and microbiologic testing. In addition, repeat aggressive irrigation and debridement procedures coupled with removal of foreign materials and the appropriate use of prolonged antibiotic therapy can result in a successful long-term outcome.

  18. A muscle spindle abnormity in one laryngeal muscle would be sufficient to cause stuttering.

    PubMed

    Schuster, Steffen H; Schuster, Frank M

    2012-07-01

    Muscle spindles are increasingly recognized as playing a pivotal role in the cause of dystonia. This development and own laryngeal observations that support the idea of causally "well-intentioned" stuttering motivated us to present the following hypothesis: stuttering events compensate for a sensory problem that arises when the abductor/adductor ratio of afferent impulse rates from the posterior cricoarytenoid and lateral cricoarytenoid muscle spindles is abnormally reduced and processed for the occasional determination of the vocal fold position. This hypothesis implies that functional and structural brain abnormalities might be interpreted as secondary compensatory reactions. Verification of this hypothesis (using technologies such as microneurography, dissection and muscle afferent block) is important because its confirmation could relink dystonia and stuttering research, change the direction of stuttering therapy and destigmatize stuttering radically.

  19. Fetal muscle-derived cells can repair dystrophic muscles in mdx mice.

    PubMed

    Auda-Boucher, Gwenola; Rouaud, Thierry; Lafoux, Aude; Levitsky, Dmitri; Huchet-Cadiou, Corinne; Feron, Marie; Guevel, Laetitia; Talon, Sophie; Fontaine-Pérus, Josiane; Gardahaut, Marie-France

    2007-03-10

    We have previously reported that CD34(+) cells purified from mouse fetal muscles can differentiate into skeletal muscle in vitro and in vivo when injected into muscle tissue of dystrophic mdx mice. In this study, we investigate the ability of such donor cells to restore dystrophin expression, and to improve the functional muscle capacity of the extensor digitorum longus muscle (EDL) of mdx mice. For this purpose green fluorescent-positive fetal GFP(+)/CD34(+) cells or desmin(+)/(-)LacZ/CD34(+) cells were transplanted into irradiated or non-irradiated mdx EDL muscle. Donor fetal muscle-derived cells predominantly fused with existing fibers. Indeed more than 50% of the myofibers of the host EDL contained donor nuclei delivering dystrophin along 80-90% of the length of their sarcolemma. The presence of significant amounts of dystrophin (about 60-70% of that found in a control wild-type mouse muscle) was confirmed by Western blot analyses. Dystrophin expression also outcompeted that of utrophin, as revealed by a spatial shift in the distribution of utrophin. At 1 month post-transplant, the recipient muscle appeared to have greater resistance to fatigue than control mdx EDL muscle during repeated maximal contractions.

  20. Your Muscles

    MedlinePlus

    ... Room? What Happens in the Operating Room? Your Muscles KidsHealth > For Kids > Your Muscles A A A ... and skeletal (say: SKEL-uh-tul) muscle. Smooth Muscles Smooth muscles — sometimes also called involuntary muscles — are ...

  1. Modulation of the cytosolic androgen receptor in striated muscle by sex steroids

    NASA Technical Reports Server (NTRS)

    Rance, N. E.; Max, S. E.

    1982-01-01

    The influence of orchiectomy (GDX) and steroid administration on the level of the cytosolic androgen receptor in the rat levator ani muscle and in rat skeletal muscles (tibialis anterior and extensor digitorum longus) was studied. Androgen receptor binding to muscle cytosol was measured using H-3 methyltrienolone (R1881) as ligand, 100 fold molar excess unlabeled R1881 to assess nonspecific binding, and 500 fold molar excess of triamcinolone acetonide to prevent binding to glucocorticoid and progestin receptors. Results demonstrate that modification of the levels of sex steroids can alter the content of androgen receptors of rat striated muscle. Data suggest that: (1) cytosolic androgen receptor levels increase after orchiectomy in both levator ani muscle and skeletal muscle; (2) the acute increase in receptor levels is blocked by an inhibitor of protein synthesis; and (3) administration of estradiol-17 beta to castrated animals increases receptor binding in levator ani muscle but not in skeletal muscle.

  2. Increased catalase expression improves muscle function in mdx mice.

    PubMed

    Selsby, Joshua T

    2011-02-01

    It has been well established that oxidative stress contributes to pathology associated with Duchenne muscular dystrophy (DMD). I hypothesized that overexpression of the antioxidant enzyme catalase would improve muscle function in the mdx mouse, the mouse model of DMD. To test this hypothesis, neonatal mdx mice were injected with a recombinant adeno-associated virus driving the catalase transgene. Animals were killed 4 or 6 weeks or 6 months following injection. Muscle function was generally improved by catalase overexpression. Four weeks following injection, extensor digitorum longus specific tension was improved twofold, while soleus was similar between groups. Resistance to contraction-induced injury was similar between groups; however, resistance to fatigue was increased 25% in catalase-treated soleus compared with control muscle. Six weeks following injection, extensor digitorum longus specific tension was increased 15%, while soleus specific tension was similar between treated and untreated limbs. Catalase overexpression reduced contraction-induced injury by 30-45% and fatigue by 20% compared with control limbs. Six months following injection, diaphragm specific tension was similar between groups, but resistance to contraction-induced injury was improved by 35% and fatigue by 25%. Taken together, these data indicate that catalase can improve a subset of parameters of muscle function in dystrophin-deficient skeletal muscle.

  3. Eccentric contractions disrupt FKBP12 content in mouse skeletal muscle.

    PubMed

    Baumann, Cory W; Rogers, Russell G; Gahlot, Nidhi; Ingalls, Christopher P

    2014-07-16

    Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from impaired voltage-gated sarcoplasmic reticulum (SR) Ca(2+) release. FKBP12 is a 12-kD immunophilin known to bind to the SR Ca(2+) release channel (ryanodine receptor, RyR1) and plays an important role in excitation-contraction coupling. To assess the effects of eccentric contractions on FKBP12 content, we measured anterior crural muscle (tibialis anterior [TA], extensor digitorum longus [EDL], extensor hallucis longus muscles) strength and FKBP12 content in pellet and supernatant fractions after centrifugation via immunoblotting from mice before and after a single bout of either 150 eccentric or concentric contractions. There were no changes in peak isometric torque or FKBP12 content in TA muscles after concentric contractions. However, FKBP12 content was reduced in the pelleted fraction immediately after eccentric contractions, and increased in the soluble protein fraction 3 day after injury induction. FKBP12 content was correlated (P = 0.025; R(2) = 0.38) to strength deficits immediately after injury induction. In summary, eccentric contraction-induced muscle injury is associated with significant alterations in FKBP12 content after injury, and is correlated with changes in peak isometric torque.

  4. Results of Abductor Pollicis Longus Suspension Ligamentoplasty for Treatment of Advanced First Carpometacarpal Arthritis

    PubMed Central

    Lee, Hyun-Joo; Kim, Poong-Taek; Deslivia, Maria Florencia; Lee, Suk-Joong; Nam, Sang-Jin

    2015-01-01

    Background Suspension ligamentoplasty using abductor pollicis longus (APL) tendon without bone tunneling, was introduced as one of the techniques for treatment of advanced first carpometacarpal (CMC) arthritis. The purpose of this study was to evaluate the radiologic and clinical results of APL suspension ligamentoplasty. Methods The medical records of 19 patients who underwent APL suspension ligamentoplasty for advanced first CMC arthritis between January 2008 and May 2012 were reviewed retrospectively. The study included 13 female and 6 male patients, whose mean age was 62 years (range, 43 to 82 years). For clinical evaluation, we assessed the grip and pinch power, radial and volar abduction angle, thumb adduction (modified Kapandji index), including visual analogue scale (VAS) and Disabilities of the Arm, Shoulder and Hand (DASH) scores. Radiologic evaluation was performed using simple radiographs. Results The mean follow-up was 36 months (range, 19 to 73.7 months). Mean power improved from 18.3 to 27 kg for grip power, from 2.8 to 3.5 kg for tip pinch, and from 4.3 to 5.4 kg for power pinch. All patients showed decreased VAS from 7.2 to 1.7. Radial abduction improved from 71° preoperatively to 82° postoperatively. The modified Kapandji index showed improvement from 6 to 7.3, and mean DASH was improved from 41 to 17.8. The height of the space decreased from 10.8 to 7.1 mm. Only one case had a complication involving temporary sensory loss of the first dorsal web space, which resolved spontaneously. Conclusions The APL suspension ligamentoplasty for treatment of advanced first CMC arthritis yielded satisfactory functional results. PMID:26330961

  5. Immediate effect of static and proprioceptive neuromuscular facilitation stretching on hip adductor flexibility in female ballet dancers.

    PubMed

    Rubini, Ercole C; Souza, Andréa C; Mello, Mônica L; Bacurau, Reury F P; Cabral, Leonardo F; Farinatti, Paulo T V

    2011-01-01

    The aim of the present study was to investigate the immediate effects of static and proprioceptive neuromuscular facilitation (PNF) stretching on the flexibility of hip adductors in female ballet dancers. Forty-five subjects (age: 28.5 ± 8.0 years; minimum two years of ballet training) were randomly assigned to three groups: PNF (contract-release technique), Static, and Control. Subjects in the PNF and Static groups performed four sets of 30 second stretching with an interval of 30 seconds between sets. The control group stayed at rest for the same time spent by the PNF and Static groups during the stretching sessions. Maximal range of motion was measured before and immediately after the experimental and control protocols in all groups. The results indicated significant differences between pre- and post-stretching flexibility in both PNF and Static groups (p < 0.0001; effect size = 0.24 and 0.39, respectively), whereas no change was identified in the Control group (p = 0.265). However, no differences in post-exercise flexibility were found between PNF and Static groups (p = 0.235). It is concluded that static and PNF stretching methods provoked similar post-exercise acute effects on the maximal range of motion of hip adductors in highly flexible female ballet dancers.

  6. Age-related loss of muscle fibres is highly variable amongst mouse skeletal muscles.

    PubMed

    Sheard, Philip W; Anderson, Ross D

    2012-04-01

    Sarcopenia is the age-related loss of skeletal muscle mass and strength, attributable in part to muscle fibre loss. We are currently unable to prevent fibre loss because we do not know what causes it. To provide a platform from which to better understand the causes of muscle fibre death we have quantified fibre loss in several muscles of aged C57Bl/6J mice. Comparison of muscle fibre numbers on dystrophin-immunostained transverse tissue sections at 6 months of age with those at 24 months shows a significant fibre loss in extensor digitorum longus and soleus, but not in sternomastoid or cleidomastoid muscles. The muscles of the elderly mice were mostly lighter than their younger counterparts, but fibres in the elderly muscles were of about the same cross-sectional area. This study shows that the contribution of fibre death to sarcopenia is highly variable and that there is no consistent pattern of age-related fibre loss between skeletal muscles.

  7. Experimental evaluation of the effects of pravastatin on electrophysiological parameters of rat skeletal muscle.

    PubMed

    Pierno, S; De Luca, A; Tricarico, D; Ferrannini, E; Conte, T; D'Alò, G; Camerino, D C

    1992-11-01

    The effects of daily chronic treatment for 6 months with pravastatin was evaluated on the performance of the skeletal muscle system of different rat groups. At all doses (0.1 mg/kg-20 mg/kg) the righting reflex and the electromyographic signals observed in vivo did not show any abnormality. At the end of the treatment the Extensor digitorum longus muscles were dissected from treated and control rats and their passive and active electrical parameters were analyzed in vitro by standard microelectrodes technique. Pravastatin did not modify the chloride conductance nor the excitability characteristics of the fibers. Chronic treatment with pravastatin does not produce any alteration of skeletal muscle function.

  8. Effects of stretching and disuse on amino acids in muscles of rat hind limbs

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik J.; Satarug, Soisungwan; Tischler, Marc E.

    1989-01-01

    The effects of disuse and passive stretch on the concentrations of amino acids and ammonia in the unloaded soleus muscle was investigated in hindquarter-suspended (for six days by casting one foot in dorsiflexion) tail-casted rats. For a comparison with the condition of unloading, amino acids and ammonia were also measured in shortened extensor digitorum longus in the same casted limb and in denervated leg muscles. The results obtained suggest that passive stretch diminishes some of the characteristic alterations of amino acid concentrations due to unloading. This effect of stretch is considered to be due to the maintenance of muscle tension.

  9. Insulin binding to individual rat skeletal muscles

    SciTech Connect

    Koerker, D.J.; Sweet, I.R.; Baskin, D.G. )

    1990-10-01

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white (extensor digitorum longus (EDL), gastrocnemius) muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding.

  10. Utilization of Military-Relevant Muscle Injury Models to Identify Pharmacological Treatment Strategies

    DTIC Science & Technology

    2008-12-01

    and Coauthors, 2005: Metallothionein-mediated antioxidant defense its response to exercise training are impaired in human type 2 diabetes ...display a currently valid OMB control number. 1. REPORT DATE DEC 2008 2 . REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Utilization...applied to rat hind limbs for 3 h. Extensor digitorum longus (EDL) muscles from the healthy and I/R leg were harvested 2 h post-reperfusion for

  11. [Participation of the primary motor cortex in programming of muscle activity during catching of falling object].

    PubMed

    Kazennikov, O V; Lipshits, M I

    2011-01-01

    Object fell into the cup that sitting subject held between thumb and index fingers. Transcranial magnetic stimulation (TMS) of the primary motor cortex was performed early before and during anticipatory grip force increasing. Comparison of current EMG activity of adductor pollicis brevis and first dorsal interosseous muscles and responses of these muscles on TMS showed that responses were increased before the raising of muscle activity. From the other side only slight augmentation of responses was observed during subsequent strong muscle activation. It is assumed that the increasing of the TMS responses that occurred before the initiation of muscle activity reflects the enhancement ofthe motor cortex excitability associated to specific processes related to the motor cortex participation in programming of the muscles activities.

  12. Comparative anatomy and muscle architecture of selected hind limb muscles in the Quarter Horse and Arab.

    PubMed

    Crook, T C; Cruickshank, S E; McGowan, C M; Stubbs, N; Wakeling, J M; Wilson, A M; Payne, R C

    2008-02-01

    The Quarter Horse (bred for acceleration) and the Arab (bred for endurance) are situated at either end of the equine athletic spectrum. Studies into the form and function of the leg muscles in human sprint and endurance runners have demonstrated that differences exist in their muscle architecture. It is not known whether similar differences exist in the horse. Six Quarter Horse and six Arab fresh hind limb cadavers were dissected to gain information on the muscle mass and architecture of the following muscles: gluteus medius; biceps femoris; semitendinosus; vastus lateralis; gastrocnemius; tibialis cranialis and extensor digitorum longus. Specifically, muscle mass, fascicle length and pennation angle were quantified and physiological cross-sectional area (PCSA) and maximum isometric force were estimated. The hind limb muscles of the Quarter Horse were of a significantly greater mass, but had similar fascicle lengths and pennation angles when compared with those of the Arab; this resulted in the Quarter Horse hind limb muscles having greater PCSAs and hence greater isometric force potential. This study suggests that Quarter Horses as a breed inherently possess large strong hind limb muscles, with the potential to accelerate their body mass more rapidly than those of the Arab.

  13. Whole muscle length-tension relationships are accurately modeled as scaled sarcomeres in rabbit hindlimb muscles.

    PubMed

    Winters, Taylor M; Takahashi, Mitsuhiko; Lieber, Richard L; Ward, Samuel R

    2011-01-04

    An a priori model of the whole active muscle length-tension relationship was constructed utilizing only myofilament length and serial sarcomere number for rabbit tibialis anterior (TA), extensor digitorum longus (EDL), and extensor digitorum II (EDII) muscles. Passive tension was modeled with a two-element Hill-type model. Experimental length-tension relations were then measured for each of these muscles and compared to predictions. The model was able to accurately capture the active-tension characteristics of experimentally-measured data for all muscles (ICC=0.88 ± 0.03). Despite their varied architecture, no differences in predicted versus experimental correlations were observed among muscles. In addition, the model demonstrated that excursion, quantified by full-width-at-half-maximum (FWHM) of the active length-tension relationship, scaled linearly (slope=0.68) with normalized muscle fiber length. Experimental and theoretical FWHM values agreed well with an intraclass correlation coefficient of 0.99 (p<0.001). In contrast to active tension, the passive tension model deviated from experimentally-measured values and thus, was not an accurate predictor of passive tension (ICC=0.70 ± 0.07). These data demonstrate that modeling muscle as a scaled sarcomere provides accurate active functional but not passive functional predictions for rabbit TA, EDL, and EDII muscles and call into question the need for more complex modeling assumptions often proposed.

  14. New Insights into Muscle Function during Pivot Feeding in Seahorses

    PubMed Central

    Van Wassenbergh, Sam; Dries, Billy; Herrel, Anthony

    2014-01-01

    Seahorses, pipefish and their syngnathiform relatives are considered unique amongst fishes in using elastic recoil of post-cranial tendons to pivot the head extremely quickly towards small crustacean prey. It is known that pipefish activate the epaxial muscles for a considerable time before striking, at which rotations of the head and the hyoid are temporarily prevented to allow energy storage in the epaxial tendons. Here, we studied the motor control of this system in seahorses using electromyographic recordings of the epaxial muscles and the sternohyoideus-hypaxial muscles with simultaneous high-speed video recordings of prey capture. In addition we present the results from a stimulation experiment including the muscle hypothesised to be responsible for the locking and triggering of pivot feeding in seahorses (m. adductor arcus palatini). Our data confirmed that the epaxial pre-activation pattern observed previously for pipefish also occurs in seahorses. Similar to the epaxials, the sternohyoideus-hypaxial muscle complex shows prolonged anticipatory activity. Although a considerable variation in displacements of the mouth via head rotation could be observed, it could not be demonstrated that seahorses have control over strike distance. In addition, we could not identify the source of the kinematic variability in the activation patterns of the associated muscles. Finally, the stimulation experiment supported the previously hypothesized role of the m. adductor arcus palatini as the trigger in this elastic recoil system. Our results show that pre-stressing of both the head elevators and the hyoid retractors is taking place. As pre-activation of the main muscles involved in pivot feeding has now been demonstrated for both seahorses and pipefish, this is probably a generalized trait of Syngnathidae. PMID:25271759

  15. Feasibility and reliability of using an exoskeleton to emulate muscle contractures during walking.

    PubMed

    Attias, M; Bonnefoy-Mazure, A; De Coulon, G; Cheze, L; Armand, S

    2016-10-01

    Contracture is a permanent shortening of the muscle-tendon-ligament complex that limits joint mobility. Contracture is involved in many diseases (cerebral palsy, stroke, etc.) and can impair walking and other activities of daily living. The purpose of this study was to quantify the reliability of an exoskeleton designed to emulate lower limb muscle contractures unilaterally and bilaterally during walking. An exoskeleton was built according to the following design criteria: adjustable to different morphologies; respect of the principal lines of muscular actions; placement of reflective markers on anatomical landmarks; and the ability to replicate the contractures of eight muscles of the lower limb unilaterally and bilaterally (psoas, rectus femoris, hamstring, hip adductors, gastrocnemius, soleus, tibialis posterior, and peroneus). Sixteen combinations of contractures were emulated on the unilateral and bilateral muscles of nine healthy participants. Two sessions of gait analysis were performed at weekly intervals to assess the reliability of the emulated contractures. Discrete variables were extracted from the kinematics to analyse the reliability. The exoskeleton did not affect normal walking when contractures were not emulated. Kinematic reliability varied from poor to excellent depending on the targeted muscle. Reliability was good for the bilateral and unilateral gastrocnemius, soleus, and tibialis posterior as well as the bilateral hamstring and unilateral hip adductors. The exoskeleton can be used to replicate contracture on healthy participants. The exoskeleton will allow us to differentiate primary and compensatory effects of muscle contractures on gait kinematics.

  16. The prevalence of absence of the palmaris longus--a study in a Chinese population and a review of the literature.

    PubMed

    Sebastin, S J; Puhaindran, M E; Lim, A Y T; Lim, I J; Bee, W H

    2005-10-01

    Most standard textbooks of hand surgery quote the prevalence of absence of palmaris longus at around 15%. However, this figure varies considerably in reports from different ethnic groups. We studied 329 Chinese men and women and found palmaris longus to be absent unilaterally in 3.3%, and bilaterally in 1.2%, with an overall prevalence of absence of 4.6%. There was no significant difference in its absence with regard to the body side or the sex. Our literature review revealed a low prevalence of absence in Asian, Black and Native American populations and a much higher prevalence of absence in Caucasian populations. It is clear that a standard prevalence of absence of the palmaris longus cannot be applied to all populations.

  17. Physiological changes in fast and slow muscle with simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Dettbarn, W. D.; Misulis, K. E.

    1984-01-01

    A rat hindlimb suspension model of simulated weightlessness was used to examine the physiological characteristics of skeletal muscle. The physiological sequelae of hindlimb suspension were compared to those of spinal cord section, denervation by sciatic nerve crush, and control. Muscle examined were the predominantly slow (Type 1) soleus (SOL) and the predominantly fast (Type 2) extensor digitorum longus (EDL). Two procedures which alter motor unit activity, hindlimb suspension and spinal cord section, produce changes in characteristics of skeletal muscles that are dependent upon fiber type. The SOL develops characteristics more representative of a fast muscle, including smaller Type 1 fiber proportion and higher AChE activity. The EDL, which is already predominantly fast, loses most of its few Type 1 fibers, thus also becoming faster. These data are in agreement with the studies in which rats experienced actual weightlessness.

  18. Effect of hindlimb immobilization on the fatigability of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Kim, D. H.; Fitts, R. H.

    1983-01-01

    The effect of 6 weeks of disuse atrophy produced by hindlimb immobilization was studied in situ (33.5 C) in the soleus and extensor digitorum longus muscles of rats. The results indicate that disuse causes preferential alterations in the isometric contractile properties of slow-twitch, as opposed to fast-twitch, skeletal muscles. During continuous contractile activity, atrophied muscles were found to have lower ATP levels and an apparent increase in their dependence on anaerobic metabolism, as reflected by the more extensive depletion of glycogen and enhanced lactate formation. Although the atrophied muscles were determined to have fewer cross bridges and thus generated lower tension, the pattern of decline in active cross-bridge formation and tetanic tension during contractile activity was found to proceed in a manner similar to controls.

  19. Transcriptional regulation of decreased protein synthesis during skeletal muscle unloading

    NASA Technical Reports Server (NTRS)

    Howard, G.; Steffen, J. M.; Geoghegan, T. E.

    1989-01-01

    The regulatory role of transcriptional alterations in unloaded skeletal muscles was investigated by determining levels of total muscle RNA and mRNA fractions in soleus, gastrocnemius, and extensor digitorum longus (EDL) of rats subjected to whole-body suspension for up to 7 days. After 7 days, total RNA and mRNA contents were lower in soleus and gastrocnemius, compared with controls, but the concentrations of both RNAs per g muscle were unaltered. Alpha-actin mRNA (assessed by dot hybridization) was significantly reduced in soleus after 1, 3, and 7 days of suspension and in gastrocnemius after 3 and 7 days, but was unchanged in EDL. Protein synthesis directed by RNA extracted from soleus and EDL indicated marked alteration in mRNAs coding for several small proteins. Results suggest that altered transcription and availability of specific mRNAs contribute significantly to the regulation of protein synthesis during skeletal muscle unloading.

  20. Glucocorticoid sensitivity, disuse, and the regulation of muscle mass

    NASA Technical Reports Server (NTRS)

    Almon, R. R.; Dubois, D. C.

    1983-01-01

    A new noninvasive immobilization procedure to be used on rats has been developed to study immobilization-induced muscle hypersensitivity to normal glucocorticoid concentration, subsequent muscle atrophy, and atrophy recovery. The immobilization procedure involves encasing the hind limb in a light-weight plasticlike cast (10 percent the usual plaster weight), completely resistant to animal gnawing. The effects of right-angle immobilization of the ankle on the slow fiber soleus, and the fast fiber extensor digitorum longus, resemble the effects of weightlessness. The increased concentration of glucocorticoid receptor sites in immobilized and denervated muscle is discussed, along with the chronic loss of muscle mass that occurs in practically all dystrophies. It is concluded that lack of mechanical work in a zero gravity environment is a major cause of glucocorticoid hypersensitivity in the body's musculature.

  1. Adductor canal block versus femoral nerve block combined with sciatic nerve block as an anesthetic technique for hindfoot and ankle surgery

    PubMed Central

    Joe, Han Bum; Choo, Ho Sik; Yoon, Ji Sang; Oh, Sang Eon; Cho, Jae Ho; Park, Young Uk

    2016-01-01

    Abstract Background: A femoral nerve block (FNB) in combination with a sciatic nerve block (SNB) is commonly used for anesthesia and analgesia in patients undergoing hindfoot and ankle surgery. The effects of FNB on motor function, related fall risk, and rehabilitation are controversial. An adductor canal block (ACB) potentially spares motor fibers in the femoral nerve, but the comparative effect on hindfoot and ankle surgeries between the 2 approaches is not yet well defined. We hypothesized that compared to FNB, ACB would cause less weakness in the quadriceps and produce similar pain scores during and after the operation. Methods: Sixty patients scheduled for hindfoot and ankle surgeries (arthroscopy, Achilles tendon surgery, or medial ankle surgery) were stratified randomized for each surgery to receive an FNB (FNB group) or an ACB (ACB group) combined with an SNB. The primary outcome was the visual analog scale (VAS) pain score at each stage. Secondary outcomes included quadriceps strength, time profiles (duration of the block procedure, time to full anesthesia and time to full recovery), patients’ analgesic requirements, satisfaction, and complications related to peripheral nerve blocks such as falls, neurologic symptoms, and local anesthetic systemic toxicity were evaluated. The primary outcome was tested for the noninferiority of ACB to FNB, and the other outcomes were tested for the superiority of each variable between the groups. Results: A total of 31 patients received an ACB and 29 received an FNB. The VAS pain scores of the ACB group were not inferior during and after the operation compared to those of the FNB group. At 30 minutes and 2 hours after anesthesia, patients who received an ACB had significantly higher average dynamometer readings than those who received a FNB (34.2 ± 20.4 and 30.4 ± 23.7 vs 1.7 ± 3.7 and 2.3 ± 7.4, respectively), and the results were similar at 24 and 48 hours after anesthesia. There were no differences

  2. High incidence and treatment of flexor carpi radialis tendinitis after trapeziectomy and abductor pollicis longus suspensionplasty for basal joint arthritis.

    PubMed

    Low, T H; Hales, P F

    2014-10-01

    We reviewed the incidence and treatment of flexor carpi radialis tendinitis in 77 patients (81 thumbs) who had trapeziectomy and abductor pollicis longus suspensionplasty for thumb carpometacarpal joint arthritis. Eighteen patients, 20 wrists (25%) had flexor carpi radialis tendinitis. The onset was 2-10 months (mean 4.7) after surgery. Two cases had preceding trauma. Eight cases (40%) responded to splinting and steroid injection. Ten patients, 12 wrists (60%) underwent surgery after failing non-operative treatment. Eleven wrists had frayed or partially torn flexor carpi radialis tendon and one had a complete tendon rupture with pseudotendon formation. Flexor carpi radialis tenotomy and pseudotendon excision were performed. All operated patients obtained good pain relief initially post-operatively. However, the pain recurred in two patients after 8 months. One required a local steroid injection for localized tenderness at the site of the proximal tendon stump. The other patient required a revision operation for scaphotrapezoid impingement. Both obtained complete pain relief. Our study has shown a high incidence of flexor carpi radialis tendinitis following trapeziectomy and abductor pollicis longus suspensionplasty. Patients should be warned about this potential complication.

  3. Congenital absence of flexor pollicis longus tendon without associated anomalies of thumb hypoplasia: a case report and review of the literature.

    PubMed

    Demirseren, Mustafa Erol; Afandiyev, Kamran; Durgun, Mustafa; Kilicarslan, Kasim; Yorubulut, Mehmet

    2007-12-01

    In this paper, we report a case of a 14-year-old girl with congenital aplasia of the flexor pollicis longus tendon who had no other associated anomalies of thumb hypoplasia and no trauma history. Flexor pollicis longus tendon anomalies are rare; several types of this congenital anomaly have been reported in the literature. The diagnosis should be considered if a patient is unable to flex the interphalangeal joint of the thumb. A hypoplastic thumb or an absent interphalangeal joint crease may be a diagnostic feature in such cases. Besides physical examination, we also used direct radiography and magnetic resonance imaging to diagnose this rare congenital anomaly in our patient.

  4. The expression of Longus type 4 pilus of enterotoxigenic Escherichia coli is regulated by LngR and LngS and by H-NS, CpxR and CRP global regulators.

    PubMed

    De la Cruz, Miguel A; Ruiz-Tagle, Alejandro; Ares, Miguel A; Pacheco, Sabino; Yáñez, Jorge A; Cedillo, Lilia; Torres, Javier; Girón, Jorge A

    2016-12-10

    Enterotoxigenic Escherichia coli produces a long type 4 pilus called Longus. The regulatory elements and the environmental signals controlling the expression of Longus-encoding genes are unknown. We identified two genes lngR and lngS in the Longus operon, whose predicted products share homology with transcriptional regulators. Isogenic lngR and lngS mutants were considerably affected in transcription of lngA pilin gene. The expression of lngA, lngR and lngS genes was optimally expressed at 37°C at pH 7.5. The presence of glucose and sodium chloride had a positive effect on Longus expression. The presence of divalent ions, particularly calcium, appears to be an important stimulus for Longus production. In addition, we studied H-NS, CpxR and CRP global regulators, on Longus expression. The response regulator CpxR appears to function as a positive regulator of lng genes as the cpxR mutant showed reduced levels of lngRSA expression. In contrast, H-NS and CRP function as negative regulators since expression of lngA was up-regulated in isogenic hns and crp mutants. H-NS and CRP were required for salt- and glucose-mediated regulation of Longus. Our data suggest the existence of a complex regulatory network controlling Longus expression, involving both local and global regulators in response to different environmental signals.

  5. Multiple muscular variations including tenuissimus and tensor fasciae suralis muscles in the posterior thigh of a human case.

    PubMed

    Arakawa, Takamitsu; Kondo, Takahiro; Tsutsumi, Masahiro; Watanabe, Yuko; Terashima, Toshio; Miki, Akinori

    2017-03-07

    The posterior thigh muscles on the right side of an 81-year-old male cadaver had multiple variations, denoted muscles I-IV. Muscle I originated from the posteromedial surface of the greater trochanter and divided into two muscle bellies. These muscle bellies fused with the long head of the biceps femoris and were innervated by two branches from muscular branches of the semitendinosus and the long head of the biceps. Muscle II separated from the medial surface of the long head of the biceps in the proximal third and fused with the semitendinosus in the distal fourth. Muscle III was a biventer muscle. Its superior belly separated from the medial surface of the long head of the biceps in the distal third. The inferior belly of this muscle fused with the posterior surface of the crural fascia and was innervated by the tibial nerve. Muscle IV separated from the adductor magnus muscle, passed between the long and short heads of the biceps, fused with the inferior belly of muscle III, and was innervated by the muscular branch of the common fibular nerve to the short head of the biceps. Peeling off the epineurium of the muscular branches to the inferior belly of muscle III showed that this nerve fascicle divided from the common trunk with branches to the gastrocnemius and soleus muscles. The inferior bellies of muscle III and muscle IV were thought to be equivalent to the tensor fasciae suralis and tenuissimus muscles, respectively.

  6. Effects of different types of exercise on muscle activity and balance control

    PubMed Central

    Kim, Mi-Kyoung; Choi, Jung-Hyun; Gim, Min-A; Kim, Young-Hwan; Yoo, Kyung-Tae

    2015-01-01

    [Purpose] This study analyzed the effects of isotonic, isokinetic, and isometric exercises of ankle joint muscles on lower extremity muscle activity and balance control. [Subjects and Methods] The subjects were 30 healthy adults (15 males) in their 20s who were randomly assigned to three different exercise method groups of 10 people each. The isokinetic exercise group performed three sets at an angular velocity of 60°/sec, including a single rest period after every set of 10 repetitions. The isometric exercise group performed three sets consisting of three 15 repetitions of a 15-second exercise followed by a 5-second rest. [Results] Multivariate analysis of variance revealed that depending on the exercise method, the non-dominant tibialis anterior, gastrocnemius muscle, and peroneus longus showed significant differences in muscle activity for weight-bearing non-dominant sides; when the dominant side was weight-bearing, the dominant gastrocnemius and peroneus longus showed significant differences in muscle activity; and the non-dominant and dominant sides showed significant differences in balance control depending on the duration of support in the area. [Conclusion] Muscle fatigue from the three exercise methods produced a decline in muscle activity and balance control; due to the fatigue before exercise, the side that did not perform the exercises was affected. PMID:26180340

  7. Finite-element modelling reveals force modulation of jaw adductors in stag beetles.

    PubMed

    Goyens, J; Soons, J; Aerts, P; Dirckx, J

    2014-12-06

    Male stag beetles carry large and heavy mandibles that arose through sexual selection over mating rights. Although the mandibles of Cyclommatus metallifer males are used in pugnacious fights, they are surprisingly slender. Our bite force measurements show a muscle force reduction of 18% for tip biting when compared with bites with the teeth located halfway along the mandibles. This suggests a behavioural adaptation to prevent failure. We confirmed this by constructing finite-element (FE) models that mimic both natural bite situations as well as the hypothetical situation of tip biting without muscle force modulation. These models, based on micro-CT images, investigate the material stresses in the mandibles for different combinations of bite location and muscle force. Young's modulus of the cuticle was experimentally determined to be 5.1 GPa with the double indentation method, and the model was validated by digital image correlation on living beetles. FE analysis proves to be a valuable tool in the investigation of the trade-offs of (animal) weapon morphology and usage. Furthermore, the demonstrated bite force modulation in male stag beetles suggests the presence of mechanosensors inside the armature.

  8. Finite-element modelling reveals force modulation of jaw adductors in stag beetles

    PubMed Central

    Goyens, J.; Soons, J.; Aerts, P.; Dirckx, J.

    2014-01-01

    Male stag beetles carry large and heavy mandibles that arose through sexual selection over mating rights. Although the mandibles of Cyclommatus metallifer males are used in pugnacious fights, they are surprisingly slender. Our bite force measurements show a muscle force reduction of 18% for tip biting when compared with bites with the teeth located halfway along the mandibles. This suggests a behavioural adaptation to prevent failure. We confirmed this by constructing finite-element (FE) models that mimic both natural bite situations as well as the hypothetical situation of tip biting without muscle force modulation. These models, based on micro-CT images, investigate the material stresses in the mandibles for different combinations of bite location and muscle force. Young's modulus of the cuticle was experimentally determined to be 5.1 GPa with the double indentation method, and the model was validated by digital image correlation on living beetles. FE analysis proves to be a valuable tool in the investigation of the trade-offs of (animal) weapon morphology and usage. Furthermore, the demonstrated bite force modulation in male stag beetles suggests the presence of mechanosensors inside the armature. PMID:25297317

  9. Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles.

    PubMed

    Ono, Yusuke; Boldrin, Luisa; Knopp, Paul; Morgan, Jennifer E; Zammit, Peter S

    2010-01-01

    Skeletal muscles of body and limb are derived from somites, but most head muscles originate from cranial mesoderm. The resident stem cells of muscle are satellite cells, which have the same embryonic origin as the muscle in which they reside. Here, we analysed satellite cells with a different ontology, comparing those of the extensor digitorum longus (EDL) of the limb with satellite cells from the masseter of the head. Satellite cell-derived myoblasts from MAS and EDL muscles had distinct gene expression profiles and masseter cells usually proliferated more and differentiated later than those from EDL. When transplanted, however, masseter-derived satellite cells regenerated limb muscles as efficiently as those from EDL. Clonal analysis showed that functional properties differed markedly between satellite cells: ranging from clones that proliferated extensively and gave rise to both differentiated and self-renewed progeny, to others that divided minimally before differentiating completely. Generally, masseter-derived clones were larger and took longer to differentiate than those from EDL. This distribution in cell properties was preserved in both EDL-derived and masseter-derived satellite cells from old mice, although clones were generally less proliferative. Satellite cells, therefore, are a functionally heterogeneous population, with many occupants of the niche exhibiting stem cell characteristics in both somite-derived and branchiomeric muscles.

  10. Functional and biochemical modifications in skeletal muscles from malarial mice.

    PubMed

    Brotto, Marco A P; Marrelli, Mauro T; Brotto, Leticia S; Jacobs-Lorena, Marcelo; Nosek, Thomas M

    2005-05-01

    Although it is well established that patients suffering from malaria experience skeletal muscle problems (contracture, aches, fatigue, weakness), detailed studies have not been performed to investigate changes in the contractile function and biochemical properties of intact and skinned skeletal muscles of mammals infected with malaria. To this end, we investigated such features in the extensor digitorium longus (EDL, fast-twitch, glyocolytic) and in the soleus (SOL, slow-twitch, oxidative) muscles from mice infected with Plasmodium berghei. We first studied maximal tetanic force (T(max)) produced by intact control and malaria-infected muscles before, during and after fatigue. Triton-skinned muscle fibres were isolated from these muscles and used to determine isometric contractile features as well as a basic biochemical profile as analysed by silver-enhanced SDS-PAGE. We found that the T(max) of intact muscles and the maximal Ca2+-activated force (F(max)) of Triton-skinned muscle fibres were reduced by approximately 50% in malarial muscles. In addition, the contractile proteins of Triton-skinned muscle fibres from malarial muscles were significantly less sensitive to Ca2+. Biochemical analysis revealed that there was a significant loss of essential contractile proteins (e.g. troponins and myosin) in Triton-skinned muscle fibres from malarial muscles as compared to controls. The biochemical alterations (i.e., reduction of essential contractile proteins) seem to explain well the functional modifications resolved in both intact muscles and Triton-skinned muscle fibres and may provide a suitable paradigm for the aetiology of muscle symptoms associated with malaria.

  11. Effect of inaction on function of fast and slow muscle spindles

    NASA Technical Reports Server (NTRS)

    Arutyunyan, R. S.

    1980-01-01

    There is no data on the comparative effect of tenotomy on the function of the muscle spindles of fast and slow muscles. This study covers this question. The experiments were conducted on cats. The musuculus extensor digitorum longus (m. EDL) was selected as the fast muscle, and the musculus soleus (m. Sol.) as the slow. In a comparison of the spontaneous activity of primary and secondary endings of the fast and slow muscle spindles (i.e., the activity with complete relaxation of the muscles) normally no difference between them was successfully found. The authors recorded the integrative, and not the individual activity, and secondly, under conditions of such recording technique, those slight changes that are observed in the fast muscle receptors could remain unnoticed.

  12. Muscle Cramps

    MedlinePlus

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur after exercise or at night, ... to several minutes. It is a very common muscle problem. Muscle cramps can be caused by nerves ...

  13. Muscle Disorders

    MedlinePlus

    Your muscles help you move and help your body work. Different types of muscles have different jobs. There are many problems that can affect muscles. Muscle disorders can cause weakness, pain or even ...

  14. Your Muscles

    MedlinePlus

    ... of the heart because it controls the heartbeat. Skeletal Muscle Now, let's talk about the kind of muscle ... soccer ball into the goal. These are your skeletal muscles — sometimes called striated (say: STRY-ay-tud) muscle ...

  15. Electromyographic analysis of lower limb muscles during the golf swing performed with three different clubs.

    PubMed

    Marta, Sérgio; Silva, Luís; Vaz, João Rocha; Castro, Maria António; Reinaldo, Gustavo; Pezarat-Correia, Pedro

    2016-01-01

    The aim of this study was to describe and compare the EMG patterns of select lower limb muscles throughout the golf swing, performed with three different clubs, in non-elite middle-aged players. Fourteen golfers performed eight swings each using, in random order, a pitching wedge, 7-iron and 4-iron. Surface electromyography (EMG) was recorded bilaterally from lower limb muscles: tibialis anterior, peroneus longus, gastrocnemius medialis, gastrocnemius lateralis, biceps femoris, semitendinosus, gluteus maximus, vastus medialis, rectus femoris and vastus lateralis. Three-dimensional high-speed video analysis was used to determine the golf swing phases. Results showed that, in average handicap golfers, the highest muscle activation levels occurred during the Forward Swing Phase, with the right semitendinosus and the right biceps femoris muscles producing the highest mean activation levels relative to maximal electromyography (70-76% and 68-73% EMG(MAX), respectively). Significant differences between the pitching wedge and the 4-iron club were found in the activation level of the left semitendinosus, right tibialis anterior, right peroneus longus, right vastus medialis, right rectus femuris and right gastrocnemius muscles. The lower limb muscles showed, in most cases and phases, higher mean values of activation on electromyography when golfers performed shots with a 4-iron club.

  16. Individual muscle contributions to circular turning mechanics.

    PubMed

    Ventura, Jessica D; Klute, Glenn K; Neptune, Richard R

    2015-04-13

    Turning is an activity of daily living that involves both the acceleration of the body center-of-mass (COM) towards the center of curvature and rotation of the pelvis towards the new heading. The purpose of this study was to understand which muscles contribute to turning using experimentation, musculoskeletal modeling and simulation. Ten healthy adults consented to walk around a 1-m radius circular path at their self-selected walking speed and then along a straight line at the same speed. Forward dynamics simulations of the individual subjects during the turning and straight-line walking tasks were generated to identify the contributions of individual muscle groups to the body mediolateral and anterior-posterior COM acceleration impulse and to the pelvis angular acceleration impulse. The stance leg gluteus medius and ankle plantarflexor muscles and the swing leg adductor muscles were the primary contributors to redirect the body's COM relative to straight-line walking. In some cases, contributions to mediolateral COM acceleration were modulated through changes in leg orientation rather than through changes in muscle force. While modulation of the muscle contributions generally occurred in both the inner and outer legs, greater changes were observed during inner single-leg support than during outer single-leg support. Total pelvis angular acceleration was minimal during the single-support phase, but the swing leg muscles contributed significantly to balancing the internal and external rotation of the pelvis. The understanding of which muscles contribute to turning the body during walking may help guide the development of more effective locomotor therapies for those with movement impairments.

  17. Variations in abductor pollicis longus and extensor pollicis brevis tendons in the Quervain syndrome: a surgical and anatomical study.

    PubMed

    Kulthanan, Teerawat; Chareonwat, Boonsong

    2007-01-01

    Eighty-two wrists of Thai cadavers and the wrists of 66 patients with de Quervain syndrome were studied, and the variation in the number of tendons and the fibro-osseous tunnel in the first extensor compartment were recorded. The abductor pollicis longus had more than one tendon in 73 of the cadavers (89%) and in 32 of the patients (49%) (p <0.001). The extensor pollicis brevis was a single tendon in 80 (98%) and 62 (94%) of cadavers and patients, respectively. There was division with the septum that made a fibro-osseous tunnel in the first extensor compartment in 30/82 (37%) cadavers and in 38/66 (58%) patients with de Quervain syndrome (p = 0.01). The results indicate that the number of fibro-osseous tunnels and multiple compartments in the first extensor compartment may be associated with a predisposition to de Quervain syndrome.

  18. Endoscopic Removal of Loose Bodies of the Posterior Ankle Extra-articular Space Arising From Flexor Hallucis Longus Tenosynovial Osteochondromatosis.

    PubMed

    Lui, Tun Hing

    2016-12-01

    Loose bodies of the posterior ankle can occur either at the posterior recess of the ankle or subtalar joint or at the posterior ankle extra-articular space. Loose bodies at the extra-articular space can be a result of tenosynovial chondromatosis of the tendons of the posterior ankle, especially the flexor hallucis longus tendon. Endoscopic removal of loose bodies of the posterior ankle extra-articular space is indicated for symptomatic cases that are not improved by conservative treatment. It is contraindicated if there is active infection at the planned portal sites or the surgeon is not familiar with the technique of posterior ankle endoscopy. Systematic assessment of the different parts of the posterior ankle will minimize the risk of loose body retention.

  19. Inhibited muscle amino acid uptake in sepsis.

    PubMed Central

    Hasselgren, P O; James, J H; Fischer, J E

    1986-01-01

    Amino acid uptake in vivo was determined in soleus (SOL) muscle, diaphragm, heart, and liver following intravenous injection of [3H]-alpha-amino-isobutyric acid ([3H]-AIB) in rats made septic by cecal ligation and puncture (CLP) and in sham-operated controls. Muscle amino acid transport was also measured in vitro by determining uptake of [3H]-AIB in incubated extensor digitorum longus (EDL) and SOL muscles. Results were expressed as distribution ratio between [3H]-AIB in intracellular and extracellular fluid. AIB uptake in vivo was reduced by 90% in SOL and cardiac muscle and by 45% in diaphragm 16 hours after CLP. In contrast, AIB uptake by liver was almost four times higher in septic than in control animals. AIB uptake in vitro was reduced by 18% in EDL 8 hours after CLP but was not significantly altered in SOL at the same time point. Sixteen hours after CLP, AIB uptake was significantly reduced in both muscles, i.e., by 17% in EDL and by 65% in SOL. When muscles from untreated rats were incubated in the presence of plasma from septic animals (16 hours CLP) or from animals injected with endotoxin (2 mg/kg body weight), AIB uptake was reduced. Addition of endotoxin in vitro (2-200 micrograms/ml) to incubated muscles did not affect AIB uptake. The results suggest that sepsis leads to marked impairment of amino acid transport system A in muscle and that this impairment is mediated by a circulating factor that is not endotoxin. Reduced uptake of amino acids by skeletal muscle during sepsis may divert amino acids to the liver for increased gluconeogenesis and protein synthesis. PMID:3963895

  20. Role of glucocorticoids in increased muscle glutamine production in starvation

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Henriksen, Erik J.; Cook, Paul H.

    1988-01-01

    The role of glucocorticoids in the synthesis of muscle glutamine during starvation was investigated in adrenalectomized fasted rats injected with cortisol (1 mg/100 g body weight). It was found that administration of cortisol in vivo increased (compared to nontreated starved adrenalectomized controls) the glutamine/glutamate ratio and the activity of glutamine synthetase in the diaphragm and the extensor digitorum muscles, and that these effects were abolished by prior treatment with actinomycin D or proflavine. The results obtained in in vitro experiments, using fresh-frozen soleus, extensor digitorum longus, and diaphragm muscle preparations, supported the in vivo indications of the cortisol-enhanced glutamine synthesis and protein turnover in starved adrenalectomized animals.

  1. Temperature-dependent transitions in isometric contractions of rat muscle.

    PubMed Central

    Ranatunga, K W; Wylie, S R

    1983-01-01

    The effect of temperature on tetanic tension development was examined in extensor digitorum longus (fast-twitch) and soleus (slow-twitch) muscles of the rat, in vitro and with direct stimulation. The temperature range was from 35 to 10 degrees C. 2. The maximum tetanic tension decreased slightly on cooling from 35 to 25 degrees C. Cooling below 20 degrees C resulted in a marked depression of tetanic tension. The results were similar in the two muscles. 3. Analysis (in the form of Arrhenius plots) of the rate of tetanic tension development and relaxation clearly showed the occurrence of two phases in their temperature dependence, due to an increased temperature sensitivity below about 25 degrees C. Arrhenius activation energy estimates for temperatures lower than 21 degrees C were around twice as high as those for temperatures higher than 24 degrees C in both muscles. PMID:6887040

  2. The Concomitant Presence of Two Anomalous Muscles in the Forearm

    PubMed Central

    Karalezli, Nazım; Ogun, Cemile Oztin

    2007-01-01

    This article describes the concomitant presence of two anomalous forearm muscles in a 20-year-old man, discovered accidentally during an operation for a forearm injury. The first one was similar to a reverse palmaris longus muscle except for its direction to the Guyon’s canal. The second one originated from the radial antebrachial fascia, superficial to all other forearm muscles in the lower half of the forearm, then diverged medially and extended into the Guyon’s canal and was innervated by the ulnar nerve. The patient had no symptoms related to overcrowding of the Guyon’s canal before the injury. A hand surgeon should be well informed about the anatomic variations of the hand to be comfortable during surgical practice. PMID:18780071

  3. Age effects on rat hindlimb muscle atrophy during suspension unloading

    NASA Technical Reports Server (NTRS)

    Steffen, Joseph M.; Fell, Ronald D.; Geoghegan, Thomas E.; Ringel, Lisa C.; Musacchia, X. J.

    1990-01-01

    The effects of hindlimb unloading on muscle mass and biochemical responses were examined and compared in adult (450-g) and juvenile (200-g) rats after 1, 7, or 14 days of whole-body suspension. Quantitatively and qualitatively the soleus, gastrocnemius, plantaris, and extensor digitorum longus (EDL) muscles of the hindlimb exhibited a differential sensitivity to suspension and weightlessness unloading in both adults and juveniles. The red slow-twitch soleus exhibited the most pronounced atrophy under both conditions, with juvenile responses being greater than adult. In contrast, the fast-twitch EDL hypertrophied during suspension and atrophied during weightlessness, with no significant difference between adults and juveniles. Determination of biochemical parameters (total protein, RNA, and DNA) indicates a less rapid rate of response in adult muscles.

  4. Problems in analysis of data from muscles of rats flow in space

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Henriksen, Erik; Jacob, Stephan; Satarug, Soisungwan; Cook, Paul

    1988-01-01

    Comparison of hind-limb muscles of rats flown on Spacelab-3 or tail-traction-suspended showed that 11-17 h reloading postflight might have altered the results. Soleus atrophied; plantaris, gastrocnemius, and extensor digitorum longus grew slower; and tibialis anteiror grew normally. In both flight and simulated soleus and plantaris, higher tyrosine and greater glutamine/glutamate ratio indicated negative protein balance and increased glutamine production, respectively, relative to controls. Aspartate was lower in these muscles. Reloading generally decreased tyrosine, but increased aspartate and glutamine/glutamate. These data showed that 12 h of reloading after flight is characterized by reversal, to varying extents, of the effects of unloading.

  5. Problems in analysis of data from muscles of rats flown in space

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Henriksen, E.; Jacob, S.; Satarug, S.; Cook, P.

    1988-01-01

    Comparison of hindlimb muscles of rats flown on Spacelab-3 or tail-traction-suspended showed that 11-17 h reloading post-flight might have altered the results. Soleus atrophied, plantaris, gastrocnemius and extensor digitorum longus grew slower, and tibialis anterior grew normally. In both flight and simulated soleus and plantaris, higher tyrosine and greater glutamine/glutamate ratio indicated negative protein balance and increased glutamine production, respectively, relative to controls. Aspartate was lower in these muscles. Reloading generally decreased tyrosine, but increased aspartate and glutamine/glutamate. These data showed that at 12 h of reloading after flight is characterized by reversal to varying extents of effects of unloading.

  6. Metabolic alterations caused by suspension hypokinesia in leg muscles of rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.

    1984-01-01

    Metabolic changes on hypokinetic rats were measured. Two groups of animals were studied: (1) weight bearing control which were tail casted but allowed to walk on all four limbs, and (2) hypokinetic with no load bearing of the hindlimbs. The control and hypokinetic rats gained weight at a steady and similar rate over 6 days. Hypokinesia for 6 days led to significantly lower relative weights of the soleus, gastrocnemius and plantaris muscles. Hypokinesia did not effect the relative mass of the anterior tibialis or extensor digitorum longus (EDL) muscles.

  7. beta-adrenergic effects on carbohydrate metabolism in the unweighted rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Kirby, Christopher R.; Tischler, Marc E.

    1990-01-01

    The effect of unweighting on the response of the soleus-muscle carbohydrate metabolism to a beta-adrenergic agonist (isoproterenol) was investigated in rats that were subjected to three days of tail-cast suspension. It was found that isoproterenol promoted glycogen degradation in soleus from suspended rats to a higher degree than in weighted soleus from control rats, and had no effect in unweighted digitorum longus. However, isoproterenol did not have a greater inhibitory effect on the net uptake of tritium-labeled 2-deoxy-glucose by the unweighted soleus and that isoproterenol inhibited hexose phosphorylation less in the unweighted than in the control muscle.

  8. Measurement of lower-limb muscle spasticity: intrarater reliability of Modified Modified Ashworth Scale.

    PubMed

    Ghotbi, Nastaran; Nakhostin Ansari, Noureddin; Naghdi, Soofia; Hasson, Scott

    2011-01-01

    The Modified Modified Ashworth Scale (MMAS) is a clinical instrument for measuring spasticity. Few studies have been performed on the reliability of the MMAS. The aim of the present study was to investigate the intrarater reliability of the MMAS for the assessment of spasticity in the lower limb. We conducted a test-retest study on spasticity in the hip adductors, knee extensors, and ankle plantar flexors. Each patient was measured by a hospital-based clinical physiotherapist. Twenty-three patients with stroke or multiple sclerosis (fourteen women, nine men) and a mean +/- standard deviation age of 37.3 +/- 14.1 years participated. The weighted kappa was moderate for the hip adductors (weighted kappa = 0.45, standard error [SE] = 0.16, p = 0.007), good for the knee extensors (weighted kappa = 0.62, SE = 0.12, p < 0.001), and very good for the ankle plantar flexors (weighted kappa = 0.85, SE = 0.05, p < 0.001). The kappa value for overall agreement was very good (weighted kappa = 0.87, SE = 0.03, p < 0.001). The reliability for the ankle plantar flexors was significantly higher than that for the hip adductors. The intrarater reliability of the MMAS in patients with lower-limb muscle spasticity was very good, and it can be used as a measure of spasticity over time.

  9. Reliability of ultrasound to measure morphology of the toe flexor muscles

    PubMed Central

    2013-01-01

    Background Measuring the strength of individual foot muscles is very challenging; however, measuring muscle morphology has been shown to be associated with strength. A reliable method of assessing foot muscle atrophy and hypertrophy would therefore be beneficial to researchers and clinicians. Thus, the aim of this study was to evaluate the test-retest intra-observer reliability of ultrasound to measure the morphology of the primary toe flexor muscles. Method The abductor hallucis, flexor hallucis brevis, flexor digitorum brevis, quadratus plantae and abductor digiti minimi muscles in the foot, and the flexor digitorum longus and flexor hallucis longus muscles in the shank were assessed in five males and five females (mean age = 32.1 ± 10.1 years). Muscles were imaged using a GE Venue 40 ultrasound (6-9 or 7.6-10.7 MHz transducer) in a random order, and on two occasions 1-6 days apart. Muscle thickness and cross-sectional area were measured using Image J software with the assessor blinded to muscle and day of scan. Intraclass correlation coefficients (ICC) and limits of agreement were calculated to assess day-to-day repeatability of the measurements. Results The method was found to have good reliability (ICC = 0.89-0.99) with limits of agreement between 8-28% of the relative muscle size. Conclusion The protocol described in this paper showed that ultrasound is a reliable method to measure morphology of the toe flexor muscles. The portability and advantages of ultrasound make it a useful tool for clinical and research settings. PMID:23557252

  10. Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy.

    PubMed

    de Theije, C C; Langen, R C J; Lamers, W H; Gosker, H R; Schols, A M W J; Köhler, S E

    2015-01-15

    Hypoxia as a consequence of acute and chronic respiratory disease has been associated with muscle atrophy. This study investigated the sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. Male mice were exposed to 8% normobaric oxygen for up to 21 days. Oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles were isolated, weighed, and assayed for expression profiles of the ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and glucocorticoid receptor (GR) and hypoxia-inducible factor-1α (HIF1α) signaling. Fiber-type composition and the capillary network were investigated. Hypoxia-induced muscle atrophy was more prominent in the EDL than the soleus muscle. Although increased expression of HIF1α target genes showed that both muscle types sensed hypoxia, their adaptive responses differed. Atrophy consistently involved a hypoxia-specific effect (i.e., not attributable to a hypoxia-mediated reduction of food intake) in the EDL only. Hypoxia-specific activation of the UPS and ALP and increased expression of the glucocorticoid receptor (Gr) and its target genes were also mainly observed in the EDL. In the soleus, stimulation of gene expression of those pathways could be mimicked to a large extent by food restriction alone. Hypoxia increased the number of capillary contacts per fiber cross-sectional area in both muscles. In the EDL, this was due to type II fiber atrophy, whereas in the soleus the absolute number of capillary contacts increased. These responses represent two distinct modes to improve oxygen supply to muscle fibers, but may aggravate muscle atrophy in chronic obstructive pulmonary disease patients who have a predominance of type II fibers.

  11. Effect of inactivity and passive stretch on protein turnover in phasic and postural rat muscles

    NASA Technical Reports Server (NTRS)

    Loughna, P.; Goldspink, G.; Goldspink, D. F.

    1986-01-01

    Muscle atrophy in humans can occur during prolonged bed rest, plaster cast immobilization, and space flight. In the present study, the suspension model used by Musacchia et al. (1983) is employed to investigate changes in protein synthesis and degradation in fast-twitch phasic (extensor digitorum longus) and slow-twitch postural (soleus) muscles in the rat, following hypokinesia and hypodynamia. In addition, the use of passive stretch was examined as a means of preventing atrophy. The obtained results suggest that the mechanisms controlling the processes of protein synthesis and protein breakdown during muscle disuse atrophy may be independent of each other. It appears, however, that the muscle atrophy due to hypokinesia and hypodynamia can be temporarily prevented by passively stretching a muscle.

  12. Muscle protein and glycogen responses to recovery from hypogravity and unloading by tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Tischler, M. E.; Jacob, S.; Cook, P. H.

    1985-01-01

    Previous studies in this laboratory using the tail-bast hindlimb suspension model have shown that there are specific changes in protein and carbohydrate metabolism in the soleus muscle due to unloading. For example, 6 days of unloading caused a 27% decrease in mass and a 60% increase in glycogen content in the soleus muscle, while the extensor digitorum longus muscle was unaffected. Also, fresh tissue tyrosine and its in vitro release from the muscle are increased in the unloaded soleus, indicating that this condition causes a more negative protein balance. With these results in mind, studies to investigate the effect of hypogravity on protein and carbohydrate metabolism in a number of rat hindlimb muscles were carried out.

  13. Skeletal muscle response to spaceflight, whole body suspension, and recovery in rats

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Fell, R. D.; Dombrowski, M. J.

    1990-01-01

    The effects of a 7-day spaceflight (SF), 7- and 14-day-long whole body suspension (WBS), and 7-day-long recovery on the muscle weight and the morphology of the soleus and the extensor digitorum longus (EDL) of rats were investigated. It was found that the effect of 7-day-long SF and WBS were highly comparable for both the soleus and the EDL, although the soleus muscle from SF rats showed greater cross-sectional area reduction than that from WBS rats. With a longer duration of WBS, there was a continued reduction in cross-sectional fast-twitch fiber area. Muscle plasticity, in terms of fiber and capillary responses, showed differences in responses of the two types of muscles, indicating that antigravity posture muscles are highly susceptible to unloading.

  14. Effects of aging on the lateral transmission of force in rat skeletal muscle.

    PubMed

    Zhang, Chi; Gao, Yingxin

    2014-03-21

    The age-related reduction in muscle force cannot be fully explained by the loss of muscle fiber mass or degeneration of myofibers. Our previous study showed that changes in lateral transmission of force could affect the total force transmitted to the tendon. The extracellular matrix (ECM) of skeletal muscle plays an important role in lateral transmission of force. The objective of this study was to define the effects of aging on lateral transmission of force in skeletal muscles, and explore possible underlying mechanisms. In vitro contractile tests were performed on extensor digitorum longus (EDL) muscle of young and old rats with series of tenotomy and myotomy. We concluded that lateral transmission of force was impaired in the old rats, and this deficit could be partly due to increased thickness of the ECM induced by aging.

  15. Muscle protein and glycogen responses to recovery from hypogravity and unloading by tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Tischler, M. E.; Jacob, S.; Cook, P. H.

    1985-01-01

    Previous studies in this laboratory using the tail-bast hindlimb suspension model have shown that there are specific changes in protein and carbohydrate metabolism in the soleus muscle due to unloading. For example, 6 days of unloading caused a 27 percent decrease in mass and a 60 percent increse in glycogen content in the soleus muscle, while the extensor digitorum longus muscle was unaffected. Also, fresh tissue tyrosine and its in vitro release from the muscle are increased in the unloaded soleus, indicating that this condition causes a more negative protein balance. With these results in mind, studies to investigate the effect of hypogravity on protein and carbohydrate metabolism in a number of rat hindlimb muscles were carried out.

  16. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles

    PubMed Central

    Neyroud, Daria; Cheng, Arthur J.; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan

    2016-01-01

    The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on–1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on–3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased “voluntary activation.” In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT. PMID:27445844

  17. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles.

    PubMed

    Neyroud, Daria; Cheng, Arthur J; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan

    2016-01-01

    The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on-1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on-3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased "voluntary activation." In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT.

  18. Skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  19. Coupled obturator neurotomies and lidocaine intrathecal infusion to treat bilateral adductor spasticity and drug-refractory pain.

    PubMed

    Carrillo-Ruiz, José D; Andrade, Pablo; Godínez-Cubillos, Nora; Montes-Castillo, María L; Jiménez, Fiacro; Velasco, Ana L; Castro, Guillermo; Velasco, Francisco

    2010-09-01

    Spastic diplegia is present in three-fourths of children with cerebral palsy, interfering with gait and frequently accompanied by severe pain. The authors report the case of a 28-year-old woman with history of perinatal hypoxia, who presented with cerebral palsy and severe spastic diplegia (Ashworth Scale Score 4, Tardieu Scale Score 5) and was confined to a wheelchair. She complained of pain in the left hip and knee with mixed neuropathic and somatic components. She consistently rated pain intensity as 10 of 10 on a visual analog scale, and her symptoms were resistant to multiple treatments. The patient underwent selective bilateral adductor myotomies and the implantation of an infusion pump for intrathecal lidocaine application. Postoperative control of pain and spasticity was dramatic (scores of 0 on the Ashworth, Tardieu, and visual analog scales) and persisted throughout a follow-up period of 36 months. This is the first report in the literature of combined selective neurotomies for the treatment of spasticity and chronic lidocaine subarachnoid infusion to treat associated pain. This therapy could represent an alternative to treat spasticity associated with neuropathic and somatic pain.

  20. Maintenance of skeletal muscle energy homeostasis during prolonged wintertime fasting in the raccoon dog (Nyctereutes procyonoides).

    PubMed

    Kinnunen, Sanni; Mänttäri, Satu; Herzig, Karl-Heinz; Nieminen, Petteri; Mustonen, Anne-Mari; Saarela, Seppo

    2015-05-01

    The raccoon dog (Nyctereutes procyonoides) is a canid species with autumnal fattening and prolonged wintertime fasting. Nonpathological body weight cycling and the ability to tolerate food deficiency make this species a unique subject for studying physiological mechanisms in energy metabolism. AMP-activated protein kinase (AMPK) is a cellular energy sensor regulating energy homeostasis. During acute fasting, AMPK promotes fatty acid oxidation and enhances glucose uptake. We evaluated the effects of prolonged fasting on muscle energy metabolism in farm-bred raccoon dogs. Total and phosphorylated AMPK and acetyl-CoA carboxylase (ACC), glucose transporter 4 (GLUT 4), insulin receptor and protein kinase B (Akt) protein expressions of hind limb muscles were determined by Western blot after 10 weeks of fasting. Plasma insulin, leptin, ghrelin, glucose and free fatty acid levels were measured, and muscle myosin heavy chain (MHC) isoform composition analyzed. Fasting had no effects on AMPK phosphorylation, but total AMPK expression decreased in m. rectus femoris, m. tibialis anterior and m. extensor digitorum longus resulting in a higher phosphorylation ratio. Decreased total expression was also observed for ACC. Fasting did not influence GLUT 4, insulin receptor or Akt expression, but Akt phosphorylation was lower in m. flexor digitorum superficialis and m. extensor digitorum longus. Three MHC isoforms (I, IIa and IIx) were detected without differences in composition between the fasted and control animals. The studied muscles were resistant to prolonged fasting indicating that raccoon dogs have an effective molecular regulatory system for preserving skeletal muscle function during wintertime immobility and fasting.

  1. Expression of nestin, desmin and vimentin in intact and regenerating muscle spindles of rat hind limb skeletal muscles.

    PubMed

    Cízková, Dana; Soukup, Tomás; Mokrý, Jaroslav

    2009-02-01

    We describe the expression and distribution patterns of nestin, desmin and vimentin in intact and regenerating muscle spindles of the rat hind limb skeletal muscles. Regeneration was induced by intramuscular isotransplantation of extensor digitorum longus (EDL) or soleus muscles from 15-day-old rats into the EDL muscle of adult female inbred Lewis rats. The host muscles with grafts were excised after 7-, 16-, 21- and 29-day survival and immunohistochemically stained. Nestin expression in intact spindles in host muscles was restricted to Schwann cells of sensory and motor nerves. In transplanted muscles, however, nestin expression was also found in regenerating "spindle fibers", 7 and 16 days after grafting. From the 21st day onwards, the regenerated spindle fibers were devoid of nestin immunoreactivity. Desmin was detected in spindle fibers at all developmental stages in regenerating as well as in intact spindles. Vimentin was expressed in cells of the outer and inner capsules of all muscle spindles and in newly formed myoblasts and myotubes of regenerating spindles 7 days after grafting. Our results show that the expression pattern of these intermediate filaments in regenerating spindle fibers corresponds to that found in regenerating extrafusal fibers, which supports our earlier suggestion that they resemble small-diameter extrafusal fibers.

  2. Adaptive strength gains in dystrophic muscle exposed to repeated bouts of eccentric contraction.

    PubMed

    Call, Jarrod A; Eckhoff, Michael D; Baltgalvis, Kristen A; Warren, Gordon L; Lowe, Dawn A

    2011-12-01

    The objective of this study was to determine the functional recovery and adaptation of dystrophic muscle to multiple bouts of contraction-induced injury. Because lengthening (i.e., eccentric) contractions are extremely injurious for dystrophic muscle, it was considered that repeated bouts of such contractions would exacerbate the disease phenotype in mdx mice. Anterior crural muscles (tibialis anterior and extensor digitorum longus) and posterior crural muscles (gastrocnemius, soleus, and plantaris) from mdx mice performed one or five repeated bouts of 100 electrically stimulated eccentric contractions in vivo, and each bout was separated by 10-18 days. Functional recovery from one bout was achieved 7 days after injury, which was in contrast to a group of wild-type mice, which still showed a 25% decrement in electrically stimulated isometric torque at that time point. Across bouts there was no difference in the immediate loss of strength after repeated bouts of eccentric contractions for mdx mice (-70%, P = 0.68). However, after recovery from each bout, dystrophic muscle had greater torque-generating capacity such that isometric torque was increased ∼38% for both anterior and posterior crural muscles at bout 5 compared with bout 1 (P < 0.001). Moreover, isolated extensor digitorum longus muscles excised from in vivo-tested hindlimbs 14-18 days after bout 5 had greater specific force than contralateral control muscles (12.2 vs. 10.4 N/cm(2), P = 0.005) and a 20% greater maximal relaxation rate (P = 0.049). Additional adaptations due to the multiple bouts of eccentric contractions included rapid recovery and/or sparing of contractile proteins, enhanced parvalbumin expression, and a decrease in fiber size variability. In conclusion, eccentric contractions are injurious to dystrophic skeletal muscle; however, the muscle recovers function rapidly and adapts to repeated bouts of eccentric contractions by improving strength.

  3. Noninvasive analysis of human neck muscle function

    NASA Technical Reports Server (NTRS)

    Conley, M. S.; Meyer, R. A.; Bloomberg, J. J.; Feeback, D. L.; Dudley, G. A.

    1995-01-01

    STUDY DESIGN. Muscle use evoked by exercise was determined by quantifying shifts in signal relaxation times of T2-weighted magnetic resonance images. Images were collected at rest and after exercise at each of two intensities (moderate and intense) for each of four head movements: 1) extension, 2) flexion, 3) rotation, and 4) lateral flexion. OBJECTIVE. This study examined the intensity and pattern of neck muscle use evoked by various movements of the head. The results will help elucidate the pathophysiology, and thus methods for treating disorders of the cervical musculoskeletal system. SUMMARY OF BACKGROUND DATA. Exercise-induced contrast shifts in T2 has been shown to indicate muscle use during the activity. The noninvasive nature of magnetic resonance imaging appears to make it an ideal approach for studying the function of the complex neuromuscular system of the neck. METHODS. The extent of T2 increase was examined to gauge how intensely nine different neck muscles or muscle pairs were used in seven subjects. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation was assessed to infer the pattern of use among and within individual neck muscles or muscle pairs. RESULTS. Signal relaxation increased with exercise intensity for each head movement. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation also increased with exercise load. Neck muscles or muscle pairs extensively used to perform each head movement were: extension--semispinalis capitis and cervicis and splenius capitis; flexion--sternocleidomastoid and longus capitis and colli; rotation--splenius capitis, levator scapulae, scalenus, semispinalis capitis ipsilateral to the rotation, and sternocleidomastoid contralateral; and lateral flexion--sternocleidomastoid CONCLUSION. The results of this study, in part, agree with the purported functions of neck muscles derived from anatomic location. This also was true for the few

  4. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  5. Muscle disorder

    MedlinePlus

    Myopathic changes; Myopathy; Muscle problem ... Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs ...

  6. Muscle aches

    MedlinePlus

    ... common cause of muscle aches and pain is fibromyalgia , a condition that causes tenderness in your muscles ... imbalance, such as too little potassium or calcium Fibromyalgia Infections, including the flu, Lyme disease , malaria , muscle ...

  7. Synthesis of amino acids in weight bearing and non-weight bearing leg muscles of suspended rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.

    1982-01-01

    The effect of hypokinesia (HYP) for 6 days on the de novo synthesis of glutamine (GLN) and glutamate (GLU), and of alanine was tested in isolated leg muscles of intact, adrenalectomized (ADX) and ADX cortisol-treated rats. The net synthesis of GLN and GLU was lower in soleus muscles of HYP animals of these three groups of rats. The synthesis of alanine was lowered by HYP in ADX animals and apparently raised by HYP in ADX cortisol-treated rats. No HYP effect was seen in the extensor digitorum longus (EDL) muscles of these animals. Although ADX lowered the synthesis of GLN and GLU in soleus muscles of control rats, while cortisol treatment restored this process to near normal, neither ADX nor cortisol treatment produced any effect in the HYP animals. However, effects of ADX and cortisol treatment on synthesis of GLN and GLU in EDL muscles and of alanine in both muscles seemed normal in HYP animals.

  8. Potential involvement of dietary advanced glycation end products in impairment of skeletal muscle growth and muscle contractile function in mice.

    PubMed

    Egawa, Tatsuro; Tsuda, Satoshi; Goto, Ayumi; Ohno, Yoshitaka; Yokoyama, Shingo; Goto, Katsumasa; Hayashi, Tatsuya

    2017-01-01

    Diets enriched with advanced glycation end products (AGE) have recently been related to muscle dysfunction processes. However, it remains unclear whether long-term exposure to an AGE-enriched diet impacts physiological characteristics of skeletal muscles. Therefore, we explored the differences in skeletal muscle mass, contractile function and molecular responses between mice receiving a diet high in AGE (H-AGE) and low in AGE (L-AGE) for 16 weeks. There were no significant differences between L-AGE and H-AGE mice with regard to body weight, food intake or epididymal fat pad weight. However, extensor digitorum longus (EDL) and plantaris (PLA) muscle weights in H-AGE mice were lower compared with L-AGE mice. Higher levels of N ε -(carboxymethyl)-l-lysine, a marker for AGE, in EDL muscles of H-AGE mice were observed compared with L-AGE mice. H-AGE mice showed lower muscle strength and endurance in vivo and lower muscle force production of PLA muscle in vitro. mRNA expression levels of myogenic factors including myogenic factor 5 and myogenic differentiation in EDL muscle were lower in H-AGE mice compared with L-AGE mice. The phosphorylation status of 70-kDa ribosomal protein S6 kinase Thr389, an indicator of protein synthesis signalling, was lower in EDL muscle of H-AGE mice than that of L-AGE mice. These findings suggest that long-term exposure to an AGE-enriched diet impairs skeletal muscle growth and muscle contractile function, and that these muscle dysfunctions may be attributed to the inhibition of myogenic potential and protein synthesis.

  9. Jaw myogenesis in the monk parakeet: evidence of developmental reprogramming in the emergence of novel muscles in Psittaciformes (Aves).

    PubMed

    Carril, Julieta; Ronderos, Jorge R; Tambussi, Claudia P; Chiale, María C

    2016-12-01

    Psittaciformes have apomorphies in the muscles of the jaw that include both the adductors m. ethmomandibularis (EM) and m. pseudomasseter (PM), which are responsible for the generation of strong bite forces. While the EM is present in all Psittaciformes, the PM can be absent or present, and even underdeveloped or well-developed. The aim of this study is to identify developmental reprogramming processes by comparing the myogenesis of the jaw of the monk parakeet Myiopsitta monachus with the information available about other species of Psittaciformes. Seventeen specimens including embryos at different developmental stages, and nestlings of different ages were studied through the analysis of serial histological sections. At embryonic stage 24 (S24) the muscle precursor was observed in the first pharyngeal arch. At S27 the muscle precursor was found to be divided into lateral, intermediate and medial portions. At S31 the independent development of the EM as a rostro-dorsal projection of the mm. pterygoidei could be observed. At S36 the individualization of all muscles was complete. Finally, the PM was detected two days after hatching as an aponeurotic dorsal projection of the m. adductor mandibulae externus superficialis, located lateral to the arcus jugalis. Our results suggest that in M. monachus the muscles EM and PM emerge as a result of a process of heterotipy, and variations in the degree of development of the PM are associated to a heterochronic process of post-displacement, with M. monachus having an underdeveloped PM with respect to basal Psittaciformes.

  10. Jaw muscles of Old World squirrels.

    PubMed

    Thorington, R W; Darrow, K

    1996-11-01

    The jaw, suprahyoid, and extrinsic tongue muscles were studied in 11 genera, belonging to five tribes, of Old World squirrels. Significant variation in most of the adductor muscles is evident. The most primitive state of sciuromorphy is seen in the African tree squirrels Paraxerus and Funisciurus, especially as reflected in the anterior deep masseter. A derived state of sciuromorphy is found in five genera of Old World squirrels and perhaps evolved independently in each. Reduction of the temporalis muscle was observed in three genera, distantly related to one another. A unique arrangement of the superficial masseter is reported in the Asian giant tree squirrels, Ratufa. The arrangement of the masseter in the African pygmy squirrel, Myosciurus, is very similar to that of the South American pygmy squirrel, Sciurillus. We present hypotheses about the functional significance of these differences. In the derived state of sciuromorphy, which is found in three cases in squirrels that feed extensively on hard fruits, the anterior deep masseter is well positioned to increase the strength of the power stroke of the incisor bite. Among the pygmy squirrels, the position of the anterior deep masseter suggests that it plays a more significant role in molar chewing.

  11. Muscle contributions to frontal plane angular momentum during walking.

    PubMed

    Neptune, Richard R; McGowan, Craig P

    2016-09-06

    The regulation of whole-body angular momentum is important for maintaining dynamic balance during human walking, which is particularly challenging in the frontal plane. Whole-body angular momentum is actively regulated by individual muscle forces. Thus, understanding which muscles contribute to frontal plane angular momentum will further our understanding of mediolateral balance control and has the potential to help diagnose and treat balance disorders. The purpose of this study was to identify how individual muscles and gravity contribute to whole-body angular momentum in the frontal plane using a muscle-actuated forward dynamics simulation analysis. A three-dimensional simulation was developed that emulated the average walking mechanics of a group of young healthy adults (n=10). The results showed that a finite set of muscles are the primary contributors to frontal plane balance and that these contributions vary throughout the gait cycle. In early stance, the vasti, adductor magnus and gravity acted to rotate the body towards the contralateral leg while the gluteus medius acted to rotate the body towards the ipsilateral leg. In late stance, the gluteus medius continued to rotate the body towards the ipsilateral leg while the soleus and gastrocnemius acted to rotate the body towards the contralateral leg. These results highlight those muscles that are critical to maintaining dynamic balance in the frontal plane during walking and may provide targets for locomotor therapies aimed at treating balance disorders.

  12. Glucose deprivation attenuates sortilin levels in skeletal muscle cells.

    PubMed

    Ariga, Miyako; Yoneyama, Yosuke; Fukushima, Toshiaki; Ishiuchi, Yuri; Ishii, Takayuki; Sato, Hitoshi; Hakuno, Fumihiko; Nedachi, Taku; Takahashi, Shin-Ichiro

    2017-03-31

    In skeletal muscle, sortilin plays a predominant role in the sorting of glucose transporter 4 (Glut4), thereby controlling glucose uptake. Moreover, our previous study suggested that the sortilin expression levels are also implicated in myogenesis. Despite the importance of sortilin in skeletal muscle, however, the regulation of sortilin expression has not been completely understood. In the present study, we analyzed if the sortilin expression is regulated by glucose in C2C12 myocytes and rat skeletal muscles in vivo. Sortilin protein expression was elevated upon C2C12 cell differentiation and was further enhanced in the presence of a high concentration of glucose. The gene expression and protein degradation of sortilin were not affected by glucose. On the other hand, rapamycin partially reduced sortilin induction by a high concentration of glucose, which suggested that sortilin translation could be regulated by glucose, at least in part. We also examined if the sortilin regulation by glucose was also observed in skeletal muscles that were obtained from fed or fasted rats. Sortilin expression in both gastrocnemius and extensor digitorum longus (EDL) muscle was significantly decreased by 17-18h of starvation. On the other hand, pathological levels of high blood glucose did not alter the sortilin expression in rat skeletal muscle. Overall, the present study suggests that sortilin protein levels are reduced under hypoglycemic conditions by post-transcriptional control in skeletal muscles.

  13. Chronic exercise increases insulin binding in muscles but not liver

    SciTech Connect

    Bonen, A.; Clune, P.A.; Tan, M.H.

    1986-08-01

    It has been postulated that the improved glucose tolerance provoked by chronic exercise is primarily attributable to increased insulin binding in skeletal muscle. Therefore, the authors investigated the effects of progressively increased training (6 wk) on insulin binding by five hindlimb skeletal muscles and in liver. In the trained animals serum insulin levels at rest were lower either in a fed or fasted state and after an oral glucose tolerance test. Twenty-four hours after the last exercise bout sections of the liver, soleus (S), plantaris (P), extensor digitorum longus (EDL), and red (RG) and white gastrocnemius (WG) muscles were pooled from four to six rats. Insulin binding to plasma membranes increased in S, P, and EDL but not in WG or in liver. There were insulin binding differences among muscles. Comparison of rank orders of insulin binding data with published glucose transport data for the same muscles revealed that these parameters do not correspond well. In conclusion, insulin binding to muscle is shown to be heterogeneous and training can increase insulin binding to selected muscles but not liver.

  14. Stenosing Tenosynovitis of the Flexor Hallucis Longus Tendon Associated with the Plantar Capsular Accessory Ossicle at the Interphalangeal Joint of the Great Toe

    PubMed Central

    Chang, Song Ho; Naito, Masashi

    2017-01-01

    This report presents a case of stenosing tenosynovitis of the flexor hallucis longus tendon associated with the plantar capsular accessory ossicle at the interphalangeal joint of the great toe, which was confirmed by intraoperative observation and was successfully treated with surgical resection of the ossicle. As the plantar capsular accessory ossicle was not visible radiographically due to the lack of ossification, ultrasonography was helpful for diagnosing this disorder. PMID:28255483

  15. Acute Traumatic Musculotendinous Avulsion of the Flexor Pollicis Longus Tendon Treated with Primary Flexor Digitorum Superficialis Transfer: A Novel Technique of Management

    PubMed Central

    Sasi, P. Kiran; Mahapatra, Swagath; Raj Pallapati, Samuel C.; Thomas, Binu P.

    2016-01-01

    Traumatic musculotendinous junction avulsions are rare injuries except in avulsion amputations. They pose a significant challenge to the treating surgeon. We present a 24-year-old male who sustained an open musculotendinous avulsion of the flexor pollicis longus tendon. He was treated with primary tendon transfer using the flexor digitorum superficialis of ring finger, in flexor zone 3. The functional result at 10 months following surgery was excellent. PMID:27019757

  16. Digital image analysis of striated skeletal muscle tissue injury during reperfusion after induced ischemia

    NASA Astrophysics Data System (ADS)

    Rosero Salazar, Doris Haydee; Salazar Monsalve, Liliana

    2015-01-01

    Conditions such as surgical procedures or vascular diseases produce arterial ischemia and reperfusion injuries, which generate changes in peripheral tissues and organs, for instance, in striated skeletal muscle. To determine such changes, we conducted an experimental method in which 42 male Wistar rat were selected, to be undergone to tourniquet application on the right forelimb and left hind limb, to induce ischemia during one and three hours, followed by reperfusion periods starting at one hour and it was prolonged up to 32 days. Extensor carpi radialis longus and soleus respectively, were obtained to be processed for histochemical and morphometric analysis. By means of image processing and detection of regions of interest, variations of areas occupied by muscle fibers and intramuscular extracellular matrix (IM-ECM) throughout reperfusion were observed. In extensor carpi radialis longus, results shown reduction in the area occupied by muscle fibers; this change is significant between one hour and three hours ischemia followed by 16 hours, 48 hours and 32 days reperfusión (p˂0.005). To compare only periods of reperfusión that continued to three hours ischemia, were found significant differences, as well. For area occupied by IM-ECM, were identified increments in extensor carpi radialis longus by three hours ischemia and eight to 16 days reperfusion; in soleus, was observed difference by one hour ischemia with 42 hours reperfusion, and three hours ischemia followed by four days reperfusion (p˂0.005). Skeletal muscle develops adaptive changes in longer reperfusion, to deal with induced injury. Descriptions beyond 32 days reperfusion, can determine recovering normal pattern.

  17. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.

    PubMed

    Trinh, Huong H; Lamb, Graham D

    2006-07-01

    1. The twitch characteristics (fast-twitch or slow-twitch) of skeletal muscle fibres are determined not only by the contractile apparatus properties of the fibre, but also by the time-course of Ca2+ release and re-uptake by the sarcoplasmic reticulum (SR). The present study examined, in individual fibres from non-transforming muscle of the rat, whether particular SR properties are matched to the contractile apparatus properties of the fibre, in particular in the case of fibres with fast-twitch contractile apparatus located in a slow-twitch muscle, namely the soleus. 2. Force was recorded in single, mechanically skinned fibres from extensor digitorum longus (EDL), gastrocnemius, peroneus longus and soleus muscles. Using repeated cycles in which the SR was emptied of all releasable Ca2+ and then reloaded, it was possible to determine the relative amount of Ca2+ present in the SR endogenously, the maximum SR capacity and the rate of Ca2+ loading. The sensitivity of the contractile apparatus to Ca2+ and Sr2+ was used to classify the fibres as fast-twitch (FT), slow-twitch (ST) or mixed (< 3% of the fibres examined) and thereby identify the likely troponin C and myosin heavy chain types present. 3. There was no significant difference in SR properties between the groups of FT fibres obtained from the four different muscles, including soleus. Despite some overlap in the SR properties of individual fibres between the FT and ST groups, the properties of the FT fibres in all four muscles studied were significantly different from those of the ST and mixed fibres. 4. In general, in FT fibres the SR had a larger capacity and the endogenous Ca2+ content was a relatively lower percentage of maximum compared with ST fibres. Importantly, in terms of their SR properties, FT fibres from soleus muscle more closely resembled FT fibres from other muscles than they did ST fibres from soleus muscle.

  18. Biochemical and histochemical changes in energy supply enzyme pattern of muscles of the rat during old age.

    PubMed

    Bass, A; Gutmann, E; Hanzlíková, V

    1975-01-01

    Senile muscles of the rat (28-36 months) show loss of overall activity of glycolytic and aerobic enzymes. However, there is a differential loss and shift of enzyme activity pattern in the three types of muscles. The extensor digitorum longus (EDL) and diaphragm show a decrease of ratios of glycolytic to aerobic-oxidative enzymes. This shift to a more oxidative type of metabolism is not observed in the soleus muscle. Decrease of enzyme activities is least marked in the diaphragm muscle. Biochemical analysis shows a trend to levelling out of metabolic differences between the different muscle types. This trend of 'dedifferentiation' is most marked when comparing EDL and soleus, least marked when comparing EDL and diaphragm muscle. The histochemical analysis shows a shift from the original mixed to a more uniform pattern of muscle fibres in the EDL and soleus muscle; this levelling-out of differences between enzymatic activities of different muscle fibres is not observed in the diaphragm muscle. Preferential atrophy and loss of ATPase activity in II muscle fibres in the soleus muscle and the occurrence of 'type grouping' are further characteristic features of senile muscle change. The findings show general (i.e. loss of enzyme activities) and differential trends of biochemical and histochemical enzyme changes in different types of muscles.

  19. Contraction increases the T(2) of muscle in fresh water but not in marine invertebrates.

    PubMed

    Meyer, R A; Prior, B M; Siles, R I; Wiseman, R W

    2001-05-01

    Previous studies suggest that the activity-induced increase in (1)H-NMR transverse relaxation time (T(2)) observed in mammalian skeletal muscles is related to an osmotic effect of intracellular metabolite accumulation. This hypothesis was tested by comparing T(2) (measured by (1)H-NMR imaging at 4.7 T) and metabolite changes (measured by (31)P-NMR spectroscopy) after stimulation in the muscles of a freshwater (crayfish, Orconectes virilis) vs two osmoconforming marine invertebrates (lobster, Homarus americanus; scallop, Argopecten concentricus). Intracellular pH significantly decreased after stimulation in the lobster tail muscle, but not in the crayfish tail or scallop phasic adductor muscles. The decrease in phosphoarginine-to-ATP ratio after stimulation was similar in the three muscles. Muscle T(2) increased from 37 to 43 ms (p < 0.02, n = 7) after stimulation in crayfish, but was unchanged in lobster muscle (32 ms, n = 7), and significantly decreased (from 40 to 36 ms, p < 0.02, n = 11) in scallop muscle. The observation that T(2) does not increase after stimulation in muscles of marine invertebrates with high natural osmolarity is consistent with the hypothesis that the T(2) increase in mammalian muscle is related to osmotically driven shifts of fluid between subcellular compartments.

  20. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    SciTech Connect

    Hamrick, Mark W.; Herberg, Samuel; Arounleut, Phonepasong; He, Hong-Zhi; Shiver, Austin; Qi, Rui-Qun; Zhou, Li; Isales, Carlos M.; and others

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  1. Neglected Achilles Tendon Rupture Treated with Flexor Hallucis Longus transfer with two turndown gastrocnemius fascia flap and reinforced with plantaris tendon.

    PubMed

    Mao, Haijiao; Shi, Zengyuan; Xu, Dachuan; Liu, Zhenxin

    2015-09-01

    Neglected Achilles Tendon Ruptures are commonly seen by orthopaedic surgeons. In cases resistant to conservative treatment, a variety of surgical procedures have been utilized in the past. The senior -surgeon at our institution has utilized a technique -employing two turndown fascia flaps fashioned from the proximal Achilles tendon augmented by a tenomyodesis of the flexor hallucis longus and plantaris tendon. The purpose of this study was to assess the clinical outcome of all patients who underwent this procedure. The medical records of 10 cases that underwent this procedure were retrospectively reviewed. We completed data collection sets using the American Orthopaedic Foot and Ankle Society ankle-hind foot scores, isokinetic evaluation, and postoperative magnetic resonance imaging (MRI) at 1 year of follow-up. The mean American Orthopaedic Foot and Ankle Society ankle-hind foot scores improved from 64.4±3.54. Isokinetic testing at 30º/sec and 120º/sec revealed an mean deficits of 24.5%, respectively, in the plantar flexion peak torque of the involved ankle than non-involved ankle. The flexor hallucis longus tendon, gastrocnemius fascia flap and plantaris were well -integrated into the Achilles tendon forming a homogenous tendon, which was confirmed in MRI. Our subjective and objective data indicate that the reconstructive technique using flexor hallucis longus transfer with two turndown gastrocnemius fascia flaps and plantaris tendon is a good option for repairing large gap defect of Achilles tendon.

  2. The lumbrical muscle: a novel in situ system to evaluate adult skeletal muscle proteolysis and anticatabolic drugs for therapeutic purposes.

    PubMed

    Bergantin, Leandro Bueno; Figueiredo, Leonardo Bruno; Godinho, Rosely Oliveira

    2011-12-01

    The molecular regulation of skeletal muscle proteolysis and the pharmacological screening of anticatabolic drugs have been addressed by measuring tyrosine release from prepubertal rat skeletal muscles, which are thin enough to allow adequate in vitro diffusion of oxygen and substrates. However, the use of muscle at accelerated prepubertal growth has limited the analysis of adult muscle proteolysis or that associated with aging and neurodegenerative diseases. Here we established the adult rat lumbrical muscle (4/hindpaw; 8/rat) as a new in situ experimental model for dynamic measurement of skeletal muscle proteolysis. By incubating lumbrical muscles attached to their individual metatarsal bones in Tyrode solution, we showed that the muscle proteolysis rate of adult and aged rats (3-4 to 24 mo old) is 45-25% of that in prepubertal animals (1 mo old), which makes questionable the usual extrapolation of proteolysis from prepubertal to adult/senile muscles. While acute mechanical injury or 1- to 7-day denervation increased tyrosine release from adult lumbrical muscle by up to 60%, it was reduced by 20-28% after 2-h incubation with β-adrenoceptor agonists, forskolin or phosphodiesterase inhibitor IBMX. Using inhibitors of 26S-proteasome (MG132), lysosome (methylamine), or calpain (E64/leupeptin) systems, we showed that ubiquitin-proteasome is accountable for 40-50% of total lumbrical proteolysis of adult, middle-aged, and aged rats. In conclusion, the lumbrical model allows the analysis of muscle proteolysis rate from prepubertal to senile rats. By permitting eight simultaneous matched measurements per rat, the new model improves similar protocols performed in paired extensor digitorum longus (EDL) muscles from prepubertal rats, optimizing the pharmacological screening of drugs for anticatabolic purposes.

  3. Closed reduction with or without adductor tenotomy for developmental dysplasia of the hip presenting at walking age

    PubMed Central

    Zein, Abou Bakr; Arafa, Amr Said; Azab, Mostafa Abdelmaboud; Reda, Walid; Hegazy, Mohamed Mahmoud; Al Barbary, Hassan Magdy; Kaddah, Mohamed Abdelhalim

    2017-01-01

    Background: Many children with developmental dislocation of the hip especially in underdeveloped countries reach walking age and still remain undiagnosed, which can be detrimental to their growth and development. Because of the lack medical services often encountered in these regions, it would be attractive to find a cheap and effective treatment. Our work evaluated the results of treatment of these children by closed reduction with or without adductor tenotomy in a prospective study. Methods: We included 20 patients in this study with 29 affected hips (15 right and 14 left). Nine patients (45%) had bilateral DDH and 11 (55%) had unilateral DDH. There were 18 girls (90%) and two boys (10%) who were followed up for a mean of 21 mo (18-24 mo). Ages ranged from 9 to 36 mo (mean age 18.3 mo). Patients were divided according to age into two groups: between 9-18 mo and from 19-36 mo. The first group included nine patients (14 hips) while the second had 11 patients (15 hips). Results: In the first group, closed reduction failed in two patients (two hips) during the follow-up period (14.3%) and this necessitated shift to open reduction, while in the second group only one patient (bilateral DDH) had a similar failure (13.3%). We identified four hips with avascular necrosis. Three of them required no further treatment, the remaining hip was openly reduced. Conclusions: Closed reduction in older children offers a valid and reproducible treatment modality in the hands of an experienced pediatric orthopaedic surgeon as long as there is close follow-up and thorough knowledge of possible complications and their management including the ability to shift timely to open reduction. PMID:28286603

  4. Extensor Pollicis Longus Injury in Addition to De Quervain’s with Text Messaging on Mobile Phones

    PubMed Central

    Kumar, Bhaskaranand; Bhat, Anil K; Venugopal, Anand

    2014-01-01

    Objective: To do a clinical and ultrasonic evaluation of subjects with thumb pain with text messaging. Background: Thumbs are commonly used for text messaging, which are not as well designed for fine manipulative or dexterous work. Repetitive use as in text messaging can lead to the injury to the tendons of the thumb. Materials and Methods: Ninety eight students with symptoms of Repetitive Strain Type of injuries of the thumb were selected from a survey and evaluated both clinically and by ultrasound analysis of the musculotendinous unit of the thumb to note changes due to excessive use of the mobile phone. Age and sex matched controls were also subjected to ultrasound evaluation. Results: Clinical examination showed positive Finkelstein test in 40% of the cases, significant reduction in the lateral and tip pinch strengths in the cases. Ultrasound detected changes in the first and the third compartments in 19% of the cases. Conclusion: Isolated cases of pain in the thumb have been reported but this study noted changes both clinically and by ultrasound in the tendons of the thumb. These changes should be taken as warning signs of possible subclinical changes taking place in the soft tissues of the thumb in these subjects due to repetitive use of mobile phones and thus, making them prone for developing painful Musculoskeletal Disorders. Application: Repetitive use of mobile phones for text messaging can lead to the damage of Extensor pollicis longus of the thumb in addition to the tendons of the first compartment of the wrist. PMID:25584249

  5. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  6. Fate of 3H-thymidine labelled myogenic cells in regeneration of muscle isografts.

    PubMed

    Gutmann, E; Mares, V; Stichová, J

    1976-03-05

    Intact and denervated extensor digitorum longus (EDL) muscles of 20-day-old inbred Lewis-Wistar rats were labelled with 3H-thymidine. Ninety minutes after the injection of the isotope 4.0% of the nuclei were labelled in the intact (i.e. innervated) and 9.6% in the muscles, denervated 3 days before administration of the isotope. The labelled EDL muscles were grafted into the bed of the previously removed EDL muscles of inbred animals and these isografts were studied 30 days later. In the EDL muscles, regenerated from innervated isografts only occasionally labelled endothelial cells were found whereas in the muscles regenerated from denervated isografts also parenchymal muscle nuclei were regularly labelled. The incidence of labelled nuclei in the regenerated EDL muscles was, however, about 20 times lower than in the donor EDL muscles. The presen experiments provide a direct proof of utilization of donor satelite cell nuclei for regeneration in grafted muscle tissue. With respect to the low incidence of labelled nuclei in regenerated EDL muscles, other sources of cells apparently also contribute to the regeneration process.

  7. Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle.

    PubMed

    Sylow, Lykke; Jensen, Thomas E; Kleinert, Maximilian; Mouatt, Joshua R; Maarbjerg, Stine J; Jeppesen, Jacob; Prats, Clara; Chiu, Tim T; Boguslavsky, Shlomit; Klip, Amira; Schjerling, Peter; Richter, Erik A

    2013-04-01

    In skeletal muscle, the actin cytoskeleton-regulating GTPase, Rac1, is necessary for insulin-dependent GLUT4 translocation. Muscle contraction increases glucose transport and represents an alternative signaling pathway to insulin. Whether Rac1 is activated by muscle contraction and regulates contraction-induced glucose uptake is unknown. Therefore, we studied the effects of in vivo exercise and ex vivo muscle contractions on Rac1 signaling and its regulatory role in glucose uptake in mice and humans. Muscle Rac1-GTP binding was increased after exercise in mice (~60-100%) and humans (~40%), and this activation was AMP-activated protein kinase independent. Rac1 inhibition reduced contraction-stimulated glucose uptake in mouse muscle by 55% in soleus and by 20-58% in extensor digitorum longus (EDL; P < 0.01). In agreement, the contraction-stimulated increment in glucose uptake was decreased by 27% (P = 0.1) and 40% (P < 0.05) in soleus and EDL muscles, respectively, of muscle-specific inducible Rac1 knockout mice. Furthermore, depolymerization of the actin cytoskeleton decreased contraction-stimulated glucose uptake by 100% and 62% (P < 0.01) in soleus and EDL muscles, respectively. These are the first data to show that Rac1 is activated during muscle contraction in murine and human skeletal muscle and suggest that Rac1 and possibly the actin cytoskeleton are novel regulators of contraction-stimulated glucose uptake.

  8. In vivo muscle force and muscle power during near-maximal frog jumps

    PubMed Central

    Leonard, Timothy R.; Kaya, Motoshi; Herzog, Walter

    2017-01-01

    Frogs’ outstanding jumping ability has been associated with a high power output from the leg extensor muscles. Two main theories have emerged to explain the high power output of the frog leg extensor muscles, either (i) the contractile conditions of all leg extensor muscles are optimized in terms of muscle length and speed of shortening, or (ii) maximal power is achieved through a dynamic catch mechanism that uncouples fibre shortening from the corresponding muscle-tendon unit shortening. As in vivo instantaneous power generation in frog hind limb muscles during jumping has never been measured directly, it is hard to distinguish between the two theories. In this study, we determined the instantaneous variable power output of the plantaris longus (PL) of Lithobates pipiens (also known as Rana pipiens), by directly measuring the in vivo force, length change, and speed of muscle and fibre shortening in near maximal jumps. Fifteen near maximal jumps (> 50cm in horizontal distance) were analyzed. High instantaneous peak power in PL (536 ± 47 W/kg) was achieved by optimizing the contractile conditions in terms of the force-length but not the force-velocity relationship, and by a dynamic catch mechanism that decouples fascicle shortening from muscle-tendon unit shortening. We also found that the extra-muscular free tendon likely amplifies the peak power output of the PL by modulating fascicle shortening length and shortening velocity for optimum power output, but not by releasing stored energy through recoiling as the tendon only started recoiling after peak PL power had been achieved. PMID:28282405

  9. Cranial myology and bite force performance of Erlikosaurus andrewsi: a novel approach for digital muscle reconstructions

    PubMed Central

    Lautenschlager, Stephan

    2013-01-01

    The estimation of bite force and bite performance in fossil and extinct animals is a challenging subject in palaeontology and is highly dependent on the reconstruction of the cranial myology. Furthermore, the morphology and arrangement of the adductor muscles considerably affect feeding processes and mastication and thus also have important dietary and ecological ramifications. However, in the past, the reconstruction of the (cranial) muscles was restricted to the identification of muscle attachment sites or simplified computer models. This study presents a detailed reconstruction of the adductor musculature of the Cretaceous therizinosaur Erlikosaurus andrewsi based on a stepwise and iterative approach. The detailed, three-dimensional models of the individual muscles allow for more accurate measurements of the muscle properties (length, cross-section, attachment angle and volume), from which muscle and bite force estimates are calculated. Bite force estimations are found to be the lowest at the tip of the snout (43–65 N) and respectively higher at the first (59–88 N) and last tooth (90–134 N) position. Nevertheless, bite forces are comparatively low for E. andrewsi, both in actual numbers as well as in comparison with other theropod dinosaurs. The results further indicate that the low bite performance was mainly used for leaf-stripping and plant cropping, rather than active mastication or chewing processes. Muscle and thus bite force in E. andrewsi (and most likely all therizinosaurs) is considerably constrained by the cranial anatomy and declines in derived taxa of this clade. This trend is reflected in the changes of dietary preferences from carnivory to herbivory in therizinosaurs. PMID:23061752

  10. Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy.

    PubMed

    Bar-On, Lynn; Aertbeliën, Erwin; Molenaers, Guy; Desloovere, Kaat

    2014-01-01

    The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex during a stretch to a passive muscle is the most widely accepted. However, other mechanisms are also thought to contribute to pathological muscle activity and, in patients post-stroke and spinal cord injury can result in different activation patterns. In the lower-limbs of children with spastic cerebral palsy (CP) these distinct activation patterns have not yet been thoroughly explored. The aim of the study was to apply an instrumented assessment to quantify different muscle activation patterns in four lower-limb muscles of children with CP. Fifty-four children with CP were included (males/females n = 35/19; 10.8 ± 3.8 yrs; bilateral/unilateral involvement n =  32/22; Gross Motor Functional Classification Score I-IV) of whom ten were retested to evaluate intra-rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, and ankle were performed to stretch the lower-limb muscles at three increasing velocities. Muscle activity and joint motion were synchronously recorded using inertial sensors and electromyography (EMG) from the adductors, medial hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into activation patterns using average, normalized root mean square EMG (RMS-EMG) compared across increasing position zones and velocities. Based on the visual categorisation, quantitative parameters were defined using stretch-reflex thresholds and normalized RMS-EMG. These parameters were compared between muscles with different activation patterns. All patterns were dominated by high velocity-dependent muscle activation, but in more than half, low velocity-dependent activation was also observed. Muscle activation patterns were found to be both muscle- and subject-specific (p<0.01). The intra-rater reliability of all quantitative parameters was moderate to good. Comparing RMS-EMG between incremental position

  11. Abdominal muscle and quadriceps strength in chronic obstructive pulmonary disease

    PubMed Central

    Man, W; Hopkinson, N; Harraf, F; Nikoletou, D; Polkey, M; Moxham, J

    2005-01-01

    Background: Quadriceps muscle weakness is common in chronic obstructive pulmonary disease (COPD) but is not observed in a small hand muscle (adductor pollicis). Although this could be explained by reduced activity in the quadriceps, the observation could also be explained by anatomical location of the muscle or fibre type composition. However, the abdominal muscles are of a similar anatomical and fibre type distribution to the quadriceps, although they remain active in COPD. Cough gastric pressure is a recently described technique that assesses abdominal muscle (and hence expiratory muscle) strength more accurately than traditional techniques. A study was undertaken to test the hypothesis that more severe weakness exists in the quadriceps than in the abdominal muscles of patients with COPD compared with healthy elderly controls. Methods: Maximum cough gastric pressure and quadriceps isometric strength were measured in 43 patients with stable COPD and 25 healthy elderly volunteers matched for anthropometric variables. Results: Despite a significant reduction in mean quadriceps strength (29.9 kg v 41.2 kg; 95% CI –17.9 to –4.6; p = 0.001), cough gastric pressure was preserved in patients with COPD (227.3 cm H2O v 204.8 cm H2O; 95% CI –5.4 to 50.6; p = 0.11). Conclusions: Abdominal muscle strength is preserved in stable COPD outpatients in the presence of quadriceps weakness. This suggests that anatomical location and fibre type cannot explain quadriceps weakness in COPD. By inference, we conclude that disuse and consequent deconditioning are important factors in the development of quadriceps muscle weakness in COPD patients, or that activity protects the abdominal muscles from possible systemic myopathic processes. PMID:15923239

  12. Role of glucocorticoids in the response of rat leg muscles to reduced activity

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Tischler, Marc E.

    1986-01-01

    Adrenalectomy did not prevent atrophy of rat soleus muscle during 6 days of tail cast suspension. Cortisol treatment enhanced the atrophy and caused atrophy of the weight-bearing soleus and both extensor digitorum longus (EDL) muscles. Unloading led to increased sarcoplasmic protein concentration in the soleus but cortisol administration increased the myhofibrillar (+stromal) protein concentration in both muscles. Suspension of hindlimbs of adrenalectomized animals led to faster protein degradation, slower sarcoplasmic protein degradation, and faster myofibrillar protein synthesis in the isolated soleus, whereas with cortisol-treated animals, the difference in synthesis of myofibrillar proteins was enhanced and that of sarcoplasmic proteins was abolished. Both soleus and EDL of suspended, cortisol-treated animals showed faster protein degradation. It is unlikely that any elevation in circulating glucocorticoids was solely responsible for atrophy of the soleus in this model, but catabolic amounts of glucocorticoids could alter the response of muscle to unloading.

  13. Acute effects of hindlimb unweighting on satellite cells of growing skeletal muscle

    NASA Technical Reports Server (NTRS)

    Schultz, Edward; Darr, Kevin C.; Macius, Allison

    1994-01-01

    The proliferative behavior of satellite cells in growing rat soleus and extensor digitorum longus muscles was examined at short periods after initiation of hindlimb unweighting. Mitotic activity of satellite cells in both muscles decreased below weight-bearing control levels within 24 h of initiation of hindlimb unweighting. This satellite cell response was equal to or greater than 48 h before any atrophic morphological changes that take place in the muscles. Suppression of mitotic activity was most severe in the soleus muscle where continuous infusion of label demonstrated that virtually all mitotic activity was abolished between 3 and 5 days. The results of this study suggest that satellite cell mitotic activity is a sensitive indicator of primary atrophic changes occurring in growing myofibers and may be a predictor of future morphological changes.

  14. Differential effect of denervation on free radical scavenging enzymes in slow and fast muscle of rat

    NASA Technical Reports Server (NTRS)

    Asayama, K.; Dettbarn, W. D.; Burr, I. M.

    1985-01-01

    To determine the effect of denervation on the free radical scavenging systems in relation to the mitochondrial oxidative metabolism in the slow twitch soleus and fast twitch extensor digitorum longus (EDL) muscles, the sciatic nerve of the rat was crushed in the mid-thigh region and the muscle tissue levels of 5 enzymes were studied 2 and 5 weeks following crush. Radioimmunoassays were utilized for the selective measurement of cuprozinc (cytosolic) and mangano (mitochondrial) superoxide dismutases. These data represent the first systematic report of free radical scavening systems in slow and fast muscles in response to denervation. Selective modification of cuprozinc and manganosuperoxide dismutases and differential regulation of GSH-peroxidase was demonstrated in slow and fast muscle.

  15. Contractile properties of rat fast-twitch skeletal muscle during reinnervation - Effects of testosterone and castration

    NASA Technical Reports Server (NTRS)

    Yeagle, S. P.; Mayer, R. F.; Max, S. R.

    1983-01-01

    The peroneal nerve of subject rats were crushed 1 cm from the muscle in order to examine the isometric contractile properties of skeletal muscle in the recovery sequency during reinnervation of normal, castrated, and testosterone-treated rats. The particular muscle studied was the extensor digitorum longus, with functional reinnervation first observed 8-9 days after nerve crush. No evidence was found that either castration or testosterone injections altered the process of reinnervation after the nerve crush, with the conclusion being valid at the 0.05 p level. The most reliable index of reinnervation was found to be the twitch:tetanus ratio, a factor of use in future studies of the reinnervation of skeletal muscle.

  16. Organization of motor pools supplying the cervical musculature in a cryptodyran turtle, Pseudemys scripta elegans. II. Medial motor nucleus and muscles supplied by two motor nuclei.

    PubMed

    Yeow, M B; Peterson, E H

    1986-01-08

    In this paper we describe the medial motor nucleus of Pseudemys cervical spinal cord and the motor pools of three neck muscles that exhibit an unusual pattern of innervation. Cells of the medial motor nucleus form a longitudinal column at the dorsomedial gray/white border of the ventral horn from C1 through C8. In Nissl-stained transverse sections they appear fusiform with prominent medially projecting dendrites; in HRP material these dendrites are seen to cross into the contralateral ventral funiculus. Medial nuclear cells vary in size (12-31 micron in diameter) and are often relatively large (greater than 21 micron in diameter). They are significantly larger and more numerous in caudal than in rostral cervical segments. Medial nuclear cells supply three of the cervical muscles examined in this study: mm. retrahens capitis collique (RCCQ), testocervicis, and longus colli. These three muscles differ from other cervical muscles in Pseudemys and from vertebrate limb muscles in that they are supplied in parallel by two populations of motor neurons: the medial and ventral motor nuclei (cf. Yeow and Peterson, '86). Ventral nuclear cells supplying these three muscles are organized into a musculotopic pattern with m. testocervicis motor neurons most medial and m. RCCQ motor neurons lateral; in contrast, the location of medial nuclear motor neurons is invariant with respect to muscle position. HRP-positive medial nuclear cells are sometimes smaller (m. testocervicis) but more often are as large or larger (mm. RCCQ and longus colli) than ventral nuclear cells supplying the same muscles, thus suggesting that they supply extrafusal muscle fibers, perhaps different muscle unit types in the three muscles. Based on the morphology of medial nuclear cells and the probable actions of the muscles they innervate, we hypothesize that the medial motor nucleus may represent a discrete functional system for producing bilaterally synchronous muscle activation, and that this system is

  17. Real-time ultrasound-guided comparison of adductor canal block and psoas compartment block combined with sciatic nerve block in laparoscopic knee surgeries

    PubMed Central

    Messeha, Medhat M.

    2016-01-01

    Background: Lumbar plexus block, combined with a sciatic nerve block, is an effective locoregional anesthetic technique for analgesia and anesthesia of the lower extremity. The aim of this study was to compare the clinical results outcome of the adductor canal block versus the psoas compartment block combined with sciatic nerve block using real time ultrasound guidance in patients undergoing elective laparoscopic knee surgeries. Patients and Methods: Ninety patients who were undergoing elective laparoscopic knee surgeries were randomly allocated to receive a sciatic nerve block in addition to lumbar plexus block using either an adductor canal block (ACB) or a posterior psoas compartment approach (PCB) using 25 ml of bupivacine 0.5% with adrenaline 1:400,000 injection over 2-3 minutes while observing the distribution of the local anesthetic in real time. Successful nerve block was defined as a complete loss of pinprick sensation in the region that is supplied by the three nerves along with adequate motor block, 30 minutes after injection. The degree of motor block was evaluated 30 minutes after the block procedure. The results of the present study showed that the real time ultrasound guidance of PCB is more effective than ACB approach. Although the sensory blockade of the femoral nerve achieved equally by both techniques, the LFC and OBT nerves were faster and more effectively blocked with PCB technique. Also PCB group showed significant complete sensory block without need for general anesthesia, significant decrease in the post-operative VAS and significant increase time of first analgesic requirement as compared to the ACB group. Result and Conclusion: The present study demonstrates that blockade of lumber plexus by psoas compartment block is more effective in complete sensory block without general anesthesia supplementation in addition to decrease post-operative analgesic requirement than adductor canal block. PMID:27212766

  18. The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development.

    PubMed

    Nathan, Elisha; Monovich, Amir; Tirosh-Finkel, Libbat; Harrelson, Zachary; Rousso, Tal; Rinon, Ariel; Harel, Itamar; Evans, Sylvia M; Tzahor, Eldad

    2008-02-01

    During embryogenesis, paraxial mesoderm cells contribute skeletal muscle progenitors, whereas cardiac progenitors originate in the lateral splanchnic mesoderm (SpM). Here we focus on a subset of the SpM that contributes to the anterior or secondary heart field (AHF/SHF), and lies adjacent to the cranial paraxial mesoderm (CPM), the precursors for the head musculature. Molecular analyses in chick embryos delineated the boundaries between the CPM, undifferentiated SpM progenitors of the AHF/SHF, and differentiating cardiac cells. We then revealed the regionalization of branchial arch mesoderm: CPM cells contribute to the proximal region of the myogenic core, which gives rise to the mandibular adductor muscle. SpM cells contribute to the myogenic cells in the distal region of the branchial arch that later form the intermandibular muscle. Gene expression analyses of these branchiomeric muscles in chick uncovered a distinct molecular signature for both CPM- and SpM-derived muscles. Islet1 (Isl1) is expressed in the SpM/AHF and branchial arch in both chick and mouse embryos. Lineage studies using Isl1-Cre mice revealed the significant contribution of Isl1(+) cells to ventral/distal branchiomeric (stylohyoid, mylohyoid and digastric) and laryngeal muscles. By contrast, the Isl1 lineage contributes to mastication muscles (masseter, pterygoid and temporalis) to a lesser extent, with virtually no contribution to intrinsic and extrinsic tongue muscles or extraocular muscles. In addition, in vivo activation of the Wnt/beta-catenin pathway in chick embryos resulted in marked inhibition of Isl1, whereas inhibition of this pathway increased Isl1 expression. Our findings demonstrate, for the first time, the contribution of Isl1(+) SpM cells to a subset of branchiomeric skeletal muscles.

  19. Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb.

    PubMed

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2014-02-15

    With fatiguing exercise, firing of group III/IV muscle afferents reduces voluntary activation and force of the exercised muscles. These afferents can also act across agonist/antagonist pairs, reducing voluntary activation and force in nonfatigued muscles. We hypothesized that maintained firing of group III/IV muscle afferents after a fatiguing adductor pollicis (AP) contraction would decrease voluntary activation and force of AP and ipsilateral elbow flexors. In two experiments (n = 10) we examined voluntary activation of AP and elbow flexors by measuring changes in superimposed twitches evoked by ulnar nerve stimulation and transcranial magnetic stimulation of the motor cortex, respectively. Inflation of a sphygmomanometer cuff after a 2-min AP maximal voluntary contraction (MVC) blocked circulation of the hand for 2 min and maintained firing of group III/IV muscle afferents. After a 2-min AP MVC, maximal AP voluntary activation was lower with than without ischemia (56.2 ± 17.7% vs. 76.3 ± 14.6%; mean ± SD; P < 0.05) as was force (40.3 ± 12.8% vs. 57.1 ± 13.8% peak MVC; P < 0.05). Likewise, after a 2-min AP MVC, elbow flexion voluntary activation was lower with than without ischemia (88.3 ± 7.5% vs. 93.6 ± 3.9%; P < 0.05) as was torque (80.2 ± 4.6% vs. 86.6 ± 1.0% peak MVC; P < 0.05). Pain during ischemia was reported as Moderate to Very Strong. Postfatigue firing of group III/IV muscle afferents from the hand decreased voluntary drive and force of AP. Moreover, this effect decreased voluntary drive and torque of proximal unfatigued muscles, the elbow flexors. Fatigue-sensitive group III/IV muscle nociceptors act to limit voluntary drive not only to fatigued muscles but also to unfatigued muscles within the same limb.

  20. Sarcolipin overexpression improves muscle energetics and reduces fatigue.

    PubMed

    Sopariwala, Danesh H; Pant, Meghna; Shaikh, Sana A; Goonasekera, Sanjeewa A; Molkentin, Jeffery D; Weisleder, Noah; Ma, Jianjie; Pan, Zui; Periasamy, Muthu

    2015-04-15

    Sarcolipin (SLN) is a regulator of sarcoendoplasmic reticulum calcium ATPase in skeletal muscle. Recent studies using SLN-null mice have identified SLN as a key player in muscle thermogenesis and metabolism. In this study, we exploited a SLN overexpression (Sln(OE)) mouse model to determine whether increased SLN level affected muscle contractile properties, exercise capacity/fatigue, and metabolic rate in whole animals and isolated muscle. We found that Sln(OE) mice are more resistant to fatigue and can run significantly longer distances than wild-type (WT). Studies with isolated extensor digitorum longus (EDL) muscles showed that Sln(OE) EDL produced higher twitch force than WT. The force-frequency curves were not different between WT and Sln(OE) EDLs, but at lower frequencies the pyruvate-induced potentiation of force was significantly higher in Sln(OE) EDL. SLN overexpression did not alter the twitch and force-frequency curve in isolated soleus muscle. However, during a 10-min fatigue protocol, both EDL and soleus from Sln(OE) mice fatigued significantly less than WT muscles. Interestingly, Sln(OE) muscles showed higher carnitine palmitoyl transferase-1 protein expression, which could enhance fatty acid metabolism. In addition, lactate dehydrogenase expression was higher in Sln(OE) EDL, suggesting increased glycolytic capacity. We also found an increase in store-operated calcium entry (SOCE) in isolated flexor digitorum brevis fibers of Sln(OE) compared with WT mice. These data allow us to conclude that increased SLN expression improves skeletal muscle performance during prolonged muscle activity by increasing SOCE and muscle energetics.

  1. Is functional hypertrophy and specific force coupled with the addition of myonuclei at the single muscle fiber level?

    PubMed

    Qaisar, Rizwan; Renaud, Guillaume; Morine, Kevin; Barton, Elisabeth R; Sweeney, H Lee; Larsson, Lars

    2012-03-01

    Muscle force is typically proportional to muscle size, resulting in constant force normalized to muscle fiber cross-sectional area (specific force). Mice overexpressing insulin-like growth factor-1 (IGF-1) exhibit a proportional gain in muscle force and size, but not the myostatin-deficient mice. In an attempt to explore the role of the cytoplasmic volume supported by individual myonuclei [myonuclear domain (MND) size] on functional capacity of skeletal muscle, we have investigated specific force in relation to MND and the content of the molecular motor protein, myosin, at the single muscle fiber level from myostatin-knockout (Mstn(-/-)) and IGF-1-overexpressing (mIgf1(+/+)) mice. We hypothesize that the addition of extra myonuclei is a prerequisite for maintenance of specific force during muscle hypertrophy. A novel algorithm was used to measure individual MNDs in 3 dimensions along the length of single muscle fibers from the fast-twitch extensor digitorum longus and the slow-twitch soleus muscle. A significant effect of the size of individual MNDs in hypertrophic muscle fibers on both specific force and myosin content was observed. This effect was muscle cell type specific and suggested there is a critical volume individual myonuclei can support efficiently. The large MNDs found in fast muscles of Mstn(-/-) mice were correlated with the decrement in specific force and myosin content in Mstn(-/-) muscles. Thus, myostatin inhibition may not be able to maintain the appropriate MND for optimal function.

  2. Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation.

    PubMed

    Goodman, Craig A; Horvath, Deanna; Stathis, Christos; Mori, Trevor; Croft, Kevin; Murphy, Robyn M; Hayes, Alan

    2009-07-01

    Recent studies report that depletion and repletion of muscle taurine (Tau) to endogenous levels affects skeletal muscle contractility in vitro. In this study, muscle Tau content was raised above endogenous levels by supplementing male Sprague-Dawley rats with 2.5% (wt/vol) Tau in drinking water for 2 wk, after which extensor digitorum longus (EDL) muscles were examined for in vitro contractile properties, fatigue resistance, and recovery from fatigue after two different high-frequency stimulation bouts. Tau supplementation increased muscle Tau content by approximately 40% and isometric twitch force by 19%, shifted the force-frequency relationship upward and to the left, increased specific force by 4.2%, and increased muscle calsequestrin protein content by 49%. Force at the end of a 10-s (100 Hz) continuous tetanic stimulation was 6% greater than controls, while force at the end of the 3-min intermittent high-frequency stimulation bout was significantly higher than controls, with a 12% greater area under the force curve. For 1 h after the 10-s continuous stimulation, tetanic force in Tau-supplemented muscles remained relatively stable while control muscle force gradually deteriorated. After the 3-min intermittent bout, tetanic force continued to slowly recover over the next 1 h, while control muscle force again began to decline. Tau supplementation attenuated F(2)-isoprostane production (a sensitive indicator of reactive oxygen species-induced lipid peroxidation) during the 3-min intermittent stimulation bout. Finally, Tau transporter protein expression was not altered by the Tau supplementation. Our results demonstrate that raising Tau content above endogenous levels increases twitch and subtetanic and specific force in rat fast-twitch skeletal muscle. Also, we demonstrate that raising Tau protects muscle function during high-frequency in vitro stimulation and the ensuing recovery period and helps reduce oxidative stress during prolonged stimulation.

  3. Myopathic changes in murine skeletal muscle lacking synemin

    PubMed Central

    García-Pelagio, Karla P.; Muriel, Joaquin; O'Neill, Andrea; Desmond, Patrick F.; Lovering, Richard M.; Lund, Linda; Bond, Meredith

    2015-01-01

    Diseases of striated muscle linked to intermediate filament (IF) proteins are associated with defects in the organization of the contractile apparatus and its links to costameres, which connect the sarcomeres to the cell membrane. Here we study the role in skeletal muscle of synemin, a type IV IF protein, by examining mice null for synemin (synm-null). Synm-null mice have a mild skeletal muscle phenotype. Tibialis anterior (TA) muscles show a significant decrease in mean fiber diameter, a decrease in twitch and tetanic force, and an increase in susceptibility to injury caused by lengthening contractions. Organization of proteins associated with the contractile apparatus and costameres is not significantly altered in the synm-null. Elastimetry of the sarcolemma and associated contractile apparatus in extensor digitorum longus myofibers reveals a reduction in tension consistent with an increase in sarcolemmal deformability. Although fatigue after repeated isometric contractions is more marked in TA muscles of synm-null mice, the ability of the mice to run uphill on a treadmill is similar to controls. Our results suggest that synemin contributes to linkage between costameres and the contractile apparatus and that the absence of synemin results in decreased fiber size and increased sarcolemmal deformability and susceptibility to injury. Thus synemin plays a moderate but distinct role in fast twitch skeletal muscle. PMID:25567810

  4. Optimization of Spinal Muscular Atrophy subject's muscle activity during gait

    NASA Astrophysics Data System (ADS)

    Umat, Gazlia; Rambely, Azmin Sham

    2014-06-01

    Spinal Muscular Atrophy (SMA) is a hereditary disease related muscle nerve disorder caused by degeneration of the anterior cells of the spinal cord. SMA is divided into four types according to the degree of seriousness. SMA patients show different gait with normal people. Therefore, this study focused on the effects of SMA patient muscle actions and the difference that exists between SMA subjects and normal subjects. Therefore, the electromyography (EMG) test will be used to track the behavior of muscle during walking and optimization methods are used to get the muscle stress that is capable of doing the work while walking. Involved objective function is non-linear function of the quadratic and cubic functions. The study concludes with a comparison of the objective function using the force that sought to use the moment of previous studies and the objective function using the data obtained from EMG. The results shows that the same muscles, peroneus longus and bisepsfemoris, were used during walking activity by SMA subjects and control subjects. Muscle stress force best solution achieved from part D in simulation carried out.

  5. Heat production during contraction in skeletal muscle of hypothyroid mice

    SciTech Connect

    Leijendekker, W.J.; van Hardeveld, C.; Elzinga, G. )

    1987-08-01

    The effect of hypothyroidism on tension-independent and -dependent heat produced during a twitch and a tetanic contraction of extensor digitorum longus (EDL) and soleus muscle of mice was examined. The amount of heat produced during a twitch and the rate of heat development during a tetanus of EDL and soleus were measured at and above optimal length. The effect of hypothyroidism on force production was <30%. Straight lines were used to fit the relation between heat production and force. Hypothyroidism significantly decreases tension-independent heat during contraction of EDL and soleus muscle. Because the tension-independent heat is considered to be related to the Ca{sup 2+} cycling, these findings suggest that ATP splitting due to the Ca{sup 2+} cycling is reduced in hypothyroid mice. This conclusion was strengthened by the observation that the oxalate-supported {sup 45}Ca{sup 2+}-uptake activity and {sup 45}Ca{sup 2+}-loading capacity of muscle homogenates from hypothyroid mice were reduced, respectively, to 51 and to 65% in soleus and to 63 and 73% in EDL muscle as compared with euthyroid mice. The tension-dependent rate of heat development during a tetanus was also decreased in soleus muscle of hypothyroid mice. This suggests a lower rate of ATP hydrolysis related to cross-bridge cycling in this muscle due to the hypothyroid state.

  6. Changes in motor cortical excitability during human muscle fatigue.

    PubMed Central

    Taylor, J L; Butler, J E; Allen, G M; Gandevia, S C

    1996-01-01

    1. The excitability of the motor cortex was investigated during fatiguing con of the elbow flexors in human subjects. During sustained contractions at 30 and 1 voluntary force (MVC), the short-latency electromyographic responses (EMG) evoke brachii and brachioradialis by transcranial magnetic stimulation increased in si EMG in the elbow flexors following the evoked muscle potential (silent period), duration during a sustained MVC but not during 30% MVCs nor during a sustained M muscle (adductor pollicis). 2. When the blood supply to brachioradialis was blocked with sphygmomanometer cuff sustained MVC, the changes in EMG responses to transcranial stimulation rapidly control values, This suggests that changes in these responses during fatigue wer small-diameter muscle afferents. 3. Tendon vibration during sustained MVCs indicated that the changes in the resp cortial stimulation were not mediated by reduced muscle spindle inputs. 4. Muscle action potentials evoked in brachioradialis by electrical stimulation cervicomedullary junction did not increase in size during sustained MVCs. Thus, cortically evoked responses during sustained MVCs reflects a change in cortical Although the silent period following cervicomedullary stimulation lengthened, it substantially shorter than the cortically evoked silent period. 5. The altered EMG responses to transcranial stimulation during fatigue suggest exitation and increased inhibition in the motor cortex. As these changes were un manipulation of afferent input they presumably result from intrinsic cortical pr altered voluntary drive to the motor cortex. Images Figure 1 PMID:8821148

  7. Correlation between deep cervical flexor muscle thickness at rest and sternocleidomastoid activity during the craniocervical flexion test.

    PubMed

    Ishida, Hiroshi; Suehiro, Tadanobu; Ono, Koji; Kurozumi, Chiharu; Watanabe, Susumu

    2016-01-01

    The purpose of this study was to clarify the relationship between the thickness of the deep cervical flexor muscles (longus capitis and longus colli) at rest and sternocleidomastoid activity during the craniocervical flexion test (CCFT). Thirteen healthy males participated in this study. The thickness of the deep cervical flexor muscles was measured by ultrasound imaging in a relaxed supine position. Activity of the sternocleidomastoid was measured by electromyography during the CCFT at five incremental levels (22, 24, 26, 28, and 30 mm Hg). Correlations between normalized muscle thickness relative to body mass index and sternocleidomastoid activity were determined. Significant negative correlations were observed between normalized muscle thickness and activity of the sternocleidomastoid at 26 (r = -0.622, P = 0.023) and 28 mmHg (r = -0.653, P = 0.015). Individuals with smaller deep cervical flexor muscles exhibited increased activity in the sternocleidomastoid during the CCFT.

  8. Centronuclear myopathy related to dynamin 2 mutations: Clinical, morphological, muscle imaging and genetic features of an Italian cohort

    PubMed Central

    Catteruccia, Michela; Fattori, Fabiana; Codemo, Valentina; Ruggiero, Lucia; Maggi, Lorenzo; Tasca, Giorgio; Fiorillo, Chiara; Pane, Marika; Berardinelli, Angela; Verardo, Margherita; Bragato, Cinzia; Mora, Marina; Morandi, Lucia; Bruno, Claudio; Santoro, Lucio; Pegoraro, Elena; Mercuri, Eugenio; Bertini, Enrico; D’Amico, Adele

    2013-01-01

    Mutations in dynamin 2 (DNM2) gene cause autosomal dominant centronuclear myopathy and occur in around 50% of patients with centronuclear myopathy. We report clinical, morphological, muscle imaging and genetic data of 10 unrelated Italian patients with centronuclear myopathy related to DNM2 mutations. Our results confirm the clinical heterogeneity of this disease, underlining some peculiar clinical features, such as severe pulmonary impairment and jaw contracture that should be considered in the clinical follow-up of these patients. Muscle MRI showed a distinct pattern of involvement, with predominant involvement of soleus and tibialis anterior in the lower leg muscles, followed by hamstring muscles and adductor magnus at thigh level and gluteus maximus. The detection of three novel DNM2 mutations and the first case of somatic mosaicism further expand the genetic spectrum of the disease. PMID:23394783

  9. Effect of extracellular osmolality on cell volume and resting metabolism in mammalian skeletal muscle.

    PubMed

    Antolic, AnaMaria; Harrison, Rosemarie; Farlinger, Chris; Cermak, Naomi M; Peters, Sandra J; LeBlanc, Paul; Roy, Brian D

    2007-05-01

    The purpose of the present investigation was to establish an in vitro mammalian skeletal muscle model to study acute alterations in resting skeletal muscle cell volume. Isolated, whole muscles [soleus and extensor digitorum longus (EDL)] were dissected from Long-Evans rats and incubated for 60 min in Sigma medium 199 (1 g of resting tension, bubbled with 95% O(2)-5% O(2), 30 +/- 2 degrees C, and pH 7.4). Medium osmolality was altered to simulate hyposmotic (190 +/- 10 mmol/kg) or hyperosmotic conditions (400 +/- 10 mmol/kg), whereas an isosmotic condition (290 +/- 10 mmol/kg) served as a control. After incubation, relative water content of the muscle decreased with hyperosmotic and increased with hyposmotic condition in both muscle types (P < 0.05). The cross-sectional area of soleus type I and type II fibers increased (P < 0.05) in hyposmotic, whereas hyperosmotic exposure led to no detectable changes. The EDL type II fiber area decreased in the hyperosmotic condition and increased after hyposmotic exposure, whereas no change was observed in EDL type I fibers. Furthermore, exposure to the hyperosmotic condition in both muscle types resulted in decreased muscle ATP and phosphocreatine (P < 0.05) contents and increased creatine and lactate contents (P < 0.05) compared with control and hyposmotic conditions. This isolated skeletal muscle model proved viable and demonstrated that altering extracellular osmolality could cause acute alterations in muscle water content and resting muscle metabolism.

  10. Effects of caffeine on mouse skeletal muscle power output during recovery from fatigue.

    PubMed

    James, Rob S; Wilson, Robbie S; Askew, Graham N

    2004-02-01

    The effects of 10 mM (high) and 70 microM (physiologically relevant) caffeine on force, work output, and power output of isolated mouse extensor digitorum longus (EDL) and soleus muscles were investigated in vitro during recovery from fatigue at 35 degrees C. To monitor muscle performance during recovery from fatigue, we regularly subjected the muscle to a series of cyclical work loops. Force, work, and power output during shortening were significantly higher after treatment with 10 mM caffeine, probably as a result of increased Ca2+ release from the sarcoplasmic reticulum. However, the work required to relengthen the muscle also increased in the presence of 10 mM caffeine. This was due to a slowing of relaxation and an increase in muscle stiffness. The combination of increased work output during shortening and increased work input during lengthening had different effects on the two muscles. Net power output of mouse soleus muscle decreased as a result of 10 mM caffeine exposure, whereas net power output of the EDL muscle showed a transient, significant increase. Treatment with 70 microM caffeine had no significant effect on force, work, or power output of EDL or soleus muscles, suggesting that the plasma concentrations found when caffeine is used to enhance performance in human athletes might not directly affect the contractile performance of fatigued skeletal muscle.

  11. Vitamin D deficiency impairs skeletal muscle function in a smoking mouse model

    PubMed Central

    Cielen, Nele; Heulens, Nele; Maes, Karen; Carmeliet, Geert; Mathieu, Chantal; Janssens, Wim

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is associated with skeletal muscle dysfunction. Vitamin D plays an important role in muscle strength and performance in healthy individuals. Vitamin D deficiency is highly prevalent in COPD, but its role in skeletal muscle dysfunction remains unclear. We examined the time-course effect of vitamin D deficiency on limb muscle function in mice with normal or deficient vitamin D serum levels exposed to air or cigarette smoke for 6, 12 or 18 weeks. The synergy of smoking and vitamin D deficiency increased lung inflammation and lung compliance from 6 weeks on with highest emphysema scores observed at 18 weeks. Smoking reduced body and muscle mass of the soleus and extensor digitorum longus (EDL), but did not affect contractility, despite type II atrophy. Vitamin D deficiency did not alter muscle mass but reduced muscle force over time, downregulated vitamin D receptor expression, and increased muscle lipid peroxidation but did not alter actin and myosin expression, fiber dimensions or twitch relaxation time. The combined effect of smoking and vitamin D deficiency did not further deteriorate muscle function but worsened soleus mass loss and EDL fiber atrophy at 18 weeks. We conclude that the synergy of smoking and vitamin D deficiency in contrast to its effect on lung disease, had different, independent but important noxious effects on skeletal muscles in a mouse model of mild COPD. PMID:26906744

  12. Changes of contractile responses due to simulated weightlessness in rat soleus muscle

    NASA Astrophysics Data System (ADS)

    Elkhammari, A.; Noireaud, J.; Léoty, C.

    1994-08-01

    Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspendede SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspencion. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted ina similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modification observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.

  13. Soleus muscle in glycosylation-deficient muscular dystrophy is protected from contraction-induced injury.

    PubMed

    Gumerson, Jessica D; Kabaeva, Zhyldyz T; Davis, Carol S; Faulkner, John A; Michele, Daniel E

    2010-12-01

    The glycosylation of dystroglycan is required for its function as a high-affinity laminin receptor, and loss of dystroglycan glycosylation results in congenital muscular dystrophy. The purpose of this study was to investigate the functional defects in slow- and fast-twitch muscles of glycosylation-deficient Large(myd) mice. While a partial alteration in glycosylation of dystroglycan in heterozygous Large(myd/+) mice was not sufficient to alter muscle function, homozygous Large(myd/myd) mice demonstrated a marked reduction in specific force in both soleus and extensor digitorum longus (EDL) muscles. Although EDL muscles from Large(myd/myd) mice were highly susceptible to lengthening contraction-induced injury, Large(myd/myd) soleus muscles surprisingly showed no greater force deficit compared with wild-type soleus muscles even after five lengthening contractions. Despite no increased susceptibility to injury, Large(myd/myd) soleus muscles showed loss of dystroglycan glycosylation and laminin binding activity and dystrophic pathology. Interestingly, we show that soleus muscles have a markedly higher sarcolemma expression of β(1)-containing integrins compared with EDL and gastrocnemius muscles. Therefore, we conclude that β(1)-containing integrins play an important role as matrix receptors in protecting muscles containing slow-twitch fibers from contraction-induced injury in the absence of dystroglycan function, and that contraction-induced injury appears to be a separable phenotype from the dystrophic pathology of muscular dystrophy.

  14. Length-tension relationships are altered in regenerating muscles of the rat after bupivacaine injection.

    PubMed

    Plant, David R; Beitzel, Felice; Lynch, Gordon S

    2005-06-01

    Intramuscular injection of bupivacaine causes complete degeneration of fibers in extensor digitorum longus (EDL) muscles of rats, followed by complete regeneration within 60 days. Previous studies have shown that regenerated EDL muscles are protected from contraction-induced injury 60 days after bupivacaine injection. It is possible that these regenerated muscles have altered length-tension relations because of fiber remodeling. We tested the hypothesis that length-tension relations are different in bupivacaine-injected and noninjected control muscles. EDL and soleus muscles of the right hindlimb of deeply anesthetized rats were injected with bupivacaine and then allowed to recover for 7, 14, 21, or 60 days (7D, 14D, 21D, 60D), and isometric contractile properties were assessed. Muscles of the contralateral limb were not injected and served as control. EDL muscles recovered from bupivacaine injection more rapidly than soleus muscles, with mass restored to control levels at 21D, and isometric tetanic force (P(o)) restored to control at 60D. In contrast, mass and P(o) of injected soleus muscles was not restored to control even at 60D. In 7D EDL muscles, length-tension curves were shifted leftward compared with control, but in 21D and 60D EDL muscles length-tension curves were right shifted significantly (treatment x muscle length: P < 0.001). Although no clear shift in the position of the length-tension curve was observed in regenerating soleus muscles, force production was enhanced on the descending limb of the curve in 60D soleus muscles (treatment x relative muscle length: P < 0.01). The rightward shift in the length-tension curve of EDL muscles 60 days after bupivacaine injection is likely to contribute to the mechanism for their previously observed protection from contraction-induced injury.

  15. Time course of IL-15 expression after acute resistance exercise in trained rats: effect of diabetes and skeletal muscle phenotype.

    PubMed

    Molanouri Shamsi, Mahdieh; Hassan, Zuhair Mohammad; Quinn, LeBris S; Gharakhanlou, Reza; Baghersad, Leila; Mahdavi, Mehdi

    2015-06-01

    Type 1 diabetes is associated with skeletal muscle atrophy. Skeletal muscle is an endocrine organ producing myokines such as interleukin-15 (IL-15) and interleukin-6 (IL-6) in response to contraction. These factors may mediate the effects of exercise on skeletal muscle metabolism and anabolic pathways. Lack of correlation between muscle IL-15 mRNA and protein levels after exercise training has been observed, while regulatory effects of IL-6 on IL-15 expression have also been suggested. This study determined post-exercise changes in muscle IL-15 and IL-6 mRNA expression and IL-15 protein levels in healthy and streptozotocin-induced diabetic rats in both the fast flexor hallucis longus (FHL) and slow soleus muscles. Resistance training preserved FHL muscle weight in diabetic rats and increased IL-15 protein levels in both the soleus and FHL muscles. However, the temporal pattern of this response was distinct in normal and diabetic rats. Moreover, discordance between post-exercise muscle IL-15 mRNA and protein expression was observed in our study, and diabetes suppressed post-exercise increases in FHL muscle IL-6 mRNA expression. Our study indicates that training, skeletal muscle phenotype, and metabolic status all influence the temporal pattern of post-exercise changes in IL-15 expression. Muscle IL-15 protein levels increase following training, suggesting this may be an adaptation contributing to increased capacity for secretion of this myokine that is not depressed by the diabetic state.

  16. Atlas of the muscle motor points for the lower limb: implications for electrical stimulation procedures and electrode positioning.

    PubMed

    Botter, Alberto; Oprandi, Gianmosè; Lanfranco, Fabio; Allasia, Stefano; Maffiuletti, Nicola A; Minetto, Marco Alessandro

    2011-10-01

    The aim of the study was to investigate the uniformity of the muscle motor point location for lower limb muscles in healthy subjects. Fifty-three subjects of both genders (age range: 18-50 years) were recruited. The muscle motor points were identified for the following ten muscles of the lower limb (dominant side): vastus medialis, rectus femoris, and vastus lateralis of the quadriceps femoris, biceps femoris, semitendinosus, and semimembranosus of the hamstring muscles, tibialis anterior, peroneus longus, lateral and medial gastrocnemius. The muscle motor point was identified by scanning the skin surface with a stimulation pen electrode and corresponded to the location of the skin area above the muscle in which an electrical pulse evoked a muscle twitch with the least injected current. For each investigated muscle, 0.15 ms square pulses were delivered through the pen electrode at low current amplitude (<10 mA) and frequency (2 Hz). 16 motor points were identified in the 10 investigated muscles of almost all subjects: 3 motor points for the vastus lateralis, 2 motor points for rectus femoris, vastus medialis, biceps femoris, and tibialis anterior, 1 motor point for the remaining muscles. An important inter-individual variability was observed for the position of the following 4 out of 16 motor points: vastus lateralis (proximal), biceps femoris (short head), semimembranosus, and medial gastrocnemius. Possible implications for electrical stimulation procedures and electrode positioning different from those commonly applied for thigh and leg muscles are discussed.

  17. Muscle biopsy

    MedlinePlus

    ... Inflammatory diseases of muscle (such as polymyositis or dermatomyositis ) Diseases of the connective tissue and blood vessels ( ... disease that involves inflammation and a skin rash ( dermatomyositis ) Inherited muscle disorder ( Duchenne muscular dystrophy ) Inflammation of ...

  18. The production of denervation-like changes in rat muscle by colchicine, without interference with axonal transport or muscle activity.

    PubMed Central

    Cangiano, A; Fried, J A

    1977-01-01

    1. Rat extensor digitorum longus (EDL) muscles were examined after colchicine treatment of the sciatic nerve. Colchicine was applied in one of two ways: (i) a single sub-epineural injection; (ii) a chronically implanted silicone cuff. 2. After the sub-epineural injection, the entire membrane of muscle fibres became sensitive to iontophoretically applied acetylcholine and the muscle action potentials became resistant to tetrodotoxin. However, the majority of these fibres were found to be normally innervated. 3. These effects were not restricted to the EDL muscle of the colchicine injected side but were also found in the EDL muscle of the contralateral side, indicating that the action of colchicine was systemic. 4. In the treated sciatic nerve there was a partial block of axonal transport of 3H-labelled proteins, which correlated with a partial paralysis of the ipsilateral leg. However, axoplasmic transport was found to be normal in the contralateral sciatic nerve and the contralateral limb was not paralysed despite the supersensitivity of the investigated muscle on that side. 5. When colchicine was applied with a silicone cuff, denervation-like changes were confined to the ipsilateral EDL muscle. However, impulse conduction block at the level of the cuff was usually observed. 6. It is concluded that (i) colchicine can produce denervation-like changes in normally active muscle without blocking axoplasmic transport, through an action probably exerted directly on the muscle membrane, and (ii) that colchicine-cuff experiments failed to provide unambiguous evidence in support of the existence of neurotrophic influences on the muscle membrane. PMID:66309

  19. A Morphometric Study of the Obturator Nerve around the Obturator Foramen

    PubMed Central

    Jo, Se Yeong; Chang, Jae Chil; Bae, Hack Gun; Oh, Jae-Sang; Heo, Juneyoung

    2016-01-01

    Objective Obturator neuropathy is a rare condition. Many neurosurgeons are unfamiliar with the obturator nerve anatomy. The purpose of this study was to define obturator nerve landmarks around the obturator foramen. Methods Fourteen cadavers were studied bilaterally to measure the distances from the nerve root to relevant anatomical landmarks near the obturator nerve, including the anterior superior iliac spine (ASIS), the pubic tubercle, the inguinal ligament, the femoral artery, and the adductor longus. Results The obturator nerve exits the obturator foramen and travels infero-medially between the adductors longus and brevis. The median distances from the obturator nerve exit zone (ONEZ) to the ASIS and pubic tubercle were 114 mm and 30 mm, respectively. The median horizontal and vertical distances between the pubic tubercle and the ONEZ were 17 mm and 27 mm, respectively. The shortest median distance from the ONEZ to the inguinal ligament was 19 mm. The median inguinal ligament lengths from the ASIS and the median pubic tubercle to the shortest point were 103 mm and 24 mm, respectively. The median obturator nerve lengths between the ONEZ and the adductor longus and femoral artery were 41 mm and 28 mm, respectively. Conclusion The obturator nerve exits the foramen 17 mm and 27 mm on the horizontal and sagittal planes, respectively, from the pubic tubercle below the pectineus muscle. The shallowest area is approximately one-fifth medially from the inguinal ligament. This study will help improve the accuracy of obturator nerve surgeries to better establish therapeutic plans and decrease complications. PMID:27226861

  20. Is the psoas a hip flexor in the active straight leg raise?

    PubMed

    Hu, Hai; Meijer, Onno G; van Dieën, Jaap H; Hodges, Paul W; Bruijn, Sjoerd M; Strijers, Rob L; Nanayakkara, Prabath W B; van Royen, Barend J; Wu, Wen Hua; Xia, Chun

    2011-05-01

    Psoas function is a topic of considerable relevance in sports and clinical science. However, the literature on psoas function is not sufficiently consistent. Questions are, amongst others, if during hip flexion the psoas always has the same function as the iliacus, and if the psoas affects the hip more than the lumbar spine. In the present study, 17 healthy women, 20-40 years, performed the active straight leg raise (ASLR), with the right or the left leg ("Side"), and without or with weight added above the ankle ("Condition"). Electromyographic (EMG) activity of psoas and iliacus were recorded with fine-wire electrodes, and of rectus femoris and adductor longus with surface electrodes, all on the right side. Movements of the leg were recorded with active markers and a camera system. During ASLR, the iliacus, rectus femoris, adductor longus and psoas were active ipsilaterally, but psoas was also active contralaterally. All muscles started to contract before movement onset, the iliacus, rectus femoris, and adductor longus largely at the same time, before the psoas. There was no significant difference between the amplitude or time of onset of ipsilateral and contralateral psoas EMG activity, nor was there a significant interaction between Side and Condition for the psoas. Although ipsilateral psoas activity is consistent with the psoas being a hip flexor, contralateral activity is not. The most simplest explanation of the pattern found is that the psoas is bilaterally recruited to stabilize the lumbar spine, probably in the frontal plane.

  1. Absence of insulin signalling in skeletal muscle is associated with reduced muscle mass and function: evidence for decreased protein synthesis and not increased degradation

    PubMed Central

    O’Neill, Elaine D.; Wilding, John P. H.; Kahn, C. Ronald; Van Remmen, Holly; McArdle, Anne; Jackson, Malcolm J.

    2010-01-01

    Loss of skeletal muscle mass and function is observed in many insulin-resistant disease states such as diabetes, cancer cachexia, renal failure and ageing although the mechanisms for this remain unclear. We hypothesised that impaired insulin signalling results in reduced muscle mass and function and that this decrease in muscle mass and function is due to both increased production of atrogenes and aberrant reactive oxygen species (ROS) generation. Maximum tetanic force of the extensor digitorum longus of muscle insulin receptor knockout (MIRKO) and lox/lox control mice was measured in situ. Muscles were removed for the measurement of mass, histological examination and ROS production. Activation of insulin signalling pathways, markers of muscle atrophy and indices of protein synthesis were determined in a separate group of MIRKO and lox/lox mice 15 min following treatment with insulin. Muscles from MIRKO mice had 36% lower maximum tetanic force generation compared with muscles of lox/lox mice. Muscle fibres of MIRKO mice were significantly smaller than those of lox/lox mice with no apparent structural abnormalities. Muscles from MIRKO mice demonstrated absent phosphorylation of AKT in response to exogenous insulin along with a failure to phosphorylate ribosomal S6 compared with lox/lox mice. Atrogin-1 and MuRF1 relative mRNA expression in muscles from MIRKO mice were decreased compared with muscles from lox/lox mice following insulin treatment. There were no differences in markers of reactive oxygen species damage between muscles from MIRKO mice and lox/lox mice. These data support the hypothesis that the absence of insulin signalling contributes to reduced muscle mass and function though decreased protein synthesis rather than proteasomal atrophic pathways. PMID:20431988

  2. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    SciTech Connect

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X.

    2010-04-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  3. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  4. The role of hind limb flexor muscles during swimming in the toad, Bufo marinus.

    PubMed

    Gillis, Gary B

    2007-01-01

    Most work examining muscle function during anuran locomotion has focused largely on the roles of major hind limb extensors during jumping and swimming. Nevertheless, the recovery phase of anuran locomotion likely plays a critical role in locomotor performance, especially in the aquatic environment, where flexing limbs can increase drag on the swimming animal. In this study, I use kinematic and electromyographic analyses to explore the roles of four anatomical flexor muscles in the hind limb of Bufo marinus during swimming: m. iliacus externus, a hip flexor; mm. iliofibularis and semitendinosus, knee flexors; and m. tibialis anticus longus, an ankle flexor. Two general questions are addressed: (1) What role, if any, do these flexors play during limb extension? and (2) How do limb flexors control limb flexion? Musculus iliacus externus exhibits a large burst of EMG activity early in limb extension and shows low levels of activity during recovery. Both m. iliofibularis and m. semitendinosus are biphasically active, with relatively short but intense bursts during limb extension followed by longer and typically weaker secondary bursts during recovery. Musculus tibialis anticus longus becomes active mid way through recovery and remains active through the start of extension in the next stroke. In conclusion, flexors at all three joints exhibit some activity during limb extension, indicating that they play a role in mediating limb movements during propulsion. Further, recovery is controlled by a complex pattern of flexor activation timing, but muscle intensities are generally lower, suggesting relatively low force requirements during this phase of swimming.

  5. Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation

    PubMed Central

    Kayupov, Erdan; Bradley, Joshua R.; Brooks, Susan V.; Claflin, Dennis R.

    2011-01-01

    Myostatin (MSTN) is a member of the transforming growth factor-β superfamily of cytokines and is a negative regulator of skeletal muscle mass. Compared with MSTN+/+ mice, the extensor digitorum longus muscles of MSTN−/− mice exhibit hypertrophy, hyperplasia, and greater maximum isometric force production (Fo), but decreased specific maximum isometric force (sFo; Fo normalized by muscle cross-sectional area). The reason for the reduction in sFo was not known. Studies in myotubes indicate that inhibiting myostatin may increase muscle mass by decreasing the expression of the E3 ubiquitin ligase atrogin-1, which could impact the force-generating capacity and size of muscle fibers. To gain a greater understanding of the influence of myostatin on muscle contractility, we determined the impact of myostatin deficiency on the contractility of permeabilized muscle fibers and on the levels of atrogin-1 and ubiquitinated myosin heavy chain in whole muscle. We hypothesized that single fibers from MSTN−/− mice have a greater Fo, but no difference in sFo, and a decrease in atrogin-1 and ubiquitin-tagged myosin heavy chain levels. The results indicated that fibers from MSTN−/− mice have a greater cross-sectional area, but do not have a greater Fo and have a sFo that is significantly lower than fibers from MSTN+/+ mice. The extensor digitorum longus muscles from MSTN−/− mice also have reduced levels of atrogin-1 and ubiquitinated myosin heavy chain. These findings suggest that myostatin inhibition in otherwise healthy muscle increases the size of muscle fibers and decreases atrogin-1 levels, but does not increase the force production of individual muscle fibers. PMID:21565991

  6. Muscle injury induced by different types of contractions in dystrophic mdx mice.

    PubMed

    Lou, Jianwei; Bi, Wenbo; Li, Wei; Zhao, Yuying; Liu, Shuping; Zheng, Jinfan; Yan, Chuanzhu

    2012-03-01

    Studies on comparing the effect of lengthening, isometric and shortening contractions on dystrophin-deficient muscles are unavailable. We hypothesized that different types of contractions lead to different extents to which dystrophin-deficient muscles are injured. For this purpose, we developed protocols for different types of contraction-induced injury to mdx muscles in vitro. Force deficits and percentages of procion orange dye positive fibers were employed to assess the extent of injury to each muscle. Our results revealed that both the lengthening and isometric contractions resulted in significantly greater injury to extensor digitorum longus (EDL) muscles of mdx mice than to that of control (C57BL/6) mice. In contrast, the shortening contractions induced very mild and identical injury to EDL muscles of mdx and C57BL/6 mice. Then another protocol was carried out in vivo to ascertain the effect of shortening contractions on mdx muscles by achillotenotomy. Histological assessment revealed that the triceps surae muscles with excised Achilles tendon (EAT) displayed little and significantly milder injury than the normal ones did. In conclusions, the unloaded shortening contractions induce little injury to mdx muscles. The in vitro protocol for different types of contraction-induced injury is sensitive and reliable.

  7. Isometric and eccentric force generation assessment of skeletal muscles isolated from murine models of muscular dystrophies.

    PubMed

    Moorwood, Catherine; Liu, Min; Tian, Zuozhen; Barton, Elisabeth R

    2013-01-31

    Critical to the evaluation of potential therapeutics for muscular disease are sensitive and reproducible physiological assessments of muscle function. Because many pre-clinical trials rely on mouse models for these diseases, isolated muscle function has become one of the standards for Go/NoGo decisions in moving drug candidates forward into patients. We will demonstrate the preparation of the extensor digitorum longus (EDL) and diaphragm muscles for functional testing, which are the predominant muscles utilized for these studies. The EDL muscle geometry is ideal for isolated muscle preparations, with two easily accessible tendons, and a small size that can be supported by superfusion in a bath. The diaphragm exhibits profound progressive pathology in dystrophic animals, and can serve as a platform for evaluating many potential therapies countering fibrosis, and promoting myofiber stability. Protocols for routine testing, including isometric and eccentric contractions, will be shown. Isometric force provides assessment of strength, and eccentric contractions help to evaluate sarcolemma stability, which is disrupted in many types of muscular dystrophies. Comparisons of the expected results between muscles from wildtype and dystrophic muscles will also be provided. These measures can complement morphological and biochemical measurements of tissue homeostasis, as well as whole animal assessments of muscle function.

  8. A slip connecting the peroneus longus and tibialis posterior tendons at the forefoot: MRI, anatomic, and histologic findings in a cadaver.

    PubMed

    Sanal, Hatice Tuba; Nico, Marcelo; Chen, Lina; Haghighi, Parviz; Trudell, Debra; Resnick, Donald

    2011-12-01

    The anatomy of the peroneus longus and tibialis posterior tendons is well described in literature from both anatomy and radiology. Though a slip connecting these two structures is described in the anatomic literature, its existence has not been confirmed with magnetic resonance imaging (MRI). In this study in a cadaver, such a connection is documented using high-resolution MRI with anatomic and histologic correlation. This connection can provide support to the Lisfranc joint complex and further stabilize the region of the first and second metatarsal bases.

  9. Rat hindlimb muscle responses to suspension hypokinesia/hypodynamia

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Deavers, D. R.

    1983-01-01

    Hypokinetic/hyupodynamic (H/H) whole body suspension of rats eliminates hindlimb load bearing functions while permitting continued use of the forelimbs. Responses of hindlimb muscles were assessed in terms of absolute and relative weights during 1 and 2 weeks of H/H suspension. Muscle mass loss was in the order soleus greater than gastrocnemius equal to plantaris greater than extensor digitorum longus (EDL). The soleus, a postural antigravity muscle composed mainly of slow twitch fibers, was most sensitive, losing 35 and 45 percent of its weight during the first and second weeks, respectively. The gastrocnemius and plantaris showed losses during the first week but no significant loss during the second wee. The EDL showed little or no weight loss. During post suspension recovery all muscles showed a weight gain. H/H suspended rats failed to grow; following removal from suspension they gained weight linearly, comparable to controls. Products of muscle metabolism including urea, ammonia, and 3-methylhistidine increased in the urine during H/H suspension and were significantly reduced approaching control levels during recovery. This suspension model offers considerable promise for comparison with H/H responses during weightlessness.

  10. Responses of skeletal muscle to unloading, a review

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.; Henriksen, E. J.; Jacob, S.

    1985-01-01

    Suspension models were used to study muscle response to reduced activity. During 6 days of tail casting, the soleus (SOL) atrophies while the extensor digitorum longus grows relatively normally. After discounting those changes in both muscles due primarily to increased secretion of adrenal hormones, the following conclusions regarding the specific responses of the SOL could be drawn: (1) Atrophy is probably due primarily to increased protein degradation; (2) Decreased synthesis of glutamine may result from reduced availability of ammonia due to diminished use of ATP; (3) Greater muscle glycogen seems to reflect an increased response to insulin of glucose uptake which leads to greater glucose metabolism; and (4) Faster catabolism of branched-chain amino acids can be attributed to enhanced flux through ketoacid dehydrogenase. Studies by others using tail casted suspended rats showed in the SOL: (1) a gradual switch from type 1 to type 2 fibers; (2) increased acid protease activity; and (3) altered muscle function and contractile duration. Using harness suspended rats, others showed in the SOL: (1) significant atrophy; (2) increased numbers of glucocorticoid receptors; and (3) no change in muscle fatigability.

  11. Responses of skeletal muscle to unloading - A review

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.; Henriksen, E. J.; Jacob, S.

    1985-01-01

    Suspension models were used to study muscle response to reduced activity. During 6 days of tail casting, the soleus (SOL) atrophies while the extensor digitorum longus grows relatively normally. After discounting those changes in both muscles due primarily to increased secretion of adrenal hormones, the following conclusions regarding the specific responses of the SOL could be drawn: (1) Atrophy is probably due primarily to increased protein degradation; (2) Decreased synthesis of glutamine may result from reduced availability of ammonia due to diminished use of ATP; (3) Greater muscle glycogen seems to reflect an increased response to insulin of glucose uptake which leads to greater glucose metabolism; and (4) Faster catabolism of branched-chain amino acids can be attributed to enhanced flux through ketoacid dehydrogenase. Studies by others using tail casted suspended rats showed in the SOL: (1) a gradual switch from type 1 to type 2 fibers; (2) increased acid protease activity; and (3) altered muscle function and contractile duration. Using harness suspended rats, others showed in the SOL: (1) significant atrophy; (2) increased numbers of glucocorticoid receptors; and (3) no change in muscle fatigability.

  12. Recovery in skeletal muscle contractile function after prolonged hindlimb immobilization

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Brimmer, C. J.

    1985-01-01

    The effect of three-month hindlimb immobilization (IM) in rats on contractile properties of slow-twitch soleus (SOL), fast-twitch extensor digitorum longus, and fast-twitch superficial region of the vastus lateralis were measured after 0, 14, 28, 60, and 90 days of recovery on excized, horizontally suspended muscles stimulated electrically to maximal twitch tension. IM caused decreases in muscle-to-body weight ratios for all muscles, with no complete recovery even after 90 days. The contractile properties of the fast-twitch muscles were less affected by IM than those of the slow-twitch SOL. The SOL isometric twitch duration was shortened, due to reduced contraction and half-relaxation time, both of which returned to control levels after 14 days of recovery. The peak tetanic tension, P(O), g/sq cm,, decreased with IM by 46 percent in the SOL, but recovered by the 28th day. The maximum shortening velocity was not altered by IM in any of the muscles. Thus, normal contractile function could recover after prolonged limb IM.

  13. BTX-A administration to the target muscle affects forces of all muscles within an intact compartment and epimuscular myofascial force transmission.

    PubMed

    Yucesoy, Can A; Emre Arıkan, Önder; Ateş, Filiz

    2012-11-01

    Measurement of forces of mono- and bi-articular muscles of an entire intact muscle compartment can allow for a comprehensive assessment of the effects of Botulinum toxin type A (BTX-A) both at and beyond the injection site, and in conditions close to those in vivo. The goal was to test the hypotheses that BTX-A affects (1) the forces of not only the injected but also the noninjected muscles of the compartment, and (2) epimuscular myofascial force transmission (EMFT). Two groups of Wistar rats were tested: Control (no BTX-A injected) and BTX (0.1 units of BTX-A were injected exclusively to the mid-belly of TA). Isometric forces were measured simultaneously at the distal tendons of the tibialis anterior (TA) at different lengths, the restrained extensor digitorum longus (EDL) and the extensor hallucis longus (EHL) muscles and at the proximal tendon of EDL. Five days post-injection, BTX-A did affect the total forces of all muscles significantly: (1) The TA force decreased differentially (by 46.6%-55.9%) for most lengths such that a significant negative correlation was found between force reductions and increased muscle length. The maximum TA force decreased by 47.3%. However, the muscle's length range of force production did not change significantly. (2) Distal and proximal EDL forces decreased (on average by 67.8% and 62.9%, respectively). (3) The EHL force also decreased (on average by 9.2%). The passive forces of only the TA showed a significant increase at higher lengths. EMFT effects were shown for the control group: (1) at the shortest TA lengths, the EDL proximo-distal force differences were in favor of the distal force, which was reversed at higher lengths. (2) the EHL force measured at the shortest TA length decreased (by 34%) as a function of TA lengthening. After BTX-A exposure, such EMFT effects disappeared for the EDL, whereas they remained as profound for the EHL. Exposure to BTX-A does affect forces of all muscles operating in an intact compartment. For

  14. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    SciTech Connect

    Roberts, B.M.; Frye, G.S.; Ahn, B.; Ferreira, L.F.; Judge, A.R.

    2013-06-07

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  15. Heart failure alters matrix metalloproteinase gene expression and activity in rat skeletal muscle.

    PubMed

    Carvalho, Robson Francisco; Dariolli, Rafael; Justulin Junior, Luis Antonio; Sugizaki, Mário Mateus; Politi Okoshi, Marina; Cicogna, Antonio Carlos; Felisbino, Sérgio Luis; Dal Pai-Silva, Maeli

    2006-12-01

    Heart failure is associated with a skeletal muscle myopathy with cellular and extracellular alterations. The hypothesis of this investigation is that extracellular changes may be associated with enhanced mRNA expression and activity of matrix metalloproteinases (MMP). We examined MMP mRNA expression and MMP activity in Soleus (SOL), extensor digitorum longus (EDL), and diaphragm (DIA) muscles of young Wistar rat with monocrotaline-induced heart failure. Rats injected with saline served as age-matched controls. MMP2 and MMP9 mRNA contents were determined by RT-PCR and MMP activity by electrophoresis in gelatin-containing polyacrylamide gels in the presence of SDS under non-reducing conditions. Heart failure increased MMP9 mRNA expression and activity in SOL, EDL and DIA and MMP2 mRNA expression in DIA. These results suggest that MMP changes may contribute to the skeletal muscle myopathy during heart failure.

  16. Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta(2)-receptor agonist

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Ludemann, Robert; Easton, Thomas G.; Etlinger, Joseph D.

    1988-01-01

    The effects of a beta(2)-receptor agonist, clenbuterol, and a beta(2) antagonist, butoxamine, on the skeletal muscle fibers of rats were investigated. It was found that chronic treatment of rats with clenbuterol caused hypertrophy of histochemically identified fast-twitch, but not slow-twitch, fibers within the soleus, while in the extensor digitorum longus the mean areas of both fiber types were increased; in both muscles, the ratio of the number of fast-twitch to slow-twitch fibers was increased. In contrast, a treatment with butoxamine caused a reduction of the fast-twitch fiber size in both muscles, and the ratio of the fast-twitch to slow-twitch fibers was decreased.

  17. The effects of cutting or of stretching skeletal muscle in vitro on the rates of protein synthesis and degradation

    NASA Technical Reports Server (NTRS)

    Seider, M. J.; Kapp, R.; Chen, C.-P.; Booth, F. W.

    1980-01-01

    Skeletal muscle preparations using cut muscle fibers have often been used in studies of protein metabolism. The present paper reports an investigation of the effect of muscle cutting or stretching in vitro on the rates of protein synthesis and/or degradation. Protein synthesis and content, and ATP and phosphocreatine levels were monitored in soleus and extensor digitorum longus muscles from the rat with various extents of muscle fiber cuts and following stretching to about 120% the resting length. Rates of protein synthesis are found to be significantly lower and protein degradation higher in the cut muscles than in uncut controls, while ATP and phosphocreatine concentrations decreased. Stretched intact muscles, on the other hand, are observed to have higher concentrations of high-energy phosphates than unstretched muscles, while rates of protein degradation were not affected. Results thus demonstrate that the cutting of skeletal muscle fibers alters many aspects of muscle metabolism, and that moderate decreases in ATP concentration do not alter rates of protein concentration in intact muscles in vitro.

  18. Muscle MRI in Duchenne muscular dystrophy: Evidence of a distinctive pattern.

    PubMed

    Polavarapu, Kiran; Manjunath, Mahadevappa; Preethish-Kumar, Veeramani; Sekar, Deepha; Vengalil, Seena; Thomas, PriyaTreesa; Sathyaprabha, Talakad N; Bharath, Rose Dawn; Nalini, Atchayaram

    2016-11-01

    The purpose of this study was to describe the pattern of muscle involvement using MRI findings and correlate with functional as well as muscle strength measurements. Fifty genetically confirmed DMD children with a mean age of 7.6 ± 2.8 (4-15 years) underwent muscle MRI and qualitative assessment was done for muscle changes using Mercuri staging for fibro-fatty replacement on T1 sequence and Borsato score for myoedema on STIR sequence. Detailed phenotypic characterisation was done with Manual muscle testing (modified MRC grading) and Muscular Dystrophy Functional Rating Scale (MDFRS). Mercuri scoring showed severe fibro-fatty changes in Gluteus medius, minimus and Adductor magnus followed by moderate to severe changes in Gluteus maximus and Quadriceps muscles. Total sparing of Gracilis, Sartorius and Semimembranosus muscles was observed. Superficial posterior and lateral leg muscles were preferentially involved with sparing of deep posterior and anterior leg muscles. Myoedema showed significant inverse correlation with fatty infiltration in thigh muscles. Similarly, significant inverse correlation was observed between Mercuri scores and MRC grading as well as MDFRS scores. A direct linear correlation was observed between duration of illness and fibro-fatty changes in piriformis, quadriceps and superficial posterior leg muscles. There was no correlation between MRI findings and genotypic characteristics. However, this specific pattern of muscle involvement in MRI could aid in proceeding for genetic testing when clinical suspicion is high, thus reducing the need for muscle biopsy. Fibro fatty infiltration as measured by Mercuri scoring can be a useful marker for assessing the disease severity and progression.

  19. Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, L. L.; Convertino, V. A.; Dudley, G. A.

    1995-01-01

    The purpose of this study was to test the hypothesis that the reduction in plasma volume (PV) induced by resistance exercise reflects fluid loss to the extravascular space and subsequently selective increase in cross-sectional area (CSA) of active but not inactive skeletal muscle. We compared changes in active and inactive muscle CSA and PV after barbell squat exercise. Magnetic resonance imaging (MRI) was used to quantify muscle involvement in exercise and to determine CSA of muscle groups or individual muscles [vasti (VS), adductor (Add), hamstring (Ham), and rectus femoris (RF)]. Muscle involvement in exercise was determined using exercise-induced contrast shift in spin-spin relaxation time (T2)-weighted MR images immediately postexercise. Alterations in muscle size were based on the mean CSA of individual slices. Hematocrit, hemoglobin, and Evans blue dye were used to estimate changes in PV. Muscle CSA and PV data were obtained preexercise and immediately postexercise and 15 and 45 min thereafter. A hierarchy of muscle involvement in exercise was found such that VS > Add > Ham > RF, with the Ham and RF showing essentially no involvement. CSA of the VS and Add muscle groups were increased 10 and 5%, respectively, immediately after exercise in each thigh with no changes in Ham and RF CSA. PV was decreased 22% immediately following exercise. The absolute loss of PV was correlated (r2 = 0.75) with absolute increase in muscle CSA immediately postexercise, supporting the notion that increased muscle size after resistance exercise reflects primarily fluid movement from the vascular space into active but not inactive muscle.

  20. Effects of torbafylline, pentoxifylline and buflomedil on vascularisation and fibre type of rat skeletal muscles subjected to limited blood supply.

    PubMed Central

    Hudlická, O.; Price, S.

    1990-01-01

    1. Blood flow (measured by radio-labelled microspheres), fibre composition and capillary/fibre ratio were estimated in rat fast twitch skeletal muscles (tibialis anterior and extensor digitorum longus) five weeks after unilateral ligation of the common iliac artery in animals treated with either saline, torbafylline, pentoxifylline or buflomedil. 2. The resting blood flow was lower in muscles with limited blood supply than in their contralateral controls; this difference became statistically insignificant after treatment. Capillary/fibre ratio was similar in all muscles with either intact or limited blood supply and did not change after administration of any of the drugs. 3. The percentage of glycolytic fibres was not changed by ligation, but it decreased significantly in animals treated with torbafylline. This may improve performance in muscles with limited blood supply. PMID:2361174

  1. Brain Connectivity Associated with Muscle Synergies in Humans

    PubMed Central

    Rana, Manku; Yani, Moheb S.; Asavasopon, Skulpan; Fisher, Beth E.

    2015-01-01

    The human brain is believed to simplify the control of the large number of muscles in the body by flexibly combining muscle coordination patterns, termed muscle synergies. However, the neural connectivity allowing the human brain to access and coordinate muscle synergies to accomplish functional tasks remains unknown. Here, we use a surprising pair of synergists in humans, the flexor hallucis longus (FHL, a toe flexor) and the anal sphincter, as a model that we show to be well suited in elucidating the neural connectivity underlying muscle synergy control. First, using electromyographic recordings, we demonstrate that voluntary FHL contraction is associated with synergistic anal sphincter contraction, but voluntary anal sphincter contraction occurs without FHL contraction. Second, using fMRI, we show that two important medial wall motor cortical regions emerge in relation to these tasks: one located more posteriorly that preferentially activates during voluntary FHL contraction and one located more anteriorly that activates during both voluntary FHL contraction as well as voluntary anal sphincter contraction. Third, using transcranial magnetic stimulation, we demonstrate that the anterior region is more likely to generate anal sphincter contraction than FHL contraction. Finally, using a repository resting-state fMRI dataset, we demonstrate that the anterior and posterior motor cortical regions have significantly different functional connectivity with distinct and distant brain regions. We conclude that specific motor cortical regions in humans provide access to different muscle synergies, which may allow distinct brain networks to coordinate muscle synergies during functional tasks. SIGNIFICANCE STATEMENT How the human nervous system coordinates activity in a large number of muscles is a fundamental question. The brain and spinal cord are believed to simplify the control of muscles by grouping them into functional units called muscle synergies. Motor cortex is

  2. Cranial muscle development in frogs with different developmental modes: direct development versus biphasic development.

    PubMed

    Ziermann, Janine M; Diogo, Rui

    2014-04-01

    Normal development in anurans includes a free swimming larva that goes through metamorphosis to develop into the adult frog. We have investigated cranial muscle development and adult cranial muscle morphology in three different anuran species. Xenopus laevis is obligate aquatic throughout lifetime, Rana(Lithobates) pipiens has an aquatic larvae and a terrestrial adult form, and Eleutherodactylus coqui has direct developing juveniles that hatch from eggs deposited on leaves (terrestrial). The adult morphology shows hardly any differences between the investigated species. Cranial muscle development of E. coqui shows many similarities and only few differences to the development of Rana (Lithobates) and Xenopus. The differences are missing muscles of the branchial arches (which disappear during metamorphosis of biphasic anurans) and a few heterochronic changes. The development of the mandibular arch (adductor mandibulae) and hyoid arch (depressor mandibulae) muscles is similar to that observed in Xenopus and Rana (Lithobates), although the first appearance of these muscles displays a midmetamorphic pattern in E. coqui. We show that the mix of characters observed in E. coqui indicates that the larval stage is not completely lost even without a free swimming larval stage. Cryptic metamorphosis is the process in which morphological changes in the larva/embryo take place that are not as obvious as in normal metamorphosing anurans with a clear biphasic lifestyle. During cryptic metamorphosis, a normal adult frog develops, indicating that the majority of developmental mechanisms towards the functional adult cranial muscles are preserved.

  3. Decay of Ca2+ and force transients in fast- and slow-twitch skeletal muscles from the rat, mouse and Etruscan shrew.

    PubMed

    Wetzel, P; Gros, G

    1998-02-01

    Isometric single-twitch force and intracellular Ca2+ transients were recorded simultaneously, using fura-2, from slow- and fast-twitch muscle fibres of the rat, mouse and Etruscan shrew Suncus etruscus. In the slow-twitch rat soleus, force half-relaxation time was three times longer than the 50% decay time of the fura-2 signal. In contrast, in the fast-twitch extensor digitorum longus muscles of all three animals, muscle relaxation preceded Ca2+ decay. It is proposed that this surprising property of fast-twitch muscles is due to their pCa-tension curve, which is shifted to the right compared with that of slow-twitch muscle.

  4. Comparative functional anatomy of hindlimb muscles and bones with reference to aquatic adaptation of the sea otter.

    PubMed

    Mori, Kent; Suzuki, Satoshi; Koyabu, Daisuke; Kimura, Junpei; Han, Sung-Yong; Endo, Hideki

    2015-05-01

    Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids.

  5. Thigh muscle function in stroke patients revealed by velocity-encoded cine phase-contrast magnetic resonance imaging.

    PubMed

    Wen, Hongmei; Dou, Zulin; Finni, Taija; Havu, Marko; Kang, Zhuang; Cheng, Shumei; Sipilä, Sarianna; Sinha, Shantanu; Usenius, Jussi-Pekka; Cheng, Sulin

    2008-06-01

    Current methods of clinical assessment of muscle coordination and function after stroke do not provide information on deep muscles. The objective of this study was to examine how stroke affects both superficial and deep muscles' coordination and whether muscle function improves after rehabilitation. Muscle function, coordination, and activity of quadriceps femoris (QF) and hamstrings were evaluated in 10 stroke patients with mild hemiparesis and in 6 controls using velocity-encoded cine phase-contrast magnetic resonance imaging (VE-PC MRI), surface electromyography (sEMG), and maximal voluntary isometric contraction torque (MVC). At baseline, the peak muscle velocity of the rectus femoris (RF) and the ratio between the peak velocities of the RF and vasti were lower in the affected limb (AL) of stroke patients than in controls. Co-contraction of agonists and antagonists was higher in the AL than in controls. Muscle activity measured by sEMG showed similar behavior. After rehabilitation, the activity ratio of hamstrings and adductors to QF decreased slightly toward normal so there were no significant differences between the AL and controls. Impaired biarticular RF muscle function in stroke patients is the limiting factor during knee extension-flexion movements. After rehabilitation, improved functional performance was partly explained by the fact that the activities of the RF and vasti became more synchronized. VE-PC MRI can provide quantitative in vivo measurements of both superficial and deep muscles, and the information acquired after stroke can be utilized to render therapy more efficient and individually tailored.

  6. Induction of amino acid transporters expression by endurance exercise in rat skeletal muscle

    SciTech Connect

    Murakami, Taro Yoshinaga, Mariko

    2013-10-04

    Highlights: •Regulation of amino acid transporter expression in working muscle remains unclear. •Expression of amino acid transporters for leucine were induced by a bout of exercise. •Requirement of leucine in muscle cells might regulate expression of its transporters. •This information is beneficial for understanding the muscle remodeling by exercise. -- Abstract: We here investigated whether an acute bout of endurance exercise would induce the expression of amino acid transporters that regulate leucine transport across plasma and lysosomal membranes in rat skeletal muscle. Rats ran on a motor-driven treadmill at a speed of 28 m/min for 90 min. Immediately after the exercise, we observed that expression of mRNAs encoding L-type amino acid transporter 1 (LAT1) and CD98 was induced in the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles. Sodium-coupled neutral amino acid transporter 2 (SNAT2) mRNA was also induced by the exercise in those three muscles. Expression of proton-assisted amino acid transporter 1 (PAT1) mRNA was slightly but not significantly induced by a single bout of exercise in soleus and EDL muscles. Exercise-induced mRNA expression of these amino acid transporters appeared to be attenuated by repeated bouts of the exercise. These results suggested that the expression of amino acid transporters for leucine may be induced in response to an increase in the requirement for this amino acid in the cells of working skeletal muscles.

  7. The effect of creatine supplementation on mass and performance of rat skeletal muscle.

    PubMed

    Young, Robert E; Young, John C

    2007-08-09

    This study investigated the effect of dietary creatine supplementation on hypertrophy and performance of rat skeletal muscle. Male Sprague-Dawley rats underwent either tibialis anterior ablation or partial ablation of the plantaris/gastrocnemius to induce compensatory hypertrophy of the extensor digitorum longus (EDL) or soleus respectively, or sham surgery. Creatine (300 mg/kg) was administered to one half of each group for 5 weeks, after which force production was measured. With the leg fixed at the knee and ankle, the distal tendon of the EDL or soleus was attached to a force transducer and the muscle was electrically stimulated via the sciatic nerve. Synergist ablation resulted in a significant increase in EDL mass and in soleus mass relative to control muscles. However, no effect of creatine supplementation on muscle mass or performance was found between control and either group of creatine-treated rats. Despite an apparent increase in muscle creatine content, creatine supplementation did not augment muscle hypertrophy or force production in rat EDL or soleus muscle, providing evidence that the potential benefits of creatine supplementation are not due to a direct effect on muscle but rather to an enhanced ability to train.

  8. Effects of Muscle Atrophy on Motor Control: Cage-size Effects

    NASA Technical Reports Server (NTRS)

    Stuart, D. G.

    1985-01-01

    Two populations of male Sprague-Dawley rats were raised either in conventional minimum-specification cages or in a larger cage. When the animals were mature (125 to 150 d), the physiological status of the soleus (SOL) and extensor digitorum longus (EDL) muscles of the small- and large-cage animals were compared. Analysis of whole-muscle properties including the performance of the test muscle during a standardized fatigue test in which the nerve to the test muscle was subjected to supramaximal intermittent stimulation shows: (1) the amplitude, area, mean amplitude, and peak-to-peak rate of the compound muscle action potential decreased per the course of the fatigue test; (2) cage size did not affect the profile of changes for any of the action-potential measurements; (3) changes exhibited in the compound muscle action potential by SOL and EDL were substantially different; and (4) except for SOL of the large-cage rats, there was a high correlation between all four measures of the compound muscle action potential and the peak tetanic force during the fatigue test; i.e., either the electrical activity largely etermines the force profile during the fatigue test or else contractile-related activity substantially affects the compound muscle action potential.

  9. Electrophysiological, histochemical, and hormonal adaptation of rat muscle after prolonged hindlimb suspension

    NASA Astrophysics Data System (ADS)

    Kourtidou-Papadeli, Chrysoula; Kyparos, Antonios; Albani, Maria; Frossinis, Athanasios; Papadelis, Christos L.; Bamidis, Panagiotis; Vivas, Ana; Guiba-Tziampiri, Olympia

    2004-05-01

    The perspective of long-duration flights for future exploration, imply more research in the field of human adaptation. Previous studies in rat muscles hindlimb suspension (HLS), indicated muscle atrophy and a change of fibre composition from slow-to-fast twitch types. However, the contractile responses to long-term unloading is still unclear. Fifteen adult Wistar rats were studied in 45 and 70 days of muscle unweighting and soleus (SOL) muscle as well as extensor digitorum longus (EDL) were prepared for electrophysiological recordings (single, twitch, tetanic contraction and fatigue) and histochemical stainings. The loss of muscle mass observed was greater in the soleus muscle. The analysis of electrophysiological properties of both EDL and SOL showed significant main effects of group, of number of unweighting days and fatigue properties. Single contraction for soleus muscle remained unchanged but there was statistically significant difference for tetanic contraction and fatigue. Fatigue index showed a decrease for the control rats, but increase for the HLS rats. According to the histochemical findings there was a shift from oxidative to glycolytic metabolism during HLS. The data suggested that muscles atrophied, but they presented an adaptation pattern, while their endurance in fatigue was decreased.

  10. Vascularization of the peroneal muscles. Critical evaluation in fibular free flap harvesting.

    PubMed

    Villarreal, P M; Monje, F; Gañán, Y; Junquera, L M; Morillo, A J

    2004-12-01

    This anatomical study was carried out in order to discover the etiology of partial necrosis of the peroneus longus and brevis muscles after fibular osteocutaneous flap harvest. The vascular supply to the lateral compartment peroneal muscles was investigated in 10 fresh cadaveric lower limbs. The peroneal muscles are supplied by two principal sources arteries, the anterior tibial artery (ATA) and the peroneal artery (PA). The ATA is the dominant artery and supplies the proximal and middle thirds of these muscles. The PA is considered to be a supplementary vascular source and supplies the distal thirds of these muscles. After harvesting the PA in a fibular flap, regions of the peroneal muscles preoperatively vascularized by its branches become supplied through the anastomotic "choke" vessels between the ATA and the PA. Primary closure of the cutaneous defect increases the possibility of developing a pseudo-compartment syndrome with necrosis of the more precariously vascularized portions of the peroneal muscles. This complication is difficult to diagnosis early and the reason why we advocate that direct skin closure following composite harvest must be avoided. Moreover, conservation of the inferior and superior lateral branches of the ATA is imperative in order to preserve the peroneal muscles vascularization.

  11. Osteoprotegerin and β2-Agonists Mitigate Muscular Dystrophy in Slow- and Fast-Twitch Skeletal Muscles.

    PubMed

    Dufresne, Sébastien S; Boulanger-Piette, Antoine; Frenette, Jérôme

    2017-03-01

    Our recent work showed that daily injections of osteoprotegerin (OPG)-immunoglobulin fragment complex (OPG-Fc) completely restore the function of fast-twitch extensor digitorum longus muscles in dystrophic mdx mice, a murine model of Duchenne muscular dystrophy. However, despite marked improvements, OPG-Fc was not as effective in preventing the loss of function of slow-twitch soleus and diaphragm muscles. Because β2-agonists enhance the function of slow- and fast-twitch dystrophic muscles and because their use is limited by their adverse effects on bone and cardiac tissues, we hypothesized that OPG-Fc, a bone and skeletal muscle protector, acts synergistically with β2-agonists and potentiates their positive effects on skeletal muscles. We observed that the content of β2-adrenergic receptors, which are mainly expressed in skeletal muscle, is significantly reduced in dystrophic muscles but is rescued by the injection of OPG-Fc. Most important, OPG-Fc combined with a low dose of formoterol, a member of a new generation of β2-agonists, histologically and functionally rescued slow-twitch dystrophic muscles. This combination of therapeutic agents, which have already been tested and approved for human use, may open up new therapeutic avenues for Duchenne muscular dystrophy and possibly other neuromuscular diseases.

  12. Differential adaptations during growth spurt and in young adult rat muscles.

    PubMed

    Barros, K M F T; Manhaes-de-Castro, R; Goubel, F; Canon, F

    2009-01-01

    During the post-weaning growth and maturation period (25/90 days after birth), rat limb muscles are submitted to specific adaptations. Our aim was to characterize the mechanical properties of two muscles that are opposite in terms of fibre-type distribution, the soleus and the extensor digitorum longus (EDL) muscles of male Wistar rats. Results showed a fast-to-slow fibre-type transition in soleus while no modification in fibre-type distribution was observed in EDL. A growth-induced increase in muscle force was observed. Soleus underwent an increase in twitch kinetics, but EDL showed no modification. Resistance to fatigue was higher in 90-day-old soleus but not modified in the EDL. Surprisingly, analysis of maximal shortening velocity showed a decrease in both soleus and EDL. Finally, tension/extension curves indicated a growth-induced increase in series elastic stiffness in the two muscles. These results suggest that during this growth period, skeletal muscles are submitted to differential adaptations. Moreover, whereas adaptation of biomechanical properties observed can be explained partly by an adaptation of fibre profile in soleus, this is not the case for EDL. It is suggested that changes in muscle architecture, which are often disregarded, could explain some variations in mechanical properties, especially when muscles undergo an increase in both mass and length.

  13. Prion Protein Expression and Functional Importance in Skeletal Muscle

    PubMed Central

    Smith, Jeffrey D.; Moylan, Jennifer S.; Hardin, Brian J.; Chambers, Melissa A.; Estus, Steven; Telling, Glenn C.

    2011-01-01

    Abstract Skeletal muscle expresses prion protein (PrP) that buffers oxidant activity in neurons. Aims We hypothesize that PrP deficiency would increase oxidant activity in skeletal muscle and alter redox-sensitive functions, including contraction and glucose uptake. We used real-time polymerase chain reaction and Western blot analysis to measure PrP mRNA and protein in human diaphragm, five murine muscles, and muscle-derived C2C12 cells. Effects of PrP deficiency were tested by comparing PrP-deficient mice versus wild-type mice and morpholino-knockdown versus vehicle-treated myotubes. Oxidant activity (dichlorofluorescin oxidation) and specific force were measured in murine diaphragm fiber bundles. Results PrP content differs among mouse muscles (gastrocnemius>extensor digitorum longus, EDL>tibialis anterior, TA; soleus>diaphragm) as does glycosylation (di-, mono-, nonglycosylated; gastrocnemius, EDL, TA=60%, 30%, 10%; soleus, 30%, 40%, 30%; diaphragm, 30%, 30%, 40%). PrP is predominantly di-glycosylated in human diaphragm. PrP deficiency decreases body weight (15%) and EDL mass (9%); increases cytosolic oxidant activity (fiber bundles, 36%; C2C12 myotubes, 7%); and depresses specific force (12%) in adult (8–12 mos) but not adolescent (2 mos) mice. Innovation This study is the first to directly assess a role of prion protein in skeletal muscle function. Conclusions PrP content varies among murine skeletal muscles and is essential for maintaining normal redox homeostasis, muscle size, and contractile function in adult animals. Antioxid. Redox Signal. 15, 2465—2475. PMID:21453198

  14. [Phantom studies using echo contrast media to improve the Doppler color sonographic imaging of the superficial femoral artery in the adductor canal].

    PubMed

    Hendrickx, P; Brassel, F; Roth, U; Froehlich, H; Wagner, H H

    1991-01-01

    The adductor canal was simulated using 2.6 cm muscular tissue and 2 fasciae to analyse the limits of colour-coded Doppler sonography (angiodynography) in this region. Defects in the spectral signal cause a significant underestimation of mean, peak systolic and peak diastolic (backflow) velocities and of calculated blood flow. Furthermore the pulsatility index is overestimated and the colour-coded visualisation of the arteries is almost lost. For the most part, these changes can be compensated by administration of a sonographic contrast agent (SH U 454). A minimum of 9 mg microbubbles/ml blood is required. Nevertheless, the adjustment of system controls (e.g. transducer power) becomes more difficult and an ideal setting impossible.

  15. Morphology of the jaw, suspensorial, and opercle musculature of Beloniformes and related species (Teleostei: Acanthopterygii), with a special reference to the m. adductor mandibulae complex.

    PubMed

    Werneburg, Ingmar

    2015-01-01

    The taxon Beloniformes represents a heterogeneous group of teleost fishes that show an extraordinary diversity of jaw morphology. I present new anatomical descriptions of the jaw musculature in six selected beloniforms and four closely related species. A reduction of the external jaw adductor (A1) and a changed morphology of the intramandibular musculature were found in many Beloniformes. This might be correlated with the progressively reduced mobility of the upper and lower jaw bones. The needlefishes and sauries, which are characterised by extremely elongated and stiffened jaws, show several derived characters, which in combination enable the capture of fish at high velocity. The ricefishes are characterised by several derived and many plesiomorphic characters that make broad scale comparisons difficult. Soft tissue characters are highly diverse among hemiramphids and flying fishes reflecting the uncertainty about their phylogenetic position and interrelationship. The morphological findings presented herein may help to interpret future phylogenetic analyses using cranial musculature in Beloniformes.

  16. Morphology of the jaw, suspensorial, and opercle musculature of Beloniformes and related species (Teleostei: Acanthopterygii), with a special reference to the m. adductor mandibulae complex

    PubMed Central

    2015-01-01

    The taxon Beloniformes represents a heterogeneous group of teleost fishes that show an extraordinary diversity of jaw morphology. I present new anatomical descriptions of the jaw musculature in six selected beloniforms and four closely related species. A reduction of the external jaw adductor (A1) and a changed morphology of the intramandibular musculature were found in many Beloniformes. This might be correlated with the progressively reduced mobility of the upper and lower jaw bones. The needlefishes and sauries, which are characterised by extremely elongated and stiffened jaws, show several derived characters, which in combination enable the capture of fish at high velocity. The ricefishes are characterised by several derived and many plesiomorphic characters that make broad scale comparisons difficult. Soft tissue characters are highly diverse among hemiramphids and flying fishes reflecting the uncertainty about their phylogenetic position and interrelationship. The morphological findings presented herein may help to interpret future phylogenetic analyses using cranial musculature in Beloniformes. PMID:25755920

  17. Hallucal grasping in Nycticebus coucang: further implications for the functional significance of a large peroneal process.

    PubMed

    Kingston, Amanda K; Boyer, Doug M; Patel, Biren A; Larson, Susan G; Stern, Jack T

    2010-01-01

    Euprimate grasping feet are characterized by a suite of morphological traits, including an enlarged peroneal process on the base of the first metatarsal, which serves as the insertion site of the peroneus longus muscle. In prosimians, a large process has typically been associated with a powerful hallucal grasp via the contraction of the peroneus longus to adduct the hallux. Recent electromyography (EMG) studies have documented that peroneus longus does not contribute substantially to hallucal grasping in lemurids (Boyer et al., 2007). However, non-lemurid prosimians have a I-V opposable grasp complex that is morphologically different and phylogenetically more primitive than the I-II adductor grasp complex of the lemurids previously studied. Therefore, it is possible that peroneus longus did function during grasping in early euprimates, but lost this function in large-bodied lemurids. The present study tests the hypothesis that a large peroneal process is related to powerful grasping ability in primates displaying the more primitive I-V grasp complex. We use EMG to evaluate the recruitment of peroneus longus, other crural muscles, and adductor hallucis in static and locomotor grasping activities of the slow loris (Nycticebus coucang). Results show that peroneus longus is active during grasping behaviors that require the subject to actively resist inversion of the foot, and likely contributes to a hallucal grasp in these activities. Peroneus longus activity level does not differ between grasping and power grasping activities, nor does it differ between grasping and non-grasping locomotor modes. Conversely, the digital flexors and hallucal adductor are recruited at higher levels during power grasping and grasping locomotor modes. Consequently, we reject the hypothesis that an enlarged peroneal process represents an adaptation specifically to enhance the power of the I-V grasp, but accept that the muscle likely plays a role in adducting the hallux during grasping

  18. Upregulation of MHC class I in transgenic mice results in reduced force-generating capacity in slow-twitch muscle.

    PubMed

    Salomonsson, Stina; Grundtman, Cecilia; Zhang, Shi-Jin; Lanner, Johanna T; Li, Charles; Katz, Abram; Wedderburn, Lucy R; Nagaraju, Kanneboyina; Lundberg, Ingrid E; Westerblad, Håkan

    2009-05-01

    Expression of major histocompatibility complex (MHC) class I in skeletal muscle fibers is an early and consistent finding in inflammatory myopathies. To test if MHC class I has a primary role in muscle impairment, we used transgenic mice with inducible overexpression of MHC class I in their skeletal muscle cells. Contractile function was studied in isolated extensor digitorum longus (EDL, fast-twitch) and soleus (slow-twitch) muscles. We found that EDL was smaller, whereas soleus muscle was slightly larger. Both muscles generated less absolute force in myopathic compared with control mice; however, when force was expressed per cross-sectional area, only soleus muscle generated less force. Inflammation was markedly increased, but no changes were found in the activities of key mitochondrial and glycogenolytic enzymes in myopathic mice. The induction of MHC class I results in muscle atrophy and an intrinsic decrease in force-generation capacity. These observations may have important implications for our understanding of the pathophysiological processes of muscle weakness seen in inflammatory myopathies. Muscle Nerve, 2008.

  19. Cranial muscle development in the model organism ambystoma mexicanum: implications for tetrapod and vertebrate comparative and evolutionary morphology and notes on ontogeny and phylogeny.

    PubMed

    Ziermann, Janine M; Diogo, Rui

    2013-07-01

    There is still confusion about the homology of several cranial muscles in salamanders with those of other vertebrates. This is true, in part, because of the fact that many muscles present in early ontogeny of amphibians disappear during development and specifically during metamorphosis. Resolving this confusion is important for the understanding of the comparative and evolutionary morphology of vertebrates and tetrapods because amphibians are the phylogenetically most plesiomorphic tetrapods, concerning for example their myology, and include two often used model organisms, Xenopus laevis (anuran) and Ambystoma mexicanum (urodele). Here we provide the first detailed report of the cranial muscle development in axolotl from early ontogenetic stages to the adult stage. We describe different and complementary types of general muscle morphogenetic gradients in the head: from anterior to posterior, from lateral to medial, and from origin to insertion. Furthermore, even during the development of neotenic salamanders such as axolotls, various larval muscles become indistinct, contradicting the commonly accepted view that during ontogeny the tendency is mostly toward the differentiation of muscles. We provide an updated comparison between these muscles and the muscles of other vertebrates, a discussion of the homologies and evolution, and show that the order in which the muscles appear during axolotl ontogeny is in general similar to their appearance in phylogeny (e.g. differentiation of adductor mandibulae muscles from one anlage to four muscles), with only a few remarkable exceptions, as for example the dilatator laryngis that appears evolutionary later but in the development before the intermandibularis.

  20. Spaceflight effects on adult rat muscle protein, nucleic acids, and amino acids

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1986-01-01

    Exposure to conditions of weightlessness has been associated with decrements in muscle mass and strength. The present studies were undertaken to determine muscle responses at the cellular level. Male Sprague-Dawley rats (360-410 g) were exposed to 7 days of weightlessness during the Spacelab-3 shuttle flight (May 1985). Animals were killed 12 h postflight, and soleus (S), gastrocnemius (G), and extensor digitorum longus (EDL) muscles were excised. Muscle protein, RNA, and DNA were extracted and quantified. Differential muscle atrophy was accompanied by a significant (P less than 0.05) reduction in total protein only in S muscles. There were no significant changes in protein concentration (mg/g) in the muscles examined. In S muscles from flight animals, sarcoplasmic protein accounted for a significantly greater proportion of total protein that in ground controls (37.5 vs. 32.5%). Tissue concentrations (nmol/g) of asparagine-aspartate, glutamine-glutamate, glycine, histidine, and lysine were significantly reduced (from 17 to 63%) in S muscles from flight animals, but only glutamine-glutamate levels were decreased in the G and EDL. Muscle DNA content (microgram) was unchanged in the tissues examined, but S muscle DNA concentration (micrograms/mg) increased 27%. RNA content (micrograms) was significantly (P less than 0.025) reduced in S (-28%) and G(-22%) muscles following spaceflight. These results identify specific alterations in rat skeletal muscle during short term (7-day) exposure to weightlessness and compare favorably with observations previously obtained from ground-based suspension simulations.

  1. Early effects of ageing on the mechanical performance of isolated locomotory (EDL) and respiratory (diaphragm) skeletal muscle using the work-loop technique.

    PubMed

    Tallis, Jason; James, Rob S; Little, Alexander G; Cox, Val M; Duncan, Michael J; Seebacher, Frank

    2014-09-15

    Previous isolated muscle studies examining the effects of ageing on contractility have used isometric protocols, which have been shown to have poor relevance to dynamic muscle performance in vivo. The present study uniquely uses the work-loop technique for a more realistic estimation of in vivo muscle function to examine changes in mammalian skeletal muscle mechanical properties with age. Measurements of maximal isometric stress, activation and relaxation time, maximal power output, and sustained power output during repetitive activation and recovery are compared in locomotory extensor digitorum longus (EDL) and core diaphragm muscle isolated from 3-, 10-, 30-, and 50-wk-old female mice to examine the early onset of ageing. A progressive age-related reduction in maximal isometric stress that was of greater magnitude than the decrease in maximal power output occurred in both muscles. Maximal force and power developed earlier in diaphragm than EDL muscle but demonstrated a greater age-related decline. The present study indicates that ability to sustain skeletal muscle power output through repetitive contraction is age- and muscle-dependent, which may help rationalize previously reported equivocal results from examination of the effect of age on muscular endurance. The age-related decline in EDL muscle performance is prevalent without a significant reduction in muscle mass, and biochemical analysis of key marker enzymes suggests that although there is some evidence of a more oxidative fiber type, this is not the primary contributor to the early age-related reduction in muscle contractility.

  2. Evaluation of the cytotoxic effects of Cyperus longus extract, fractions and its essential oil on the PC3 and MCF7 cancer cell lines

    PubMed Central

    MEMARIANI, TOKTAM; HOSSEINI, TOKTAM; KAMALI, HOSSEIN; MOHAMMADI, AMENEH; GHORBANI, MARYAM; SHAKERI, ABDOREZA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.; SHAHSAVAND, SHABNAM

    2016-01-01

    Cyperus longus is one of the Iranian endemic species. However, to date, and to the best of our knowledge, there are no availale academic reports on the cytotoxicity of this plant. Thus, this study was carried out to examine the in vitro anti-proliferative and anti-apoptotic effects of Cyperus longus extract, fractions and essential oil (EO) on MCF7 and PC3 cell lines. The chemical constituents of EO were identified using gas chromatography (GC)-mass spectrometry (MS) analysis. The cells were cultured in RPMI-1640 medium and incubated with various concentrations of the plant extract and fractions. Cell viability was quantified by MTT assay following 24, 48 and 72 h of exposure to (12.5–200 µg/ml) of the methanol extract, the dichloromethane (CH2Cl2), ethyl acetate (EtOAc) and water fractions, as well as the EO of the plant. The percentage of apoptotic cells was determined using propidium iodide staining of DNA fragments by flow cytometry (sub-G1 peak). The most effective fraction in the MCF7 cell line was the CH2Cl2 fraction (IC50 after 48 h, 25.34±2.01). The EtOAc fraction (IC50 after 48 h, 35.2±2.69) and the methanol extract (IC50 after 48 h, 64.64±1.64) were also found to be effective. The IC50 values obtained for the PC3 cell line were 37.97±3.87, 51.57±3.87 and 70.33±2.36 for the CH2Cl2 fraction, the EtOAc fraction and the methanol extract, respectively. Based on these data and due to the partial polarity of the most effective fraction (the CH2Cl2 fraction), we also examined the cytotoxicity of the plant EO. The IC50 values after 48 h were 22.25±4.25 and 12.55±3.65 in the PC3 and MCF7 cell lines, respectively. DNA fragmentation assay also confirmed these data. Performing GC-MS analysis for the plant EO revealed that β-himachalene (10.81%), α-caryophyllene oxide (7.6%), irisone (4.78%), β-caryophyllene oxide (4.36%), humulene oxide (12%), viridiflorol (4.73%), aristolone (6.39%) and longiverbenone (6.04%) were the main constituents. Our results

  3. Fibrosis, adipogenesis, and muscle atrophy in congenital muscular torticollis.

    PubMed

    Chen, Huan-Xiong; Tang, Sheng-Ping; Gao, Fu-Tang; Xu, Jiang-Long; Jiang, Xian-Ping; Cao, Juan; Fu, Gui-Bing; Sun, Ke; Liu, Shi-Zhe; Shi, Wei

    2014-11-01

    In the traditional view, muscle atrophy and interstitial fibrosis were regarded as the basic pathological features of congenital muscular torticollis (CMT). But in the ultrastructure study, the mesenchyme-like cells, myoblasts, myofibroblasts, and fibroblasts were found in the proliferation of interstitium of CMT. To investigate the characteristics of pathological features and the mechanisms of muscle atrophy in CMT, we retrospectively reviewed the medical records of 185 CMT patients from July 2009 to July 2011 in Shenzhen Children's Hospital in China and performed pathological studies. According to age, the 185 CMT patients were divided into 4 groups. All resected surgical specimens were processed for hematoxylin and eosin staining and Masson trichromic staining. Sudan III staining was used for frozen sections, whereas immunohistochemical staining for S-100, calpain-1, ubiquitin, and 20S proteasome was carried out on 40 CMT specimens. Eight adductor muscle specimens from 8 patients with development dysplasia of the hip were taken as control group in the immunohistochemical staining. By Masson trichromic staining, the differences in the percent area of fibrous tissue in each CMT groups were significant. In Sudan III staining and immunostaining for S-100, adipocyte hyperplasia was the pathological feature of CMT. Moreover, compared with controls, most atrophic muscle fibers in CMT specimens were found to show strong immunoreactivity for calpain-1, ubiquitin, and 20S proteasome. With increasing age, fibrosis peaked at both sides and it was low in middle age group. Adipocytes increased with age. The characteristics of pathological features in CMT are changeable with age. The calpain and the ubiquitin-proteasome system may play a role in muscle atrophy of CMT. In the CMT, adipogenesis, fibrogenesis, and myogenesis may be the results of mesenchyme-like cells in SCM (sternocleidomastoid muscle). In conclusion, the present study furthermore supports maldevelopment of the

  4. Contributions of muscles to mediolateral ground reaction force over a range of walking speeds.

    PubMed

    John, Chand T; Seth, Ajay; Schwartz, Michael H; Delp, Scott L

    2012-09-21

    Impaired control of mediolateral body motion during walking is an important health concern. Developing treatments to improve mediolateral control is challenging, partly because the mechanisms by which muscles modulate mediolateral ground reaction force (and thereby modulate mediolateral acceleration of the body mass center) during unimpaired walking are poorly understood. To investigate this, we examined mediolateral ground reaction forces in eight unimpaired subjects walking at four speeds and determined the contributions of muscles, gravity, and velocity-related forces to the mediolateral ground reaction force by analyzing muscle-driven simulations of these subjects. During early stance (0-6% gait cycle), peak ground reaction force on the leading foot was directed laterally and increased significantly (p<0.05) with walking speed. During early single support (14-30% gait cycle), peak ground reaction force on the stance foot was directed medially and increased significantly (p<0.01) with speed. Muscles accounted for more than 92% of the mediolateral ground reaction force over all walking speeds, whereas gravity and velocity-related forces made relatively small contributions. Muscles coordinate mediolateral acceleration via an interplay between the medial ground reaction force contributed by the abductors and the lateral ground reaction forces contributed by the knee extensors, plantarflexors, and adductors. Our findings show how muscles that contribute to forward progression and body-weight support also modulate mediolateral acceleration of the body mass center while weight is transferred from one leg to another during double support.

  5. Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse

    PubMed Central

    McCullagh, Karl J. A.; Edwards, Ben; Kemp, Matthew W.; Giles, Laura C.; Burgess, Matthew

    2008-01-01

    Syncoilin is a 64-kDa intermediate filament protein expressed in skeletal muscle and enriched at the perinucleus, sarcolemma, and myotendinous and neuromuscular junctions. Due to its pattern of cellular localization and binding partners, syncoilin is an ideal candidate to be both an important structural component of myocytes and a potential mediator of inherited myopathies. Here we present a report of a knockout mouse model for syncoilin and the results of an investigation into the effect of a syncoilin null state on striated muscle function in 6–8-week-old mice. An analysis of proteins known to associate with syncoilin showed that ablation of syncoilin had no effect on absolute expression or spatial localization of desmin or alpha dystrobrevin. Our syncoilin-null animal exhibited no differences in cardiotoxin-induced muscle regeneration, voluntary wheel running, or enforced treadmill exercise capacity, relative to wild-type controls. Finally, a mechanical investigation of isolated soleus and extensor digitorum longus indicated a potential differential reduction in muscle strength and resilience. We are the first to present data identifying an increased susceptibility to muscle damage in response to an extended forced exercise regime in syncoilin-deficient muscle. This study establishes a second viable syncoilin knockout model and highlights the importance of further investigations to determine the role of syncoilin in skeletal muscle. PMID:18594912

  6. The calcineurin antagonist RCAN1-4 is induced by exhaustive exercise in rat skeletal muscle.

    PubMed

    Emrani, Ramin; Rébillard, Amélie; Lefeuvre, Luz; Gratas-Delamarche, Arlette; Davies, Kelvin J A; Cillard, Josiane

    2015-10-01

    The aim of this work was to study the regulation of the calcineurin antagonist regulator of calcineurin 1 (RCAN1) in rat skeletal muscles after exhaustive physical exercise, which is a physiological modulator of oxidative stress. Three skeletal muscles, namely extensor digitorum longus (EDL), gastrocnemius, and soleus, were investigated. Exhaustive exercise increased RCAN1-4 protein levels in EDL and gastrocnemius, but not in soleus. Protein oxidation as an index of oxidative stress was increased in EDL and gastrocnemius, but remained unchanged in soleus. However, lipid peroxidation was increased in all three muscles. CuZnSOD and catalase protein levels were increased at 3 h postexercise in soleus, whereas they remained unchanged in EDL and gastrocnemius. Calcineurin enzymatic activity declined in EDL and gastrocnemius but not in soleus, and its protein expression was decreased in all three muscles. The level of PGC1-α protein remained unchanged, whereas the protein expression of the transcription factor NFATc4 was decreased in all three muscles. Adiponectin expression was increased in all three muscles. RCAN1-4 expression in EDL and gastrocnemius muscles was augmented by the oxidative stress generated from exhaustive exercise. We propose that increased RCAN1-4 expression and the signal transduction pathways it regulates represent important components of the physiological adaptation to exercise-induced oxidative stress.

  7. Optimal workloop energetics of muscle-actuated systems: an impedance matching view.

    PubMed

    Farahat, Waleed A; Herr, Hugh M

    2010-06-03

    Integrative approaches to studying the coupled dynamics of skeletal muscles with their loads while under neural control have focused largely on questions pertaining to the postural and dynamical stability of animals and humans. Prior studies have focused on how the central nervous system actively modulates muscle mechanical impedance to generate and stabilize motion and posture. However, the question of whether muscle impedance properties can be neurally modulated to create favorable mechanical energetics, particularly in the context of periodic tasks, remains open. Through muscle stiffness tuning, we hypothesize that a pair of antagonist muscles acting against a common load may produce significantly more power synergistically than individually when impedance matching conditions are met between muscle and load. Since neurally modulated muscle stiffness contributes to the coupled muscle-load stiffness, we further anticipate that power-optimal oscillation frequencies will occur at frequencies greater than the natural frequency of the load. These hypotheses were evaluated computationally by applying optimal control methods to a bilinear muscle model, and also evaluated through in vitro measurements on frog Plantaris longus muscles acting individually and in pairs upon a mass-spring-damper load. We find a 7-fold increase in mechanical power when antagonist muscles act synergistically compared to individually at a frequency higher than the load natural frequency. These observed behaviors are interpreted in the context of resonance tuning and the engineering notion of impedance matching. These findings suggest that the central nervous system can adopt strategies to harness inherent muscle impedance in relation to external loads to attain favorable mechanical energetics.

  8. Optimal Workloop Energetics of Muscle-Actuated Systems: An Impedance Matching View

    PubMed Central

    Farahat, Waleed A.; Herr, Hugh M.

    2010-01-01

    Integrative approaches to studying the coupled dynamics of skeletal muscles with their loads while under neural control have focused largely on questions pertaining to the postural and dynamical stability of animals and humans. Prior studies have focused on how the central nervous system actively modulates muscle mechanical impedance to generate and stabilize motion and posture. However, the question of whether muscle impedance properties can be neurally modulated to create favorable mechanical energetics, particularly in the context of periodic tasks, remains open. Through muscle stiffness tuning, we hypothesize that a pair of antagonist muscles acting against a common load may produce significantly more power synergistically than individually when impedance matching conditions are met between muscle and load. Since neurally modulated muscle stiffness contributes to the coupled muscle-load stiffness, we further anticipate that power-optimal oscillation frequencies will occur at frequencies greater than the natural frequency of the load. These hypotheses were evaluated computationally by applying optimal control methods to a bilinear muscle model, and also evaluated through in vitro measurements on frog Plantaris longus muscles acting individually and in pairs upon a mass-spring-damper load. We find a 7-fold increase in mechanical power when antagonist muscles act synergistically compared to individually at a frequency higher than the load natural frequency. These observed behaviors are interpreted in the context of resonance tuning and the engineering notion of impedance matching. These findings suggest that the central nervous system can adopt strategies to harness inherent muscle impedance in relation to external loads to attain favorable mechanical energetics. PMID:20532203

  9. Skeletal muscle glucose uptake during contraction is regulated by nitric oxide and ROS independently of AMPK.

    PubMed

    Merry, Troy L; Steinberg, Gregory R; Lynch, Gordon S; McConell, Glenn K

    2010-03-01

    Reactive oxygen species (ROS) and nitric oxide (NO) have been implicated in the regulation of skeletal muscle glucose uptake during contraction, and there is evidence that they do so via interaction with AMP-activated protein kinase (AMPK). In this study, we tested the hypothesis that ROS and NO regulate skeletal muscle glucose uptake during contraction via an AMPK-independent mechanism. Isolated extensor digitorum longus (EDL) and soleus muscles from mice that expressed a muscle-specific kinase dead AMPKalpha2 isoform (AMPK-KD) and wild-type litter mates (WT) were stimulated to contract, and glucose uptake was measured in the presence or absence of the antioxidant N-acetyl-l-cysteine (NAC) or the nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-l-arginine (l-NMMA). Contraction increased AMPKalpha2 activity in WT but not AMPK-KD EDL muscles. However, contraction increased glucose uptake in the EDL and soleus muscles of AMPK-KD and WT mice to a similar extent. In EDL muscles, NAC and l-NMMA prevented contraction-stimulated increases in oxidant levels (dichloroflourescein fluorescence) and NOS activity, respectively, and attenuated contraction-stimulated glucose uptake in both genotypes to a similar extent. In soleus muscles of AMPK-KD and WT mice, NAC prevented contraction-stimulated glucose uptake and l-NMMA had no effect. This is likely attributed to the relative lack of neuronal NOS in the soleus muscles compared with EDL muscles. Contraction increased AMPKalpha Thr(172) phosphorylation in EDL and soleus muscles of WT but not AMPK-KD mice, and this was not affected by NAC or l-NMMA treatment. In conclusion, ROS and NO are involved in regulating skeletal muscle glucose uptake during contraction via an AMPK-independent mechanism.

  10. Relative shortening velocity in locomotor muscles: turkey ankle extensors operate at low V/V(max).

    PubMed

    Gabaldón, Annette M; Nelson, Frank E; Roberts, Thomas J

    2008-01-01

    The force-velocity properties of skeletal muscle have an important influence on locomotor performance. All skeletal muscles produce less force the faster they shorten and typically develop maximal power at velocities of approximately 30% of maximum shortening velocity (V(max)). We used direct measurements of muscle mechanical function in two ankle extensor muscles of wild turkeys to test the hypothesis that during level running muscles operate at velocities that favor force rather than power. Sonomicrometer measurements of muscle length, tendon strain-gauge measurements of muscle force, and bipolar electromyographs were taken as animals ran over a range of speeds and inclines. These measurements were integrated with previously measured values of muscle V(max) for these muscles to calculate relative shortening velocity (V/V(max)). At all speeds for level running the V/V(max) values of the lateral gastrocnemius and the peroneus longus were low (<0.05), corresponding to the region of the force-velocity relationship where the muscles were capable of producing 90% of peak isometric force but only 35% of peak isotonic power. V/V(max) increased in response to the demand for mechanical power with increases in running incline and decreased to negative values to absorb energy during downhill running. Measurements of integrated electromyograph activity indicated that the volume of muscle required to produce a given force increased from level to uphill running. This observation is consistent with the idea that V/V(max) is an important determinant of locomotor cost because it affects the volume of muscle that must be recruited to support body weight.

  11. Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase μ knockout mice.

    PubMed

    Hong, Yet Hoi; Frugier, Tony; Zhang, Xinmei; Murphy, Robyn M; Lynch, Gordon S; Betik, Andrew C; Rattigan, Stephen; McConell, Glenn K

    2015-05-01

    Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ(-/-) and nNOSμ(+/+) mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor N(G)-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ(-/-) and nNOSμ(+/+) mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (~4%) were detected in muscles from nNOSμ(-/-) mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.

  12. Characterization of muscle spindle afferents in the adult mouse using an in vitro muscle-nerve preparation.

    PubMed

    Wilkinson, Katherine A; Kloefkorn, Heidi E; Hochman, Shawn

    2012-01-01

    We utilized an in vitro adult mouse extensor digitorum longus (EDL) nerve-attached preparation to characterize the responses of muscle spindle afferents to ramp-and-hold stretch and sinusoidal vibratory stimuli. Responses were measured at both room (24°C) and muscle body temperature (34°C). Muscle spindle afferent static firing frequencies increased linearly in response to increasing stretch lengths to accurately encode the magnitude of muscle stretch (tested at 2.5%, 5% and 7.5% of resting length [Lo]). Peak firing frequency increased with ramp speeds (20% Lo/sec, 40% Lo/sec, and 60% Lo/sec). As a population, muscle spindle afferents could entrain 1:1 to sinusoidal vibrations throughout the frequency (10-100 Hz) and amplitude ranges tested (5-100 µm). Most units preferentially entrained to vibration frequencies close to their baseline steady-state firing frequencies. Cooling the muscle to 24°C decreased baseline firing frequency and units correspondingly entrained to slower frequency vibrations. The ramp component of stretch generated dynamic firing responses. These responses and related measures of dynamic sensitivity were not able to categorize units as primary (group Ia) or secondary (group II) even when tested with more extreme length changes (10% Lo). We conclude that the population of spindle afferents combines to encode stretch in a smoothly graded manner over the physiological range of lengths and speeds tested. Overall, spindle afferent response properties were comparable to those seen in other species, supporting subsequent use of the mouse genetic model system for studies on spindle function and dysfunction in an isolated muscle-nerve preparation.

  13. Effects of Pleiotrophin Overexpression on Mouse Skeletal Muscles in Normal Loading and in Actual and Simulated Microgravity

    PubMed Central

    Liantonio, Antonella; De Bellis, Michela; Cannone, Maria; Sblendorio, Valeriana; Conte, Elena; Mele, Antonietta; Tricarico, Domenico; Tavella, Sara; Ruggiu, Alessandra; Cancedda, Ranieri; Ohira, Yoshinobu; Danieli-Betto, Daniela; Ciciliot, Stefano; Germinario, Elena; Sandonà, Dorianna; Betto, Romeo; Desaphy, Jean-François

    2013-01-01

    Pleiotrophin (PTN) is a widespread cytokine involved in bone formation, neurite outgrowth, and angiogenesis. In skeletal muscle, PTN is upregulated during myogenesis, post-synaptic induction, and regeneration after crushing, but little is known regarding its effects on muscle function. Here, we describe the effects of PTN on the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles in mice over-expressing PTN under the control of a bone promoter. The mice were maintained in normal loading or disuse condition, induced by hindlimb unloading (HU) for 14 days. Effects of exposition to near-zero gravity during a 3-months spaceflight (SF) into the Mice Drawer System are also reported. In normal loading, PTN overexpression had no effect on muscle fiber cross-sectional area, but shifted soleus muscle toward a slower phenotype, as shown by an increased number of oxidative type 1 fibers, and increased gene expression of cytochrome c oxidase subunit IV and citrate synthase. The cytokine increased soleus and EDL capillary-to-fiber ratio. PTN overexpression did not prevent soleus muscle atrophy, slow-to-fast transition, and capillary regression induced by SF and HU. Nevertheless, PTN exerted various effects on sarcolemma ion channel expression/function and resting cytosolic Ca2+ concentration in soleus and EDL muscles, in normal loading and after HU. In conclusion, the results show very similar effects of HU and SF on mouse soleus muscle, including activation of specific gene programs. The EDL muscle is able to counterbalance this latter, probably by activating compensatory mechanisms. The numerous effects of PTN on muscle gene expression and functional parameters demonstrate the sensitivity of muscle fibers to the cytokine. Although little benefit was found in HU muscle disuse, PTN may emerge useful in various muscle diseases, because it exerts synergetic actions on muscle fibers and vessels, which could enforce oxidative metabolism and ameliorate muscle

  14. Effects of pleiotrophin overexpression on mouse skeletal muscles in normal loading and in actual and simulated microgravity.

    PubMed

    Camerino, Giulia Maria; Pierno, Sabata; Liantonio, Antonella; De Bellis, Michela; Cannone, Maria; Sblendorio, Valeriana; Conte, Elena; Mele, Antonietta; Tricarico, Domenico; Tavella, Sara; Ruggiu, Alessandra; Cancedda, Ranieri; Ohira, Yoshinobu; Danieli-Betto, Daniela; Ciciliot, Stefano; Germinario, Elena; Sandonà, Dorianna; Betto, Romeo; Camerino, Diana Conte; Desaphy, Jean-François

    2013-01-01

    Pleiotrophin (PTN) is a widespread cytokine involved in bone formation, neurite outgrowth, and angiogenesis. In skeletal muscle, PTN is upregulated during myogenesis, post-synaptic induction, and regeneration after crushing, but little is known regarding its effects on muscle function. Here, we describe the effects of PTN on the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles in mice over-expressing PTN under the control of a bone promoter. The mice were maintained in normal loading or disuse condition, induced by hindlimb unloading (HU) for 14 days. Effects of exposition to near-zero gravity during a 3-months spaceflight (SF) into the Mice Drawer System are also reported. In normal loading, PTN overexpression had no effect on muscle fiber cross-sectional area, but shifted soleus muscle toward a slower phenotype, as shown by an increased number of oxidative type 1 fibers, and increased gene expression of cytochrome c oxidase subunit IV and citrate synthase. The cytokine increased soleus and EDL capillary-to-fiber ratio. PTN overexpression did not prevent soleus muscle atrophy, slow-to-fast transition, and capillary regression induced by SF and HU. Nevertheless, PTN exerted various effects on sarcolemma ion channel expression/function and resting cytosolic Ca(2+) concentration in soleus and EDL muscles, in normal loading and after HU. In conclusion, the results show very similar effects of HU and SF on mouse soleus muscle, including activation of specific gene programs. The EDL muscle is able to counterbalance this latter, probably by activating compensatory mechanisms. The numerous effects of PTN on muscle gene expression and functional parameters demonstrate the sensitivity of muscle fibers to the cytokine. Although little benefit was found in HU muscle disuse, PTN may emerge useful in various muscle diseases, because it exerts synergetic actions on muscle fibers and vessels, which could enforce oxidative metabolism and ameliorate muscle

  15. Foot posture influences the electromyographic activity of selected lower limb muscles during gait

    PubMed Central

    2009-01-01

    Background Some studies have found that flat-arched foot posture is related to altered lower limb muscle function compared to normal- or high-arched feet. However, the results from these studies were based on highly selected populations such as those with rheumatoid arthritis. Therefore, the objective of this study was to compare lower limb muscle function of normal and flat-arched feet in people without pain or disease. Methods Sixty adults aged 18 to 47 years were recruited to this study. Of these, 30 had normal-arched feet (15 male and 15 female) and 30 had flat-arched feet (15 male and 15 female). Foot posture was classified using two clinical measurements (the arch index and navicular height) and four skeletal alignment measurements from weightbearing foot x-rays. Intramuscular fine-wire electrodes were inserted into tibialis posterior and peroneus longus under ultrasound guidance, and surface EMG activity was recorded from tibialis anterior and medial gastrocnemius while participants walked barefoot at their self-selected comfortable walking speed. Time of peak amplitude, peak and root mean square (RMS) amplitude were assessed from stance phase EMG data. Independent samples t-tests were performed to assess for significant differences between the normal- and flat-arched foot posture groups. Results During contact phase, the flat-arched group exhibited increased activity of tibialis anterior (peak amplitude; 65 versus 46% of maximum voluntary isometric contraction) and decreased activity of peroneus longus (peak amplitude; 24 versus 37% of maximum voluntary isometric contraction). During midstance/propulsion, the flat-arched group exhibited increased activity of tibialis posterior (peak amplitude; 86 versus 60% of maximum voluntary isometric contraction) and decreased activity of peroneus longus (RMS amplitude; 25 versus 39% of maximum voluntary isometric contraction). Effect sizes for these significant findings ranged from 0.48 to 1.3, representing moderate to

  16. The pectoral fin muscles of the coelacanth Latimeria chalumnae: Functional and evolutionary implications for the fin-to-limb transition and subsequent evolution of tetrapods.

    PubMed

    Miyake, Tsutomu; Kumamoto, Minayori; Iwata, Masamitsu; Sato, Ryuichi; Okabe, Masataka; Koie, Hiroshi; Kumai, Nori; Fujii, Kenichi; Matsuzaki, Koji; Nakamura, Chiho; Yamauchi, Shinya; Yoshida, Kosuke; Yoshimura, Kohtaroh; Komoda, Akira; Uyeno, Teruya; Abe, Yoshitaka

    2016-09-01

    To investigate the morphology and evolutionary origin of muscles in vertebrate limbs, we conducted anatomical dissections, computed tomography and kinematic analyses on the pectoral fin of the African coelacanth, Latimeria chalumnae. We discovered nine antagonistic pairs of pronators and supinators that are anatomically and functionally distinct from the abductor and adductor superficiales and profundi. In particular, the first pronator and supinator pair represents mono- and biarticular muscles; a portion of the muscle fibers is attached to ridges on the humerus and is separated into two monoarticular muscles, whereas, as a biarticular muscle, the main body is inserted into the radius by crossing two joints from the shoulder girdle. This pair, consisting of a pronator and supinator, constitutes a muscle arrangement equivalent to two human antagonistic pairs of monoarticular muscles and one antagonistic pair of biarticular muscles in the stylopod between the shoulder and elbow joints. Our recent kinesiological and biomechanical engineering studies on human limbs have demonstrated that two antagonistic pairs of monoarticular muscles and one antagonistic pair of biarticular muscles in the stylopod (1) coordinately control output force and force direction at the wrist and ankle and (2) achieve a contact task to carry out weight-bearing motion and maintain stable posture. Therefore, along with dissections of the pectoral fins in two lungfish species, Neoceratodus forsteri and Protopterus aethiopicus, we discuss the functional and evolutionary implications for the fin-to-limb transition and subsequent evolution of tetrapods. Anat Rec, 299:1203-1223, 2016. © 2016 Wiley Periodicals, Inc.

  17. Warner-Bratzler shear evaluations of 40 bovine muscles.

    PubMed

    Belew, J B; Brooks, J C; McKenna, D R; Savell, J W

    2003-08-01

    Forty muscles from each of 20 beef carcass sides were used to perform Warner-Bratzler shear (WBS) force determinations for within and among muscle effects. The M. triceps brachii differed (P <0.05) in WBS values between the caput longum and caput laterale, and the M. gluteobiceps differed (P <0.05) in WBS values between the vertebral, cranial, and caudal portions. The M. trapezius did not differ between the pars cervicalis and pars thoracica. Larger muscles were evaluated for location effects within muscles. The M. pectoralis profundus, M. infraspinatus, M. triceps brachii (caput longum), psoas major, and M. semimembranosus all had significant location effects. Muscles were allocated into "very tender," "tender," "intermediate" or "tough" categories. Those muscles considered "very tender" (WBS <3.2 kg) were the diaphragm (outside skirt or wing of diaphragm), M. spinalis, M. infraspinatus, M. iliacus, M. psoas major, M. serratus ventralis, M. biceps brachii, M. obliquus internus abdominis, and M. vastus medius. Muscles considered "tender" (3.2 kg Muscles classified as "intermediate" (3.9 kg adductor, M. vastus lateralis, M. deltoideus, M. latissimus dorsi, M. transversus abdominis, and M. semimembranosus. Muscles classed as "tough" (WBS > 4.6 kg) were the M. extensor carpi radialis, M. trapezius, M. brachialis, M. pectoralis profundus, and M. flexor digitorum superficialis (hind limb). The diaphragm muscle was the most tender (WBS=2.03 kg), and the M. flexor digitorum superficialis was the toughest (WBS=7.74 kg

  18. Long-term results of Kienböck's disease treated by triscaphe arthrodesis and excisional arthroplasty with a coiled palmaris longus tendon.

    PubMed

    Minami, A; Kimura, T; Suzuki, K

    1994-03-01

    Fifteen patients with Kienböck's disease were treated with scaphotrapeziotrapezoidal arthrodesis and lunate excisional arthroplasty with a coiled palmaris longus tendon replacement. Patients were classified into five groups preoperatively according to Lichtman's classification: stage IIIA, 1 patient; stage IIIB, 11; and stage IV, 3. After an average follow-up period of 57 months, the clinical results were evaluated by the method described by Lichtman et al. Twelve patients were rated as satisfactory, and three patients were rated as unsatisfactory. Clinical results were good with regard to pain relief and grip strength, but poor with regard to range of motion of the wrist. Five patients revealed postoperative progression of osteoarthritic changes at the radioscaphoid joint, and this appeared to be a main factor influencing clinical results. Two of these five patients had subsequent wrist arthrodesis. We conclude that stage IIIB is a specific indication for scaphotrapeziotrapezoidal arthrodesis.

  19. Muscle atrophy

    MedlinePlus

    ... damage caused by injury, diabetes, toxins, or alcohol Polio ( poliomyelitis ) Spinal cord injury Although people can adapt to ... Guillain-Barré syndrome Hypotonia Muscle cramps Muscular dystrophy Polio Review Date 1/5/2016 Updated by: Joseph ...

  20. Getting Muscles

    MedlinePlus

    ... muscular as a superhero or your favorite professional athlete? Well, the big muscles you're thinking about ... Superheroes, of course, aren't real, and professional athletes are grownups, whose bodies are different from kids' ...

  1. Muscle twitching

    MedlinePlus

    ... patient with neurologic disease. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: ... Selcen D. Muscle diseases. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: ...

  2. Reflex influences on muscle spindle activity in relaxed human leg muscles.

    PubMed

    Gandevia, S C; Miller, S; Aniss, A M; Burke, D

    1986-07-01

    The study was designed to determine whether low-threshold cutaneous and muscle afferents from the foot reflexly activate gamma-motoneurons innervating relaxed muscles of the leg. In 15 experiments multiunit recordings were made from 21 nerve fascicles innervating triceps surae or tibialis anterior. In a further nine experiments the activity of 19 identified single muscle spindle afferents was recorded, 13 from triceps surae, 5 from tibialis anterior, and 1 from extensor digitorum longus. Trains of electrical stimuli (5 stimuli, 300 Hz) were delivered to the sural nerve at the ankle (intensity, twice sensory threshold) and the posterior tibial nerve at the ankle (intensity, 1.1 times motor threshold for the small muscles of the foot). In addition, a tap on the appropriate tendon at varying times after the stimuli was used to assess the dynamic responsiveness of the afferents under study. The conditioning electrical stimuli did not change the discharge of single spindle afferents. Recordings of rectified and averaged multiunit activity also revealed no change in the overall level of background neural activity following the electrical stimuli. The afferent responses to tendon taps did not differ significantly whether or not they were preceded by stimulation of the sural or posterior tibial nerves. These results suggest that low-threshold afferents from the foot do not produce significant activation of fusimotor neurons in relaxed leg muscles, at least as judged by their ability to alter the discharge of muscle spindle afferents. As there may be no effective background activity in fusimotor neurons innervating relaxed human muscles, it is possible that these inputs from the foot could influence the fusimotor system during voluntary contractions when the fusimotor neurons have been brought to firing threshold. In one subject trains of stimuli were delivered to the posterior tibial nerve at painful levels (30 times motor threshold). They produced an acceleration of the

  3. Partially irreversible paresis of the deep peroneal nerve caused by osteocartilaginous exostosis of the fibula without affecting the tibialis anterior muscle.

    PubMed

    Paprottka, Felix Julian; Machens, Hans-Günther; Lohmeyer, Jörn Andreas

    2012-08-01

    Dysfunction of the lower limb's muscles can cause severe impairment and immobilisation of the patient. As one of the leg's major motor and sensory nerves, the deep peroneal nerve (synonym: deep fibular nerve) plays a very important role in muscle innervation in the lower extremities. We report the case of a 19-year-old female patient, who suffered from a brace-like exostosis 6-cm underneath her left fibular head causing a partially irreversible paresis of her deep peroneal nerve. This nerve damage resulted in complete atrophy of her extensor digitorum longus and extensor hallucis longus muscle, and in painful sensory disturbance at her left shin and first web space. The tibialis anterior muscle stayed intact because its motor branch left the deep peroneal nerve proximal to the nerve lesion. Diagnosis was first verified 6 years after the onset of symptoms by a magnetic resonance imaging (MRI) scan of her complete left lower leg. Subsequently, the patient was operated on in our clinic, where a neurolysis was performed and the 4-cm-long osteocartilaginous exostosis was removed. Paralysis was already irreversible but sensibility returned completely after neurolysis. The presented case shows that an osteocartilaginous exostosis can be the cause for partial deep peroneal nerve paresis. If this disorder is diagnosed at an early stage, nerve damage is reversible. Typical for an exostosis is its first appearance during the juvenile growth phase.

  4. Role of Glucocorticoids in the Response to Unloading of Muscle Protein and Amino Acid Metabolism

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.

    1985-01-01

    Intact control (weight bearing) and suspended rats gained weight at a similar rate during a 6 day period. Adrenaectomized (adx) weight bearing rats gained less weight during this period while adrenalectomized suspended rats showed no significant weight gain. Cortisol treatment of both of these groups of animals caused a loss of body weight. Results from these studies show several important findings: (1) Metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating gluccorticoids; (2) Metabolic changes in the soleus due to higher steroid levels are probably potentiated by greater numbers of receptors; and (3) Not all metabolic responses in the unloaded soleus muscle are due to direct action of elevated glucocorticoids or increased sensitivity to these hormones.

  5. Effects of vibratory stimulations on maximal voluntary isometric contraction from delayed onset muscle soreness.

    PubMed

    Koh, Hyung-Woo; Cho, Sung-Hyoun; Kim, Cheol-Yong; Cho, Byung-Jun; Kim, Jin-Woo; Bo, Kak Hwang

    2013-09-01

    [Purpose] The aim of this study was to investigate the effect of vibratory stimulation on maximal voluntary isometric contraction (MVIC) from delayed onset muscle soreness (DOMS). [Subjects] Sixty healthy adults participated in this study. The exclusion criteria were orthopedic or neurologic disease. [Methods] The researchers induced DOMS in the musculus extensor carpi radialis longus of each participant. Subjects in the control group received no treatment. The ultrasound group received ultrasound treatment (intensity, 1.0 W/cm(2;) frequency 1 MHz; time, 10 minutes). The vibration group received vibration stimulation (frequency, 20 MHz; time, 10 minutes). Maximal voluntary isometric contraction (MVIC) was recorded at baseline, immediately after exercise, and 24, 48, and 72 hours after exercise. [Results] MVIC measurements showed statistically significant differences in the vibration group compared with the control group. [Conclusion] Vibratory stimulation had a positive effect on recovery of muscle function from DOMS.

  6. Effects of Vibratory Stimulations on Maximal Voluntary Isometric Contraction from Delayed Onset Muscle Soreness

    PubMed Central

    Koh, Hyung-Woo; Cho, Sung-Hyoun; Kim, Cheol-Yong; Cho, Byung-Jun; Kim, Jin-Woo; Bo, Kak Hwang

    2013-01-01

    [Purpose] The aim of this study was to investigate the effect of vibratory stimulation on maximal voluntary isometric contraction (MVIC) from delayed onset muscle soreness (DOMS). [Subjects] Sixty healthy adults participated in this study. The exclusion criteria were orthopedic or neurologic disease. [Methods] The researchers induced DOMS in the musculus extensor carpi radialis longus of each participant. Subjects in the control group received no treatment. The ultrasound group received ultrasound treatment (intensity, 1.0 W/cm2; frequency 1 MHz; time, 10 minutes). The vibration group received vibration stimulation (frequency, 20 MHz; time, 10 minutes). Maximal voluntary isometric contraction (MVIC) was recorded at baseline, immediately after exercise, and 24, 48, and 72 hours after exercise. [Results] MVIC measurements showed statistically significant differences in the vibration group compared with the control group. [Conclusion] Vibratory stimulation had a positive effect on recovery of muscle function from DOMS. PMID:24259922

  7. Metabolomic Analysis of Oxidative and Glycolytic Skeletal Muscles by Matrix-Assisted Laser Desorption/IonizationMass Spectrometric Imaging (MALDI MSI)

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Hsuan; Garrett, Timothy J.; Carter, Christy S.; Yost, Richard A.

    2015-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers.

  8. Metabolomic Analysis of Oxidative and Glycolytic Skeletal Muscles by Matrix-Assisted Laser Desorption/IonizationMass Spectrometric Imaging (MALDI MSI).

    PubMed

    Tsai, Yu-Hsuan; Garrett, Timothy J; Carter, Christy S; Yost, Richard A

    2015-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers.

  9. Correction of Multiple Striated Muscles in Murine Pompe Disease Through Adeno-associated Virus-Mediated Gene Therapy

    PubMed Central

    Sun, Baodong; Young, Sarah P.; Li, Ping; Di, Chunhui; Brown, Talmage; Salva, Maia Z.; Li, Songtao; Bird, Andrew; Yan, Zhen; Auten, Richard; Hauschka, Stephen D.; Koeberl, Dwight D.

    2009-01-01

    Glycogen storage disease type II (GSD-II; Pompe disease; MIM 232300) stems from the deficiency of acid-α-glucosidase (GAA; acid maltase; EC 3.2.1.20), which primarily involves cardiac and skeletal muscles. We hypothesized that systemic administration of an adeno-associated virus (AAV) vector containing a muscle specific regulatory cassette could drive efficacious transgene expression in GAA-knockout (GAA-KO) mice. AAV2/8 vectors containing the muscle creatine kinase (CK1) or hybrid α-myosin heavy chain enhancer-/muscle creatine kinase enhancer-promoter (MHCK7) cassettes were compared. The CK1 reduced glycogen content by approximately 50% in the heart and quadriceps, in comparison to untreated GAA-KO mice, whereas the MHCK7 containing vector reduced glycogen content even further: >95% in heart and >75% in the diaphragm and quadriceps. Administration of the MHCK7-containing vector significantly increased striated muscle function as assessed by increased Rotarod times at 18 weeks post-injection, whereas the CK1-containing vector did not increase Rotarod performance. Transduction efficiency was evaluated with an AAV2/8 vector in which MHCK7 drives alkaline-phosphatase, revealing that many more myofibers were transduced in the quadriceps than in the gastrocnemius. An AAV2/9 vector containing the MHCK7 cassette corrected GAA deficiency in the skeletal muscles of the distal limb, including the gastrocnemius, extensor digitalis longus, and soleus; furthermore, glycogen accumulations were substantially cleared by hGAA expression therein. Importantly, type IIb myofibers in the extensor digitalis longus were transduced, thereby correcting a myofiber type that is unresponsive to enzyme replacement therapy. In summary, AAV8 and AAV9-pseudotyped vectors containing the MHCK7 regulatory cassette achieved enhanced efficacy in Pompe disease mice. PMID:18560415

  10. Leg muscle volume during 30-day 6-degree head-down bed rest with isotonic and isokinetic exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Lee, P. L.; Ellis, S.; Selzer, R. H.; Ortendahl, D. A.

    1994-01-01

    Magnetic resonance imaging (MRI) was used to compare the effect of two modes of lower-extremity exercise training on the mass (volume) of posterior leg group (PLG) muscles (soleus, flexor hallucis longus, tibialis posterior, lateral and medial gastrocnemius, and flexor digitorum longus) on 19 men (ages 32-42 years) subjected to intense dynamic-isotonic (ITE, cycle ergometer, number of subjects (N) = 7), isokinetic (IKE, torque egrometer, N = 7), and no exercise (NOE, N = 5) training for 60 min/day during head-down bed rest (HDBR). Total volume of the PLG muscles decreased (p less than 0.05) similarly: ITE = 4.3 +/- SE 1.6%, IKE = 7.7 +/- 1.6%, and NOE = 6.3 +/- 0.8%; combined volume (N = 19) loss was 6.1 +/- 0.9%. Ranges of volume changes were 2.6% to -9.0% (ITE), -2.1% to -14.9% (IKE), and -3.4% to -8/1% (NOE). Correlation coefficients (r) of muscle volume versus thickness measured with ultrasonography were: ITE r + 0.79 (p less than 0.05), IKE r = 0.27 (not significant (NS)), and NOE r = 0.63 (NS). Leg-muscle volume and thickness were highly correlated (r = 0.79) when plasma volume was maintained during HDBR with ITE. Thus, neither intensive lower extremity ITE nor IKE training influence the normal non-exercised posterior leg muscle atrophy during HDBR. The relationship of muscle volume and thickness may depend on the mode of exercise training associated with the maintenance of plasma volume.

  11. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration

    PubMed Central

    Gregorevic, Paul; Plant, David R; Stupka, Nicole; Lynch, Gordon S

    2004-01-01

    Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca2+- and Sr2+-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had ∼10% of the maximal force producing capacity (Po) of control (uninjured) fibres, and an altered sensitivity to Ca2+ and Sr2+ at 7 days post-injury. Increased force production and a shift in Ca2+ sensitivity consistent with fibre maturation were observed during regeneration such that Po was restored to 36–45% of that in control fibres by 21 days, and sensitivity to Ca2+ and Sr2+ was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed. PMID:15181161

  12. Periodic Modulation of Motor-Unit Activity in Extrinsic Hand Muscles During Multidigit Grasping

    PubMed Central

    Johnston, Jamie A.; Winges, Sara A.; Santello, Marco

    2007-01-01

    We recently examined the extent to which motor units of digit flexor muscles receive common input during multidigit grasping. This task elicited moderate to strong motor-unit synchrony (common input strength, CIS) across muscles (flexor digitorum profundus, FDP, and flexor pollicis longus, FPL) and across FDP muscle compartments, although the strength of this common input was not uniform across digit pairs. To further characterize the neural mechanisms underlying the control of multidigit grasping, we analyzed the relationship between firing of single motor units from these hand muscles in the frequency domain by computing coherence. We report three primary findings. First, in contrast to what has been reported in intrinsic hand muscles, motor units belonging to different muscles and muscle compartments of extrinsic digit flexors exhibited significant coherence in the 0- to 5- and 5- to 10-Hz frequency ranges and much weaker coherence in the higher 10–20 Hz range (maximum 0.0025 and 0.0008, respectively, pooled across all FDP compartment pairs). Second, the strength and incidence of coherence differed considerably across digit pairs. Third, contrary to what has been reported in the literature, across-muscle coherence can be stronger and more prevalent than within-muscle coherence, as FPL–FDP2 (thumb-index digit pair) exhibited the strongest and most prevalent coherence in our data (0.010 and 43% at 3 Hz, respectively). The heterogeneous organization of common input to these muscles and muscle compartments is discussed in relation to the functional role of individual digit pairs in the coordination of multiple digit forces in grasping. PMID:15744006

  13. Effects of S1P on skeletal muscle repair/regeneration during eccentric contraction.

    PubMed

    Sassoli, Chiara; Formigli, Lucia; Bini, Francesca; Tani, Alessia; Squecco, Roberta; Battistini, Chiara; Zecchi-Orlandini, Sandra; Francini, Fabio; Meacci, Elisabetta

    2011-11-01

    Skeletal muscle regeneration is severely compromised in the case of extended damage. The current challenge is to find factors capable of limiting muscle degeneration and/or potentiating the inherent regenerative program mediated by a specific type of myoblastic cells, the satellite cells. Recent studies from our groups and others have shown that the bioactive lipid, sphingosine 1-phosphate (S1P), promotes myoblast differentiation and exerts a trophic action on denervated skeletal muscle fibres. In the present study, we examined the effects of S1P on eccentric contraction (EC)-injured extensor digitorum longus muscle fibres and resident satellite cells. After EC, skeletal muscle showed evidence of structural and biochemical damage along with significant electrophysiological changes, i.e. reduced plasma membrane resistance and resting membrane potential and altered Na(+) and Ca(2+) current amplitude and kinetics. Treatment with exogenous S1P attenuated the EC-induced tissue damage, protecting skeletal muscle fibre from apoptosis, preserving satellite cell viability and affecting extracellular matrix remodelling, through the up-regulation of matrix metalloproteinase 9 (MMP-9) expression. S1P also promoted satellite cell renewal and differentiation in the damaged muscle. Notably, EC was associated with the activation of sphingosine kinase 1 (SphK1) and with increased endogenous S1P synthesis, further stressing the relevance of S1P in skeletal muscle protection and repair/regeneration. In line with this, the treatment with a selective SphK1 inhibitor during EC, caused an exacerbation of the muscle damage and attenuated MMP-9 expression. Together, these findings are in favour for a role of S1P in skeletal muscle healing and offer new clues for the identification of novel therapeutic approaches to counteract skeletal muscle damage and disease.

  14. Tendon biomechanical properties enhance human wrist muscle specialization.

    PubMed

    Loren, G J; Lieber, R L

    1995-07-01

    Biomechanical properties of human wrist tendons were measured under loads predicted to be experienced by those tendons under physiological conditions. This was accomplished by measuring the architectural properties of the five prime wrist movers--extensors carpi radialis brevis (ECRB), extensor carpi radialis longus (ECRL), extensor carpi ulnaris (ECU), flexor carpi radials (FCR), flexor carpi ulnaris (FCU)--and predicting their maximum tension (P0) using a specific tension value (22.5 N cm-2. Loading the corresponding tendons to P0 resulted in significantly different strain among tendons (p < 0.01) with the largest strain observed in the FCU (3.68 +/- 0.31%) and the smallest strain observed in the ECRL (1.78 +/- 0.14%). Further, strain magnitude was significantly positively correlated with the tendon length-to-fiber length ratio of the muscle-tendon unit, a measure of the intrinsic compliance of the muscle-tendon unit. Theoretical modeling of the magnitude of muscle sarcomere shortening expected based on the measured biomechanical properties revealed a maximum sarcomere length decrease of about 0.6 micron for the FCU to a minimum of about 0.2 micron for the ECRB at P0. Thus, tendon compliance may, but does not necessarily, result in significant modification of muscle force generation. The significant variation in tendon biomechanical properties was not observed using traditional elongation-to-failure methods on the same specimens. Thus, the use of elongation-to-failure experiments for determination of tendon properties may not be reasonable when the purpose of such studies is to infer physiological function. These data indicate that muscle-tendon units show remarkable specialization and that tendon intrinsic properties accentuate the muscle architectural specialization already present.

  15. Characteristics of tetanic muscle contraction in Parkinson patients.

    PubMed

    Pedersen, S W; Bäckman, E; Oberg, B

    1991-09-01

    The aim of this study was to examine contraction characteristics in striated muscles from Parkinson patients and to measure any changes in characteristics based on changes in medication. Fifteen patients, 9 men and 6 women, mean age 61.6 (range 43-70) with mild to moderate parkinsonism, (Hoehn and Yahr I-III) were investigated, and the results were compared with a group of 8 normal controls (mean age 59.6, range 50-70). Twelve of the patients (7 men and 5 women) were also tested after a 24-h period without medication. Using supramaximal electrical stimulation of the ulnary nerve at the wrist contraction, characteristics in the m. adductor pollicis muscle can be recorded. Stimulation results were printed on a fast paper writer. The following characteristics were recorded: 1) electromechanical delay of contraction EMDc; 2) contraction time to half tetanus CTT1/2; 3) electromechanical delay of relaxation EMDr; 4) relaxation rate RR for 10 ms RR-10; 5) the force produced in the tetanic contraction at stimulus frequencies 5, 10, 20, 50 Hz. The results showed that the in initiation of contraction (EMDc) was normal compared with controls. CTT1/2 was shorter (p less than 0.001) in the group of Parkinson patients compared with normals. EMDr was not changed when compared with normals, but RR-10 was increased, p less than 0.05. Force levels at the different stimulation rates were not significantly changed. After withdrawal of medication all parameters were unchanged. Muscle contraction characteristics in tetanic contraction were found to be abnormal indicating either a possible preactivation in the muscle contraction or a secondary change in the muscles of patients with Parkinson's disease.

  16. Hydrostatic Isolated Limb Perfusion with Adeno-associated Virus Vectors Enhances Correction of Skeletal Muscle in Pompe Disease

    PubMed Central

    Sun, Baodong; Li, Songtao; Bird, Andrew; Koeberl, Dwight D.

    2010-01-01

    Glycogen storage disease type II (GSD-II; Pompe disease; MIM 232300) stems from the inherited deficiency of acid-α-glucosidase (GAA; acid maltase; EC 3.2.1.20), which primarily involves cardiac and skeletal muscles. We hypothesized that hydrostatic isolated limb perfusion (ILP) administration of an adeno-associated virus (AAV) vector containing a muscle specific promoter could achieve relatively higher transgene expression in the hindlimb muscles of GAA-knockout (GAA-KO) mice, in comparison with intravenous (IV) administration. ILP adminstration of AAV2/8 vectors encoding alkaline phosphatase or human GAA transduced skeletal muscles of the hindlimb widely, despite the relatively low number of vector particles administered (1×1011), and IV administration of an equivalent vector dose failed to transduce skeletal muscle detectably. Similarly, ILP administration of fewer vector particles of the AAV2/9 vector encoding human GAA (3×1010) transduced skeletal muscles of the hindlimb widely and significantly reduced glycogen content to, in comparison with IV administration. The only advantage for IV administration was moderately high level transduction of cardiac muscle, which demonstrated compellingly that ILP administration sequestered vector particles within the perfused limb. Reduction of glycogen storage in the extensor digitorum longus demonstrated the potential advantage of ILP-mediated delivery of AAV vectors in Pompe disease, because type II myofibers are resistant to enzyme replacement therapy. Thus, ILP will enhance AAV transduction of multiple skeletal muscles while reducing the required dosages in terms of vector particle numbers. PMID:20686508

  17. Changes in the cholinergic system of rat sciatic nerve and skeletal muscle following suspension induced disuse

    NASA Technical Reports Server (NTRS)

    Gupta, R. C.; Misulis, K. E.; Dettbarn, W. D.

    1984-01-01

    Muscle disused induced changes in the cholinergic system of sciatic nerve, slow twitch soleus (SOL) and fast twitch extensor digitorum longus (EDL) muscle were studied in rats. Rats with hindlimbs suspended for 2 to 3 weeks showed marked elevation in the activity of choline acetyltransferase (ChAT) in sciatic nerve (38%), in SOL (108%) and in EDL (67%). Acetylcholinesterase (AChE) activity in SOL increased by 163% without changing the molecular forms pattern of 4S, 10S, 12S, and 16S. No significant changes in activity and molecular forms pattern of AChE were seen in EDL or in AChE activity of sciatic nerve. Nicotinic receptor binding of 3H-acetylcholine was increased in both muscles. When measured after 3 weeks of hindlimb suspension the normal distribution of type 1 fibers in SOL was reduced and a corresponding increase in type IIa and IIb fibers is seen. In EDL no significant change in fiber proportion is observed. Muscle activity, such as loadbearing, appears to have a greater controlling influence on the characteristics of the slow twitch SOL muscle than upon the fast twitch EDL muscle.

  18. Effect of isotonic and isokinetic exercise on muscle activity and balance of the ankle joint

    PubMed Central

    Kim, Mi-Kyoung; Yoo, Kyung-Tae

    2015-01-01

    [Purpose] This study was performed to examine how the balance of lower limbs and the muscle activities of the tibialis anterior (TA), the medial gastrocnemius (GCM), and the peroneus longus (PL) are influenced by isotonic and isokinetic exercise of the ankle joint. [Subjects] The subjects of this study were healthy adults (n=20), and they were divided into two groups (isotonic=10, isokinetic=10). [Methods] Isotonic group performed 3 sets of 10 contractions at 50% of MVIC and Isokinetic group performed 3 sets of 60°/sec. Muscle activity was measured by EMG and balance was measured by one-leg standing test. [Results] For muscle activity, a main effect of group was found in the non-dominant TA, and the dominant TA, GCM and PL. For balance, a main effect of time was found in both groups for the sway area measured support was provided by the non-dominant side. [Conclusion] In terms of muscle activity, the two groups showed a significant difference, and the isokinetic group showed higher muscle activities. In terms of balance, there was a significant difference between the pre-test and the post-test. The results of this study may help in the selection of exercises for physical therapy, because they show that muscle activity and balance vary according to the type of exercise. PMID:25729181

  19. Effects of muscle fiber type and size on EMG median frequency and conduction velocity.

    PubMed

    Kupa, E J; Roy, S H; Kandarian, S C; De Luca, C J

    1995-07-01

    This paper describes an in vitro method for comparing surface-detected electromyographic median frequency (MF) and conduction velocity (CV) parameters with histochemical measurements of muscle fiber type composition and cross-sectional area (CSA). Electromyographic signals were recorded during electrically elicited tetanic contractions from rat soleus, extensor digitorum longus, and diaphragm muscles placed in an oxygenated Krebs bath. Fibers were typed as slow oxidative, fast oxidative glycolytic, and fast glycolytic based on histochemical enzyme stains. Muscles with a greater percentage of fast glycolytic and fast oxidative glycolytic fibers exhibited greater initial values of MF and CV as well as a greater reduction in these variables over the course of the contraction. Regression indicated that fiber type composition could be predicted based on two MF parameters. A weighted measure of muscle fiber CSA was found to be linearly related to both initial MF and CV. The results of this study suggest that MF and CV parameters recorded during a muscular contraction are related to muscle fiber type composition and muscle fiber CSA.

  20. Muscle-Activation Onset Times With Shoes and Foot Orthoses in Participants With Chronic Ankle Instability

    PubMed Central

    Dingenen, Bart; Peeraer, Louis; Deschamps, Kevin; Fieuws, Steffen; Janssens, Luc; Staes, Filip

    2015-01-01

    Context Participants with chronic ankle instability (CAI) use an altered neuromuscular strategy to shift weight from double-legged to single-legged stance. Shoes and foot orthoses may influence these muscle-activation patterns. Objective To evaluate the influence of shoes and foot orthoses on onset times of lower extremity muscle activity in participants with CAI during the transition from double-legged to single-legged stance. Design Cross-sectional study. Setting Musculoskeletal laboratory. Patients or Other Participants A total of 15 people (9 men, 6 women; age = 21.8 ± 3.0 years, height = 177.7 ± 9.6 cm, mass = 72.0 ± 14.6 kg) who had CAI and wore foot orthoses were recruited. Intervention(s) A transition task from double-legged to single-legged stance was performed with eyes open and with eyes closed. Both limbs were tested in 4 experimental conditions: (1) barefoot (BF), (2) shoes only, (3) shoes with standard foot orthoses, and (4) shoes with custom foot orthoses (SCFO). Main Outcome Measure(s) The onset of activity of 9 lower extremity muscles was recorded using surface electromyography and a single force plate. Results Based on a full-factorial (condition, region, limb, vision) linear model for repeated measures, we found a condition effect (F3,91.8 = 9.39, P < .001). Differences among experimental conditions did not depend on limb or vision condition. Based on a 2-way (condition, muscle) linear model within each region (ankle, knee, hip), earlier muscle-activation onset times were observed in the SCFO than in the BF condition for the peroneus longus (P < .001), tibialis anterior (P = .003), vastus medialis obliquus (P = .04), and vastus lateralis (P = .005). Furthermore, the peroneus longus was activated earlier in the shoes-only (P = .02) and shoes-with-standard-foot-orthoses (P = .03) conditions than in the BF condition. No differences were observed for the hip muscles. Conclusions Earlier onset of muscle activity was most apparent in the SCFO

  1. Troponin-like regulation in muscle thin filaments of the mussel Crenomytilus grayanus (Bivalvia: Mytiloida).

    PubMed

    Vyatchin, Ilya G; Shevchenko, Ulyana V; Lazarev, Stanislav S; Matusovsky, Oleg S; Shelud'ko, Nikolay S

    2015-10-01

    Muscles of bivalve molluscs have double calcium regulation--myosin-linked and actin-linked. While the mechanism of myosin-linked regulation is sufficiently studied, there is still no consensus on the mechanism of actin-linked regulation. Earlier we showed a high degree of Ca2+-sensitivity of thin filaments from the adductor muscle of the mussel Crenomytilus grayanus (Mytiloida). In order to elucidate the nature of this regulation, we isolated the fraction of minor proteins from the mussel thin filaments, which confers Ca2+-sensitivity to reconstituted actomyosin-tropomyosin. Proteins of this fraction, ABP-19, ABP-20, and ABP-28, were chromatographically purified and identified. According to the results of mass spectrometry and Western blot analysis, as well as by their functional properties, these mussel actin-binding proteins appeared to correspond to the troponin components from the skeletal muscles of vertebrates (TnC, TnI and TnT). The reconstituted mussel troponin complex confers to actomyosin-tropomyosin more than 80% Ca2+-sensitivity. The in vivo molar ratio of actin/tropomyosin/troponin was calculated to be 7:1:0.5, i.e., the content of troponin in mussel thin filaments is two times lower than in thin filaments of skeletal muscles of vertebrates. These data demonstrate that troponin-like regulation found in the catch muscle of the mussel C. grayanus is present at least in two suborders of bivalves: Pectinoida and Mytiloida.

  2. A clinical case and anatomical study of the innervation supply of the vastus medialis muscle.

    PubMed

    Ozer, H; Tekdemir, I; Elhan, A; Turanli, S; Engebretsen, L

    2004-03-01

    The innervation supply to the vastus medialis (VM) muscle, a component of quadriceps femoris (QF), is provided by a branch of the femoral nerve (FN) running along the muscle. The course of the nerve from lumbar roots to the muscle has been described by many researchers. It is known to ride along the femoral vein, artery and saphenous nerve and enter the adductor canal (Hunter's canal), and then to divide into branches that supply vastus medialis and the knee joint. Femoral mononeuropathy is uncommon, and is usually due to compression in the spinal level. Hematoma in the psoas and iliacus muscles, drug abuse, lithotomy position and limb lengthening are the other associated reasons for a mononeuropathy of the femoral nerve. Isolated vastus lateralis (VL) atrophies have been reported by a few authors, suggesting that compression of the nerve and direct violation of the nerve with injections might be the reason for mononeuropathy. Isolated VM atrophy has not been previously reported. The purpose of the study was to identify the anatomical structures around the FN branch which innervates the VM muscle.

  3. Leptin Administration Favors Muscle Mass Accretion by Decreasing FoxO3a and Increasing PGC-1α in ob/ob Mice

    PubMed Central

    Sáinz, Neira; Rodríguez, Amaia; Catalán, Victoria; Becerril, Sara; Ramírez, Beatriz; Gómez-Ambrosi, Javier; Frühbeck, Gema

    2009-01-01

    Absence of leptin has been associated with reduced skeletal muscle mass in leptin-deficient ob/ob mice. The aim of our study was to examine the effect of leptin on the catabolic and anabolic pathways regulating muscle mass. Gastrocnemius, extensor digitorum longus and soleus muscle mass as well as fiber size were significantly lower in ob/ob mice compared to wild type littermates, being significantly increased by leptin administration (P<0.001). This effect was associated with an inactivation of the muscle atrophy-related transcription factor forkhead box class O3 (FoxO3a) (P<0.05), and with a decrease in the protein expression levels of the E3 ubiquitin-ligases muscle atrophy F-box (MAFbx) (P<0.05) and muscle RING finger 1 (MuRF1) (P<0.05). Moreover, leptin increased (P<0.01) protein expression levels of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a regulator of muscle fiber type, and decreased (P<0.05) myostatin protein, a negative regulator of muscle growth. Leptin administration also activated (P<0.01) the regulators of cell cycle progression proliferating cell nuclear antigen (PCNA) and cyclin D1, and increased (P<0.01) myofibrillar protein troponin T. The present study provides evidence that leptin treatment may increase muscle mass of ob/ob mice by inhibiting myofibrillar protein degradation as well as enhancing muscle cell proliferation. PMID:19730740

  4. A biomechanical model for analysis of muscle force, power output and lower jaw motion in fishes.

    PubMed

    Westneat, Mark W

    2003-08-07

    Fish skulls are complex kinetic systems with movable components that are powered by muscles. Cranial muscles for jaw closing pull the mandible around a point of rotation at the jaw joint using a third-order lever mechanism. The present study develops a lever model for the jaw of fishes that uses muscle design and the Hill equation for nonlinear length-tension properties of muscle to calculate dynamic power output. The model uses morphometric data on skeletal dimensions and muscle proportions in order to predict behavior and force transmission mediated by lever action. The computer model calculates a range of dynamic parameters of jaw function including muscle force, torque, effective mechanical advantage, jaw velocity, bite duration, bite force, work and power. A complete list of required morphometrics is presented and a software program (MandibLever 2.0) is available for implementing lever analysis. Results show that simulations yield kinematics and timing profiles similar to actual fish feeding events. Simulation of muscle properties shows that mandibles reach their peak velocity near the start of jaw closing, peak force at the end of jaw closing, and peak power output at about 25% of the closing cycle time. Adductor jaw muscles with different mechanical designs must have different contractile properties and/or different muscle activity patterns to coordinate jaw closing. The effective mechanical advantage calculated by the model is considerably lower than the mechanical advantage estimated from morphological lever ratios, suggesting that previous studies of morphological lever ratios have overestimated force and underestimated velocity transmission to the mandible. A biomechanical model of jaw closing can be used to interpret the mechanics of a wide range of jaw mechanisms and will enable studies of the functional results of developmental and evolutionary changes in skull morphology and physiology.

  5. Common Input to Motor Units of Intrinsic and Extrinsic Hand Muscles During Two-Digit Object Hold

    PubMed Central

    Winges, Sara A.; Kornatz, Kurt W.; Santello, Marco

    2014-01-01

    Anatomical and physiological evidence suggests that common input to motor neurons of hand muscles is an important neural mechanism for hand control. To gain insight into the synaptic input underlying the coordination of hand muscles, significant effort has been devoted to describing the distribution of common input across motor units of extrinsic muscles. Much less is known, however, about the distribution of common input to motor units belonging to different intrinsic muscles and to intrinsic-extrinsic muscle pairs. To address this void in the literature, we quantified the incidence and strength of near-simultaneous discharges of motor units residing in either the same or different intrinsic hand muscles (m. first dorsal, FDI, and m. first palmar interosseus, FPI) during two-digit object hold. To extend the characterization of common input to pairs of extrinsic muscles (previous work) and pairs of intrinsic muscles (present work), we also recorded electromyographic (EMG) activity from an extrinsic thumb muscle (m. flexor pollicis longus, FPL). Motor-unit synchrony across FDI and FPI was weak (common input strength, CIS, mean ± SE: 0.17 ± 0.02). Similarly, motor units from extrinsic-intrinsic muscle pairs were characterized by weak synchrony (FPL-FDI: 0.25 ± 0.02; FPL-FPI: 0.29 ± 0.03) although stronger than FDI-FPI. Last, CIS from within FDI and FPI was more than three times stronger (0.70 ± 0.06 and 0.66 ± 0.06, respectively) than across these muscles. We discuss present and previous findings within the framework of muscle-pair specific distribution of common input to hand muscles based on their functional role in grasping. PMID:18171707

  6. Common input to motor units of intrinsic and extrinsic hand muscles during two-digit object hold.

    PubMed

    Winges, Sara A; Kornatz, Kurt W; Santello, Marco

    2008-03-01

    Anatomical and physiological evidence suggests that common input to motor neurons of hand muscles is an important neural mechanism for hand control. To gain insight into the synaptic input underlying the coordination of hand muscles, significant effort has been devoted to describing the distribution of common input across motor units of extrinsic muscles. Much less is known, however, about the distribution of common input to motor units belonging to different intrinsic muscles and to intrinsic-extrinsic muscle pairs. To address this void in the literature, we quantified the incidence and strength of near-simultaneous discharges of motor units residing in either the same or different intrinsic hand muscles (m. first dorsal, FDI, and m. first palmar interosseus, FPI) during two-digit object hold. To extend the characterization of common input to pairs of extrinsic muscles (previous work) and pairs of intrinsic muscles (present work), we also recorded electromyographic (EMG) activity from an extrinsic thumb muscle (m. flexor pollicis longus, FPL). Motor-unit synchrony across FDI and FPI was weak (common input strength, CIS, mean +/- SE: 0.17 +/- 0.02). Similarly, motor units from extrinsic-intrinsic muscle pairs were characterized by weak synchrony (FPL-FDI: 0.25 +/- 0.02; FPL-FPI: 0.29 +/- 0.03) although stronger than FDI-FPI. Last, CIS from within FDI and FPI was more than three times stronger (0.70 +/- 0.06 and 0.66 +/- 0.06, respectively) than across these muscles. We discuss present and previous findings within the framework of muscle-pair specific distribution of common input to hand muscles based on their functional role in grasping.

  7. Shank Muscle Strength Training Changes Foot Behaviour during a Sudden Ankle Supination

    PubMed Central

    Hagen, Marco; Lescher, Stephanie; Gerhardt, Andreas; Lahner, Matthias; Felber, Stephan; Hennig, Ewald M.

    2015-01-01

    Background The peroneal muscles are the most effective lateral stabilisers whose tension braces the ankle joint complex against excessive supination. The purpose of this study was to identify the morphological and biomechanical effects of two machine-based shank muscle training methods. Methods Twenty-two healthy male recreationally active sports students performed ten weeks of single-set high resistance strength training with 3 training sessions per week. The subjects conducted subtalar pronator/supinator muscle training (ST) with the right leg by using a custom-made apparatus; the left foot muscles were exercised with machine-based talocrural plantar and dorsiflexor training (TT). Muscle strength (MVIC), muscle volume and foot biomechanics (rearfoot motion, ground reaction forces, muscle reaction times) during a sudden ankle supination were recorded before and after the intervention. Results Compared to TT, ST resulted in significantly higher pronator (14% vs. 8%, P<0.01) and supinator MVIC (25% vs. 12%, P<0.01). During sudden foot inversions, both ST and TT resulted in reduced supination velocity (-12%; P<0.01). The muscle reaction onset time was faster after the training in peroneus longus (PL) (P<0.01). Muscle volume of PL (P<0.01) and TA (P<0.01) increased significantly after both ST and TT. Conclusion After both ST and TT, the ankle joint complex is mechanically more stabilised against sudden supinations due to the muscle volume increase of PL and TA. As the reduced supination velocities indicate, the strength training effects are already present during free-fall. According to a sudden ankle supination in standing position, both machine-based dorsiflexor and pronator strength training is recommended for enhancing the mechanical stability of the ankle. PMID:26110847

  8. Causes of excitation-induced muscle cell damage in isometric contractions: mechanical stress or calcium overload?

    PubMed

    Fredsted, Anne; Gissel, Hanne; Madsen, Klavs; Clausen, Torben

    2007-06-01

    Prolonged or unaccustomed exercise leads to muscle cell membrane damage, detectable as release of the intracellular enzyme lactic acid dehydrogenase (LDH). This is correlated to excitation-induced influx of Ca2+, but it cannot be excluded that mechanical stress contributes to the damage. We here explore this question using N-benzyl-p-toluene sulfonamide (BTS), which specifically blocks muscle contraction. Extensor digitorum longus muscles were prepared from 4-wk-old rats and mounted on holders for isometric contractions. Muscles were stimulated intermittently at 40 Hz for 15-60 min or exposed to the Ca2+ ionophore A23187. Electrical stimulation increased 45Ca influx 3-5 fold. This was followed by a progressive release of LDH, which was correlated to the influx of Ca2+. BTS (50 microM) caused a 90% inhibition of contractile force but had no effect on the excitation-induced 45Ca influx. After stimulation, ATP and creatine phosphate levels were higher in BTS-treated muscles, most likely due to the cessation of ATP-utilization for cross-bridge cycling, indicating a better energy status of these muscles. No release of LDH was observed in BTS-treated muscles. However, when exposed to anoxia, electrical stimulation caused a marked increase in LDH release that was not suppressed by BTS but associated with a decrease in the content of ATP. Dynamic passive stretching caused no increase in muscle Ca2+ content and only a minor release of LDH, whereas treatment with A23187 markedly increased LDH release both in control and BTS-treated muscles. In conclusion, after isometric contractions, muscle cell membrane damage depends on Ca2+ influx and energy status and not on mechanical stress.

  9. Epinephrine depletion exacerbates the fasting-induced protein breakdown in fast-twitch skeletal muscles.

    PubMed

    Graça, Flávia A; Gonçalves, Dawit A P; Silveira, Wilian A; Lira, Eduardo C; Chaves, Valéria Ernestânia; Zanon, Neusa M; Garófalo, Maria Antonieta R; Kettelhut, Isis C; Navegantes, Luiz C C

    2013-12-01

    The physiological role of epinephrine in the regulation of skeletal muscle protein metabolism under fasting is unknown. We examined the effects of plasma epinephrine depletion, induced by adrenodemedullation (ADMX), on muscle protein metabolism in fed and 2-day-fasted rats. In fed rats, ADMX for 10 days reduced muscle mass, the cross-sectional area of extensor digitorum longus (EDL) muscle fibers, and the phosphorylation levels of Akt. In addition, ADMX led to a compensatory increase in muscle sympathetic activity, as estimated by the rate of norepinephrine turnover; this increase was accompanied by high rates of muscle protein synthesis. In fasted rats, ADMX exacerbated fasting-induced proteolysis in EDL but did not affect the low rates of protein synthesis. Accordingly, ADMX activated lysosomal proteolysis and further increased the activity of the ubiquitin (Ub)-proteasome system (UPS). Moreover, expression of the atrophy-related Ub ligases atrogin-1 and MuRF1 and the autophagy-related genes LC3b and GABARAPl1 were upregulated in EDL muscles from ADMX-fasted rats compared with sham-fasted rats, and ADMX reduced cAMP levels and increased fasting-induced Akt dephosphorylation. Unlike that observed for EDL muscles, soleus muscle proteolysis and Akt phosphorylation levels were not affected by ADMX. In isolated EDL, epinephrine reduced the basal UPS activity and suppressed overall proteolysis and atrogin-1 and MuRF1 induction following fasting. These data suggest that epinephrine released from the adrenal medulla inhibits fasting-induced protein breakdown in fast-twitch skeletal muscles, and these antiproteolytic effects on the UPS and lysosomal system are apparently mediated through a cAMP-Akt-dependent pathway, which suppresses ubiquitination and autophagy.

  10. Mapping of intramuscular tenderness and muscle fiber orientation of muscles in the beef round.

    PubMed

    Senaratne, L S; Calkins, C R; de Mello, A S; Pokharel, S; Hinkle, J B

    2010-09-01

    Intramuscular tenderness variation and muscle fiber orientation of beef M. adductor femoris (AF), M. biceps femoris (BF), M. gracilis (GL), M. pectineus (PT), M. sartorius (SR), M. semimembranosus (SM), M. semitendinosus (SO), M. vastus intermedius (VI), M. vastus medialis (VM), and M. vastus lateralis (VL) were investigated. The USDA Choice boxed beef subprimals were purchased and aged for 14 d from boxed date. The AF, BF, GL, PT, SR, SM, SO, VI, VM, and VL (n = 10 each) were fabricated from subprimals. Crust-frozen AF, BF, SO, SM, and VL were cut into 2.54-cm steaks perpendicular to the long axis and grilled (71 degrees C). The PT, SR, VI, and VM were grilled (71 degrees C) as whole muscles, whereas the GL was grilled after cutting into anterior and posterior regions. Grilled muscles were cut into equal size sections perpendicular to long axis of muscles. Location-specific cores were prepared from each steak/section, and Warner-Bratzler shear force (WBSF) was measured. The muscle fiber orientations of BF, PT, and VI were bipennate, SR and SO were fusiform, and AD, SM, VL, GL, and VM were unipennate. The overall mean WBSF values for BF, SO, AF, SM, PT, SR, GL, VI, VM, and VL were 5.62, 4.86, 4.18, 4.90, 3.76, 4.44, 4.75, 4.78, 4.24, and 6.53 kg, respectively. Based on WBSF values, PT was tender, BF and VL were tough, and VM, VI, SM, GL SR, AF, and SO were intermediate. The first 2 proximal steaks of long head BF were more tender than the rest (P < 0.05). In the SO, the tenderness decreased from the middle of the muscle to both ends (P < 0.05). The anterior sides of the long head BF and SO were tougher than their posterior sides (P < 0.05).The first 4 steaks of the SM were more tender than the rest of the muscle (P < 0.05). There was a significant tenderness increment from the middle of the AF and SR to both ends of each muscle (P < 0.05). The medial side of the VI was more tender than its lateral side (P < 0.05). The VM had its smallest shear force value at the

  11. Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice.

    PubMed

    Gambara, Guido; Salanova, Michele; Ciciliot, Stefano; Furlan, Sandra; Gutsmann, Martina; Schiffl, Gudrun; Ungethuem, Ute; Volpe, Pompeo; Gunga, Hanns-Christian; Blottner, Dieter

    2017-01-01

    Microgravity exposure as well as chronic disuse are two main causes of skeletal muscle atrophy in animals and humans. The antigravity calf soleus is a reference postural muscle to investigate the mechanism of disuse-induced maladaptation and plasticity of human and rodent (rats or mice) skeletal musculature. Here, we report microgravity-induced global gene expression changes in space-flown mouse skeletal muscle and the identification of yet unknown disuse susceptible transcripts found in soleus (a mainly slow phenotype) but not in extensor digitorum longus (a mainly fast phenotype dorsiflexor as functional counterpart to soleus). Adult C57Bl/N6 male mice (n = 5) flew aboard a biosatellite for 30 days on orbit (BION-M1 mission, 2013), a sex and age-matched cohort were housed in standard vivarium cages (n = 5), or in a replicate flight habitat as ground control (n = 5). Next to disuse atrophy signs (reduced size and myofiber phenotype I to II type shift) as much as 680 differentially expressed genes were found in the space-flown soleus, and only 72 in extensor digitorum longus (only 24 genes in common) compared to ground controls. Altered expression of gene transcripts matched key biological processes (contractile machinery, calcium homeostasis, muscle development, cell metabolism, inflammatory and oxidative stress response). Some transcripts (Fzd9, Casq2, Kcnma1, Ppara, Myf6) were further validated by quantitative real-time PCR (qRT-PCR). Besides previous reports on other leg muscle types we put forth for the first time a complete set of microgravity susceptible gene transcripts in soleus of mice as promising new biomarkers or targets for optimization of physical countermeasures and rehabilitation protocols to overcome disuse atrophy conditions in different clinical settings, rehabilitation and spaceflight.

  12. Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice

    PubMed Central

    Gambara, Guido; Salanova, Michele; Ciciliot, Stefano; Furlan, Sandra; Gutsmann, Martina; Schiffl, Gudrun; Ungethuem, Ute; Volpe, Pompeo; Gunga, Hanns-Christian; Blottner, Dieter

    2017-01-01

    Microgravity exposure as well as chronic disuse are two main causes of skeletal muscle atrophy in animals and humans. The antigravity calf soleus is a reference postural muscle to investigate the mechanism of disuse-induced maladaptation and plasticity of human and rodent (rats or mice) skeletal musculature. Here, we report microgravity-induced global gene expression changes in space-flown mouse skeletal muscle and the identification of yet unknown disuse susceptible transcripts found in soleus (a mainly slow phenotype) but not in extensor digitorum longus (a mainly fast phenotype dorsiflexor as functional counterpart to soleus). Adult C57Bl/N6 male mice (n = 5) flew aboard a biosatellite for 30 days on orbit (BION-M1 mission, 2013), a sex and age-matched cohort were housed in standard vivarium cages (n = 5), or in a replicate flight habitat as ground control (n = 5). Next to disuse atrophy signs (reduced size and myofiber phenotype I to II type shift) as much as 680 differentially expressed genes were found in the space-flown soleus, and only 72 in extensor digitorum longus (only 24 genes in common) compared to ground controls. Altered expression of gene transcripts matched key biological processes (contractile machinery, calcium homeostasis, muscle development, cell metabolism, inflammatory and oxidative stress response). Some transcripts (Fzd9, Casq2, Kcnma1, Ppara, Myf6) were further validated by quantitative real-time PCR (qRT-PCR). Besides previous reports on other leg muscle types we put forth for the first time a complete set of microgravity susceptible gene transcripts in soleus of mice as promising new biomarkers or targets for optimization of physical countermeasures and rehabilitation protocols to overcome disuse atrophy conditions in different clinical settings, rehabilitation and spaceflight. PMID:28076365

  13. Muscle strain (image)

    MedlinePlus

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  14. Musculotopic organization of the motor neurons supplying the mouse hindlimb muscles: a quantitative study using Fluoro-Gold retrograde tracing.

    PubMed

    Bácskai, Tímea; Rusznák, Zoltán; Paxinos, George; Watson, Charles

    2014-01-01

    We have mapped the motor neurons (MNs) supplying the major hindlimb muscles of transgenic (C57/BL6J-ChAT-EGFP) and wild-type (C57/BL6J) mice. The fluorescent retrograde tracer Fluoro-Gold was injected into 19 hindlimb muscles. Consecutive transverse spinal cord sections were harvested, the MNs counted, and the MN columns reconstructed in 3D. Three longitudinal MN columns were identified. The dorsolateral column extends from L4 to L6 and consists of MNs innervating the crural muscles and the foot. The ventrolateral column extends from L1 to L6 and accommodates MNs supplying the iliopsoas, gluteal, and quadriceps femoris muscles. The middle part of the ventral horn hosts the central MN column, which extends between L2 and L6 and consists of MNs for the thigh adductor, hamstring, and quadratus femoris muscles. Within these longitudinal columns, the arrangement of the different MN groups reflects their somatotopic organization. MNs innervating muscles developing from the dorsal (e.g., quadriceps) and ventral muscle mass (e.g., hamstring) are situated in the lateral and medial part of the ventral gray, respectively. MN pools belonging to proximal muscles (e.g., quadratus femoris and iliopsoas) are situated ventral to those supplying more distal ones (e.g., plantar muscles). Finally, MNs innervating flexors (e.g., posterior crural muscles) are more medial than those belonging to extensors of the same joint (e.g., anterior crural muscles). These data extend and modify the MN maps in the recently published atlas of the mouse spinal cord and may help when assessing neuronal loss associated with MN diseases.

  15. The Role of Magnetic Resonance Imaging in Athletic Pubalgia and Core Muscle Injury.

    PubMed

    Coker, Dana J; Zoga, Adam C

    2015-08-01

    Magnetic resonance imaging (MRI) has become the standard of care imaging modality for a difficult, often misunderstood spectrum of musculoskeletal injury termed athletic pubalgia or core muscle injury. Armed with a dedicated noncontrast athletic pubalgia protocol and a late model phased array receiver coil, the musculoskeletal imager can play a great role in effective diagnosis and treatment planning for lesions, including osteitis pubis, midline pubic plate lesions, and rectus abdominis/adductor aponeurosis injury. Beyond these established patterns of MRI findings, there are many confounders and contributing pathologies about the pelvis in patients with activity related groin pain, including internal and periarticular derangements of the hip. The MRI is ideally suited to delineate the extent of expected injury and to identify the unexpected visceral and musculoskeletal lesions.

  16. The principal structure of male genital sclerites and muscles of bombycoid moths, with special reference to Anthelidae (Lepidoptera: Bombycoidea).

    PubMed

    Zwick, Andreas

    2009-03-01

    Male genital structures and muscles of bombycoid moths have repeatedly been misidentified in the literature. Furthermore, the genital structures of some bombycoid families, such as the poorly known Australo-New Guinean Anthelidae, have essentially remained unstudied. Based on comparative morphology, this study details the principal arrangements of male genital sclerites and muscles in all bombycoid families, with particular focus on basic structures and their modifications in Anthelidae. Emphasis is placed on the homology of and fusions between these structures and their function, providing a basis for the interpretation of modifications in future phylogenetic and taxonomic studies. This includes the unique fusion of gnathos and valvae in several bombycoid families, the arrangement and extent of the fused tegumen and vinculum, as well as the homology of the "transtilla". Further, a modification of the valve adductor muscle (the segment IX sternum to valva muscle, m4) widely regarded as a synapomorphy of Bombycoidea is demonstrated to be non-existent, as is the presumed presence of the valve abductor muscle (the segment IX tergum to valva muscle, m2) in Saturniidae.

  17. The effect of taurine depletion on the contractile properties and fatigue in fast-twitch skeletal muscle of the mouse.

    PubMed

    Hamilton, E J; Berg, H M; Easton, C J; Bakker, A J

    2006-10-01

    Taurine increases force production in skeletal muscle, and taurine levels may fall during exercise. The contractile properties and fatigability of extensor digitorum longus (EDL) muscles depleted of taurine by guanodinoethane sulfonate (GES) treatment were investigated. GES treatment decreased muscle taurine levels to <40% of controls. Peak twitch force levels were 23% of controls in GES treated EDL muscles (p < 0.05), but maximal specific force was unaffected. The force-frequency relationship was examined and significantly less force was produced by the GES treated muscles compared to controls at stimulation frequencies from 50 to 100 Hz (p < 0.05). GES treated EDL muscles exhibited significantly slower rates of fatigue than controls (p < 0.05). In skinned fibres, 20 mM GES had a small but significant effect on force production, indicating that GES may have some minor taurine-like effects. In this study, a fall in taurine levels decreased force output, and increased the endurance of EDL skeletal muscles.

  18. Effect of aestivation on muscle characteristics and locomotor performance in the green-striped burrowing frog, Cyclorana alboguttata.

    PubMed

    Hudson, N J; Franklin, C E

    2002-02-01

    The Green-striped burrowing frog, Cyclorana alboguttata survives extended drought periods by burrowing underground and aestivating. These frogs remain immobile within cocoons of shed skin and mucus during aestivation and emerge from their burrows upon heavy rains to feed and reproduce. Extended periods of immobilisation in mammals typically result in muscle atrophy and a decrease in muscle performance. We examined the effect of aestivation and hence prolonged immobilisation, on skeletal muscle mass, in vitro muscle performance, and locomotor performance in C. alboguttata. Frogs were aestivated in soil for 3 months and were compared with control animals that remained active, were fed, and had a continual supply of water. Compared to the controls, the wet mass of the gastrocnemius, sartorius, gracilus major, semimembranosus, peroneus, extensor cruris, tibialis posticus and tibialis anticus longus of aestivators remained unchanged indicating no muscle atrophy. The in-vitro performance characteristics of the gastrocnemius muscle were maintained and burst swimming speed was unaffected, requiring no recovery from the extended period of immobilisation associated with aestivation. This preservation of muscle size, contractile condition and locomotor performance through aestivation enables C. alboguttata to compress their life history into unpredictable windows of opportunity, whenever heavy rains occur.

  19. L-carnitine pretreatment protects slow-twitch skeletal muscles in a rat model of ischemia-reperfusion injury.

    PubMed

    Demirel, Mert; Kaya, Burak; Cerkez, Cem; Ertunc, Mert; Sara, Yildirim

    2013-10-01

    Ischemia-reperfusion (I/R) injury negatively affects the outcome of surgical interventions for amputated or severely traumatized extremities. This study aimed to evaluate the protective role of l-carnitine on the contractile properties of fast-twitch (extensor digitorum longus [EDL]) and slow-twitch (soleus [SOL]) skeletal muscles following I/R-induced injury in a rat model. Rats were divided into 4 groups (1) saline pretreatment, (2) l-carnitine pretreatment, (3) saline pretreatment and I/R, and (4) l-carnitine pretreatment and I/R. Twitch and tetanic contractions in the EDL and SOL muscles in each group were recorded. Additionally, a fatigue protocol was performed in these muscles. Twitch and tetanic contraction amplitudes were lower in the EDL and SOL muscles in which I/R was induced (P < .01). l-Carnitine pretreatment significantly increased tetanic contraction amplitude in the SOL muscles following I/R (P < .01) but not in the EDL muscles. l-Carnitine pretreatment did not alter the fatigue response in any of the muscles.

  20. Sevoflurane enhances neuromuscular blockade by increasing the sensitivity of skeletal muscle to neuromuscular blockers

    PubMed Central

    Ye, Ling; Zuo, Yunxia; Zhang, Peng; Yang, Pingliang

    2015-01-01

    The aim of this study was to investigate the effects of sevoflurane on skeletal muscle contractility. In the first part, twenty-two American Society of Anesthesiology (ASA I-II) female adult patients undergoing elective hysterectomy surgery inhaled sevoflurane 1.0, 1.5 and 2.0 minimum alveolar concentrations (MAC) in succession. Neuromuscular function was assessed at each dose. In the second part, forty-four ASA I-II female adult patients were randomized into four groups: group 1 (propofol + atracurium, sevoflurane 0 MAC), and groups 2 to 4 (atracurium + sevoflurane 1.0, 1.5 and 2.0 MAC, respectively). In group 1, patients were anesthetized by propofol. Then 0.01 mg/kg atracurium was injected into the tested arm intravenously after the arterial blood flow was blocked using a tourniquet. For the other 3 groups, patients inhaled 1.0 MAC, 1.5 MAC, or 2.0 MAC of sevoflurane. Then 0.01 mg/kg atracurium was injected. Neuromuscular function was recorded for the 4 groups. Neuromuscular function was assessed by acceleromyography measurement of evoked responses to train-of four (TOF) stimuli (2 Hz for 2 s applied every 12 s) at the adductor pollicis using a TOF-GuardTM neuromuscular transmission monitor. Amplitudes of first response (T1) in each TOF sequence and the ratios of fourth TOF response (T4) to the first were similar at 1.0 MAC, 1.5 MAC, and 2.0 MAC sevoflurane. Compared to baseline, there was no significant change in the TOF value after inhaling 1.0 MAC, 1.5 MAC, or 2.0 MAC sevoflurane. Compared to group 1, there was no significant difference in atracurium onset time (time to reach TOF ratio = 0.25) in group 2 ( 5.6 ± 1.8 min vs. 6.5 ± 1.7 min, P>0.05), or degree of adductor pollicis block (subject number with TOF ratio = 0, 5 vs. 2 subjects, p = 0.3). However, inhaling 1.5 or 2.0 MAC sevoflurane decreased atracurium onset time (4.6 ± 1.5 min and 4.0 ± 1.3 min vs. 6.5 ± 1.7 min, P<0.01 and P<0.001, respectively), and enhanced the block degree (9 and 10 vs. 2

  1. A novel diffusion-tensor MRI approach for skeletal muscle fascicle length measurements.

    PubMed

    Oudeman, Jos; Mazzoli, Valentina; Marra, Marco A; Nicolay, Klaas; Maas, Mario; Verdonschot, Nico; Sprengers, Andre M; Nederveen, Aart J; Strijkers, Gustav J; Froeling, Martijn

    2016-12-01

    Musculoskeletal (dys-)function relies for a large part on muscle architecture which can be obtained using Diffusion-Tensor MRI (DT-MRI) and fiber tractography. However, reconstructed tracts often continue along the tendon or aponeurosis when using conventional methods, thus overestimating fascicle lengths. In this study, we propose a new method for semiautomatic segmentation of tendinous tissue using tract density (TD). We investigated the feasibility and repeatability of this method to quantify the mean fascicle length per muscle. Additionally, we examined whether the method facilitates measuring changes in fascicle length of lower leg muscles with different foot positions. Five healthy subjects underwent two DT-MRI scans of the right lower leg, with the foot in 15° dorsiflexion, neutral, and 30° plantarflexion positions. Repeatability of fascicle length measurements was assessed using Bland-Altman analysis. Changes in fascicle lengths between the foot positions were tested using a repeated multivariate analysis of variance (MANOVA). Bland-Altman analysis showed good agreement between repeated measurements. The coefficients of variation in neutral position were 8.3, 16.7, 11.2, and 10.4% for soleus (SOL), fibularis longus (FL), extensor digitorum longus (EDL), and tibialis anterior (TA), respectively. The plantarflexors (SOL and FL) showed significant increase in fascicle length from plantarflexion to dorsiflexion, whereas the dorsiflexors (EDL and TA) exhibited a significant decrease. The use of a tract density for semiautomatic segmentation of tendinous structures provides more accurate estimates of the mean fascicle length than traditional fiber tractography methods. The method shows moderate to good repeatability and allows for quantification of changes in fascicle lengths due to passive stretch.

  2. α-Adrenoceptor constrictor responses and their modulation in slow-twitch and fast-twitch mouse skeletal muscle

    PubMed Central

    Lambert, David G; Thomas, Gail D

    2005-01-01

    Vasoconstrictor responses to sympathetic nerve stimulation and their sensitivity to metabolic modulation reportedly differ in fast-twitch and slow-twitch muscles, but the underlying mechanisms are not known. Both α1- and α2-adrenoceptors mediate these vascular responses in fast-twitch muscle, while their roles in slow-twitch muscle are less well defined. In this study, the phosphorylation of smooth muscle myosin regulatory light chain (smRLC) was measured as an index of vasoconstriction in slow-twitch soleus muscles and fast-twitch extensor digitorum longus (EDL) muscles isolated from C57BL/6J mice. In soleus muscles, incubation with phenylephrine (PE) or UK 14,304 to selectively activate α1- or α2-adrenoceptors resulted in concentration-dependent increases in smRLC phosphorylation. To evaluate metabolic modulation of these responses, vasodilator pathways previously implicated in such modulation in fast-twitch muscle were activated in soleus muscles by treatment with the nitric oxide (NO) donor nitroprusside or the ATP-sensitive potassium (KATP) channel opener cromakalim. Both drugs inhibited responses to UK 14,304, but not to PE. The effect of nitroprusside to antagonize UK 14,304 responses was prevented by inhibition of guanylyl cyclase or by blockade of KATP channels, but not by blockade of other potassium channels. Results were similar in EDL muscles. These data provide the first evidence for α2-adrenoceptor-mediated constriction in slow-twitch muscle, and show that it is sensitive to modulation by NO via a cGMP-dependent mechanism that requires KATP channel activation. Based on the similar findings in soleus and EDL muscles, fibre type does not appear to determine the innate vascular response to α1- or α2-adrenoceptor activation. PMID:15618269

  3. Intrauterine structure of foot muscles in talipes equinovarus due to high-level myelomeningocele: a light microscopic study in fetal cadavers.

    PubMed

    Omeroğlu, Suna; Peker, Tuncay; Omeroğlu, Hakan; Gülekon, Nadir; Mungan, Tamer; Danişman, Nuri

    2004-07-01

    The purpose of this study was to investigate the light microscopic structure of extrinsic foot muscles in talipes equinovarus (TEV) deformity that developed during intrauterine life due to high-level myelomeningocele. Ten feet of five fetal cadavers ranging in age from 18 to 20 weeks were dissected. Five feet had typical TEV deformity and the other five feet did not have any deformity (control group). Under light microscopic examination quantitative measurement of both muscle fiber sizes and fibrosis in the muscle tissue were performed to investigate the denervation muscle atrophy. Mean muscle fiber size of the TEV group was found to be significantly lower than that of the control group in all foot muscles except the gastrocnemius muscle. The proportion of fibrosis due to denervation atrophy was significantly higher in the TEV group than in the control group in all muscles. This situation was most evident in the peroneus longus muscle. It was concluded that muscular imbalance due to significant muscular atrophy might be the cause of TEV deformity that developed during intrauterine life due to high-level myelomeningocele.

  4. Comparative Label-Free Mass Spectrometric Analysis of Mildly versus Severely Affected mdx Mouse Skeletal Muscles Identifies Annexin, Lamin, and Vimentin as Universal Dystrophic Markers.

    PubMed

    Holland, Ashling; Henry, Michael; Meleady, Paula; Winkler, Claudia K; Krautwald, Mirjam; Brinkmeier, Heinrich; Ohlendieck, Kay

    2015-06-19

    The primary deficiency in the membrane cytoskeletal protein dystrophin results in complex changes in dystrophic muscles. In order to compare the degree of secondary alterations in differently affected subtypes of skeletal muscles, we have conducted a global analysis of proteome-wide changes in various dystrophin-deficient muscles. In contrast to the highly degenerative mdx diaphragm muscle, which showed considerable alterations in 35 distinct proteins, the spectrum of mildly to moderately dystrophic skeletal muscles, including interosseus, flexor digitorum brevis, soleus, and extensor digitorum longus muscle, exhibited a smaller number of changed proteins. Compensatory mechanisms and/or cellular variances may be responsible for differing secondary changes in individual mdx muscles. Label-free mass spectrometry established altered expression levels for diaphragm proteins associated with contraction, energy metabolism, the cytoskeleton, the extracellular matrix and the cellular stress response. Comparative immunoblotting verified the differences in the degree of secondary changes in dystrophin-deficient muscles and showed that the up-regulation of molecular chaperones, the compensatory increase in proteins of the intermediate filaments, the fibrosis-related increase in collagen levels and the pathophysiological decrease in calcium binding proteins is more pronounced in mdx diaphragm as compared to the less severely affected mdx leg muscles. Annexin, lamin, and vimentin were identified as universal dystrophic markers.

  5. Carbonic Anhydrase III Is Expressed in Mouse Skeletal Muscles Independent of Fiber Type-Specific Myofilament Protein Isoforms and Plays a Role in Fatigue Resistance

    PubMed Central

    Feng, Han-Zhong; Jin, J.-P.

    2016-01-01

    Carbonic anhydrase III (CAIII) is a metabolic enzyme and a regulator for intracellular pH. CAIII has been reported with high level expression in slow twitch skeletal muscles. Here we demonstrate that CAIII is expressed in multiple slow and fast twitch muscles of adult mouse independent of the expression of myosin isoforms. Expressing similar fast type of myofilament proteins, CAIII-positive tibial anterior (TA) muscle exhibits higher tolerance to fatigue than that of CAIII-negative fast twitch extensor digitorum longus (EDL) muscle in in situ contractility studies. We further studied the muscles of CAIII knockout (Car3-KO) mice. The loss of CAIII in soleus and TA muscles in Car3-KO mice did not change muscle mass, sarcomere protein isoform contents, and the baseline twitch and tetanic contractility as compared with age-matched wild type (WT) controls. On the other hand, Car3-KO TA muscle showed faster force reduction at the beginning but higher resistance at the end during a fatigue test, followed by slower post fatigue recovery than that of WT TA muscle. Superfused Car3-KO soleus muscle also had faster total force reduction during fatigue test than that of WT soleus. However, it showed a less elevation of resting tension followed by a better post fatigue recovery under acidotic stress. CAIII was detected in neonatal TA and EDL muscle, downregulated during development, and then re-expressed in adult TA but not EDL muscles. The expression of CAIII in Tnnt1-KO myopathy mouse soleus muscle that has diminished slow fiber contents due to the loss of slow troponin T remained high. Car3-KO EDL, TA, and soleus muscles showed no change in the expression of mitochondria biomarker proteins. The data suggest a fiber type independent expression of CAIII with a role in the regulation of intracellular pH in skeletal muscle and may be explored as a target for improving fatigue resistance and for the treatment of TNNT1 myopathies. PMID:28018233

  6. Carbonic Anhydrase III Is Expressed in Mouse Skeletal Muscles Independent of Fiber Type-Specific Myofilament Protein Isoforms and Plays a Role in Fatigue Resistance.

    PubMed

    Feng, Han-Zhong; Jin, J-P

    2016-01-01

    Carbonic anhydrase III (CAIII) is a metabolic enzyme and a regulator for intracellular pH. CAIII has been reported with high level expression in slow twitch skeletal muscles. Here we demonstrate that CAIII is expressed in multiple slow and fast twitch muscles of adult mouse independent of the expression of myosin isoforms. Expressing similar fast type of myofilament proteins, CAIII-positive tibial anterior (TA) muscle exhibits higher tolerance to fatigue than that of CAIII-negative fast twitch extensor digitorum longus (EDL) muscle in in situ contractility studies. We further studied the muscles of CAIII knockout (Car3-KO) mice. The loss of CAIII in soleus and TA muscles in Car3-KO mice did not change muscle mass, sarcomere protein isoform contents, and the baseline twitch and tetanic contractility as compared with age-matched wild type (WT) controls. On the other hand, Car3-KO TA muscle showed faster force reduction at the beginning but higher resistance at the end during a fatigue test, followed by slower post fatigue recovery than that of WT TA muscle. Superfused Car3-KO soleus muscle also had faster total force reduction during fatigue test than that of WT soleus. However, it showed a less elevation of resting tension followed by a better post fatigue recovery under acidotic stress. CAIII was detected in neonatal TA and EDL muscle, downregulated during development, and then re-expressed in adult TA but not EDL muscles. The expression of CAIII in Tnnt1-KO myopathy mouse soleus muscle that has diminished slow fiber contents due to the loss of slow troponin T remained high. Car3-KO EDL, TA, and soleus muscles showed no change in the expression of mitochondria biomarker proteins. The data suggest a fiber type independent expression of CAIII with a role in the regulation of intracellular pH in skeletal muscle and may be explored as a target for improving fatigue resistance and for the treatment of TNNT1 myopathies.

  7. Muscle Trigger Points and Pressure Pain Sensitivity Maps of the Feet in Women with Fibromyalgia Syndrome.

    PubMed

    Tornero-Caballero, Maria C; Salom-Moreno, Jaime; Cigarán-Méndez, Margarita; Morales-Cabezas, Matilde; Madeleine, Pascal; Fernández-de-Las-Peñas, César

    2016-10-01

    OBJECTIVE : To investigate the presence of trigger points (TrPs) in feet musculature and topographical pressure sensitivity maps of the feet as well as the relationship between TrPs, pressure pain maps, and clinical variables in women with fibromyalgia (FMS). METHODS : Fifty-one FMS women and 24 comparable healthy women participated. TrPs within the flexor hallucis brevis, adductor hallucis, dorsal interossei, extensor digitorum brevis, and quadratus plantae, as well as external and internal gastrocnemius, were explored. Pressure pain thresholds (PPTs) were assessed in a blind manner over seven locations on each foot. Topographical pressure sensitivity maps of the plantar region were generated using the averaged PPT of each location. RESULTS : The prevalence rate of foot pain was 63% (n = 32). The number of active TrPs for each FMS woman with foot pain was 5 ± 1.5 without any latent TrPs. Women with FMS without foot pain and healthy controls had only latent TrPs (2.2 ± 0.8 and 1.5 ± 1.3, respectively). Active TrPs in the flexor hallucis brevis and adductor hallucis muscles were the most prevalent. Topographical pressure pain sensitivity maps revealed that FMS women with foot pain had lower PPT than FMS women without pain and healthy controls, and higher PPT on the calcaneus bone (P < 0.001). CONCLUSIONS : The presence of foot pain in women with FMS is high. The referred pain elicited by active TrPs in the foot muscles reproduced the symptoms in these patients. FMS women suffering foot pain showed higher pressure hypersensitivity in the plantar region than those FMS women without pain.

  8. Adaptive control for backward quadrupedal walking VI. metatarsophalangeal joint dynamics and motor patterns of digit muscles.

    PubMed

    Trank, T V; Smith, J L

    1996-02-01

    1. We compared the dynamics of the metatarsophalangeal (MTP) joint of the cat's hind paw and the motor patterns of two short and four long muscles of the digits for two walking forms, forward (FWD) and backward (BWD). Kinematic (angular displacements) data digitized from high-speed ciné film and electromyographic (EMG) data were synchronized and assessed for bouts of treadmill walking. Kinetic data (joint forces) were calculated from kinematic and anthropometric data with the use of inverse-dynamic calculations in which the MTP joint net torque was divided into gravitational, motion-dependent, ground contact (absent for swing), and muscle torque components. Swing-phase kinetics were calculated from treadmill steps and stance-phase kinetics from overground steps in which one hind paw contacted a miniature force platform embedded in the walkway. 2. The plantar angle at the intersection of the metatarsal and phalangeal segmental lines was used to measure MTP angular displacements. During swing for both walking forms, the MTP joint flexed (F) and then extended (E); however, the F-E transition occurred at the onset of FWD swing and at the end of BWD swing. For FWD walking, the MTP joint extended at a constant velocity during most of stance as the cat's weight rotated forward over the paw. During the unweighting phase at the end of stance, the MTP joint flexed rapidly before paw lift off. For BWD walking, the MTP joint extended briefly at stance onset (similar to a yield) and then flexed at a constant velocity as the cat's weight rotated backward over the paw. At the end of stance, the MTP joint extended and then flexed slightly as the paw was unweighted before paw lift off. 3. For both forms of walking, three of the six muscles tested were recruited just before paw contact and remained active for most (75-80%) of stance for both walking forms: plantaris (PLT), flexor hallucis longus (FHL), and flexor digitorum brevis (FDB). Their recruitment contributed to the flexor

  9. Proteomic and carbonylation profile analysis of rat skeletal muscles following acute swimming exercise.

    PubMed

    Magherini, Francesca; Gamberi, Tania; Pietrovito, Laura; Fiaschi, Tania; Bini, Luca; Esposito, Fabio; Marini, Marina; Abruzzo, Provvidenza Maria; Gulisano, Massimo; Modesti, Alessandra

    2013-01-01

    Previous studies by us and other groups characterized protein expression variation following long-term moderate training, whereas the effects of single bursts of exercise are less known. Making use of a proteomic approach, we investigated the effects of acute swimming exercise (ASE) on protein expression and carbonylation patterns in two hind limb muscles: the Extensor Digitorum Longus (EDL) and the Soleus, mostly composed of fast-twitch and slow-twitch fibres, respectively. Carbonylation is one of the most common oxidative modifications of proteins and a marker of oxidative stress. In fact, several studies suggest that physical activity and the consequent increase in oxygen consumption can lead to increase in reactive oxygen and nitrogen species (RONS) production, hence the interest in examining the impact of RONS on skeletal muscle proteins following ASE. Results indicate that protein expression is unaffected by ASE in both muscle types. Unexpectedly, the protein carbonylation level was reduced following ASE. In particular, the analysis found 31 and 5 spots, in Soleus and EDL muscles respectively, whose carbonylation is reduced after ASE. Lipid peroxidation levels in Soleus were markedly reduced as well. Most of the decarbonylated proteins are involved either in the regulation of muscle contractions or in the regulation of energy metabolism. A number of hypotheses may be advanced to account for such results, which will be addressed in future studies.

  10. Effect of ethyl pyruvate on skeletal muscle metabolism in rats fed on a high fat diet.

    PubMed

    Olek, Robert A; Ziolkowski, Wieslaw; Wierzba, Tomasz H; Kaczor, Jan J

    2013-07-01

    Impaired mitochondrial capacity may be implicated in the pathology of chronic metabolic diseases. To elucidate the effect of ethyl pyruvate supplementation on skeletal muscles metabolism we examined changes in activities of mitochondrial and antioxidant enzymes, as well as sulfhydryl groups oxidation (an indirect marker of oxidative stress) during the development of obesity. After 6 weeks feeding of control or high fat diet, Wistar rats were divided into four groups: control diet, control diet and ethyl pyruvate, high fat diet, and high fat diet and ethyl pyruvate. Ethyl pyruvate was administered as 0.3% solution in drinking water, for the following 6 weeks. High fat diet feeding induced the increase of activities 3-hydroxyacylCoA dehydrogenase, citrate synthase, and fumarase. Moreover, higher catalase and superoxide dismutase activities, as well as sulfhydryl groups oxidation, were noted. Ethyl pyruvate supplementation did not affect the mitochondrial enzymes' activities, but induced superoxide dismutase activity and sulfhydryl groups oxidation. All of the changes were observed in soleus muscle, but not in extensor digitorum longus muscle. Additionally, positive correlations between fasting blood insulin concentration and activities of catalase (p = 0.04), and superoxide dismutase (p = 0.01) in soleus muscle were noticed. Prolonged ethyl pyruvate consumption elevated insulin concentration, which may cause modifications in oxidative type skeletal muscles.

  11. Built for rowing: frog muscle is tuned to limb morphology to power swimming

    PubMed Central

    Richards, Christopher T.; Clemente, Christofer J.

    2013-01-01

    Rowing is demanding, in part, because drag on the oars increases as the square of their speed. Hence, as muscles shorten faster, their force capacity falls, whereas drag rises. How do frogs resolve this dilemma to swim rapidly? We predicted that shortening velocity cannot exceed a terminal velocity where muscle and fluid torques balance. This terminal velocity, which is below Vmax, depends on gear ratio (GR = outlever/inlever) and webbed foot area. Perhaps such properties of swimmers are ‘tuned’, enabling shortening speeds of approximately 0.3Vmax for maximal power. Predictions were tested using a ‘musculo-robotic’ Xenopus laevis foot driven either by a living in vitro or computational in silico plantaris longus muscle. Experiments verified predictions. Our principle finding is that GR ranges from 11.5 to 20 near the predicted optimum for rowing (GR ≈ 11). However, gearing influences muscle power more strongly than foot area. No single morphology is optimal for producing muscle power. Rather, the ‘optimal’ GR decreases with foot size, implying that rowing ability need not compromise jumping (and vice versa). Thus, despite our neglect of additional forces (e.g. added mass), our model predicts pairings of physiological and morphological properties to confer effective rowing. Beyond frogs, the model may apply across a range of size and complexity from aquatic insects to human-powered rowing. PMID:23676897

  12. Segmental distribution of myosin heavy chain isoforms within single muscle fibers.

    PubMed

    Zhang, Ming; Gould, Maree

    2017-02-18

    Despite many studies looking at the distribution of myosin heavy chain (MHC) isoforms across a transverse section of muscle, knowledge of MHC distribution along the longitudinal axis of a single skeletal muscle fiber has been relatively overlooked. Immunocytochemistry was performed on serial sections of rat extensor digitorum longus (EDL) muscle to identify MHC types I, IIA, IIX, IIY and IIB. Sixteen fascicles which contained a total of 362 fibers were randomly and systematically sampled from the 3 EDL muscles. All MHC type I and type II isoforms were expressed. Segmental expression occurred within a very limited segment. MHC isoform expression followed the accepted traditional order from I&cenveo_unknown_entity_wingdings_F0F3;IIA&cenveo_unknown_entity_wingdings_F0F3;IIX&cenveo_unknown_entity_wingdings_F0F3;IIB, however in some samples expression of an isoform was circumvented from IIB to I or from I to IIB directly. Segmental distribution of MHC isoforms along a single muscle fiber may be due to the myonuclear domain. This article is protected by copyright. All rights reserved.

  13. Target-derived trophic effect on skeletal muscle innervation in senescent mice.

    PubMed

    Messi, Maria Laura; Delbono, Osvaldo

    2003-02-15

    In the present work, we tested the hypothesis that target-derived insulin-like growth factor-1 (IGF-1) prevents alterations in neuromuscular innervation in aging mammals. To explore this hypothesis, we studied senescent wild-type mice as a model of deficient IGF-1 secretion and signaling and S1S2 transgenic mice as a tool to investigate the role of sustained overexpression of IGF-1 in striated muscle in neuromuscular innervation. The analysis of the nerve terminal in extensor digitorum longus muscles from senescent mice showed that the decrease in the percentage of cholinesterase-stained zones (CSZ) exhibiting nerve terminal branching, number of nerve branches at the CSZ, and nerve branch points was partially or completely reversed by sustained overexpression of IGF-1 in skeletal muscle. Target-derived IGF-1 also prevented age-related decreases in the postterminal alpha-bungarotoxin immunostained area, as well as the reduction in the number and length of postsynaptic folds, and area and density of postsynaptic folds studied with electron microscopy. Overexpression of IGF-1 in skeletal muscle may account for the lack of age-dependent switch in muscle fiber type composition recorded in senescent mice. In summary, the use of the S1S2 IGF-1 transgenic mouse model allowed us to provide morphological evidence for the role of target-derived IGF-1 in spinal cord motor neurons in senescent mice.

  14. Effects of Latrodectus spider venoms on sensory and motor nerve terminals of muscle spindles.

    PubMed

    Queiroz, L S; Duchen, L W

    1982-08-23

    The effects of the venoms of the spiders Latrodectus mactans tredecimguttatus (black widow) and Latrodectus mactans hasselti (red back) on sensory nerve terminals in muscle spindles were studied in the mouse. A sublethal dose of venom was injected into tibialis anterior and extensor digitorum longus muscles of one leg. After survival from 30 minutes to 6 weeks muscles were examined in serial paraffin sections impregnated with silver or by electron microscopy. Sensory endings became swollen, some within 30 minutes, while over the next few hours there was progressive degeneration of annulospiral endings. By 24 hours every spindle identified by light or electron microscopy was devoid of sensory terminals. Degenerated nerve endings were taken up into the sarcoplasm of intrafusal muscle fibres. Regeneration of sensory axons began within 24 hours, new incomplete spirals were formed by 5 days and by 1 week annulospiral endings were almost all normal in appearance. Intrafusal motor terminals underwent similar acute degenerative and regenerative changes. These experiments show that intrafusal sensory and motor terminals are equally affected by Latrodectus venoms. Sensory nerve fibres possess a capacity for regeneration equal to that of motor fibres and reinnervate intrafusal muscle fibres close to their original sites of innervation.

  15. Extracellular hyperosmotic stress stimulates glucose uptake in incubated fast-twitch rat skeletal muscle.

    PubMed

    Farlinger, Chris M; Lui, Adrian J; Harrison, Rose C; LeBlanc, Paul J; Peters, Sandra J; Roy, Brian D

    2013-06-01

    The influence of hyperosmotic stress on glucose uptake, handling, and signaling processes remains unclear in mammalian skeletal muscle. Thus, the purpose of this study was to investigate alterations in glucose uptake and handling during extracellular hyperosmotic stress in isolated fast-twitch mammalian skeletal