Science.gov

Sample records for adductor muscle mantle

  1. Adductor muscle strains in sport.

    PubMed

    Nicholas, Stephen J; Tyler, Timothy F

    2002-01-01

    An in-season adductor muscle strain may be debilitating for the athlete. Furthermore, an adductor strain that is treated improperly could become chronic and career threatening. Any one of the six muscles of the adductor group could be involved. The degree of injury can range from a minor strain (Grade I), where minimal playing time is lost, to a severe strain (Grade III) in which there is complete loss of muscle function. Ice hockey and soccer players seem particularly susceptible to adductor muscle strains. In professional ice hockey players throughout the world, approximately 10% of all injuries are groin strains. These injuries, which have been linked to hip muscle weakness, previous injuries to that area, preseason practice sessions and level of experience, may be preventable if such risk factors can be addressed before each season. Hip-strengthening exercises were shown to be an effective method of reducing the incidence of adductor strains in one closely followed National Hockey League ice hockey team. Despite the identification of risk factors and strengthening intervention for ice hockey players, adductor strains continue to occur throughout sport. Clinicians feel an active training programme, along with completely restoring the strength of the adductor muscle group, is the key to successful rehabilitation. Surgical intervention is available if nonoperative treatment fails for 6 months or longer. Adductor release and tenotomy was reported to have limited success in athletes. PMID:11929360

  2. Isokinetic imbalance of adductor-abductor hip muscles in professional soccer players with chronic adductor-related groin pain.

    PubMed

    Belhaj, K; Meftah, S; Mahir, L; Lmidmani, F; Elfatimi, A

    2016-11-01

    This study aims to compare the isokinetic profile of hip abductor and adductor muscle groups between soccer players suffering from chronic adductor-related groin pain (ARGP), soccer players without ARGP and healthy volunteers from general population. Study included 36 male professional soccer players, who were randomly selected and followed-up over two years. Of the 21 soccer players eligible to participate in the study, 9 players went on to develop chronic ARGP and 12 players did not. Ten healthy male volunteers were randomly selected from the general population as a control group. Comparison between the abductor and adductor muscle peak torques for players with and without chronic ARGP found a statistically significant difference on the dominant and non-dominant sides (p < .005), with the abductor muscle significantly stronger than the adductor muscle. In the group of healthy volunteers, the adductor muscle groups were significantly stronger than the abductor muscle groups on both dominant and non-dominant sides (p < .05). For the group of players who had developed chronic ARGP, abductor-adductor torque ratios were significantly higher on the affected side (p = .008). The adductor muscle strength was also significantly decreased on the affected side. This imbalance appears to be a risk factor for adductor-related groin injury. Therefore, restoring the correct relationship between these two agonist and antagonist hip muscles may be an important preventative measure that should be a primary concern of training and rehabilitation programmes. PMID:27017973

  3. Diagnosing adductor muscle avulsion at the symphysis pubis with ultrasound.

    PubMed

    Chen, David J; Caldera, Franklin E; Kim, Woojin

    2014-04-01

    A 58-yr-old woman presented after experiencing left hip and groin pain for 1 mo. She denies any history of trauma, falls or any bruising, or history of sports injury or extreme physical exertion before her symptoms. On ultrasonography, she was found to have an avulsion tear at the origin of the adductor muscles, predominantly involving the adductor longus and brevis muscles. The treatment course was conservative: nonsteroidal anti-inflammatory drugs for pain control and physical therapy for muscle strengthening and balance improvement. Upon follow-up, she demonstrated significant improvement and resolution of her pain. PMID:24196970

  4. Diagnosing adductor muscle avulsion at the symphysis pubis with ultrasound.

    PubMed

    Chen, David J; Caldera, Franklin E; Kim, Woojin

    2014-04-01

    A 58-yr-old woman presented after experiencing left hip and groin pain for 1 mo. She denies any history of trauma, falls or any bruising, or history of sports injury or extreme physical exertion before her symptoms. On ultrasonography, she was found to have an avulsion tear at the origin of the adductor muscles, predominantly involving the adductor longus and brevis muscles. The treatment course was conservative: nonsteroidal anti-inflammatory drugs for pain control and physical therapy for muscle strengthening and balance improvement. Upon follow-up, she demonstrated significant improvement and resolution of her pain.

  5. Extraction and Identification of the Pigment in the Adductor Muscle Scar of Pacific Oyster Crassostrea gigas

    PubMed Central

    Wei, Lei; Li, Jian; Li, Zhonghu; Wang, Xiaotong

    2015-01-01

    In this study, UV (ultraviolet) and IR (infrared radiation) spectral analysis were integrated to identify the pigment in the adductor muscle scar of the Pacific oyster Crassostrea gigas. The pigment was extracted from the adductor muscle scars of cleaned oyster shells that were pulverized, hydrolyzed in hot hydrochloric acid, purified with diethyl ether, and dissolved in 0.01 mL/L NaOH. The maximum absorption of the pigment in the UV absorption spectrum within the range of 190–500 nm was observed between 210–220 nm. The UV absorbance decreased with increasing wavelength which was consistent with the UV spectral absorption characteristics of melanin. In addition, Fourier transform infrared spectroscopy scanning revealed characteristic absorption peaks that emerged near 3440 cm-1 and 1630 cm-1, which was consistent with infrared scanning features of eumelanin (a type of melanin). This study has demonstrated for the first time that the pigment in the adductor muscle scar of the Pacific oyster is melanin, hinting that the adductor muscle could be another organ pigmenting the mollusc shell with melanin other than mantle. PMID:26555720

  6. Preferential denervation of the adductor muscles of the equine larynx. I: Muscle pathology.

    PubMed

    Duncan, I D; Amundson, J; Cuddon, P A; Sufit, R; Jackson, K F; Lindsay, W A

    1991-03-01

    The laryngeal muscles of 18 horses were examined histologically. The neurogenic changes found in each muscle were scored by four reviewers and the results evaluated statistically. Fifteen of these horses had endoscopic evidence of abnormal laryngeal function, three of which were defined as having adductor paralysis. Measurement of muscle fibre area in two horses with idiopathic laryngeal hemiplegia (ILH) was performed. In the quantitative study of neurogenic change, the adductor muscles were more significantly affected than the abductor muscle. This was also true in the clinical cases of ILH where measurement of muscle fibre area demonstrated that the lateral cricoarytenoid (adductor) muscles showed a wider range of pathological changes than the dorsal cricoarytenoid muscle (abductor). Those horses with the most severe muscle pathology also had the most abnormal endoscopic findings. The propensity for denervation of the adductor muscles should provide clues as to the pathogenesis and natural history of horses with sub-clinical laryngeal disease and ILH.

  7. Heat treatment of scallop adductor muscle using superheated steam.

    PubMed

    Abe, T; Miyashita, K

    2007-08-01

    Scallop (Patinopecten yessoensis) adductor muscles were heated using superheated steam (150 and 200 degrees C), boiling (98 degrees C), and normal steaming (95 degrees C). The amounts of amino acids, water-soluble peptides, and nucleotides, expressed as extractive nitrogen in scallop products, are very important elements of quality and taste. After 15-min heating of scallop muscles with normal steaming and boiling, respective losses of 50% and 64% of the extractive nitrogen were observed. However, most extractive nitrogen (> 86%) remained in the scallop muscles treated with superheated steam at 150 and 200 degrees C. Protective effects of superheated steam against elution loss of nitrogen compounds were also observed in amino acid analyses of the heated products. The scallop-muscle surface temperature during treatment with superheated steam increased more quickly than that with normal steaming and boiling. The rapid water loss and the surface protein denaturation engendered formation of a 30-mum-thick film covering the surface, which prevented extractive nitrogen loss from internal tissues. Superheated steam treatment at 200 degrees C caused browning, surface shrinkage, and 47% weight loss. In marked contrast, the appearance and the weight loss of sample treated at 150 degrees C were almost the same as those of normal steaming and boiling-treated samples. These results suggested that superheated steaming at 150 degrees C is an optimal heat treatment of scallop adductor muscles.

  8. Heat treatment of scallop adductor muscle using superheated steam.

    PubMed

    Abe, T; Miyashita, K

    2007-08-01

    Scallop (Patinopecten yessoensis) adductor muscles were heated using superheated steam (150 and 200 degrees C), boiling (98 degrees C), and normal steaming (95 degrees C). The amounts of amino acids, water-soluble peptides, and nucleotides, expressed as extractive nitrogen in scallop products, are very important elements of quality and taste. After 15-min heating of scallop muscles with normal steaming and boiling, respective losses of 50% and 64% of the extractive nitrogen were observed. However, most extractive nitrogen (> 86%) remained in the scallop muscles treated with superheated steam at 150 and 200 degrees C. Protective effects of superheated steam against elution loss of nitrogen compounds were also observed in amino acid analyses of the heated products. The scallop-muscle surface temperature during treatment with superheated steam increased more quickly than that with normal steaming and boiling. The rapid water loss and the surface protein denaturation engendered formation of a 30-mum-thick film covering the surface, which prevented extractive nitrogen loss from internal tissues. Superheated steam treatment at 200 degrees C caused browning, surface shrinkage, and 47% weight loss. In marked contrast, the appearance and the weight loss of sample treated at 150 degrees C were almost the same as those of normal steaming and boiling-treated samples. These results suggested that superheated steaming at 150 degrees C is an optimal heat treatment of scallop adductor muscles. PMID:17995678

  9. Influence of electrical stimulation on hip joint adductor muscle activity during maximum effort

    PubMed Central

    Nakano, Sota; Wada, Chikamune

    2016-01-01

    [Purpose] This study investigated whether hip adductor activity was influenced by electrical stimulation of the tensor fascia lata muscle. [Subjects and Methods] The subjects were 16 nondisabled males. Each subject was asked to adduct the hip joint with maximum effort. The electromyogram of the adductor longus was recorded under two experimental conditions, with and without electrical stimulation of the tensor fascia lata. [Results] In the presence of electrical stimulation, muscle activity decreased to 72.9% (57.8–89.3%) of that without stimulation. [Conclusion] These results suggested that inactivation of the adductor group was promoted by electrical stimulation of the tensor fascia lata. PMID:27313387

  10. The hip adductor muscle group in caviomorph rodents: anatomy and homology.

    PubMed

    García-Esponda, César M; Candela, Adriana M

    2015-06-01

    Anatomical comparative studies including myological data of caviomorph rodents are relatively scarce, leading to a lack of use of muscular features in cladistic and morphofunctional analyses. In rodents, the hip adductor muscles constitute an important group of the hindlimb musculature, having an important function during the beginning of the stance phase. These muscles are subdivided in several distinct ways in the different clades of rodents, making the identification of their homologies hard to establish. In this contribution we provide a detailed description of the anatomical variation of the hip adductor muscle group of different genera of caviomorph rodents and identify the homologies of these muscles in the context of Rodentia. On this basis, we identify the characteristic pattern of the hip adductor muscles in Caviomorpha. Our results indicate that caviomorphs present a singular pattern of the hip adductor musculature that distinguishes them from other groups of rodents. They are characterized by having a single m. adductor brevis that includes solely its genicular part. This muscle, together with the m. gracilis, composes a muscular sheet that is medial to all other muscles of the hip adductor group. Both muscles probably have a synergistic action during locomotion, where the m. adductor brevis reinforces the multiple functions of the m. gracilis in caviomorphs. Mapping of analyzed myological characters in the context of Rodentia indicates that several features are recovered as potential synapomorphies of caviomorphs. Thus, analysis of the myological data described here adds to the current knowledge of caviomorph rodents from anatomical and functional points of view, indicating that this group has features that clearly differentiate them from other rodents. PMID:25911542

  11. Thickness of the adductor pollicis muscle in nutritional assessment of surgical patients

    PubMed Central

    Valente, Katarina Papera; Silva, Naira Marceli Fraga; Faioli, Amanda Barcelos; Barreto, Marina Abelha; de Moraes, Rafael Araújo Guedes; Guandalini, Valdete Regina

    2016-01-01

    ABSTRACT Objective To evaluate the correlation between thickness of the muscle adductor pollicis and anthropometric measurements, body mass index and Subjective Global Assessment in the nutritional assessment of surgical patients. Methods The study population comprised patients admitted to the general and reconstructive surgery unit of a university hospital in the city of Vitória (ES), Brazil. The inclusion criteria were patients evaluated in the first 48 hours of admission, aged ≥20 years, hemodynamically stable, with no edema or ascites. Data analysis was performed using the software Statistical Package for Social Science 21.0, significance level of 5%. Results The sample consisted of 150 patients that were candidates to surgery, mean age of 42.7±12.0 years. The most common reasons for hospitalization were surgical procedures, gastrintestinal diseases and neoplasm. Significant association was observed between thickness of adductor pollicis muscle and Subjective Global Assessment (p=0.021) and body mass index (p=0.008) for nutritional risk. Significant correlation was found between thickness of adductor pollicis muscle and arm muscle circumference, corrected arm muscle area, calf circumference and body mass index. There were no significant correlations between thickness of adductor pollicis muscle and triceps skinfold and age. Conclusion The use of thickness of adductor pollicis muscle proved to be an efficient method to detect malnutrition in surgical patients and it should be added to the screening process of hospitalized patients, since it is easy to perform, inexpensive and noninvasive. PMID:27074229

  12. Preferential denervation of the adductor muscles of the equine larynx. II: Nerve pathology.

    PubMed

    Duncan, I D; Reifenrath, P; Jackson, K F; Clayton, M

    1991-03-01

    The terminal branches of the recurrent laryngeal nerve (RLN) of three normal ponies and six horses with sub-clinical laryngeal disease were examined qualitatively and quantitatively in an attempt to explain the preferential denervation of the laryngeal adductor muscles in the neuropathy of idiopathic laryngeal hemiplegia (ILH). The myelinated fibre spectra of all the motor nerve fibres in the left and right abductor and adductor branches of the RLN in three normal ponies were measured. The density of myelinated fibres was also calculated. There was no significant difference between the larger group of myelinated fibres in the adductor or abductor branches. In the six horses with laryngeal hemiparesis, however, there was a marked preferential loss of the medium/large size myelinated fibres in the left adductor branch, although nerve fibre densities were not significantly different. While no simple morphometrical feature was found to explain the selective muscle denervation, the greater loss of large diameter myelinated fibres in the adductor branches confirms the earlier observation of adductor muscle susceptibility in the neuropathy of ILH.

  13. Chronic exertional compartment syndrome in adductor pollicis muscle: case report.

    PubMed

    Lee, Chang-Hun; Lee, Kwang-Hyun; Lee, Seung-Hun; Kim, Yee-Suk; Chung, Ung-Seo

    2012-11-01

    We report a case of chronic exertional compartment syndrome in the adductor pollicis that was confirmed by measuring elevated compartment pressure. Specific finding of magnetic resonance imaging, increased T2 signal intensity in the involved compartment, was also useful for the diagnosis. Pain was relieved by fasciotomy through a volar approach. PMID:23040640

  14. The Jaw Adductor Muscle Complex in Teleostean Fishes: Evolution, Homologies and Revised Nomenclature (Osteichthyes: Actinopterygii)

    PubMed Central

    Datovo, Aléssio; Vari, Richard P.

    2013-01-01

    The infraclass Teleostei is a highly diversified group of bony fishes that encompasses 96% of all species of living fishes and almost half of extant vertebrates. Evolution of various morphological complexes in teleosts, particularly those involving soft anatomy, remains poorly understood. Notable among these problematic complexes is the adductor mandibulae, the muscle that provides the primary force for jaw adduction and mouth closure and whose architecture varies from a simple arrangement of two segments to an intricate complex of up to ten discrete subdivisions. The present study analyzed multiple morphological attributes of the adductor mandibulae in representatives of 53 of the 55 extant teleostean orders, as well as significant information from the literature in order to elucidate the homologies of the main subdivisions of this muscle. The traditional alphanumeric terminology applied to the four main divisions of the adductor mandibulae – A1, A2, A3, and Aω – patently fails to reflect homologous components of that muscle across the expanse of the Teleostei. Some features traditionally used as landmarks for identification of some divisions of the adductor mandibulae proved highly variable across the Teleostei; notably the insertion on the maxilla and the position of muscle components relative to the path of the ramus mandibularis trigeminus nerve. The evolutionary model of gain and loss of sections of the adductor mandibulae most commonly adopted under the alphanumeric system additionally proved ontogenetically incongruent and less parsimonious than a model of subdivision and coalescence of facial muscle sections. Results of the analysis demonstrate the impossibility of adapting the alphanumeric terminology so as to reflect homologous entities across the spectrum of teleosts. A new nomenclatural scheme is proposed in order to achieve congruence between homology and nomenclature of the adductor mandibulae components across the entire Teleostei. PMID

  15. Botulinum toxin type A in the treatment of painful adductor muscle contracture after total hip arthroplasty.

    PubMed

    Santamato, Andrea; Ranieri, Maurizio; Panza, Francesco; Solfrizzi, Vincenzo; Frisardi, Vincenza; Lapenna, Luisa Maria; Moretti, Biagio; Fiore, Pietro

    2009-10-01

    Painful adductor muscle contracture is an important cause of failure during rehabilitation following total hip arthroplasty (THA). Adductor muscle contracture may be caused by postoperative muscle retractions, adhesive capsulitis, postoperative leg-length inequalities caused by implant failure, or preexisting hip pathologies. A 34-year-old woman experienced a persistent painful contracture into the left adductor magnus muscle after THA. She had no leg-length inequalities and, according to the Medical Research Council scale (grades 0-5), muscle strength of the quadriceps was 5/5 for the right side and 3/5 for the left. The degree of functionality according to the Harris hip score (HHS) was 16/100 in the left hip. The pain level, measured with the visual analog scale (VAS), was 7/10. The patient was unable to fully adhere to the rehabilitation program and walked with a limp during the stance phase of gait. After 7 days of treatment with injections of botulinum toxin type A into the left adductor magnus muscle (dose, 150 UM) and subsequent rehabilitation, a great reduction of painful contracture was observed (VAS score, 2/10). The procedure was well tolerated and no adverse effects were noted. After 20 days, hip articular range of motion and gait had improved (HHS score, 75/100). The clinical effects of botulinum toxin type A were present at 2-month follow-up. This treatment may be a viable alternative for the management of painful adductor muscle contracture after THA, without significant side effects. PMID:19824593

  16. [Traumatic muscle and tendon ruptures of the lower extremities in sport: adductor muscles, M. rectus femoris and M. biceps femoris].

    PubMed

    Krüger-Franke, M

    2010-12-01

    Ruptures of the adductor muscles, the M. rectus femoris or the M. biceps femoris are sports injuries which need quick and reliable diagnostic management. Treatment of muscle injuries is mostly conservative; complete tendon ruptures or avulsion fractures of the tendons are treated operatively according to the dislocation and the functional loss.

  17. Relationship between adductor pollicis muscle thickness and subjective global assessment in a cardiac intensive care unit

    PubMed Central

    Karst, Fernanda Pickrodt; Vieira, Renata Monteiro; Barbiero, Sandra

    2015-01-01

    Objective To verify the relationship between the adductor pollicis muscle thickness test and the subjective global assessment and to correlate it with other anthropometric methods. Methods This observational cross-sectional study was conducted in the intensive care unit of a cardiology hospital in the state of Rio Grande do Sul, Brazil. The hospitalized patients underwent subjective global assessment and adductor pollicis muscle thickness tests on both hands, along with measurement of the right calf circumference. Laboratory parameters, length of stay, vital signs and electronic medical record data and tests were all collected. Results The study population included 83 patients, of whom 62% were men. The average age was 68.6 ± 12.5 years. The most common reason for hospitalization was acute myocardial infarction (34.9%), and the most common pathology was systolic blood pressure (63.9%), followed by diabetes mellitus (28.9%). According to subjective global assessment classifications, 62.7% of patients presented no nutritional risk, 20.5% were moderately malnourished and 16.9% were severely malnourished. Women had a higher nutritional risk, according to both the subjective global assessment and the adductor pollicis muscle thickness test, the cutoff for which was < 6.5mm (54.8%; p = 0.001). The pathology presenting the greatest nutritional risk was congestive heart failure (p = 0.001). Evaluation of the receiver operating characteristic (ROC) curve between adductor pollicis muscle thickness and subjective global assessment showed the accuracy of the former, with an area of 0.822. Conclusion Adductor pollicis muscle thickness proved to be a good method for evaluating nutritional risk. PMID:26761475

  18. Effects of ankle extensor muscle afferent inputs on hip abductor and adductor activity in the decerebrate walking cat.

    PubMed

    Bolton, D A E; Misiaszek, J E

    2012-12-01

    Electrical stimulation of the lateral gastrocnemius-soleus (LGS) nerve at group I afferent strength leads to adaptations in the amplitude and timing of extensor muscle activity during walking in the decerebrate cat. Such afferent feedback in the stance leg might result from a delay in stance onset of the opposite leg. Concomitant adaptations in hip abductor and adductor activity would then be expected to maintain lateral stability and balance until the opposite leg is able to support the body. As many hip abductors and adductors are also hip extensors, we hypothesized that stimulation of the LGS nerve at group I afferent strength would produce increased activation and prolonged burst duration in hip abductor and adductor muscles in the premammillary decerebrate walking cat. LGS nerve stimulation during the extensor phase of the locomotor cycle consistently increased burst amplitude of the gluteus medius and adductor femoris muscles, but not pectineus or gracilis. In addition, LGS stimulation prolonged the burst duration of both gluteus medius and adductor femoris. Unexpectedly, long-duration LGS stimulus trains resulted in two distinct outcomes on the hip abductor and adductor bursting pattern: 1) a change of burst duration and timing similar to medial gastrocnemius; or 2) to continue rhythmically bursting uninterrupted. These results indicate that activation of muscle afferents from ankle extensors contributes to the regulation of activity of some hip abductor and adductor muscles, but not all. These results have implications for understanding the neural control of stability during locomotion, as well as the organization of spinal locomotor networks. PMID:22972967

  19. Morphological and confocal laser scanning microscopic investigations of the adductor muscle-shell interface in scallop.

    PubMed

    Zhao, Che; Ren, Luquan; Liu, Qingping; Liu, Taoran

    2015-09-01

    The challenge of joining dissimilar advanced materials has led researchers around the world to search for new and more efficient solutions. This way, we can highlight the muscle-shell attachment in mollusk, which possessed high strength and toughness. In order to make clear how this "bi-material interface" derives its superior mechanical properties, the morphological features of the adductor muscle scar in Patinopecten yessoensis was investigated by means of confocal laser scanning microscopy (CLSM). This scar area was found to consist of a myostracum with many evenly distributed pit structures and a fracture section with a parallel arranged prism-like structure. The measured values of the distribution density, diameter, and depth of those pit structures were 24 ± 4/49,152 μm2, 7.36 ± 2.47 μm, and 1 ± 0.31 μm respectively. Profile of each pit wall was arc curve without closed angle. Furthermore, CLSM micrographs showed that considerable micro pits (0.1-0.9 μm in diameter) distribute round the pit wall and on the pit bottom. This special micromorphology is the first report on the adductor muscle scar in scallop. In addition, the mineral state and mechanical property of the scar surface was analyzed by XRD and nanoindentation test respectively. In general, the study results presented in this work elucidated that the adductor muscle of P. yessoensis was attached to the shell by insertion of collagen fibers and fibril bundles branched from themselves into pits on the myostracum. This specific connection mechanism can increase the strength of the interface without compromising its ductility and toughness. PMID:26202606

  20. Coordination among thigh muscles including the vastus intermedius and adductor magnus at different cycling intensities.

    PubMed

    Saito, Akira; Watanabe, Kohei; Akima, Hiroshi

    2015-04-01

    Although many studies have been focused on muscle synergies in the lower limbs, synergies of the thigh muscles during cycling have not been investigated in detail. We examined synergies of the thigh muscles including the vastus intermedius (VI) and adductor magnus (AM) while cycling. Eight healthy men pedaled at 20%, 40%, 60%, 80% and 100% of maximal aerobic power output at a constant cadence of 60 rpm. Surface electromyography (EMG) recorded signals from the deep VI and the three superficial quadriceps femoris (QF) muscles, the two hamstrings and the AM. The root mean square of the EMG signal was averaged every 2° of crank rotation and normalized by the peak value for each muscle. We used factor analysis to assess normalized EMG recordings while cycling and to identify thigh muscle synergies. The VI, the superficial QF muscles and the AM dominated the first muscle synergy at all power output levels. The AM also formed a second synergy with the two hamstrings at all power output levels. These results suggest that the VI coordinates with the other QF and AM muscles, and that the AM coordinates with the QF and hamstring muscles while cycling.

  1. Force depression following muscle shortening in sub-maximal voluntary contractions of human adductor pollicis.

    PubMed

    Rousanoglou, Elissavet N; Oskouei, Ali E; Herzog, Walter

    2007-01-01

    Mechanical properties of skeletal muscles are often studied for controlled, electrically induced, maximal, or supra-maximal contractions. However, many mechanical properties, such as the force-length relationship and force enhancement following active muscle stretching, are quite different for maximal and sub-maximal, or electrically induced and voluntary contractions. Force depression, the loss of force observed following active muscle shortening, has been observed and is well documented for electrically induced and maximal voluntary contractions. Since sub-maximal voluntary contractions are arguably the most important for everyday movement analysis and for biomechanical models of skeletal muscle function, it is important to study force depression properties under these conditions. Therefore, the purpose of this study was to examine force depression following sub-maximal, voluntary contractions. Sets of isometric reference and isometric-shortening-isometric test contractions at 30% of maximal voluntary effort were performed with the adductor pollicis muscle. All reference and test contractions were executed by controlling force or activation using a feedback system. Test contractions included adductor pollicis shortening over 10 degrees, 20 degrees, and 30 degrees of thumb adduction. Force depression was assessed by comparing the steady-state isometric forces (activation control) or average electromyograms (EMGs) (force control) following active muscle shortening with those obtained in the corresponding isometric reference contractions. Force was decreased by 20% and average EMG was increased by 18% in the shortening test contractions compared to the isometric reference contractions. Furthermore, force depression was increased with increasing shortening amplitudes, and the relative magnitudes of force depression were similar to those found in electrically stimulated and maximal contractions. We conclude from these results that force depression occurs in sub

  2. Absolute reliability of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer.

    PubMed

    Hirano, Masahiro; Katoh, Munenori

    2015-07-01

    [Purpose] The aim of this study was to verify the absolute reliability of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer (HHD). [Subjects and Methods] The subjects were 33 healthy college students. The measurements were made three times with the HHD fixed using a belt (BFHHD) or with the examiner's hand (conventional method; HFHHD). The absolute reliability of measurements was verified using Bland-Altman analysis, both in the all subjects group and a group of subjects showing measurements less than a fixed limit of 30 kgf. [Results] In the <30 kgf group, a systematic bias was not observed, and BFHHD values were greater than HFHHD values. BFHHD values in the all subjects group showed a systematic bias; the 3rd measurement value was less than the maximum value obtained during the 1st and 2nd measurements. [Conclusion] For obtaining an acceptable value during clinical measurements of horizontal adductor muscle strength, single measurements obtained using an HFHHD in the case of a <30 kgf group and the maximum value of two measurements obtained using a BFHHD are reliable. PMID:26311938

  3. Hip adductor muscle strength is reduced preceding and during the onset of groin pain in elite junior Australian football players.

    PubMed

    Crow, Justin F; Pearce, Alan J; Veale, James P; VanderWesthuizen, Dan; Coburn, Paul T; Pizzari, Tania

    2010-03-01

    Groin pain is a condition with a high prevalence in young Australian football players. It is considered that early identification of this condition allows for optimal management. Eighty-six players from two elite under-age Australian football sides were screened weekly for hip adductor muscle strength, using a hand-held dynamometer and for the onset of groin pain. The maximum variation in the average hip adductor muscle strength values of the sample was a 2.6% decrease from baseline in week 7 of the study. Twelve players (14% of the sample studied) reported groin pain for two consecutive weeks and were considered to have an onset of groin injury. The mean hip adductor muscle strength of these players was decreased significantly from baseline by an average of 11.75+/-2.50% at the week of pain onset (F=264.76 (1,11), p<0.001), and 5.82+/-5.16% in the week preceding the onset of pain (F=14.03 (1,10), p=0.004). These results confirm that hip adductor muscle strength is decreased both preceding and during the onset of groin injury in elite under-age Australian footballers. PMID:19546030

  4. Responses of Electromyogram Activity in Adductor Longus Muscle of Rats to the Altered Gravity Levels

    NASA Astrophysics Data System (ADS)

    Ohira, Takashi; Wang, Xiao Dong; Terada, Masahiro; Kawano, Fuminori; Higo, Yoko; Nakai, Naoya; Ochiai, Toshimasa; Gyotoku, Jyunichirou; Nishimoto, Norihiro; Ogura, Akihiko; Ohira, Yoshinobu

    2008-06-01

    Responses of electromyogram (EMG) activities in the rostral and caudal regions of adductor longus (AL) muscle to altered gravity levels during parabolic flight of a jet airplane, as well as hindlimb suspension, were investigated in adult rats. Tonic EMGs in both regions were noted when the rats were exposed to hyper-G, as well as 1-G. The hip joints were adducted and the sedental quadrupedal position was maintained at these G levels. However, the EMG activities in these regions decreased and became phasic, when the hip joints were abducted and extended backward in μ-G environment. Such changes of joint angles caused passive shortening of sarcomeres only in the caudal region of AL. Atrophy and shift toward fast-twitch type were noted in fibers of the caudal region after 16-day unloading. Although fiber transformation was also induced in the rostral region, no atrophy was seen in fast-twitch fibers. The data may suggest that the atrophy and shift of phenotype caused by gravitational unloading in fibers of the caudal region may be related to the decrease in the neural and mechanical activities. Fiber type transformation toward fast-twitch type may be also related to the change of muscle activity from tonic to phasic patterns, which are the typical characteristics of fast-twitch muscle. However, the responses to unloading in fibers of rostral region were not related to the reduction of mechanical load.

  5. Gene expression analyses of essential catch factors in the smooth and striated adductor muscles of larval, juvenile and adult great scallop (Pecten maximus).

    PubMed

    Andersen, Øivind; Torgersen, Jacob S; Pagander, Helene H; Magnesen, Thorolf; Johnston, Ian A

    2009-01-01

    The scallop adductor muscle consists of striated fibres responsible for the fast closure of the shells, and smooth fibres able to maintain tension in a prolonged state of contraction called catch. Formation of the force-bearing catch linkages has been demonstrated to be initiated by dephosphorylation of the key catch-regulating factor twitchin by a calcineurin-like phosphatase, while the involvement of other thick filament proteins is uncertain. Here we report on the development of catchability of the adductor smooth muscle in the great scallop (Pecten maximus) by analysing the spatio-temporal gene expression patterns of the myosin regulatory light chain (MLCr), twitchin, myorod and calcineurin using whole mount in situ hybridization and real-time quantitative PCR. The MLCr signal was identified in the retractor and adductor muscles of the pediveliger larvae, and the juvenile and adult scallop displayed abundant mRNA levels of MLCr in the smooth and striated adductor muscles. Twitchin was mainly expressed in the smooth adductor muscle during metamorphosis, whereas the adult striated adductor muscle contained seven-folds higher twitchin mRNA levels compared to the smooth portion. Calcineurin expression predominated in the gonads and in the smooth adductor, and five-folds higher mRNA levels were measured in the smooth than in the striated fibres at the adult stage. In contrast to the other genes examined, the expression of myorod was confined to the smooth adductor muscle suggesting that myorod plays a permissive role in the molluscan catch muscles, which are first required at the vulnerable settlement stage as a component of the predator defence system.

  6. The adductor pollicis muscle: a poor predictor of clinical outcome in ICU patients.

    PubMed

    Leong Shu-Fen, Claudia; Ong, Venetia; Kowitlawakul, Yanika; Ling, Teh Ai; Mukhopadhyay, Amartya; Henry, Jeya

    2015-01-01

    No nutrition assessment tools specifically tailored for intensive care unit (ICU) patients have been developed and validated in Singapore. Studies conducted in Brazilian populations suggest that the thickness of the adductor pollicis muscle (TAPM) may be used to assess nutritional status and predict mortality of critically ill patients. The aim of this study was to determine if TAPM can be used as a predictive indicator of mortality in Singapore ICU patients. TAPM values were obtained using skinfold calipers in 229 patients admitted to the medical ICU. TAPM measured in both hands showed no significant correlation with either the primary outcome (28-day mortality) or secondary outcomes (hospital outcome and hospital length of stay). This study demonstrated that TAPM does not predict 28-day mortality and hospital outcome, and is not correlated to length of stay in Singapore ICU patients. More studies are necessary to validate the use of TAPM as an anthropometric indicator of ICU outcome in other regions of the world. PMID:26693744

  7. The colour of the adductor muscle as a predictor of pork quality in the loin.

    PubMed

    Warriss, P D; Brown, S N; Paściak, P

    2006-08-01

    The relation between measurements of colour made in the m. adductor (AD) at 45min or 20 h post mortem and the quality, assessed subjectively in terms of colour and waterholding capacity, of the m. longissimus (LD) in the loin was examined. The study used data from 100 pig carcasses exhibiting a wide range of meat quality from extreme PSE (pale, soft and exudative) to extreme DFD (dark, firm and dry). The subjective assessments were confirmed by objective measures of paleness (reflectance) and waterholding capacity (drip loss in storage) in the LD. Lightness (L(∗)) measured at 20h post mortem in the AD was the best potential predictor of loin muscle quality, explaining 59% of the variation in subjective and objective quality measures. Comparable measurements at 45min post mortem explained between 21% and 44% of the variation. The equation that described the relation between AD Lightness (L(∗)) and subjectively assessed LD quality was derived. This could be used to transpose the AD L(∗) values from a population of slaughtered pigs into nominal subjective scores for the LD, allowing the frequency of the five subjective quality groups (extremely DFD, slightly DFD, normal, slightly PSE, and extremely PSE) in the population of carcasses to be defined.

  8. Mandibular corpus strain in primates: further evidence for a functional link between symphyseal fusion and jaw-adductor muscle force.

    PubMed

    Hylander, W L; Ravosa, M J; Ross, C F; Johnson, K R

    1998-11-01

    Previous work indicates that compared to adult thick-tailed galagos, adult long-tailed macaques have much more bone strain on the balancing-side mandibular corpus during unilateral isometric molar biting (Hylander [1979a] J. Morphol. 159:253-296). Recently we have confirmed in these same two species the presence of similar differences in bone-strain patterns during forceful mastication. Moreover, we have also recorded mandibular bone strain patterns in adult owl monkeys, which are slightly smaller than the galago subjects. The owl monkey data indicate the presence of a strain pattern very similar to that recorded for macaques, and quite unlike that recorded for galagos. We interpret these bone-strain pattern differences to be importantly related to differences in balancing-side jaw-adductor muscle force recruitment patterns. That is, compared to galagos, macaques and owl monkeys recruit relatively more balancing-side jaw-adductor muscle force during forceful mastication. Unlike an earlier study (Hylander [1979b] J. Morphol. 160:223-240), we are unable to estimate the actual amount of working-side muscle force relative to balancing-side muscle force (i.e., the W/B muscle force ratio) in these species because we have no reliable estimate of magnitude, direction, and precise location of the bite force during mastication. A comparison of the mastication data with the earlier data recorded during isometric molar biting, however, supports the hypothesis that the two anthropoids have a small W/B jaw-adductor muscle force ratio in comparison to thick-tailed galagos. These data also support the hypothesis that increased recruitment of balancing-side jaw-adductor muscle force in anthropoids is functionally linked to the evolution of symphyseal fusion or strengthening. Moreover, these data refute the hypothesis that the recruitment pattern differences between macaques and thick-tailed galagos are due to allometric factors. Finally, although the evolution of symphyseal fusion

  9. Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle--a test model

    NASA Technical Reports Server (NTRS)

    Thompson, J. L.; Balog, E. M.; Fitts, R. H.; Riley, D. A.

    1999-01-01

    Sarcomere disruptions are observed in the adductor longus (AL) muscles following voluntary reloading of spaceflown and hindlimb suspension unloaded (HSU) rat, which resemble lesions in eccentrically challenged muscle. We devised and tested an eccentric contraction (ECCON) test system for the 14-day HSU rat AL. Six to 7 hours following ECCON, ALs were fixed to allow immunostaining and electron microscopy (EM). Toluidine blue-stained histology semithin sections were screened for lesion density (#/mm2). Serial semithin sections from the ECCON group were characterized for myosin immunointensity of lesions. Five myofibrillar lesion types were identified in histological semithin sections: focal contractions; wide A-bands; opaque areas; missing A-bands; and hyperstretched sarcomeres. Lesion density by type was greater for ECCON than NonECCON ALs (P< or =0.05; focal contractions and opaque regions). Lesion density (#-of-all-five-types/mm2) was significantly different (ECCON: 23.91+/-10.58 vs. NonECCON: 5.48+/-1.28, P< or =0.05; ECCON vs. SHAM: 0.00+/-0.00; P< or = 0.025). PostECCON optimal tension decreased (Poi-drop, 17.84+/-4.22%) and was correlated to lesion density (R2=0.596), but prestretch tension demonstrated the highest correlation with lesion density (R2=0.994). In lesions, the darkly staining A-band lost the normally organized thick filament alignment to differing degrees across the different lesion types. Ranking the five lesion types by a measure of lesion length deformation (hypercontracted to hyperstretched) at the light microscopy level, related to the severity of thick filament registry loss across the lesion types at the electron microscopic level. This ranking suggested that the five lesion types seen in semithin sections at the light level represented a lesion progression sequence and paralleled myosin immunostaining loss as the distorted A-band filaments spread across the hyperlengthening lesion types. Lesion ultrastructure indicated damage involved

  10. Cranial muscles of the anurans Leiopelma hochstetteri and Ascaphus truei and the homologies of the mandibular adductors in Lissamphibia and other gnathostomes.

    PubMed

    Johnston, Peter

    2011-12-01

    The frogs Ascaphus truei and Leiopelma hochstetteri are members of the most basal lineages of extant anurans. Their cranial muscles have not been previously described in full and are investigated here by dissection. Comparison of these taxa is used to review a controversy regarding the homologies of the jaw adductor muscles in Lissamphibia, to place these homologies in a wider gnathostome context, and to define features that may be useful for cladistic analysis of Anura. A new muscle is defined in Ascaphus and is designated m. levator anguli oris. The differences noted between Ascaphus and Leiopelma are in the penetration of the jaw adductor muscles by the mandibular nerve (V3). In the traditional view of this anatomy, the paths of the trigeminal nerve branches define homologous muscles. This scheme results in major differences among frogs, salamanders, and caecilians. The alternative view is that the topology of origins, insertions, and fiber directions are defining features, and the nerves penetrate the muscle mass in a variable way. The results given here support the latter view. A new model is proposed for Lissamphibia, whereby the adductor posterior (levator articularis) is a separate entity, and the rest of the adductor mass is configured around it as a folded sheet. This hypothesis is examined in other gnathostomes, including coelacanth and lungfish, and a possible sequence for the evolution of the jaw muscles is demonstrated. In this system, the main jaw adductor in teleost fish is not considered homologous with that of tetrapods. This hypothesis is consistent with available data on the domain of expression of the homeobox gene engrailed 2, which has previously not been considered indicative of homology. Terminology is discussed, and "adductor mandibulae" is preferred to "levator mandibulae" to align with usage in other gnathostomes.

  11. Cranial muscles of the anurans Leiopelma hochstetteri and Ascaphus truei and the homologies of the mandibular adductors in Lissamphibia and other gnathostomes.

    PubMed

    Johnston, Peter

    2011-12-01

    The frogs Ascaphus truei and Leiopelma hochstetteri are members of the most basal lineages of extant anurans. Their cranial muscles have not been previously described in full and are investigated here by dissection. Comparison of these taxa is used to review a controversy regarding the homologies of the jaw adductor muscles in Lissamphibia, to place these homologies in a wider gnathostome context, and to define features that may be useful for cladistic analysis of Anura. A new muscle is defined in Ascaphus and is designated m. levator anguli oris. The differences noted between Ascaphus and Leiopelma are in the penetration of the jaw adductor muscles by the mandibular nerve (V3). In the traditional view of this anatomy, the paths of the trigeminal nerve branches define homologous muscles. This scheme results in major differences among frogs, salamanders, and caecilians. The alternative view is that the topology of origins, insertions, and fiber directions are defining features, and the nerves penetrate the muscle mass in a variable way. The results given here support the latter view. A new model is proposed for Lissamphibia, whereby the adductor posterior (levator articularis) is a separate entity, and the rest of the adductor mass is configured around it as a folded sheet. This hypothesis is examined in other gnathostomes, including coelacanth and lungfish, and a possible sequence for the evolution of the jaw muscles is demonstrated. In this system, the main jaw adductor in teleost fish is not considered homologous with that of tetrapods. This hypothesis is consistent with available data on the domain of expression of the homeobox gene engrailed 2, which has previously not been considered indicative of homology. Terminology is discussed, and "adductor mandibulae" is preferred to "levator mandibulae" to align with usage in other gnathostomes. PMID:21845732

  12. Impact of Retropubic vs. Transobturator Slings for Urinary Incontinence on Myofascial Structures of the Pelvic Floor, Adductor and Abdominal Muscles.

    PubMed

    Beilecke, K; Soeder, S; Hufenbach, E; Tunn, R

    2014-01-01

    Suburethral tension-free slings (tapes or bands) are an essential component in the operative treatment of urinary incontinence. In the present contribution the influence of the type of suburethral sling (retropubic vs. transobturator) on the myofascial structures of the abdominal, adductor and pelvic floor muscles is examined. For this purpose, 70 patients were prospectively observed clinically and physiotherapeutically. Significant differences were seen in the improvement of the pelvic floor musculature (strength, endurance, speed) after placement of a suburethral sling, irrespective of whether it was of the retropubic or the transobturator type. Thus, after surgical treatment patients should be encouraged to undertake further pelvic floor exercising or this should be prescribed for them. There were no significant changes in the abdominal and adductor muscles but there were slight increases with regard to pain level, pain on palpation, and trigger points after placement of both types of sling; thus this is not a criterion in the decision as to which type of sling to use. PMID:24741121

  13. Intrarater reliabilities of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer for geriatric and stroke patients.

    PubMed

    Hirano, Masahiro; Katoh, Munenori; Kawaguchi, Saori; Uemura, Tomomi

    2016-01-01

    [Purpose] This study aimed to verify the appropriate number of measurements and the intrarater reliabilities of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer (HHD) for geriatric and stroke patients. [Subjects and Methods] The subjects were 40 inpatients, who were divided into two groups: 20 stroke patients in the stroke group (SG), and 20 geriatric patients in the no-stroke group (N-SG). Measurements were performed three times using an HHD with a belt. The reliability was verified using Bland-Altman analysis and the intraclass correlation coefficient (ICC). [Results] ICC (1, 1) was >0.9. A systematic bias was not observed between the first and second measurement values except for the right side in N-SG. A systematic bias between the maximum value obtained during the first and second measurements and third measurement value was observed on the left side in N-SG, and on the non-paralyzed side in SG: the third measurement values were small in both cases. [Conclusion] Intrarater reliabilities were high for shoulder horizontal adductor strength measurements using an HHD with a belt for geriatric and stroke patients. Taking the systematic bias into consideration, these findings suggest that the required number of measurements is two. PMID:26957727

  14. Lower values of handgrip strength and adductor pollicis muscle thickness are associated with hepatic encephalopathy manifestations in cirrhotic patients.

    PubMed

    Augusti, L; Franzoni, L C; Santos, L A A; Lima, T B; Ietsugu, M V; Koga, K H; Moriguchi, S M; Betting, L E; Caramori, C A; Silva, G F; Romeiro, F G

    2016-08-01

    Hepatic encephalopathy (HE) is a late complication of liver cirrhosis and is clearly associated with poor outcomes. Chronic liver insufficiency leads to progressive muscle wasting, impairing ammonia metabolism and thus increasing the risk for HE. Given the association between lean mass and adductor pollicis muscle thickness (APMT), it has been used to predict outcome and complications in many conditions, but not yet in cirrhotic patients. Therefore, this article aimed to study the association between HE manifestations and measures related to muscle mass and strength. This cross-sectional study included 54 cirrhotic outpatients with HE varying from subclinical to grade II according to the West-Haven criteria, who were submitted to neuropsychometric tests, electroencephalogram, brain Single Photon Emission Computed Tomography (SPECT), anthropometric measurements, handgrip strength (HGS) and dual energy X-ray absorptiometry exam (DXA). Multiple logistic regression analysis was performed to investigate the association between body composition measures and HE grade. Analysis of the area under the receiver operator characteristic (AUROC) curve revealed the values related to neurological manifestations (HE grades I and II). Reductions in APMT and HGS were associated with higher HE grades, suggesting a big impact caused by the loss of muscle mass and function on HE severity. The link between HE manifestations and anthropometric measures, namely APMT and HGS, point to a significant relation concerning skeletal muscles and the neurological impairment in this population. PMID:27131802

  15. Potential use of fatty acid profiles of the adductor muscle of cockles (Cerastoderma edule) for traceability of collection site.

    PubMed

    Ricardo, Fernando; Pimentel, Tânia; Moreira, Ana S P; Rey, Felisa; Coimbra, Manuel A; Rosário Domingues, M; Domingues, Pedro; Costa Leal, Miguel; Calado, Ricardo

    2015-06-18

    Geographic traceability of seafood is key for controlling its quality and safeguarding consumers' interest. The present study assessed if the fatty acid (FA) profile of the adductor muscle (AM) of fresh cockles (Cerastoderma edule) can be used to discriminate the origin of specimens collected in different bivalve capture/production areas legally defined within a coastal lagoon. Results suggest that this biochemical approach holds the potential to trace sampling locations with a spatial resolution <10 Km, even for areas with identical classification for bivalve production. Cockles further away from the inlet, i.e. in areas exposed to a higher saline variation, exhibited lower levels of saturated fatty acids, which are key for stabilizing the bilayer structure of cell membranes, and a higher percentage of polyunsaturated fatty acids, which enhance bilayer fluidity. Results suggest that the structural nature of the lipids present in the AM provides a stable fatty acid signature and holds potential for tracing the origin of bivalves to their capture/production areas.

  16. Aggressive Lymphoma "Sarcoma Mimicker" Originating in the Gluteus and Adductor Muscles: A Case Report and Literature Review.

    PubMed

    Elkourashy, Sarah A; Nashwan, Abdulqadir J; Alam, Syed I; Ammar, Adham A; El Sayed, Ahmed M; Omri, Halima El; Yassin, Mohamed A

    2016-01-01

    Extranodal lymphoma (ENL) occurs in approximately 30%-40% of all patients with non-Hodgkin lymphoma and has been described in almost all organs and tissues. However, diffuse large B-cell lymphoma is the most common histological subtype of non-Hodgkin lymphoma, primarily arising in the retroperitoneal region. In this article, we report a rare case of an adult male diagnosed with primary diffuse large B-cell lymphoma of the gluteal and adductor muscles with aggressive bone involvement. All appropriate radiological and histopathological studies were done for diagnosis and staging. After discussion with the lymphoma multidisciplinary team, it was agreed to start on R-CHOP protocol (rituximab, cyclophosphamide, doxorubicin (Adriamycin), vincristine (Oncovin®), and prednisone) as the standard of care, which was later changed to R-CODOX-M/R-IVAC protocol (rituximab, cyclophosphamide, vincristine (Oncovin®), doxorubicin, and high-dose methotrexate alternating with rituximab, ifosfamide, etoposide, and high-dose cytarabine) due to inadequate response. Due to the refractory aggressive nature of the disease, subsequent decision of the multidisciplinary team was salvage chemotherapy and autologous stem cell transplant. The aim of this case report was to describe and evaluate the clinical presentation and important radiological features of extranodal lymphoma affecting the musculoskeletal system. PMID:27398038

  17. Aggressive Lymphoma “Sarcoma Mimicker” Originating in the Gluteus and Adductor Muscles: A Case Report and Literature Review

    PubMed Central

    Elkourashy, Sarah A.; Nashwan, Abdulqadir J.; Alam, Syed I.; Ammar, Adham A.; El Sayed, Ahmed M.; Omri, Halima El; Yassin, Mohamed A.

    2016-01-01

    Extranodal lymphoma (ENL) occurs in approximately 30%–40% of all patients with non-Hodgkin lymphoma and has been described in almost all organs and tissues. However, diffuse large B-cell lymphoma is the most common histological subtype of non-Hodgkin lymphoma, primarily arising in the retroperitoneal region. In this article, we report a rare case of an adult male diagnosed with primary diffuse large B-cell lymphoma of the gluteal and adductor muscles with aggressive bone involvement. All appropriate radiological and histopathological studies were done for diagnosis and staging. After discussion with the lymphoma multidisciplinary team, it was agreed to start on R-CHOP protocol (rituximab, cyclophosphamide, doxorubicin (Adriamycin), vincristine (Oncovin®), and prednisone) as the standard of care, which was later changed to R-CODOX-M/R-IVAC protocol (rituximab, cyclophosphamide, vincristine (Oncovin®), doxorubicin, and high-dose methotrexate alternating with rituximab, ifosfamide, etoposide, and high-dose cytarabine) due to inadequate response. Due to the refractory aggressive nature of the disease, subsequent decision of the multidisciplinary team was salvage chemotherapy and autologous stem cell transplant. The aim of this case report was to describe and evaluate the clinical presentation and important radiological features of extranodal lymphoma affecting the musculoskeletal system. PMID:27398038

  18. Potential use of fatty acid profiles of the adductor muscle of cockles (Cerastoderma edule) for traceability of collection site.

    PubMed

    Ricardo, Fernando; Pimentel, Tânia; Moreira, Ana S P; Rey, Felisa; Coimbra, Manuel A; Rosário Domingues, M; Domingues, Pedro; Costa Leal, Miguel; Calado, Ricardo

    2015-01-01

    Geographic traceability of seafood is key for controlling its quality and safeguarding consumers' interest. The present study assessed if the fatty acid (FA) profile of the adductor muscle (AM) of fresh cockles (Cerastoderma edule) can be used to discriminate the origin of specimens collected in different bivalve capture/production areas legally defined within a coastal lagoon. Results suggest that this biochemical approach holds the potential to trace sampling locations with a spatial resolution <10 Km, even for areas with identical classification for bivalve production. Cockles further away from the inlet, i.e. in areas exposed to a higher saline variation, exhibited lower levels of saturated fatty acids, which are key for stabilizing the bilayer structure of cell membranes, and a higher percentage of polyunsaturated fatty acids, which enhance bilayer fluidity. Results suggest that the structural nature of the lipids present in the AM provides a stable fatty acid signature and holds potential for tracing the origin of bivalves to their capture/production areas. PMID:26084395

  19. Potential use of fatty acid profiles of the adductor muscle of cockles (Cerastoderma edule) for traceability of collection site

    PubMed Central

    Ricardo, Fernando; Pimentel, Tânia; Moreira, Ana S. P.; Rey, Felisa; Coimbra, Manuel A.; Rosário Domingues, M.; Domingues, Pedro; Costa Leal, Miguel; Calado, Ricardo

    2015-01-01

    Geographic traceability of seafood is key for controlling its quality and safeguarding consumers’ interest. The present study assessed if the fatty acid (FA) profile of the adductor muscle (AM) of fresh cockles (Cerastoderma edule) can be used to discriminate the origin of specimens collected in different bivalve capture/production areas legally defined within a coastal lagoon. Results suggest that this biochemical approach holds the potential to trace sampling locations with a spatial resolution <10 Km, even for areas with identical classification for bivalve production. Cockles further away from the inlet, i.e. in areas exposed to a higher saline variation, exhibited lower levels of saturated fatty acids, which are key for stabilizing the bilayer structure of cell membranes, and a higher percentage of polyunsaturated fatty acids, which enhance bilayer fluidity. Results suggest that the structural nature of the lipids present in the AM provides a stable fatty acid signature and holds potential for tracing the origin of bivalves to their capture/production areas. PMID:26084395

  20. What are the stimulation parameters that affect the extent of twitch force potentiation in the adductor pollicis muscle?

    PubMed

    Mettler, Joni A; Griffin, Lisa

    2010-12-01

    Muscle force potentiation affects force output during electrical stimulation. Few studies have examined stimulation train parameters that influence potentiation such as pulse number, stimulation frequency, train duration, and force-time integral and peak force produced during the train. Pulse-matched trains (100 pulses) at 7.5, 15, 25, 30, 50, and 100 Hz, and trains of varying pulse number (50, 100, and 200 pulses) at 30 and 50 Hz were delivered to the ulnar nerve of 10 (5 male, 5 female; 23.4 ± 0.9 years), healthy individuals in random order. Single twitches of the adductor pollicis muscle were elicited before and after each train with a rest interval of at least 5 min between each train. No differences in potentiation occurred across the pulse-matched trains at frequencies of 15-50 Hz (38.9 ± 5.4-44.6 ± 5.5%). Twitch force potentiation following the highest (100 Hz) and lowest (7.5 Hz) frequency trains were not significantly different and were lower than the other 100 pulse-matched trains. As pulse number increased, potentiation increased for both the 30 and 50-Hz trains. There was a significant positive correlation between force potentiation and force-time integral produced by the stimulation train, r = 0.70. The results indicate that potentiation magnitude is dependent on the force-time integral produced during the test train and the number of pulses delivered, independent of stimulation frequency. PMID:20737164

  1. Influence and interactions of laryngeal adductors and cricothyroid muscles on fundamental frequency and glottal posture control

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen; Sofer, Elazar; Berry, David A.

    2014-01-01

    The interactions of the intrinsic laryngeal muscles (ILMs) in controlling fundamental frequency (F0) and glottal posture remain unclear. In an in vivo canine model, three sets of intrinsic laryngeal muscles—the thyroarytenoid (TA), cricothyroid (CT), and lateral cricoarytenoid plus interarytenoid (LCA/IA) muscle complex—were independently and accurately stimulated in a graded manner using distal laryngeal nerve stimulation. Graded neuromuscular stimulation was used to independently activate these paired intrinsic laryngeal muscles over a range from threshold to maximal activation, to produce 320 distinct laryngeal phonatory postures. At phonation onset these activation conditions were evaluated in terms of their vocal fold strain, glottal width at the vocal processes, fundamental frequency (F0), subglottic pressure, and airflow. F0 ranged from 69 to 772 Hz and clustered into chest-like and falsetto-like groups. CT activation was always required to raise F0, but could also lower F0 at low TA and LCA/IA activation levels. Increasing TA activation first increased then decreased F0 in all CT and LCA/IA activation conditions. Increasing TA activation also facilitated production of high F0 at a lower onset pressure. Independent control of membranous (TA) and cartilaginous (LCA/IA) glottal closure enabled multiple pathways for F0 control via changes in glottal posture. PMID:25235003

  2. NMR-based metabolomic investigations on the differential responses in adductor muscles from two pedigrees of Manila clam Ruditapes philippinarum to Cadmium and Zinc.

    PubMed

    Wu, Huifeng; Liu, Xiaoli; Zhao, Jianmin; Yu, Junbao

    2011-01-01

    Manila clam Ruditapes philippinarum is one of the most important economic species in shellfishery in China due to its wide geographic distribution and high tolerance to environmental changes (e.g., salinity, temperature). In addition, Manila clam is a good biomonitor/bioindicator in "Mussel Watch Programs" and marine environmental toxicology. However, there are several pedigrees of R. philippinarum distributed in the marine environment in China. No attention has been paid to the biological differences between various pedigrees of Manila clams, which may introduce undesirable biological variation in toxicology studies. In this study, we applied NMR-based metabolomics to detect the biological differences in two main pedigrees (White and Zebra) of R. philippinarum and their differential responses to heavy metal exposures (Cadmium and Zinc) using adductor muscle as a target tissue to define one sensitive pedigree of R. philippinarum as biomonitor for heavy metals. Our results indicated that there were significant metabolic differences in adductor muscle tissues between White and Zebra clams, including higher levels of alanine, glutamine, hypotaurine, phosphocholine and homarine in White clam muscles and higher levels of branched chain amino acids (valine, leucine and isoleucine), succinate and 4-aminobutyrate in Zebra clam muscles, respectively. Differential metabolic responses to heavy metals between White and Zebra clams were also found. Overall, we concluded that White pedigree of clam could be a preferable bioindicator/biomonitor in marine toxicology studies and for marine heavy metals based on the relatively high sensitivity to heavy metals. PMID:22131959

  3. Hip adductors' strength, flexibility, and injury risk.

    PubMed

    Hrysomallis, Con

    2009-08-01

    The hip adductor muscle group plays an important role in both movement and stability at the hip joint in many athletic pursuits. Injury to this muscle group has been reported in a number of sports, among them, ice hockey, soccer, Australian football, and swimming. The identification of muscle characteristics that predispose a muscle to injury is an important step in developing conditioning programs to reduce injury risk. Muscle strength and range of motion are 2 parameters that may influence injury risk. The aim of this review was to examine the relationship between hip adductors' strength, flexibility, and injury risk. Strength testing has involved isokinetic or hand-held dynamometry. Flexibility has usually been assessed by goniometry during maximal hip abduction. An association has been reported between adductor strength deficits and injury for ice hockey players. Low adductor flexibility has also been identified as a risk factor for injury in soccer players. An intervention program that strengthened the hip adductors had some success in reducing injury risk for ice hockey players. There is some low- to moderate-level evidence from cohort studies to suggest that flexibility and strength are related to injury risk in particular sports and that an intervention program may be effective in reducing injury risk. Higher level evidence from randomized controlled trials is required to firmly establish the link between hip adductor flexibility, strength, and injury. PMID:19620912

  4. Progressive Muscle Atrophy and Weakness After Treatment by Mantle Field Radiotherapy in Hodgkin Lymphoma Survivors

    SciTech Connect

    Leeuwen-Segarceanu, Elena M. van; Dorresteijn, Lucille D.A.; Pillen, Sigrid; Biesma, Douwe H.; Vogels, Oscar J.M.; Alfen, Nens van

    2012-02-01

    Purpose: To describe the damage to the muscles and propose a pathophysiologic mechanism for muscle atrophy and weakness after mantle field radiotherapy in Hodgkin lymphoma (HL) survivors. Methods and Materials: We examined 12 patients treated by mantle field radiotherapy between 1969 and 1998. Besides evaluation of their symptoms, the following tests were performed: dynamometry; ultrasound of the sternocleidomastoid, biceps, and antebrachial flexor muscles; and needle electromyography of the neck, deltoid, and ultrasonographically affected arm muscles. Results: Ten patients (83%) experienced neck complaints, mostly pain and muscle weakness. On clinical examination, neck flexors were more often affected than neck extensors. On ultrasound, the sternocleidomastoid was severely atrophic in 8 patients, but abnormal echo intensity was seen in only 3 patients. Electromyography of the neck muscles showed mostly myogenic changes, whereas the deltoid, biceps, and antebrachial flexor muscles seemed to have mostly neurogenic damage. Conclusions: Many patients previously treated by mantle field radiotherapy develop severe atrophy and weakness of the neck muscles. Neck muscles within the radiation field show mostly myogenic damage, and muscles outside the mantle field show mostly neurogenic damage. The discrepancy between echo intensity and atrophy suggests that muscle damage is most likely caused by an extrinsic factor such as progressive microvascular fibrosis. This is also presumed to cause damage to nerves within the radiated field, resulting in neurogenic damage of the deltoid and arm muscles.

  5. Role and expression of cry1 in the adductor muscle of the oyster Crassostrea gigas during daily and tidal valve activity rhythms.

    PubMed

    Mat, Audrey M; Perrigault, Mickael; Massabuau, Jean-Charles; Tran, Damien

    2016-01-01

    Cryptochromes are flavin- and pterin-containing photoreceptors of the cryptochrome/photolyase family. They play critical roles in organisms, among are which light-dependent and light-independent roles in biological rhythms. The present work aimed at describing a cryptochrome gene in the oyster Crassostrea gigas by (i) a characterization and phylogenetic analysis and (ii) by studying its expression in the relationship to rhythmic valve behavior in different entrainment regimes. Cryptochrome expression was focused on the adductor muscle of the oyster, the effector of the valve behavior. The results suggest involvement of Cgcry1 in oyster rhythmicity as a sensor of environmental zeitgebers, associated with circadian rhythms and potentially to tidal activity. The characterized gene belongs to type 1 cryptochrome/insect-type cry. Additionally, Cgcry1 presented a daily oscillation under L:D entrainment, which disappeared in constant darkness. Transcript expression of Cgcry1 also oscillated at tidal frequency under tidal entrainment and in constant darkness. Finally, exposure of tidally entrained oysters to saxitoxin (STX)-producing alga Alexandrium minutum induced a dose effect response in oysters by first altering Cgcry1 expression and then the behavior of oysters with increasing concentrations of toxins. This study initiates the characterization of the molecular clock in the oyster C. gigas and its interactions with environmental zeitgebers. PMID:27246263

  6. Role of aerobic and anaerobic circular mantle muscle fibers in swimming squid: electromyography.

    PubMed

    Bartol, I K

    2001-02-01

    Circular mantle muscle of squids and cuttlefishes consists of distinct zones of aerobic and anaerobic muscle fibers that are thought to have functional roles analogous to red and white muscle in fishes. To test predictions of the functional role of the circular muscle zones during swimming, electromyograms (EMGs) in conjunction with video footage were recorded from brief squid Lolliguncula brevis (5.0-6.8 cm dorsal mantle length, 10.9-18.3 g) swimming in a flume at speeds of 3-27 cm s(-1). In one set of experiments, in which EMGs were recorded from electrodes intersecting both the central anaerobic and peripheral aerobic circular mantle muscles, electrical activity was detected during each mantle contraction at all swimming speeds, and the amplitude and frequency of responses increased with speed. In another set of experiments, in which EMGs were recorded from electrodes placed in the central anaerobic circular muscle fibers alone, electrical activity was not detected during mantle contraction until speeds of about 15 cm s(-1), when EMG activity was sporadic. At speeds greater than 15 cm s(-1), the frequency of central circular muscle activity subsequently increased with swimming speed until maximum speeds of 21-27 cm s(-1), when muscular activity coincided with the majority of mantle contractions. These results indicate that peripheral aerobic circular muscle is used for low, intermediate, and probably high speeds, whereas central anaerobic circular muscle is recruited at intermediate speeds and used progressively more with speed for powerful, unsteady jetting. This is significant because it suggests that there is specialization and efficient use of locomotive muscle in squids.

  7. Surgical technique for treatment of recalcitrant adductor longus tendinopathy.

    PubMed

    Gill, Thomas J; Carroll, Kaitlin M; Makani, Amun; Wall, Andrew J; Dumont, Guillaume D; Cohn, Randy M

    2014-04-01

    Chronic groin pain in the athlete can be a difficult problem to manage. Adductor dysfunction is the most common cause of groin pain in athletes, with the adductor longus being the tendon most commonly involved. The most reproducible finding for adductor longus tendinopathy is tenderness along the tendon with passive abduction and resisted hip adduction in extension. Magnetic resonance imaging and injection of a corticosteroid and anesthetic into the proximal muscle-tendon junction are both helpful in confirming the diagnosis. Nonoperative treatment may consist of protected weight bearing, ice application, ultrasonography, electrical stimulation, and gentle stretching with progressive strengthening. However, nonoperative management is not always successful. In these instances, surgical treatment can be quite effective. We present the indications, surgical technique, and rehabilitation protocol of adductor tenotomy for chronic tendinopathy. This can prove a useful tool for the treatment of recalcitrant groin pain attributable to the adductor longus. PMID:24904780

  8. Surgical technique for treatment of recalcitrant adductor longus tendinopathy.

    PubMed

    Gill, Thomas J; Carroll, Kaitlin M; Makani, Amun; Wall, Andrew J; Dumont, Guillaume D; Cohn, Randy M

    2014-04-01

    Chronic groin pain in the athlete can be a difficult problem to manage. Adductor dysfunction is the most common cause of groin pain in athletes, with the adductor longus being the tendon most commonly involved. The most reproducible finding for adductor longus tendinopathy is tenderness along the tendon with passive abduction and resisted hip adduction in extension. Magnetic resonance imaging and injection of a corticosteroid and anesthetic into the proximal muscle-tendon junction are both helpful in confirming the diagnosis. Nonoperative treatment may consist of protected weight bearing, ice application, ultrasonography, electrical stimulation, and gentle stretching with progressive strengthening. However, nonoperative management is not always successful. In these instances, surgical treatment can be quite effective. We present the indications, surgical technique, and rehabilitation protocol of adductor tenotomy for chronic tendinopathy. This can prove a useful tool for the treatment of recalcitrant groin pain attributable to the adductor longus.

  9. Effects of spaceflight in the adductor longus muscle of rats flown in the Soviet Biosatellite COSMOS 2044. A study employing neural cell adhesion molecule (N-CAM) immunocytochemistry and conventional morphological techniques (light and electron microscopy)

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Daunton, N. G.

    1992-01-01

    The effects of spaceflight upon the "slow" muscle adductor longus were examined in rats flown in the Soviet Biosatellite COSMOS 2044. The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leukocytes and mononuclear cells. Neural cell adhesion molecule immunoreactivity (N-CAM-IR) was seen on the myofiber surface and in regenerating myofibers. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with apparent preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments. The principal electron microscopic changes of the neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles replaced by microtubules and neurofilaments, degeneration of axon terminals, vacant axonal spaces and changes suggestive of axonal sprouting. The present observations suggest that alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  10. Swimming away or clamming up: the use of phasic and tonic adductor muscles during escape responses varies with shell morphology in scallops.

    PubMed

    Tremblay, Isabelle; Guderley, Helga E; Himmelman, John H

    2012-12-01

    The simple locomotor system of scallops facilitates the study of muscle use during locomotion. We compared five species of scallops with different shell morphologies to see whether shell morphology and muscle use change in parallel or whether muscle use can compensate for morphological constraints. Force recordings during escape responses revealed that the use of tonic and phasic contractions varied markedly among species. The active species, Amusium balloti, Placopecten magellanicus and Pecten fumatus, made more phasic contractions than the more sedentary species, Mimachlamys asperrima and Crassadoma gigantea. Tonic contractions varied considerably among these species, with the two more sedentary species often starting their response to the predator with a tonic contraction and the more active species using shorter tonic contractions between series of phasic contractions. Placopecten magellanicus made extensive use of short tonic contractions. Pecten fumatus mounted an intense series of phasic contractions at the start of its response, perhaps to overcome the constraints of its unfavourable shell morphology. Valve closure by the more sedentary species suggests that their shell morphology protects them against predation, whereas swimming by the more active species relies upon intense phasic contractions together with favourable shell characteristics. PMID:22972884

  11. Bone scanning in the adductor insertion avulsion syndrome ("thigh splints").

    PubMed

    Charkes, N D; Siddhivarn, N; Schneck, C D

    1987-12-01

    Shin splints is a defined clinical entity resulting from extreme tension on muscles inserting on the tibia, resulting in periosteal elevation which is detectable by bone scanning. The clinical equivalent in the thigh has been described. We found scintigraphic changes in the femurs of seven short, female, basic trainees at the Fort Dix Army base, most of whom were referred for stress fractures elsewhere in the lower extremities. The scan findings were generally noted in the upper or mid femurs, always involved the anteromedial cortex, and were bilateral in five of the seven subjects. The abnormalities were linear and suggested periosteal elevation, and did not have the typical appearance of stress fracture. Since the findings correspond to the insertion of one or more adductor muscle groups, the descriptive term "adductor insertion avulsion syndrome" or "thigh splints" is proposed for this entity.

  12. Isolated paralysis of the adductor pollicis: a case report.

    PubMed

    De Maio, F; Bisicchia, S; Farsetti, P; Ippolito, E

    2011-01-01

    We report a case of isolated paralysis of the right adductor pollicis in a 30-year-old woman. Electromyographic study showed involvement of the deep motor branch of the ulnar nerve. A ganglion and an anomalous muscle were both ruled out clinically and by MRI as a possible cause of the paralysis. At surgical exploration, we found a fibrous band joining the pisiform and the hook of the hamate bone that compressed the deep motor branch of the ulnar nerve. The fibrous band was excised, and a neurolysis of the motor branch of the ulnar nerve was performed. At followup, eight months later, the patient had fully recovered strength of the adductor muscle. PMID:21991410

  13. The abductor and adductor strength characteristics of professional baseball pitcherse.

    PubMed

    Wilk, K E; Andrews, J R; Arrigo, C A

    1995-01-01

    The purpose of this investigation was to establish a data base regarding the isokinetic muscular performance characteristics of the abductor and adductor muscles of professional baseball pitchers. Eighty-three healthy professional baseball pitchers (mean age, 22.6 years; mean weight, 199 pounds) were evaluated by use of a Biodex isokinetic dynamometer. Isokinetic tests were performed concentrically at 180 and 300 deg/sec for both the throwing and nonthrowing shoulders. The testing protocol and test repetitions were standardized for each subject. Statistical analysis was performed using a paired t-test. Determination of the correlation coefficient was made at the P < 0.05 level of significance. Test results for bilateral comparisons of mean peak torque for the throwing and nonthrowing shoulders demonstrated a significant difference in adductor values between the dominant and nondominant shoulders at both test speeds. There were no significant differences between extremities for the shoulder abductor muscles. The abductor-to-adductor muscle ratios between the throwing and nonthrowing shoulders were also statistically significant at both test speeds. Throwing arm values were 82.5% at 180 deg/sec and 93.8% at 300 deg/sec compared with only 66.0% and 70.3%, respectively, for the nonthrowing shoulders.

  14. The effect of isokinetic testing speed on the reliability of muscle fatigue indicators during a hip abductor-adductor fatigue protocol.

    PubMed

    Gautrey, C N; Watson, T; Mitchell, A

    2013-07-01

    The aim of this study was to investigate the reliability of fatigue indicators calculated from peak torque and total work during isokinetic speeds of 60, 90, 120 and 180° · s-1 during a hip fatigue protocol. 10 males suffering from a history of unilateral functional ankle instability and 10 male healthy controls performed 5 maximal concentric contractions on an isokinetic dynamometer. Following a 4 min rest period subjects were instructed to perform repeated maximal concentric contractions to fatigue, which was defined as 3 consecutive repetitions below 50% of the maximum peak torque value. Each testing speed was randomised with 24 h between speeds. The subjects were asked to return to the laboratory 7 days later to repeat the 4 speeds, with 24 h between speeds. Muscle fatigue was determined for each testing speed by the fatigue index, the percent decrease in performance and the slope of the regression equation. The most reliable fatigue determination method was the slope of the regression equation, when testing at a speed of 120° · s-1. It is recommended that future investigators examine and plot their data before choosing the slope of the regression equation as their fatigue indicator, as a linear model is required. PMID:23549692

  15. Extensibility of hip adductors in children with cerebral palsy.

    PubMed

    Lespargot, A; Renaudin, E; Khouri, N; Robert, M

    1994-11-01

    The passive extension of relaxed hip adductor muscles was measured in 20 normal children and 10 children (aged nine to 13 years) with cerebral palsy (CP) by a method that could distinguish between shortening of the muscle body and tendon. No muscle-body contracture occurred in the children with CP during treatment (physiotherapy plus moderate stretching on an apparatus for six hours a day); only the tendons were short. However, four children showed signs of muscle-body contracture after interrupting treatment for six to eight weeks. It is possible that muscle-body contracture can be prevented by non-surgical methods, although tendon shortening can, at present, only be treated surgically.

  16. Postmortem biochemical behavior of giant squid (Dosidicus gigas) mantle muscle stored in ice and its relation with quality parameters.

    PubMed

    Márquez-Ríos, E; Morán-Palacio, E F; Lugo-Sánchez, M E; Ocano-Higuera, V M; Pacheco-Aguilar, R

    2007-09-01

    Several freshness and spoilage indicators were monitored to characterize the postmortem biochemistry of giant squid (Dosidicus gigas) mantle muscle. Squid samples were obtained directly from the sea and kept at 0 degrees C during a 15-d storage period. Data at zero time were obtained from cryogenically frozen samples at time of capture. The adenosine 5'-triphosphate (ATP) degradation followed a different pattern as compared with that from fish species. ATP was almost completely depleted at 24-h postcatch from 6.54 to <1 micromol/g, while at the same time Hx was the predominant catabolite with a concentration of 4 mumol/g, reaching 6.85 micromol/g at day 15. K-value data followed a logarithmic pattern with time instead of a linear one, with no change after day 3, thus reducing its suitability as a freshness index. The coefficient Hx/AMP seems to be an adequate alternative for this purpose due to its constant increment with time. The high NH4Cl content in mantle muscle (461.3 +/- 24.5 mg of NH4(+)/100 g) derived from its physiological importance for the species compromises the use of the distillation step of the TVB-N analysis commonly used as a spoilage index. This fact explains why the initially high value of TVB-N detected in mantle muscle (243.7 mg N/100 g) did not correlate with the initial low TMA-N content (1.5 +/- 0.1 mg/100 g of muscle). The results suggested that under the experimental conditions the shelf life of squid exceeds 15 d.

  17. Intrarater Reliability of the Adductor Squeeze Test in Gaelic Games Athletes

    PubMed Central

    Delahunt, Eamonn; McEntee, Barry L.; Kennelly, Colm; Green, Brian S.; Coughlan, Garrett F.

    2011-01-01

    Context: Groin pain is commonly experienced by athletes involved in field-based sports and is particularly prevalent in Gaelic Games athletes. The adductor squeeze test is commonly used in the assessment of groin pain and injuries. To date, no evidence in the literature provides the reliability of the adductor squeeze test using a sphygmomanometer in assessing the adductor muscle integrity of Gaelic Games athletes. Given the high proportion of groin pain encountered in Gaelic Games athletes, establishing the reliability of the adductor squeeze test will allow clinicians to monitor injury responses and to assess return-to-play criteria. Objective: To evaluate the intrarater reliability of a commercially available sphygmomanometer for measuring adductor squeeze values in Gaelic Games athletes and to determine if different squeeze values are associated with the 3 commonly used test positions. Design: Descriptive laboratory study. Setting: University clinical skills laboratory. Patients or Other Participants: Eighteen male Gaelic Games athletes without any previous or current history of groin or pelvic pain. Intervention(s): Each participant performed the adductor squeeze test in 3 positions of hip joint flexion (0°, 45°, and 90°) on 2 test days separated by at least 1 week. Main Outcome Measure(s): Adductor squeeze test values (mm Hg) quantified by a commercially available sphygmomanometer. Results: Intrarater reliability intraclass correlation values ranged from 0.89 to 0.92 (intraclass correlation coefficients were 0°, 0.89; 45°, 0.92; and 90°, 0.90). The highest squeeze values were recorded in the 45° of hip flexion test position, and these values differed from those demonstrated in the 0° and 90° hip flexion test positions (P < .05). Conclusions: A commercially available sphygmomanometer is a reliable device for measuring adductor squeeze test values. PMID:21669092

  18. [Spasm of the adductor muscles, pre-dislocations and dislocations of the hip joints in children and adolescents with cerebral palsy. Clinical observations on aetiology, pathogenesis, therapy and rehabilitation. Part II. The importance of the iliopsoas tendon, its tenotomy, of the coxa valga antetorta, and correction through osteotomy turning the hip into varus (author's transl)].

    PubMed

    Fettweis, E

    1979-02-01

    The following factors besides spasm and contraction of the adductor muscles contribute to the occurrence of dislocations of the hip in spastic paralysis: Spasm and contraction of the iliopsoas muscle and enhanced valgus position and antetorsion. The author holds the opinion that in case of malformation of the proximal end of the femur, it is not only the indirect action of the spastic musculature via the proximal femur-epiphyseal cartilage which is responsible for this phenomen in accordance with the law on functional adaption through longitudinal growth (Pauwels), but also the direct traction of the iliopsoas tendon. A clue in this direction is the often very pronounced elongation or enlargement of the trochanter minor. The author demonstrates the pathogenetic importance of iliopsoas contracture and malpositioning of the neck of the femur by means of analyses of the course in two patients. The following principles of treatment are postulated for spastic dislocation of the hip: Elimination of the pathogenetic factors through myotenotomy of the adductor muscles and complete resection of the obturator nerve, with observation of strict aftertreatment criteria, tenotomy of the iliopsoas, repositioning and osteotomy with turning into varus. Osteotomy without previous elimination of the pathogenetically acting muscular forces does not appear useful. Likewise, permanent re-positioning by means of muscle-relaxing operation cannot be sufficiently safe-guarded without additional osteotomy once the dislocation has taken place. In twelve patients with spastic dislocation of the hip, treated in accordance with these guidelines (two without osteotomy) aged 6 6/12 and 19 5/12 years, a roentgenologically good result was obtained in half of the cases, whereas the functional result was satisfactory not only with these patients but also with part of the other patients. If surgical treatment is instituted early enough, and if the experiences described here are taken into consideration

  19. Hip adductor activations during run-to-cut maneuvers in compression shorts: Implications for return to sport after groin injury

    PubMed Central

    CHAUDHARI, AJIT M. W.; JAMISON, STEVEN T.; MCNALLY, MICHAEL P.; PAN, XUELIANG; SCHMITT, LAURA C.

    2014-01-01

    Athletes at high risk of groin strains in sports such as hockey and soccer often choose to wear shorts with directional compression to aid in prevention or recovery from hip adductor strains. Large eccentric contractions are known to result in or exacerbate strain injuries, but it is unknown if these shorts have a beneficial effect on hip adductor muscle activity. In this study, surface electromyography of the adductor longus and ground reaction force (GRF) data were obtained simultaneously on 29 healthy individuals without previous history of serious injury while performing unanticipated 45° run-to-cut maneuvers in a laboratory setting wearing shorts with non-directional compression (control, HeatGear, Under Armour, USA) or shorts with directional compression (directional, CoreShort PRO, Under Armour, USA), in random order. Average adductor activity in the stance leg was significantly lower in the directional condition than in the control condition during all parts of stance phase (all p<0.042). From this preliminary analysis, wearing directional compression shorts appears to be associated with reduced stance limb hip adductor activity. Athletes seeking to reduce demand on the hip adductors as they approach full return to activities may benefit from the use of directional compression shorts. PMID:24669858

  20. Hip adductor activations during run-to-cut manoeuvres in compression shorts: implications for return to sport after groin injury.

    PubMed

    Chaudhari, Ajit M W; Jamison, Steven T; McNally, Michael P; Pan, Xueliang; Schmitt, Laura C

    2014-01-01

    Athletes at high risk of groin strains in sports such as hockey and soccer often choose to wear shorts with directional compression to aid in prevention of or recovery from hip adductor strains. Large, eccentric contractions are known to result in or exacerbate strain injuries, but it is unknown if these shorts have a beneficial effect on hip adductor muscle activity. In this study, surface electromyography (EMG) of the adductor longus and ground reaction force (GRF) data were obtained simultaneously on 29 healthy individuals without previous history of serious injury while performing unanticipated 45° run-to-cut manoeuvres in a laboratory setting wearing shorts with non-directional compression (control, HeatGear, Under Armour, USA) or shorts with directional compression (directional, CoreShort PRO, Under Armour, USA), in random order. Average adductor activity in the stance leg was significantly lower in the directional condition than in the control condition during all parts of stance phase (all P < 0.042). From this preliminary analysis, wearing directional compression shorts appears to be associated with reduced stance limb hip adductor activity. Athletes seeking to reduce demand on the hip adductors as they approach full return to activities may benefit from the use of directional compression shorts. PMID:24669858

  1. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 1; A Study Employing Neural Cell Adhesion Molecules (N-CAM) Immunocytochemistry and Conventional Morphological Techniques (Light and Electron Microscopy)

    NASA Technical Reports Server (NTRS)

    Daunton, N. G.; DAmelio, F.; Wu, L.; Ilyina-Kakueva, E. I.; Krasnov, I. B.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    The effects of spaceflight upon the 'slow' muscle adductor longus was examined in rats flown in the Soviet Biosatellite COSMOS 2044. Three groups - synchronous, vivarium and basal served as controls. The techniques employed included standard methods for light microscopy, N-CAM immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy, contraction bands and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leucocytes and mononuclear cells. N-CAM immunoreactivity was seen (N-CAM-IR) on the myofiber surface, satellite cells and in regenerating myofibers reminiscent of myotubes. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments that displayed varied distributive patterns. The principal electron microscopic changes of the neuromuscular junctions consisted of a decrease or absence of synaptic vesicles, degeneration of axon terminals, increased number of microtubules, vacant axonal spaces and axonal sprouting. The present observations indicate that major alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  2. Evaluation of the thoraco-laryngeal reflex ('slap test') as an indicator of laryngeal adductor myopathy in the horse.

    PubMed

    Newton-Clarke, M J; Divers, T J; Valentine, B A

    1994-09-01

    A study was conducted over a 12 month period to assess the accuracy of the 'slap test' in the diagnosis of laryngeal adductor myopathy. The thoraco-laryngeal reflexes of 15 horses with no clinical signs of idiopathic laryngeal hemiplegia (ILH) were recorded using a video-endoscope. These 'slap test' responses were examined independently by 3 assessors. The horses were subsequently subjected to euthanasia and samples taken from the cricoarytenoideus lateralis (CAL) muscles for histopathological examination and assessment of denervation atrophy. Despite normal adductory responses, moderate to severe atrophy of the left CAL muscles was seen in 5 horses. The remaining horses had varying degrees of adductor myopathy, invariably worse in the left side of the larynx. The 'slap test' as performed in this study was therefore unable to differentiate between horses with moderate to severe muscle changes and those without, making it useless as a diagnostic test for adductor myopathy. The reason for the preservation in adductor function despite advanced histological atrophy of the muscle may lie in the degree of reinnervation found in the muscles.

  3. Three dimensional digital reconstruction of the jaw adductor musculature of the extinct marsupial giant Diprotodon optatum

    PubMed Central

    2014-01-01

    The morphology and arrangement of the jaw adductor muscles in vertebrates reflects masticatory style and feeding processes, diet and ecology. However, gross muscle anatomy is rarely preserved in fossils and is, therefore, heavily dependent on reconstructions. An undeformed skull of the extinct marsupial, Diprotodon optatum, recovered from Pleistocene sediments at Bacchus Marsh in Victoria, represents the most complete and best preserved specimen of the species offering a unique opportunity to investigate functional anatomy. Computed tomography (CT) scans and digital reconstructions make it possible to visualise internal cranial anatomy and predict location and morphology of soft tissues, including muscles. This study resulted in a 3D digital reconstruction of the jaw adductor musculature of Diprotodon, revealing that the arrangement of muscles is similar to that of kangaroos and that the muscle actions were predominantly vertical. 3D digital muscle reconstructions provide considerable advantages over 2D reconstructions for the visualisation of the spatial arrangement of the individual muscles and the measurement of muscle properties (length, force vectors and volume). Such digital models can further be used to estimate muscle loads and attachment sites for biomechanical analyses. PMID:25165628

  4. Speech Intelligibility in Severe Adductor Spasmodic Dysphonia

    ERIC Educational Resources Information Center

    Bender, Brenda K.; Cannito, Michael P.; Murry, Thomas; Woodson, Gayle E.

    2004-01-01

    This study compared speech intelligibility in nondisabled speakers and speakers with adductor spasmodic dysphonia (ADSD) before and after botulinum toxin (Botox) injection. Standard speech samples were obtained from 10 speakers diagnosed with severe ADSD prior to and 1 month following Botox injection, as well as from 10 age- and gender-matched…

  5. Unique use of botulinum toxin to decrease adductor tone and allow surgical excision of vulvar carcinoma.

    PubMed

    Guo, Y; Shin, K

    2004-01-01

    Here, we present the case of an 86-year-old woman with vulvar carcinoma requiring surgical resection and with Parkinson's disease with severe spasticity and contractures of the lower extremities. Because of the patient's severe contractures and spasticity (her knees could only be separated by 2 cm with sustained abducting force), surgical positioning and access to the vulva were impossible. The patient was admitted, intending to undergo surgery after injection with botulinum toxin (BTX) to hip adductors and intensive physical therapy. After confirmed healed hip arthroplasty, the patient underwent BTX injection (400 U) to her bilateral adductor brevis, adductor longus, adductor magnus, and semimembranosus and semitendinosus muscles on day 2 of her hospital stay. On day 3, a physical therapist began a twice-a-day stretching program. An adjustable abduction brace was custom-made to provide sustained stretching. On day 9, the patient underwent wide local excision of vulvar carcinoma with the abductor brace in place. The patient tolerated the surgery well and was discharged home on day 11 with continuous physical therapy. Upon discharge, the distance between the patient's knees was 14 cm. This unique case demonstrated a new indication for BTX treatment in the preoperative setting to allow surgical positioning and access.

  6. Evolutionary Trends in the Jaw Adductor Mechanics of Ornithischian Dinosaurs.

    PubMed

    Nabavizadeh, Ali

    2016-03-01

    Jaw mechanics in ornithischian dinosaurs have been widely studied for well over a century. Most of these studies, however, use only one or few taxa within a given ornithischian clade as a model for feeding mechanics across the entire clade. In this study, mandibular mechanical advantages among 52 ornithischian genera spanning all subclades are calculated using 2D lever arm methods. These lever arm calculations estimate the effect of jaw shape and difference in adductor muscle line of action on relative bite forces along the jaw. Results show major instances of overlap between taxa in tooth positions at which there was highest mechanical advantage. A relatively low bite force is seen across the tooth row among thyreophorans (e.g., stegosaurs and ankylosaurs), with variation among taxa. A convergent transition occurs from a more evenly distributed bite force along the jaw in basal ornithopods and basal marginocephalians to a strong distal bite force in hadrosaurids and ceratopsids, respectively. Accordingly, adductor muscle vector angles show repeated trends from a mid-range caudodorsal orientation in basal ornithischians to a decrease in vector angles indicating more caudally oriented jaw movements in derived taxa (e.g., derived thyreophorans, basal ornithopods, lambeosaurines, pachycephalosaurs, and derived ceratopsids). Analyses of hypothetical jaw morphologies were also performed, indicating that both the coronoid process and lowered jaw joint increase moment arm length therefore increasing mechanical advantage of the jaw apparatus. Adaptive trends in craniomandibular anatomy show that ornithischians evolved more complex feeding apparatuses within different clades as well as morphological convergences between clades. PMID:26692539

  7. Saphenous and Infrapatellar Nerves at the Adductor Canal: Anatomy and Implications in Regional Anesthesia.

    PubMed

    Anagnostopoulou, Sofia; Anagnostis, George; Saranteas, Theodosios; Mavrogenis, Andreas F; Paraskeuopoulos, Tilemachos

    2016-01-01

    Conflicting data exist regarding the anatomical relationship of the saphenous and infrapatellar nerves at the adductor canal and the location of the superior foramen of the canal. Therefore, the authors performed a cadaveric study to detail the relationship and course of the saphenous and infrapatellar nerves and the level of the superior foramen of the canal. The adductor canal and subsartorial compartment were dissected in 17 human cadavers. The distance between the superior foramen of the canal and the mid-distance (MD) between the base of the patella and the anterior superior iliac crest were measured; the course of the saphenous and infrapatellar nerves and the level of origin of the infrapatellar branch were detailed. In 13 of 17 specimens, the superior foramen of the adductor canal was distal to the MD (mean, 6.5 cm); in the remaining specimens, it was proximal to the MD. In 12 of 17 specimens, the infrapatellar branch exited the canal separately from the saphenous nerve; in the remaining specimens, it originated caudally to the canal. In all dissections, the infrapatellar branch had a constant course in close proximity to the saphenous nerve within the canal and between the sartorious muscle and femoral artery caudally to the canal. Most commonly, the superior foramen of the adductor canal is located caudally to the MD; the infrapatellar branch originates from the saphenous nerve within the canal and has a constant course in close proximity to the saphenous nerve. These observations should be considered for regional anesthesia techniques at the adductor canal.

  8. Insertional tendinopathy of the adductors and rectus abdominis in athletes: a review.

    PubMed

    Valent, Alessandro; Frizziero, Antonio; Bressan, Stefano; Zanella, Elena; Giannotti, Erika; Masiero, Stefano

    2012-04-01

    Insertional tendinopathy of the adductors and rectus abdominis is common in male athletes, especially in soccer players. It may be worsened by physical activity and it usually limits sport performance. The management goal in the acute phase consists of analgesic and anti-inflammatory drugs and physical rehabilitation. In the early stages of rehabilitation, strengthening exercises of adductors and abdominal muscles, such as postural exercises, have been suggested. In the sub-acute phase, muscular strength is targeted by overload training in the gym or aquatherapy; core stability exercises seem to be useful in this phase. Finally, specific sport actions are introduced by increasingly complex exercises along with a preventive program to limit pain recurrences. PMID:23738289

  9. Insertional tendinopathy of the adductors and rectus abdominis in athletes: a review

    PubMed Central

    Valent, Alessandro; Frizziero, Antonio; Bressan, Stefano; Zanella, Elena; Giannotti, Erika; Masiero, Stefano

    2012-01-01

    Summary Insertional tendinopathy of the adductors and rectus abdominis is common in male athletes, especially in soccer players. It may be worsened by physical activity and it usually limits sport performance. The management goal in the acute phase consists of analgesic and anti-inflammatory drugs and physical rehabilitation. In the early stages of rehabilitation, strengthening exercises of adductors and abdominal muscles, such as postural exercises, have been suggested. In the sub-acute phase, muscular strength is targeted by overload training in the gym or aquatherapy; core stability exercises seem to be useful in this phase. Finally, specific sport actions are introduced by increasingly complex exercises along with a preventive program to limit pain recurrences. PMID:23738289

  10. Activation-induced force enhancement in human adductor pollicis.

    PubMed

    Oskouei, Ali E; Herzog, Walter

    2009-10-01

    It has been known for a long time that the steady-state isometric force after muscle stretch is bigger than the corresponding force obtained in a purely isometric contraction for electrically stimulated and maximal voluntary contractions (MVC). Recent studies using sub-maximal voluntary contractions showed that force enhancement only occurred in a sub-group of subjects suggesting that force enhancement for sub-maximal voluntary contractions has properties different from those of electrically-induced and maximal voluntary contractions. Specifically, force enhancement for sub-maximal voluntary contractions may contain an activation-dependent component that is independent of muscle stretching. To address this hypothesis, we tested for force enhancement using (i) sub-maximal electrically-induced contractions and stretch and (ii) using various activation levels preceding an isometric reference contraction at 30% of MVC (no stretch). All tests were performed on human adductor pollicis muscles. Force enhancement following stretching was found for all subjects (n=10) and all activation levels (10%, 30%, and 60% of MVC) for electrically-induced contractions. In contrast, force enhancement at 30% of MVC, preceded by 6s of 10%, 60%, and 100% of MVC was only found in a sub-set of the subjects and only for the 60% and 100% conditions. This result suggests that there is an activation-dependent force enhancement for some subjects for sub-maximal voluntary contractions. This activation-dependent force enhancement was always smaller than the stretch-induced force enhancement obtained at the corresponding activation levels. Active muscle stretching increased the force enhancement in all subjects, independent whether they showed activation dependence or not. It appears that post-activation potentiation, and the associated phosphorylation of the myosin light chains, might account for the stretch-independent force enhancement observed here.

  11. [Determination of 8 trace elements in mantle muscle and cuttlebone of Sepiella maindroni by ICP-MS using microwave digestion for sample preparation].

    PubMed

    Wu, Chang-Wen; Chi, Chang-Feng; He, Guang-Yuan; Xu, Mei-Ying

    2009-12-01

    An inductively coupled plasma mass spectrometry (ICP-MS) for determination of the contents of 8 trace elements in mantle muscle and cuttlebone of Sepiella maindroni after microwave digestion of the sample has been developed. Satisfactory linearity of working curves for the 8 elements was obtained, giving all their correlation coefficients over 0.997 3. The precision of measurement ranges from 2.4% to 8.7% in terms of relative standard deviation. The recoveries and the limits of detection are in the range of 96.5%-106.3% and 0.002-0.032 microg x L(-1), respectively. It was indicated that the proposed method had the advantages of simplicity, speediness and sensitivity. The results showed that the mantle muscle and cuttlebone of Sepiella maindroni contained rich trace elements Zn and Cu, but the contents of Cd and As are higher than the limits of Chinese Pharmacopoeia, Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation and U.S. Food and Drug Standard. Furthermore, our study provides new scientific foundation for the quality control, culture, general application, resource utilization and exporting of Sepiella maindroni.

  12. [Determination of 8 trace elements in mantle muscle and cuttlebone of Sepiella maindroni by ICP-MS using microwave digestion for sample preparation].

    PubMed

    Wu, Chang-Wen; Chi, Chang-Feng; He, Guang-Yuan; Xu, Mei-Ying

    2009-12-01

    An inductively coupled plasma mass spectrometry (ICP-MS) for determination of the contents of 8 trace elements in mantle muscle and cuttlebone of Sepiella maindroni after microwave digestion of the sample has been developed. Satisfactory linearity of working curves for the 8 elements was obtained, giving all their correlation coefficients over 0.997 3. The precision of measurement ranges from 2.4% to 8.7% in terms of relative standard deviation. The recoveries and the limits of detection are in the range of 96.5%-106.3% and 0.002-0.032 microg x L(-1), respectively. It was indicated that the proposed method had the advantages of simplicity, speediness and sensitivity. The results showed that the mantle muscle and cuttlebone of Sepiella maindroni contained rich trace elements Zn and Cu, but the contents of Cd and As are higher than the limits of Chinese Pharmacopoeia, Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation and U.S. Food and Drug Standard. Furthermore, our study provides new scientific foundation for the quality control, culture, general application, resource utilization and exporting of Sepiella maindroni. PMID:20210178

  13. Successful return to high-level sports following early surgical repair of combined adductor complex and rectus abdominis avulsion.

    PubMed

    Tansey, R J; Benjamin-Laing, H; Jassim, S; Liekens, K; Shankar, A; Haddad, F S

    2015-11-01

    Hip and groin injuries are common in athletes who take part in high level sports. Adductor muscle tendon injuries represent a small but important number of these injuries. Avulsion of the tendons attached to the symphysis pubis has previously been described: these can be managed both operatively and non-operatively. We describe an uncommon variant of this injury, namely complete avulsion of the adductor sleeve complex: this includes adductor longus, pectineus and rectus abdominis. We go on to describe a surgical technique which promotes a full return to the pre-injury level of sporting activity. Over a period of ten years, 15 high-level athletes with an MRI-confirmed acute adductor complex avulsion injury (six to 34 days old) underwent surgical repair. The operative procedure consisted of anatomical re-attachment of the avulsed tissues in each case and mesh reinforcement of the posterior inguinal wall in seven patients. All underwent a standardised rehabilitation programme, which was then individualised to be sport-specific. One patient developed a superficial wound infection, which was successfully treated with antibiotics. Of the 15 patients, four complained of transient local numbness which resolved in all cases. All patients (including seven elite athletes) returned to their previous level of participation in sport.

  14. Elbow joint adductor moment arm as an indicator of forelimb posture in extinct quadrupedal tetrapods.

    PubMed

    Fujiwara, Shin-ichi; Hutchinson, John R

    2012-07-01

    Forelimb posture has been a controversial aspect of reconstructing locomotor behaviour in extinct quadrupedal tetrapods. This is partly owing to the qualitative and subjective nature of typical methods, which focus on bony articulations that are often ambiguous and unvalidated postural indicators. Here we outline a new, quantitatively based forelimb posture index that is applicable to a majority of extant tetrapods. By determining the degree of elbow joint adduction/abduction mobility in several tetrapods, the carpal flexor muscles were determined to also play a role as elbow adductors. Such adduction may play a major role during the stance phase in sprawling postures. This role is different from those of upright/sagittal and sloth-like creeping postures, which, respectively, depend more on elbow extensors and flexors. Our measurements of elbow muscle moment arms in 318 extant tetrapod skeletons (Lissamphibia, Synapsida and Reptilia: 33 major clades and 263 genera) revealed that sprawling, sagittal and creeping tetrapods, respectively, emphasize elbow adductor, extensor and flexor muscles. Furthermore, scansorial and non-scansorial taxa, respectively, emphasize flexors and extensors. Thus, forelimb postures of extinct tetrapods can be qualitatively classified based on our quantitative index. Using this method, we find that Triceratops (Ceratopsidae), Anhanguera (Pterosauria) and desmostylian mammals are categorized as upright/sagittally locomoting taxa.

  15. RESULTS OF ADDUCTORS MUSCLE TENOTOMY IN SPASTIC CEREBRAL PALSY

    PubMed Central

    Guglielmetti, Luiz Gabriel Betoni; Santos, Ruy Mesquita Maranhao; Mendonça, Rodrigo Góes Medea de; Yamada, Helder Henzo; Assumpçao, Rodrigo Montezuma César de; Fucs, Patricia Maria de Moraes Barros

    2015-01-01

    Objective: Radiographic evaluation of the evolution of hips that underwent soft-tissue release. Methods: This was a retrospective evaluation on 101 spastic cerebral palsy patients who underwent soft-tissue release between 1991 and 2006. Forty-four patients met the inclusion criteria: 23 boys and 21 girls; 34 diparetic and 10 quadriparetic. Functionally, 29 were non-walkers, five were able to walk at home and 10 were able to walk within the community. Reimers' index (RI) and the acetabular index (AI) were measured on pre and postoperative radiographs, with a minimum follow-up of three years. The mean age at the time of surgery was 6.4 years. Results: The results were considered good if the RI had reduced, or had increased by less than 10%. This was found in 52% of this study. We observed a clear improvement in IR, along with worse results in patients with more than five years of postoperative follow-up. Conclusion: Soft-tissue release should be performed as early as possible, regardless of age, walking condition, clinical type, RI, AI or sex, and as soon as the patient clinically presents less than 30° abduction, because of the benefits relating to walking, prevention and treatment of subluxation, hygiene and pain relief. PMID:27022574

  16. The growth patterns of three hindlimb muscles in the chicken.

    PubMed

    Helmi, C; Cracraft, J

    1977-07-01

    This study was designed to investigate the growth patterns of three hindlimb muscles of the chicken relative to the functional-biomechanical demands of increasing body size. The biceps femoris, a bipennate non-postural muscle, grew relatively faster in terms of wet and dry weight than did the parallel-fibred adductor superficialis or the unipennate adductor profundus, both postural muscles. All three muscles exhibited positive allometry (relative to body weight) in muscle length but only biceps femoris and adductor profundus showed positive allometry in cross sectional area adductor superficialis having isometric growth in this parameter. In biceps femoris and adductor superficialis the lengths of the longest and shortest fasciculi grew at equal rates, whereas in adductor profundus the shortest fasciculi grew faster than the longest. We conclude that muscle weight alone is an insufficient indicator of changing function in growing muscle. Hence, growth studies should include other functionally relevant parameters such as cross sectional area, which is proportional to the force-producing capabilities of the muscle, or fibre (fasciculus) length, which is indicative of the absolute amount of stretching or shortening that is possible and of the contraction velocity.

  17. The growth patterns of three hindlimb muscles in the chicken.

    PubMed Central

    Helmi, C; Cracraft, J

    1977-01-01

    This study was designed to investigate the growth patterns of three hindlimb muscles of the chicken relative to the functional-biomechanical demands of increasing body size. The biceps femoris, a bipennate non-postural muscle, grew relatively faster in terms of wet and dry weight than did the parallel-fibred adductor superficialis or the unipennate adductor profundus, both postural muscles. All three muscles exhibited positive allometry (relative to body weight) in muscle length but only biceps femoris and adductor profundus showed positive allometry in cross sectional area adductor superficialis having isometric growth in this parameter. In biceps femoris and adductor superficialis the lengths of the longest and shortest fasciculi grew at equal rates, whereas in adductor profundus the shortest fasciculi grew faster than the longest. We conclude that muscle weight alone is an insufficient indicator of changing function in growing muscle. Hence, growth studies should include other functionally relevant parameters such as cross sectional area, which is proportional to the force-producing capabilities of the muscle, or fibre (fasciculus) length, which is indicative of the absolute amount of stretching or shortening that is possible and of the contraction velocity. PMID:885779

  18. Anatomy and function of the thenar muscles.

    PubMed

    Gupta, Salil; Michelsen-Jost, Heidi

    2012-02-01

    The four thenar muscles make up the intrinsic muscles of the thumb. They include the abductor pollicis, adductor pollicis, opponens pollicis, and flexor pollicis brevis. Thumb motion is facilitated through the coordination of these intrinsic muscles. The thumb musculature dynamically allows for precision pinching ad power gripping. PMID:22117918

  19. Rupture of adductor longus tendon due to ciprofloxacin.

    PubMed

    Mouzopoulos, George; Stamatakos, Mihalis; Vasiliadis, George; Skandalakis, Panagiotis

    2005-12-01

    We present a rare case of spontaneous rupture of the adductor longus tendon induced by ciprofloxacin. A 35-year-old man was diagnosed with pneumonia and was recommended ciprofloxacin 500 mg iv twice a day for 7 days. Three days after receiving the initial dose, he developed discomfort in his left medial thigh, and pain and swelling in the same area followed ten days later. He consulted us when he noted a palpable mass on the medial side of his left thigh, and MRI study revealed adductor longus tendon rupture. There was no obvious underlying disease or other factor causing fragility of his adductor longus tendon. We review the pathophysiological mechanisms leading to fluoroquinolone-related tendon rupture as well as the risk factors and discuss proper management.

  20. Magnetic resonance imaging analysis of water flow in the mantle cavity of live Mytilus galloprovincialis.

    PubMed

    Seo, Eriko; Ohishi, Kazue; Maruyama, Tadashi; Imaizumi-Ohashi, Yoshie; Murakami, Masataka; Seo, Yoshiteru

    2014-07-01

    Water flow inside the shell of Mytilus galloprovincialis was measured by phase-contrast magnetic resonance imaging (MRI). In seawater without algal cells at 23 °C, water approached the mussel from the posterior-ventral side, and entered through the inhalant aperture at a velocity of 40-20 mm s(-1). The flow rate in the lower mantle cavity decreased to 10-20 mm s(-1), the water flowed in the anterior-dorsal direction and approached the demibranches at a velocity of 5-10 mm s(-1). After passing through the lamellae to the upper mantle cavity, the water stretched the interlamellar cavity, turned to the posterior-dorsal direction and accumulated in the epibranchial cavity. The water flows came together at the ventral side of the posterior adductor muscle. The velocity increased more to than 50 mm s(-1) in the exhalant siphon, and exhaled out in the posterior-dorsal direction. The anterior-posterior direction of the flow was imaged every 1.92 s by the inflow effect of T1-weighted MRI. The flow seemed to be constant, and no cyclic motion of the mantles or the gills was detected. Spontaneous closure of the shells caused a quick drop of the flow in the mantle cavity. In the opening process of the shells, water flow in the interlamellar cavities increased before the opening, followed by an increase of flows in the exhalant siphon and inhalant aperture with minimum delay, reaching a plateau within 1 min of the shells opening. This provides direct evidence that the lateral cilia drive water in the mussel M. galloprovincialis. PMID:25141344

  1. Vocal aging and adductor spasmodic dysphonia: Response to botulinum toxin injection

    PubMed Central

    Cannito, Michael P; Kahane, Joel C; Chorna, Lesya

    2008-01-01

    Aging of the larynx is characterized by involutional changes which alter its biomechanical and neural properties and create a biological environment that is different from younger counterparts. Illustrative anatomical examples are presented. This natural, non-disease process appears to set conditions which may influence the effectiveness of botulinum toxin injection and our expectations for its success. Adductor spasmodic dysphonia, a type of laryngeal dystonia, is typically treated using botulinum toxin injections of the vocal folds in order to suppress adductory muscle spasms which are disruptive to production of speech and voice. A few studies have suggested diminished response to treatment in older patients with adductor spasmodic dysphonia. This retrospective study provides a reanalysis of existing pre-to-post treatment data as function of age. Perceptual judgments of speech produced by 42 patients with ADSD were made by two panels of professional listeners with expertise in voice or fluency of speech. Results demonstrate a markedly reduced positive response to botulinum toxin treatment in the older patients. Perceptual findings are further elucidated by means of acoustic spectrography. Literature on vocal aging is reviewed to provide a specific set of biological mechanisms that best account for the observed interaction of botulinum toxin treatment with advancing age. PMID:18488884

  2. The Results of Adductor Magnus Tenodesis in Adolescents with Recurrent Patellar Dislocation

    PubMed Central

    Malecki, Krzysztof; Fabis, Jaroslaw; Flont, Pawel; Niedzielski, Kryspin Ryszard

    2015-01-01

    Recurrent dislocation of the patella is a common orthopaedic problem which occurs in about 44% of cases after first-time dislocation. In most cases of first-time patellar dislocation, the medial patellofemoral ligament (MPFL) becomes damaged. Between 2010 and 2012, 33 children and adolescents (39 knees) with recurrent patellar dislocation were treated with MPFL reconstruction using the adductor magnus tendon. The aim of our study is to assess the effectiveness of this surgical procedure. The outcomes were evaluated functionally (Lysholm knee scale, the Kujala Anterior Knee Pain Scale, and isokinetic examination) and radiographically (Caton index, sulcus angle, congruence angle, and patellofemoral angle). Four patients demonstrated redislocation with MPFL graft failure, despite the fact that patellar tracking was found to be normal before the injury, and the patients had not reported any symptoms. Statistically significant improvements in Lysholm and Kujala scales, in patellofemoral and congruence angle, were seen (P < 0.001). A statistically significant improvement in the peak torque of the quadriceps muscle and flexor was observed for 60°/sec and 180°/sec angular velocities (P = 0.01). Our results confirm the efficacy of MPFL reconstruction using the adductor magnus tendon in children and adolescents with recurrent patellar dislocation. PMID:25785271

  3. Mechanism study of high browning degree of mantle muscle meat from Japanese common squid Todarodes pacificus during air-drying.

    PubMed

    Geng, Jie-Ting; Kaido, Toshiki; Kasukawa, Masaru; Zhong, Chan; Sun, Le-Chang; Okazaki, Emiko; Osako, Kazufumi

    2015-06-01

    Mantle meat from the Japanese common squid (Todarodes pacificus) browns more than other squid meats during air-drying. The factors contributing to the browning of Japanese common squid, long-finned squid (Photololigo edulis) and bigfin reef squid (Sepioteuthis lessoniana) were studied in boiled and raw meat both before and after air-drying. Dried raw meat from the Japanese common squid browned more than dried boiled meat (b(∗) value, from 4.7 to 28.5). The results from SDS-PAGE showed significant degradation of myosin heavy chain (MHC) suggesting that protease activity in raw Japanese common squid meat was higher than in the other two species. The concentration of arginine (1932.0mg/100g) and ribose (28.8μmol/g) in Japanese common squid meat was higher than in the other two species. These results suggest that high protease activity and high concentrations of arginine and ribose increase the browning discoloration of Japanese common squid during air-drying.

  4. Peak torque, reaction time, and rate of torque development of hip abductors and adductors of older women.

    PubMed

    Morcelli, Mary Hellen; Rossi, Denise Martineli; Karuka, Aline Harumi; Crozara, Luciano Fernandes; Hallal, Camilla Zamfolini; Marques, Nise Ribeiro; Gonçalves, Mauro; Navega, Marcelo Tavella

    2016-01-01

    Impaired muscle function at the hip has been implicated to be a major factor related to falls in older adults. Therefore, the aim of this study was to analyze the rate of torque development (RTD), reaction time (RT), and peak torque (PT) of hip abductors and hip adductors in young women (YW), older women nonfallers (ONF), and older women fallers (OF). Eighteen YW and 44 older women divided among OF (n = 20) and ONF (n = 24) performed maximum isometric hip abductor and adduction contractions on a dynamometer. YW had 40% greater PT and 61.5% greater RTD for hip abductors than the ONF. Compared with OF, YW had 47.5% greater PT and 68% greater RTD. OF showed less RTD at 150 ms (31%) and 200 ms (34.5%) than ONF for hip abductors. PT of hip adductors was 52% greater in YW than in the two older groups, whereas RTD was 71% greater. OF showed less RTD than ONF for hip abductors according to standardized effect sizes. No RT differences were observed between the three groups. We conclude that older women (OF and ONF) have less strength and ability to develop force rapidly than YW for hip abductors and adductors. Low hip strength and slowed force development in ONF during hip abduction may increase fall risk in older women.

  5. Birch's Mantle

    NASA Astrophysics Data System (ADS)

    Anderson, D. L.

    2002-12-01

    Francis Birch's 1952 paper started the sciences of mineral physics and physics of the Earth's interior. Birch stressed the importance of pressure, compressive strain and volume in mantle physics. Although this may seem to be an obvious lesson many modern paradoxes in the internal constitution of the Earth and mantle dynamics can be traced to a lack of appreciation for the role of compression. The effect of pressure on thermal properties such as expansivity can gravitational stratify the Earth irreversibly during accretion and can keep it chemically stratified. The widespread use of the Boussinesq approximation in mantle geodynamics is the antithesis of Birchian physics. Birch pointed out that eclogite was likely to be an important component of the upper mantle. Plate tectonic recycling and the bouyancy of oceanic crust at midmantle depths gives credence to this suggestion. Although peridotite dominates the upper mantle, variations in eclogite-content may be responsible for melting- or fertility-spots. Birch called attention to the Repetti Discontinuity near 900 km depth as an important geodynamic boundary. This may be the chemical interface between the upper and lower mantles. Recent work in geodynamics and seismology has confirmed the importance of this region of the mantle as a possible barrier. Birch regarded the transition region (TR ; 400 to 1000 km ) as the key to many problems in Earth sciences. The TR contains two major discontinuities ( near 410 and 650 km ) and their depths are a good mantle thermometer which is now being exploited to suggest that much of plate tectonics is confined to the upper mantle ( in Birch's terminology, the mantle above 1000 km depth ). The lower mantle is homogeneous and different from the upper mantle. Density and seismic velocity are very insensitive to temperature there, consistent with tomography. A final key to the operation of the mantle is Birch's suggestion that radioactivities were stripped out of the deeper parts of

  6. Robot-assisted removal of a lymphocyst causing severe neuralgic pain and adductor atrophy.

    PubMed

    Cazzaniga, Giorgio; Borgfeldt, Christer; Wallengren, Nils-Olof; Persson, Jan

    2011-12-01

    Following a robot-assisted radical hysterectomy and pelvic lymphadenectomy for early-stage cervical cancer, a 53-year-old woman was diagnosed with a 50-mm right-sided pelvic lymphocyst by the use of vaginal ultrasonography. She gradually developed intermittent increasingly severe neuralgic pain mimicking a meralgia paresthetica. A neurolysis was proposed by the neurosurgeons. Awaiting this intervention, a pelvic MRI revealed a partial atrophy of the ipsilateral adductor muscles and a probable entrapment of the obturator nerve by the lymphocyst as an alternative cause of the pain. Using a four-arm da Vinci-S-HD robot the lymphocyst, located deep in the right obturator fossa and surrounding the obturator nerve, was completely removed, sparing the partially atrophic obturator nerve. No bleeding occurred. The surgery time was 95 min. At 10 months' follow-up the patient was relieved of her pain with no signs of a new lymphocyst. PMID:27628122

  7. Historical approaches to the treatment of Adductor-Type Spasmodic Dysphonia (ADSD): review and tutorial.

    PubMed

    Pearson, Erin J; Sapienza, Christine M

    2003-01-01

    Adductor-type spasmodic dysphonia (ADSD) is a voice disorder of uncertain, though likely neurogenic origin. Symptoms of the disorder include mild to profound "strain and strangle" sensations during voiced speech tasks that, in the most severe form, are physically and psychologically debilitating. Over the years, treatment approaches have evolved from behavioral attempts at voice modification, to surgical and, most recently, pharmacological treatments involving partial and temporary paralysis of muscle fibers within the larynx following injection of botulinum toxin or Botox. The most current research hints at the potential benefits of a multi-faceted approach to symptom management, combining behavioral with pharmacological treatments. The following is intended as a review and tutorial of treatment approaches for ADSD. The tutorial is intended for practicing clinical professionals with an interest in the treatment of neurogenic disorders of voice and speech.

  8. Mantle metasomatism

    SciTech Connect

    Menzies, M.; Hawkesworth, C.

    1986-01-01

    The concept of metasomatism and its role in the geochemical enrichment and depletion processes in upper mantle rocks remains contentious. This volume makes a comprehensive contribution to the study of metasomatic and enrichment processes: origin and importance in determining trace element and isotopic heterogeneity in the lithospheric mantle. It begins with a theoretical thermodynamic and experimental justification for metasomatism and proceeds to present evidence for this process from the study of mantle xenoliths. Finally the importance of metasomatism in relation to basaltic volcanism is assessed. The contents are as follows: Dynamics of Translithospheric Migration of Metasomatic Fluid and Alkaline Magma. Solubility of Major and Trace Elements in Mantle Metasomatic Fluids: Experimental Constraints. Mineralogic and Geochemical Evidence for Differing Styles of Metasomatism in Spinel Lherzolite Xenoliths: Enriched Mantle Source Regions of Basalts. Characterization of Mantle Metasomatic Fluids in Spinel Lherzolites and Alkali Clinophyroyxenites from the West Eifel and South-West Uganda. Metasomatised Harzburgites in Kimberlite and Alkaline Magmas: Enriched Resites and ''Flushed'' Lherzolites. Metasomatic and Enrichment Phenomena in Garnet-Peridotite Facies Mantle Xenoliths from the Matsoku Kimberlite Pipe Lesotho. Evidence for Mantle Metasomatism in Periodite Nodules from the Kimberley Pipes South Africa. Metasomatic and Enrichment Processes in Lithospheric Peridotites, an Effective of Asthenosphere-Lithosphere Interaction. Isotope Variations in Recent Volcanics: A Trace Element Perspective. Source Regions of Mid-Ocean Ridge Basalts: Evidence for Enrichment Processes. The Mantle Source for the Hawaiian Islands: Constraints from the Lavas and Ultramafic Inclusions.

  9. Differential regulation of the expression of lipid metabolism-related genes with skeletal muscle type in growing chickens.

    PubMed

    Saneyasu, Takaoki; Kimura, Sayaka; Kitashiro, Ayana; Tsuchii, Nami; Tsuchihashi, Tatsuya; Inui, Mariko; Honda, Kazuhisa; Kamisoyama, Hiroshi

    2015-11-01

    The regulatory mechanisms of carbohydrate and lipid metabolism are known to differ among skeletal muscle types in mammals. For example, glycolytic muscles prefer glucose as an energy source, whereas oxidative muscles prefer fatty acids (FA). We herein demonstrated differences in the expression of genes involved in carbohydrate and lipid metabolism in the pectoralis major (a glycolytic twitch muscle), adductor superficialis (an oxidative twitch muscle), and adductor profound (a tonic muscle) of 14-day-old chicks. Under ad libitum feeding conditions, the mRNA levels of muscle type phosphofructokinase-1 were markedly lower in the adductor superficialis muscle, suggesting that basal glycolytic activity is very low in this type of muscle. In contrast, high mRNA levels of lipoprotein lipase (LPL) and fatty acid translocase/cluster of differentiation 36 (FAT/CD36) in the adductor superficialis muscle suggest that FA uptake is high in this type of muscle. The mRNA levels of adipose triglyceride lipase (ATGL) and carnitine palmitoyltransferase 1b (CPT1b) were significantly higher in the adductor profound muscle than in other muscles, suggesting that basal lipolytic activity is high in this type of muscle. Furthermore, the mRNA levels of peroxisome proliferator activated receptor δ and CPT1b were significantly increased in the adductor superficialis muscle, but not in other muscles, after 24h of fasting. Therefore, the availability of FA in the oxidative twitch muscles in growing chickens appears to be upregulated by fasting. Our results suggest that lipid metabolism-related genes are upregulated under both basal and fasting conditions in the adductor superficialis in growing chickens. PMID:26188321

  10. Differential regulation of the expression of lipid metabolism-related genes with skeletal muscle type in growing chickens.

    PubMed

    Saneyasu, Takaoki; Kimura, Sayaka; Kitashiro, Ayana; Tsuchii, Nami; Tsuchihashi, Tatsuya; Inui, Mariko; Honda, Kazuhisa; Kamisoyama, Hiroshi

    2015-11-01

    The regulatory mechanisms of carbohydrate and lipid metabolism are known to differ among skeletal muscle types in mammals. For example, glycolytic muscles prefer glucose as an energy source, whereas oxidative muscles prefer fatty acids (FA). We herein demonstrated differences in the expression of genes involved in carbohydrate and lipid metabolism in the pectoralis major (a glycolytic twitch muscle), adductor superficialis (an oxidative twitch muscle), and adductor profound (a tonic muscle) of 14-day-old chicks. Under ad libitum feeding conditions, the mRNA levels of muscle type phosphofructokinase-1 were markedly lower in the adductor superficialis muscle, suggesting that basal glycolytic activity is very low in this type of muscle. In contrast, high mRNA levels of lipoprotein lipase (LPL) and fatty acid translocase/cluster of differentiation 36 (FAT/CD36) in the adductor superficialis muscle suggest that FA uptake is high in this type of muscle. The mRNA levels of adipose triglyceride lipase (ATGL) and carnitine palmitoyltransferase 1b (CPT1b) were significantly higher in the adductor profound muscle than in other muscles, suggesting that basal lipolytic activity is high in this type of muscle. Furthermore, the mRNA levels of peroxisome proliferator activated receptor δ and CPT1b were significantly increased in the adductor superficialis muscle, but not in other muscles, after 24h of fasting. Therefore, the availability of FA in the oxidative twitch muscles in growing chickens appears to be upregulated by fasting. Our results suggest that lipid metabolism-related genes are upregulated under both basal and fasting conditions in the adductor superficialis in growing chickens.

  11. Parrotfish grazing ability: interspecific differences in relation to jaw-lever mechanics and relative weight of adductor mandibulae on an Okinawan coral reef.

    PubMed

    Nanami, Atsushi

    2016-01-01

    Parrotfishes (family Labridae: Scarini) are regarded to have important roles for maintaining the ecosystem balance in coral reefs due to their removal of organic matter and calcic substrates by grazing. The purpose of the present study was to clarify the interspecific differences in grazing ability of five parrotfish species (Chlorurus sordidus, C. bowersi, Scarus rivulatus, S. niger and S. forsteni) in relation to interspecific differences in jaw-lever mechanics and the relative weight of the adductor mandibulae (muscles operating jaw closing). The grazing ability was calculated by using stomach contents (CaCO3 weight/organic matter weight) defined as the grazing ability index (GAI). There were significant interspecific differences in GAI (C. sordidus = C. bowersi > S. rivulatus > S. niger = S. forsteni). Teeth of C. sordidus and C. bowersi were protrusive-shape whereas teeth of S. rivulatus, S. niger and S. forsteni were flat-shape. C. sordidus and C. bowersihave jaw-lever mechanics producing a greater biting force and have a larger weight of adductor mandibulae. S. rivulatus has jaw-lever mechanics producing a greater biting force but a smaller weight of adductor mandibulae that produce an intermediate biting force. In contrast, S. niger and S. forsteni have jaw-lever mechanics producing a lesser biting force and have a smaller weight of adductor mandibulae. Feeding rates and foray size of S. rivulatus, S. niger and S. forsteni were greater than C. sordidus and C. bowersi. The degree in bioerosion (GAI × feeding rate) was the largest for S. rivulatusand the smallest for S. forsteni. The degree in bioerosion for C. sordidus was larger than S. niger whereas relatively equal between C. bowersi and S. niger. These results suggest that interspecific difference in GAI was explained by interspecific differences in teeth shape, jaw-lever mechanics and relative weight of adductor mandibulae. The interspecific difference in the degree of bioerosion suggests the

  12. Parrotfish grazing ability: interspecific differences in relation to jaw-lever mechanics and relative weight of adductor mandibulae on an Okinawan coral reef

    PubMed Central

    2016-01-01

    Parrotfishes (family Labridae: Scarini) are regarded to have important roles for maintaining the ecosystem balance in coral reefs due to their removal of organic matter and calcic substrates by grazing. The purpose of the present study was to clarify the interspecific differences in grazing ability of five parrotfish species (Chlorurus sordidus, C. bowersi, Scarus rivulatus, S. niger and S. forsteni) in relation to interspecific differences in jaw-lever mechanics and the relative weight of the adductor mandibulae (muscles operating jaw closing). The grazing ability was calculated by using stomach contents (CaCO3 weight/organic matter weight) defined as the grazing ability index (GAI). There were significant interspecific differences in GAI (C. sordidus = C. bowersi > S. rivulatus > S. niger = S. forsteni). Teeth of C. sordidus and C. bowersi were protrusive-shape whereas teeth of S. rivulatus, S. niger and S. forsteni were flat-shape. C. sordidus and C. bowersihave jaw-lever mechanics producing a greater biting force and have a larger weight of adductor mandibulae. S. rivulatus has jaw-lever mechanics producing a greater biting force but a smaller weight of adductor mandibulae that produce an intermediate biting force. In contrast, S. niger and S. forsteni have jaw-lever mechanics producing a lesser biting force and have a smaller weight of adductor mandibulae. Feeding rates and foray size of S. rivulatus, S. niger and S. forsteni were greater than C. sordidus and C. bowersi. The degree in bioerosion (GAI × feeding rate) was the largest for S. rivulatusand the smallest for S. forsteni. The degree in bioerosion for C. sordidus was larger than S. niger whereas relatively equal between C. bowersi and S. niger. These results suggest that interspecific difference in GAI was explained by interspecific differences in teeth shape, jaw-lever mechanics and relative weight of adductor mandibulae. The interspecific difference in the degree of bioerosion suggests the

  13. [Abnormal adductor movement of the vocal cords in spasmodic dysphonia].

    PubMed

    Shibusawa, M

    1993-04-01

    Adductor movement of the vocal cords in initial/ke/phonation was recorded using a laryngeal fiberscope, CCD camera, and videocassette recorder. Three patients with adductor spasmodic dysphonia (SD), a 53 year old male and 48 and 52 year old females, and 7 normal volunteers participated in this study. During the examination, the subject sat on a chair holding a microphone about 20 cm away from his or her lips. A laryngeal fiberscope was inserted through either side of the nostril. The tip of the fiberscope was positioned just caudal to the tip of the epiglottis to get a complete view of both sides of the vocal cords. The examiner told the subject to make the speech sound/ke/repeatedly, and to insert a sufficient inspiratory period between each phonation. The vocal cord images were recorded at 30 frames per second and printed successively from several frames ahead of the beginning of adductor movement to the frame of initial adjustment of the membranous part of the vocal cords following a time code indicator. The tips of both sides of the vocal processes and anterior commissure were marked, then, scanned and transported to a personal computer. An imaginary line connecting the vocal process and anterior commissure was drawn on the screen of the computer, which was done on both sides of the vocal cords. Then, an angle made by the two lines was measured in degrees and stored. The time and speed of adductor movement varied among subjects. Normal subjects, however, never failed to finish making the explosive sound in /ke/ before initial vocal cord adjustment.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. The dependence of force enhancement on activation in human adductor pollicis.

    PubMed

    Oskouei, Ali E; Herzog, Walter

    2006-09-01

    It has been well recognized that the steady-state isometric force after active muscle/fiber stretch is greater than the corresponding isometric force for electrically stimulated muscles and maximal voluntary contractions (MVC). However, recent evidence obtained for sub-MVC suggests that force enhancement properties are different from those observed for electrically induced and MVC. Specifically, it appears that force enhancement is activation-dependent and that there is a subject-specific threshold for force enhancement in sub-MVC. To address these suggestions, the relationship between force enhancement and voluntary activation during stretch was investigated in 11 healthy subjects. Human adductor pollicis muscles were studied and force enhancement was measured while muscle activation during the steady-state isometric phase was controlled at a level of 30% of MVC. In order to study the effects of activation on force enhancement, subjects performed stretch contractions at 0, 10, 30, 60, and 100% of maximal voluntary effort while the steady-state isometric force after stretch, obtained at 30% of activation in all cases, was compared to the corresponding values measured in the isometric reference contractions. There was no force enhancement if muscle stretching occurred passively but all subjects showed force enhancement when muscle stretching occurred at maximal voluntary effort. When increasing the level of activation during the stretch phase, force enhancement increased, and the number of subjects who showed force enhancement increased as well. We conclude from these results that force enhancement during voluntary contractions is activation-dependent with a threshold that is subject-specific.

  15. Bone Scanning in the Adductor Insertion Avulsion Syndrome

    PubMed Central

    Mahajan, Madhuri Shimpi

    2013-01-01

    A thigh splint (adductor insertion avulsion syndrome) is a relatively uncommon diagnosis analogous to shin splints. This article reports a 19-year-old female patient NOT a regular athlete who presented with groin pain. Physical examination was non-specific; magnetic resonance imaging pelvis did not reveal any abnormality. Patient referred for whole body bone scan, especially to locate any abnormality in the spine. This study highlights the role of whole body bone scan in the evaluation of groin pain and importance of evaluation of whole lower extremity. PMID:25126001

  16. Scallops show that muscle metabolic capacities reflect locomotor style and morphology.

    PubMed

    Tremblay, Isabelle; Guderley, Helga E

    2014-01-01

    Although all scallops swim using their adductor muscle to close their valves, scallop species differ considerably in how they use their muscle during escape responses, in parallel with the striking interspecific differences in shell morphology. This provides an excellent opportunity to study links between muscle metabolic capacities and animal performance. We found that the capacity for anaerobic glycolysis and aerobic metabolism, as well as phosphoarginine levels in the phasic adductor muscle, differ with escape response strategy. Phosphoarginine contents were high in species that rely on phasic contractions (Amusium balloti, Placopecten magellanicus, and Pecten fumatus). Arginine kinase activities reflect reliance on rapid initial bursts of phasic contractions. Scallops that maintain their valves in a closed position for prolonged periods (P. fumatus, Mimachlamys asperrima, and Crassadoma gigantea) have high activities of enzymes of anaerobic glycolysis in their phasic adductor muscle. Myosin ATPase activity was lower in the nonswimming scallop, C. gigantea, than in swimming scallops. The different patterns and roles of swimming are reflected in interspecific differences in the biochemical attributes of the phasic adductor muscle. These patterns suggest coevolution of muscle metabolic capacities, patterns of adductor muscle use, and shell morphology in scallops. PMID:24642541

  17. Mantle cryptology

    SciTech Connect

    Zindler, A.; Jagoutz, E.

    1988-02-01

    A group of anhydrous peridotites from Peridot Mesa, Arizona, document isotopic and trace element heterogeneity in the source mantle. LREE enrichments in two spinel periodotites may have occurred immediately prior to entrainment through interaction with a melt similar to the hose basanite. Detailed characterization of inclusion-free peridotite phases, and washed and unwahsed whole-rock samples, verifies the presence of a ubiquitous secondary contaminant which derives from interaction of the peridotites with local ground waters and host magma. Once the veil of this contamination is removed, coexisting phases are found to be in isotopic equilibrium. Further, a comparison of washed whole rocks and calculated clean-bulk compositions documents the occurrence of an important intragranular fluid-hosted trace element component. For the very incompatible elements (K, Rb, Cs, and Ba, and probably U, Th, Pb and gaseous components as well) this component dominates the nodule budget for two of the three samples studied in detail. Production of basaltic magmas from fertile but incompatible-element-depleted peridotite requires the action of melting processes such as those recently proposed by McKenzie (1985) and O'Hara (1985). The distinctive feature of these models is that they call on effectively larger source volumes for more incompatible elements. In this context, depletions of incompatible trace elements in MORB source mantle will be more extreme than has heretofore been suspected. This would essentially preclude the long-term total isolation of a MORB source mantle above the 670 km seismic discontinuity.

  18. Changes in Adductor Strength After Competition in Academy Rugby Union Players.

    PubMed

    Roe, Gregory A B; Phibbs, Padraic J; Till, Kevin; Jones, Ben L; Read, Dale B; Weakley, Jonathon J; Darrall-Jones, Joshua D

    2016-02-01

    This study determined the magnitude of change in adductor strength after a competitive match in academy rugby union players and examined the relationship between locomotive demands of match-play and changes in postmatch adductor strength. A within-subject repeated measures design was used. Fourteen academy rugby union players (age, 17.4 ± 0.8 years; height, 182.7 ± 7.6 cm; body mass, 86.2 ± 11.6 kg) participated in the study. Each player performed 3 maximal adductor squeezes at 45° of hip flexion before and immediately, 24, 48, and 72 hours postmatch. Global positioning system was used to assess locomotive demands of match-play. Trivial decreases in adductor squeeze scores occurred immediately (-1.3 ± 2.5%; effect size [ES] = -0.11 ± 0.21; likely, 74%) and 24 hours after match (-0.7 ± 3%; ES = -0.06 ± 0.25; likely, 78%), whereas a small but substantial increase occurred at 48 hours (3.8 ± 1.9%; ES = 0.32 ± 0.16; likely, 89%) before reducing to trivial at 72 hours after match (3.1 ± 2.2%; ES = 0.26 ± 0.18; possibly, 72%). Large individual variation in adductor strength was observed at all time points. The relationship between changes in adductor strength and distance covered at sprinting speed (VO2max ≥ 81%) was large immediately postmatch (p = 0.056, r = -0.521), moderate at 24 hours (p = 0.094, r = -0.465), and very large at 48 hours postmatch (p = 0.005, r = -0.707). Players who cover greater distances sprinting may suffer greater adductor fatigue in the first 48 hours after competition. The assessment of adductor strength using the adductor squeeze test should be considered postmatch to identify players who may require additional rest before returning to field-based training.

  19. Parrotfish grazing ability: interspecific differences in relation to jaw-lever mechanics and relative weight of adductor mandibulae on an Okinawan coral reef

    PubMed Central

    2016-01-01

    Parrotfishes (family Labridae: Scarini) are regarded to have important roles for maintaining the ecosystem balance in coral reefs due to their removal of organic matter and calcic substrates by grazing. The purpose of the present study was to clarify the interspecific differences in grazing ability of five parrotfish species (Chlorurus sordidus, C. bowersi, Scarus rivulatus, S. niger and S. forsteni) in relation to interspecific differences in jaw-lever mechanics and the relative weight of the adductor mandibulae (muscles operating jaw closing). The grazing ability was calculated by using stomach contents (CaCO3 weight/organic matter weight) defined as the grazing ability index (GAI). There were significant interspecific differences in GAI (C. sordidus = C. bowersi > S. rivulatus > S. niger = S. forsteni). Teeth of C. sordidus and C. bowersi were protrusive-shape whereas teeth of S. rivulatus, S. niger and S. forsteni were flat-shape. C. sordidus and C. bowersihave jaw-lever mechanics producing a greater biting force and have a larger weight of adductor mandibulae. S. rivulatus has jaw-lever mechanics producing a greater biting force but a smaller weight of adductor mandibulae that produce an intermediate biting force. In contrast, S. niger and S. forsteni have jaw-lever mechanics producing a lesser biting force and have a smaller weight of adductor mandibulae. Feeding rates and foray size of S. rivulatus, S. niger and S. forsteni were greater than C. sordidus and C. bowersi. The degree in bioerosion (GAI × feeding rate) was the largest for S. rivulatusand the smallest for S. forsteni. The degree in bioerosion for C. sordidus was larger than S. niger whereas relatively equal between C. bowersi and S. niger. These results suggest that interspecific difference in GAI was explained by interspecific differences in teeth shape, jaw-lever mechanics and relative weight of adductor mandibulae. The interspecific difference in the degree of bioerosion suggests the

  20. Parrotfish grazing ability: interspecific differences in relation to jaw-lever mechanics and relative weight of adductor mandibulae on an Okinawan coral reef.

    PubMed

    Nanami, Atsushi

    2016-01-01

    Parrotfishes (family Labridae: Scarini) are regarded to have important roles for maintaining the ecosystem balance in coral reefs due to their removal of organic matter and calcic substrates by grazing. The purpose of the present study was to clarify the interspecific differences in grazing ability of five parrotfish species (Chlorurus sordidus, C. bowersi, Scarus rivulatus, S. niger and S. forsteni) in relation to interspecific differences in jaw-lever mechanics and the relative weight of the adductor mandibulae (muscles operating jaw closing). The grazing ability was calculated by using stomach contents (CaCO3 weight/organic matter weight) defined as the grazing ability index (GAI). There were significant interspecific differences in GAI (C. sordidus = C. bowersi > S. rivulatus > S. niger = S. forsteni). Teeth of C. sordidus and C. bowersi were protrusive-shape whereas teeth of S. rivulatus, S. niger and S. forsteni were flat-shape. C. sordidus and C. bowersihave jaw-lever mechanics producing a greater biting force and have a larger weight of adductor mandibulae. S. rivulatus has jaw-lever mechanics producing a greater biting force but a smaller weight of adductor mandibulae that produce an intermediate biting force. In contrast, S. niger and S. forsteni have jaw-lever mechanics producing a lesser biting force and have a smaller weight of adductor mandibulae. Feeding rates and foray size of S. rivulatus, S. niger and S. forsteni were greater than C. sordidus and C. bowersi. The degree in bioerosion (GAI × feeding rate) was the largest for S. rivulatusand the smallest for S. forsteni. The degree in bioerosion for C. sordidus was larger than S. niger whereas relatively equal between C. bowersi and S. niger. These results suggest that interspecific difference in GAI was explained by interspecific differences in teeth shape, jaw-lever mechanics and relative weight of adductor mandibulae. The interspecific difference in the degree of bioerosion suggests the

  1. Homology of the jaw muscles in lizards and snakes-a solution from a comparative gnathostome approach.

    PubMed

    Johnston, Peter

    2014-03-01

    Homology or shared evolutionary origin of jaw adductor muscles in lizards and snakes has been difficult to establish, although snakes clearly arose within the lizard radiation. Lizards typically have temporal adductors layered lateral to medial, and in snakes the muscles are arranged in a rostral to caudal pattern. Recent work has suggested that the jaw adductor group in gnathostomes is arranged as a folded sheet; when this theory is applied to snakes, homology with lizard morphology can be seen. This conclusion revisits the work of S.B. McDowell, J Herpetol 1986; 20:353-407, who proposed that homology involves identity of m. levator anguli oris and the loss of m. adductor mandibulae externus profundus, at least in "advanced" (colubroid) snakes. Here I advance the folded sheet hypothesis across the whole snake tree using new and literature data, and provide a solution to this homology problem.

  2. Mantle geodynamics and implications for Earth's mantle

    NASA Astrophysics Data System (ADS)

    Lassak, Teresa Mae

    Seismic evidence suggests the presence of two large, low shear wave velocity provinces in Earth's lowermost mantle beneath Africa and the central Pacific. The origin and evolution of these provinces is not constrained but is thought to be linked to Earth's large-scale mantle dynamics. The focus of this work is to determine if seismic models of core-mantle boundary (CMB) topography can be useful in characterizing Earth's mantle dynamics. The dynamic motions in Earth's mantle exert stress on the boundaries of Earth's mantle, which results in topography at the Earth's CMB. Better understanding topography on Earth's CMB could provide important constraints on mantle dynamics and on lower mantle heterogeneity. The work in this dissertation investigates two proposed dynamical hypotheses for Earth's mantle: thermal upwellings (plume clusters) and large intrinsically dense yet thermally buoyant piles of primitive mantle material (thermochemical piles). CMB topography is calculated for each model in order to identify topography patterns that are unique to each model. CMB topographic relief beneath thermochemical piles is relatively flat and upwarped compared to downwarping CMB topography beneath downwelling regions. In plume cluster models, there is a direct correlation between upwarping relief on the CMB and upwellings while downwarping relief occurs exclusively beneath downwelling regions. The results show that both thermochemical pile and plume cluster models produce unique CMB topography signatures; thus as seismic studies better resolve the global topography of Earth's CMB, there is potential to constrain the chemical and dynamic nature of Earth's lower mantle.

  3. Abnormal motor cortex excitability during linguistic tasks in adductor-type spasmodic dysphonia.

    PubMed

    Suppa, A; Marsili, L; Giovannelli, F; Di Stasio, F; Rocchi, L; Upadhyay, N; Ruoppolo, G; Cincotta, M; Berardelli, A

    2015-08-01

    In healthy subjects (HS), transcranial magnetic stimulation (TMS) applied during 'linguistic' tasks discloses excitability changes in the dominant hemisphere primary motor cortex (M1). We investigated 'linguistic' task-related cortical excitability modulation in patients with adductor-type spasmodic dysphonia (ASD), a speech-related focal dystonia. We studied 10 ASD patients and 10 HS. Speech examination included voice cepstral analysis. We investigated the dominant/non-dominant M1 excitability at baseline, during 'linguistic' (reading aloud/silent reading/producing simple phonation) and 'non-linguistic' tasks (looking at non-letter strings/producing oral movements). Motor evoked potentials (MEPs) were recorded from the contralateral hand muscles. We measured the cortical silent period (CSP) length and tested MEPs in HS and patients performing the 'linguistic' tasks with different voice intensities. We also examined MEPs in HS and ASD during hand-related 'action-verb' observation. Patients were studied under and not-under botulinum neurotoxin-type A (BoNT-A). In HS, TMS over the dominant M1 elicited larger MEPs during 'reading aloud' than during the other 'linguistic'/'non-linguistic' tasks. Conversely, in ASD, TMS over the dominant M1 elicited increased-amplitude MEPs during 'reading aloud' and 'syllabic phonation' tasks. CSP length was shorter in ASD than in HS and remained unchanged in both groups performing 'linguistic'/'non-linguistic' tasks. In HS and ASD, 'linguistic' task-related excitability changes were present regardless of the different voice intensities. During hand-related 'action-verb' observation, MEPs decreased in HS, whereas in ASD they increased. In ASD, BoNT-A improved speech, as demonstrated by cepstral analysis and restored the TMS abnormalities. ASD reflects dominant hemisphere excitability changes related to 'linguistic' tasks; BoNT-A returns these excitability changes to normal.

  4. Changes in Adductor Strength After Competition in Academy Rugby Union Players.

    PubMed

    Roe, Gregory A B; Phibbs, Padraic J; Till, Kevin; Jones, Ben L; Read, Dale B; Weakley, Jonathon J; Darrall-Jones, Joshua D

    2016-02-01

    This study determined the magnitude of change in adductor strength after a competitive match in academy rugby union players and examined the relationship between locomotive demands of match-play and changes in postmatch adductor strength. A within-subject repeated measures design was used. Fourteen academy rugby union players (age, 17.4 ± 0.8 years; height, 182.7 ± 7.6 cm; body mass, 86.2 ± 11.6 kg) participated in the study. Each player performed 3 maximal adductor squeezes at 45° of hip flexion before and immediately, 24, 48, and 72 hours postmatch. Global positioning system was used to assess locomotive demands of match-play. Trivial decreases in adductor squeeze scores occurred immediately (-1.3 ± 2.5%; effect size [ES] = -0.11 ± 0.21; likely, 74%) and 24 hours after match (-0.7 ± 3%; ES = -0.06 ± 0.25; likely, 78%), whereas a small but substantial increase occurred at 48 hours (3.8 ± 1.9%; ES = 0.32 ± 0.16; likely, 89%) before reducing to trivial at 72 hours after match (3.1 ± 2.2%; ES = 0.26 ± 0.18; possibly, 72%). Large individual variation in adductor strength was observed at all time points. The relationship between changes in adductor strength and distance covered at sprinting speed (VO2max ≥ 81%) was large immediately postmatch (p = 0.056, r = -0.521), moderate at 24 hours (p = 0.094, r = -0.465), and very large at 48 hours postmatch (p = 0.005, r = -0.707). Players who cover greater distances sprinting may suffer greater adductor fatigue in the first 48 hours after competition. The assessment of adductor strength using the adductor squeeze test should be considered postmatch to identify players who may require additional rest before returning to field-based training. PMID:26815174

  5. Delayed quadriceps weakness after continuous adductor canal block for total knee arthroplasty: a case report.

    PubMed

    Veal, Christopher; Auyong, David B; Hanson, Neil A; Allen, Cindy J; Strodtbeck, Wyndam

    2014-03-01

    Adductor canal catheters have been shown to improve analgesia while maintaining quadriceps strength after total knee arthroplasty. We describe a patient who underwent total knee arthroplasty that likely had delayed quadriceps weakness as a result of a standard continuous 0.2% ropivacaine infusion at 8 ml/h within the adductor canal. On the day of surgery, the patient was able to stand and ambulate with minimal assistance. On the first post-operative day after surgery, approximately 20 h after starting the ropivacaine infusion, profound weakness of the quadriceps was noted with no ability to stand. Contrast subsequently injected through the adductor canal catheter under fluoroscopy revealed proximal spread approaching the common femoral nerve with as little as 2 ml of volume. This rare case of profound quadriceps weakness after a continuous adductor canal block reveals that local anaesthetic at the adductor canal can spread in a retrograde fashion towards the common femoral nerve, potentially resulting in quadriceps weakness. PMID:24372058

  6. The connective tissue of the adductor canal--a morphological study in fetal and adult specimens.

    PubMed

    de Oliveira, Flavia; de Vasconcellos Fontes, Ricardo Bragança; da Silva Baptista, Josemberg; Mayer, William Paganini; de Campos Boldrini, Silvia; Liberti, Edson Aparecido

    2009-03-01

    The adductor canal is a conical or pyramid-shaped pathway that contains the femoral vessels, saphenous nerve and a varying amount of fibrous tissue. It is involved in adductor canal syndrome, a claudication syndrome involving young individuals. Our objective was to study modifications induced by aging on the connective tissue and to correlate them to the proposed pathophysiological mechanism. The bilateral adductor canals and femoral vessels of four adult and five fetal specimens were removed en bloc and analyzed. Sections 12 microm thick were obtained and the connective tissue studied with Sirius Red, Verhoeff, Weigert and Azo stains. Scanning electron microscopy (SEM) photomicrographs of the surfaces of each adductor canal were also analyzed. Findings were homogeneous inside each group. The connective tissue of the canal was continuous with the outer layer of the vessels in both groups. The pattern of concentric, thick collagen type I bundles in fetal specimens was replaced by a diffuse network of compact collagen bundles with several transversal fibers and an impressive content of collagen III fibers. Elastic fibers in adults were not concentrated in the thick bundles but dispersed in line with the transversal fiber system. A dynamic compression mechanism with or without an evident constricting fibrous band has been proposed previously for adductor canal syndrome, possibly involving the connective tissue inside the canal. The vessels may not slide freely during movement. These age-related modifications in normal individuals may represent necessary conditions for this syndrome to develop.

  7. The connective tissue of the adductor canal – a morphological study in fetal and adult specimens

    PubMed Central

    de Oliveira, Flavia; de Vasconcellos Fontes, Ricardo Bragança; da Silva Baptista, Josemberg; Mayer, William Paganini; de Campos Boldrini, Silvia; Liberti, Edson Aparecido

    2009-01-01

    The adductor canal is a conical or pyramid-shaped pathway that contains the femoral vessels, saphenous nerve and a varying amount of fibrous tissue. It is involved in adductor canal syndrome, a claudication syndrome involving young individuals. Our objective was to study modifications induced by aging on the connective tissue and to correlate them to the proposed pathophysiological mechanism. The bilateral adductor canals and femoral vessels of four adult and five fetal specimens were removed en bloc and analyzed. Sections 12 µm thick were obtained and the connective tissue studied with Sirius Red, Verhoeff, Weigert and Azo stains. Scanning electron microscopy (SEM) photomicrographs of the surfaces of each adductor canal were also analyzed. Findings were homogeneous inside each group. The connective tissue of the canal was continuous with the outer layer of the vessels in both groups. The pattern of concentric, thick collagen type I bundles in fetal specimens was replaced by a diffuse network of compact collagen bundles with several transversal fibers and an impressive content of collagen III fibers. Elastic fibers in adults were not concentrated in the thick bundles but dispersed in line with the transversal fiber system. A dynamic compression mechanism with or without an evident constricting fibrous band has been proposed previously for adductor canal syndrome, possibly involving the connective tissue inside the canal. The vessels may not slide freely during movement. These age-related modifications in normal individuals may represent necessary conditions for this syndrome to develop. PMID:19245505

  8. Restoration of pinch in intrinsic muscles of the hand.

    PubMed

    Lee, Steve K; Wisser, Jamie R

    2012-02-01

    The primary intrinsic muscles responsible for key and tip pinch are the adductor pollicis, first dorsal interosseous and flexor pollicis brevis muscles. Numerous conditions can lead to their dysfunction. Non-operative treatment consists of exercises of the compensating extensor pollicis longus and flexor pollicis longus muscles and use of adaptive devices, such as larger grips. Operative treatments include tendon transfers and joint fusions. The most common tendon transfer procedures include transfering of the extensor carpi radialis brevis to the adductor pollicis muscle or transfering of the abductor pollicis longus to the first dorsal interosseous muscle. Both require use of extension tendon grafts. In cases of joint instability or arthrosis, arthrodesis of the thumb and index finger MP or IP joints, alone or in combination, may be indicated. PMID:22117923

  9. Motor innervation of respiratory muscles and an opercular display muscle in Siamese fighting fish Betta splendens.

    PubMed

    Gorlick, D L

    1989-12-15

    Horseradish peroxidase was used to identify motor neurons projecting to the adductor mandibulae, levator hyomandibulae, levator operculi, adductor operculi, and dilator operculi muscles in Siamese fighting fish, Betta splendens. These muscles participate in the production of respiratory and feeding movements in teleost fishes. The dilator operculi is also the effector muscle for gill-cover erection behavior that is part of Betta's aggressive display. The motor innervation of these muscles in Betta was compared to that previously described for carp. Motor neurons of the adductor mandibulae, levator hyomandibulae, and dilator operculi are located in the trigeminal motor nucleus, and motor neurons of the adductor operculi and levator operculi are located in the facial motor nucleus in Betta and in carp. The trigeminal motor nucleus in both species is divided into rostral and caudal subnuclei. However, there are substantial differences in the organization of the subnuclei, and in the distribution of motor neurons within them. In Betta, the rostral trigeminal subnucleus consists of a single part but the caudal subnucleus is divided into two parts. Motor neurons for the dilator operculi and levator hyomandibulae muscles are located in the lateral part of the caudal subnucleus; the medial part of the caudal subnucleus contains only dilator operculi motor neurons. The single caudal subnucleus in carp is located laterally, and contains motor neurons of both the dilator operculi and levator hyomandibulae muscles. Differences in the organization of the trigeminal motor nucleus may relate to the use of the dilator operculi muscle for aggressive display behavior by perciform fishes such as Betta but not by cypriniform fishes such as carp. Five species of perciform fishes that perform gill-cover erection behavior had a Betta-like pattern of organization of the caudal trigeminal nucleus and a similar distribution of dilator operculi motor neurons. Goldfish, which like carp are

  10. Motor innervation of respiratory muscles and an opercular display muscle in Siamese fighting fish Betta splendens.

    PubMed

    Gorlick, D L

    1989-12-15

    Horseradish peroxidase was used to identify motor neurons projecting to the adductor mandibulae, levator hyomandibulae, levator operculi, adductor operculi, and dilator operculi muscles in Siamese fighting fish, Betta splendens. These muscles participate in the production of respiratory and feeding movements in teleost fishes. The dilator operculi is also the effector muscle for gill-cover erection behavior that is part of Betta's aggressive display. The motor innervation of these muscles in Betta was compared to that previously described for carp. Motor neurons of the adductor mandibulae, levator hyomandibulae, and dilator operculi are located in the trigeminal motor nucleus, and motor neurons of the adductor operculi and levator operculi are located in the facial motor nucleus in Betta and in carp. The trigeminal motor nucleus in both species is divided into rostral and caudal subnuclei. However, there are substantial differences in the organization of the subnuclei, and in the distribution of motor neurons within them. In Betta, the rostral trigeminal subnucleus consists of a single part but the caudal subnucleus is divided into two parts. Motor neurons for the dilator operculi and levator hyomandibulae muscles are located in the lateral part of the caudal subnucleus; the medial part of the caudal subnucleus contains only dilator operculi motor neurons. The single caudal subnucleus in carp is located laterally, and contains motor neurons of both the dilator operculi and levator hyomandibulae muscles. Differences in the organization of the trigeminal motor nucleus may relate to the use of the dilator operculi muscle for aggressive display behavior by perciform fishes such as Betta but not by cypriniform fishes such as carp. Five species of perciform fishes that perform gill-cover erection behavior had a Betta-like pattern of organization of the caudal trigeminal nucleus and a similar distribution of dilator operculi motor neurons. Goldfish, which like carp are

  11. A retrospective comparative provider workload analysis for femoral nerve and adductor canal catheters following knee arthroplasty.

    PubMed

    Rasmussen, Michael; Kim, Eugenia; Kim, T Edward; Howard, Steven K; Mudumbai, Seshadri; Giori, Nicholas J; Woolson, Steven; Ganaway, Toni; Mariano, Edward R

    2015-04-01

    Adductor canal catheters preserve quadriceps strength better than femoral nerve catheters and may facilitate postoperative ambulation following total knee arthroplasty. However, the effect of this newer technique on provider workload, if any, is unknown. We conducted a retrospective provider workload analysis comparing these two catheter techniques; all other aspects of the clinical pathway remained the same. The primary outcome was number of interventions recorded per patient postoperatively. Secondary outcomes included infusion duration, ambulation distance, opioid consumption, and hospital length of stay. Adductor canal patients required a median (10-90th percentiles) of 0.0 (0.0-2.6) interventions compared to 1.0 (0.3-3.0) interventions for femoral patients (p < 0.001); 18/23 adductor canal patients (78 %) compared to 2/22 femoral patients (9 %) required no interventions (p < 0.001). Adductor canal catheter infusions lasted 2.0 (1.4-2.0) days compared to 1.5 (1.0-2.7) days in the femoral group (p = 0.016). Adductor canal patients ambulated further [mean (SD)] than femoral patients on postoperative day 1 [24.5 (21.7) vs. 11.9 (14.6) meters, respectively; p = 0.030] and day 2 [44.9 (26.3) vs. 22.0 (22.2) meters, respectively; p = 0.003]. Postoperative opioid consumption and length of stay were similar between groups. We conclude that adductor canal catheters offer both patient and provider benefits when compared to femoral nerve catheters. PMID:25217117

  12. Muscle strain injuries.

    PubMed

    Garrett, W E

    1996-01-01

    One of the most common injuries seen in the office of the practicing physician is the muscle strain. Until recently, little data were available on the basic science and clinical application of this basic science for the treatment and prevention of muscle strains. Studies in the last 10 years represent action taken on the direction of investigation into muscle strain injuries from the laboratory and clinical fronts. Findings from the laboratory indicate that certain muscles are susceptible to strain injury (muscles that cross multiple joints or have complex architecture). These muscles have a strain threshold for both passive and active injury. Strain injury is not the result of muscle contraction alone, rather, strains are the result of excessive stretch or stretch while the muscle is being activated. When the muscle tears, the damage is localized very near the muscle-tendon junction. After injury, the muscle is weaker and at risk for further injury. The force output of the muscle returns over the following days as the muscle undertakes a predictable progression toward tissue healing. Current imaging studies have been used clinically to document the site of injury to the muscle-tendon junction. The commonly injured muscles have been described and include the hamstring, the rectus femoris, gastrocnemius, and adductor longus muscles. Injuries inconsistent with involvement of a single muscle-tendon junction proved to be at tendinous origins rather than within the muscle belly. Important information has also been provided regarding injuries with poor prognosis, which are potentially repairable surgically, including injuries to the rectus femoris muscle, the hamstring origin, and the abdominal wall. Data important to the management of common muscle injuries have been published. The risks of reinjury have been documented. The early efficacy and potential for long-term risks of nonsteroidal antiinflammatory agents have been shown. New data can also be applied to the field

  13. Adductor pollicis jamming injuries in the professional baseball player: 2 case reports.

    PubMed

    Altobelli, Grant G; Ruchelsman, David E; Belsky, Mark R; Graham, Thomas; Asnis, Peter; Leibman, Matthew I

    2013-06-01

    We characterize a mechanism of injury, injury pattern, and treatment algorithm for adductor pollicis myotendinous injuries in 2 professional baseball players. Similar to myotendinous eccentric injuries in other anatomical areas, the adductor pollicis sustains a sudden forceful eccentric load during a jammed swing, resulting in intramuscular strain or tendon rupture. Based on the reported injury mechanism, and magnetic resonance imaging features of these myotendinous injuries, the thumb of the top hand during a jammed swing was suddenly and forcefully eccentrically abducted from a contracted and adducted position, resulting in injury patterns. PMID:23707017

  14. Adductor pollicis longus strain in a professional baseball player: case report and review of thenar pain.

    PubMed

    Pinkowsky, Gregory J; Roberts, John; Allred, Jeff; Pujalte, George G; Gallo, Robert A

    2013-07-01

    Thenar pain can represent a significant morbidity for a baseball player who relies on manual dexterity for gripping a bat and precise and accurate throws. While osseous, ligamentous, and neurovascular pathologies are commonly considered, musculotendinous injuries are often neglected in the differential diagnosis of thenar pain. We present a case of adductor pollicis longus strain as a cause of acute thenar pain in a baseball player. Adductor pollicis longus strains should be considered in any baseball player sustaining a hyperabduction force to the thumb.

  15. Adductor pollicis jamming injuries in the professional baseball player: 2 case reports.

    PubMed

    Altobelli, Grant G; Ruchelsman, David E; Belsky, Mark R; Graham, Thomas; Asnis, Peter; Leibman, Matthew I

    2013-06-01

    We characterize a mechanism of injury, injury pattern, and treatment algorithm for adductor pollicis myotendinous injuries in 2 professional baseball players. Similar to myotendinous eccentric injuries in other anatomical areas, the adductor pollicis sustains a sudden forceful eccentric load during a jammed swing, resulting in intramuscular strain or tendon rupture. Based on the reported injury mechanism, and magnetic resonance imaging features of these myotendinous injuries, the thumb of the top hand during a jammed swing was suddenly and forcefully eccentrically abducted from a contracted and adducted position, resulting in injury patterns.

  16. Acoustic Variations in Adductor Spasmodic Dysphonia as a Function of Speech Task.

    ERIC Educational Resources Information Center

    Sapienza, Christine M.; Walton, Suzanne; Murry, Thomas

    1999-01-01

    Acoustic phonatory events were identified in 14 women diagnosed with adductor spasmodic dysphonia (ADSD), a focal laryngeal dystonia that disturbs phonatory function, and compared with those of 14 age-matched women with no vocal dysfunction. Findings indicated ADSD subjects produced more aberrant acoustic events than controls during tasks of…

  17. Measurement of muscle strength in the intensive care unit.

    PubMed

    Bittner, Edward A; Martyn, Jeevendra A; George, Edward; Frontera, Walter R; Eikermann, Matthias

    2009-10-01

    Traditional (indirect) techniques, such as electromyography and nerve conduction velocity measurement, do not reliably predict intensive care unit-acquired muscle weakness and its clinical consequences. Therefore, quantitative assessment of skeletal muscle force is important for diagnosis of intensive care unit-acquired motor dysfunction. There are a number of ways for assessing objectively muscle strength, which can be categorized as techniques that quantify maximum voluntary contraction force and those that assess evoked (stimulated) muscle force. Important factors that limit the repetitive evaluation of maximum voluntary contraction force in intensive care unit patients are learning effects, pain during muscular contraction, and alteration of consciousness.The selection of the appropriate muscle is crucial for making adequate predictions of a patient's outcome. The upper airway dilators are much more susceptible to a decrease in muscle strength than the diaphragm, and impairment of upper airway patency is a key mechanism of extubation failure in intensive care unit patients. Data suggest that the adductor pollicis muscle is an appropriate reference muscle to predict weakness of muscles that are typically affected by intensive care unit-acquired weakness, i.e., upper airway as well as extremity muscles. Stimulated (evoked) force of skeletal muscles, such as the adductor pollicis, can be assessed repetitively, independent of brain function, even in heavily sedated patients during high acuity of their disease. PMID:20046117

  18. Influence of hip external rotation on hip adductor and rectus femoris myoelectric activity during a dynamic parallel squat.

    PubMed

    Pereira, Glauber Ribeiro; Leporace, Gustavo; Chagas, Daniel das Virgens; Furtado, Luis F L; Praxedes, Jomilto; Batista, Luiz A

    2010-10-01

    This study sought to compare the myoelectric activity of the hip adductors (HAs) and rectus femoris (RF) when the hip was in a neutral position or externally rotated by 30° or 50° (H0, H30, and H50, respectively) during a parallel squat. Ten healthy subjects performed 10 repetitions of squats in each of the 3 hip positions and the myoelectric activities of the HAs and RF were recorded. The signal was then divided into categories representing concentric (C) and eccentric (E) contractions in the following ranges of motion: 0-30° (C1 and E1), 30-60° (C2 and E2), and 60-90° (C3 and E3) of knee flexion. From those signals, an root mean square (RMS) value for each range of motion in each hip position was obtained. All values were normalized to those obtained during maximum voluntary isometric contraction. We found that HAs showed a significant increase in myoelectric activity during C3 and E3 in the H30 and H50 positions, as compared with H0. Meanwhile, RF activity did not significantly differ between hip positions. Both muscles showed higher activation during 60-90° (C3 and E3) of knee flexion, as compared with 0-30° (C1 and E1) and 30-60° (C2 and E2). The results suggest that if the aim is to increase HA activity despite the low percentage of muscle activation, squats should be performed with 30° of external rotation and at least 90° of knee flexion. PMID:20651607

  19. Effect of hindlimb suspension and clenbuterol treatment on polyamine levels in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Abukhalaf, Imad K.; von Deutsch, Daniel A.; Wineski, Lawrence E.; Silvestrov, Natalia A.; Abera, Saare A.; Sahlu, Sinafikish W.; Potter, David E.; Thierry-Palmer, M. (Principal Investigator)

    2002-01-01

    Polyamines are unbiquitous, naturally occurring small aliphatic, polycationic, endogenous compounds. They are involved in many cellular processes and may serve as secondary or tertiary messengers to hormonal regulation. The relationship of polyamines and skeletal muscle mass of adductor longus, extensor digitorum longus, and gastrocnemius under unloading (hindlimb suspension) conditions was investigated. Unloading significantly affected skeletal muscle polyamine levels in a fiber-type-specific fashion. Under loading conditions, clenbuterol treatment increased all polyamine levels, whereas under unloading conditions, only the spermidine levels were consistently increased. Unloading attenuated the anabolic effects of clenbuterol in predominately slow-twitch muscles (adductor longus), but had little impact on clenbuterol's action as a countermeasure in fast- twitch muscles such as the extensor digitorum longus. Spermidine appeared to be the primary polyamine involved in skeletal muscle atrophy/hypertrophy. Copyright 2002 S. Karger AG, Basel.

  20. Isokinetic Testing of the Shoulder Abductors and Adductors: Windowed vs Nonwindowed Data Collection.

    PubMed

    Wilk, K E; Arrigo, C A; Andrews, J R

    1992-01-01

    Presented at the Sports Physical Therapy Section Team Concept Meeting, December 1991, New Orleans, LA The manner of acquiring strength-testing data may influence the results of an investigation. The purpose of this study was to determine if a significant difference exists between windowed and unwindowed data collection during isokinetic testing of the shoulder abductors/adductors. Fifty healthy professional baseball pitchers participated in this study. Testing was performed on a Biodex isokinetic dynamometer at 180 and 300 degrees /sec for both the throwing and nonthrowing shoulders. Testing procedures regarding testing protocol, repetitions, positioning, and stabilization followed established guidelines for each subject. Statistical analysis was performed using a paired t-test with a p < 0.01 level of significance. Statistically significant differences were demonstrated between windowed and unwindowed mean peak torque data for both shoulders at both test speeds. The results indicated an average nonthrowing arm difference of 20.2 ft/lbs at 180 degrees /sec and 51.7 ft/lbs at 300 degrees / sec for the abductors. In each instance, the unwindowed mean peak torque values were higher than the windowed values, and significant end range torque spikes were elicited during unwindowed data collection. The nonthrowing adductors exhibited an average of 39.3 and 48.3 ft/lb differences at 180 and 300 degrees /sec, respectively. The throwing shoulder demonstrated average abductor differences of 25.6 ft/lbs at 180 degrees /sec and 47.7 ft/lbs at 300 degrees /sec. The average throwing adductor difference was 24.4 ft/lbs and 54.6 ft/lbs, respectively, at both test speeds. This investigation offers clinical relevance for those using isokinetic testing of the shoulder abductors/adductors in demonstrating the significant differences between windowed and unwindowed data, identifying torque spike data misinterpretation, and describing a clinical means of controlling aberrant torque

  1. The Earth's Mantle.

    ERIC Educational Resources Information Center

    McKenzie, D. P.

    1983-01-01

    The nature and dynamics of the earth's mantle is discussed. Research indicates that the silicate mantle is heated by the decay of radioactive isotopes and that the heat energizes massive convention currents in the upper 700 kilometers of the ductile rock. These currents and their consequences are considered. (JN)

  2. Laryngeal Adductor Function in Experimental Models of Recurrent Laryngeal Nerve Injury

    PubMed Central

    Paniello, Randal C.; Rich, Jason T.; Debnath, Nick L.

    2014-01-01

    Objectives/Hypothesis Most patients with unilateral vocal fold paralysis experience some degree of spontaneous reinnervation, which depends upon the type and severity of recurrent laryngeal nerve (RLN) injury. After partial recovery, the paretic vocal fold may or may not adduct adequately to allow glottic closure, which in turn affects phonatory and swallowing outcomes. This process was studied in a series of canine laryngeal nerve injury models. Study Design Animal (canine) experiments. Methods Maximum stimulable laryngeal adductor pressure (LAP) was measured pre-treatment (baseline) and at 6 months following experimental RLN injuries (total n=59). The 9 study groups were designed to simulate a range of severities of RLN injury. Results The greatest LAP recovery, at 108% of original baseline, was seen in a 50% transection model; the least recovery was seen when the RLN underwent complete transection with repair, at 56% with precise alignment and 50% with alignment reversed. Intermediate models (partial RLN injuries) gave intermediate results. Crush models recovered 105% of LAP, while a half-transection, half-crush injury recovered 72% and cautery injuries recovered 61%. Controls (complete transection without repair) had no measurable recovery. Conclusions The injured RLN has a strong tendency to recover. Restoration of adductor strength, as determined by the LAP, was predictably related to the severity of RLN injury. The model RLN injuries studied provide a range of expected outcomes that can be used for future experiments exploring interventions that may improve post-injury adductor function. PMID:25283381

  3. Effect of diet and temperature upon muscle metabolic capacities and biochemical composition of gonad and muscle in Argopecten purpuratus Lamarck 1819.

    PubMed

    Martínez; Brokordt; Aguilera; Soto; Guderley

    2000-04-26

    Recently spawned Argopecten purpuratus broodstock were conditioned at two temperatures and fed three different diets (microalgae, microalgae mixed with lipids and microalgae mixed with carbohydrates) to examine changes in the biochemical composition of gonad and muscle as well as muscle metabolic capacities. During one experiment, scallops were fed at 3% of their dry mass per day whereas during a second experiment, they were fed at 6% of their dry mass per day. During both experiments, total gonadal levels of lipids and protein increased markedly during conditioning with the two mixed diets at 16 degrees C. These increases were less pronounced at 20 degrees C. Carbohydrate gonadal levels only increased during the second experiment at both temperatures and with the three diets. Of the major biochemical components of the adductor muscle, carbohydrate levels changed most during conditioning. Whereas muscle protein levels increased slightly with gonadal maturation, carbohydrate levels dropped considerably. Despite the marked drop in the levels of glycolytic substrates, only the activities of octopine dehydrogenase in the adductor muscle of the scallops conditioned at 16 degrees C consistently decreased. Muscle levels of glycogen phosphorylase were higher in mature than in recently spawned (control) scallops, suggesting a role in the transfer of glucose equivalents from the adductor muscle to other tissues. PMID:10727686

  4. Eccentric and Isometric Hip Adduction Strength in Male Soccer Players With and Without Adductor-Related Groin Pain

    PubMed Central

    Thorborg, Kristian; Branci, Sonia; Nielsen, Martin Peter; Tang, Lars; Nielsen, Michael Bachmann; Hölmich, Per

    2014-01-01

    Background: Adductor-related pain is the most common clinical finding in soccer players with groin pain and can be a long-standing problem affecting physical function and performance. Hip adductor weakness has been suggested to be associated with this clinical entity, although it has never been investigated. Purpose: To investigate whether isometric and eccentric hip strength are decreased in soccer players with adductor-related groin pain compared with asymptomatic soccer controls. The hypothesis was that players with adductor-related groin pain would have lower isometric and eccentric hip adduction strength than players without adductor-related groin pain. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Male elite and subelite players from 40 teams were contacted. In total, 28 soccer players with adductor-related groin pain and 16 soccer players without adductor-related groin pain (asymptomatic controls) were included in the study. In primary analysis, the dominant legs of 21 soccer players with adductor-related groin pain (≥4 weeks duration) were compared with the dominant legs of 16 asymptomatic controls using a cross-sectional design. The mean age of the symptomatic players was 24.5 ± 2.5 years, and the mean age of the asymptomatic controls was 22.9 ± 2.4 years. Isometric hip strength (adduction, abduction, and flexion) and eccentric hip strength (adduction) were assessed with a handheld dynamometer using reliable test procedures and a blinded assessor. Results: Eccentric hip adduction strength was lower in soccer players with adductor-related groin pain in the dominant leg (n = 21) compared with asymptomatic controls (n = 16), namely 2.47 ± 0.49 versus 3.12 ± 0.43 N·m/kg, respectively (P < .001). No other hip strength differences were observed between symptomatic players and asymptomatic controls for the dominant leg (P = .35-.84). Conclusion: Large eccentric hip adduction strength deficits were found in soccer players with adductor

  5. Zoned mantle convection.

    PubMed

    Albarède, Francis; Van Der Hilst, Rob D

    2002-11-15

    We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced

  6. Zoned mantle convection.

    PubMed

    Albarède, Francis; Van Der Hilst, Rob D

    2002-11-15

    We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced

  7. First observation of a muscle spindle in fish.

    PubMed

    Maeda, N; Miyoshi, S; Toh, H

    1983-03-01

    In many groups of vertebrates, the muscle spindle is a specialized sensory organ for the detection of muscle stretching. The structure of the spindle varies among vertebrate classes. Moreover, Barker has asserted that Amphibia are the most primitive vertebrates to possess muscle spindles. Extensive studies, made mainly on the locomotor myotome, seem to show that the muscle receptors of fish are less specialized than those of more advanced animals, and that muscle spindles are absent. However, little attention has been paid to the jaw-closing muscle. We report here our finding of a very simple muscle spindle with a single intrafusal fibre in the well-developed jaw-closing muscle, adductor mandibulae, in a primitive teleostean, Oncorhynchus masou (Brevoort).

  8. Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods

    PubMed Central

    Diogo, Rui; Hinits, Yaniv; Hughes, Simon M

    2008-01-01

    Background During vertebrate head evolution, muscle changes accompanied radical modification of the skeleton. Recent studies have suggested that muscles and their innervation evolve less rapidly than cartilage. The freshwater teleostean zebrafish (Danio rerio) is the most studied actinopterygian model organism, and is sometimes taken to represent osteichthyans as a whole, which include bony fishes and tetrapods. Most work concerning zebrafish cranial muscles has focused on larval stages. We set out to describe the later development of zebrafish head muscles and compare muscle homologies across the Osteichthyes. Results We describe one new muscle and show that the number of mandibular, hyoid and hypobranchial muscles found in four day-old zebrafish larvae is similar to that found in the adult. However, the overall configuration and/or the number of divisions of these muscles change during development. For example, the undivided adductor mandibulae of early larvae gives rise to the adductor mandibulae sections A0, A1-OST, A2 and Aω, and the protractor hyoideus becomes divided into dorsal and ventral portions in adults. There is not always a correspondence between the ontogeny of these muscles in the zebrafish and their evolution within the Osteichthyes. All of the 13 mandibular, hyoid and hypobranchial muscles present in the adult zebrafish are found in at least some other living teleosts, and all except the protractor hyoideus are found in at least some extant non-teleost actinopterygians. Of these muscles, about a quarter (intermandibularis anterior, adductor mandibulae, sternohyoideus) are found in at least some living tetrapods, and a further quarter (levator arcus palatini, adductor arcus palatini, adductor operculi) in at least some extant sarcopterygian fish. Conclusion Although the zebrafish occupies a rather derived phylogenetic position within actinopterygians and even within teleosts, with respect to the mandibular, hyoid and hypobranchial muscles it

  9. Effect of reproduction on escape responses and muscle metabolic capacities in the scallop Chlamys islandica Müller 1776.

    PubMed

    Brokordt; Himmelman; Guderley

    2000-08-30

    In scallops, gametogenesis leads to mobilization of glycogen and proteins from the adductor muscle towards the gonad. This mobilization is likely to diminish the metabolic capacities of the adductor muscle and thereby the scallops' escape response. We examined the escape response in terms of number of valve claps until exhaustion, rate of clapping and the recovery during and after valve closure in adult scallops, Chlamys islandica, sampled at different stages in the reproductive cycle (immature, mature, before and after spawning). In parallel, we measured muscle glycogen, protein and phosphoarginine contents, the oxidative capacity of mitochondria isolated from the adductor muscle and levels of muscle enzymes which are active during exercise and recovery. The number of claps (24-26), rate of clapping ( approximately 13 clapsmin(-1)) and phosphoarginine and arginine kinase levels were similar during the different reproductive stages. All immature scallops responded to restimulation immediately after opening their valves, while only 62% of mature, 82% of prespawned and 38% of spawned scallops responded. Immature animals completely recovered their initial swimming capacity within 4 h of opening their valves, but mature, prespawned and spawned scallops needed 18, 12 and 18 h, respectively. Overall phasic adductor muscle from mature, prespawned and spawned animals showed decreased glycogen phosphorylase, phosphofructokinase, pyruvate kinase (except for prespawned), octopine dehydrogenase and citrate synthase levels, a deterioration of the oxidative capacity of mitochondria and a marked decrease in glycogen content compared to immature scallops. Therefore, during gonadal maturation and spawning, C. islandica did not change its clapping capacity, but slowed its recuperation from exhausting burst exercise, both during and after valve closure, likely due to the decreased metabolic capacity of the adductor muscle. PMID:10960615

  10. On the central muscle attachment scar pattern of Suchonella Spizharsky 1939

    USGS Publications Warehouse

    Sohn, I.G.

    1996-01-01

    The fortuitous spalling of a carapace of the nonmarine Permian Suchonella typica Spizharsky 1939 disclosed the adductor muscle attachment scar as well as two accessory scars on both the right side of the steinkern and the inside of the spalled right valve. This central muscle field is illustrated and discussed. An objective list of species described in or referred to Suchonella Spizharsky 1939 is appended.

  11. Scales of mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Akber-Knutson, S.; Konter, J.; Kellogg, J.; Hart, S.; Kellogg, L. H.; Romanowicz, B.

    2004-12-01

    A long-standing question in mantle dynamics concerns the scale of heterogeneity in the mantle. Mantle convection tends to both destroy (through stirring) and create (through melt extraction and subduction) heterogeneity in bulk and trace element composition. Over time, these competing processes create variations in geochemical composition along mid-oceanic ridges and among oceanic islands, spanning a range of scales from extremely long wavelength (for example, the DUPAL anomaly) to very small scale (for example, variations amongst melt inclusions). While geochemical data and seismic observations can be used to constrain the length scales of mantle heterogeneity, dynamical mixing calculations can illustrate the processes and timescales involved in stirring and mixing. At the Summer 2004 CIDER workshop on Relating Geochemical and Seismological Heterogeneity in the Earth's Mantle, an interdisciplinary group evaluated scales of heterogeneity in the Earth's mantle using a combined analysis of geochemical data, seismological data and results of numerical models of mixing. We mined the PetDB database for isotopic data from glass and whole rock analyses for the Mid-Atlantic Ridge (MAR) and the East Pacific Rise (EPR), projecting them along the ridge length. We examined Sr isotope variability along the East Pacific rise by looking at the difference in Sr ratio between adjacent samples as a function of distance between the samples. The East Pacific Rise exhibits an overall bowl shape of normal MORB characteristics, with higher values in the higher latitudes (there is, however, an unfortunate gap in sampling, roughly 2000 km long). These background characteristics are punctuated with spikes in values at various locations, some, but not all of which are associated with off-axis volcanism. A Lomb-Scargle periodogram for unevenly spaced data was utilized to construct a power spectrum of the scale lengths of heterogeneity along both ridges. Using the same isotopic systems (Sr, Nd

  12. Morphological and functional relationships with ultrasound measured muscle thickness of the lower extremity: a brief review.

    PubMed

    Abe, Takashi; Loenneke, Jeremy P; Thiebaud, Robert S

    2015-08-01

    Ultrasound is a potential method for assessing muscle size of the extremity and trunk. In a large muscle, however, a single image from portable ultrasound measures only muscle thickness (MT), not anatomical muscle cross-sectional area (CSA) or muscle volume (MV). Thus, it is important to know whether MT is related to anatomical CSA and MV in an individual muscle of the extremity and trunk. In this review, we summarize previously published articles in the lower extremity demonstrating the relationships between ultrasound MT and muscle CSA or MV as measured by magnetic resonance imaging and computed tomography scans. The relationship between MT and isometric and isokinetic joint performance is also reviewed. A linear relationship is observed between MT and muscle CSA or MV in the quadriceps, adductor, tibialis anterior, and triceps surae muscles. Intrarater correlation coefficients range from 0.90 to 0.99, except for one study. It would appear that anterior upper-thigh MT, mid-thigh MT and posterior thigh MT are the best predictors for evaluating adductor, quadriceps, and hamstrings muscle size, respectively. Despite a limited number of studies, anterior as well as posterior lower leg MT appear to reflect muscle CSA and MV of the lower leg muscles. Based on previous studies, ultrasound measured anterior thigh MT may be a valuable predictor of knee extension strength. Nevertheless, more studies are needed to clarify the relationship between lower extremity function and MT. PMID:27433253

  13. Deep mantle subduction flux

    NASA Astrophysics Data System (ADS)

    Porter, Katherine A.; White, William M.

    2009-12-01

    We assess the flux of incompatible trace elements into the deep mantle in the Aleutian, Central America, Izu-Bonin, Kurile, Lesser Antilles, Mariana, Sunda, and Tonga subduction zones. We use a simple mass balance approach in which we assume that all of the material lost from the subducting crust and sediment (the "slab") is incorporated into the magmas erupted above the subduction zone, and we use these assumptions to calculate a residual slab composition. The calculated residual slabs are enriched in incompatible elements compared to mid-ocean ridge basalts and highly enriched compared to primitive or depleted mantle. Almost all of the subducted Nb, Ta, and intermediate and heavy rare earths survive into the deep mantle, as do most of the light rare earths. On average, 73% of Th and Pb, 74% of K, 79% of U, 80% of Rb, 80% of Sr, and 82% of Ba survive into the deep mantle. Pb/Ce ratios are systematically lower, and Nb/U ratios are systematically higher, in the deep mantle flux than they are in the flux of material into the trench. Nevertheless, most residual slabs have Pb/Ce and Nb/U ratios outside the typical mantle range. Changes to U/Pb and Th/U ratios tend to be small and are not systematic. Rb/Sr ratios significantly decrease in some subduction zones but increase in others. In contrast, Sm/Nd ratios increase by small but significant amounts in most arcs. Based on these results, we attempt to predict the Sr, Nd, and Pb composition of anciently recycled material now in the mantle. We find that such material would most resemble enriched mantle II-type oceanic island basalts (OIB). None of our calculated residual slabs would evolve to Sr-Nd-Pb isotopic compositions similar to either high 238U/204Pb or enriched mantle I. The range of Sr and Pb isotope ratios in anciently recycled material is similar to that seen in modern OIB, but Nd isotopic compositions do not range to ɛNd values as low as those in some modern OIB. Neither radiogenic nor unradiogenic Pb isotope

  14. Comparison of Adductor Canal Block and Femoral Nerve Block for Postoperative Pain in Total Knee Arthroplasty

    PubMed Central

    Dong, Cui-Cui; Dong, Shu-Ling; He, Fu-Cheng

    2016-01-01

    Abstract A total knee arthroplasty (TKA) has always been associated with moderate-to-severe pain. A systematic review of randomized controlled trials (RCTs) and non-RCTs was performed to evaluate the efficacy and safety of pain control of adductor canal block (ACB) and femoral nerve block (FNB) after TKA. Relevant literatures about the ACB and FNB after TKA for reducing pain were searched from Medline (1996-January, 2015), Embase (1980-January, 2015), PubMed (1980-January, 2015), Web of Science (1980-January, 2015), and The Cochrane Central Register of Controlled Trials. High-quality RCTs and non-RCTs were picked to evaluate the visual analogue scale (VAS) and other outcome. This systematic review and meta-analysis were performed according to the PRISMA statement criteria. The software RevMan 5.30 was used for the meta-analysis. Eight literatures fitted into the inclusion criteria. There were no significant differences in VAS score with rest or mobilization at 4, 24, and 48 h between ACB group and FNB group. There were also no significant differences in the strength of quadriceps and adductor, the length of hospital stay, and complications of vomiting and nausea. Present meta-analysis indicated that ACB shows no superiority than FNB group. Both of them can reduce the pain score after TKA. As referred to which method to adopt, it is determined by the preference of the surgeons and anesthesiologists. PMID:27015172

  15. Equine laryngeal hemiplegia. Part IV. Muscle pathology.

    PubMed

    Cahill, J I; Goulden, B E

    1986-11-01

    This study confirmed that neurogenic muscle pathology exists in intrinsic laryngeal muscles supplied by the recurrent laryngeal nerves in horses subclinically and clinically affected with laryngeal hemiplegia. An important additional observation was the occurrence in three out of four laryngeal hemiplegic horses of neurogenic muscle changes in a hindlimb muscle, the extensor digitorum longus, a muscle supplied by another long peripheral nerve. This finding suggests that a polynenropathy exists in laryngeal hemiplegic horses, and supports the classification of this disease as a distal axonopathy. Comparison of the degree of pathology in the intrinsic laryngeal muscles and that of the recurrent laryngeal nerves innervating them, demonstrated a strong correlation between the extent of damage in the distal left recurrent laryngeal nerve and the overall degree of muscle pathology. The muscle damage in clinically affected horses is a reflection of the nerve damage present in the most distal portion of the recurrent laryngeal nerve. The more variable pathological changes found in proximal levels of the left and right recurrent laryngeal nerves probably reflects the ongoing nature of the pathological process affecting nerve fibres. The existence of a subclinically affected group of horses, the earliest involvement of an adductor, the left cricoarytenoideus lateralis muscle, and the presence of changes in the right intrinsic laryngeal muscles all confirmed the findings of previous workers.

  16. Comparative jaw muscle anatomy in kangaroos, wallabies, and rat-kangaroos (marsupialia: macropodoidea).

    PubMed

    Warburton, Natalie Marina

    2009-06-01

    The jaw muscles were studied in seven genera of macropodoid marsupials with diets ranging from mainly fungi in Potorous to grass in Macropus. Relative size, attachments, and lamination within the jaw adductor muscles varied between macropodoid species. Among macropodine species, the jaw adductor muscle proportions vary with feeding type. The relative mass of the masseter is roughly consistent, but grazers and mixed-feeders (Macropus and Lagostrophus) had relatively larger medial pterygoids and smaller temporalis muscles than the browsers (Dendrolagus, Dorcopsulus, and Setonix). Grazing macropods show similar jaw muscle proportions to "ungulate-grinding" type placental mammals. The internal architecture of the jaw muscles also varies between grazing and browsing macropods, most significantly, the anatomy of the medial pterygoid muscle. Potoroines have distinctly different jaw muscle proportions to macropodines. The masseter muscle group, in particular, the superficial masseter is enlarged, while the temporalis group is relatively reduced. Lagostrophus fasciatus is anatomically distinct from other macropods with respect to its masticatory muscle anatomy, including enlarged superficial medial pterygoid and deep temporalis muscles, an anteriorly inflected masseteric process, and the shape of the mandibular condyle. The enlarged triangular pterygoid process of the sphenoid bone, in particular, is distinctive of Lagsotrophus.

  17. Botulinum toxin type A injections for the management of muscle tightness following total hip arthroplasty: a case series

    PubMed Central

    Bhave, Anil; Zywiel, Michael G; Ulrich, Slif D; McGrath, Mike S; Seyler, Thorsten M; Marker, David R; Delanois, Ronald E; Mont, Michael A

    2009-01-01

    Background Development of hip adductor, tensor fascia lata, and rectus femoris muscle contractures following total hip arthroplasties are quite common, with some patients failing to improve despite treatment with a variety of non-operative modalities. The purpose of the present study was to describe the use of and patient outcomes of botulinum toxin injections as an adjunctive treatment for muscle tightness following total hip arthroplasty. Methods Ten patients (14 hips) who had hip adductor, abductor, and/or flexor muscle contractures following total arthroplasty and had been refractory to physical therapeutic efforts were treated with injection of botulinum toxin A. Eight limbs received injections into the adductor muscle, 8 limbs received injections into the tensor fascia lata muscle, and 2 limbs received injection into the rectus femoris muscle, followed by intensive physical therapy for 6 weeks. Results At a mean final follow-up of 20 months, all 14 hips had increased range in the affected arc of motion, with a mean improvement of 23 degrees (range, 10 to 45 degrees). Additionally all hips had an improvement in hip scores, with a significant increase in mean score from 74 points (range, 57 to 91 points) prior to injection to a mean of 96 points (range, 93 to 98) at final follow-up. There were no serious treatment-related adverse events. Conclusion Botulinum toxin A injections combined with intensive physical therapy may be considered as a potential treatment modality, especially in difficult cases of muscle tightness that are refractory to standard therapy. PMID:19709429

  18. Isokinetic imbalance of hip muscles in soccer players with osteitis pubis.

    PubMed

    Mohammad, Walaa Sayed; Abdelraouf, Osama Ragaa; Elhafez, Salam Mohamed; Abdel-Aziem, Amr Almaz; Nassif, Nagui Sobhi

    2014-01-01

    In this study, we compared the isokinetic torques of hip flexors/extensors and abductors/adductors in soccer players suffering from osteitis pubis (OP), with normal soccer players. Twenty soccer male athletes with OP and 20 normal soccer athletes were included in this study. Peak torque/body weight (PT/BW) was recorded from hip flexor/extensor and abductor/adductor muscles during isokinetic concentric contraction modes at angular velocity of 2.1 rad · s(-1), for both groups. The results showed a significant difference between the normal and OP groups for hip flexors (P < 0.05). The normal group had significant, lower PT/BW value than the OP group for their hip flexors (P < 0.05). The hip flexor/extensor PT ratio of OP affected and non-affected limbs was significantly different from that of normal dominant and non-dominant limbs. There were no significant differences between the normal and OP groups for hip extensor, adductor and abductor muscles (P > 0.05). Regarding the hip adductor/abductor PT ratio, there was no significant difference between the normal and OP groups of athletes (P > 0.05). The OP group displayed increase in hip flexor strength that disturbed the hip flexor/extensor torque ratio of OP. Therefore, increasing the hip extensor strength should be part of rehabilitation programmes of patients with OP. PMID:24499182

  19. How human gait responds to muscle impairment in total knee arthroplasty patients: Muscular compensations and articular perturbations.

    PubMed

    Ardestani, Marzieh M; Moazen, Mehran

    2016-06-14

    Post-surgical muscle weakness is prevalent among patients who undergo total knee arthroplasty (TKA). We conducted a probabilistic multi-body dynamics (MBD) to determine whether and to what extent habitual gait patterns of TKA patients may accommodate strength deficits in lower extremity muscles. We analyzed muscular and articular compensations in response to various muscle impairments, and the minimum muscle strength requirements needed to preserve TKA gait patterns in its habitual status. Muscle weakness was simulated by reducing the strength parameter of muscle models in MBD analysis. Using impaired models, muscle and joint forces were calculated and compared versus those from baseline gait i.e. TKA habitual gait before simulating muscle weakness. Comparisons were conducted using a relatively new statistical approach for the evaluation of gait waveforms, i.e. Spatial Parameter Mapping (SPM). Principal component analysis was then conducted on the MBD results to quantify the sensitivity of every joint force component to individual muscle impairment. The results of this study contain clinically important, although preliminary, suggestions. Our findings suggested that: (1) hip flexor and ankle plantar flexor muscles compensated for hip extensor weakness; (2) hip extensor, hip adductor and ankle plantar flexor muscles compensated for hip flexor weakness; (3) hip and knee flexor muscles responded to hip abductor weakness; (4) knee flexor and hip abductor balanced hip adductor impairment; and (5) knee extensor and knee flexor weakness were compensated by hip extensor and hip flexor muscles. Future clinical studies are required to validate the results of this computational study. PMID:27063251

  20. Femoral nerve block versus adductor canal block for postoperative pain control after anterior cruciate ligament reconstruction: A randomized controlled double blind study

    PubMed Central

    El Ahl, Mohamed Sayed

    2015-01-01

    Background: The objective of this study was to evaluate the reliability of the postoperative pain control using adductor canal block (ACB) compared that using the femoral nerve block (FNB) in patients with anterior cruciate ligament reconstructions (ACLR). Materials and methods: One hundred and twenty-eight patients who had been scheduled to patellar graft ACLR were included in this double blind study, and were randomly allocated into two groups; group ACB and group FNB (64 patients each). All patients received general anesthesia. At the end of the surgery, patients in group FNB received a FNB and those in group ACB received an ACB. The postoperative pain (visual analog scale [VAS]) and muscle weakness were assessed in the postoperative care unit and every 6 h thereafter for 24 h. The total morphine requirements were also recorded. Results: Patients in group ACB had significantly higher VAS (at 18 h and 24 h), higher morphine consumption, but significantly less quadriceps weakness than those in group FNB. Conclusion: In patients with patellar graft ACLR, the ACB can maintain a higher quadriceps power, but with lesser analgesia compared with the FNB. PMID:26240546

  1. Chemical stratification of the mantle

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1979-01-01

    A possible scenario for the chemical stratification of the earth's mantle is presented. Differentiation of the mantle by either the production of basaltic magmas or partial melting by the upper mantle is proposed to lead to a thick basalt layer, the lower part of which is converted to eclogite as the earth cools. Density estimates indicate that the eclogite formed would not be able to sink to below 670 km. The eclogite layer is thus demonstrated to be trapped as a result of whole-mantle convection and possible irreversible differentiation of the mantle into eclogite and overlying residual peridotite layers.

  2. Your Muscles

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Your Muscles KidsHealth > For Kids > Your Muscles Print A A ... and skeletal (say: SKEL-uh-tul) muscle. Smooth Muscles Smooth muscles — sometimes also called involuntary muscles — are ...

  3. Laryngeal muscle activity in giggle: a damped oscillation model.

    PubMed

    Titze, Ingo R; Finnegan, Eileen M; Laukkanen, Anne-Maria; Fuja, Megan; Hoffman, Henry

    2008-11-01

    The acoustic properties of giggle, a mild form of laughter, were studied. The purpose was to determine if there is some uniqueness to the frequency and number of vocalization bursts in giggle. The underlying hypothesis was that a neuromechanical oscillator serves as an activator for rhythmic vocalizations, as in vibrato, with a pair of agonist-antagonist adductor muscles alternating in a 180 degrees phase relationship. Electromyographic activity of the posterior cricoarytenoid muscle was always measured, in conjunction with either lateral cricoarytenoid or thyroarytenoid muscle activity. Results indicate that muscle activations do alternate and that these activations do not diminish during successive bursts, even though the amplitude and duty ratio of the bursts decreases. It is reasoned that reduced lung pressure and lung volume limit the number of bursts and their duty ratio, while speed of intrinsic laryngeal muscle contraction dictates the burst frequency. PMID:17509825

  4. Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading

    SciTech Connect

    Riley, D.A.; Ellis, S.; Giometti, C.S.; Hoh, J.F.Y.; Ilyina-Kakueva, E.I.; Oganov, V.S.; Slocum, G.R.; Bain, J.L.W.; Sedlak, F.R. )

    1992-08-01

    Extended exposure of humans to spaceflight produces a progressive loss of skeletal muscle strength. This process must be understood to design effective countermeasures. The present investigation examined hindlimb muscles from flight rats killed as close to landing as possible. Spaceflight and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to account for this apparent disagreement.In both conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic fibers. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the postcapillary venules and capillaries.

  5. Effect of unloading on muscle volume with and without resistance training

    NASA Astrophysics Data System (ADS)

    Akima, Hiroshi; Ushiyama, Jun-ichi; Kubo, Junjiro; Fukuoka, Hideoki; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2007-04-01

    The present study aimed to investigate the effect of resistance training on the volume of four muscle groups and/or 17 individual muscles of the human lower limb during 20 days of 6∘ head-down tilt bed rest. Twelve healthy men were divided into two groups: the resistance training group: BR-Tr (n=6) and the control group: BR-Cont (n=6). The volumes of the knee extensor, knee flexor, adductor, plantar flexor, and dorsiflexor muscle groups and their individual muscles were calculated. After the bed rest, the BR-Tr subjects showed no significant change in the volume in almost all tested muscles; in contrast, the volumes of the four muscle groups significantly decreased in the BR-Cont group ( -12% to -8%). These results suggest that resistance training during bed rest can prevent the deteriorating of thigh muscles and calf muscles.

  6. Quantifying the aging response and nutrient composition for muscles of the beef round.

    PubMed

    Dixon, C L; Woerner, D R; Tokach, R J; Chapman, P L; Engle, T E; Tatum, J D; Belk, K E

    2012-03-01

    The objective of this study was to determine the optimal postmortem aging period and nutrient composition for Beef Value Cuts of the round. Forty USDA Select and 40 Premium USDA Choice beef carcasses were selected from a commercial beef packing plant in Colorado over a 12-wk period. The bottom and inside rounds were collected from both sides of each carcass for further fabrication into the following muscles: adductor, gastrocnemius, gracilis, pectineus, and superficial digital flexor. Each pair of muscles was cut into 7 steaks and randomly assigned to 1 of the following aging periods: 2, 4, 6, 10, 14, 21, and 28 d, and placed in refrigerated storage (2°C, never frozen). Upon completion of the designated aging period, steaks were removed from storage, cooked to a peak internal temperature of 72°C, and evaluated using Warner-Bratzler shear force (WBSF). A 2-way interaction was detected (P < 0.05) between individual muscle and postmortem aging period. The WBSF of all muscles except the superficial digital flexor decreased with increased time of postmortem aging. Quality grade did not affect (P > 0.05) WBSF values for the adductor, gastrocnemius, pectineus, and superficial digital flexor muscles. Exponential decay models were used to predict the change in WBSF from 2 to 28 d postmortem (aging response). The adductor, gastrocnemius, Select gracilis, Premium Choice gracilis, and pectineus required 21, 14, 23, 23, and 25 d, respectively, to complete the majority of the aging response. To determine the nutrient composition of the adductor, gastrocnemius, gracilis, pectineus, semimembranosus, and superficial digital flexor, bottom and inside rounds were collected from 10 USDA Select and 10 Premium USDA Choice carcasses and fabricated into the respective muscles, cut into 2.54-cm cubes, frozen (-20°C), and then homogenized. The adductor, gracilis, pectineus, semimembranosus, and superficial digital flexor were analyzed for DM, moisture, CP, and ash percentages. All

  7. Quantifying the aging response and nutrient composition for muscles of the beef round.

    PubMed

    Dixon, C L; Woerner, D R; Tokach, R J; Chapman, P L; Engle, T E; Tatum, J D; Belk, K E

    2012-03-01

    The objective of this study was to determine the optimal postmortem aging period and nutrient composition for Beef Value Cuts of the round. Forty USDA Select and 40 Premium USDA Choice beef carcasses were selected from a commercial beef packing plant in Colorado over a 12-wk period. The bottom and inside rounds were collected from both sides of each carcass for further fabrication into the following muscles: adductor, gastrocnemius, gracilis, pectineus, and superficial digital flexor. Each pair of muscles was cut into 7 steaks and randomly assigned to 1 of the following aging periods: 2, 4, 6, 10, 14, 21, and 28 d, and placed in refrigerated storage (2°C, never frozen). Upon completion of the designated aging period, steaks were removed from storage, cooked to a peak internal temperature of 72°C, and evaluated using Warner-Bratzler shear force (WBSF). A 2-way interaction was detected (P < 0.05) between individual muscle and postmortem aging period. The WBSF of all muscles except the superficial digital flexor decreased with increased time of postmortem aging. Quality grade did not affect (P > 0.05) WBSF values for the adductor, gastrocnemius, pectineus, and superficial digital flexor muscles. Exponential decay models were used to predict the change in WBSF from 2 to 28 d postmortem (aging response). The adductor, gastrocnemius, Select gracilis, Premium Choice gracilis, and pectineus required 21, 14, 23, 23, and 25 d, respectively, to complete the majority of the aging response. To determine the nutrient composition of the adductor, gastrocnemius, gracilis, pectineus, semimembranosus, and superficial digital flexor, bottom and inside rounds were collected from 10 USDA Select and 10 Premium USDA Choice carcasses and fabricated into the respective muscles, cut into 2.54-cm cubes, frozen (-20°C), and then homogenized. The adductor, gracilis, pectineus, semimembranosus, and superficial digital flexor were analyzed for DM, moisture, CP, and ash percentages. All

  8. Workshop on the Archean Mantle

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D. (Editor)

    1989-01-01

    The Workshop on the Archaen mantle considers and discusses evidence for the nature of earth's Archaen mantle, including its composition, age and structure, influence on the origin and evolution of earth's crust, and relationship to mantle and crustal evolution of the other terrestrial planets. The summaries of presentations and discussions are based on recordings made during the workshop and on notes taken by those who agreed to serve as summarizers.

  9. The effects of horseback riding simulator exercises on the muscle activity of the lower extremities according to changes in arm posture

    PubMed Central

    Park, Jungseo; Lee, Sangyong; Lee, Daehee

    2015-01-01

    [Purpose] This study aimed to determine the effects of horseback riding simulator exercise on the muscle activities of the lower extremities according to changes in arm posture. [Subjects] The subjects of this study were 30 normal adult males and females. [Methods] The horseback riding simulator exercise used a horseback riding simulator device; two arm postures were used, posture 1 (holding the handle of the device) and posture 2 (crossing both arms, with both hands on the shoulders). Electromyography was used to compare the muscle activities of the rectus femoris, biceps femoris, and hip adductors in the lower extremities. [Results] Posture 2 had significantly higher muscle activity than posture 1. [Conclusion] Posture 2, which entailed crossing both arms with both hands on the shoulders, was an effective intervention for improved muscle activity in the hip adductors. PMID:26504280

  10. Slab Driven Mantle Deformation and Plate-Mantle Decoupling

    NASA Astrophysics Data System (ADS)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2015-12-01

    Observations of shear wave splitting derived from local sources in subduction zones suggest viscous flow in the mantle wedge is commonly non-parallel to both the subducting plate velocity vector and the motion of the overriding plate. However, far from the subduction zone trench, observations indicate the fast axis of shear wave splitting tends to align with the velocity vector of the surface plates. Similarly, previous 3D geodynamic models show the slab can drive local decoupling of the mantle and surface plates, in both direction and speed. This suggests that there is some distance from the trench over which there is significant decoupling of the mantle flow from surface plate motion, and that this decoupling zone then decays with continued distance from the trench, resulting in far-field plate-mantle coupling. Here we present results from geodynamic models of subduction coupled with calculations of olivine fabric deformation and synthetic splitting to 1) examine the influence of slab strength, slab dip, and non-Newtonian viscosity on the deformation fabric in the mantle wedge and subslab mantle and 2) quantify the spatial extent and intensity of this slab driven decoupling zone. We compare the deformation fabric in a 2D corner flow solution with varying dip to that of a 2D free subduction model with varying initial dip and slab strength. The results show that using an experimentally derived flow law to define viscosity (both diffusion creep and dislocation creep deformation mechanisms) has a first order effect on the viscosity structure and flow velocity in the upper mantle. The free subduction models using the composite viscosity formulation produce a zone of subduction induced mantle weakening that results in reduced viscous support of the slab and lateral variability in coupling of the mantle to the base of the surface plates. The maximum yield stress, which places an upper bound on the slab strength, can also have a significant impact on the viscosity

  11. Evaluation of muscle metabolic activity in the lower limb of a transfemoral amputee using a prosthesis by using (18)F-FDG PET imaging--an application of PET imaging to rehabilitation.

    PubMed

    Shinozaki, Tetsuya; Suzuki, Keiko; Yamaji, Takehiko; Ichikawa, Akihiro; Inoue, Tomio; Takagishi, Kenji; Endo, Keigo

    2004-07-01

    This study used FDG PET to evaluate the lower limb muscles metabolic activities of transfemoral amputees during walking with prostheses. As a preliminary study, FDG PET was applied for two normal adult volunteers to evaluate muscle activity in the lower extremities after gait exercise. This same method was applied for two amputee volunteers with prostheses. We found that FDG accumulated more in both gluteus medius muscles after gait exercise compared to other muscles in normal adult volunteers. In the skilled amputee volunteer, FDG uptake increased in the adductor and gluteus medius in the amputated side, while in the unskilled the adductor, gluteus maximus, and gluteus medius showed increased FDG uptake only in the normal side. This result suggests that basic metabolic changes such as an increase in oxidative metabolism and less reliance on glycolytic activity would occur as a result of skeletal muscle training in amputees. PMID:15183449

  12. Mantle hydrocarbons: abiotic or biotic?

    PubMed

    Sugisaki, R; Mimura, K

    1994-06-01

    Analyses of 227 rocks from fifty localities throughout the world showed that mantle derived rocks such as tectonized peridotites in ophiolite sequences (tectonites) arid peridotite xenoliths in alkali basalts contain heavier hydrocarbons (n-alkanes), whereas igneous rocks produced by magmas such as gabbro arid granite lack them. The occurrence of hydrocarbons indicates that they were not derived either from laboratory contamination or from held contamination; these compounds found in the mantle-derived rocks are called here "mantle hydrocarbons." The existence of hydrocarbons correlates with petrogenesis. For example, peridotite cumulates produced by magmatic differentiation lack hydrocarbons whereas peridotite xenoliths derived from the mantle contain them. Gas chromatographic-mass spectrometric records of the mantle hydrocarbons resemble those of aliphatics in meteorites and in petroleum. Features of the hydrocarbons are that (a) the mantle hydrocarbons reside mainly along grain boundaries and in fluid inclusions of minerals; (b) heavier isoprenoids such as pristane and phytane are present; and (c) delta 13C of the mantle hydrocarbons is uniform (about -27%). Possible origins for the mantle hydrocarbons are as follows. (1) They were in organically synthesized by Fischer-Tropsch type reaction in the mantle. (2) They were delivered by meteorites and comets to the early Earth. (3) They were recycled by subduction. The mantle hydrocarbons in the cases of (1) and (2) are abiogenic and those in (3) are mainly biogenic. It appears that hydrocarbons may survive high pressures and temperatures in the mantle, but they are decomposed into lighter hydrocarbon gases such as CH4 at lower pressures when magmas intrude into the crust; consequently, peridotite cumulates do not contain heavier hydrocarbons but possess hydrocarbon gases up to C4H10. PMID:11541663

  13. Mantle hydrocarbons: Abiotic or biotic?

    SciTech Connect

    Sugisaki, Ryuichi; Mimura, Koichi

    1994-06-01

    Analyses of 227 rocks from fifty localities throughout the world showed that mantle derived rocks such as tectonized peridotites in ophiolite sequences (tectonites) and peridotite xenoliths in alkali basalts contain heavier hydrocarbons (n-alkanes), whereas igneous rocks produced by magmas such as gabbro and granite lack them. The occurrence of hydrocarbons indicates that they were not derived either from laboratory contamination or from field contamination; these compounds found in the mantle-derived rocks are called here {open_quotes}mantle hydrocarbons.{close_quotes} The existence of hydrocarbons correlates with petrogenesis. For example, peridotite cumulates produced by magmatic differentiation lack hydrocarbons whereas peridotite xenoliths derived from the mantle contain them. Gas chromatographic-mass spectrometric records of the mantle hydrocarbons resemble those of aliphatics in meteorites and in petroleum. Features of the hydrocarbons are that (a) the mantle hydrocarbons reside mainly along grain boundaries and in fluid inclusions of minerals; (b) heavier isoprenoids such as pristane and phytane are present; and (c) {delta}{sup 13}C of the mantle hydrocarbons is uniform (about {minus}27{per_thousand}). Possible origins for the mantle hydrocarbons are as follows. (1) They were inorganically synthesized by Fischer-Tropsch type reaction in the mantle. (2) They were delivered by meteorites and comets to the early Earth. (3) They were recycled by subduction. The mantle hydrocarbons in the cases of (1) and (2) are abiogenic and those in (3) are mainly biogenic. It appears that hydrocarbons may survive high pressures and temperatures in the mantle, but they are decomposed into lighter hydrocarbon gases such as CH{sub 4} at lower pressures when magmas intrude into the crust; consequently, peridotite cumulates do not contain heavier hydrocarbons but possess hydrocarbon gases up to C{sub 4}H{sub 10}. 76 refs., 5 figs., 3 tabs.

  14. Mantle hydrocarbons: abiotic or biotic?

    PubMed

    Sugisaki, R; Mimura, K

    1994-06-01

    Analyses of 227 rocks from fifty localities throughout the world showed that mantle derived rocks such as tectonized peridotites in ophiolite sequences (tectonites) arid peridotite xenoliths in alkali basalts contain heavier hydrocarbons (n-alkanes), whereas igneous rocks produced by magmas such as gabbro arid granite lack them. The occurrence of hydrocarbons indicates that they were not derived either from laboratory contamination or from held contamination; these compounds found in the mantle-derived rocks are called here "mantle hydrocarbons." The existence of hydrocarbons correlates with petrogenesis. For example, peridotite cumulates produced by magmatic differentiation lack hydrocarbons whereas peridotite xenoliths derived from the mantle contain them. Gas chromatographic-mass spectrometric records of the mantle hydrocarbons resemble those of aliphatics in meteorites and in petroleum. Features of the hydrocarbons are that (a) the mantle hydrocarbons reside mainly along grain boundaries and in fluid inclusions of minerals; (b) heavier isoprenoids such as pristane and phytane are present; and (c) delta 13C of the mantle hydrocarbons is uniform (about -27%). Possible origins for the mantle hydrocarbons are as follows. (1) They were in organically synthesized by Fischer-Tropsch type reaction in the mantle. (2) They were delivered by meteorites and comets to the early Earth. (3) They were recycled by subduction. The mantle hydrocarbons in the cases of (1) and (2) are abiogenic and those in (3) are mainly biogenic. It appears that hydrocarbons may survive high pressures and temperatures in the mantle, but they are decomposed into lighter hydrocarbon gases such as CH4 at lower pressures when magmas intrude into the crust; consequently, peridotite cumulates do not contain heavier hydrocarbons but possess hydrocarbon gases up to C4H10.

  15. Modeling Mantle Heterogeneity Development in Earth's Mantle Using Multidisciplinary Approaches

    NASA Astrophysics Data System (ADS)

    de Silva, S. M. S.; Finlayson, V.; Gu, T.; Li, M.; Lithgow-Bertelloni, C. R.; Cormier, V. F.

    2014-12-01

    The process of subduction provides continuous chemical and thermal heterogeneity to Earth's mantle. How heterogeneity is stirred, stretched and distributed depends on the detail of mantle convection as well as chemical and physical properties of mantle materials. Seismic observations have revealed heterogeneities in Earth's mantle at varying scales. Seismic velocities are controlled by physical parameters such as density, bulk modulus and shear modulus, which are a function of temperature, pressure and composition. Thus, understanding the origin of seismic heterogeneities play an important role in understanding the thermal and chemical state of the present Earth's mantle. Originating from the CIDER 2014 workshop, our goal is to take a multidisciplinary approach to tackle a variety of questions, foremost what length scales of heterogeneity might we expect from the convecting process and how do they manifest themselves in seismic imaging. This touches upon fundamental issues such as the composition of the mantle, the nature of stirring and mixing, and the nature of large-scale mantle upwellings (LLSVPs). We will investigate the development of heterogeneity in response to various compositions and redox states using existing and new thermochemical mantle convection simulations, and test the sensitivity of seismic measurements to different length scales of chemical heterogeneity. We try to reconcile large differences in length scales of heterogeneity as well as fractional perturbations of seismic velocity and density predicted by tomography and scattering seismic experiments. Preliminary results from the CIDER workshop initiate with conversion of geodynamic models to profiles of seismic velocity and density which are then taken as input models to predict multiply scattered, high frequency, P wave coda envelopes synthesized by a radiative transport technique. The predicted sensitivity of P coda envelopes to varying chemical compositions and heterogeneity length scales

  16. Influences of laryngeal afferent inputs on intralaryngeal muscle activity during vocalization in the cat.

    PubMed

    Shiba, K; Yoshida, K; Nakajima, Y; Konno, A

    1997-01-01

    The present study was undertaken to elucidate the possible role of the laryngeal afferent inputs in the regulation of intralaryngeal muscle activity during vocalization. We studied the influences of airflow and/or pressure applied to the larynx on intralaryngeal muscle activity during vocalization in ketamine-anesthetized cats. Vocalization was induced by airflow applied to the upper airway, which was isolated from the lower airway, during pontine call site stimulation. When the upper airway was open to the atmosphere through the nostrils and mouth, the airflow increased not only the vocal fold adductor and tensor activities but also the duration of these activities. The adductor and tensor activities were increased suddenly at a critical subglottic pressure level equivalent to the subglottic pressure threshold for vocalization. These effects were significantly reduced by sectioning of the internal branch of the superior laryngeal nerve or by lidocaine application to the laryngeal mucosa. Sustained pressure applied to the isolated upper airway, when the mouth and nostrils were occluded, did not affect adductor or tensor activities. These results indicate that the afferent inputs evoked by vocal fold stretching or vibration play an important role in the motor control of intralaryngeal and respiratory muscles during vocalization.

  17. Supersonic shear imaging provides a reliable measurement of resting muscle shear elastic modulus.

    PubMed

    Lacourpaille, Lilian; Hug, François; Bouillard, Killian; Hogrel, Jean-Yves; Nordez, Antoine

    2012-03-01

    The aim of the present study was to assess the reliability of shear elastic modulus measurements performed using supersonic shear imaging (SSI) in nine resting muscles (i.e. gastrocnemius medialis, tibialis anterior, vastus lateralis, rectus femoris, triceps brachii, biceps brachii, brachioradialis, adductor pollicis obliquus and abductor digiti minimi) of different architectures and typologies. Thirty healthy subjects were randomly assigned to the intra-session reliability (n = 20), inter-day reliability (n = 21) and the inter-observer reliability (n = 16) experiments. Muscle shear elastic modulus ranged from 2.99 (gastrocnemius medialis) to 4.50 kPa (adductor digiti minimi and tibialis anterior). On the whole, very good reliability was observed, with a coefficient of variation (CV) ranging from 4.6% to 8%, except for the inter-operator reliability of adductor pollicis obliquus (CV = 11.5%). The intraclass correlation coefficients were good (0.871 ± 0.045 for the intra-session reliability, 0.815 ± 0.065 for the inter-day reliability and 0.709 ± 0.141 for the inter-observer reliability). Both the reliability and the ease of use of SSI make it a potentially interesting technique that would be of benefit to fundamental, applied and clinical research projects that need an accurate assessment of muscle mechanical properties.

  18. Effect of passive muscle stretching in osteoarthritis of the hip.

    PubMed

    Leivseth, G; Torstensson, J; Reikerås, O

    1989-01-01

    1. Twenty-five minute daily muscle stretching, perpendicular to the fibre direction of the adductor muscles without movement of the hip, was performed in patients with osteoarthritis of the hip. 2. Before and after treatment hip abduction was measured and muscle biopsies were taken for analysis of fibre cross-sectional areas of type 1 and type 2 fibres as well as adenosine 5'-triphosphate, creatine phosphate and glycogen contents. 3. From the results it is concluded that passive muscle stretching leads to a significant increase in hip abduction of 8.3 degrees (P less than 0.05). There was also a significant increase of type 1 and type 2 fibre cross-sectional area and of glycogen content after the treatment period (P less than 0.05), but the concentrations of adenosine 5'-triphosphate and creatine phosphate did not change significantly.

  19. Progression and variation of fatty infiltration of the thigh muscles in Duchenne muscular dystrophy, a muscle magnetic resonance imaging study.

    PubMed

    Li, Wenzhu; Zheng, Yiming; Zhang, Wei; Wang, Zhaoxia; Xiao, Jiangxi; Yuan, Yun

    2015-05-01

    The purpose of this study was to assess the progression and variation of fatty infiltration of the thigh muscles of Duchenne muscular dystrophy patients. Muscle magnetic resonance imaging was used to measure the degree of fatty infiltration of the thigh muscles of 171 boys with Duchenne muscular dystrophy (mean age, 6.09 ± 2.30 years). Fatty infiltration was assigned using a modified Mercuri's scale 0-5 (normal-severe). The gluteus maximus and adductor magnus were affected in patients less than two years old, followed by the biceps femoris. Quadriceps and semimembranosus were first affected at the age of five to six years; the sartorius, gracilis and adductor longus remained apparently unaffected until seven years of age. Fatty infiltration of all the thigh muscles developed rapidly after seven years of age. The standard deviation of the fatty infiltration scores ranged from 2.41 to 4.87 before five years old, and from 6.84 to 11.66 between six and ten years old. This study provides evidence of highly variable degrees of fatty infiltration in children of different ages with Duchenne muscular dystrophy, and indicates that fatty infiltration progresses more quickly after seven years of age. These findings may be beneficial for the selection of therapeutic regimens and the analysis of future clinical trials.

  20. Everyday listeners' impressions of speech produced by individuals with adductor spasmodic dysphonia.

    PubMed

    Nagle, Kathleen F; Eadie, Tanya L; Yorkston, Kathryn M

    2015-01-01

    Individuals with adductor spasmodic dysphonia (ADSD) have reported that unfamiliar communication partners appear to judge them as sneaky, nervous or not intelligent, apparently based on the quality of their speech; however, there is minimal research into the actual everyday perspective of listening to ADSD speech. The purpose of this study was to investigate the impressions of listeners hearing ADSD speech for the first time using a mixed-methods design. Everyday listeners were interviewed following sessions in which they made ratings of ADSD speech. A semi-structured interview approach was used and data were analyzed using thematic content analysis. Three major themes emerged: (1) everyday listeners make judgments about speakers with ADSD; (2) ADSD speech does not sound normal to everyday listeners; and (3) rating overall severity is difficult for everyday listeners. Participants described ADSD speech similarly to existing literature; however, some listeners inaccurately extrapolated speaker attributes based solely on speech samples. Listeners may draw erroneous conclusions about individuals with ADSD and these biases may affect the communicative success of these individuals. Results have implications for counseling individuals with ADSD, as well as the need for education and awareness about ADSD.

  1. Mantle dynamics and seismic tomography.

    PubMed

    Tanimoto, T; Lay, T

    2000-11-01

    Three-dimensional imaging of the Earth's interior, called seismic tomography, has achieved breakthrough advances in the last two decades, revealing fundamental geodynamical processes throughout the Earth's mantle and core. Convective circulation of the entire mantle is taking place, with subducted oceanic lithosphere sinking into the lower mantle, overcoming the resistance to penetration provided by the phase boundary near 650-km depth that separates the upper and lower mantle. The boundary layer at the base of the mantle has been revealed to have complex structure, involving local stratification, extensive structural anisotropy, and massive regions of partial melt. The Earth's high Rayleigh number convective regime now is recognized to be much more interesting and complex than suggested by textbook cartoons, and continued advances in seismic tomography, geodynamical modeling, and high-pressure-high-temperature mineral physics will be needed to fully quantify the complex dynamics of our planet's interior.

  2. Effects of step exercise on muscle damage and muscle Ca2+ content in men and women.

    PubMed

    Fredsted, Anne; Clausen, Torben; Overgaard, Kristian

    2008-07-01

    Eccentric exercise often produces severe muscle damage, whereas concentric exercise of a similar load elicits a minor degree of muscle damage. The cellular events initiating muscle damage are thought to include an increase in cytosolic Ca. It was hypothesized that eccentric muscle activity in humans would lead to a larger degree of cell damage and increased intracellular Ca accumulation in skeletal muscle than concentric activity would. Furthermore, possible differences between men and women in muscle damage were investigated following step exercise. Thirty-three healthy subjects (18 men and 15 women) participated in a 30-minute step exercise protocol involving concentric contractions with 1 leg and eccentric contractions with the other leg. Muscle Ca content, maximal voluntary contraction (MVC), and muscle enzymes in the plasma were measured. In a subgroup of the subjects, T2 relaxation time was measured by magnetic resonance imaging. No significant changes were found in muscle Ca content in vastus lateralis biopsy specimens in women or in men. Following step exercise, MVC decreased in both legs of both genders. The women had a significantly larger strength decrease in the eccentric leg than the men had on postexercise day 2 (p < 0.01). Plasma creatine kinase increased following step exercise, with a sevenfold higher response in women than in men on day 3 (p < 0.001). The women, but not the men, had an increase in T2 relaxation time in the eccentrically working adductor magnus muscle, peaking on day 3 (75%) (p < 0.001). In conclusion, step exercise does not lead to Ca accumulation in the vastus lateralis but does induce muscle damage preferentially in the eccentrically working muscles, considerably more in women than in men. This indicates that gender-specific step training programs may be warranted to avoid excessive muscle damage. PMID:18545196

  3. Iron geochemistry of the mantle

    NASA Astrophysics Data System (ADS)

    Humayun, M.; Campbell, T. J.; Brandon, A. D.; Davis, F. A.; Hirschmann, M. M.

    2011-12-01

    The Fe/Mg ratio is an important constraint on the compositionally controlled density of the mantle. However, this ratio cannot be inferred from erupted lavas from OIB or MORB sources, but must be determined directly from mantle peridotites. Recently, the Fe/Mn ratio of erupted lavas has been used as an indicator of potential Fe variability in the mantle driven by core-mantle interaction, recycled oceanic crust, or even variations in the temperature of mantle melting. The classic compilation of McDonough & Sun (1995) provided the currently accepted Fe/Mn ratio of the upper mantle, 60±10. The uncertainty on this ratio allows for 15-30% variability in mantle iron abundances, which is equivalent to a density variation larger than observed by seismic tomography in the mantle. To better understand the relationship between mantle peridotites and erupted lavas, and to search for real variability in the Fe/Mn ratio of mantle peridotites, we report precise new ICP-MS measurements of the transition element geochemistry of suites of mantle xenoliths that have known Fe/Mg ratios. For 12 Kilbourne Hole xenoliths, we observe a clear correlation between Fe/Mn and MgO (or Fe/Mg) over an Fe/Mn range of 59-72. Extrapolation of this trend to a Primitive Mantle (PM) MgO content of 37.8 yields an Fe/Mn of 59±1 for the PM. Our new analyses of KLB-1 powder and fused glass beads yield an Fe/Mn of 61.4 for both samples, which plots on the Kilbourne Hole Fe/Mn vs. MgO trend. A set of ten xenoliths from San Carlos yield a wide range of Fe/Mn (56-65) not correlated with MgO content. The San Carlos xenoliths may have experienced a metasomatic effect that imprinted variable Fe/Mn. A clinopyroxene-rich lithology from San Carlos yields an Fe/Mn of 38, which plots on an extension of the Kilbourne Hole Fe/Mn vs. MgO trend. These new results, and those from other xenolith localities being measured in our lab, provide new constraints on the compositional variability of the Earth's upper mantle. Mc

  4. Osmium isotopes and mantle convection.

    PubMed

    Hauri, Erik H

    2002-11-15

    The decay of (187)Re to (187)Os (with a half-life of 42 billion years) provides a unique isotopic fingerprint for tracing the evolution of crustal materials and mantle residues in the convecting mantle. Ancient subcontinental mantle lithosphere has uniquely low Re/Os and (187)Os/(188)Os ratios due to large-degree melt extraction, recording ancient melt-depletion events as old as 3.2 billion years. Partial melts have Re/Os ratios that are orders of magnitude higher than their sources, and the subduction of oceanic or continental crust introduces into the mantle materials that rapidly accumulate radiogenic (187)Os. Eclogites from the subcontinental lithosphere have extremely high (187)Os/(188)Os ratios, and record ages as old as the oldest peridotites. The data show a near-perfect partitioning of Re/Os and (187)Os/(188)Os ratios between peridotites (low) and eclogites (high). The convecting mantle retains a degree of Os-isotopic heterogeneity similar to the lithospheric mantle, although its amplitude is modulated by convective mixing. Abyssal peridotites from the ocean ridges have low Os isotope ratios, indicating that the upper mantle had undergone episodes of melt depletion prior to the most recent melting events to produce mid-ocean-ridge basalt. The amount of rhenium estimated to be depleted from the upper mantle is 10 times greater than the rhenium budget of the continental crust, requiring a separate reservoir to close the mass balance. A reservoir consisting of 5-10% of the mantle with a rhenium concentration similar to mid-ocean-ridge basalt would balance the rhenium depletion of the upper mantle. This reservoir most likely consists of mafic oceanic crust recycled into the mantle over Earth's history and provides the material that melts at oceanic hotspots to produce ocean-island basalts (OIBs). The ubiquity of high Os isotope ratios in OIB, coupled with other geochemical tracers, indicates that the mantle sources of hotspots contain significant quantities

  5. Mantle convection on modern supercomputers

    NASA Astrophysics Data System (ADS)

    Weismüller, Jens; Gmeiner, Björn; Mohr, Marcus; Waluga, Christian; Wohlmuth, Barbara; Rüde, Ulrich; Bunge, Hans-Peter

    2015-04-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures demand an interdisciplinary co-design. Here we report about recent advances of the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups in computer sciences, mathematics and geophysical application under the leadership of FAU Erlangen. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection assessing the impact of small scale processes on global mantle flow.

  6. Mantle Convection on Modern Supercomputers

    NASA Astrophysics Data System (ADS)

    Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.

    2015-12-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.

  7. The statistical upper mantle assemblage

    NASA Astrophysics Data System (ADS)

    Meibom, Anders; Anderson, Don L.

    2004-01-01

    A fundamental challenge in modern mantle geochemistry is to link geochemical data with geological and geophysical observations. Most of the early geochemical models involved a layered mantle and the concept of geochemical reservoirs. Indeed, the two layer mantle model has been implicit in almost all geochemical literature and the provenance of oceanic island basalt (OIB) and mid-ocean ridge basalt (MORB) [van Keken et al., Annu. Rev. Earth Planet. Sci. 30 (2002) 493-525]. Large-scale regions in the mantle, such as the 'convective' (i.e. well-stirred, homogeneous) upper mantle, sub-continental lithosphere, and the lower mantle were treated as distinct and accessible geochemical reservoirs. Here we discuss evidence for a ubiquitous distribution of small- to moderate-scale (i.e. 10 2-10 5 m) heterogeneity in the upper mantle, which we refer to as the statistical upper mantle assemblage (SUMA). This heterogeneity forms as the result of long-term plate tectonic recycling of sedimentary and crustal components. The SUMA model does not require a convectively homogenized MORB mantle reservoir, which has become a frequently used concept in geochemistry. Recently, Kellogg et al. [Earth Planet. Sci. Lett. 204 (2002) 183-202] modeled MORB and OIB Sr and Nd isotopic compositions as local mantle averages of random distributions of depleted residues and recycled continental crustal material. In this model, homogenization of the MORB source region is achieved by convective stirring and mixing. In contrast, in the SUMA model, the isotopic compositions of MORB and OIB are the outcome of homogenization during sampling, by partial melting and magma mixing (e.g. [Helffrich and Wood, Nature 412 (2001) 501-507]), of a distribution of small- to moderate-scale upper mantle heterogeneity, as predicted by the central limit theorem. Thus, the 'SUMA' acronym also captures what we consider the primary homogenization process: sampling upon melting and averaging. SUMA does not require the

  8. Mantle dynamics following supercontinent formation

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.

    This thesis presents mantle convection numerical simulations of supercontinent formation. Approximately 300 million years ago, through the large-scale subduction of oceanic sea floor, continental material amalgamated to form the supercontinent Pangea. For 100 million years after its formation, Pangea remained relatively stationary, and subduction of oceanic material featured on its margins. The present-day location of the continents is due to the rifting apart of Pangea, with supercontinent dispersal being characterized by increased volcanic activity linked to the generation of deep mantle plumes. The work presented here investigates the thermal evolution of mantle dynamics (e.g., mantle temperatures and sub-continental plumes) following the formation of a supercontinent. Specifically, continental insulation and continental margin subduction are analyzed. Continental material, as compared to oceanic material, inhibits heat flow from the mantle. Previous numerical simulations have shown that the formation of a stationary supercontinent would elevate sub-continental mantle temperatures due to the effect of continental insulation, leading to the break-up of the continent. By modelling a vigorously convecting mantle that features thermally and mechanically distinct continental and oceanic plates, this study shows the effect of continental insulation on the mantle to be minimal. However, the formation of a supercontinent results in sub-continental plume formation due to the re-positioning of subduction zones to the margins of the continent. Accordingly, it is demonstrated that continental insulation is not a significant factor in producing sub-supercontinent plumes but that subduction patterns control the location and timing of upwelling formation. A theme throughout the thesis is an inquiry into why geodynamic studies would produce different results. Mantle viscosity, Rayleigh number, continental size, continental insulation, and oceanic plate boundary evolution are

  9. [Participation of the primary motor cortex in programming of muscle activity during catching of falling object].

    PubMed

    Kazennikov, O V; Lipshits, M I

    2011-01-01

    Object fell into the cup that sitting subject held between thumb and index fingers. Transcranial magnetic stimulation (TMS) of the primary motor cortex was performed early before and during anticipatory grip force increasing. Comparison of current EMG activity of adductor pollicis brevis and first dorsal interosseous muscles and responses of these muscles on TMS showed that responses were increased before the raising of muscle activity. From the other side only slight augmentation of responses was observed during subsequent strong muscle activation. It is assumed that the increasing of the TMS responses that occurred before the initiation of muscle activity reflects the enhancement ofthe motor cortex excitability associated to specific processes related to the motor cortex participation in programming of the muscles activities. PMID:22117465

  10. Suppression of Thyroarytenoid Muscle Responses During Repeated Air Pressure Stimulation of the Laryngeal Mucosa in Awake Humans

    PubMed Central

    Kearney, Pamela Reed; Poletto, Christopher J.; Mann, Eric A.; Ludlow, Christy L.

    2008-01-01

    Repeated stimulation of the laryngeal mucosa occurs during speech. Single stimuli, however, can elicit laryngeal adductor responses (LAR). Our hypothesis was that the LAR to repeated rapid air pressure stimuli are centrally suppressed in humans. Hooked wire electrodes were inserted into the thyroarytenoid and cricothyroid muscles bilaterally and into the posterior cricoarytenoid muscle on one side. Pairs of air puff stimuli were presented to the mucosa over the arytenoids at pressure levels three times threshold with inter-stimulus intervals from 250 to 5000 ms. Bilateral thyroarytenoid responses occurred at around 150 ms to over 70% of initial stimuli. With repeated presentation at intervals of 2 seconds or less, the percent occurrence decreased to less than 40% and response amplitudes were reduced by 50%. Central suppression of adductor responses to repeated air puff stimuli may allow speakers to produce voice without eliciting reflexive spasms which could disrupt speech. PMID:15895780

  11. Muscle Cramps

    MedlinePlus

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur after exercise or at night, ... to several minutes. It is a very common muscle problem. Muscle cramps can be caused by nerves ...

  12. Muscle Disorders

    MedlinePlus

    Your muscles help you move and help your body work. Different types of muscles have different jobs. There are many problems that can affect muscles. Muscle disorders can cause weakness, pain or even ...

  13. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy: disuse and neurogenic. Disuse atrophy is caused by not using the muscles enough . This type of atrophy can often be ...

  14. Muscle biopsy

    MedlinePlus

    ... the removal of a small piece of muscle tissue for examination. ... dystrophy Myopathic changes (destruction of the muscle) Necrosis (tissue death) of muscle Necrotizing vasculitis Traumatic muscle damage Polymyositis Additional conditions ...

  15. Coupled Atmosphere-Hydrosphre-Mantle Evolution: Exploring Mantle Feedbacks

    NASA Astrophysics Data System (ADS)

    Moore, W. B.

    2008-12-01

    Venus is, in bulk, nearly Earth's twin, yet the tectonic styles of the two planets are radically different. Suggested explanations for this extreme difference have invoked the lack of liquid water on Venus, the greater degree of crustal differentiation on Venus, and recently, the effect of the elevated surface temperature on convective stresses. These explanations generally involve an interaction between the state of the atmosphere/hydrosphere and the state of the mantle. Atmospheric evolution models have long considered the interaction between different reservoirs, including the mantle, but have never considered the feedback between rates of mantle processes and volatile recycling rates. Coupled atmospheric- hydrosphere-mantle dynamics models will be presented that explore the relationships between water recycling, mantle viscosities, lithospheric stresses, melt production rates and plate yielding. The models include two-dimensional solutions of mantle flow that include water-dependent viscosity and solidus behavior, volatile recycling and outgassing, and a parameterized greenhouse atmosphere with both carbon dioxide and water reservoirs. The complex system of feedbacks yields multiple equilibira and quasi-stable oscillatory states.

  16. Vocal outcome after endoscopic thyroarytenoid myoneurectomy in patients with adductor spasmodic dysphonia.

    PubMed

    Gandhi, Sachin; Remacle, Marc; Mishra, Prasun; Desai, Vrushali

    2014-12-01

    Spasmodic dysphonia (SD) remains one of the most difficult of laryngeal pathologies to treat. With limited role for speech therapy, various surgical modalities have been tried with various success rates. The objective of the study is to report the results of vocal outcome after thyroarytenoid myoneurectomy in patients of adductor spasmodic dysphonia (ASD). 15 patients of ASD were selected. GRBAS, and voice handicap index (VHI) were used for perceptual evaluation of voice. Thyroarytenoid myoneurectomy was performed by vaporizing the muscular layer of the vocal fold with CO2 laser, at an intensity of 6 W with 1.2 mm diameter in scanner mode. Voice analysis was repeated at 12, 24 and 48 months follow-up. Preoperative GRBAS scores and VHI score of all the patients were poor. At 12 months 12/15 (80 %) patients having strain score of 0. There was marked improvement in VHI scores at 6 months. 10/15 (67 %) patients have been followed up for 24 months. 5/10 (50 %) patients have strain (S) value of 0. VHI scoring of 5/10 (50 %) patients was <30. Two of the four patients completed 48 months follow-up had a strain (S) value of 0, one patient has strain value of 1 and one patient had strain value of 2. 2/4 patients had VHI score of <30; one patient had that of 40. Trans-oral CO2 laser thyroarytenoid myoneurectomy shows significant long-term improvement in voice quality in terms of reduced speech brakes, effort and strain in voice.

  17. New Insights into Muscle Function during Pivot Feeding in Seahorses

    PubMed Central

    Van Wassenbergh, Sam; Dries, Billy; Herrel, Anthony

    2014-01-01

    Seahorses, pipefish and their syngnathiform relatives are considered unique amongst fishes in using elastic recoil of post-cranial tendons to pivot the head extremely quickly towards small crustacean prey. It is known that pipefish activate the epaxial muscles for a considerable time before striking, at which rotations of the head and the hyoid are temporarily prevented to allow energy storage in the epaxial tendons. Here, we studied the motor control of this system in seahorses using electromyographic recordings of the epaxial muscles and the sternohyoideus-hypaxial muscles with simultaneous high-speed video recordings of prey capture. In addition we present the results from a stimulation experiment including the muscle hypothesised to be responsible for the locking and triggering of pivot feeding in seahorses (m. adductor arcus palatini). Our data confirmed that the epaxial pre-activation pattern observed previously for pipefish also occurs in seahorses. Similar to the epaxials, the sternohyoideus-hypaxial muscle complex shows prolonged anticipatory activity. Although a considerable variation in displacements of the mouth via head rotation could be observed, it could not be demonstrated that seahorses have control over strike distance. In addition, we could not identify the source of the kinematic variability in the activation patterns of the associated muscles. Finally, the stimulation experiment supported the previously hypothesized role of the m. adductor arcus palatini as the trigger in this elastic recoil system. Our results show that pre-stressing of both the head elevators and the hyoid retractors is taking place. As pre-activation of the main muscles involved in pivot feeding has now been demonstrated for both seahorses and pipefish, this is probably a generalized trait of Syngnathidae. PMID:25271759

  18. The Multifarious Martian Mantle

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2004-06-01

    Pieces of relatively young lava flows from Mars (all less than 600 million years old) preserve a record of the planet's initial segregation into core, mantle, and crust. Research by Lars Borg (University of New Mexico), his colleague David Draper, and his former colleagues at the Johnson Space Center, Chris Herd (University of Alberta, Canada), and Cyrena Goodrich (formerly at the University of Hawaii and now at Kingsborough Community College in Brooklyn, New York) shows that there are distinctive regions in the interior of Mars. These regions, or reservoirs as cosmochemists like to call them, formed early, about 4.5 billion years ago, and come in two flavors. One, dubbed "enriched," contains high concentrations of trace elements, has a high ratio of lanthanum to ytterbium (La/Yb), high strontium-87 to strontium-86 ratio, a low ratio of neodynmium-143 to neodynmium-144, and is relatively oxidized. The other, dubbed "depleted," contains lower levels of trace elements, has lower La/Yb and strontium-87 to strontium-86, higher neodynmium-143 to neodynmium-144, and is relatively reduced (much less oxidizing than the enriched reservoir). There are mixtures in between these extremes. The reservoirs may have formed in a global magma ocean. Their preservation for 4.5 billion years indicates that Mars, in contrast to Earth, did not have active plate tectonics since the reservoirs formed.

  19. Mantle Cell Lymphoma.

    PubMed

    Cheah, Chan Yoon; Seymour, John F; Wang, Michael L

    2016-04-10

    Mantle cell lymphoma (MCL) is an uncommon subtype of non-Hodgkin lymphoma previously considered to have a poor prognosis. Large gains were made in the first decade of the new century when clinical trials established the importance of high-dose therapy and autologous stem-cell rescue and high-dose cytarabine in younger patients and the benefits of maintenance rituximab and bendamustine in older patients. In particular, greater depth of understanding of the molecular pathophysiology of MCL has resulted in an explosion of specifically targeted new efficacious agents. In particular, agents recently approved by the Food and Drug Administration include the proteasome inhibitor bortezomib, immunomodulator lenalidomide, and Bruton's tyrosine kinase inhibitor ibrutinib. We review recent advances in the understanding of MCL biology and outline our recommended approach to therapy, including choice of chemoimmunotherapy, the role of stem-cell transplantation, and mechanism-based targeted therapies, on the basis of a synthesis of the data from published clinical trials. PMID:26755518

  20. Redox conditions for mantle plumes

    NASA Astrophysics Data System (ADS)

    Heister, L. E.; Lesher, C. E.

    2005-12-01

    The vanadium to scandium ratio (V/Sc) for basalts from mid-ocean ridge (MOR) and arc environments has been proposed as a proxy for fO2 conditions during partial melting (e.g. [1] and [2]). Contrary to barometric measurements of the fO2 of primitive lavas, the V/Sc ratio of the upper mantle at mid-ocean ridges and arcs is similar, leading previous authors to propose that the upper mantle has uniform redox potential and is well-buffered. We have attempted to broaden the applicability of the V/Sc parameter to plume-influenced localities (both oceanic and continental), where mantle heterogeneities associated with recycled sediments, mafic crust, and metasomatized mantle, whether of shallow or deep origin, exist. We find that primitive basalts from the North Atlantic Igneous Province (NAIP), Hawaii (both the Loa and Kea trends), Deccan, Columbia River, and Siberian Traps show a range of V/Sc ratios that are generally higher (average ~9) than those for MOR (average ~ 6.7) or arc (average ~7) lavas. Based on forward polybaric decompression modeling, we attribute these differences to polybaric melting and melt segregation within the garnet stability field rather than the presence of a more oxidized mantle in plume-influenced settings. Like MORB, the V/Sc ratios for plume-influenced basalts can be accounted for by an oxidation state approximately one log unit below the Ni-NiO buffer (NNO-1). Our analysis suggests that source heterogeneities have little, if any, resolvable influence on mantle redox conditions, although they have significant influence on the trace element and isotopic composition of mantle-derived melts. We suggest that variations in the redox of erupted lavas is largely a function of shallow lithospheric processes rather than intrinsic to the mantle source, regardless of tectonic setting. [1] Li and Lee (2004) EPSL, [2] Lee et al. (2005) J. of Petrology

  1. The effects of lower extremity muscle activation and passive range of motion on single leg squat performance.

    PubMed

    Mauntel, Timothy C; Begalle, Rebecca L; Cram, Tyler R; Frank, Barnett S; Hirth, Christopher J; Blackburn, Troy; Padua, Darin A

    2013-07-01

    Knee valgus is a potential risk factor for lower extremity (LE) injuries. Clinical movement screenings and passive range of motion (PROM) measurements may help identify neuromuscular patterns, which contribute to knee valgus. The purpose of this study was to compare LE muscle activation and PROM between subjects who display visual medial knee displacement (MKD) during a single leg squat (SLS) and those who do not. We hypothesized that muscular activation and PROM would differ between the groups. Forty physically active adults (20 controls, 20 MKDs) participated in this study. Subjects completed 10 LE PROM assessments and performed 5 SLS trials while electromyography (EMG) data were collected from 8 LE muscles. Three separate multivariate analysis of variance were used to identify group differences in EMG data, muscle coactivation, and PROM. Results during the SLS indicated hip coactivation ratios revealed smaller gluteus medius to hip adductor (GMed:Hip Add) (p = 0.028) and gluteus maximus to hip adductor (GMax:Hip Add) coactivation ratios (p = 0.007) compared with the control group. Also, the MKD group displayed significantly less passive ankle dorsiflexion with the knee extended (p = 0.047) and flexed (p = 0.034), and greater talar glide motion (p = 0.012). The findings of this study indicate that MKD during a SLS seems to be influenced by decreased coactivation of the gluteal to the hip adductor muscles and restricted dorsiflexion. Therefore, conditioning, rehabilitation, and injury prevention programs should focus on decreasing hip adductor activity, increasing hip abductor and external rotator activity, and increasing ankle dorsiflexion in hopes to decrease the incidence of these injuries. PMID:23096063

  2. Platinum group elements in mantle melts and mantle samples

    NASA Astrophysics Data System (ADS)

    Barnes, Stephen J.; Mungall, James E.; Maier, Wolfgang D.

    2015-09-01

    A large data compilation has been assembled of platinum group element (PGE) analyses in mantle melts and mantle rocks, the latter including an assortment of xenoliths and obducted mantle massifs. The degree of correlation has been investigated among the PGEs and with other major element variables such as Al2O3, TiO2 and Mg number, and the results are considered in the context of the current paradigm for the behaviour of highly siderophile elements in the silicate Earth. Primitive mantle melts have a wide range of PGE contents. Komatiites have the highest abundances of all the PGEs, show the strongest correlations between Pt and Rh, Pt and Pd and between the iridium-group PGEs Ir, Ru and Os (IPGEs). Most basalts of all affinities have lower levels of Pt and Pd and much lower levels of Ir, Ru and Os than komatiites. Within the basalt grouping Rh has stronger affinities with the IPGEs. Picrites and Archaean basalts are intermediate between these two groups. MORBs and a small proportion of continental LIP basalts show strong depletions in all PGEs attributable to retention of sulfide in their mantle source rocks, or sulfide liquid fractionation on ascent. The degree of PGE depletion in other basalts is probably attributable to equilibration with sulfide, but is less than would be expected under conventional models of sulfide extraction, and is instead attributed to mixing of magmas generated at variable depths incorporating both sulfide-saturated and undersaturated components. Basalts with Pt and Pd contents higher than typical komatiites are rare, a notable example being B1-type parent magmas to the Bushveld Complex, which have komatiite-like relative PGE abundances and Pt, Pd and Rh abundances up to a factor of two higher than komatiites for comparable Ti contents. The mantle composition array as a whole is characterized by variable degrees of depletion of Pt, Pd and Rh in Al-poor, melt-depleted harzburgite/dunite lithologies; lack of depletion in these elements in

  3. Treatment Efficacy of Electromyography versus Fiberscopy-Guided Botulinum Toxin Injection in Adductor Spasmodic Dysphonia Patients: A Prospective Comparative Study

    PubMed Central

    Kim, Jae Wook; Park, Jae Hong; Park, Ki Nam; Lee, Seung Won

    2014-01-01

    Introduction. This study prospectively evaluates and compares the treatment efficacy of botulinum toxin injection under electromyography guidance (EMG group) and percutaneous botulinum toxin injection under flexible fiberscopic guidance (fiberscopy group). Methods. Thirty patients with adductor spasmodic dysphonia (ADSD), who had never received treatment, were randomly allocated into EMG- or fiberscopy-guided botulinum toxin injections between March 2008 and February 2010. We assessed acoustic and aerodynamic voice parameters, and the voice handicap index (VHI) before injection and at 1, 3, and 6 months after injection. Results. The mean total dosage of botulinum toxin was similar for both groups: 1.7 ± 0.5 U for the EMG group and 1.8 ± 0.4 U for the fiberscopy group (P > 0.05). There were no significant differences in outcomes between the two groups in either the duration of effectiveness or complications such as breathy voice and aspiration. Conclusion. Botulinum toxin injection under fiberscopic guidance is a viable alternative to EMG-guided botulinum toxin injection for the treatment of adductor spasmodic dysphonia when EMG equipment is unavailable. PMID:25383369

  4. Entrapment of the saphenous nerve at the adductor canal affecting the infrapatellar branch – a report on two cases

    PubMed Central

    Porr, Jason; Chrobak, Karen; Muir, Brad

    2013-01-01

    Objective: To present 2 cases of entrapment of the saphenous nerve at the adductor canal affecting the infrapatellar branch, and to provide insight into the utilization of nerve tension testing for the diagnosis of nerve entrapments in a clinical setting. Rationale: Saphenous nerve entrapments are a very rare condition within today’s body of literature, and the diagnosis remains controversial. Clinical Features: Two cases of chronic knee pain that were unresponsive to previous treatment. The patients were diagnosed with an entrapment of the saphenous nerve at the adductor canal affecting the infrapatellar branch using nerve tension techniques along with a full clinical examination. Intervention and Outcome: Manual therapy and rehabilitation programs were initiated including soft tissue therapy, nerve gliding techniques and gait retraining which resulted in 90% improvement in one case and complete resolution of symptoms in the second. Conclusion: Nerve tension testing may prove to be an aid in the diagnosis of saphenous nerve entrapments within a clinical setting in order to decrease time to diagnosis and proper treatment. PMID:24302782

  5. Immediate effect of static and proprioceptive neuromuscular facilitation stretching on hip adductor flexibility in female ballet dancers.

    PubMed

    Rubini, Ercole C; Souza, Andréa C; Mello, Mônica L; Bacurau, Reury F P; Cabral, Leonardo F; Farinatti, Paulo T V

    2011-01-01

    The aim of the present study was to investigate the immediate effects of static and proprioceptive neuromuscular facilitation (PNF) stretching on the flexibility of hip adductors in female ballet dancers. Forty-five subjects (age: 28.5 ± 8.0 years; minimum two years of ballet training) were randomly assigned to three groups: PNF (contract-release technique), Static, and Control. Subjects in the PNF and Static groups performed four sets of 30 second stretching with an interval of 30 seconds between sets. The control group stayed at rest for the same time spent by the PNF and Static groups during the stretching sessions. Maximal range of motion was measured before and immediately after the experimental and control protocols in all groups. The results indicated significant differences between pre- and post-stretching flexibility in both PNF and Static groups (p < 0.0001; effect size = 0.24 and 0.39, respectively), whereas no change was identified in the Control group (p = 0.265). However, no differences in post-exercise flexibility were found between PNF and Static groups (p = 0.235). It is concluded that static and PNF stretching methods provoked similar post-exercise acute effects on the maximal range of motion of hip adductors in highly flexible female ballet dancers.

  6. Exploring the Mantle of Mars

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.; Martel, L. M. V.

    2012-10-01

    About 65 Mars specialists met at the Lunar and Planetary Institute in Houston, Texas, September 10-12, 2012, to discuss what we know about the mantle of Mars from meteorites, high-pressure experiments, geophysical and remote sensing data, and theory. The valuable but incomplete meteorite record shows clearly that Mars melted and differentiated into a dense iron-rich core and rocky mantle 4.5 billion years ago. This event produced chemically distinct regions of the mantle that finally melted hundreds of millions of years ago to make the magmas that produced the meteorites. Other melting events produced the older portions of the crust, most of which formed before 3.5 billion years ago. Still unknown are how many distinctive source regions formed, when they melted to form magmas, how they melted, the vigor of mantle convection and how the distinctive regions were preserved during convection, and whether the mantle has mineralogical changes with depth. Planetary scientists hope that additional meteorite samples, the current Curiosity rover mission, the geophysical InSight mission, and the future Mars Sample Return mission will give them crucial information to answer these questions.

  7. Individual muscle contributions to circular turning mechanics.

    PubMed

    Ventura, Jessica D; Klute, Glenn K; Neptune, Richard R

    2015-04-13

    Turning is an activity of daily living that involves both the acceleration of the body center-of-mass (COM) towards the center of curvature and rotation of the pelvis towards the new heading. The purpose of this study was to understand which muscles contribute to turning using experimentation, musculoskeletal modeling and simulation. Ten healthy adults consented to walk around a 1-m radius circular path at their self-selected walking speed and then along a straight line at the same speed. Forward dynamics simulations of the individual subjects during the turning and straight-line walking tasks were generated to identify the contributions of individual muscle groups to the body mediolateral and anterior-posterior COM acceleration impulse and to the pelvis angular acceleration impulse. The stance leg gluteus medius and ankle plantarflexor muscles and the swing leg adductor muscles were the primary contributors to redirect the body's COM relative to straight-line walking. In some cases, contributions to mediolateral COM acceleration were modulated through changes in leg orientation rather than through changes in muscle force. While modulation of the muscle contributions generally occurred in both the inner and outer legs, greater changes were observed during inner single-leg support than during outer single-leg support. Total pelvis angular acceleration was minimal during the single-support phase, but the swing leg muscles contributed significantly to balancing the internal and external rotation of the pelvis. The understanding of which muscles contribute to turning the body during walking may help guide the development of more effective locomotor therapies for those with movement impairments.

  8. Skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  9. Transition region of the earth's upper mantle

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Bass, J. D.

    1986-01-01

    The chemistry of the earth's mantle is discussed using data from cosmochemistry, geochemistry, petrology, seismology, and mineral physics. The chondritic earth, the upper mantle and the 400-km discontinuity, the transition region, lower mantle mineralogy, and surface wave tomography are examined. Three main issues are addressed: (1) whether the mantle is homogeneous in composition or chemically stratified, (2) whether the major element chemistry of the mantle is more similar to upper mantle peridotites or to chondrites, and (3) the nature of the composition of the source region of basalts erupted at midocean ridges.

  10. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  11. Muscle disorder

    MedlinePlus

    Myopathic changes; Myopathy; Muscle problem ... Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs ...

  12. Structure of axisymmetric mantle plumes

    NASA Technical Reports Server (NTRS)

    Olson, Peter; Schubert, Gerald; Anderson, Charles

    1993-01-01

    The structure of axisymmetric subsolidus thermal plumes in the earth's lower mantle is inferred from calculations of axisymmetric thermal plumes in an infinite Prandtl number fluid with thermally activated viscosity. The velocity and temperature distribution is determined for axisymmetric convection above a heated disk in an incompressible fluid cylinder 2,400 km in height and 1,200 km in diameter. Several calculations of plumes with heat transport in the range 100-400 GW, similar to the advective heat transport at the Hawaiian hotspot, are presented. Hotspot formation by plumes originating at the base of the mantle requires both large viscosity variations and a minimum heat transport.

  13. Core Mantle Boundary Topography and Lowermost Mantle Heterogeneity

    NASA Astrophysics Data System (ADS)

    Sze, E. K.; Karason, H.; van der Hilst, R. D.

    2001-05-01

    The core-mantle boundary (CMB) separates the solid silicate mantle and the liquid iron-nickel outer core and marks the strongest contrasts in density and viscosity within the Earth. Knowledge of CMB topography and heterogeneity pattern above it is key for the understanding of many geodynamic processes. In this study, we use P, PcP, PKPab, PKPbc, PKPdf, PKKP, and Pdiff residual travel times to constrain lateral variations in the depth to the core-mantle boundary (CMB) and in lowermost mantle P-wavespeed. In a first experiment, PcP, PKPab, PKPbc, PKPdf, and PKKP data from Engdahl et al. (BSSA, 1998) were corrected for mantle structure (Karason & Van der Hilst, JGR, 2001 - KH2001) and inner-core anisotropy (Su & Dziewonski, JGR, 1995) before being inverted for variations in CMB depth. The spherical averages of all inverted topographic models suggest that the actual CMB radius is slightly smaller than in the Earth reference model used (ak135). These inversions yield amplitude variations of up to 5 km for PcP, PKPab, PKPbc, and PKKP and 13 km for PKPdf, which is larger than the CMB undulations inferred in geodetic studies. Moreover, the PcP results are not readily consistent with the topography models inferred from the core refracted (PKP and PKKP) waves. These discrepancies suggest that the travel-time residuals cannot be explained by topography alone. Anisotropy and outer core heterogeneity could play a role, and despite the use of P, PKP, and Pdiff data the wavespeed perturbations in KH2001 may be too small to fully account for the trade off between volumetric heterogeneity and CMB. In a second experiment we explored the latter. We applied corrections for mantle structure outside a basal 290-thick layer and inverted all data for both CMB topography and volumetric heterogeneity within this layer. This reduces the amplitude of CMB topography to 1.7 km and yields velocity variations of +/- 5%. The long-wavelength pattern of the velocity model is similar to that of KH

  14. Experiment K-6-09. Morphological and biochemical investigation of microgravity-induced nerve and muscle breakdown. Part 1: Investigation of nerve and muscle breakdown during spaceflight; Part 2: Biochemical analysis of EDL and PLT muscles

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ellis, S.; Bain, J.; Sedlak, F.; Slocum, G.; Oganov, V.

    1990-01-01

    The present findings on rat hindlimb muscles suggest that skeletal muscle weakness induced by prolonged spaceflight can result from a combination of muscle fiber atrophy, muscle fiber segmental necrosis, degeneration of motor nerve terminals and destruction of microcirculatory vessels. Damage was confined to the red adductor longus (AL) and soleus muscles. The midbelly region of the AL muscle had more segmental necrosis and edema than the ends. Macrophages and neutrophils were the major mononucleated cells infiltrating and phagocytosing the cellular debris. Toluidine blue-positive mast cells were significantly decreased in Flight AL muscles compared to controls; this indicated that degranulation of mast cells contributed to tissue edema. Increased ubiquitination of disrupted myofibrils may have promoted myofilament degradation. Overall, mitochondria content and SDH activity were normal, except for a decrease in the subsarcolemmal region. The myofibrillar ATPase activity shifted toward the fast type in the Flight AL muscles. Some of the pathological changes may have occurred or been exacerbated during the 2 day postflight period of readaptation to terrestrial gravity. While simple atrophy should be reversible by exercise, restoration of pathological changes depends upon complex processes of regeneration by stem cells. Initial signs of muscle and nerve fiber regeneration were detected. Even though regeneration proceeds on Earth, the space environment may inhibit repair and cause progressive irreversible deterioration during long term missions. Muscles obtained from Flight rats sacrificed immediately (within a few hours) after landing are needed to distinguish inflight changes from postflight readaptation.

  15. Mantle superplumes induce geomagnetic superchrons

    NASA Astrophysics Data System (ADS)

    Olson, Peter; Amit, Hagay

    2015-07-01

    We use polarity reversal systematics from numerical dynamos to quantify the hypothesis that the modulation of geomagnetic reversal frequency, including geomagnetic superchrons, results from changes in core heat flux related to growth and collapse of lower mantle superplumes. We parameterize the reversal frequency sensitivity from numerical dynamos in terms of average core heat flux normalized by the difference between the present-day core heat flux and the core heat flux at geomagnetic superchron onset. A low-order polynomial fit to the 0-300 Ma Geomagnetic Polarity Time Scale (GPTS) reveals that a decrease in core heat flux relative to present-day of approximately 30% can account for the Cretaceous Normal Polarity and Kiaman Reverse Polarity Superchrons, whereas the hyper-reversing periods in the Jurassic require a core heat flux equal to or higher than present-day. Possible links between GPTS transitions, large igneous provinces (LIPs), and the two lower mantle superplumes are explored. Lower mantle superplume growth and collapse induce GPTS transitions by increasing and decreasing core heat flux, respectively. Age clusters of major LIPs postdate transitions from hyper-reversing to superchron geodynamo states by 30-60 Myr, suggesting that superchron onset may be contemporaneous with LIP-forming instabilities produced during collapses of lower mantle superplumes.

  16. Subduction signature in backarc mantle?

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Snow, J. E.; Brandon, A. D.; Ohara, Y.

    2013-12-01

    Abyssal peridotites exposed during seafloor extension provide a rare glimpse into the processes occurring within the oceanic mantle. Whole rock and mineral-scale major element data from abyssal peridotites record processes intimately associated with melt-depletion and melt-rock interaction occurring just prior to exposure of the mantle at the surface. Isotopic data, however, can provide insight into the long-term evolution of the oceanic mantle. A number of studies of mantle material exposed along mid-ocean ridges have demonstrated that abyssal peridotites from Mid-Atlantic Ridge, Gakkel Ridge, and Southwest Indian Ridge commonly display a range of whole rock Os isotopic ratios (187Os/188Os = 0.118- 0.130; Brandon et al., 2000; Standish et al., 2002; Alard et al., 2005; Harvey et al., 2006; Liu et al., 2008). The range of isotopic values in each region demonstrates that the oceanic mantle does not melt uniformly over time. Instead, anciently depleted regions (187Os/188Os ≈ 0.118) are juxtaposed against relatively fertile regions (187Os/188Os ≈ 0.130) that are isotopically similar to established primitive mantle values (187Os/188Os = 0.1296; Meisel et al. 2001). Abyssal peridotites from the Godzilla Megamullion and Chaotic Terrain in the backarc Parece Vela Basin (Philippine Sea) display a range of Os isotopic values extending to similar unradiogenic values. However, some of the backarc basin abyssal peridotites record more radiogenic 187Os/188Os values (0.135-0.170) than mid-ocean ridge peridotites. Comparable radiogenic signatures are reported only in highly weathered abyssal peridotites (187Os/188Os ≤ 0.17, Standish et al., 2002) and subduction-related volcanic arc peridotites (187Os/188Os ≤ 0.16, Brandon et al., 1996; Widom et al., 2003). In both the weathered peridotites and arc peridotites, the 187Os/188Os value is negatively correlated with Os abundance: the most radiogenic value has the lowest Os abundance (< 1 ppb) making them highly susceptible to

  17. Effect of exercise intervention on thigh muscle volume and anatomical cross-sectional areas--quantitative assessment using MRI.

    PubMed

    Hudelmaier, Martin; Wirth, Wolfgang; Himmer, Maria; Ring-Dimitriou, Susanne; Sänger, Alexandra; Eckstein, Felix

    2010-12-01

    The objective of this study was to evaluate the location-specific magnitudes of an exercise intervention on thigh muscle volume and anatomical cross-sectional area, using MRI. Forty one untrained women participated in strength, endurance, or autogenic training for 12 weeks. Axial MR images of the thigh were acquired before and after the intervention, using a T1-weighted turbo-spin-echo sequence (10 mm sections, 0.78 mm in-plane resolution). The extensor, flexor, adductor, and sartorius muscles were segmented between the femoral neck and the rectus femoris tendon. Muscle volumes were determined, and anatomical cross-sectional areas were derived from 3D reconstructions at 10% (proximal-to-distal) intervals. With strength training, the volume of the extensors (+3.1%), flexors (+3.5%), and adductors (+3.9%) increased significantly (P < 0.05) between baseline and follow-up, and with endurance training, the volume of the extensor (+3.7%) and sartorius (+5.1%) increased significantly (P < 0.05). No relevant or statistically significant change was observed with autogenic training. The greatest standardized response means were observed for the anatomical cross-sectional area in the proximal aspect (10-30%) of the thigh and generally exceeded those for muscle volumes. The study shows that MRI can be used to monitor location-specific effects of exercise intervention on muscle cross-sectional areas, with the proximal aspect of the thigh muscles being most responsive. PMID:20665894

  18. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles.

    PubMed

    Neyroud, Daria; Cheng, Arthur J; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan

    2016-01-01

    The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on-1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on-3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased "voluntary activation." In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT.

  19. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles

    PubMed Central

    Neyroud, Daria; Cheng, Arthur J.; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan

    2016-01-01

    The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on–1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on–3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased “voluntary activation.” In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT. PMID:27445844

  20. Finite-element modelling reveals force modulation of jaw adductors in stag beetles.

    PubMed

    Goyens, J; Soons, J; Aerts, P; Dirckx, J

    2014-12-01

    Male stag beetles carry large and heavy mandibles that arose through sexual selection over mating rights. Although the mandibles of Cyclommatus metallifer males are used in pugnacious fights, they are surprisingly slender. Our bite force measurements show a muscle force reduction of 18% for tip biting when compared with bites with the teeth located halfway along the mandibles. This suggests a behavioural adaptation to prevent failure. We confirmed this by constructing finite-element (FE) models that mimic both natural bite situations as well as the hypothetical situation of tip biting without muscle force modulation. These models, based on micro-CT images, investigate the material stresses in the mandibles for different combinations of bite location and muscle force. Young's modulus of the cuticle was experimentally determined to be 5.1 GPa with the double indentation method, and the model was validated by digital image correlation on living beetles. FE analysis proves to be a valuable tool in the investigation of the trade-offs of (animal) weapon morphology and usage. Furthermore, the demonstrated bite force modulation in male stag beetles suggests the presence of mechanosensors inside the armature.

  1. Finite-element modelling reveals force modulation of jaw adductors in stag beetles

    PubMed Central

    Goyens, J.; Soons, J.; Aerts, P.; Dirckx, J.

    2014-01-01

    Male stag beetles carry large and heavy mandibles that arose through sexual selection over mating rights. Although the mandibles of Cyclommatus metallifer males are used in pugnacious fights, they are surprisingly slender. Our bite force measurements show a muscle force reduction of 18% for tip biting when compared with bites with the teeth located halfway along the mandibles. This suggests a behavioural adaptation to prevent failure. We confirmed this by constructing finite-element (FE) models that mimic both natural bite situations as well as the hypothetical situation of tip biting without muscle force modulation. These models, based on micro-CT images, investigate the material stresses in the mandibles for different combinations of bite location and muscle force. Young's modulus of the cuticle was experimentally determined to be 5.1 GPa with the double indentation method, and the model was validated by digital image correlation on living beetles. FE analysis proves to be a valuable tool in the investigation of the trade-offs of (animal) weapon morphology and usage. Furthermore, the demonstrated bite force modulation in male stag beetles suggests the presence of mechanosensors inside the armature. PMID:25297317

  2. Preserving noble gases in a convecting mantle.

    PubMed

    Gonnermann, Helge M; Mukhopadhyay, Sujoy

    2009-05-28

    High (3)He/(4)He ratios sampled at many ocean islands are usually attributed to an essentially undegassed lower-mantle reservoir with high (3)He concentrations. A large and mostly undegassed mantle reservoir is also required to balance the Earth's (40)Ar budget, because only half of the (40)Ar produced from the radioactive decay of (40)K is accounted for by the atmosphere and upper mantle. However, geophysical and geochemical observations suggest slab subduction into the lower mantle, implying that most or all of Earth's mantle should have been processed by partial melting beneath mid-ocean ridges and hotspot volcanoes. This should have left noble gases in both the upper and the lower mantle extensively outgassed, contrary to expectations from (3)He/(4)He ratios and the Earth's (40)Ar budget. Here we suggest a simple solution: recycling and mixing of noble-gas-depleted slabs dilutes the concentrations of noble gases in the mantle, thereby decreasing the rate of mantle degassing and leaving significant amounts of noble gases in the processed mantle. As a result, even when the mass flux across the 660-km seismic discontinuity is equivalent to approximately one lower-mantle mass over the Earth's history, high (3)He contents, high (3)He/(4)He ratios and (40)Ar concentrations high enough to satisfy the (40)Ar mass balance of the Earth can be preserved in the lower mantle. The differences in (3)He/(4)He ratios between mid-ocean-ridge basalts and ocean island basalts, as well as high concentrations of (3)He and (40)Ar in the mantle source of ocean island basalts, can be explained within the framework of different processing rates for the upper and the lower mantle. Hence, to preserve primitive noble gas signatures, we find no need for hidden reservoirs or convective isolation of the lower mantle for any length of time.

  3. Non-volitional assessment of skeletal muscle strength in patients with chronic obstructive pulmonary disease

    PubMed Central

    Man, W; Soliman, M; Nikoletou, D; Harris, M; Rafferty, G; Mustfa, N; Polkey, M; Moxham, J

    2003-01-01

    Background: Although quadriceps weakness is well recognised in chronic obstructive pulmonary disease (COPD), the aetiology remains unknown. In disabled patients the quadriceps is a particularly underused muscle and may not reflect skeletal muscle function as a whole. Loss of muscle function is likely to be equally distributed if the underlying pathology is a systemic abnormality. Conversely, if deconditioning and disuse are the principal aetiological factors, weakness would be most marked in the lower limb muscles. Methods: The non-volitional technique of supramaximal magnetic stimulation was used to assess twitch tensions of the adductor pollicis, quadriceps, and diaphragm muscles (TwAP, TwQ, and TwPdi) in 22 stable non-weight losing COPD patients and 18 elderly controls. Results: Mean (SD) TwQ tension was reduced in the COPD patients (7.1 (2.2) kg v 10.0 (2.7) kg; 95% confidence intervals (CI) -4.4 to -1.4; p<0.001). Neither TwAP nor TwPdi (when corrected for lung volume) differed significantly between patients and controls (mean (SD) TwAP 6.52 (1.90) N for COPD patients and 6.80 (1.99) N for controls (95% CI -1.5 to 0.97, p=0.65; TwPdi 23.0 (5.6) cm H2O for COPD patients and 23.5 (5.2) cm H2O for controls (95% CI -4.5 to 3.5, p=0.81). Conclusions: The strength of the adductor pollicis muscle (and the diaphragm) is normal in patients with stable COPD whereas quadriceps strength is substantially reduced. Disuse may be the principal factor in the development of skeletal muscle weakness in COPD, but a systemic process preferentially affecting the proximal muscles cannot be excluded. PMID:12885979

  4. Twitch interpolation: superimposed twitches decline progressively during a tetanic contraction of human adductor pollicis.

    PubMed

    Gandevia, S C; McNeil, C J; Carroll, T J; Taylor, J L

    2013-03-01

    The assessment of voluntary activation of human muscles usually depends on measurement of the size of the twitch produced by an interpolated nerve or cortical stimulus. In many forms of fatiguing exercise the superimposed twitch increases and thus voluntary activation appears to decline. This is termed 'central' fatigue. Recent studies on isolated mouse muscle suggest that a peripheral mechanism related to intracellular calcium sensitivity increases interpolated twitches. To test whether this problem developed with human voluntary contractions we delivered maximal tetanic stimulation to the ulnar nerve (≥60 s at physiological motoneuronal frequencies, 30 and 15 Hz). During the tetani (at 30 Hz) in which the force declined by 42%, the absolute size of the twitches evoked by interpolated stimuli (delivered regularly or only in the last second of the tetanus) diminished progressively to less than 1%. With stimulation at 30 Hz, there was also a marked reduction in size and area of the interpolated compound muscle action potential (M wave). With a 15 Hz tetanus, a progressive decline in the interpolated twitch force also occurred (to ∼10%) but did so before the area of the interpolated M wave diminished. These results indicate that the increase in interpolated twitch size predicted from the mouse studies does not occur. Diminution in superimposed twitches occurred whether or not the M wave indicated marked impairment at sarcolemmal/t-tubular levels. Consequently, the increase in superimposed twitch, which is used to denote central fatigue in human fatiguing exercise, is likely to reflect low volitional drive to high-threshold motor units, which stop firing or are discharging at low frequencies. PMID:23283762

  5. Twitch interpolation: superimposed twitches decline progressively during a tetanic contraction of human adductor pollicis.

    PubMed

    Gandevia, S C; McNeil, C J; Carroll, T J; Taylor, J L

    2013-03-01

    The assessment of voluntary activation of human muscles usually depends on measurement of the size of the twitch produced by an interpolated nerve or cortical stimulus. In many forms of fatiguing exercise the superimposed twitch increases and thus voluntary activation appears to decline. This is termed 'central' fatigue. Recent studies on isolated mouse muscle suggest that a peripheral mechanism related to intracellular calcium sensitivity increases interpolated twitches. To test whether this problem developed with human voluntary contractions we delivered maximal tetanic stimulation to the ulnar nerve (≥60 s at physiological motoneuronal frequencies, 30 and 15 Hz). During the tetani (at 30 Hz) in which the force declined by 42%, the absolute size of the twitches evoked by interpolated stimuli (delivered regularly or only in the last second of the tetanus) diminished progressively to less than 1%. With stimulation at 30 Hz, there was also a marked reduction in size and area of the interpolated compound muscle action potential (M wave). With a 15 Hz tetanus, a progressive decline in the interpolated twitch force also occurred (to ∼10%) but did so before the area of the interpolated M wave diminished. These results indicate that the increase in interpolated twitch size predicted from the mouse studies does not occur. Diminution in superimposed twitches occurred whether or not the M wave indicated marked impairment at sarcolemmal/t-tubular levels. Consequently, the increase in superimposed twitch, which is used to denote central fatigue in human fatiguing exercise, is likely to reflect low volitional drive to high-threshold motor units, which stop firing or are discharging at low frequencies.

  6. Corticospinal influences on the distal muscles of the hand in conditions of inertial loading.

    PubMed

    Kazennikov, O V

    2010-07-01

    Electromyographic activity and synchronous discharges in the muscles of the wrist induced by transcranial magnetic stimulation of the motor cortex as the thumb and index finger were used to hold a handle bearing a weight were studied during performance of a number of motor tasks. When the subject increased grip force, for example, in response to increases in the weight of the attached load or by voluntarily squeezing the handle, the evoked response increased proportionally to muscle activity. If the subject moved the hand holding the handle up and down with an amplitude of 10 cm and a frequency of 0.5-1 Hz, grip force changed in accordance with the predicted inertial loading. The muscle response in the adductor pollicis muscle increased to a greater extent than the activity in the muscle. The response to sudden inertial loading consisted of a reflex increase in grip force, the muscle response increasing to a lesser extent than activity in the muscle. This suggests that larger increases in evoked muscle responses on up and down movement of the hand with a load are associated with anticipatory changes in grip force. These results are assessed from the point of view of the involvement of the motor cortex in generating anticipatory changes in muscle activity in the distal muscles. PMID:20544393

  7. Bone remodelling in the natural acetabulum is influenced by muscle force-induced bone stress.

    PubMed

    Fernandez, Justin; Sartori, Massimo; Lloyd, David; Munro, Jacob; Shim, Vickie

    2014-01-01

    A modelling framework using the international Physiome Project is presented for evaluating the role of muscles on acetabular stress patterns in the natural hip. The novel developments include the following: (i) an efficient method for model generation with validation; (ii) the inclusion of electromyography-estimated muscle forces from gait; and (iii) the role that muscles play in the hip stress pattern. The 3D finite element hip model includes anatomically based muscle area attachments, material properties derived from Hounsfield units and validation against an Instron compression test. The primary outcome from this study is that hip loading applied as anatomically accurate muscle forces redistributes the stress pattern and reduces peak stress throughout the pelvis and within the acetabulum compared with applying the same net hip force without muscles through the femur. Muscle forces also increased stress where large muscles have small insertion sites. This has implications for the hip where bone stress and strain are key excitation variables used to initiate bone remodelling based on the strain-based bone remodelling theory. Inclusion of muscle forces reduces the predicted sites and degree of remodelling. The secondary outcome is that the key muscles that influenced remodelling in the acetabulum were the rectus femoris, adductor magnus and iliacus.

  8. Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ilyina-Kakueva, E. I.; Ellis, S.; Bain, J. L.; Slocum, G. R.; Sedlak, F. R.

    1990-01-01

    Histochemical and ultrastructural analyses were performed postflight on hind limb skeletal muscles of rats orbited for 12.5 days aboard the unmanned Cosmos 1887 biosatellite and returned to Earth 2 days before sacrifice. The antigravity adductor longus (AL), soleus, and plantaris muscles atrophied more than the non-weight-bearing extensor digitorum longus, and slow muscle fibers were more atrophic than fast fibers. Muscle fiber segmental necrosis occurred selectively in the AL and soleus muscles; primarily, macrophages and neutrophils infiltrated and phagocytosed cellular debris. Granule-rich mast cells were diminished in flight AL muscles compared with controls, indicating the mast cell secretion contributed to interstitial tissue edema. Increased ubiquitination of disrupted myofibrils implicated ubiquitin in myofilament degradation. Mitochondrial content and succinic dehydrogenase activity were normal, except for subsarcolemmal decreases. Myofibrillar ATPase activity of flight AL muscle fibers shifted toward the fast type. Absence of capillaries and extravasation of red blood cells indicated failed microcirculation. Muscle fiber regeneration from activated satellite cells was detected. About 17% of the flight AL end plates exhibited total or partial denervation. Thus, skeletal muscle weakness associated with spaceflight can result from muscle fiber atrophy and segmental necrosis, partial motor denervation, and disruption of the microcirculation.

  9. Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy.

    PubMed

    Bar-On, Lynn; Aertbeliën, Erwin; Molenaers, Guy; Desloovere, Kaat

    2014-01-01

    The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex during a stretch to a passive muscle is the most widely accepted. However, other mechanisms are also thought to contribute to pathological muscle activity and, in patients post-stroke and spinal cord injury can result in different activation patterns. In the lower-limbs of children with spastic cerebral palsy (CP) these distinct activation patterns have not yet been thoroughly explored. The aim of the study was to apply an instrumented assessment to quantify different muscle activation patterns in four lower-limb muscles of children with CP. Fifty-four children with CP were included (males/females n = 35/19; 10.8 ± 3.8 yrs; bilateral/unilateral involvement n =  32/22; Gross Motor Functional Classification Score I-IV) of whom ten were retested to evaluate intra-rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, and ankle were performed to stretch the lower-limb muscles at three increasing velocities. Muscle activity and joint motion were synchronously recorded using inertial sensors and electromyography (EMG) from the adductors, medial hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into activation patterns using average, normalized root mean square EMG (RMS-EMG) compared across increasing position zones and velocities. Based on the visual categorisation, quantitative parameters were defined using stretch-reflex thresholds and normalized RMS-EMG. These parameters were compared between muscles with different activation patterns. All patterns were dominated by high velocity-dependent muscle activation, but in more than half, low velocity-dependent activation was also observed. Muscle activation patterns were found to be both muscle- and subject-specific (p<0.01). The intra-rater reliability of all quantitative parameters was moderate to good. Comparing RMS-EMG between incremental position

  10. How stratified is mantle convection?

    NASA Astrophysics Data System (ADS)

    Puster, Peter; Jordan, Thomas H.

    1997-04-01

    We quantify the flow stratification in the Earth's mid-mantle (600-1500 km) in terms of a stratification index for the vertical mass flux, Sƒ (z) = 1 - ƒ(z) / ƒref (z), in which the reference value ƒref(z) approximates the local flux at depth z expected for unstratified convection (Sƒ=0). Although this flux stratification index cannot be directly constrained by observations, we show from a series of two-dimensional convection simulations that its value can be related to a thermal stratification index ST(Z) defined in terms of the radial correlation length of the temperature-perturbation field δT(z, Ω). ST is a good proxy for Sƒ at low stratifications (Sƒ<0.2), where it rises with stratification strength much more rapidly than Sƒ. Assuming that the shear-speed variations δβ(z, Ω) imaged by seismic tomography are primarily due to convective temperature fluctuations, we can approximate ST by Sβ, the analogous index for the radial correlation length of δβ, and thereby construct bounds on Sƒ. We discuss several key issues regarding the implementation of this strategy, including finite resolution of the seismic data, biases due to the parameterization of the tomographic models, and the bias and variance due to noise. From the comparison of the numerical simulations with recent tomographic structures, we conclude that it is unlikely that convection in the Earth's mantle has Sƒ≳0.15. We consider the possibility that this estimate is biased because mantle convection is intermittent and therefore that the present-day tomographic snapshot may differ from its time average. Although this possibility cannot be dismissed completely, we argue that values of Sƒ≳0.2 can be discounted under a weak version of the Uniformitarian Principle. The bound obtained here from global tomography is consistent with local seismological evidence for slab flux into the lower mantle; however, the total material flux has to be significantly greater (by a factor of 2-3) than that

  11. Abdominal muscle and quadriceps strength in chronic obstructive pulmonary disease

    PubMed Central

    Man, W; Hopkinson, N; Harraf, F; Nikoletou, D; Polkey, M; Moxham, J

    2005-01-01

    Background: Quadriceps muscle weakness is common in chronic obstructive pulmonary disease (COPD) but is not observed in a small hand muscle (adductor pollicis). Although this could be explained by reduced activity in the quadriceps, the observation could also be explained by anatomical location of the muscle or fibre type composition. However, the abdominal muscles are of a similar anatomical and fibre type distribution to the quadriceps, although they remain active in COPD. Cough gastric pressure is a recently described technique that assesses abdominal muscle (and hence expiratory muscle) strength more accurately than traditional techniques. A study was undertaken to test the hypothesis that more severe weakness exists in the quadriceps than in the abdominal muscles of patients with COPD compared with healthy elderly controls. Methods: Maximum cough gastric pressure and quadriceps isometric strength were measured in 43 patients with stable COPD and 25 healthy elderly volunteers matched for anthropometric variables. Results: Despite a significant reduction in mean quadriceps strength (29.9 kg v 41.2 kg; 95% CI –17.9 to –4.6; p = 0.001), cough gastric pressure was preserved in patients with COPD (227.3 cm H2O v 204.8 cm H2O; 95% CI –5.4 to 50.6; p = 0.11). Conclusions: Abdominal muscle strength is preserved in stable COPD outpatients in the presence of quadriceps weakness. This suggests that anatomical location and fibre type cannot explain quadriceps weakness in COPD. By inference, we conclude that disuse and consequent deconditioning are important factors in the development of quadriceps muscle weakness in COPD patients, or that activity protects the abdominal muscles from possible systemic myopathic processes. PMID:15923239

  12. Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb.

    PubMed

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2014-02-15

    With fatiguing exercise, firing of group III/IV muscle afferents reduces voluntary activation and force of the exercised muscles. These afferents can also act across agonist/antagonist pairs, reducing voluntary activation and force in nonfatigued muscles. We hypothesized that maintained firing of group III/IV muscle afferents after a fatiguing adductor pollicis (AP) contraction would decrease voluntary activation and force of AP and ipsilateral elbow flexors. In two experiments (n = 10) we examined voluntary activation of AP and elbow flexors by measuring changes in superimposed twitches evoked by ulnar nerve stimulation and transcranial magnetic stimulation of the motor cortex, respectively. Inflation of a sphygmomanometer cuff after a 2-min AP maximal voluntary contraction (MVC) blocked circulation of the hand for 2 min and maintained firing of group III/IV muscle afferents. After a 2-min AP MVC, maximal AP voluntary activation was lower with than without ischemia (56.2 ± 17.7% vs. 76.3 ± 14.6%; mean ± SD; P < 0.05) as was force (40.3 ± 12.8% vs. 57.1 ± 13.8% peak MVC; P < 0.05). Likewise, after a 2-min AP MVC, elbow flexion voluntary activation was lower with than without ischemia (88.3 ± 7.5% vs. 93.6 ± 3.9%; P < 0.05) as was torque (80.2 ± 4.6% vs. 86.6 ± 1.0% peak MVC; P < 0.05). Pain during ischemia was reported as Moderate to Very Strong. Postfatigue firing of group III/IV muscle afferents from the hand decreased voluntary drive and force of AP. Moreover, this effect decreased voluntary drive and torque of proximal unfatigued muscles, the elbow flexors. Fatigue-sensitive group III/IV muscle nociceptors act to limit voluntary drive not only to fatigued muscles but also to unfatigued muscles within the same limb. PMID:24356522

  13. Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb.

    PubMed

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2014-02-15

    With fatiguing exercise, firing of group III/IV muscle afferents reduces voluntary activation and force of the exercised muscles. These afferents can also act across agonist/antagonist pairs, reducing voluntary activation and force in nonfatigued muscles. We hypothesized that maintained firing of group III/IV muscle afferents after a fatiguing adductor pollicis (AP) contraction would decrease voluntary activation and force of AP and ipsilateral elbow flexors. In two experiments (n = 10) we examined voluntary activation of AP and elbow flexors by measuring changes in superimposed twitches evoked by ulnar nerve stimulation and transcranial magnetic stimulation of the motor cortex, respectively. Inflation of a sphygmomanometer cuff after a 2-min AP maximal voluntary contraction (MVC) blocked circulation of the hand for 2 min and maintained firing of group III/IV muscle afferents. After a 2-min AP MVC, maximal AP voluntary activation was lower with than without ischemia (56.2 ± 17.7% vs. 76.3 ± 14.6%; mean ± SD; P < 0.05) as was force (40.3 ± 12.8% vs. 57.1 ± 13.8% peak MVC; P < 0.05). Likewise, after a 2-min AP MVC, elbow flexion voluntary activation was lower with than without ischemia (88.3 ± 7.5% vs. 93.6 ± 3.9%; P < 0.05) as was torque (80.2 ± 4.6% vs. 86.6 ± 1.0% peak MVC; P < 0.05). Pain during ischemia was reported as Moderate to Very Strong. Postfatigue firing of group III/IV muscle afferents from the hand decreased voluntary drive and force of AP. Moreover, this effect decreased voluntary drive and torque of proximal unfatigued muscles, the elbow flexors. Fatigue-sensitive group III/IV muscle nociceptors act to limit voluntary drive not only to fatigued muscles but also to unfatigued muscles within the same limb.

  14. Radioactivity released from burning gas lantern mantles.

    PubMed

    Luetzelschwab, J W; Googins, S W

    1984-04-01

    Gas lantern mantles contain thorium to produce incandescence when lantern fuel is burned on the mantle. Although only thorium is initially present on the mantle, the thorium daughters build up, some over a period of weeks and some over a period of years, and significant quantities of these daughters are present when the mantle is used. Some of these daughters are released when the lantern fuel is burned on the mantle. The amounts of radioactivity released during burning is studied by measuring the gamma radiation emitted by the daughters. Results of this study show that some of the radium (224Ra and 228Ra) and more than half the 212Pb and 212Bi is released during the first hour of a burn. The actual amounts release depend on the age of the mantle.

  15. Adiabaticity and viscosity in deep mantle convection

    NASA Technical Reports Server (NTRS)

    Quareni, F.; Yuen, D. A.; Saari, M. R.

    1986-01-01

    A study has been conducted of steady convection with adiabatic and viscous heating for variable viscosity in the Boussinesq limit using the mean-field theory. A strong nonlinear coupling is found between the thermodynamic constants governing adiabatic heating and the rheological parameters. The range of rheological values for which adiabaticity would occur throughout the mantle has been established. Too large an activation volume, greater than 6 cu cm/mol for the cases examined, would produce unreasonably high temperature at the bottom of the mantle (greater than 6000 K) and superadiabatic gradients, especially in the lower mantle. Radiogenic heating plays a profound role in controlling dynamically mantle temperatures. Present values for the averaged mantle heat production would yield objectionably high temperatures in the lower mantle.

  16. Cranial myology and bite force performance of Erlikosaurus andrewsi: a novel approach for digital muscle reconstructions

    PubMed Central

    Lautenschlager, Stephan

    2013-01-01

    The estimation of bite force and bite performance in fossil and extinct animals is a challenging subject in palaeontology and is highly dependent on the reconstruction of the cranial myology. Furthermore, the morphology and arrangement of the adductor muscles considerably affect feeding processes and mastication and thus also have important dietary and ecological ramifications. However, in the past, the reconstruction of the (cranial) muscles was restricted to the identification of muscle attachment sites or simplified computer models. This study presents a detailed reconstruction of the adductor musculature of the Cretaceous therizinosaur Erlikosaurus andrewsi based on a stepwise and iterative approach. The detailed, three-dimensional models of the individual muscles allow for more accurate measurements of the muscle properties (length, cross-section, attachment angle and volume), from which muscle and bite force estimates are calculated. Bite force estimations are found to be the lowest at the tip of the snout (43–65 N) and respectively higher at the first (59–88 N) and last tooth (90–134 N) position. Nevertheless, bite forces are comparatively low for E. andrewsi, both in actual numbers as well as in comparison with other theropod dinosaurs. The results further indicate that the low bite performance was mainly used for leaf-stripping and plant cropping, rather than active mastication or chewing processes. Muscle and thus bite force in E. andrewsi (and most likely all therizinosaurs) is considerably constrained by the cranial anatomy and declines in derived taxa of this clade. This trend is reflected in the changes of dietary preferences from carnivory to herbivory in therizinosaurs. PMID:23061752

  17. A simulating analysis of the effects of increased joint stiffness on muscle loading in a thumb

    PubMed Central

    2009-01-01

    Background The development of osteoarthritis (OA) in the hand results in increased joint stiffness, which in turn affects the grip strength. The goal of the present study is to theoretically analyze the muscle forces in a thumb in response to the increased joint stiffness. Methods The thumb was modeled as a linkage system consisting of a trapezium, a metacarpal bone, a proximal and a distal phalanx. Nine muscles were included in the model: flexor pollicis longus (FPL), extensor pollicis longus (EPL), extensor pollicis brevis (EPB), abductor pollicis longus (APL), flexor pollicis brevis (FPB), abductor pollicis brevis (APB), the transverse head of the adductor pollicis (ADPt), the oblique head of the adductor pollicis (ADPo), and opponens pollicis (OPP). Numerical tests were performed using an inverse dynamic approach. The joints were prescribed to an angular motion at one degree-of-freedom (DOF) each time with all other DOFs of the joints being mechanically constrained, while the muscle forces in response to the joint motions were predicted. The normal joint stiffness was assumed to be 0.05, 0.10, and 0.15 N m/rad for interphalangeal (IP), metacarpophalangeal (MCP), and carpometacarpal (CMC) joint, respectively. The joint stiffness was assumed to increase by 50% and 100%, simulating the biomechanical consequences of OA. Results Our simulations indicated that the increase in joint stiffness induced substantial increases in muscle forces, especially in the EPL and FPL muscles in response to IP, MCP, or CMC extension/flexion motions. Conclusions Because the strength of the muscles in the fingers is limited, the muscles will not be able to overcome joint resistance if joint stiffness is increased to its limit due to OA. This may contribute to the reduced range of motion typically seen in OA. PMID:20015378

  18. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  19. The stratified mantle and its evolution

    NASA Astrophysics Data System (ADS)

    Javoy, M.

    2003-04-01

    The present geophysical data are unable to give precise indications on the chemical composition of the deep mantle and on its hypothetical heterogeneity. The main constraint given presently by high-pressure mineralogical data is limited to the link between density and iron content. It is less and less evident geochemically that lower mantle contributes significantly to the flux of mantle products to the surface . Hence the geochemical explanation of the low contrast lower mantle images, wether seismologic or tomographic, needs an external help, from geochemistry and cosmochemistry. Geochemists make a misleadingly careless use of the term chondritic, leading all Earth scientists to believe that primitive meteorites, the chondrites, have a unique composition which could be called chondritic, whereas they display huge chemical variations. The only chondritic material isotopically consistent with the Earth mantle and Redox-consistent with the Earth as a whole is that of EH chondrites. It is also the most remote in composition from that used by the average Earth modelist. The EH provide the bulk Earth composition, which helps to show that the lower mantle has necessarily a composition significantly different from that of the upper mantle, with a higher Si/Mg ratio. Schematically it is very close to pure Fe-Mg perovskite It is also distinctly poorer in radioactive elements than the primitive upper mantle. Hence the density contrast between both mantles has a strong chemical component which stabilizes the two-level convection mantle inherited from the earth's formation time, the great impact and core formation. The lower and upper mantles initially had essentially equal masses, whose frontier is witnessed by the tomographic surfaces observed around 1000 kilometers depth. The 650 kilometers discontinuity is only a phase transition limit, whose presence strongly impedes the convection in the upper mantle and helps develop transition zone characteristics in the region

  20. Water content of mantle garnets

    NASA Astrophysics Data System (ADS)

    Aines, Roger D.; Rossman, George R.

    1984-12-01

    Garnet megacrysts from Colorado Plateau diatremes (Green Knobs, Garnet Ridge) and the Wesselton kimberlite, South Africa, commonly contain a structural hydrous component. The Colorado Plateau samples range from 0.0 to 0.26 wt% H2O, and the Wesselton samples contain from 0.01 to 0.07%. Concentrations were measured using P2O5 cell coulometry, H2 gas manometry, and thermogravimetry. These were used to calibrate infrared integrated absorbance in the 3-μm region, which is a more sensitive measure of total O-H content than the other analytical methods. Infrared absorbance patterns were also used to differentiate structural hydrous component from water contained in alteration and included phases. The structure of the hydrous component in these garnets appears to be the classic H4O44- = SiO44-. Profiles at 100-μm intervals across these samples show flat concentration profiles or slightly increasing concentration toward the center. A large range of water content among samples appears to represent real differences in water fugacity at the point where the garnets equilibrated. Garnets in eclogite nodules from South Africa and the Solomon Islands were also studied but were either anhydrous or too badly altered to determine the content of structurally bound water. The high concentration of hydrous component in the Colorado Plateau samples is consistent with other indicators of high volatile content in that region of the mantle. The water content of mantle garnets may prove to be an accurate indicator of mantle-water fugacities.

  1. Heating in the Solar Mantle

    NASA Technical Reports Server (NTRS)

    Chiuderi, C.

    1985-01-01

    In the case of the solar chromosphere and corona (the solar mantle) the primary energy source is the mechanical energy from photospheric motions. Plenty of energy is available; the problem is to transfer the needed amount of energy to the proper place to account for the observations. The global problem is reviewed from the point of view of the generation and transmission of energy, the intermediate storage of energy, and the release of energy in such a way that the observed features are generated.

  2. Is the lower mantle stagnant?

    NASA Astrophysics Data System (ADS)

    Hofmeister, A. M.

    2008-12-01

    I calculate geotherms for the lower mantle (LM) from the solution to Fourier's equation for spherical shells with heating internally and below, by utilizing new models and measurements of thermal diffusivity (D) at temperature (T) and pressure (P), available constraints from mineral physics, various distributions of radiogenic elements, and integrating outward from the core-mantle boundary (CMB). A perovskite-rich LM can conductively carry heat from below any given radius under a wide range of conditions, mainly due to high thermal conductivity associated with lattice compression. The base model uses recent experimental measurements of eutectic melting in the Fe-S system (Chudinovskikh and Boehler, 2007, EPSL, p. 97) which indicate CMB temperatures of 3000 K, and assumes that 2 TW emanates from the core, consistent with power attributed to the geodynamo. For the continental crust, a low estimate of 8 TW is used, for a total Q=30 TW, indicated by spherical harmonic analysis of heat flux data (Hamza et al. 2008, IJES). I use recent experimental measurements of D of perovskite-family minerals at high temperature using laser flash analysis (Hofmeister, in press, PEPI). For D(T) of MgO, dD/dP and estimation of the effects of Fe content and the transition to post-perovskite, we use the damped harmonic oscillator model (Hofmeister et al, 2007, Treatise in Geophysics). High temperature values for heat capacity are used and density from PREM. A small radiative contribution for 1 mm grains (Hofmeister (2005, J. Geodynamics) is assumed. Base model calculations provide T =1700 K at 670 km, which is consistent with phase equilibria. Effects on the geotherm are: negligible for ppv being present, minor for the amount of radiative transfer or of internal heating in the LM, moderate for proportion of perovskite or changes in core heat or CMB temperatures. For example, a pure perovskite LM without radiative transfer is conductive having T from 2000 to 4000 K from 670 km to the CMB

  3. Constraining mantle viscosity structure for a thermochemical mantle using the geoid observation

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Zhong, Shijie

    2016-03-01

    Long-wavelength geoid anomalies provide important constraints on mantle dynamics and viscosity structure. Previous studies have successfully reproduced the observed geoid using seismically inferred buoyancy in whole-mantle convection models. However, it has been suggested that large low shear velocity provinces (LLSVPs) underneath Pacific and Africa in the lower mantle are chemically distinct and are likely denser than the ambient mantle. We formulate instantaneous flow models based on seismic tomographic models to compute the geoid and constrain mantle viscosity by assuming both thermochemical and whole-mantle convection. Geoid modeling for the thermochemical model is performed by considering the compensation effect of dense thermochemical piles and removing buoyancy structure of the compensation layer in the lower mantle. Thermochemical models well reproduce the observed geoid, thus reconciling the geoid with the interpretation of LLSVPs as dense thermochemical piles. The viscosity structure inverted for thermochemical models is nearly identical to that of whole-mantle models. In the preferred model, the lower mantle viscosity is ˜10 times higher than the upper mantle viscosity that is ˜10 times higher than the transition zone viscosity. The weak transition zone is consistent with the proposed high water content there. The geoid in thermochemical mantle models is sensitive to seismic structure at midmantle depths, suggesting a need to improve seismic imaging resolution there. The geoid modeling constrains the vertical extent of dense and stable chemical piles to be within ˜500 km above CMB. Our results have implications for mineral physics, seismic tomographic studies, and mantle convection modeling.

  4. Fatty degeneration of gluteus minimus muscle as a predictor of falls.

    PubMed

    Kiyoshige, Yoshiro; Watanabe, Emi

    2015-01-01

    The cause of falls is multifactorial, however, hip fractures in elderly would be prevented if accidental falls are predictable. We assessed magnetic resonance images of 38 patients with groin pain after taking a fall whose fracture could not be detected by plain X-rays, and 45 patients with no episode of falls. Their ages were over 65 years. Fatty degeneration of muscles, gluteus maximus, gluteus medius, gluteus minimus, obturator externus, adductor longus, rectus femoris and iliopsoas muscles, were evaluated by Goutallier's staging. Odds ratio was calculated by a logistic regression analysis allocating dependent variable for falls and independent variables for Goutallier's stage, age and gender. The fatty degeneration of gluteus maximus muscle was generalized, while that of gluteus minimus muscle was unevenly distributed, especially in anterior area. Gluteus minimus muscle initiated its fatty degeneration earlier than gluteus medius muscle. Odds ratio of falling was 3.2 (95% confidence intervals: 1, 14, 8.94) for Goutallier' stage of the gluteus medius muscle. Fatty degeneration of gluteus medius muscle has a crucial role in providing stability of the pelvis including hip joint. Evaluating fatty streaks in the gluteus minimus muscle could help give early indication to those who have a higher risk of falling. PMID:25440137

  5. Oxidation state of the mantle

    SciTech Connect

    Saxena, S.K. Graduate Center, New York, NY )

    1989-01-01

    Phase equilibrium relations are established in a system Mg-Fe-Si-H-O, with and without C, at high pressures and temperatures. High pressure-temperature equations of state for the fluids including non-ideal mixing are used in the calculations. The computed equilibrium data show that an olivine of appropriate mantle composition is stable over a wide range of temperature and oxygen fugacities in the carbon-free system. If C is introduced, such that the equilibrium assemblage may contain graphite or diamond, the fluid phase in the peridotite + water system consists mostly of H{sub 2}O and little CO{sub 2} and CH{sub 4}. However, the fluid composition is strongly affected by the Fe content of the system. If Fe is increased from undersaturation to that of saturation the CH{sub 4} content of the fluid changes from a low of 1% to a high of 89%. The calculated results show a fluid with as much as 75% methane could be in equilibrium with olivine without metallic Fe as a coexisting phase. The fO{sub 2} of the primitive mantle with such a fluid composition would be several log units below that of the quartz-fayalite-magnetite buffer.

  6. Seismic evidence for a tilted mantle plume and north-south mantle flow beneath Iceland

    USGS Publications Warehouse

    Shen, Y.; Solomon, S.C.; Bjarnason, I. Th; Nolet, G.; Morgan, W.J.; Allen, R.M.; Vogfjord, K.; Jakobsdottir, S.; Stefansson, R.; Julian, B.R.; Foulger, G.R.

    2002-01-01

    Shear waves converted from compressional waves at mantle discontinuities near 410- and 660-km depth recorded by two broadband seismic experiments in Iceland reveal that the center of an area of anomalously thin mantle transition zone lies at least 100 km south of the upper-mantle low-velocity anomaly imaged tomographically beneath the hotspot. This offset is evidence for a tilted plume conduit in the upper mantle, the result of either northward flow of the Icelandic asthenosphere or southward flow of the upper part of the lower mantle in a no-net-rotation reference frame. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. The upper mantle transition region - Eclogite

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1979-01-01

    The upper mantle transition region is usually considered to be peridotite which undergoes a series of phase changes involving spinel and post-spinel assemblages. There are difficulties associated with attempts to explain the 220, 400 and 670 km discontinuities in terms of phase changes in a peridotitic mantle. Moreover, in a differentiated earth there should be large quantities of eclogite in the upper mantle. Eclogite is denser than Al2O3-poor mantle to depths of 670 km, but it stays in the garnet stability field to pressures in excess of those required to transform depleted mantle to denser phases such as ilmenite and perovskite. Eclogite, therefore, remains above 670 km. The seismic properties of the transition region are more consistent with eclogite than peridotite. Most of the mantle's inventory of incompatible trace elements may be in this layer, which is a potential source region for some basalt magmas. The radioactivity in this layer is the main source of mantle heat flow, 0.7 microcalorie/sq cm-sec, and drives upper mantle convection.

  8. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    SciTech Connect

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X.

    2010-04-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  9. Multiple seismic reflectors in Earth's lowermost mantle.

    PubMed

    Shang, Xuefeng; Shim, Sang-Heon; de Hoop, Maarten; van der Hilst, Robert

    2014-02-18

    The modern view of Earth's lowermost mantle considers a D″ region of enhanced (seismologically inferred) heterogeneity bounded by the core-mantle boundary and an interface some 150-300 km above it, with the latter often attributed to the postperovskite phase transition (in MgSiO3). Seismic exploration of Earth's deep interior suggests, however, that this view needs modification. So-called ScS and SKKS waves, which probe the lowermost mantle from above and below, respectively, reveal multiple reflectors beneath Central America and East Asia, two areas known for subduction of oceanic plates deep into Earth's mantle. This observation is inconsistent with expectations from a thermal response of a single isochemical postperovskite transition, but some of the newly observed structures can be explained with postperovskite transitions in differentiated slab materials. Our results imply that the lowermost mantle is more complex than hitherto thought and that interfaces and compositional heterogeneity occur beyond the D″ region sensu stricto. PMID:24550266

  10. Multiple seismic reflectors in Earth's lowermost mantle.

    PubMed

    Shang, Xuefeng; Shim, Sang-Heon; de Hoop, Maarten; van der Hilst, Robert

    2014-02-18

    The modern view of Earth's lowermost mantle considers a D″ region of enhanced (seismologically inferred) heterogeneity bounded by the core-mantle boundary and an interface some 150-300 km above it, with the latter often attributed to the postperovskite phase transition (in MgSiO3). Seismic exploration of Earth's deep interior suggests, however, that this view needs modification. So-called ScS and SKKS waves, which probe the lowermost mantle from above and below, respectively, reveal multiple reflectors beneath Central America and East Asia, two areas known for subduction of oceanic plates deep into Earth's mantle. This observation is inconsistent with expectations from a thermal response of a single isochemical postperovskite transition, but some of the newly observed structures can be explained with postperovskite transitions in differentiated slab materials. Our results imply that the lowermost mantle is more complex than hitherto thought and that interfaces and compositional heterogeneity occur beyond the D″ region sensu stricto.

  11. Viscosity jump in Earth's mid-mantle.

    PubMed

    Rudolph, Maxwell L; Lekić, Vedran; Lithgow-Bertelloni, Carolina

    2015-12-11

    The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle plumes, settling of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Based on a reanalysis of the long-wavelength nonhydrostatic geoid, we infer viscous layering of the mantle using a method that allows us to avoid a priori assumptions about its variation with depth. We detect an increase in viscosity at 800- to 1200-kilometers depth, far greater than the depth of the mineral phase transformations that define the mantle transition zone. The viscosity increase is coincident in depth with regions where seismic tomography has imaged slab stagnation, plume deflection, and changes in large-scale structure and offers a simple explanation of these phenomena.

  12. Spin transition zone in Earth's lower mantle

    SciTech Connect

    Lin, J.-F.; Vanko, G.; Jacobsen, S.D.; Iota, V.; Struzhkin, V.V.; Prakapenka, V.B.; Kuznetsov, A.; Yoo, C.-S.

    2008-06-16

    Mineral properties in Earth's lower mantle are affected by iron electronic states, but representative pressures and temperatures have not yet been probed. Spin states of iron in lower-mantle ferropericlase have been measured up to 95 gigapascals and 2000 kelvin with x-ray emission in a laser-heated diamond cell. A gradual spin transition of iron occurs over a pressure-temperature range extending from about 1000 kilometers in depth and 1900 kelvin to 2200 kilometers and 2300 kelvin in the lower mantle. Because low-spin ferropericlase exhibits higher density and faster sound velocities relative to the high-spin ferropericlase, the observed increase in low-spin (Mg,Fe)O at mid-lower mantle conditions would manifest seismically as a lower-mantle spin transition zone characterized by a steeper-than-normal density gradient.

  13. East Asia: Seismotectonics, magmatism and mantle dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, Dapeng; Yu, Sheng; Ohtani, Eiji

    2011-02-01

    In this article, we review the significant recent results of geophysical studies and discuss their implications on seismotectonics, magmatism, and mantle dynamics in East Asia. High-resolution geophysical imaging revealed structural heterogeneities in the source areas of large crustal earthquakes, which may reflect magma and fluids that affected the rupture nucleation of large earthquakes. In subduction zone regions, the crustal fluids originate from the dehydration of the subducting slab. Magmatism in arc and back-arc areas is caused by the corner flow in the mantle wedge and dehydration of the subducting slab. The intraplate magmatism has different origins. The continental volcanoes in Northeast Asia (such as Changbai and Wudalianchi) seem to be caused by the corner flow in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and the deep dehydration of the stagnant slab as well. The Tengchong volcano in Southwest China is possibly caused by a similar process in BMW above the subducting Burma microplate (or Indian plate). The Hainan volcano in southernmost China seems to be a hotspot fed by a lower-mantle plume associated with the Pacific and Philippine Sea slabs' deep subduction in the east and the Indian slab's deep subduction in the west down to the lower mantle. The occurrence of deep earthquakes under the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and cause the slab-plume interactions. Some of these issues, such as the origin of intraplate magmatism, are still controversial, and so further detailed studies are needed from now.

  14. Chondritic xenon in the Earth's mantle.

    PubMed

    Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G; Füri, Evelyn; Marty, Bernard

    2016-05-01

    Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth's mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth's mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth's accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion. PMID:27111512

  15. Chondritic xenon in the Earth's mantle.

    PubMed

    Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G; Füri, Evelyn; Marty, Bernard

    2016-05-01

    Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth's mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth's mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth's accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.

  16. Rogue Mantle Helium and Neon

    NASA Astrophysics Data System (ADS)

    Albarede, F.

    2007-12-01

    The canonical view of He isotope geochemistry holds that high 3He/4He ratios in basalts fingerprints undegassed mantle sources. Hawaiian basalts with unradiogenic He with 3He/4He up to 30 RA are therefore seen as originating from parts of the mantle that is still primordial, at least much more so than MORB mantle (3He/4He ~ 8 RA). This view was strongly reinforced by the discovery of solar and even planetary Ne components in oceanic basalts and gas wells. The canonical view, however, conflicts with multiple observations on ocean islands, notably Hawaiian basalts: the correlation of {187}Os/{186}Os with δ 18O combined with the presence of unusually radiogenic Hf isotope compositions for a given Nd isotope composition and the correlation between Hf and Pb isotopes are all features strongly reminiscent of ancient subducted oceanic crust and pelagic sediments in the source of the Hawaiian plume. These conflicting observations beg the question of how Hawaiian basalts, which carry the embodiment of a primordial gas signature, at the same time can provide such strong evidence of surface material recycling. I here suggest and alternative model that uses the marble cake paradigm and Shuster et al.'s data on olivine. A solution to this conundrum lies in an analogy with oil genesis: 3He and Ne do not reside in the low-melting point peridotites in which they were originally hosted but rather migrated since early in Earth history into refractory 'reservoir' rocks. Since there can be no free gas phase percolating at pressures in excess of olivine carbonation at ~3 GPa, He must be largely redistributed by diffusion. The time scale of diffusion is the defining parameter: although over billions of years 3He diffuses across large distances, melting events are too short to efficiently strip residual refractory rocks from their high-3He/4He component. Assuming that melts begin forming over the uppermost 100 km with an upwelling rate of 10 m y-1 in plume conduits and 10 cm y-1 under

  17. Mantle metasomatism: the REE story.

    USGS Publications Warehouse

    Wilshire, H.G.

    1984-01-01

    Refractory rocks with light REE/heavy REE ratios > chondrites are common as xenoliths in basalts and kimberlites and are found in some oceanic peridotite massifs. Structural and major-element geochemical evidence from these rocks suggest that the metasomatic effects resulting in addition of light REE are local and are related to emplacement of partial melts. The melts are represented by dykes of pyroxenites, hydrous minerals and gabbro that were emplaced in mantle peridotites of various origins. Metasomatic interaction between dykes and peridotite wall rock results in light REE enrichment in peridotite and depletion in dykes relative to the original liquid. Differentiation of the intrusions and separation of residual liquids may further enhance the REE exchange and extend the volume of metasomatized peridotite. Differences in the relative abundances of altered peridotite in xenoliths and massifs are seen as a sampling problem rather than a difference in process.-L.diH.

  18. Upper and mid mantle fabric developing during subduction-induced mantle flow

    NASA Astrophysics Data System (ADS)

    Faccenda, Manuele

    2013-04-01

    Subduction zones are convergent margins where the rigid lithosphere sinks into the Earth's mantle inducing complex 3D flow patterns. Seismic anisotropy generated by strain-induced lattice/crystal preferred orientation (LPO/CPO) of intrinsically anisotropic minerals is commonly used to study flow in the mantle and its relations with plate motions. We computed the seismic anisotropy of the upper and mid mantle due to strain-induced LPO in 3D mechanical models of dynamic subduction by using, respectively, D-Rex and Underworld. Subsequently, FSTRACK was used to compute seismogram synthetics and SKS splitting patterns. Strong anisotropy develops in the upper mantle, while weak or null seismic anisotropy is formed in the upper transition zone/lower mantle and lower transition zone, respectively. The distribution of the fabric in the mantle depends on the distribution and amount of the deformation, and not on the rate at which the slab subducts. The SKS splitting patterns are controlled by the anisotropy in the upper mantle because SKS waves are more sensitive to the anisotropy in the shallowest layers. Horizontally propagating shear waves in the mid mantle originating from local earthquakes are characterized by significant splitting that is mostly due to the fabric in the uppermost lower mantle. We discuss the implications of our results for real subduction settings like Tonga, where a discrete amount of observations have been collected in the past 10 years on the anisotropy in the upper and mid mantle.

  19. A long-lived ancient subduction-induced mantle boundary within the Pacific mantle

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Smith-Duque, C. E.; Tang, S.; Li, S.; Alvarez Zarikian, C. A.; D'Hondt, S.; Inagaki, F.

    2012-12-01

    A large-scale mantle discontinuity has been identified along the East Pacific Rise (EPR) and the Pacific-Antarctic Ridge (PAR) with an inferred transition zone between the EPR 23°S-31°S. Because of strong interactions of the EPR with the Easter mantle plume, the nature and genesis of this geochemical transition zone remain unclear. IODP sites U1367 and U1368 drilled into the basement that was accreted from the mantle of the Pacific-Farallon/Nazca ridge at ~33.5 Ma and ~13.5 Ma, respectively, at latitudes of 28°S to 29°S on the EPR. Lavas from sites U1367 and U1368 are used here to track this mantle discontinuity away from the EPR. The Sr-Nd-Pb isotope data reported here show strong discrepancies between the two sites unrelated to the plume-ridge interaction. which suggests the persistence of a mantle boundary near latitudes of the Easter island since at least 33.5 Ma. Comparison of our data with those along the EPR-PAR defines an isotopic anomaly in the Pacific mantle with a mantle boundary near the EPR 29°S and a gentle transition near the PAR 57°S. This isotopic anomaly is coupled with a low-velocity zone near the core-mantle boundary in the south Pacific, low 3He/4He ratios of lavas, and shallow axial depth1 south of the EPR 29°S along the EPR-PAR. Interpretation of this mantle discontinuity involves an ancient subduction zone across the EPR 28°S-29°S that allowed long-lasting introduction of recycled oceanic crust and depleted mantle wedge into the south Pacific mantle. Lavas at sites U1367 and U1368 might have sampled mantle that once was part of this ancient subduction zone that remained largely intact and not stirred by mantle convection.

  20. Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, L. L.; Convertino, V. A.; Dudley, G. A.

    1995-01-01

    The purpose of this study was to test the hypothesis that the reduction in plasma volume (PV) induced by resistance exercise reflects fluid loss to the extravascular space and subsequently selective increase in cross-sectional area (CSA) of active but not inactive skeletal muscle. We compared changes in active and inactive muscle CSA and PV after barbell squat exercise. Magnetic resonance imaging (MRI) was used to quantify muscle involvement in exercise and to determine CSA of muscle groups or individual muscles [vasti (VS), adductor (Add), hamstring (Ham), and rectus femoris (RF)]. Muscle involvement in exercise was determined using exercise-induced contrast shift in spin-spin relaxation time (T2)-weighted MR images immediately postexercise. Alterations in muscle size were based on the mean CSA of individual slices. Hematocrit, hemoglobin, and Evans blue dye were used to estimate changes in PV. Muscle CSA and PV data were obtained preexercise and immediately postexercise and 15 and 45 min thereafter. A hierarchy of muscle involvement in exercise was found such that VS > Add > Ham > RF, with the Ham and RF showing essentially no involvement. CSA of the VS and Add muscle groups were increased 10 and 5%, respectively, immediately after exercise in each thigh with no changes in Ham and RF CSA. PV was decreased 22% immediately following exercise. The absolute loss of PV was correlated (r2 = 0.75) with absolute increase in muscle CSA immediately postexercise, supporting the notion that increased muscle size after resistance exercise reflects primarily fluid movement from the vascular space into active but not inactive muscle.

  1. Analgesic Efficacy of Adductor Canal Block in Total Knee Arthroplasty: A Meta-analysis and Systematic Review.

    PubMed

    Jiang, Xu; Wang, Qian-Qian; Wu, Cheng-Ai; Tian, Wei

    2016-08-01

    The aim of this meta-analysis and systematic review of randomized controlled trials (RCTs) was to evaluate the efficacy and safety of adductor canal block (ACB) for early postoperative pain management in patients undergoing total knee arthroplasty (TKA). Relevant manuscripts comparing ACB with saline or femoral nerve block (FNB) in TKA patients were searched for in the databases of PubMed, EMBASE, and Cochrane library. The outcomes assessed included cumulative analgesic consumption, pain at rest or during movement, ability to ambulate, quadriceps strength, and complications (nausea, vomiting or sedation). For continuous outcomes, pooled effects were measured using weighted mean difference (WMD) or standard mean difference (SMD), together with 95% confidence intervals (CIs). For outcomes without sufficient data for synthesis, qualitative interpretation of individual studies was summarized. Finally, 11 RCTs involving 675 patients met the inclusion criteria. The pooled results showed that ACB resulted in less postoperative analgesic consumption than saline (WMD, -12.84 mg; 95% CI, -19.40 mg to -6.27 mg; P < 0.001) and less pain at rest or during activity. No conclusions could be drawn regarding ability to ambulate and quadriceps strength, because only one study reported these variables. Most studies comparing ACB and FNB reported similar effects on postoperative analgesic consumption (WMD, -0.56 mg; 95% CI, -8.05 mg to 6.93 mg; P = 0.884) and pain; however, ability to ambulate and quadriceps strength were significantly better with ACB (SMD, 0.99; 95% CI, 0.04-1.94; P = 0.041). Additionally, ACB did not increase the rate of complications. Our results suggest that, compared with saline, ACB decreases analgesic consumption and offers short-term advantages in terms of pain relief. Compared with FNB, ACB was associated with better ability to ambulate and quadriceps strength. PMID:27627711

  2. Viscosity distribution in the mantle convection models

    NASA Astrophysics Data System (ADS)

    Trubitsyn, V. P.

    2016-09-01

    Viscosity is a fundamental property of the mantle which determines the global geodynamical processes. According to the microscopic theory of defects and laboratory experiments, viscosity exponentially depends on temperature and pressure, with activation energy and activation volume being the parameters. The existing laboratory measurements are conducted with much higher strain rates than in the mantle and have significant uncertainty. The data on postglacial rebound only allow the depth distributions of viscosity to be reconstructed. Therefore, spatial distributions (along the depth and lateral) are as of now determined from the models of mantle convection which are calculated by the numerical solution of the convection equations, together with the viscosity dependences on pressure and temperature ( PT-dependences). The PT-dependences of viscosity which are presently used in the numerical modeling of convection give a large scatter in the estimates for the lower mantle, which reaches several orders of magnitude. In this paper, it is shown that it is possible to achieve agreement between the calculated depth distributions of viscosity throughout the entire mantle and the postglacial rebound data. For this purpose, the values of the volume and energy of activation for the upper mantle can be taken from the laboratory experiments, and for the lower mantle, the activation volume should be reduced twice at the 660-km phase transition boundary. Next, the reduction in viscosity by an order of magnitude revealed at the depths below 2000 km by the postglacial rebound data can be accounted for by the presence of heavy hot material at the mantle bottom in the LLSVP zones. The models of viscosity spatial distribution throughout the entire mantle with the lithospheric plates are presented.

  3. Thermal and chemical convection in planetary mantles

    NASA Technical Reports Server (NTRS)

    Dupeyrat, L.; Sotin, C.; Parmentier, E. M.

    1995-01-01

    Melting of the upper mantle and extraction of melt result in the formation of a less dense depleted mantle. This paper describes series of two-dimensional models that investigate the effects of chemical buoyancy induced by these density variations. A tracer particles method has been set up to follow as closely as possible the chemical state of the mantle and to model the chemical buoyant force at each grid point. Each series of models provides the evolution with time of magma production, crustal thickness, surface heat flux, and thermal and chemical state of the mantle. First, models that do not take into account the displacement of plates at the surface of Earth demonstrate that chemical buoyancy has an important effect on the geometry of convection. Then models include horizontal motion of plates 5000 km wide. Recycling of crust is taken into account. For a sufficiently high plate velocity which depends on the thermal Rayleigh number, the cell's size is strongly coupled with the plate's size. Plate motion forces chemically buoyant material to sink into the mantle. Then the positive chemical buoyancy yields upwelling as depleted mantle reaches the interface between the upper and the lower mantle. This process is very efficient in mixing the depleted and undepleted mantle at the scale of the grid spacing since these zones of upwelling disrupt the large convective flow. At low spreading rates, zones of upwelling develop quickly, melting occurs, and the model predicts intraplate volcanism by melting of subducted crust. At fast spreading rates, depleted mantle also favors the formation of these zones of upwelling, but they are not strong enough to yield partial melting. Their rapid displacement toward the ridge contributes to faster large-scale homogenization.

  4. Synthetic seismic signature of thermal mantle plumes

    NASA Astrophysics Data System (ADS)

    Goes, S.; Hansen, U.

    2003-04-01

    With increasing resolution in global tomographic models and targeted regional experiments the first seismic images of mantle plumes have emerged. In order to obtain a better idea of the expected seismic signature of a purely thermal mantle plume we perform a set of three-dimensional numerical experiments with parameters relevant to the Earth's mantle. The thermal plumes thus obtained are converted into P- and S-velocity structure taking into account the effect of temperature, pressure, an average mantle composition including phase transitions and anelasticity on the seismic velocities. Excess plume temperatures were constrained to be about 300oC below the lithosphere to be consistent with surface observations. Models with depth-dependent expansivity and conductivity and temperature and depth-dependent viscosity predict plumes that are 500-800 km wide in the lower mantle. An abrupt lowering of the viscosity above 660 km of at least a factor 30 can narrow upper mantle plumes to 100-200 km. Due to the varying sensitivity of seismic velocities to temperature with depth and mineralogy, variations in amplitude and width of the seismic plume do not coincide with the variations in the thermal structure of the plume. Anomalies of 2-4% are expected in the uppermost mantle. Reduced sensitivity in the transition zone as well as complexities due to phase boundary topography may hamper imaging continuous whole mantle plumes. Lower mantle plumes that are consistent with temperature constrasts of 100-300oC below the lithosphere will have seismic amplitudes of only 0.5-1%. Seismic anelasticity structure follows the thermal structure more closely and yields plume anomalies of 100-200% in dln(1/QS).

  5. Synthetic Seismic Signature of Thermal Mantle plumes

    NASA Astrophysics Data System (ADS)

    Goes, S.; Hansen, U.

    2002-12-01

    With increasing resolution in global tomographic models and targeted regional experiments the first seismic images of mantle plumes have emerged. The low velocity anomalies interpreted as plumes are generally significantly more complex than the simple head-tail model of a mantle upwelling. Although some models show low velocities crossing the 660 km discontinuity, the significance of the lower mantle anomalies is still heavily debated. In order to obtain a better idea of the expected seismic signature of a mantle plume we perform a set of three-dimensional numerical experiments with parameters relevant to the Earth's mantle. The thermal plumes thus obtained are converted into P and S velocity structure taking into account the effect of temperature, pressure, an average mantle composition including phase transitions and anelasticity on the seismic velocities. Excess plume temperatures were constrained to be about 300oC below the lithosphere to be consistent with surface observations. Such plumes are 400-800 km wide. An abrupt lowering of the viscosity above 660 km causes additional narrowing in the upper mantle. VP (VS) anomalies range from -2.2 (-4) % above the transition zone to -0.5 (-1) % in the lower mantle. Due to the varying sensitivity of seismic velocities to temperature with depth and mineralogy, variations in amplitude and width of the seismic plume do not coincide with the variations in the thermal structure of the plume. Reduced sensitivity in the transition zone may hamper imaging continuous whole mantle plumes. Seismic anelasticity structure follows the thermal structure more closely and yields plume anomalies of up to 200% in dln(1/QS).

  6. Activity of lower limb muscles during treadmill running at different velocities

    PubMed Central

    Tsuji, Keiichi; Ishida, Hiroyasu; Oba, Kaori; Ueki, Tsutomu; Fujihashi, Yuichiro

    2015-01-01

    [Purpose] The present study aimed to determine changes in muscle activity while moving on a treadmill at various speeds. [Subjects] The activities of the left vastus lateralis, vastus medialis, hip adductors, lateral head of gastrocnemius, medial head gastrocnemius, soleus, and tibialis anterior of 10 healthy male university students were analyzed. [Methods] University students walked, jogged, and ran for 10 minutes each in random order, and then myogenic potentials were measured 10 minutes later for 30 seconds. The flexion angle of the lower limb upon initial contact, mid stance, and toe off were measured. [Results] The average walking, jogging, and running speeds were 3.6 ± 0.4, 6.7 ± 0.6, and 10.4 ± 1.3 km/h, respectively. The average electromyographic activities of the vastus medial, tibialis anterior, medial head of gastrocnemius, and lateral head of gastrocnemius significantly differed. All muscles were more active during jogging and running than walking. Only the soleus was more active during running than walking, and the activities of the hip adductors and vastus lateralis did not significantly differ. [Conclusion] Velocity is faster and the angles of the lower limbs and ground reaction force (GRF) are larger during running than walking. The vastus medialis and soleus worked more easily according to the angle of the knee joint, whereas the tibialis anterior worked more easily at faster velocities and the medial and lateral heads of the gastrocnemius worked more easily with an increased GRF. PMID:25729166

  7. Viscosity profile of the lower mantle

    NASA Technical Reports Server (NTRS)

    Ellsworth, K.; Schubert, G.; Sammis, C. G.

    1985-01-01

    The viscosity of the earth's mantle is an important factor in studies of mantle convection and other problems in geodynamics. The present investigation is concerned with a determination of the variation of effective viscosity across the lower mantle from models of the Gibb's free energy of activation G(asterisk) and the adiabatic temperature profile. The variation of G(asterisk) with depth is calculated using both an elastic strain energy model, in which G(asterisk) is related to the seismic velocities, and a model which assumes G(asterisk) is proportional to the melting temperature.

  8. Hotspots and the evolution of the mantle

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1979-01-01

    Trace element patterns show that continental and ocean island basalts are complementary to mid-ocean ridge basalts (MORB). The relative sizes of the two source regions can be estimated from enrichment/depletion patterns. Their combined volume, computed from estimates of whole mantle abundances, occupies the entire upper mantle. The source regions appear to be the result of an early differentiation of the mantle. The MORB source evolved from the melt fraction which lost its late stage enriched fluids to the overlying plume source. The MORB source is primarily garnet and clinopyroxene, consistent with it being an eclogite cumulate.

  9. Stability of a radiative mantle in ITER

    SciTech Connect

    Mahdavi, M.A.; Staebler, G.M.; Wood, R.D.; Whyte, D.G.; West, W.P.

    1996-12-01

    We report results of a study to evaluate the efficacy of various impurities for heat dispersal by a radiative mantle and radiative divertor(including SOL). We have derived a stability criterion for the mantle radiation which favors low Z impurities and low ratios of edge to core thermal conductivities. Since on the other hand the relative strength of boundary line radiation to core bremsstrahlung favors high Z impurities, we find that for the ITER physics phase argon is the best gaseous impurity for mantle radiation. For the engineering phase of ITER, more detailed analysis is needed to select between krypton and argon.

  10. Interactive effects of growth hormone and exercise on muscle mass in suspended rats

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, Roland R.; Edgerton, V. Reggie; Grossman, Elena J.; Mukku, Venkat R.; Jiang, Bian; Pierotti, David J.; Rudolph, Ingrid

    1994-01-01

    Measures to attenuate muscle atrophy in rats in response to simulated microgravity (hindlimb suspension (HS)) have been only partially successful. In the present study, hypophysectomized rats were in HS for 7 days, and the effects of recombinant human growth hormone (GH), exercise (Ex), or GH+Ex on the weights, protein concentrations, and fiber cross-sectional areas (CSAs) of hindlimb muscles were determined. The weights of four extensor muscles, i.e., the soleus (Sol), medial (MG) and lateral (LG) gastrocnemius, and plantaris (Plt), and one adductor, i.e., the adductor longus (AL), were decreased by 10-22% after HS. Fiber CSAs were decreased by 34% in the Sol and by 1 17% in the MG after HS. In contrast, two flexors, i.e., the tibialis anterior (TA) and extensor digitorum longus (EDL), did not atrophy. In HS rats, GH treatment alone maintained the weights of the fast extensors (MG, LG, Plt) and flexors (TA, EDL) at or above those of control rats. This effect was not observed in the slow extensor (Sol) or AL. Exercise had no significant effect on the weight of any muscle in HS rats. A combination of GH and Ex treatments yielded a significant increase in the weights of the fast extensors and in the CSA of both fast and slow fibers of the MG and significantly increased Sol weight and CSA of the slow fibers of the Sol. The AL was not responsive to either GH or Ex treatments. Protein concentrations of the Sol and MG were higher only in the Sol of Ex and GH+Ex rats. These results suggest that while GH treatment or intermittent high intensity exercise alone have a minimal effect in maintaining the mass of unloaded muscle, there is a strong interactive effect of these two treatments.

  11. Neuromuscular electrical stimulation attenuates thigh skeletal muscles atrophy but not trunk muscles after spinal cord injury.

    PubMed

    Gorgey, Ashraf S; Dolbow, David R; Cifu, David X; Gater, David R

    2013-08-01

    The current study examined the effects of 12weeks of surface neuromuscular electrical stimulation (NMES) and ankle weights on the cross-sectional areas (CSAs) of three thigh [Gracilis (Gra), Sartorious (Sar) and Adductor (Add)] as well as two trunk [hip flexor (HF) and back extensor (BE)] muscle groups in men with spinal cord injury (SCI). Seven individuals with chronic motor complete SCI were randomly assigned into a resistance training +diet (RT+diet; n=4) or diet control (n=3) groups. The RT+diet group underwent twice weekly training with surface NMES and ankle weights for 12weeks. Training composed of four sets of 10 repetitions of leg extension exercise while sitting in their wheelchairs. Both groups were asked to monitor their dietary intake. Magnetic resonance images were captured before and after 12weeks of interventions. Gra muscle CSA showed no change before and after interventions. A significant interaction (P=0.001) was noted between both groups as result of 9% increase and 10% decrease in the Gra muscle CSA of the RT+diet and diet groups, respectively. Sar muscle CSA increased [1.7±0.4-2.5±0.5cm(2); P=0.029] in the RT+diet group with no change [2.9±1.4-2.6±1.3cm(2)] in the diet group; with interaction noted between both groups (P=0.002). Analysis of covariance indicated that Add muscle CSA was 38% greater in the RT+diet compared to the diet group (P=0.025) after 12weeks; a trend of interaction was also noted between both groups (P=0.06). HF and BE muscle groups showed no apparent changes in CSA in both groups. The results suggested that surface NMES can delay the process of progressive skeletal muscle atrophy after chronic SCI. However, the effects are localized to the trained thigh muscles and do not extend to the proximal trunk muscles.

  12. Real-time ultrasound-guided comparison of adductor canal block and psoas compartment block combined with sciatic nerve block in laparoscopic knee surgeries

    PubMed Central

    Messeha, Medhat M.

    2016-01-01

    Background: Lumbar plexus block, combined with a sciatic nerve block, is an effective locoregional anesthetic technique for analgesia and anesthesia of the lower extremity. The aim of this study was to compare the clinical results outcome of the adductor canal block versus the psoas compartment block combined with sciatic nerve block using real time ultrasound guidance in patients undergoing elective laparoscopic knee surgeries. Patients and Methods: Ninety patients who were undergoing elective laparoscopic knee surgeries were randomly allocated to receive a sciatic nerve block in addition to lumbar plexus block using either an adductor canal block (ACB) or a posterior psoas compartment approach (PCB) using 25 ml of bupivacine 0.5% with adrenaline 1:400,000 injection over 2-3 minutes while observing the distribution of the local anesthetic in real time. Successful nerve block was defined as a complete loss of pinprick sensation in the region that is supplied by the three nerves along with adequate motor block, 30 minutes after injection. The degree of motor block was evaluated 30 minutes after the block procedure. The results of the present study showed that the real time ultrasound guidance of PCB is more effective than ACB approach. Although the sensory blockade of the femoral nerve achieved equally by both techniques, the LFC and OBT nerves were faster and more effectively blocked with PCB technique. Also PCB group showed significant complete sensory block without need for general anesthesia, significant decrease in the post-operative VAS and significant increase time of first analgesic requirement as compared to the ACB group. Result and Conclusion: The present study demonstrates that blockade of lumber plexus by psoas compartment block is more effective in complete sensory block without general anesthesia supplementation in addition to decrease post-operative analgesic requirement than adductor canal block. PMID:27212766

  13. Mantle convection, topography and geoid

    NASA Astrophysics Data System (ADS)

    Golle, Olivia; Dumoulin, Caroline; Choblet, Gaël.; Cadek, Ondrej

    2010-05-01

    ] T.M. Lassak, A.K. McNamara, E.J Garnero, S. Zhong, (2010), Core-mantle boundary topography as a possible constraint on lower mantle chemistry and dynamics, Earth and Planetary Science Letters, 289, 232-241 [3] G. Choblet, O. Čadek, F. Couturier, C. Dumoulin, (2007), OEDIPUS : a new tool to study the dynamics of planetary interiors, Geophysical Journal International, 170, 9-30. [4] M. Pauer, K.Flemming, O. Čadek, (2006), Modeling the dynamic component of the geoid and topography of Venus, Journal of Geophysical Research, 111, E11012.

  14. Elastic Properties of Mantle Minerals

    NASA Astrophysics Data System (ADS)

    Duffy, T. S.; Stan, C. V.

    2012-12-01

    The most direct information about the interior structure of the Earth comes from seismic wave velocities. Interpretation of seismic data requires an understanding of how sound velocities and elastic properties of minerals vary with pressure, temperature, crystal structure, and composition as well as the role of anelasticity, melts, etc. More generally, elastic moduli are important for understanding many solid-state phenomena including mechanical stability, interatomic interactions, material strength, compressibility, and phase transition mechanisms. The database of mineral elasticity measurements has been growing rapidly in recent years. In this work, we report initial results of an ongoing survey of our current knowledge of mineral elasticity at both ambient conditions and high pressures and temperatures. The analysis is selective, emphasizing single crystal measurements but also incorporating polycrystalline measurements and volume compression data as appropriate. The goal is to synthesize our current understanding of mineral elasticity in terms of structure and composition, and to identify the major remaining needs for experimental and theoretical work. Clinopyroxenes (Cpx) provide an example of our approach. A wide range of clinopyroxene compositions are found geologically and Mg-, Ca-, and Na-rich clinopyroxenes are expected to be important components in the upper mantle. The single-crystal elastic properties of a number of endmember Cpx compositions have been measured and these exhibit a range of ~25% in shear velocity. Those with monovalent cations (spodumene, jadeite) in the M2 site exhibit the highest velocities while Fe-rich (hendenbergit, acmite) compositions have the lowest velocities. The effects on velocity due to a wide range of chemical substitutions can be defined, but there are important discrepancies and omissions in the database. New measurements of omphacites, intermediate diopside-hedenbergite compositions, aegerine/acmite, augite, etc. are

  15. Organization of lumbosacral motoneuronal cell groups innervating hindlimb, pelvic floor, and axial muscles in the cat.

    PubMed

    Vanderhorst, V G; Holstege, G

    1997-05-26

    In a study on descending pathways from the nucleus retroambiguus (NRA) to hindlimb motoneurons (see accompanying paper), it appeared impossible, using data from the literature, to precisely determine which muscles were innervated by the motoneurons receiving the NRA fibers. This lack of data made it necessary to produce a detailed map of the lumbosacral motoneuronal cell groups in the cat. Therefore, 50 different muscles or muscle compartments of hindlimb, pelvic floor and lower back were injected with horseradish peroxidase (HRP) in 135 cases. The respective muscles were divided into ten groups: I, sartorius and iliopsoas; II, quadriceps; III, adductors; IV, hamstrings; V, gluteal and other proximal muscles of the hip; VI, posterior compartment of the distal hindlimb; VII, anterior compartment of the distal hindlimb; VIII, long flexors and intrinsic muscles of the foot; IX, pelvic floor muscles; and X, extensors of the lower back and tail. The L4-S2 segments were cut and incubated, and labeled motoneurons were counted and plotted. A new method was developed that made it possible, despite variations in size and segmental organization between the different cases, to compare the results of different cases. The results show that the spatial interrelationship between the hindlimb and pelvic floor lumbosacral motoneuronal cell groups remains constant. This finding enabled the authors to compose an accurate overall map of the location of lumbosacral motoneuronal cell groups. The general distribution of the motoneuronal cell groups is also discussed in respect to their dorsoventral, mediolateral, and rostrocaudal position within the lumbosacral ventral horn. PMID:9136811

  16. Upper Limb Strength and Muscle Volume in Healthy Middle-Aged Adults.

    PubMed

    Saul, Katherine R; Vidt, Meghan E; Gold, Garry E; Murray, Wendy M

    2015-12-01

    Our purpose was to characterize shoulder muscle volume and isometric moment, as well as their relationship, for healthy middle- aged adults. Muscle volume and maximum isometric joint moment were assessed for 6 functional muscle groups of the shoulder, elbow, and wrist in 10 middle-aged adults (46–60 y, 5M, 5F). Compared with young adults, shoulder abductors composed a smaller percentage of total muscle volume (P = .0009) and there was a reduction in shoulder adductor strength relative to elbow flexors (P = .012). We observed a consistent ordering of moment-generating capacity among functional groups across subjects. Although total muscle volume spanned a 2.3-fold range, muscle volume was distributed among functional groups in a consistent manner across subjects. On average, 72% of the variation in joint moment could be explained by the corresponding functional group muscle volume. These data are useful for improved modeling of upper limb musculoskeletal performance in middle-aged subjects, and may improve computational predictions of function for this group. PMID:26155870

  17. Electromyographic analysis of thigh muscles during track cycling on a velodrome.

    PubMed

    Watanabe, Kohei; Sato, Takayuki; Mukaimoto, Takahiro; Takashima, Wataru; Yamagishi, Michio; Nishiyama, Tetsunari

    2016-08-01

    We aimed to investigate neuromuscular activation of thigh muscles during track cycling at various speeds. Eight male competitive cyclists volunteered to participate in this study. Surface electromyography of the vastus lateralis, biceps femoris and adductor magnus muscles of the bilateral legs was recorded during track cycling on velodromes with a 250-m track. The participants were instructed to maintain three different lap times: 20, 18 and 16 s. The average rectified value (ARV) was calculated from the sampled surface electromyography. Significantly higher ARVs were observed in the right compared to left leg for the biceps femoris muscle during both straight and curved sections at 18- and 16-s lap times (P < 0.05). In the biceps femoris muscle, significant changes in ARVs during the recovery phase with an increase in speed were seen in the right leg only (P < 0.05). There were no significant differences in ARVs between the straight and curved sections for all three muscles (P > 0.05). From our findings, it was suggested that during track cycling on a velodrome the laterality of the biceps femoris muscle activity is a key strategy to regulate the speed, and fixed neuromuscular strategies are adopted between straight and curved sections for thigh muscles.

  18. Cranial muscle development in frogs with different developmental modes: direct development versus biphasic development.

    PubMed

    Ziermann, Janine M; Diogo, Rui

    2014-04-01

    Normal development in anurans includes a free swimming larva that goes through metamorphosis to develop into the adult frog. We have investigated cranial muscle development and adult cranial muscle morphology in three different anuran species. Xenopus laevis is obligate aquatic throughout lifetime, Rana(Lithobates) pipiens has an aquatic larvae and a terrestrial adult form, and Eleutherodactylus coqui has direct developing juveniles that hatch from eggs deposited on leaves (terrestrial). The adult morphology shows hardly any differences between the investigated species. Cranial muscle development of E. coqui shows many similarities and only few differences to the development of Rana (Lithobates) and Xenopus. The differences are missing muscles of the branchial arches (which disappear during metamorphosis of biphasic anurans) and a few heterochronic changes. The development of the mandibular arch (adductor mandibulae) and hyoid arch (depressor mandibulae) muscles is similar to that observed in Xenopus and Rana (Lithobates), although the first appearance of these muscles displays a midmetamorphic pattern in E. coqui. We show that the mix of characters observed in E. coqui indicates that the larval stage is not completely lost even without a free swimming larval stage. Cryptic metamorphosis is the process in which morphological changes in the larva/embryo take place that are not as obvious as in normal metamorphosing anurans with a clear biphasic lifestyle. During cryptic metamorphosis, a normal adult frog develops, indicating that the majority of developmental mechanisms towards the functional adult cranial muscles are preserved.

  19. How mantle slabs drive plate tectonics.

    PubMed

    Conrad, Clinton P; Lithgow-Bertelloni, Carolina

    2002-10-01

    The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction. PMID:12364804

  20. Can mantle convection be self-regulated?

    PubMed

    Korenaga, Jun

    2016-08-01

    The notion of self-regulating mantle convection, in which heat loss from the surface is constantly adjusted to follow internal radiogenic heat production, has been popular for the past six decades since Urey first advocated the idea. Thanks to its intuitive appeal, this notion has pervaded the solid earth sciences in various forms, but approach to a self-regulating state critically depends on the relation between the thermal adjustment rate and mantle temperature. I show that, if the effect of mantle melting on viscosity is taken into account, the adjustment rate cannot be sufficiently high to achieve self-regulation, regardless of the style of mantle convection. The evolution of terrestrial planets is thus likely to be far from thermal equilibrium and be sensitive to the peculiarities of their formation histories. Chance factors in planetary formation are suggested to become more important for the evolution of planets that are more massive than Earth.

  1. Can mantle convection be self-regulated?

    PubMed Central

    Korenaga, Jun

    2016-01-01

    The notion of self-regulating mantle convection, in which heat loss from the surface is constantly adjusted to follow internal radiogenic heat production, has been popular for the past six decades since Urey first advocated the idea. Thanks to its intuitive appeal, this notion has pervaded the solid earth sciences in various forms, but approach to a self-regulating state critically depends on the relation between the thermal adjustment rate and mantle temperature. I show that, if the effect of mantle melting on viscosity is taken into account, the adjustment rate cannot be sufficiently high to achieve self-regulation, regardless of the style of mantle convection. The evolution of terrestrial planets is thus likely to be far from thermal equilibrium and be sensitive to the peculiarities of their formation histories. Chance factors in planetary formation are suggested to become more important for the evolution of planets that are more massive than Earth. PMID:27551689

  2. Properties of mantles on cometary nuclei

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.

    1989-01-01

    The formation, structure, and properties of dusty mantles on cometary nuclei are investigated using various theoretical arguments and experimental data. It is shown how the growth of the mantle is affected by the varying thermal conductivity and how an initial chemically undifferentiated surface layer changes into a mechanically rather weak, less than 10 to the 7th dyn /sq cm, mantle which then strengthens to reach values of the order of 10 to the 8th dyn/sq cm. Organic CHON decomposition products may lower the porosity below the expected value of about 0.5 and lead to an increase of the surface temperature. They may also further strengthen the overall bonding of the mantle.

  3. How mantle slabs drive plate tectonics.

    PubMed

    Conrad, Clinton P; Lithgow-Bertelloni, Carolina

    2002-10-01

    The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.

  4. Can mantle convection be self-regulated?

    PubMed

    Korenaga, Jun

    2016-08-01

    The notion of self-regulating mantle convection, in which heat loss from the surface is constantly adjusted to follow internal radiogenic heat production, has been popular for the past six decades since Urey first advocated the idea. Thanks to its intuitive appeal, this notion has pervaded the solid earth sciences in various forms, but approach to a self-regulating state critically depends on the relation between the thermal adjustment rate and mantle temperature. I show that, if the effect of mantle melting on viscosity is taken into account, the adjustment rate cannot be sufficiently high to achieve self-regulation, regardless of the style of mantle convection. The evolution of terrestrial planets is thus likely to be far from thermal equilibrium and be sensitive to the peculiarities of their formation histories. Chance factors in planetary formation are suggested to become more important for the evolution of planets that are more massive than Earth. PMID:27551689

  5. Comparisons between radioactive and non-radioactive gas lantern mantles.

    PubMed

    Furuta, E; Yoshizawa, Y; Aburai, T

    2000-12-01

    Gas lantern mantles containing radioactive thorium have been used for more than 100 years. Although thorium was once believed to be indispensable for giving a bright light, non-radioactive mantles are now available. From the radioactivities of the daughter nuclides, we estimated the levels of radioactivity of 232Th and 228Th in 11 mantles. The mantles contained various levels of radioactivity from background levels to 1410 +/- 140 Bq. Our finding that radioactive and non-radioactive mantles are equally bright suggests that there is no advantage in using radioactive mantles. A remaining problem is that gas lantern mantles are sold without any information about radioactivity.

  6. Carbon storage in the deep reducing mantle

    NASA Astrophysics Data System (ADS)

    Rohrbach, A.; Ghosh, S.; Schmidt, M. W.; Wijbrans, C. H.; Klemme, S.

    2014-12-01

    To understand the storage and cycling of carbon in/through Earth's deep mantle it is vital to examine carbon speciations at relevant pressure, temperature, and oxygen fugacity (fO2). In particular redox conditions of the mantle critically influence the mobility of carbon bearing phases in the silicate matrix; oxidized species are generally more mobile (carbonatites, carbonated silicate melts) or have a larger impact on silicate solidi (carbonated peridotite/eclogite) than reduced species (diamond, carbides, metals). Within garnet bearing mantle lithologies, fO2 can be expected to decrease with depth [1], eventually reaching values similar to the iron-wüstite equilibrium which implies the precipitation of a Fe-Ni metal phase at pressures corresponding to the base of the upper mantle [2]. Because Ni is more noble than Fe, Ni partitions strongly into the reduced phases such that at low metal fractions the metal phase reaches XNi > 0.5. Thermodynamic calculations suggest that the mantle contains ~0.1 wt.% Fe,Ni metal at ~300 km depth [3], increasing to ~1 wt% in the lower mantle [4]. To understand the nature of carbon bearing reduced phases in the Earth mantle, we examine experimentally phase relations and melting behavior in the system Fe-Ni-C at 10 and 23 GPa. Dependent on Fe-Ni ratio and related fO2, C content, P and T we observe a variety of phases, namely (Fe,Ni)3C and (Fe,Ni)7C3 carbides, carbon bearing Fe-Ni metal, diamond and carbon rich metal-melt. In the subsolidus, mantle bulk C contents of 50 to 500 ppm [5] would result in the phase association (Fe,Ni)3C + metal + diamond at 10 GPa. In the uppermost lower mantle, about 1 wt.% metal would dissolve ca. 100 ppm C, any further C would lead to (Fe,Ni)3C carbide saturation. The solidus temperatures of theses phase assemblages however are considerably lower than the geotherm at upper and lower mantle pressures. We therefore suggest that reduced carbon bearing phases in the deep mantle are largely molten [6]. [1

  7. Dust Mantle Near Pavonis Mons

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-356, 10 May 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a thick mantle of dust covering lava flows north of Pavonis Mons so well that the flows are no longer visible. Flows are known to occur here because of the proximity to the volcano, and such flows normally have a very rugged surface. Fine dust, however, has settled out of the atmosphere over time and obscured the flows from view. The cliff at the top of the image faces north (up), the cliff in the middle of the image faces south (down), and the rugged slope at the bottom of the image faces north (up). The dark streak at the center-left was probably caused by an avalanche of dust sometime in the past few decades. The image is located near 4.1oN, 111.3oW. Sunlight illuminates the scene from the right/lower right.

  8. Subducting slabs: Jellyfishes in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, Christelle; Braun, Jean; Husson, Laurent; Le Carlier de Veslud, Christian; Thieulot, Cedric; Yamato, Philippe; Grujic, Djordje

    2010-08-01

    The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.

  9. Subducting Slabs: Jellyfishes in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, C.; Braun, J.; Husson, L.; Le Carlier de Veslud, C.; Thieulot, C.; Yamato, P.; Grujic, D.

    2010-12-01

    The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.

  10. Mid mantle seismic anisotropy around subduction zones

    NASA Astrophysics Data System (ADS)

    Faccenda, M.

    2014-02-01

    There is increasing evidence for mid mantle seismic anisotropy around subduction zones whose interpretation remains elusive. In this study I estimate the strain-induced mid mantle fabric and associated seismic anisotropy developing in 3D petrological-thermo-mechanical subduction models where the slab is either stagnating over the 660 km discontinuity or penetrating into the lower mantle. The modelling of synthetic lattice-preferred-orientation (LPO) development of wadsleyite and perovskite has been calibrated with results from deformational experiments and ab-initio atomic scale models, and the single crystal elastic tensor of the different mineral phases is scaled by local P-T conditions. The lower transition zone (ringwoodite + garnet) is assumed to be isotropic. Mid mantle fabric develops in proximity of the subducting slab where deformation and stresses are high, except at depths where upwelling or downwelling material undergoes phase transformations, yielding to LPO reset. The upper transition zone (wadsleyite + garnet) is characterized by weak transverse isotropy (2-3%) with symmetry axes oriented and fast S wave polarized dip-normal. A slightly stronger transverse isotropy develops in the lower mantle (perovskite + periclase), where the symmetry axes, the polarization of the fast S wave and the maximum Vp and dVs are parallel to the slab dip and subduction direction. For stagnating slab models this translates into negative and positive radial anisotropy in the upper transition zone and lower mantle back-arc, respectively, minimum delay times for vertically travelling shear waves and large shear wave splitting for waves propagating horizontally in the lower mantle. These results may help in reconciling the seismic anisotropy patterns observed in some subduction zones with subduction-induced deformation, such as those measured in the mid mantle between the Australian plate and the New Hebrides-Tonga-Kermadec trenches that I interpret as related to stagnating

  11. Comparative functional anatomy of hindlimb muscles and bones with reference to aquatic adaptation of the sea otter

    PubMed Central

    MORI, Kent; SUZUKI, Satoshi; KOYABU, Daisuke; KIMURA, Junpei; HAN, Sung-Yong; ENDO, Hideki

    2015-01-01

    Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids. PMID:25715875

  12. Comparative functional anatomy of hindlimb muscles and bones with reference to aquatic adaptation of the sea otter.

    PubMed

    Mori, Kent; Suzuki, Satoshi; Koyabu, Daisuke; Kimura, Junpei; Han, Sung-Yong; Endo, Hideki

    2015-05-01

    Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids.

  13. Hoffmann's syndrome with unusually long duration: Report on clinical, laboratory and muscle imaging findings in two cases

    PubMed Central

    Nalini, Atchayaram; Govindaraju, C.; Kalra, Pramila; Kadukar, Prashanth

    2014-01-01

    Two adult men presented with the rare Hoffmann's syndrome (HS). Case 1: A 35-year-old male patient had progressive stiffness of lower limbs of 13 years and generalized muscle hypertrophy and myalgia of 3 years duration. Had periorbital edema, dry skin, generalized muscle hypertrophy and spastic dysarthria with hoarseness. Muscle power was normal. Jaw jerk and deep tendon reflexes were exaggerated. Case 2: A 24-year-old male patient presented with muscle hypertrophy from childhood, slowness in motor activities and hearing impairment. For 6 months, he had severe muscle pains, cramps and further increase in hypertrophy. He had yellow tinged, dry skin, hoarseness of voice, gross muscle hypertrophy and minimal weakness. Both had markedly elevated serum creatine kinase (CK) levels and high thyroid stimulating hormone, low free triiodothyronine and free thyroxine levels. Levothyroxine treatment demonstrated remarkable reduction in muscle bulk at 2 months in both and no symptoms at 6 months. Magnetic resonance imaging of lower limbs in both cases revealed almost identical features with involvement of the muscles of posterior and adductor compartment of thighs and posterior and lateral compartments of the legs. Differential diagnosis of long duration muscle pseudohypertrophy and elevated CK levels should include HS. PMID:25024579

  14. Comparative functional anatomy of hindlimb muscles and bones with reference to aquatic adaptation of the sea otter.

    PubMed

    Mori, Kent; Suzuki, Satoshi; Koyabu, Daisuke; Kimura, Junpei; Han, Sung-Yong; Endo, Hideki

    2015-05-01

    Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids. PMID:25715875

  15. Seismic velocity structure of the lunar mantle

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.

    1983-01-01

    The recently completed set of seismic arrival times from the Apollo lunar seismic network are inverted to estimate the average seismic velocities in three sections of the lunar mantle: two for the upper mantle and one for the middle mantle. The method used is a variation of the linearized least squares inversion where the inversion is accomplished in steps. The estimated average velocities in the upper mantle decrease from Vp = 7.74 km/sec and Vs = 4.49 km/sec in the section above 270-km depth to Vp = 7.46 km/sec and Vs = 4.25 km/sec in the section between 270- and 500-km depth, confirming the earlier finding of negative gradients based on seismic amplitude variations. The average velocities in the middle mantle between the depths of 500 km and 1000 km of Vp = 8.26 km/sec and Vs = 4.65 km/sec are significantly higher than those in the upper mantle, contradicting earlier estimates based on more limited data. The higher velocities may suggest initial melting of the moon down to at least 1000-km depth.

  16. Subduction and volatile recycling in Earth's mantle

    NASA Technical Reports Server (NTRS)

    King, S. D.; Ita, J. J.; Staudigel, H.

    1994-01-01

    The subduction of water and other volatiles into the mantle from oceanic sediments and altered oceanic crust is the major source of volatile recycling in the mantle. Until now, the geotherms that have been used to estimate the amount of volatiles that are recycled at subduction zones have been produced using the hypothesis that the slab is rigid and undergoes no internal deformation. On the other hand, most fluid dynamical mantle flow calculations assume that the slab has no greater strength than the surrounding mantle. Both of these views are inconsistent with laboratory work on the deformation of mantle minerals at high pressures. We consider the effects of the strength of the slab using two-dimensional calculations of a slab-like thermal downwelling with an endothermic phase change. Because the rheology and composition of subducting slabs are uncertain, we consider a range of Clapeyron slopes which bound current laboratory estimates of the spinel to perovskite plus magnesiowustite phase transition and simple temperature-dependent rheologies based on an Arrhenius law diffusion mechanism. In uniform viscosity convection models, subducted material piles up above the phase change until the pile becomes gravitationally unstable and sinks into the lower mantle (the avalanche). Strong slabs moderate the 'catastrophic' effects of the instabilities seen in many constant-viscosity convection calculations; however, even in the strongest slabs we consider, there is some retardation of the slab descent due to the presence of the phase change.

  17. Bortezomib and Rituximab in Treating Patients With Mantle Cell Lymphoma Who Have Previously Undergone Stem Cell Transplantation

    ClinicalTrials.gov

    2016-06-09

    Contiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Recurrent Mantle Cell Lymphoma; Stage I Mantle Cell Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Mantle Cell Lymphoma

  18. A study of optimal handle shape and muscle strength distribution on lower arm when holding a foil.

    PubMed

    Chang, Chih-Lin; Lin, Fang-Tsan; Li, Kai-Way; Jou, Yung-Tsan; Huang, Chuen-Der

    2009-04-01

    The strength of five working muscle groups of the lower arms of 8 male fencers, including adductor pollicis, extensor carpi radialis, flexor carpi radialis, extensor carpi ulnaris, and flexor carpi ulnaris, were examined during competition. Root mean square values of muscular electromyographic signals indicated that the shape of foil handles significantly influenced distribution of working strength of each muscle group. Use of the Pistol-Viscounti type of foil handle showed better distribution of strength among the 5 muscle groups than did other types of foils. Using the Pistol-Viscounti foil handle not only reduced muscular fatigue but also lessened cumulative trauma symptoms while holding a foil for a long duration. PMID:19544957

  19. Biospecific affinity chromatographic purification of octopine dehydrogenase from molluscs.

    PubMed

    Mulcahy, P; Griffin, T; O'Carra, P

    1997-02-01

    The development of a biospecific affinity chromatographic method for the purification of octopine dehydrogenase from molluscs is described. The method utilizes immobilized NAD+ derivatives in conjunction with soluble specific substrates to promote binding. Using this method, octopine dehydrogenase has been purified to electrophoretic homogeneity in a single chromatographic step from three different marine invertebrate sources [the queen scallop, Chlamys opercularis (adductor muscle), the great scallop, Pecten maximus (adductor muscle), and the squid Loligo vulgaris (mantle muscle)]. However, the system is not applicable to the purification of octopine dehydrogenase from some other marine invertebrate sources investigated (the mussel Mytilus edulis and the topshell Monodonta lineata). PMID:9116492

  20. Cranial muscle development in the model organism ambystoma mexicanum: implications for tetrapod and vertebrate comparative and evolutionary morphology and notes on ontogeny and phylogeny.

    PubMed

    Ziermann, Janine M; Diogo, Rui

    2013-07-01

    There is still confusion about the homology of several cranial muscles in salamanders with those of other vertebrates. This is true, in part, because of the fact that many muscles present in early ontogeny of amphibians disappear during development and specifically during metamorphosis. Resolving this confusion is important for the understanding of the comparative and evolutionary morphology of vertebrates and tetrapods because amphibians are the phylogenetically most plesiomorphic tetrapods, concerning for example their myology, and include two often used model organisms, Xenopus laevis (anuran) and Ambystoma mexicanum (urodele). Here we provide the first detailed report of the cranial muscle development in axolotl from early ontogenetic stages to the adult stage. We describe different and complementary types of general muscle morphogenetic gradients in the head: from anterior to posterior, from lateral to medial, and from origin to insertion. Furthermore, even during the development of neotenic salamanders such as axolotls, various larval muscles become indistinct, contradicting the commonly accepted view that during ontogeny the tendency is mostly toward the differentiation of muscles. We provide an updated comparison between these muscles and the muscles of other vertebrates, a discussion of the homologies and evolution, and show that the order in which the muscles appear during axolotl ontogeny is in general similar to their appearance in phylogeny (e.g. differentiation of adductor mandibulae muscles from one anlage to four muscles), with only a few remarkable exceptions, as for example the dilatator laryngis that appears evolutionary later but in the development before the intermandibularis.

  1. Assessment of bioelectrical activity of synergistic muscles during pelvic floor muscles activation in postmenopausal women with and without stress urinary incontinence: a preliminary observational study

    PubMed Central

    Ptaszkowski, Kuba; Paprocka-Borowicz, Małgorzata; Słupska, Lucyna; Bartnicki, Janusz; Dymarek, Robert; Rosińczuk, Joanna; Heimrath, Jerzy; Dembowski, Janusz; Zdrojowy, Romuald

    2015-01-01

    Objective Muscles such as adductor magnus (AM), gluteus maximus (GM), rectus abdominis (RA), and abdominal external and internal oblique muscles are considered to play an important role in the treatment of stress urinary incontinence (SUI), and the relationship between contraction of these muscles and pelvic floor muscles (PFM) has been established in previous studies. Synergistic muscle activation intensifies a woman’s ability to contract the PFM. In some cases, even for continent women, it is not possible to fully contract their PFM without involving the synergistic muscles. The primary aim of this study was to assess the surface electromyographic activity of synergistic muscles to PFM (SPFM) during resting and functional PFM activation in postmenopausal women with and without SUI. Materials and methods This study was a preliminary, prospective, cross-sectional observational study and included volunteers and patients who visited the Department and Clinic of Urology, University Hospital in Wroclaw, Poland. Forty-two patients participated in the study and were screened for eligibility criteria. Thirty participants satisfied the criteria and were categorized into two groups: women with SUI (n=16) and continent women (n=14). The bioelectrical activity of PFM and SPFM (AM, RA, GM) was recorded with a surface electromyographic instrument in a standing position during resting and functional PFM activity. Results Bioelectrical activity of RA was significantly higher in the incontinent group than in the continent group. These results concern the RA activity during resting and functional PFM activity. The results for other muscles showed no significant difference in bioelectrical activity between groups. Conclusion In women with SUI, during the isolated activation of PFM, an increased synergistic activity of RA muscle was observed; however, this activity was not observed in asymptomatic women. This may indicate the important accessory contribution of these muscles in the

  2. Upper mantle discontinuity structure from underside reflections

    NASA Astrophysics Data System (ADS)

    Schmerr, Nicholas C.

    This research investigates Earth structure in the mantle transition zone, a range of depths bounded by two major solid-state phase transformations of the mineral olivine: the conversion of olivine to wadsleyite near 410 km depth, and the dissociation of ringwoodite into Mg-silicate perovskite plus magnesiowuestite near 660 km depth. The phase transformations are dependent upon the thermal and chemical state of the mantle; lateral heterogeneity in mantle temperature and composition will change the transformation depth. The denser, more compact structures of olivine possess higher seismic wave speeds and densities, thus giving rise to seismic discontinuities at the phase transitions. The depth and sharpness of the 410 and 660 km discontinuities are mapped using seismic energy that reflects from the underside of these boundaries to investigate the thermal and chemical state of the mantle. Underside reflections of shear and compressional seismic waves arrive as precursory energy several hundred seconds before the seismic phases SS and PP, which form as underside reflections off the crust. Using broadband datasets of precursors to SS and PP, topographic variation maps of the 410 km and 660 km boundaries are produced for study regions beneath the Pacific Ocean and South American continent. Beneath most of the Pacific, the discontinuities are found close to the global average, suggesting that the mantle in this region is not significantly perturbed in temperature and chemistry. However, within 1000 km of several Pacific hotspots, including Hawaii, there is evidence for hot upwelling material rising through the transition zone that correlates with the edges of extremely hot (i.e., seismically low velocity) regions of the lowermost mantle, supporting whole mantle convection. Beneath the South American continent there is evidence for both thermal and chemical variation near the subducting Nazca plate, consistent with cold, and hydrated materials sinking into the mantle

  3. Comparison of Adductor Canal Block and Femoral Nerve Block for Postoperative Pain in Total Knee Arthroplasty: A Systematic Review and Meta-analysis.

    PubMed

    Dong, Cui-Cui; Dong, Shu-Ling; He, Fu-Cheng

    2016-03-01

    A total knee arthroplasty (TKA) has always been associated with moderate-to-severe pain. A systematic review of randomized controlled trials (RCTs) and non-RCTs was performed to evaluate the efficacy and safety of pain control of adductor canal block (ACB) and femoral nerve block (FNB) after TKA.Relevant literatures about the ACB and FNB after TKA for reducing pain were searched from Medline (1996-January, 2015), Embase (1980-January, 2015), PubMed (1980-January, 2015), Web of Science (1980-January, 2015), and The Cochrane Central Register of Controlled Trials. High-quality RCTs and non-RCTs were picked to evaluate the visual analogue scale (VAS) and other outcome. This systematic review and meta-analysis were performed according to the PRISMA statement criteria. The software RevMan 5.30 was used for the meta-analysis.Eight literatures fitted into the inclusion criteria. There were no significant differences in VAS score with rest or mobilization at 4, 24, and 48 h between ACB group and FNB group. There were also no significant differences in the strength of quadriceps and adductor, the length of hospital stay, and complications of vomiting and nausea.Present meta-analysis indicated that ACB shows no superiority than FNB group. Both of them can reduce the pain score after TKA. As referred to which method to adopt, it is determined by the preference of the surgeons and anesthesiologists. PMID:27015172

  4. Rehabilitation and Return to Sport Following Surgical Repair of the Rectus Abdominis and Adductor Longus in a Professional Basketball Player: A Case Report.

    PubMed

    Short, Steven M; Anloague, Philip A; Strack, Donald S

    2016-08-01

    Study Design Case report. Background Acute traumatic avulsion of the rectus abdominis and adductor longus is rare. Chronic groin injuries, often falling under the athletic pubalgia spectrum, have been reported to be more common. There is limited evidence detailing the comprehensive rehabilitation and return to sport of an athlete following surgical or conservative treatment of avulsion injuries of the pubis or other sports-related groin pathologies. Case Description A 29-year-old National Basketball Association player sustained a contact injury during a professional basketball game. This case report describes a unique clinical situation specific to professional sport, in which a surgical repair of an avulsed rectus abdominis and adductor longus was combined with a multimodal impairment- and outcomes-based rehabilitation program. Outcomes The patient returned to in-season competition at 5 weeks postoperation. Objective measures were tracked throughout rehabilitation and compared to baseline assessments. Measures such as the Copenhagen Hip and Groin Outcome Score and numeric pain-rating scale revealed progress beyond the minimal important difference. Discussion This case report details the clinical reasoning and evidence-informed interventions involved in the return to elite sport. Detailed programming and objective assessment may assist in achieving desired outcomes ahead of previously established timelines. Level of Evidence Therapy, level 4. J Orthop Sports Phys Ther 2016;46(8):697-706. Epub 3 Jul 2016. doi:10.2519/jospt.2016.6352. PMID:27374014

  5. Rehabilitation and Return to Sport Following Surgical Repair of the Rectus Abdominis and Adductor Longus in a Professional Basketball Player: A Case Report.

    PubMed

    Short, Steven M; Anloague, Philip A; Strack, Donald S

    2016-08-01

    Study Design Case report. Background Acute traumatic avulsion of the rectus abdominis and adductor longus is rare. Chronic groin injuries, often falling under the athletic pubalgia spectrum, have been reported to be more common. There is limited evidence detailing the comprehensive rehabilitation and return to sport of an athlete following surgical or conservative treatment of avulsion injuries of the pubis or other sports-related groin pathologies. Case Description A 29-year-old National Basketball Association player sustained a contact injury during a professional basketball game. This case report describes a unique clinical situation specific to professional sport, in which a surgical repair of an avulsed rectus abdominis and adductor longus was combined with a multimodal impairment- and outcomes-based rehabilitation program. Outcomes The patient returned to in-season competition at 5 weeks postoperation. Objective measures were tracked throughout rehabilitation and compared to baseline assessments. Measures such as the Copenhagen Hip and Groin Outcome Score and numeric pain-rating scale revealed progress beyond the minimal important difference. Discussion This case report details the clinical reasoning and evidence-informed interventions involved in the return to elite sport. Detailed programming and objective assessment may assist in achieving desired outcomes ahead of previously established timelines. Level of Evidence Therapy, level 4. J Orthop Sports Phys Ther 2016;46(8):697-706. Epub 3 Jul 2016. doi:10.2519/jospt.2016.6352.

  6. Effect of static stretching of muscles surrounding the knee on knee joint position sense

    PubMed Central

    Ghaffarinejad, Farahnaz; Taghizadeh, Shohreh; Mohammadi, Farshid

    2007-01-01

    Background Muscle stretching is widely used in sport training and in rehabilitation. Considering the important contribution of joint position sense (JPS) to knee joint stability and function, it is legitimate to question if stretching might alter the knee JPS. Objective To evaluate if a stretch regimen consisting of three 30 s stretches alters the knee JPS. Design and setting A blinded, randomised design with a washout time of 24 h was used. Subjects 39 healthy students (21 women, 18 men) volunteered to participate in this study. Methods and main outcome measures JPS was estimated by the ability to reproduce the two target positions (20° and 45° of flexion) in the dominant knee. The absolute angular error (AAE) was defined as the absolute difference between the target angle and the subject perceived angle of knee flexion. AAE values were measured before and immediately after the static stretch. Measurements were repeated three times. The static stretch comprised a 30 s stretch followed by a 30 s pause, three times for each muscle. Results The AAE decreased significantly after the stretching protocols for quadriceps (3.5 (1.3) vs 0.7 (2.4); p<0.001), hamstring (3.6 (2.2) vs 1.6 (3.1); p = 0.016) and adductors (3.7 (2.8) vs 1.7 (2.4); p = 0.016) in 45° of flexion, but no differences were found for values of the gastrocnemius and popliteus muscles in this angle and for the values of all muscles in 20° of flexion (p>0.05). Conclusion The accuracy of the knee JPS in 45° of flexion is improved subsequent to a static stretch regimen of quadriceps, hamstring and adductors in healthy subjects. PMID:17510229

  7. Slab mantle dehydrates beneath Kamchatka—Yet recycles water into the deep mantle

    NASA Astrophysics Data System (ADS)

    Konrad-Schmolke, Matthias; Halama, Ralf; Manea, Vlad C.

    2016-08-01

    The subduction of hydrated slab mantle is the most important and yet weakly constrained factor in the quantification of the Earth's deep geologic water cycle. The most critical unknowns are the initial hydration state and the dehydration behavior of the subducted oceanic mantle. Here we present a combined thermomechanical, thermodynamic, and geochemical model of the Kamchatka subduction zone that indicates significant dehydration of subducted slab mantle beneath Kamchatka. Evidence for the subduction of hydrated oceanic mantle comes from across-arc trends of boron concentrations and isotopic compositions in arc volcanic rocks. Our thermodynamic-geochemical models successfully predict the complex geochemical patterns and the spatial distribution of arc volcanoes in Kamchatka assuming the subduction of hydrated oceanic mantle. Our results show that water content and dehydration behavior of the slab mantle beneath Kamchatka can be directly linked to compositional features in arc volcanic rocks. Depending on hydration depth of the slab mantle, our models yield water recycling rates between 1.1 × 103 and 7.4 × 103 Tg/Ma/km corresponding to values between 0.75 × 106 and 5.2 × 106 Tg/Ma for the entire Kamchatkan subduction zone. These values are up to one order of magnitude lower than previous estimates for Kamchatka, but clearly show that subducted hydrated slab mantle significantly contributes to the water budget in the Kamchatkan subduction zone.

  8. Force enhancement during and following muscle stretch of maximal voluntarily activated human quadriceps femoris.

    PubMed

    Hahn, Daniel; Seiberl, Wolfgang; Schwirtz, Ansgar

    2007-08-01

    Force enhancement during and following muscle stretch has been observed for electrically and voluntarily activated human muscle. However, especially for voluntary contractions, the latter observation has only been made for adductor pollicis and the ankle joint muscles, but not for large muscles like quadriceps femoris. Therefore, the aim of this study was to investigate the effects of active muscle stretch on force production for maximal voluntary contractions of in vivo human quadriceps femoris (n = 15). Peak torques during and torques at the end of stretch, torques following stretch, and passive torques following muscle deactivation were compared to the isometric torques at corresponding muscle length. In addition, muscle activation of rectus femoris, vastus medialis and vastus lateralis was obtained using surface EMG. Stretches with different amplitudes (15, 25 and 35 degrees at a velocity of 60 degrees s(-1)) were performed on the plateau region and the descending limb of the force-length relation in a random order. Data analysis showed four main results: (1) peak torques did not occur at the end of the stretch, but torques at the end of the stretch exceeded the corresponding isometric torque; (2) there was no significant force enhancement following muscle stretch, but a small significant passive force enhancement persisted for all stretch conditions; (3) forces during and following stretch were independent of stretch amplitude; (4) muscle activation during and following muscle stretch was significantly reduced. In conclusion, although our results showed passive force enhancement, we could not provide direct evidence that there is active force enhancement in voluntarily activated human quadriceps femoris.

  9. Deep Mantle Fluids Bottled Up in Diamonds

    NASA Astrophysics Data System (ADS)

    Weiss, Y.; Pearson, D. G.

    2015-12-01

    Many mantle xenoliths and mineral inclusions in diamonds reflect refertilisation and enrichment by mantle metasomatism, a key mechanism for controlling abrupt changes in the chemical and physical properties of the continental lithospheric mantle (CLM) globally. However, the nature of the fluids involved can normally only be constrained indirectly from geochemical proxies or calculated using mineral/melt partition coefficients. Direct samples of mantle metasomatic fluids, shielded from any late stage alteration, are encased as microinclusions in fast-growing diamonds - "fibrous diamonds". These trapped high-density fluids (HDFs) provide a unique chemical and physical record for tracing the sources of deep mantle fluids and constraining the processes that shape their nature.Diamond HDFs vary between four major compositional types: saline, silicic and high-Mg plus low-Mg carbonatitic. A strong connection has been established between high-Mg carbonatitic HDFs and a carbonated peridotite source. In addition, the silicic and low-Mg carbonatitic HDFs have been related to hydrous eclogite (±carbonate). However, the compositionally extreme saline fluid endmember remained enigmatic and its source in the deep lithosphere has remained ambiguous. Our new data on fluid-rich diamonds show the geochemical fingerprints of a subducting slab as the source of deep mantle fluids of saline composition. In addition, for the first time, we show that these deep saline fluids are parental, via fluid rock interaction, to in-situ forming carbonatitic and silicic melts in the lithosphere. This model provides a strong platform for resolving the effects of the compositional spectrum of mantle fluids, which alter the deep lithosphere globally and play key roles in diamond formation.

  10. Fibrosis, adipogenesis, and muscle atrophy in congenital muscular torticollis.

    PubMed

    Chen, Huan-Xiong; Tang, Sheng-Ping; Gao, Fu-Tang; Xu, Jiang-Long; Jiang, Xian-Ping; Cao, Juan; Fu, Gui-Bing; Sun, Ke; Liu, Shi-Zhe; Shi, Wei

    2014-11-01

    In the traditional view, muscle atrophy and interstitial fibrosis were regarded as the basic pathological features of congenital muscular torticollis (CMT). But in the ultrastructure study, the mesenchyme-like cells, myoblasts, myofibroblasts, and fibroblasts were found in the proliferation of interstitium of CMT. To investigate the characteristics of pathological features and the mechanisms of muscle atrophy in CMT, we retrospectively reviewed the medical records of 185 CMT patients from July 2009 to July 2011 in Shenzhen Children's Hospital in China and performed pathological studies. According to age, the 185 CMT patients were divided into 4 groups. All resected surgical specimens were processed for hematoxylin and eosin staining and Masson trichromic staining. Sudan III staining was used for frozen sections, whereas immunohistochemical staining for S-100, calpain-1, ubiquitin, and 20S proteasome was carried out on 40 CMT specimens. Eight adductor muscle specimens from 8 patients with development dysplasia of the hip were taken as control group in the immunohistochemical staining. By Masson trichromic staining, the differences in the percent area of fibrous tissue in each CMT groups were significant. In Sudan III staining and immunostaining for S-100, adipocyte hyperplasia was the pathological feature of CMT. Moreover, compared with controls, most atrophic muscle fibers in CMT specimens were found to show strong immunoreactivity for calpain-1, ubiquitin, and 20S proteasome. With increasing age, fibrosis peaked at both sides and it was low in middle age group. Adipocytes increased with age. The characteristics of pathological features in CMT are changeable with age. The calpain and the ubiquitin-proteasome system may play a role in muscle atrophy of CMT. In the CMT, adipogenesis, fibrogenesis, and myogenesis may be the results of mesenchyme-like cells in SCM (sternocleidomastoid muscle). In conclusion, the present study furthermore supports maldevelopment of the

  11. Fibrosis, Adipogenesis, and Muscle Atrophy in Congenital Muscular Torticollis

    PubMed Central

    Chen, Huan-xiong; Tang, Sheng-ping; Gao, Fu-tang; Xu, Jiang-Long; Jiang, Xian-ping; Cao, Juan; Fu, Gui-bing; Sun, Ke; Liu, Shi-zhe; Shi, Wei

    2014-01-01

    Abstract In the traditional view, muscle atrophy and interstitial fibrosis were regarded as the basic pathological features of congenital muscular torticollis (CMT). But in the ultrastructure study, the mesenchyme-like cells, myoblasts, myofibroblasts, and fibroblasts were found in the proliferation of interstitium of CMT. To investigate the characteristics of pathological features and the mechanisms of muscle atrophy in CMT, we retrospectively reviewed the medical records of 185 CMT patients from July 2009 to July 2011 in Shenzhen Children's Hospital in China and performed pathological studies. According to age, the 185 CMT patients were divided into 4 groups. All resected surgical specimens were processed for hematoxylin and eosin staining and Masson trichromic staining. Sudan III staining was used for frozen sections, whereas immunohistochemical staining for S-100, calpain-1, ubiquitin, and 20S proteasome was carried out on 40 CMT specimens. Eight adductor muscle specimens from 8 patients with development dysplasia of the hip were taken as control group in the immunohistochemical staining. By Masson trichromic staining, the differences in the percent area of fibrous tissue in each CMT groups were significant. In Sudan III staining and immunostaining for S-100, adipocyte hyperplasia was the pathological feature of CMT. Moreover, compared with controls, most atrophic muscle fibers in CMT specimens were found to show strong immunoreactivity for calpain-1, ubiquitin, and 20S proteasome. With increasing age, fibrosis peaked at both sides and it was low in middle age group. Adipocytes increased with age. The characteristics of pathological features in CMT are changeable with age. The calpain and the ubiquitin–proteasome system may play a role in muscle atrophy of CMT. In the CMT, adipogenesis, fibrogenesis, and myogenesis may be the results of mesenchyme-like cells in SCM (sternocleidomastoid muscle). In conclusion, the present study furthermore supports

  12. Testing thermochemical mantle circulation with Mantle Transition Zone velocities and topography

    NASA Astrophysics Data System (ADS)

    Houser, C. T.; Hernlund, J. W.

    2014-12-01

    Recent developments in our understanding of lower mantle mineralogy motivate an updated view of mantle circulation that may explain the absence of a correlation between topography on the 410 km and 660 km discontinuities. A common feature in both P and S wave tomography models is the lack of a definitive slab seismic signal in the lower mantle from 1500-2500 km depth, even though this depth range is well constrained by the data. Ab initio calculations of Wu and Wentzcovitch (PNAS, 2014) predict that (Mg,Fe)O will be seismically insensitive to temperature below 1500 km due to weakening of the bulk modulus during the high-spin to low-spin transition in iron. Yamazaki and Karato (AM, 2001) demonstrated that (Mg,Fe)O has a much lower viscosity than perovskite and could support strain weakening which would facilitate transport of slabs through the lower mantle. Since subducting oceanic lithosphere is dominantly harzburgite, it has a higher (Mg,Fe)O component than a pyrolitic or perovskitic lower mantle. When the mantle began solidification after the last giant impacts, the first solids to crystalize at depth were pure perovskite (the liquidus phase above ~35 GPa). When subduction initiated, the first slabs needed to work through this highly viscous, perovskitic lower mantle and form channels to the core mantle boundary. Tomography models show a column of seemingly warm, low P and S velocity material rising from the top of Large Low Shear Velocity Provinces and collecting in the upper 1000 km of the mantle. The dominant signature of the lower mantle is that it is seismically boring with little discernible tectonic structure. We conclude that the majority of the lower mantle is the sluggishly mixed remnant of its initial perovskitic crystallization. Although less viscous, the (Mg,Fe)O rich slabs have carved channels into the lowermost mantle and comprise the dominant material in the return flow to the upper mantle. This model implies slabs stagnate in the MTZ due to

  13. Seismic Anisotropy in the Deep Mantle, Boundary Layers and the Geometry of Mantle Convection

    NASA Astrophysics Data System (ADS)

    Karato, S.

    An attempt is made to explore the geodynamical significance of seismic anisotropy in the deep mantle on the basis of mineral physics. The mineral physics observations used include the effects of deformation mechanisms on lattice and shape preferred orientation, the effects of pressure on elastic anisotropy and the nature of lattice preferred orientation in deep mantle minerals in dislocation creep regime. Many of these issues are still poorly constrained, but a review of recent results shows that it is possible to interpret deep mantle seismic anisotropy in a unified fashion, based on the solid state processes without invoking partial melting. The key notions are (i) the likely regional variation in the magnitude of anisotropy as deformation mechanisms change from dislocation to diffusion creep (or superplasticity), associated with a change in the stress level and/or grain-size in the convecting mantle with a high Rayleigh number, and (ii) the change in elastic anisotropy with pressure in major mantle minerals, particularly in (Mg, Fe)O. The results provide the following constraints on the style of mantle convection (i) the SH > SV anisotropy in the bottom transition zone and the SV > SH anisotropy in the top lower mantle can be attributed to anisotropy structures (lattice preferred orientation and/or laminated structures) caused by the horizontal flow in this depth range, suggesting the presence of a mid-mantle boundary layer due to (partially) layered convection, (ii) the observed no significant seismic anisotropy in the deep mantle near subduction zones implies that deformation associated with subducting slabs is due mostly to diffusion creep (or superplasticity) and therefore slabs are weak in the deep mantle and hence easily deformed when encountered with resistance forces, and (iii) the SH > SV anisotropy in the cold thick portions of the D" layer is likely to be due to horizontally aligned shape preferred orientation in perovskite plus magnesiow

  14. Melting and Crystallization at Core Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Fiquet, G.; Pradhan, G. K.; Siebert, J.; Auzende, A. L.; Morard, G.; Antonangeli, D.; Garbarino, G.

    2015-12-01

    Early crystallization of magma oceans may generate original compositional heterogeneities in the mantle. Dense basal melts may also be trapped in the lowermost mantle and explain mantle regions with ultralow seismic velocities (ULVZs) near the core-mantle boundary [1]. To test this hypothesis, we first constructed the solidus curve of a natural peridotite between 36 and 140 gigapascals using laser-heated diamond anvil cells. In our experiments, melting at core-mantle boundary pressures occurs around 4100 ± 150 K, which is a value that can match estimated mantle geotherms. Similar results were found for a chondritic mantle [2] whereas much lower pyrolitic melting temperatures were recently proposed from textural and chemical characterizations of quenched samples [3]. We also investigated the melting properties of natural mid ocean ridge basalt (MORB) up to core-mantle boundary (CMB) pressures. At CMB pressure (135 GPa), we obtain a MORB solidus temperature of 3950 ±150 K. If our solidus temperatures are in good agreement with recent results proposed for a similar composition [4], the textural and chemical characterizations of our recovered samples made by analytical transmission electron microscope indicate that CaSiO3 perovskite (CaPv) is the liquidus phase in the entire pressure range up to CMB. The partial melt composition is enriched in FeO, which suggests that such partial melts could be gravitationnally stable at the core mantle boundary. Our observations are tested against calculations made using a self-consistent thermodynamic database for the MgO-FeO-SiO2 system from 20 GPa to 140 GPa [5]. These observations and calculations provide a first step towards a consistent thermodynamic modelling of the crystallization sequence of the magma ocean, which shows that the existence of a dense iron rich and fusible layer above the CMB at the end of the crystallization is plausible [5], which is in contradiction with the conclusions drawn in [4]. [1] Williams

  15. Contributions of muscles to mediolateral ground reaction force over a range of walking speeds.

    PubMed

    John, Chand T; Seth, Ajay; Schwartz, Michael H; Delp, Scott L

    2012-09-21

    Impaired control of mediolateral body motion during walking is an important health concern. Developing treatments to improve mediolateral control is challenging, partly because the mechanisms by which muscles modulate mediolateral ground reaction force (and thereby modulate mediolateral acceleration of the body mass center) during unimpaired walking are poorly understood. To investigate this, we examined mediolateral ground reaction forces in eight unimpaired subjects walking at four speeds and determined the contributions of muscles, gravity, and velocity-related forces to the mediolateral ground reaction force by analyzing muscle-driven simulations of these subjects. During early stance (0-6% gait cycle), peak ground reaction force on the leading foot was directed laterally and increased significantly (p<0.05) with walking speed. During early single support (14-30% gait cycle), peak ground reaction force on the stance foot was directed medially and increased significantly (p<0.01) with speed. Muscles accounted for more than 92% of the mediolateral ground reaction force over all walking speeds, whereas gravity and velocity-related forces made relatively small contributions. Muscles coordinate mediolateral acceleration via an interplay between the medial ground reaction force contributed by the abductors and the lateral ground reaction forces contributed by the knee extensors, plantarflexors, and adductors. Our findings show how muscles that contribute to forward progression and body-weight support also modulate mediolateral acceleration of the body mass center while weight is transferred from one leg to another during double support.

  16. Proteomic Changes in Rat Thyroarytenoid Muscle Induced by Botulinum Neurotoxin Injection

    PubMed Central

    Welham, Nathan V.; Marriott, Gerard; Tateya, Ichiro; Bless, Diane M.

    2009-01-01

    Botulinum neurotoxin (BoNT) injection into the thyroarytenoid (TA) muscle is a commonly performed medical intervention for adductor spasmodic dysphonia. The mechanism of action of BoNT at the neuromuscular junction is well understood, however, aside from reports focused on myosin heavy chain isoform abundance, there is a paucity of data addressing the effects of therapeutic BoNT injection on the TA muscle proteome. In this study, 12 adult Sprague Dawley rats underwent unilateral TA muscle BoNT serotype A injection followed by tissue harvest at 72 hrs, 7 days, 14 days, and 56 days post-injection. Three additional rats were reserved as controls. Proteomic analysis was performed using 2D SDS-PAGE followed by MALDI-MS. Vocal fold movement was significantly reduced by 72 hrs, with complete return of function by 56 days. Twenty-five protein spots demonstrated significant protein abundance changes following BoNT injection, and were associated with alterations in energy metabolism, muscle contractile function, cellular stress response, transcription, translation, and cell proliferation. A number of protein abundance changes persisted beyond the return of gross physiologic TA function. These findings represent the first report of BoNT induced changes in any skeletal muscle proteome, and reinforce the utility of applying proteomic tools to the study of system-wide biological processes in normal and perturbed TA muscle function. PMID:18442174

  17. Driving forces: Slab subduction and mantle convection

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.

    1988-01-01

    Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.

  18. Archean crust-mantle geochemical differentiation

    NASA Technical Reports Server (NTRS)

    Tilton, G. R.

    1983-01-01

    Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.

  19. Ferrous iron partitioning in the lower mantle

    NASA Astrophysics Data System (ADS)

    Muir, Joshua M. R.; Brodholt, John P.

    2016-08-01

    We used density functional theory (DFT) to examine the partitioning of ferrous iron between periclase and bridgmanite under lower mantle conditions. To study the effects of the three major variables - pressure, temperature and concentration - these have been varied from 0 to 150 GPa, from 1000 to 4000 K and from 0 to 100% total iron content. We find that increasing temperature increases KD, increasing iron concentration decreases KD, while pressure can both increase and decrease KD. We find that KD decreases slowly from about 0.32 to 0.06 with depth under lower mantle conditions. We also find that KD increases sharply to 0.15 in the very lowermost mantle due to the strong temperature increases near the CMB. Spin transitions have a large effect on the activity of ferropericlase which causes KD to vary with pressure in a peak-like fashion. Despite the apparently large changes in KD through the mantle, this actually results in relatively small changes in total iron content in the two phases, with XFefp ranging from about 0.20 to 0.35, before decreasing again to about 0.28 at the CMB, and XFebd has a pretty constant value of about 0.04-0.07 throughout the lower mantle. For the very high Fe concentrations suggested for ULVZs, Fe partitions very strongly into ferropericlase.

  20. Mantle plumes on Venus revisited

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.

    1992-01-01

    The Equatorial Highlands of Venus consist of a series of quasicircular regions of high topography, rising up to about 5 km above the mean planetary radius. These highlands are strongly correlated with positive geoid anomalies, with a peak amplitude of 120 m at Atla Regio. Shield volcanism is observed at Beta, Eistla, Bell, and Atla Regiones and in the Hathor Mons-Innini Mons-Ushas Mons region of the southern hemisphere. Volcanos have also been mapped in Phoebe Regio and flood volcanism is observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in many of these regions. It is now widely accepted that at least Beta, Atla, Eistla, and Bell Regiones are the surface expressions of hot, rising mantel plumes. Upwelling plumes are consistent with both the volcanism and the extensional tectonism observed in these regions. The geoid anomalies and topography of these four regions show considerable variation. Peak geoid anomalies exceed 90 m at Beta and Atla, but are only 40 m at Eistla and 24 m at Bell. Similarly, the peak topography is greater at Beta and Atla than at Eistla and Bell. Such a range of values is not surprising because terrestrial hotspot swells also have a side range of geoid anomalies and topographic uplifts. Kiefer and Hager used cylindrical axisymmetric, steady-state convection calculations to show that mantle plumes can quantitatively account for both the amplitude and the shape of the long-wavelength geoid and topography at Beta and Atla. In these models, most of the topography of these highlands is due to uplift by the vertical normal stress associated with the rising plume. Additional topography may also be present due to crustal thickening by volcanism and crustal thinning by rifting. Smrekar and Phillips have also considered the geoid and topography of plumes on Venus, but they restricted themselves to considering only the geoid-topography ratio and did not

  1. The effects of mantle compressibility on mantle dynamics, magmatism and degassing for super-Earths

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhong, S.

    2010-12-01

    The discovery of extra-solar planets, especially massive terrestrial super-Earths, prompts studies of surface and internal characteristics of super-Earths that may help characterize super-Earths and understand their surface environments and habitability. An important question is related to the formation and evolution of super-Earth’s atmosphere for which mantle degassing resulting from magmatism has important controls. Similar to terrestrial planets in our Solar system, volcanism and magmatism for super-Earths, as a form of heat release from planetary interiors, are likely controlled by the dynamics of mantle convection, and more specifically plate tectonic process and mantle upwelling plumes. However, compared with that for terrestrial planets in our Solar system, the dynamics of mantle convection for super-Earths due to their larger size and mass should be more dissipative and display larger compressibility effects. Using a radius scaling with mass for super-Earths by Valencia et al. [2007], it can be inferred that the mantle dissipation number Di for super-Earths with ~10 Earth’s mass may be 4 times larger than that for the Earth. This may lead to rapid cooling of mantle upwellings and warming of mantle downwellings for super-Earths, thus diminishing mantle buoyancy driving mantle convection. With the large dissipation number, we found that the excess temperature of mantle upwelling plumes may decrease by one order of magnitude as they ascend through the mantle, thus greatly reducing plume-related magmatism and degassing. Another important control on Super-Earth’s magmatism and degassing comes from their increased surface gravitational acceleration that for super-Earths with ~10 Earth’s mass may be three times larger than that at the Earth’s surface. This limits the melting to relatively shallow depths and within small depth ranges, thus posing additional difficulties for plume-related magmatism and degassing. This implies that degassing for super

  2. The pectoral fin muscles of the coelacanth Latimeria chalumnae: Functional and evolutionary implications for the fin-to-limb transition and subsequent evolution of tetrapods.

    PubMed

    Miyake, Tsutomu; Kumamoto, Minayori; Iwata, Masamitsu; Sato, Ryuichi; Okabe, Masataka; Koie, Hiroshi; Kumai, Nori; Fujii, Kenichi; Matsuzaki, Koji; Nakamura, Chiho; Yamauchi, Shinya; Yoshida, Kosuke; Yoshimura, Kohtaroh; Komoda, Akira; Uyeno, Teruya; Abe, Yoshitaka

    2016-09-01

    To investigate the morphology and evolutionary origin of muscles in vertebrate limbs, we conducted anatomical dissections, computed tomography and kinematic analyses on the pectoral fin of the African coelacanth, Latimeria chalumnae. We discovered nine antagonistic pairs of pronators and supinators that are anatomically and functionally distinct from the abductor and adductor superficiales and profundi. In particular, the first pronator and supinator pair represents mono- and biarticular muscles; a portion of the muscle fibers is attached to ridges on the humerus and is separated into two monoarticular muscles, whereas, as a biarticular muscle, the main body is inserted into the radius by crossing two joints from the shoulder girdle. This pair, consisting of a pronator and supinator, constitutes a muscle arrangement equivalent to two human antagonistic pairs of monoarticular muscles and one antagonistic pair of biarticular muscles in the stylopod between the shoulder and elbow joints. Our recent kinesiological and biomechanical engineering studies on human limbs have demonstrated that two antagonistic pairs of monoarticular muscles and one antagonistic pair of biarticular muscles in the stylopod (1) coordinately control output force and force direction at the wrist and ankle and (2) achieve a contact task to carry out weight-bearing motion and maintain stable posture. Therefore, along with dissections of the pectoral fins in two lungfish species, Neoceratodus forsteri and Protopterus aethiopicus, we discuss the functional and evolutionary implications for the fin-to-limb transition and subsequent evolution of tetrapods. Anat Rec, 299:1203-1223, 2016. © 2016 Wiley Periodicals, Inc.

  3. The pectoral fin muscles of the coelacanth Latimeria chalumnae: Functional and evolutionary implications for the fin-to-limb transition and subsequent evolution of tetrapods.

    PubMed

    Miyake, Tsutomu; Kumamoto, Minayori; Iwata, Masamitsu; Sato, Ryuichi; Okabe, Masataka; Koie, Hiroshi; Kumai, Nori; Fujii, Kenichi; Matsuzaki, Koji; Nakamura, Chiho; Yamauchi, Shinya; Yoshida, Kosuke; Yoshimura, Kohtaroh; Komoda, Akira; Uyeno, Teruya; Abe, Yoshitaka

    2016-09-01

    To investigate the morphology and evolutionary origin of muscles in vertebrate limbs, we conducted anatomical dissections, computed tomography and kinematic analyses on the pectoral fin of the African coelacanth, Latimeria chalumnae. We discovered nine antagonistic pairs of pronators and supinators that are anatomically and functionally distinct from the abductor and adductor superficiales and profundi. In particular, the first pronator and supinator pair represents mono- and biarticular muscles; a portion of the muscle fibers is attached to ridges on the humerus and is separated into two monoarticular muscles, whereas, as a biarticular muscle, the main body is inserted into the radius by crossing two joints from the shoulder girdle. This pair, consisting of a pronator and supinator, constitutes a muscle arrangement equivalent to two human antagonistic pairs of monoarticular muscles and one antagonistic pair of biarticular muscles in the stylopod between the shoulder and elbow joints. Our recent kinesiological and biomechanical engineering studies on human limbs have demonstrated that two antagonistic pairs of monoarticular muscles and one antagonistic pair of biarticular muscles in the stylopod (1) coordinately control output force and force direction at the wrist and ankle and (2) achieve a contact task to carry out weight-bearing motion and maintain stable posture. Therefore, along with dissections of the pectoral fins in two lungfish species, Neoceratodus forsteri and Protopterus aethiopicus, we discuss the functional and evolutionary implications for the fin-to-limb transition and subsequent evolution of tetrapods. Anat Rec, 299:1203-1223, 2016. © 2016 Wiley Periodicals, Inc. PMID:27343022

  4. Temperature distribution in the crust and mantle

    NASA Technical Reports Server (NTRS)

    Jeanloz, R.; Morris, S.

    1986-01-01

    In an attempt to understand the temperature distribution in the earth, experimental constraints on the geotherm in the crust and mantle are considered. The basic form of the geotherm is interpreted on the basis of two dominant mechanisms by which heat is transported in the earth: (1) conduction through the rock, and (2) advection by thermal flow. Data reveal that: (1) the temperature distributions through continental lithosphere and through oceanic lithosphere more than 60 million years old are practically indistinguishable, (2) crustal uplift is instrumental in modifying continental geotherms, and (3) the average temperature through the Archean crust and mantle was similar to that at present. It is noted that current limitations in understanding the constitution of the lower mantle can lead to significant uncertainties in the thermal response time of the planetary interior.

  5. Apollinaris Patera: An Early Martian Mantle Plume?

    NASA Astrophysics Data System (ADS)

    Kiefer, W. S.

    2015-12-01

    Apollinaris Patera is one of the largest volcanos on Mars outside of the Tharsis volcanic province (summit relief 5.4 km, volume 7.3x1013 m3). The mapped crater densities on Apollinaris indicate that volcanic activity ended 3.5 to 3.8 billion years ago. Apollinaris is located on the northern (lowland) side of the martian hemispheric dichotomy. Because it is an isolated, relatively point-like source of volcanism, it is plausibly interpreted as an early example of a martian mantle plume. Plume structure and conditions in the mantle can be constrained using finite element mantle convection simulations combined with a variety of petrological, geophysical, and geologic observations. (1) Basalts studied by the MER Spirit rover in nearby Gusev crater are similar in age and possibly physically connected to Apollinaris Patera. Petrologic modeling of the Gusev crater basalt compositions indicates that the thermal lithosphere was about 100 km thick with a mantle potential temperature of 1480-1530 °C. This requires a mantle thermal Rayleigh number of about 2x108 at the time of volcanism, based on the volume-averaged mantle viscosity. (2) Pyroclastic deposits at Apollinaris indicate that at least a portion of the volcanism occurred in the presence of a high concentration of water or other volatiles. This lowers the solidus temperature and increases the magma production rate but has only a limited effect on the minimum depth of melting. (3) There is a localized magnetic anomaly beneath Apollinaris that indicates that the martian core dynamo persisted until at least the earliest stage of Apollinaris volcanism, which in turn sets a lower bound on the core heat flux of 5-10 mW m-2. Preservation of the magnetic field may be the result of formation of magnetic minerals such as magnetite due to volcanically-driven hydrothermal alteration of crustal rocks beneath Apollinaris.

  6. Constraining the source of mantle plumes

    NASA Astrophysics Data System (ADS)

    Cagney, N.; Crameri, F.; Newsome, W. H.; Lithgow-Bertelloni, C.; Cotel, A.; Hart, S. R.; Whitehead, J. A.

    2016-02-01

    In order to link the geochemical signature of hot spot basalts to Earth's deep interior, it is first necessary to understand how plumes sample different regions of the mantle. Here, we investigate the relative amounts of deep and shallow mantle material that are entrained by an ascending plume and constrain its source region. The plumes are generated in a viscous syrup using an isolated heater for a range of Rayleigh numbers. The velocity fields are measured using stereoscopic Particle-Image Velocimetry, and the concept of the 'vortex ring bubble' is used to provide an objective definition of the plume geometry. Using this plume geometry, the plume composition can be analysed in terms of the proportion of material that has been entrained from different depths. We show that the plume composition can be well described using a simple empirical relationship, which depends only on a single parameter, the sampling coefficient, sc. High-sc plumes are composed of material which originated from very deep in the fluid domain, while low-sc plumes contain material entrained from a range of depths. The analysis is also used to show that the geometry of the plume can be described using a similarity solution, in agreement with previous studies. Finally, numerical simulations are used to vary both the Rayleigh number and viscosity contrast independently. The simulations allow us to predict the value of the sampling coefficient for mantle plumes; we find that as a plume reaches the lithosphere, 90% of its composition has been derived from the lowermost 260-750 km in the mantle, and negligible amounts are derived from the shallow half of the lower mantle. This result implies that isotope geochemistry cannot provide direct information about this unsampled region, and that the various known geochemical reservoirs must lie in the deepest few hundred kilometres of the mantle.

  7. Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen

    NASA Astrophysics Data System (ADS)

    Gu, Tingting; Li, Mingming; McCammon, Catherine; Lee, Kanani K. M.

    2016-09-01

    The mantle comprises nearly three-quarters of Earth's volume and through convection connects the deep interior with the lithosphere and atmosphere. The composition of the mantle determines volcanic emissions, which are intimately linked to evolution of the primitive atmosphere. Fundamental questions remain on how and when the proto-Earth mantle became oxidized, and whether redox state is homogeneous or developed large-scale structures. Here we present experiments in which we subjected two synthetic samples of nearly identical composition that are representative of the lower mantle (enstatite chondrite), but synthesized under different oxygen fugacities, to pressures and temperatures up to 90 GPa and 2,400 K. In addition to the mineral bridgmanite, compression of the more reduced material also produced Al2O3 as a separate phase, and the resulting assemblage is about 1 to 1.5% denser than in experiments with the more oxidized material. Our geodynamic simulations suggest that such a density difference can cause a rapid ascent and accumulation of oxidized material in the upper mantle, with descent of the denser reduced material to the core-mantle boundary. We suggest that the resulting heterogeneous redox conditions in Earth's interior can contribute to the large low-shear velocity provinces in the lower mantle and the evolution of atmospheric oxygen.

  8. Volatiles, rheology, and mantle convection: Comparing Earth, Venus, and Mars

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.

    1994-01-01

    Silicate rheology is controlled in part by volatile content. The variation of viscosity with position in the mantle will influence the nature of mantle convection; hence, modeling mantle convection and its effect on surface observables such as the geoid places constraints on the viscosity structure of a planet's mantle and may indirectly constrain the volatile distribution. Models of viscous mantle flow and the Earth's geoid indicate that there is roughly a two order of magnitude variation in viscosity between the upper and lower mantles, although there is some disagreement over the depth of the viscosity minimum in the upper mantle. Some studies of post-glacial rebound also support such a viscosity contrast between the upper and lower mantles. On Venus, several highland regions appear to be supported by mantle plumes. Modeling of the geoid and topography of these regions indicates that if these features are plume-related, then the mantle of Venus can not have an Earth-like low viscosity zone in its upper mantle. On Mars, the Tharsis volcanic province has alternatively been explained as supported either by mantle convection or by flexure of a thick lithosphere. If the convective model is correct, then the large geoid anomaly requires that Mars can not have a low viscosity zone in its upper mantle.

  9. Variability of Water in the Convecting Mantle

    NASA Astrophysics Data System (ADS)

    Hauri, E. H.; Saal, A. E.

    2014-12-01

    Estimation of the abundance of water in mantle sources first requires careful consideration of the shallow-level effects of degassing and contamination by seawater-derived components. Use of submarine glasses erupted at >500m water depth, and critically-evaluated use of melt inclusion volatile contents, can be used to identify and eliminate degassing as an important mitigating factor; widespread evidence for seawater-derived components are evident in halogen contents, but these effects do not typically correlate with water though there may be subtle effects in long-lived magmatic systems at mid-ocean ridges. H2O/Ce ratios show large differences between mid-ocean ridges, hotspots, back-arc basins and arc-front volcanoes that testify to the large input of water at subduction zones; however, at arcs most of the Ce (like most of the water) is derived from the subducting slab, and at hotspots isotopic tracers of recycled components indicate the presence of materials that can, in sufficient quantity, dominate the Ce budget of mantle plumes. Thus H2O/Ce ratios, while useful, are problematic when the goal is to determine the absolute abundances of water in mantle sources because the abundance of Ce cannot normally be assumed with confidence, except perhaps at mid-ocean ridges. A more complete understanding of the abundance of water in mantle sources can be obtained when data for radiogenic isotopes are used as tracers of mantle composition, and when major and trace element data illuminate the process of mantle melting. In areas far from hotspots, normal mid-ocean ridges reveal a remarkably narrow range of H2O/Ce ratios yet display large-scale regional differences between ocean basins [1]. Isotopically enriched signatures at hotspots suggest low absolute H2O abundances [2], yet there is so much water delivered to the sources of arc volcanoes that even >95% dehydration of slabs results in delivery of water to the deep mantle in excess of that observed in MORB sources. The

  10. Shear wave velocities in the earth's mantle.

    NASA Technical Reports Server (NTRS)

    Robinson, R.; Kovach, R. L.

    1972-01-01

    Direct measurement of the travel time gradient for S waves together with travel time data are used to derive a shear velocity model for the earth's mantle. In order to satisfy the data it is necessary to discard the usual assumption of lateral homogeneity below shallow depths. A shear velocity differential is proposed for a region between western North America and areas of the Pacific Ocean. Distinctive features of the velocity model for the upper mantle beneath western North America are a low-velocity zone centered at 100 km depth and zones of high velocity gradient beginning at 400, 650, and 900 km.

  11. The Mantle-Atmosphere Connection: Oxidation of the Atmosphere through Mantle Convection

    NASA Astrophysics Data System (ADS)

    Lee, K. K. M.; Gu, T.; Li, M.; McCammon, C. A.

    2015-12-01

    Earth's mantle connects the surface with the deep interior through convection, and the evolution of its redox state will affect the distribution of siderophile elements1, recycling of refractory isotopes2 and the oxidation state of the atmosphere through volcanic outgassing3. The rise of oxygen in atmosphere, i.e., the Great Oxidation Event (G.O.E.) occurred ~2.4 billion years ago (Ga)4. However, multiple lines of evidence point to biological oxygen production well before 2.4 Ga5; while chromium isotopes in iron formations indicates a decline of atmospheric oxygen about 1.88 Ga6. In contrast to the fluctuation of atmospheric oxygen, vanadium in Archean mantle lithosphere suggests that the mantle redox state has been constant for ~3.5 Ga7. Indeed, the redox state of the deep Earth's interior is not well constrained8 and its effect on mantle dynamics is unknown. Here we show a redox-induced density difference affects mantle convection and may potentially cause the oxidation of the upper mantle. From two synthetic enstatite chondritic samples with identical bulk compositions but formed under different oxygen fugacities (fO2) compressed to lower mantle pressures and temperatures, we find Al2O3 forms its own phase separate from the dominant Mg-silicate perovskite phase (i.e., bridgmanite9) in the more reduced composition, in contrast to a more Al-rich, bridgmanite-dominated assemblage for a more oxidized starting composition. As a result, the reduced material is ~1-1.5% denser than the oxidized material. Geodynamical numerical simulations show that the redox-induced density difference could lead to an increased oxidation of Earth's upper mantle but is buffered by slow mixing with more reduced material through hot upwellings, which will potentially affect mantle redox and rise of oxygen in atmosphere.

  12. Muscle strain (image)

    MedlinePlus

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  13. Postglacial rebound with a non-Newtonian upper mantle and a Newtonian lower mantle rheology

    NASA Technical Reports Server (NTRS)

    Gasperini, Paolo; Yuen, David A.; Sabadini, Roberto

    1992-01-01

    A composite rheology is employed consisting of both linear and nonlinear creep mechanisms which are connected by a 'transition' stress. Background stress due to geodynamical processes is included. For models with a non-Newtonian upper-mantle overlying a Newtonian lower-mantle, the temporal responses of the displacements can reproduce those of Newtonian models. The average effective viscosity profile under the ice-load at the end of deglaciation turns out to be the crucial factor governing mantle relaxation. This can explain why simple Newtonian rheology has been successful in fitting the uplift data over formerly glaciated regions.

  14. Postoperative gait analysis and hip muscle strength in patients with pelvic ring fracture.

    PubMed

    Kubota, Masafumi; Uchida, Kenzo; Kokubo, Yasuo; Shimada, Seiichiro; Matsuo, Hideaki; Yayama, Takafumi; Miyazaki, Tsuyoshi; Sugita, Daisuke; Watanabe, Shuji; Baba, Hisatoshi

    2013-07-01

    The aims of present study were (1) to determine changes in kinematic and kinetic variables at 3 and 12 months after open reduction and internal fixation (ORIF) of pelvic ring fracture and (2) to determine the factor(s) associated with gait disorders that correlate with gait parameters measured at 12 months after surgery. Nineteen patients with pelvic ring fractures underwent ORIF and examined at 3 and 12 months postoperatively. The study also included a similar number of age-matched control subjects. Peak hip abduction angle, peak hip extension moment in the stance, peak hip abduction moment, and peak ankle plantarflexion moment at 3 months after ORIF were significantly lower than the respective control values. At 12 months, complete recovery was noted in peak hip abduction moment and peak ankle plantarflexion moment, whereas the recovery in peak hip abduction angle and peak hip extension moment in the stance was partial. The existence of neurological lesions and strength asymmetry of hip abductor and adductor at 3 months post-ORIF correlated with decreased peak hip abduction moment after ORIF. Our results highlighted characteristic gait patterns up to 12 months after ORIF for pelvic fracture, and these patterns correlated with neurological lesion and weakness of hip abductor and adductor muscles. PMID:23333355

  15. 4 Gy of Mantle Recycling: Evolution of Species in the Mantle Zoo

    NASA Astrophysics Data System (ADS)

    Hart, S. R.

    2008-12-01

    The reigning 'Standard Model' for Earth's chemically heterogeneous mantle is that of Hofmann and White (1982). Oceanic lithosphere is subducted into the mantle, and sequestered somewhere there to age and evolve for aeons. Various 'species' of the resulting mantle heterogeneity have been taxonomically classified: the depleted upper mantle (DMM), a radiogenic Pb species (HIMU), a ubiquitous high 3He/4He species (FOZO) and several enriched species (EM1, EM2). The ongoing challenge has been to correlate these various time-evolved species with their parental lithospheric components, and to define their existing length scales and lithologies. Parental inputs (and initial length scales) include: sediments (1-2 km), oceanic or continental crust (5-50 km), depleted and/or metasomatized oceanic or subcontinental mantle (~ 100 km). The largest scale of observed mantle heterogeneity (1000's of km, e.g. the DUPAL anomaly) may only reflect domains that are richer in some of these smaller components. The smallest scale of mantle heterogeneity (sub-meter?) may result from stretching and thinning during dynamic stirring, or veining during metasomatism or melt migration. Scale length constraints are seriously confounded by the 5-50 km scale of melt sampling and mixing. Yet heterogeneities on virtually all possible scales are evidenced in erupted melts, from phenocryst-hosted melt inclusions (sub-mm) to the DUPAL scale. The chemical mapping between erupted melts and mantle sources remains an enduring frontier. DMM is our best mapped and understood mantle domain. While it doubtless contains recycled materials, it is dominantly a residue of extraction and sequestration of floatable (continental crust) and sinkable (oceanic crust) material. With a stirring time of less than 1 Gy, it also retains an indelible memory of more ancient evolution. The Hofmann-White model invoked recycled sediment (continental crust) as a parent for EM2. This has been spectacularly confirmed by Jackson et al

  16. Melting of subducted basalt at the core-mantle boundary.

    PubMed

    Andrault, Denis; Pesce, Giacomo; Bouhifd, Mohamed Ali; Bolfan-Casanova, Nathalie; Hénot, Jean-Marc; Mezouar, Mohamed

    2014-05-23

    The geological materials in Earth's lowermost mantle control the characteristics and interpretation of seismic ultra-low velocity zones at the base of the core-mantle boundary. Partial melting of the bulk lower mantle is often advocated as the cause, but this does not explain the nonubiquitous character of these regional seismic features. We explored the melting properties of mid-oceanic ridge basalt (MORB), which can reach the lowermost mantle after subduction of oceanic crust. At a pressure representative of the core-mantle boundary (135 gigapascals), the onset of melting occurs at ~3800 kelvin, which is ~350 kelvin below the mantle solidus. The SiO2-rich liquid generated either remains trapped in the MORB material or solidifies after reacting with the surrounding MgO-rich mantle, remixing subducted MORB with the lowermost mantle.

  17. Not so hot "hot spots" in the oceanic mantle.

    PubMed

    Bonath, E

    1990-10-01

    Excess volcanism and crustal swelling associated with hot spots are generally attributed to thermal plumes upwelling from the mantle. This concept has been tested in the portion of the Mid-Atlantic Ridge between 34 degrees and 45 degrees (Azores hot spot). Peridotite and basalt data indicate that the upper mantle in the hot spot has undergone a high degree of melting relative to the mantle elsewhere in the North Atlantic. However, application of various geothermometers suggests that the temperature of equilibration of peridotites in the mantle was lower, or at least not higher, in the hot spot than elsewhere. The presence of H(2)O-rich metasomatized mantle domains, inferred from peridotite and basalt data, would lower the melting temperature of the hot spot mantle and thereby reconcile its high degree ofmelting with the lack of a mantle temperature anomaly. Thus, some so-called hot spots might be melting anomalies unrelated to abnormally high mantle temperature or thermal plumes.

  18. Is a convergently derived muscle-activity pattern driving novel raking behaviours in teleost fishes?

    PubMed

    Konow, Nicolai; Sanford, Christopher P J

    2008-03-01

    Behavioural differences across prey-capture and processing mechanisms may be governed by coupled or uncoupled feeding systems. Osteoglossomorph and salmonid fishes process prey in a convergently evolved tongue-bite apparatus (TBA), which is musculoskeletally coupled with the primary oral jaws. Altered muscle-activity patterns (MAPs) in these coupled jaw systems could be associated with the independent origin of a novel raking behaviour in these unrelated lineages. Substantial MAP changes in the evolution of novel behaviours have rarely been quantified so we examined MAP differences across strikes, chewing and rakes in a derived raking salmonid, the rainbow trout, Oncorhynchus mykiss. Electromyography, including activity onset timing, duration, mean amplitude and integrated area from five feeding muscles revealed significant differences between behaviour-specific MAPs. Specifically, early activity onset in the protractor hyoideus and adductor mandibularis muscles characterised raking, congruent with a recent biomechanical model of the component-mechanisms driving the raking preparatory and power-stroke phases. Oncorhynchus raking MAPs were then compared with a phylogenetically derived osteoglossomorph representative, the Australian arowana, Scleropages jardinii. In both taxa, early onset of protractor hyoideus and adductor mandibularis activity characterised the raking preparatory phase, indicating a convergently derived MAP, while more subtle inter-lineage divergence in raking MAPs resulted from onset-timing and duration differences in sternohyoideus and hypaxialis activity. Convergent TBA morphologies are thus powered by convergently derived MAPs, a phenomenon not previously demonstrated in feeding mechanisms. Between lineages, differences in TBA morphology and associated differences in the functional coupling of jaw systems appear to be important factors in shaping the diversification of raking behaviours. PMID:18310124

  19. The Effects of Knee Joint and Hip Abduction Angles on the Activation of Cervical and Abdominal Muscles during Bridging Exercises.

    PubMed

    Lee, Su-Kyoung; Park, Du-Jin

    2013-07-01

    [Purpose] The purpose of this study was to examine the effects of the flexion angle of the knee joint and the abduction angle of the hip joint on the activation of the cervical region and abdominal muscles. [Subjects] A total of 42 subjects were enrolled 9 males and 33 females. [Methods] The bridging exercise in this study was one form of exercise with a knee joint flexion angle of 90°. Based on this, a bridging exercise was conducted at the postures of abduction of the lower extremities at 0, 5, 10, and 15°. [Result] The changes in the knee joint angle and the hip abduction angle exhibited statistically significant effects on the cervical erector spinae, adductor magnus, and gluteus medius muscles. The abduction angles did not result in statistically significant effects on the upper trapezium, erector spinae, external oblique, and rectus abdominis muscles. However, in relation to the knee joint angles, during the bridging exercise, statistically significant results were exhibited. [Conclusion] When patients with both cervical and back pain do a bridging exercise, widening the knee joint angle would reduce cervical and shoulder muscle activity through minimal levels of abduction, permitting trunk muscle strengthening with reduced cervical muscle activity. This method would be helpful for strengthening trunk muscles in a selective manner. PMID:24259870

  20. The effect of bilateral asymmetry of muscle strength on the height of a squat jump: a computer simulation study.

    PubMed

    Yoshioka, Shinsuke; Nagano, Akinori; Hay, Dean C; Fukashiro, Senshi

    2011-05-01

    The aim of this study was to examine the effect of bilateral asymmetry of muscle strength on maximal height of the squat jump. A computer simulation technique was used to develop two kinds of 3D human lower limb musculoskeletal model (model-symmetry and model-asymmetry). The total muscle strength of the two models was set to be identical. Bilateral muscle strength was equal in the model-symmetry simulation, while the model-asymmetry simulation was performed with a 10% bilateral strength asymmetry. A forward dynamics approach was used to simulate squat jumps. The squat jumps were successfully generated, producing jump heights of 0.389 m for model-symmetry and 0.387 m for model-asymmetry. The small difference in height (0.5%) indicated that the effect of the 10% bilateral asymmetry of muscle strength on jump height is negligible. With model-asymmetry, the strong leg compensated for the muscle strength deficit of the weak leg. Importantly, the mono-articular and large extensor muscles of the hip and knee joint of the strong leg, including the gluteus maximus, adductor magnus, and vasti, compensated for the muscle strength deficit of the weak leg. PMID:21506038

  1. Morphology of the jaw, suspensorial, and opercle musculature of Beloniformes and related species (Teleostei: Acanthopterygii), with a special reference to the m. adductor mandibulae complex.

    PubMed

    Werneburg, Ingmar

    2015-01-01

    The taxon Beloniformes represents a heterogeneous group of teleost fishes that show an extraordinary diversity of jaw morphology. I present new anatomical descriptions of the jaw musculature in six selected beloniforms and four closely related species. A reduction of the external jaw adductor (A1) and a changed morphology of the intramandibular musculature were found in many Beloniformes. This might be correlated with the progressively reduced mobility of the upper and lower jaw bones. The needlefishes and sauries, which are characterised by extremely elongated and stiffened jaws, show several derived characters, which in combination enable the capture of fish at high velocity. The ricefishes are characterised by several derived and many plesiomorphic characters that make broad scale comparisons difficult. Soft tissue characters are highly diverse among hemiramphids and flying fishes reflecting the uncertainty about their phylogenetic position and interrelationship. The morphological findings presented herein may help to interpret future phylogenetic analyses using cranial musculature in Beloniformes.

  2. Morphology of the jaw, suspensorial, and opercle musculature of Beloniformes and related species (Teleostei: Acanthopterygii), with a special reference to the m. adductor mandibulae complex.

    PubMed

    Werneburg, Ingmar

    2015-01-01

    The taxon Beloniformes represents a heterogeneous group of teleost fishes that show an extraordinary diversity of jaw morphology. I present new anatomical descriptions of the jaw musculature in six selected beloniforms and four closely related species. A reduction of the external jaw adductor (A1) and a changed morphology of the intramandibular musculature were found in many Beloniformes. This might be correlated with the progressively reduced mobility of the upper and lower jaw bones. The needlefishes and sauries, which are characterised by extremely elongated and stiffened jaws, show several derived characters, which in combination enable the capture of fish at high velocity. The ricefishes are characterised by several derived and many plesiomorphic characters that make broad scale comparisons difficult. Soft tissue characters are highly diverse among hemiramphids and flying fishes reflecting the uncertainty about their phylogenetic position and interrelationship. The morphological findings presented herein may help to interpret future phylogenetic analyses using cranial musculature in Beloniformes. PMID:25755920

  3. Morphology of the jaw, suspensorial, and opercle musculature of Beloniformes and related species (Teleostei: Acanthopterygii), with a special reference to the m. adductor mandibulae complex

    PubMed Central

    2015-01-01

    The taxon Beloniformes represents a heterogeneous group of teleost fishes that show an extraordinary diversity of jaw morphology. I present new anatomical descriptions of the jaw musculature in six selected beloniforms and four closely related species. A reduction of the external jaw adductor (A1) and a changed morphology of the intramandibular musculature were found in many Beloniformes. This might be correlated with the progressively reduced mobility of the upper and lower jaw bones. The needlefishes and sauries, which are characterised by extremely elongated and stiffened jaws, show several derived characters, which in combination enable the capture of fish at high velocity. The ricefishes are characterised by several derived and many plesiomorphic characters that make broad scale comparisons difficult. Soft tissue characters are highly diverse among hemiramphids and flying fishes reflecting the uncertainty about their phylogenetic position and interrelationship. The morphological findings presented herein may help to interpret future phylogenetic analyses using cranial musculature in Beloniformes. PMID:25755920

  4. Elasticity of ferropericlase at lower mantle conditions

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Justo, J. F.; Wentzcovitch, R. M.

    2014-12-01

    Clarification of the effect of the iron spin change on properties of Fp is important to address the relative abundance of Fp in the lower mantle. However, recent reports to this question show completely different conclusions. The calculated density of a pyrolite aggregate with spin crossover-related change in iron partitioning up to 45 GPa compared well with the density in PREM [1]. On the other hand, Murakami et al's analysis of VS in aggregates with variable amounts of Fp concluded the opposite - the lower mantle is more perovskitic than pyrolitic [2]. We investigated thermoelasticity of Fp with first principles DFT+U calculations. The calculated thermoelasticity are in good consitence with the available experimental data on samples with various iron concentrations. The results can well explain discrepancy on softening of the shear modulus of Fp among different experiments[3,4]. We predict velocities of Fp at lower mantle conditions and suggest that pyrolite is a reasonable compositional model for the lower mantle. Our results show the importance of constraining the elastic properties of minerals without extrapolations for analyses of the thermochemical state of this region[5]. [1] Irifune et al., Science 327, 193 (2010). [2] Murakami et al., Nature 485, 90 (2012). [3] Crowhurst et al., Science 319, 451 (2008). [4] Marquardt et al., Science 324, 224 (2009). [5]Wu et al., Phys. Rev. Lett. 110. 228501 (2013)

  5. Thermodynamics of mantle minerals - II. Phase equilibria

    NASA Astrophysics Data System (ADS)

    Stixrude, Lars; Lithgow-Bertelloni, Carolina

    2011-03-01

    We complete the development and description of a thermodynamic method for the computation of phase equilibria and physical properties of multiphase mantle assemblages. Our previous paper focused on the computation of physical properties. In this paper, our focus shifts to the phase equilibria. We further develop our theory to specify the ideal and excess contributions to solution properties and derive properties of multiphase assemblages. We discuss our global inversion strategy for determining the values of the free parameters in our theory and compare inverted parameter values with expectations based on scaling arguments. Comparisons between our method and experimental phase equilibria data encompass the pressure-temperature regime of Earth's mantle. Finally, we present applications of our method that illustrate how it may be used to explore the origins of mantle structure and mantle dynamics. Continuing rapid advances in experimental and theoretical petrology and mineral physics have motivated an expansion of the scope of our model via the addition of several new phases, and of the soda component: an appendix lists all parameters in our model and references to the experimental and theoretical studies that constrain them. Our algorithm for global minimization of the Gibbs free energy is embodied in a code called HeFESTo, and is detailed in a second appendix.

  6. Geodynamo Modeling of Core-Mantle Interactions

    NASA Technical Reports Server (NTRS)

    Kuang, Wei-Jia; Chao, Benjamin F.; Smith, David E. (Technical Monitor)

    2001-01-01

    Angular momentum exchange between the Earth's mantle and core influences the Earth's rotation on time scales of decades and longer, in particular in the length of day (LOD) which have been measured with progressively increasing accuracy for the last two centuries. There are four possible coupling mechanisms for transferring the axial angular momentum across the core-mantle boundary (CMB): viscous, magnetic, topography, and gravitational torques. Here we use our scalable, modularized, fully dynamic geodynamo model for the core to assess the importance of these torques. This numerical model, as an extension of the Kuang-Bloxham model that has successfully simulated the generation of the Earth's magnetic field, is used to obtain numerical results in various physical conditions in terms of specific parameterization consistent with the dynamical processes in the fluid outer core. The results show that depending on the electrical conductivity of the lower mantle and the amplitude of the boundary topography at CMB, both magnetic and topographic couplings can contribute significantly to the angular momentum exchange. This implies that the core-mantle interactions are far more complex than has been assumed and that there is unlikely a single dominant coupling mechanism for the observed decadal LOD variation.

  7. Plate tectonics: Delayed response to mantle pull

    NASA Astrophysics Data System (ADS)

    Nedimović, Mladen R.

    2016-08-01

    At mid-ocean ridges, the directions in which plates spread and the underlying mantle flows were thought to broadly align. A synthesis of results from ridges that spread at a variety of rates reveals that instead there may be a systematic skew.

  8. Processes of deep terrestrial mantles and cores

    NASA Technical Reports Server (NTRS)

    Jeanloz, Raymond

    1991-01-01

    Ultrahigh pressure experiments are currently focused on revealing processes occurring deep inside planets. This is in addition to the traditional emphasis on the constitution of planetary interiors, such as the identification of the high pressure perovskite phase of (Mg,Fe)SiO3 as the predominant mineral inside the Earth, and probably Venus. For example, experiments show that the mechanism of geochemical differentiation, separation of partial melts, differs fundamentally in the lower mantles of Earth and Venus than at near surface conditions. In addition to structural transformations, changes in chemical bonding caused by pressure can also be significant for planetary interiors. Measurements of AC and DC electrical conductivity can be obtained at ultrahigh pressures and temperatures, to greater than 80 GPa and 3000 K simultaneously, using the laser heated diamond cell. Anhydrous lower mantle assemblages (perovskite + or - oxide phases) exhibit an electrical conductivity that depends strongly on Fe content. Contrary to traditional assumptions, temperature affects the conductivity of lower mantle assemblages relatively little. The Earth's deep focus seismicity can be explained by the recycling of water into the mantle.

  9. The Layered Nature of Planetary Mantle

    NASA Astrophysics Data System (ADS)

    Dude, S.; Hansen, U.

    2015-12-01

    The formation of layered structures is a common feature within many natural system and occur on various scales (planets, Earth's oceans, magma chambers, etc.). Since the knowledge of slab stagnation in the transitions zone of the Earth's mantle the question whether the mantle is or at least has been layered to some degree is still under debate. On this basis we address two important features that lead to layered mantle convection and may affect each other and with this the thermal evolution of the mantle and the evolving heterogeneities. On the one hand we examine a double-diffusive system that is capable of the self-organised formation of layers from a previously non-layered state and on the other hand we incorporate a phase transition. In oder to determine the interaction of double-diffusive layers with a phase transition we carried out numerical simulations ranging from exothermic to endothermic conditions. Taking into account a depth and temperature dependence of the phase transition the results show that on the one hand double-diffusive layering is strongly affected by the presence of phase transition but on the other hand the equilibrium position of the phase transition is shifted depending on the properties of the considered transition. In addition to that we incorporate the chemical dependence of the phase change and determine the influence on the layer growth and the overall dynamics.

  10. Mantle transition zone thinning beneath eastern Africa: Evidence for a whole-mantle superplume structure

    NASA Astrophysics Data System (ADS)

    Mulibo, Gabriel D.; Nyblade, Andrew A.

    2013-07-01

    to S conversions from the 410 and 660 km discontinuities observed in receiver function stacks reveal a mantle transition zone that is ~30-40 km thinner than the global average in a region ~200-400 km wide extending in a SW-NE direction from central Zambia, across Tanzania and into Kenya. The thinning of the transition zone indicates a ~190-300 K thermal anomaly in the same location where seismic tomography models suggest that the lower mantle African superplume structure connects to thermally perturbed upper mantle beneath eastern Africa. This finding provides compelling evidence for the existence of a continuous thermal structure extending from the core-mantle boundary to the surface associated with the African superplume.

  11. Seismic imaging of structural heterogeneity in Earth's mantle: evidence for large-scale mantle flow.

    PubMed

    Ritsema, J; Van Heijst, H J

    2000-01-01

    Systematic analyses of earthquake-generated seismic waves have resulted in models of three-dimensional elastic wavespeed structure in Earth's mantle. This paper describes the development and the dominant characteristics of one of the most recently developed models. This model is based on seismic wave travel times and wave shapes from over 100,000 ground motion recordings of earthquakes that occurred between 1980 and 1998. It shows signatures of plate tectonic processes to a depth of about 1,200 km in the mantle, and it demonstrates the presence of large-scale structure throughout the lower 2,000 km of the mantle. Seismological analyses make it increasingly more convincing that geologic processes shaping Earth's surface are intimately linked to physical processes in the deep mantle.

  12. Chondritic Xenon in the Earth's mantle: new constrains on a mantle plume below central Europe

    NASA Astrophysics Data System (ADS)

    Caracausi, Antonio; Avice, Guillaume; Bernard, Peter; Furi, Evelin; Marty, Bernard

    2016-04-01

    Due to their inertness, their low abundances, and the presence of several different radiochronometers in their isotope systematics, the noble gases are excellent tracers of mantle dynamics, heterogeneity and differentiation with respect to the atmosphere. Xenon deserves particular attention because its isotope systematic can be related to specific processes during terrestrial accretion (e.g., Marty, 1989; Mukhopadhyay, 2012). The origin of heavy noble gases in the Earth's mantle is still debated, and might not be solar (Holland et al., 2009). Mantle-derived CO2-rich gases are particularly powerful resources for investigating mantle-derived noble gases as large quantities of these elements are available and permit high precision isotope analysis. Here, we report high precision xenon isotopic measurements in gases from a CO2 well in the Eifel volcanic region (Germany), where volcanic activity occurred between 700 ka and 11 ka years ago. Our Xe isotope data (normalized to 130Xe) show deviations at all masses compared to the Xe isotope composition of the modern atmosphere. The improved analytical precision of the present study, and the nature of the sample, constrains the primordial Xe end-member as being "chondritic", and not solar, in the Eifel mantle source. This is consistent with an asteroidal origin for the volatile elements in Earth's mantle and it implies that volatiles in the atmosphere and in the mantle originated from distinct cosmochemical sources. Despite a significant fraction of recycled atmospheric xenon in the mantle, primordial Xe signatures still survive in the mantle. This is also a demonstration of a primordial component in a plume reservoir. Our data also show that the reservoir below the Eifel region contains heavy-radiogenic/fissiogenic xenon isotopes, whose ratios are typical of plume-derived reservoirs. The fissiogenic Pu-Xe contribution is 2.26±0.28 %, the UXe contribution is negligible, the remainder being atmospheric plus primordial. Our

  13. Water circulation and global mantle dynamics: Insight from numerical modeling

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Nakakuki, Tomoeki; Iwamori, Hikaru

    2015-05-01

    We investigate water circulation and its dynamical effects on global-scale mantle dynamics in numerical thermochemical mantle convection simulations. Both dehydration-hydration processes and dehydration melting are included. We also assume the rheological properties of hydrous minerals and density reduction caused by hydrous minerals. Heat transfer due to mantle convection seems to be enhanced more effectively than water cycling in the mantle convection system when reasonable water dependence of viscosity is assumed, due to effective slab dehydration at shallow depths. Water still affects significantly the global dynamics by weakening the near-surface oceanic crust and lithosphere, enhancing the activity of surface plate motion compared to dry mantle case. As a result, including hydrous minerals, the more viscous mantle is expected with several orders of magnitude compared to the dry mantle. The average water content in the whole mantle is regulated by the dehydration-hydration process. The large-scale thermochemical anomalies, as is observed in the deep mantle, is found when a large density contrast between basaltic material and ambient mantle is assumed (4-5%), comparable to mineral physics measurements. Through this study, the effects of hydrous minerals in mantle dynamics are very important for interpreting the observational constraints on mantle convection.

  14. Functional morphology of the mantle of Nautilus pompilius (Mollusca, Cephalopoda).

    PubMed

    Westermann, Bettina; Schmidtberg, Henrike; Beuerlein, Knut

    2005-06-01

    This study presents histological and cytological findings on the structural differentiation of the mantle of Nautilus pompilius in order to characterize the cells that are responsible for shell formation. The lateral and front mantle edges split distally into three folds: an outer, middle, and inner fold. Within the upper part of the mantle the mantle edge is divided into two folds only; the inner fold disappears where the hood is attached to the mantle. At the base of the outer fold of the lateral and front mantle edge an endo-epithelial gland, the mantle edge gland, is localized. The gland cells are distinguished by a distinct rough endoplasmic reticulum and by numerous secretory vesicles. Furthermore, they show a strong accumulation of calcium compounds, indicating that the formation of the shell takes place in this region of the mantle. Numerous synaptic contacts between the gland cells and the axons of the nerve fibers reveal that the secretion in the area of the mantle edge gland is under nervous control. The whole mantle tissue is covered with a columnar epithelium having a microvillar border. The analyses of the outer epithelium show ultrastructural characteristics of a transport active epithelium, indicating that this region of the mantle is involved in the sclerotization of the shell. Ultrastructural findings concerning the epithelium between the outer and middle fold suggest that the periostracum is formed in this area of the mantle, as it is in other conchiferan molluscs.

  15. Investigating Late Cenozoic Mantle Dynamics beneath Yellowstone

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Liu, L.

    2015-12-01

    Recent tomography models (Sigloch, 2011; Schmandt & Lin, 2014) reveal unprecedented details of the mantle structure beneath the United States (U.S.). Prominent slow seismic anomalies below Yellowstone, traditionally interpreted as due to a mantle plume, are restricted to depths either shallower than 200 km or between 500 and 1000 km, but a continuation to greater depth is missing. Compared to fast seismic anomalies, which are usually interpreted as slabs or delaminated lithosphere, origin of deep slow seismic anomalies, especially those in the vicinity of subduction zones, is more enigmatic. As a consequence, both the dynamics and evolution of these slow anomalies remain poorly understood. To investigate the origin and evolution of the Yellowstone slow anomaly during the past 20 Myr, we construct a 4D inverse mantle convection model with a hybrid data assimilation scheme. On the one hand, we use the adjoint method to recover the past evolution of mantle seismic structures beyond the subduction zones. On the other hand, we use a high-resolution forward model to simulate the subduction of the oceanic (i.e., Farallon) plate. During the adjoint iterations, features from these two approaches are blended together at a depth of ~200 km below the subduction zone. In practice, we convert fast and slow seismic anomalies to effective positive and negative density heterogeneities. Our preliminary results indicate that at 20 Ma, the present-day shallow slow anomalies beneath the western U.S. were located inside the oceanic asthenosphere, which subsequently entered the mantle wedge, through the segmented Farallon slab. The eastward encroachment of the slow anomaly largely followed the Yellowstone hotspot track migration. The present deep mantle Yellowstone slow anomaly originated at shallower depths (i.e. transition zone), and was then translated down to the lower mantle accompanying the sinking fast anomalies. The temporal evolution of the slow anomalies suggests that the deep

  16. The continental lithospheric mantle: characteristics and significance as a mantle reservoir.

    PubMed

    Pearson, D G; Nowell, G M

    2002-11-15

    The continental lithospheric mantle (CLM) is a small-volumed (ca. 2.5% of the total mantle), chemically distinct mantle reservoir that has been suggested to play a role in the source of continental and oceanic magmatism. It is our most easily identifiable reservoir for preserving chemical heterogeneity in the mantle. Petrological and geophysical constraints indicate that the maximum depth of the CLM is ca. 250 km. There is a clear secular variation of CLM composition, such that CLM formed in the last 2 Gyr is less depleted and therefore less dynamically stable than ancient CLM formed in the Archean. We present new trace-element data for kimberlite-hosted lithospheric peridotites and metasomites. These data, combined with other data for spinel peridotites from non-cratonic regions, show that neither hydrous nor anhydrous lithospheric mantle xenoliths make suitable sources for continental or oceanic basalts. Addition of a hydrous phase, either amphibole or phlogopite, to depleted peridotite results in positive Nb and Ti anomalies that are the opposite of those predicted for some flood-basalt sources on the basis of their trace-element abundances. Overall, the Sr and Nd isotopic composition of cratonic and non-cratonic CLM is close to bulk Earth, with cratonic CLM showing small numbers of extreme compositions. Thus, while the CLM is certainly ancient in many locations, its average composition is not significantly 'enriched' over primitive upper mantle, in terms of either radiogenic isotopes or trace elements. These characteristics, plus a change in lithospheric chemistry with depth, indicate that the elemental and isotopic composition of lithospheric mantle likely to be re-incorporated into convecting mantle via delamination/thermal erosion processes is probably not very distinct from that of the convecting mantle. These observations lead us to question the requirement for CLM participation in the source of oceanic magmas and to promote consideration of a mantle that

  17. Thermo-chemical plumes rooted in the deep mantle beneath major hotspots: implications for mantle dynamics

    NASA Astrophysics Data System (ADS)

    Romanowicz, B. A.; French, S.

    2015-12-01

    The existence of mantle plumes as a possible origin for hotspots has been the subject of debate for the last 30 years. Many seismic tomographic studies have hinted at the presence of plume-like features in the lower mantle, but resolution of narrow low velocity features is difficult, and ambiguity remains as to the vertical continuity of these features and how distinct they are from other low velocity blobs. We present robust evidence for significant, vertically continuous, low velocity columns in the lower mantle beneath prominent hotspots located within the footprint of the large low shear velocity provinces (LLSVPs), from a recent global, radially anisotropic whole mantle shear-wave velocity (Vs) model, SEMUCB-WM1 (French and Romanowicz, 2014, 2015). This model was constructed by inversion of a large dataset of long period three-component seismograms down to 32s period. Because it includes surface-wave overtones, S-diffracted waves and multiply reflected waves between the surface and the CMB, this dataset provides considerably better illumination of the whole mantle volume than can be obtained with a standard set of travel times alone. In addition, accurate numerical computation of the forward wavefield using the spectral element method at each iteration of the model construction, allows us to better resolve regions of lower than average Vs. The imaged plumes have several common characteristics: they are rooted in patches of very low Vs near the core mantle boundary, some of which contain documented ULVZs, and extend vertically through the lower mantle up to ~1000 km depth, where some are deflected horizontally, or give rise to somewhat thinner conduits that meander through the upper mantle in the vicinity of the target hotpots. Combined with evidence for slab stagnation at ~1000 km depth, this suggests a change in rheology between 660 and 1000 km depth, very high viscosity throughout the bulk of the lower mantle, and lower viscosity plumes, only mildly

  18. The continental lithospheric mantle: characteristics and significance as a mantle reservoir.

    PubMed

    Pearson, D G; Nowell, G M

    2002-11-15

    The continental lithospheric mantle (CLM) is a small-volumed (ca. 2.5% of the total mantle), chemically distinct mantle reservoir that has been suggested to play a role in the source of continental and oceanic magmatism. It is our most easily identifiable reservoir for preserving chemical heterogeneity in the mantle. Petrological and geophysical constraints indicate that the maximum depth of the CLM is ca. 250 km. There is a clear secular variation of CLM composition, such that CLM formed in the last 2 Gyr is less depleted and therefore less dynamically stable than ancient CLM formed in the Archean. We present new trace-element data for kimberlite-hosted lithospheric peridotites and metasomites. These data, combined with other data for spinel peridotites from non-cratonic regions, show that neither hydrous nor anhydrous lithospheric mantle xenoliths make suitable sources for continental or oceanic basalts. Addition of a hydrous phase, either amphibole or phlogopite, to depleted peridotite results in positive Nb and Ti anomalies that are the opposite of those predicted for some flood-basalt sources on the basis of their trace-element abundances. Overall, the Sr and Nd isotopic composition of cratonic and non-cratonic CLM is close to bulk Earth, with cratonic CLM showing small numbers of extreme compositions. Thus, while the CLM is certainly ancient in many locations, its average composition is not significantly 'enriched' over primitive upper mantle, in terms of either radiogenic isotopes or trace elements. These characteristics, plus a change in lithospheric chemistry with depth, indicate that the elemental and isotopic composition of lithospheric mantle likely to be re-incorporated into convecting mantle via delamination/thermal erosion processes is probably not very distinct from that of the convecting mantle. These observations lead us to question the requirement for CLM participation in the source of oceanic magmas and to promote consideration of a mantle that

  19. Mantle Convection Models Constrained by Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Durbin, C. J.; Shahnas, M.; Peltier, W. R.; Woodhouse, J. H.

    2011-12-01

    Although available three dimensional models of the lateral heterogeneity of the mantle, based upon the latest advances in seismic tomographic imaging (e.g. Ritsema et al., 2004, JGR) have provided profound insights into aspects of the mantle general circulation that drives continental drift, the compatibility of the tomography with explicit models of mantle mixing has remained illusive. For example, it remains a significant issue as to whether hydrodynamic models of the mixing process alone are able to reconcile the observed detailed pattern of surface plate velocities or whether explicit account must be taken of elastic fracture processes to account for the observed equipartition of kinetic energy between the poloidal and toroidal components of the surface velocity pattern (e.g. Forte and Peltier, 1987, JGR). It is also an issue as to the significance of the role of mantle chemical heterogeneity in determining the buoyancy distribution that drives mantle flow, especially given the expected importance of the spin transition of iron that onsets in the mid-lower mantle, at least in the ferropericlase component of the mineralogy. In this paper we focus upon the application of data assimilation techniques to the development of a model of mantle mixing that is consistent with a modern three dimensional tomography based model of seismic body wave heterogeneity. Beginning with the simplest possible scenario, that chemical heterogeneity is irrelevant to first order, we employ a three dimensional version of the recently published control volume based convection model of Shahnas and Peltier (2010, JGR) as the basis for the assimilation of a three dimensional density field inferred from our preferred tomography model (Ritsema et al., 2004, JGR). The convection model fully incorporates the dynamical influence of the Olivine-Spinel and Spinel-Perovskite+Magnesiowustite solid-solid phase transformations that bracket the mantle transition zone as well as the recently discovered

  20. Mantle Temperature, Mantle Composition, Mantle Heterogeneity, and the Composition of the Upper Mantle: The View from a Global Synthesis of MORB

    NASA Astrophysics Data System (ADS)

    Langmuir, C. H.; Gale, A.; Dalton, C. A.

    2012-12-01

    A new comprehensive review of global MORB can address outstanding issues such mantle temperature vs. mantle composition in controlling MORB compositions, the mean composition of ocean ridge basalts, the K/U ratio of the MORB reservoir, and the implications for silicate Earth mass balance of the composition of the upper mantle. We created a global catalogue of ridge segments to assign every sample to a segment. We carried out interlaboratory corrections for major elements, and examined data from each segment to ensure appropriate fractionation correction. We included large unpublished data sets from the Langmuir and Schilling laboratories, assembling the most comprehensive data set for MORB. Data averaged by segment permit calculation of averages that include weighting by segment length and spreading rate. The segment-based approach, comprehensive data set, individualized fractionation correction and interlaboratory corrections distinguish these results from earlier efforts. We also carried out bootstrapping statistical tests for meaningful errors on average compositions. The mean composition of the ocean crust is best determined by a segment length and spreading rate weighted arithmetic mean. As with other recent efforts, notably Su (2002) and also Arevalo and McDonough (2009), the mean composition is substantially more enriched than previous MORB estimates. Average MORB implies a MORB mantle Sm/Nd and Nd isotopic composition similar to the 'non-chondritic primitive mantle' composition based on 142Nd. Then continental crust/MORB mantle mass balance is not possible using a non-chondritic (depleted) bulk silicate earth composition, unless there is a large unsampled depleted reservoir. In contrast to Arevalo and McDonough, who suggested a K/U ratio for MORB of 19,000, we find K/U of 12,340±810, in line with earlier estimates. The discrepancy can be understood from contrasts in methodology, as we determine average K/ average U, while they determine average K/U. To

  1. Muscle adaptations to plyometric vs. resistance training in untrained young men.

    PubMed

    Vissing, Kristian; Brink, Mads; Lønbro, Simon; Sørensen, Henrik; Overgaard, Kristian; Danborg, Kasper; Mortensen, Jesper; Elstrøm, Ole; Rosenhøj, Nikolaj; Ringgaard, Steffen; Andersen, Jesper L; Aagaard, Per

    2008-11-01

    The purpose of this study was to compare changes in muscle strength, power, and morphology induced by conventional strength training vs. plyometric training of equal time and effort requirements. Young, untrained men performed 12 weeks of progressive conventional resistance training (CRT, n = 8) or plyometric training (PT, n = 7). Tests before and after training included one-repetition maximum (1 RM) incline leg press, 3 RM knee extension, and 1 RM knee flexion, countermovement jumping (CMJ), and ballistic incline leg press. Also, before and after training, magnetic resonance imaging scanning was performed for the thigh, and a muscle biopsy was sampled from the vastus lateralis muscle. Muscle strength increased by approximately 20-30% (1-3 RM tests) (p < 0.001), with CRT showing 50% greater improvement in hamstring strength than PT (p < 0.01). Plyometric training increased maximum CMJ height (10%) and maximal power (Pmax; 9%) during CMJ (p < 0.01) and Pmax in ballistic leg press (17%) (p < 0.001). This was far greater than for CRT (p < 0.01), which only increased Pmax during the ballistic leg press (4%) (p < 0.05). Quadriceps, hamstring, and adductor whole-muscle cross-sectional area (CSA) increased equally (7-10%) with CRT and PT (p < 0.001). For fiber CSA analysis, some of the biopsies had to be omitted. Type I and IIa fiber CSA increased in CRT (n = 4) by 32 and 49%, respectively (p < 0.05), whereas no significant changes occurred for PT (n = 5). Myosin heavy-chain IIX content decreased from 11 to 6%, with no difference between CRT and PT. In conclusion, gross muscle size increased both by PT and CRT, whereas only CRT seemed to increase muscle fiber CSA. Gains in maximal muscle strength were essentially similar between groups, whereas muscle power increased almost exclusively with PT training. PMID:18978625

  2. Rare gases systematics and mantle structure

    NASA Technical Reports Server (NTRS)

    Allegre, C. J.; Staudacher, T.

    1994-01-01

    The following points are emphasized: one of the most important ones is certainly the first set of experimental data on the solubility of noble gases in metal phases at intermediate pressures, since the core was certainly not formed at ultra high pressures, as emphasized by Ahrens and confirmed by trace elements systematics Wanke. The experimental data clearly show that the core can not be a major reservoir for terrestrial rare gases; the second point is a more elaborate reconsideration of the (40)K-(40)Ar budget of the Earth. This shows that (40)Ar contained in continental crust plus upper mantle plus atmosphere is at maximum half of the (40)Ar inventory of the whole earth. This implies the existence of a two layered mantle; the third point is the discovery by the Australian noble gases group of the existence of high (20)Ne/(22)Ne and low (21)Ne/(22)Ne isotopic ratios in Loihi seamount samples. This results which are different to the MORB ratios confirm the idea of a two layered model, but suggest the existence of a primordial solar type Ne reservoir. Several possibilities about the origin of this (20)Ne excess in the mantle will be discussed; The high (40)Ar/(36)Ar, (129)Xe/(130)Xe and (134) Xe/(130)Xe, (136)Xe/(130)Xe are confirmed by new data. The corresponding ratios for the lower mantle will be discussed. (40)Ar/(36)Ar ratios up to 6000 can be accepted and will not modify the general model of the mantle. They confirm the atmosphere chronology, about 85 percent of the atmosphere was formed in the first 50 My and 15 percent later on.

  3. Finding the patterns in mantle convection

    NASA Astrophysics Data System (ADS)

    Atkins, Suzanne; Rozel, Antoine; Valentine, Andrew; Tackley, Paul; Trampert, Jeannot

    2016-04-01

    Inverting mantle flow for past configurations is one of the great outstanding problems in geodynamics. We demonstrate a new method for probabilistic inversion of present-day Earth observations for mantle properties and history. Convection is a non-linear and chaotic, thwarting most standard inversion methods. Because of its chaotic and unpredictable nature, small errors in initial conditions, parameter selection, and computational precision can all significantly change the results produced by mantle convection simulations. However, some patterns and statistics of convection contain the signature of the parameters used in the simulations over long time-scales. Geodynamical studies often vary these parameters to investigate their effects on the patterns produced. We show that with a large enough set of simulations, we can investigate the relationship between input parameters and convection patterns in a more rigorous way. Probabilistic inversion is the only way to approach highly non-linear problems. We use neural networks to represent the probability density function linking convection simulation input parameters and the patterns they produce. This allows us to find input parameters, whilst taking into account all of the uncertainties that are inherent in the inversion of any Earth system: how well do we understand the physics of the process; what do we already know about the input parameters; and how certain are our observations? We show that the mantle structures produced by 4.5 Gyr of convection simulations contain enough information on yield stress, viscosity coefficients, mantle heating rate, and the initial state of primordial material that we can infer them directly without requiring any other information, such as plate velocity.

  4. Potential Dynamical Mechanisms Behind Global Mantle Events

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Loddoch, A.; Stein, C.

    2007-05-01

    By numerical models we have investigated three potential mechanisms behind global mantle events. Plumes, originating in the thermal boundary layers of the mantle convection system can exhibit a significant episodicity, once a strong temperature-dependence of the viscosity of the mantle material is taken into account. An increase of the viscosity with pressure, as sometimes believed to suppress plumes, acts in fact to focus buoyancy into a few strong upwellings, which are potentially able to generate events on global scale. Plumes originating self- consistently from a thermal boundary layer, transport mostly material from their source region, while they entrain only little material during ascent. Compositionally dense material at the Core-mantle boundary has been proposed to explain seismological observed anomalies. The stability of such heterogeneities against entrainment by the overlying mantle-flow is determined by a complex set of properties, rather than by the density difference alone. Model calculations, taking into account a combined dependence of viscosity on temperature, pressure and , as mostly neglected; on composition, demonstrate, that under such conditions the D", can function as an isolated reservoir form some time, that however the destruction of the compositionally distinct layer, shielding the Earth'core can take place rapidly., with a profound effect also on the surface heat flow.. Finally we observe that episodic mobilization events of the surface are dynamically plausible for appropriate rheologies. A combination of temperature- and stress-dependent viscosity leads to an intermittent type of temporal behavior, where periods showing no surface motion (stagnant lid) are interrupted by phases with strong plate motions at the top. It seems at least possible that plate motion is not a continuously operating process.

  5. Capillary muscle

    PubMed Central

    Cohen, Caroline; Mouterde, Timothée; Quéré, David; Clanet, Christophe

    2015-01-01

    The contraction of a muscle generates a force that decreases when increasing the contraction velocity. This “hyperbolic” force–velocity relationship has been known since the seminal work of A. V. Hill in 1938 [Hill AV (1938) Proc R Soc Lond B Biol Sci 126(843):136–195]. Hill’s heuristic equation is still used, and the sliding-filament theory for the sarcomere [Huxley H, Hanson J (1954) Nature 173(4412):973–976; Huxley AF, Niedergerke R (1954) Nature 173(4412):971–973] suggested how its different parameters can be related to the molecular origin of the force generator [Huxley AF (1957) Prog Biophys Biophys Chem 7:255–318; Deshcherevskiĭ VI (1968) Biofizika 13(5):928–935]. Here, we develop a capillary analog of the sarcomere obeying Hill’s equation and discuss its analogy with muscles. PMID:25944938

  6. Mapping of intramuscular tenderness and muscle fiber orientation of muscles in the beef round.

    PubMed

    Senaratne, L S; Calkins, C R; de Mello, A S; Pokharel, S; Hinkle, J B

    2010-09-01

    Intramuscular tenderness variation and muscle fiber orientation of beef M. adductor femoris (AF), M. biceps femoris (BF), M. gracilis (GL), M. pectineus (PT), M. sartorius (SR), M. semimembranosus (SM), M. semitendinosus (SO), M. vastus intermedius (VI), M. vastus medialis (VM), and M. vastus lateralis (VL) were investigated. The USDA Choice boxed beef subprimals were purchased and aged for 14 d from boxed date. The AF, BF, GL, PT, SR, SM, SO, VI, VM, and VL (n = 10 each) were fabricated from subprimals. Crust-frozen AF, BF, SO, SM, and VL were cut into 2.54-cm steaks perpendicular to the long axis and grilled (71 degrees C). The PT, SR, VI, and VM were grilled (71 degrees C) as whole muscles, whereas the GL was grilled after cutting into anterior and posterior regions. Grilled muscles were cut into equal size sections perpendicular to long axis of muscles. Location-specific cores were prepared from each steak/section, and Warner-Bratzler shear force (WBSF) was measured. The muscle fiber orientations of BF, PT, and VI were bipennate, SR and SO were fusiform, and AD, SM, VL, GL, and VM were unipennate. The overall mean WBSF values for BF, SO, AF, SM, PT, SR, GL, VI, VM, and VL were 5.62, 4.86, 4.18, 4.90, 3.76, 4.44, 4.75, 4.78, 4.24, and 6.53 kg, respectively. Based on WBSF values, PT was tender, BF and VL were tough, and VM, VI, SM, GL SR, AF, and SO were intermediate. The first 2 proximal steaks of long head BF were more tender than the rest (P < 0.05). In the SO, the tenderness decreased from the middle of the muscle to both ends (P < 0.05). The anterior sides of the long head BF and SO were tougher than their posterior sides (P < 0.05).The first 4 steaks of the SM were more tender than the rest of the muscle (P < 0.05). There was a significant tenderness increment from the middle of the AF and SR to both ends of each muscle (P < 0.05). The medial side of the VI was more tender than its lateral side (P < 0.05). The VM had its smallest shear force value at the

  7. Density Anomalies in the Mantle and the Gravitational Core-Mantle Interaction

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Liu, Lanbo

    2003-01-01

    Seismic studies suggest that the bulk of the mantle is heterogeneous, with density variations in depth as well as in horizontal directions (latitude and longitude). This density variation produces a three- dimensional gravity field throughout the Earth. On the other hand, the core density also varies in both time and space, due to convective core flow. Consequently, the fluid outer core and the solid mantle interact gravitationally due to the mass anomalies in both regions. This gravitational core-mantle interaction could play a significant role in exchange of angular momentum between the core and the mantle, and thus the change in Earth's rotation on time scales of decades and longer. Aiming at estimating the significance of the gravitational core-mantle interaction on Earth's rotation variation, we introduce in our MoSST core dynamics model a heterogeneous mantle, with a density distribution derived from seismic results. In this model, the core convection is driven by the buoyancy forces. And the density variation is determined dynamically with the convection. Numerical simulation is carried out with different parameter values, intending to extrapolate numerical results for geophysical implications.

  8. Thermal and Chemical Structures at the Core-Mantle Boundary: Implications for the Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Stein, C.; Mertens, M.; Hansen, U.

    2013-12-01

    The core-mantle boundary (CMB) represents the lower boundary layer of the actively convecting Earth's mantle and is structurally very complex. For example, large low shear wave velocity provinces (LLSVPs) but also small-scale ultra-low velocity zones (ULVZs) have been detected seismically. Thermal and chemical structures such as thermal plumes and thermochemical piles have been considered to explain the complexities. Both affect the dynamics of the Earth's mantle and its temporal evolution. But also the surface plates are an essential aspect of mantle convection that strongly influence the dynamics of the interior. Cold subducting slabs penetrating the lower boundary layer will also affect the CMB topography. To study the structure and dynamics of the lower mantle we use numerical thermochemical models of mantle convection with a complex rheological approach, including a strong temperature-, stress- and pressure-dependent viscosity. This allows for the investigation of thermal plumes and thermochemical piles in combination with plate-like surface motion and deep subduction. In thermochemical convection dense material is viscously trapped by the flow and piled beneath plumes. The presence of the dense layer reduces the mobility of the surface plates but during plate evolution we find a variety of plume classes (plumes, thermals, line-plumes) leaving a complex structure in the CMB topography.

  9. Thermal Conductivity Of Earth's Deepest Mantle

    NASA Astrophysics Data System (ADS)

    Hofmeister, A. M.

    2006-05-01

    Thermal transport properties in the deep mantle are estimated, due to the lack of suitable samples and difficulties in attaining realistic temperatures: (1)The lattice component of thermal diffusivity (D) is constrained through measurements of dense phases with diverse chemical compositions made using the laser-flash technique, which is accurate (2%) and eliminates spurious direct radiative transfer. Thermal diffusivity is constant once a critical temperature (Tsat) of 1100 to 1500K is exceeded. The saturated mean free path (Lsat, computed from Dsat and sound velocities) nearly equals the primitive lattice parameter A. This relationship is used to estimate temperature independent values of D and klat in the lower mantle. Pressure derivatives are predicted by the damped harmonic oscillator model. (2)An effective thermal conductivity krad due to diffusion of heat by phonons is calculated from near-IR to UV spectra. To represent the internally heated, grainy mantle, our formulation accounts for emissivity depending on frequency, physical scattering depending on grain-size (d), and for reduction of intensity through back-reflections at interfaces. Pressure effects should be insignificant. To obtain krad at high T from perovskite spectra that are taken only at 298K, an approximate analytical solution is derived, which indicates that krad depends nearly linearly on T in the lower mantle. For perovskite (and probably post-pv), krad has a maximum at X=0.05 Fe no. for d=1 mm. At X=0.1, krad is maximized at d=3 mm. Because our approximation does not account for interface reflections, krad is overestimated at large X and d. The maxima would be sharper and shifted to slightly lower values, had this effect been included. Due to grain-size size effects, mainly shortening the mean free path, krad is low for minerals with low spin Fe, for which case a maximumin krad exists at high Fe content. Plumes are expected to form under destabilizing conditions of low thermal conductivity

  10. Thermal conductivity of lower-mantle minerals

    NASA Astrophysics Data System (ADS)

    Goncharov, Alexander F.; Beck, Pierre; Struzhkin, Viktor V.; Haugen, Benjamin D.; Jacobsen, Steven D.

    2009-05-01

    Geodynamic models of heat transport and the thermal evolution of Earth's interior require knowledge of thermal conductivity for high-pressure phases at relevant temperatures and pressures. Here we present new data on radiative and lattice heat transfer in mantle materials determined from optical spectroscopy and time-resolved optical radiometry. The pressure dependence of optical absorption in ferropericlase (Mg,Fe)O, and silicate perovskite (Mg,Fe)SiO 3, has been determined in the IR through UV regions up to 133 GPa. Whereas (Mg,Fe)O exhibits a strong pressure dependence of absorption and spectral changes associated with the high-spin (HS) to low-spin (LS) transition of Fe 2+ [Goncharov, A.F., Struzhkin, V.V., Jacobsen, S.D. 2006. Reduced radiative conductivity of low-spin (Mg,Fe)O in the lower mantle. Science 312, 1205-1208], the pressure dependence of optical absorption in (Mg,Fe)SiO 3 is relatively weak. We observe a moderate increase in absorption with pressure for (Mg,Fe)SiO 3 in the visible and infrared spectral range due to a red-shift of absorption in ultraviolet, however the crystal-field transitions of Fe 2+ become weaker with pressure and disappear above 50 GPa as a result of the HS-LS transition in (Mg,Fe)SiO 3. Intervalence charge-transfer transitions in silicate perovskite shift to higher energies with pressure. The temperature dependence of the optical absorption of (Mg,Fe)O measured up to 65 GPa and 800 K is moderate below 30 GPa and weak above 30 GPa. Thus, the temperature correction of the radiative conductivity is insignificant. The estimated total pressure-dependent radiative conductivity (in approximation of a large grain size) is lower than expected from the pressure extrapolation of the ambient and low-pressure data [Hofmeister, A.M., 1999. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science 283, 1699-1706; Hofmeister, A.M., 2005. Dependence of diffusive radiative transfer on grain-size, temperature, and Fe

  11. Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor.

    PubMed

    Tatsumi, Ryuichi; Liu, Xiaosong; Pulido, Antonio; Morales, Mark; Sakata, Tomowa; Dial, Sharon; Hattori, Akihito; Ikeuchi, Yoshihide; Allen, Ronald E

    2006-06-01

    In the present study, we examined the roles of hepatocyte growth factor (HGF) and nitric oxide (NO) in the activation of satellite cells in passively stretched rat skeletal muscle. A hindlimb suspension model was developed in which the vastus, adductor, and gracilis muscles were subjected to stretch for 1 h. Satellite cells were activated by stretch determined on the basis of 5-bromo-2'-deoxyuridine (BrdU) incorporation in vivo. Extracts from stretched muscles stimulated BrdU incorporation in freshly isolated control rat satellite cells in a concentration-dependent manner. Extracts from stretched muscles contained the active form of HGF, and the satellite cell-activating activity could be neutralized by incubation with anti-HGF antibody. The involvement of NO was investigated by administering nitro-L-arginine methyl ester (L-NAME) or the inactive enantiomer N(G)-nitro-D-arginine methyl ester HCl (D-NAME) before stretch treatment. In vivo activation of satellite cells in stretched muscle was not inhibited by D-NAME but was inhibited by L-NAME. The activity of stretched muscle extract was abolished by L-NAME treatment but could be restored by the addition of HGF, indicating that the extract was not inhibitory. Finally, NO synthase activity in stretched and unstretched muscles was assayed in muscle extracts immediately after 2-h stretch treatment and was found to be elevated in stretched muscle but not in stretched muscle from L-NAME-treated rats. The results of these experiments demonstrate that stretching muscle liberates HGF in a NO-dependent manner, which can activate satellite cells.

  12. Continuous eclogite melting and variable refertilisation in upwelling heterogeneous mantle.

    PubMed

    Rosenthal, Anja; Yaxley, Gregory M; Green, David H; Hermann, Joerg; Kovács, István; Spandler, Carl

    2014-01-01

    Large-scale tectonic processes introduce a range of crustal lithologies into the Earth's mantle. These lithologies have been implicated as sources of compositional heterogeneity in mantle-derived magmas. The model being explored here assumes the presence of widely dispersed fragments of residual eclogite (derived from recycled oceanic crust), stretched and stirred by convection in the mantle. Here we show with an experimental study that these residual eclogites continuously melt during upwelling of such heterogeneous mantle and we characterize the melting reactions and compositional changes in the residue minerals. The chemical exchange between these partial melts and more refractory peridotite leads to a variably metasomatised mantle. Re-melting of these metasomatised peridotite lithologies at given pressures and temperatures results in diverse melt compositions, which may contribute to the observed heterogeneity of oceanic basalt suites. We also show that heterogeneous upwelling mantle is subject to diverse local freezing, hybridization and carbonate-carbon-silicate redox reactions along a mantle adiabat. PMID:25130275

  13. Role of mantle flow in Nubia-Somalia plate divergence

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Iaffaldano, G.; Calais, E.

    2015-01-01

    Present-day continental extension along the East African Rift System (EARS) has often been attributed to diverging sublithospheric mantle flow associated with the African Superplume. This implies a degree of viscous coupling between mantle and lithosphere that remains poorly constrained. Recent advances in estimating present-day opening rates along the EARS from geodesy offer an opportunity to address this issue with geodynamic modeling of the mantle-lithosphere system. Here we use numerical models of the global mantle-plates coupled system to test the role of present-day mantle flow in Nubia-Somalia plate divergence across the EARS. The scenario yielding the best fit to geodetic observations is one where torques associated with gradients of gravitational potential energy stored in the African highlands are resisted by weak continental faults and mantle basal drag. These results suggest that shear tractions from diverging mantle flow play a minor role in present-day Nubia-Somalia divergence.

  14. Density profile of pyrolite under the lower mantle conditions

    SciTech Connect

    Ricolleau, Angele; Fei, Yingwei; Cottrell, Elizabeth; Watson, Heather; Deng, Liwei; Zhang, Li; Fiquet, Guillaume; Auzende, Anne-Line; Roskosz, Mathieu; Morard, Guillaume; Prakapenka, Vitali

    2009-04-13

    The pyrolite model is one of the possible compositions of the Earth's lower mantle. The lower mantle's composition is generally modelled by comparing seismic observations with mineral physics data of possible lower mantle end-member phases. Here, we report the compression behavior of a natural KLB-1 peridotite (a representative composition of the pyrolite model) in a quasi-hydrostatic environment at simultaneous high pressure (P) and temperature (T), covering the entire range of lower mantle P-T conditions up to 112 GPa. This is the first experimentally determined density profile of pyrolite under the lower mantle conditions. The results allow us to directly compare the measured density of peridotite mantle along the geotherm with the Preliminary Reference Earth Model (PREM) derived from seismic observations, without extrapolation. The comparison shows significant mismatch between the two, which calls for a re-evaluation of the PREM density model or a non-pyrolite lower mantle composition.

  15. Continuous eclogite melting and variable refertilisation in upwelling heterogeneous mantle.

    PubMed

    Rosenthal, Anja; Yaxley, Gregory M; Green, David H; Hermann, Joerg; Kovács, István; Spandler, Carl

    2014-08-18

    Large-scale tectonic processes introduce a range of crustal lithologies into the Earth's mantle. These lithologies have been implicated as sources of compositional heterogeneity in mantle-derived magmas. The model being explored here assumes the presence of widely dispersed fragments of residual eclogite (derived from recycled oceanic crust), stretched and stirred by convection in the mantle. Here we show with an experimental study that these residual eclogites continuously melt during upwelling of such heterogeneous mantle and we characterize the melting reactions and compositional changes in the residue minerals. The chemical exchange between these partial melts and more refractory peridotite leads to a variably metasomatised mantle. Re-melting of these metasomatised peridotite lithologies at given pressures and temperatures results in diverse melt compositions, which may contribute to the observed heterogeneity of oceanic basalt suites. We also show that heterogeneous upwelling mantle is subject to diverse local freezing, hybridization and carbonate-carbon-silicate redox reactions along a mantle adiabat.

  16. Continuous eclogite melting and variable refertilisation in upwelling heterogeneous mantle

    PubMed Central

    Rosenthal, Anja; Yaxley, Gregory M.; Green, David H.; Hermann, Joerg; Kovács, István; Spandler, Carl

    2014-01-01

    Large-scale tectonic processes introduce a range of crustal lithologies into the Earth's mantle. These lithologies have been implicated as sources of compositional heterogeneity in mantle-derived magmas. The model being explored here assumes the presence of widely dispersed fragments of residual eclogite (derived from recycled oceanic crust), stretched and stirred by convection in the mantle. Here we show with an experimental study that these residual eclogites continuously melt during upwelling of such heterogeneous mantle and we characterize the melting reactions and compositional changes in the residue minerals. The chemical exchange between these partial melts and more refractory peridotite leads to a variably metasomatised mantle. Re-melting of these metasomatised peridotite lithologies at given pressures and temperatures results in diverse melt compositions, which may contribute to the observed heterogeneity of oceanic basalt suites. We also show that heterogeneous upwelling mantle is subject to diverse local freezing, hybridization and carbonate-carbon-silicate redox reactions along a mantle adiabat. PMID:25130275

  17. Signal intensity of MR-images of thigh muscles following acute open- and closed chain kinetic knee extensor exercise - index of muscle use.

    PubMed

    Enocson, A G; Berg, H E; Vargas, R; Jenner, G; Tesch, P A

    2005-07-01

    Exercise-induced shifts in signal intensity (SI) of magnetic resonance (MR) images were examined to assess indirectly muscle use in closed- and open-chain knee extensor exercises. Eight men performed five sets of 8-12 repetitions in the leg press (LP) and the seated knee extension (KE) exercises at 50, 75 and 100%, respectively of the 5 x 10 repetition maximum (RM) load. Prior to exercise and after each load setting, images of the thigh were obtained. The increase in SI (Delta SI) of the quadriceps at 100% load was greater (P < 0.05) after KE (32.1 +/- 9.0%) than after LP (21.9 +/- 9.2%). Regardless of load, the four individual muscles of the quadriceps showed similar changes in SI after LP. The three vastii muscles showed comparable increases in SI after KE. M. rectus femoris showed greater (P < 0.05) Delta SI than the vastii muscles at 100%. Neither exercise produced increase in SI of mm. semimembranosus, semitendinosus, gracilis or biceps femoris. Mm. adductor magnus and longus showed increased (13.3 +/- 6.5%; P < 0.05) SI after LP, but not after KE, at 100% load. The present data also infer greater involvement of the quadriceps muscle in the open-chain knee extension than in the closed-chain leg press exercise. The results of the current investigation also indicate similar over-all use among the three vastii muscles in LP and KE, but differential m. rectus femoris use between the two exercises. This report extends the merits of the MR imaging technique as an aid to study individual muscle involvement in a particular exercise task. PMID:15918061

  18. Probing terrestrial mantle evolution using Ru isotopes

    NASA Astrophysics Data System (ADS)

    Bermingham, K. R.; Walker, R. J.; Puchtel, I. S.; O'Driscoll, B.

    2013-12-01

    A diversity of materials was likely added to Earth during the late stages of its accretion; however, the specific elemental and isotopic compositions of these contributors are poorly constrained. The efficiency with which these late accreted materials were mixed into the mantle also remains an open question. The highly siderophile element ruthenium (Ru) provides a potentially useful isotopic genetic tracer for late accretionary additions to Earth. Well resolved deficiencies in 100Ru have been reported on the scale of whole-rock samples of meteorites, and are interpreted to stem from the heterogeneous distribution of s-process carrier phases in the solar nebula [1,2]. Isotopically diverse materials are, therefore, likely contributors of late accreted materials to Earth's mantle. Recent isotopic studies have found that major accretionary events (e.g., the Moon-forming giant impact) did not completely homogenize the mantle; thus, long-term preservation of isotopically distinct reservoirs in the mantle might be expected [3]. Identification of isotopically heterogeneous domains in the mantle using Ru isotopic analyses can potentially reveal the nature of different impactors. To investigate the genetics of late accretionary additions and to evaluate the veracity of late accretionary models, we have developed a refined analytical technique for the high-precision measurement of Ru isotopic composition using negative thermal ionization mass spectrometry (N-TIMS). Replicate analyses of an Alfa Aesar Ru standard (n = 56) over the period of several months indicate a current external precision of ×8 ppm (2σ SD) for 100Ru/101Ru. Data are corrected for instrumental mass fractionation using the exponential law and 99Ru/101Ru as the normalizing ratio. Data are also corrected for oxide interferences assuming a natural oxygen isotopic composition. No second order oxygen correction is required [3]. Prior to this study, the highest external precision achieved using standard N-TIMS or

  19. Lunar maria - result of mantle plume activity?

    NASA Astrophysics Data System (ADS)

    Sharkov, E.

    It is generally accepted that lunar maria are the result of catastrophic impact events. However, comparative studying of the Earth's and the Moon's tectonomagmatic evolution could evidence about another way of these specific structures origin. Such studies showed that the both planetary bodies evolved on the close scenario: their geological development began after solidification of global magmatic oceans which led to appearance of their primordial crusts: granitic on the Earth and anorthositic - on the Moon. The further evolution of the both bodies occurred in two stages. For their first stages, lasted ˜2.5 mlrd. years on the Earth and ˜1.5 mlrd. years on the Moon, were typical melts, generated in depleted mantle (Bogatikov et al., 2000). However, at the boundary 2.2-2.0 Ga ago on the Earth and 3.9-3.8 Ga on the Moon another type of magmas appeared: geochemical enriched Fe-Ti picrites and basalts, characteristic for the terrestrial Phanerozoic plume-related situations, and basaltic mare magmatism with high-Ti varieties on the Moon. It suggests that evolution of the Earth's magmatism was linked with ascending of mantle plumes (superplumes) of two generation: (1) generated in the mantle, depleted during solidification of magmatic ocean and Archean magmatic activity, and (2) generated at the core-mantle boundary (CMB). The latter were enriched in the mantle fluid components (Fe, Ti, alkalies, etc); this lighter material could ascend to shallower depths, leading to change of tectonic processes, in particular, to appearance of plate tectonics as the major type of tectonomagmatic activity till now (Bogatikov et al., 2000). By analogy to the Earth, magmatism of the Moon was also linked with ascending of mantle plumes: (1) generated in the depleted mantle (magnesian suite) and (2) generated at the lunar CMB with liquid at that time metallic core (mare basalt and picrites with high-Ti varieties). Like on the Earth, these plumes were lighter than the older plumes, and

  20. Iron spin transition in Earth's mantle

    SciTech Connect

    Speziale, S.; Milner, A.; Lee, V. E.; Clark, S. M.; Pasternak, M. P.; Jeanloz, R.

    2015-02-06

    High-pressure Mössbauer spectroscopy on several compositions across the (Mg,Fe)O magnesiowüstite solid solution confirms that ferrous iron (Fe2+) undergoes a high-spin to low-spin transition at pressures and for compositions relevant to the bulk of the Earth's mantle. High-resolution x-ray diffraction measurements document a volume change of 4–5% across the pressure-induced spin transition, which is thus expected to cause seismological anomalies in the lower mantle. The spin transition can lead to dissociation of Fe-bearing phases such as magnesiowüstite, and it reveals an unexpected richness in mineral properties and phase equilibria for the Earth's deep interior.

  1. Clinical Management Updates in Mantle Cell Lymphoma.

    PubMed

    Chen, Robert; Sanchez, James; Rosen, Steven T

    2016-04-01

    Mantle cell lymphoma is an aggressive B-cell non-Hodgkin lymphoma that is often considered incurable. Different clinical and biological biomarkers can be utilized to categorize this lymphoma into various risk levels. Several randomized trials reported in 2015 shed light on the optimal induction therapy. Recent advances include: (1) identification of new pathways to target, (2) novel therapeutics to treat patients with relapsed/refractory disease, and (3) monitoring of minimal residual disease and adoption of a maintenance therapy approach to prevent relapses post induction or post stem cell transplantation. Due to the efforts of translational/clinical research, the overall survival of patients with mantle cell lymphoma has increased and should continue to improve. PMID:27083466

  2. Primordial metallic melt in the deep mantle

    NASA Astrophysics Data System (ADS)

    Zhang, Zhou; Dorfman, Susannah M.; Labidi, Jabrane; Zhang, Shuai; Li, Mingming; Manga, Michael; Stixrude, Lars; McDonough, William F.; Williams, Quentin

    2016-04-01

    Seismic tomography models reveal two large low shear velocity provinces (LLSVPs) that identify large-scale variations in temperature and composition in the deep mantle. Other characteristics include elevated density, elevated bulk sound speed, and sharp boundaries. We show that properties of LLSVPs can be explained by the presence of small quantities (0.3-3%) of suspended, dense Fe-Ni-S liquid. Trapping of metallic liquid is demonstrated to be likely during the crystallization of a dense basal magma ocean, and retention of such melts is consistent with currently available experimental constraints. Calculated seismic velocities and densities of lower mantle material containing low-abundance metallic liquids match the observed LLSVP properties. Small quantities of metallic liquids trapped at depth provide a natural explanation for primitive noble gas signatures in plume-related magmas. Our model hence provides a mechanism for generating large-scale chemical heterogeneities in Earth's early history and makes clear predictions for future tests of our hypothesis.

  3. Seismic Q of the lunar upper mantle

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Koyama, J.

    1982-01-01

    Shallow moonquake data are used to determine the frequency dependence of Q values for both compressional and shear waves in the upper mantle of the moon at frequencies between 3 and 8 Hz. The seismic P wave Q is estimated to be at least 4000 and is nearly independent of frequency or decreases slightly with increasing frequency, while the S wave Q increases from at least 4000 at 3 Hz to at least 7000 at 8 Hz. The rate of increase of Q(S) is approximately proportional to the 0.7 + or - 0.1 power of the frequency above 5 Hz. With the absence of other dissipation mechanisms, compressional heat loss may be a dominant factor in the lunar interior. Uncertainty remains, however, in the absolute values of Q's owing to the largely unknown detailed structure of the lunar upper mantle.

  4. Seismic Q of the lunar upper mantle

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Koyama, J.

    1982-06-01

    Shallow moonquake data are used to determine the frequency dependence of Q values for both compressional and shear waves in the upper mantle of the moon at frequencies between 3 and 8 Hz. The seismic P wave Q is estimated to be at least 4000 and is nearly independent of frequency or decreases slightly with increasing frequency, while the S wave Q increases from at least 4000 at 3 Hz to at least 7000 at 8 Hz. The rate of increase of Q(S) is approximately proportional to the 0.7 + or - 0.1 power of the frequency above 5 Hz. With the absence of other dissipation mechanisms, compressional heat loss may be a dominant factor in the lunar interior. Uncertainty remains, however, in the absolute values of Q's owing to the largely unknown detailed structure of the lunar upper mantle.

  5. Early mantle differentiation and its thermal consequences

    SciTech Connect

    Galer, S.J.G. Max-Planck-Institut fuer Chemie, Mainz ); Goldstein, S.L. )

    1991-01-01

    Initial positive {epsilon}{sub Nd} values of early Archean continental crust imply derivation from depleted mantle sources. A balancing enriched region is therefore required to exist contemporaneously somewhere on the Earth during the early Archean. It is shown that the enriched reservoir must contain a large proportion ({approximately}30-70%) of the total Nd budget of the differentiated system, even it is was formed only shortly after the accretion of the Earth. This amount of Nd is comparable to or greater than the present-day continental inventory relative to the upper mantle. If this enriched reservoir was continental crust, the small proportion of surviving early Archean continent requires that nearly all of it was destroyed. However, surviving Archean metasediments and granites, in general, have primitive or depleted initial Sr and Nd isotopic compositions, and this does not suggest the existence of a large continental crust at this time. Therefore, there is considerable difficulty reconciling this with a plate tectonic regime in which isentropic melting due to plate spreading occurred to the near surface. The authors propose that no significant plate spreading occurred. In this case, an alkalic crust of basalt would be produced because any isentropic melting in the mantle would be of much more limited extent than occurs beneath ocean ridges. A crust built up serially in this way, rather than laterally, appears the most likely candidate for the enriched reservoir balancing the positive {epsilon}{sub Nd} values of the depleted mantle in the early to middle Archean. The existence of such a layer has important implications for the thermal and tectonic history of the Earth.

  6. Episodic Earth Evolution: a Mantle Geodynamic Model

    NASA Astrophysics Data System (ADS)

    Davaille, A.; Arndt, N.

    2008-12-01

    Three major regimes of crust-mantle evolution are recorded in U-Pb ages of zircons in granites and large rivers. Plate tectonics operated in the first stage, from ~4.4 to 2.7 Ga; huge peaks of crustal growth separated by long troughs dominated the second stage, from 2.7 to 1.8 Ga, and semi-continuous growth punctuated by large peaks characterized the last stage, from 1.8 to 0 Ga. Individual peaks in the second stage, at 2.7, 2.5, 2.1 and 1.8 Ga, open with massive mafic-ultramafic volcanism and climax 30 m.y. later with intrusion of voluminous granitoids: each peak was initiated by enhanced mantle plume activity, culminated with accelerated plate tectonics that produced large amounts of granitoid crust, and was followed by a long period of diminished tectonic activity. New fluid-mechanics experiments show that this second regime could have resulted from destabilization of a hot dense layer at the bottom of the lower mantle. Domes rising from this layer partially melt to form voluminous mafic magmas, and also trigger enhanced subduction. The first pulse of thermochemical instabilities was synchronous over the whole mantle, like the major 2.7 Ga crustal- growth peak, and later pulses were more disorganized, like the later peaks. During each peak, enhanced subduction removes quickly the upper cold thermal boundary layer: it is therefore followed by an inter-peak period of diminished activity, during which the cold boundary layer is growing again. This episodic evolution closely links continental growth and the extraction of heat from the core. In particular, the onset of the second regim could have been decisive for the timing of the inner core crystallization and the establishment of today's core dynamo regim.

  7. Hydrogen storage in Earth's mantle and core

    NASA Technical Reports Server (NTRS)

    Prewitt, Charles T.

    1994-01-01

    Two different approaches to explaining how hydrogen might be stored in the mantle are illustrated by a number of papers published over the past 25-30 years, but there has been little attempt to provide objective comparisons of the two. One approach invokes the presence in the mantle of dense hydrous magnesium silicates (DHMS) stable at elevated pressures and temperatures. The other involves nominally anhydrous minerals (NAM) that contain hydrogen as a minor constituent on the ppm level. Experimental studies on DHMS indicate these phases may be stable to pressures and temperatures as high at 16 GPa and 1200 C. This temperature is lower than that indicated by a mantle geotherm at 16 GPa, but may be reasonable for a subducting slab. It is possible that other DHMS could be stable to even higher pressures, but little is known about maximum temperature limits. For NAM, small amounts of hydrogen (up to several hundred ppm) have been detected in olivine, orthopyroxene, clinopyroxene, and garnet recovered from xenoliths in kimberlites, eclogites, and alkali basalts; it has been demonstrated that synthetic wadsleyite and perovskite can accommodate significant amounts of hydrogen. A number of problems are associated with each possibility. For NAM originating in the mantle, one would like to assume that the hydrogen measured in samples recovered on Earth's surface was incorporated when the phase-crystallized at high temperatures and pressures, but it could have been introduced during transport to the surface. Major problems for the DHMS proponents are that none of these phases have been found as minerals and little is yet known about their stabilities in systems containing other cations such as Fe, Al, and Ca.

  8. The Mantle Beneath Southern Africa: Insights from Seismic Tomography and Mantle Xenoliths

    NASA Astrophysics Data System (ADS)

    James, D. E.; Bell, D. R.; Boyd, F.; Schutt, D.; Carlson, R. W.

    2004-05-01

    We impose geologic constraints on computed tomographic structure of the upper mantle beneath southern Africa by calculating seismic velocities and rock densities from approximately 120 geothermobarometrically calibrated mantle xenoliths from the Archean Kaapvaal craton and adjacent Proterozoic mobile belts. Velocity and density estimates are based on the elastic and thermal moduli of constituent minerals under equilibrium P-T conditions at the mantle source. The largest sources of error in the velocity estimates derive from inaccurate thermo-barometry and, to a lesser extent, from uncertainties in the elastic constants of the constituent minerals. We show that seismic velocity variations between cratonic and non-cratonic xenoliths are controlled dominantly by differences in calculated temperatures, with compositional effects secondary. Different temperature profiles between cratonic and non-cratonic regions have a relatively minor influence on density, where composition remains the dominant control. Low-T cratonic xenoliths exhibit a positive velocity-depth curve, rising from about 8.13 km/s at uppermost mantle depths to about 8.25 km/s at 180-km depth. S-wave velocities decrease slightly over the same depth interval, from about 4.7 km/s in the uppermost mantle to 4.65 km/s at 180-km depth. P and S-wave velocities for high-T lherzolites are highly scattered, ranging from highs close to those of the low-T xenoliths to lows of 8.05 km/s and 4.5 km/s at depths in excess of 200 km. These low velocities, while not asthenospheric, are inconsistent with seismic tomographic images that indicate high velocity root material extending to depths of at least 250 km. The high-T mantle xenoliths, most of which were erupted ca 80-90 Ma, appear to have been affected by localized non-equilibrium thermal perturbations occurring around the time of the kimberlite eruption as well as by compositional modifications associated with emplacement of metasomatic fluids into the deep

  9. Os and HSE of the hot upper mantle beneath southern Tibet: Indian mantle affinity?

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Dale, C. W.; Pearson, D. G.; Niu, Y.; Zhu, D.; Mo, X.

    2011-12-01

    The subduction of the Indian plate (including cratonic continental crust and/or upper mantle) beneath southern Tibet is widely accepted from both geological and geophysical studies. Mantle-derived xenoliths from this region provide a means of directly investigating the mantle underlying the southern part of the plateau. Studies of xenoliths hosted in the Sailipu ultrapotassic volcanic rocks, erupted at ~17 Ma, have indicated that the subcontinental mantle of southern Tibetan Plateau is hot and strongly influenced by metasomatism (Zhao et al., 2008a, b; Liu et al., 2011). Here we report comprehensive EPMA and LA-ICP-MS major and trace element data for the Sailipu xenoliths and also whole rock Os isotope and HSE data in order to constrain the depletion history of the mantle and to identify the presence of any potential Indian cratonic mantle. The xenoliths, ranging in size from 0.5cm to 1.5cm in diameter, are mostly peridotites. The calculated temperatures are 1010-1230°C at the given pressures of ~1.6-2.0 GPa (n=47). These P-T conditions are similar to rift-related upper mantle regimes (e.g. Kenya), indicating the influence of regional extension beneath southern Tibet in the Miocene. A series of compositional discriminations for minerals (Cpx, Opx, Ol, and Phl), e.g. Fo<90, suggest that the xenoliths are non-cratonic spinel-peridotite (cratonic peridotite olivine Fo> ~91), with a clear metasomatic signature We obtained Os isotope data and abundances of highly siderophile elements (HSE, including Os, Ir, Ru, Pt, Pd and Re) on a set of six olivine-dominated peridotite samples from Sailipu volcanics, less than 1 cm in dimension. They allow us to further constrain the nature and state of the upper mantle beneath the southern Tibet. Sailipu samples display low total HSE abundances (Os+Ir+Ru+Pt+Pd+Re) ranging from 8.7 to 25 ppb, with nearly constant Os, Ir , and Ru, but rather varied Pt (2-13), Pd (0.4-5.2), and Re (0.01-0.5). Chondrite-normalised Pd/Ir ratios range from

  10. Surface and Mantle Expression of the Early Permian Tarim Mantle Plume

    NASA Astrophysics Data System (ADS)

    Chen, Mimi; Tian, Wei

    2015-04-01

    The mantle process during the Early Permian Tarim plume event is revealed by flood basalt and mantle xenoliths. Permian Tarim flood basalts have typical two pulses' eruption. The first pulse of the Tarim flood basalt was erupted at 291-290Ma, characterized by OIB-like Zr/Nb (~5.83), Nb/La and Ce/Pb ratios, and PUM-like initial 187Os/188Os ratios (0.1308-0.1329). They're plotted along a 290±11Ma isochron, implying a pristine "plume mantle" source. The second pulse of the Tarim flood basalt was erupted at 283-281 Ma, with Zr/Nb (~13.6), Nb/La and Ce/Pb ratios similar or close to the lower crust and initial 187Os/188Os ratios (0.1743~19.6740) that deviated from the ~290 Ma isochron line, indicative of significant crustal assimilation. Mantle-derived peridotite and pyroxenite xenoliths hosted in Cenozoic alkali basalts (~20 Ma) are found in the Xikeer, western Tarim Block. Based on their petrographic and geochemical characteristics, peridotite xenoliths can be divided into three groups. Group 1 peridotites, with the presence of the high Mg-number of olivines (91-93) and spinel-pyroxenes clusters, experienced high-degree melt extraction (~17% fractional melting) from garnet- to spinel-stable field. Groups 2 and 3 peridotites, characterized by the clinopyroxenes with spoon-shaped and highly fractionated REE patterns respectively, underwent extensive silicate melt metasomatism at low melt/rock ratios (15) and that the host basanite is incapable of being the metasomatic agent. The Re-Os isotopic systematics of the Xikeer peridotites and pyroxenites yield an isochron of 290±11 Ma, virtually identical to the age of Tarim flood basalts. Their PUM-like Os initial ratios and convecting mantle-like ɛNd(t=290 Ma) strongly suggest that the Xikeer mantle xenoliths derive from the plume mantle. We propose that the Xikeer xenolith suite recorded mantle 'auto-refertilization' process, i.e., they may have been initially formed by melt extraction from the convecting mantle and

  11. Earth's oldest mantle fabrics indicate Eoarchaean subduction.

    PubMed

    Kaczmarek, Mary-Alix; Reddy, Steven M; Nutman, Allen P; Friend, Clark R L; Bennett, Vickie C

    2016-01-01

    The extension of subduction processes into the Eoarchaean era (4.0-3.6 Ga) is controversial. The oldest reported terrestrial olivine, from two dunite lenses within the ∼3,720 Ma Isua supracrustal belt in Greenland, record a shape-preferred orientation of olivine crystals defining a weak foliation and a well-defined lattice-preferred orientation (LPO). [001] parallel to the maximum finite elongation direction and (010) perpendicular to the foliation plane define a B-type LPO. In the modern Earth such fabrics are associated with deformation of mantle rocks in the hanging wall of subduction systems; an interpretation supported by experiments. Here we show that the presence of B-type fabrics in the studied Isua dunites is consistent with a mantle origin and a supra-subduction mantle wedge setting, the latter supported by compositional data from nearby mafic rocks. Our results provide independent microstructural data consistent with the operation of Eoarchaean subduction and indicate that microstructural analyses of ancient ultramafic rocks provide a valuable record of Archaean geodynamics. PMID:26879892

  12. Mantle updrafts and mechanisms of oceanic volcanism.

    PubMed

    Anderson, Don L; Natland, James H

    2014-10-14

    Convection in an isolated planet is characterized by narrow downwellings and broad updrafts--consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism. PMID:25201992

  13. Oceanic slab melting and mantle metasomatism.

    PubMed

    Scaillet, B; Prouteau, G

    2001-01-01

    Modern plate tectonic brings down oceanic crust along subduction zones where it either dehydrates or melts. Those hydrous fluids or melts migrate into the overlying mantle wedge trigerring its melting which produces arc magmas and thus additional continental crust. Nowadays, melting seems to be restricted to cases of young (< 50 Ma) subducted plates. Slab melts are silicic and strongly sodic (trondhjemitic). They are produced at low temperatures (< 1000 degrees C) and under water excess conditions. Their interaction with mantle peridotite produces hydrous metasomatic phases such as amphibole and phlogopite that can be more or less sodium rich. Upon interaction the slab melt becomes less silicic (dacitic to andesitic), and Mg, Ni and Cr richer. Virtually all exposed slab melts display geochemical evidence of ingestion of mantle material. Modern slab melts are thus unlike Archean Trondhjemite-Tonalite-Granodiorite rocks (TTG), which suggests that both types of magmas were generated via different petrogenetic pathways which may imply an Archean tectonic model of crust production different from that of the present-day, subduction-related, one. PMID:11838241

  14. Earth's oldest mantle fabrics indicate Eoarchaean subduction

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Mary-Alix; Reddy, Steven M.; Nutman, Allen P.; Friend, Clark R. L.; Bennett, Vickie C.

    2016-02-01

    The extension of subduction processes into the Eoarchaean era (4.0-3.6 Ga) is controversial. The oldest reported terrestrial olivine, from two dunite lenses within the ~3,720 Ma Isua supracrustal belt in Greenland, record a shape-preferred orientation of olivine crystals defining a weak foliation and a well-defined lattice-preferred orientation (LPO). [001] parallel to the maximum finite elongation direction and (010) perpendicular to the foliation plane define a B-type LPO. In the modern Earth such fabrics are associated with deformation of mantle rocks in the hanging wall of subduction systems; an interpretation supported by experiments. Here we show that the presence of B-type fabrics in the studied Isua dunites is consistent with a mantle origin and a supra-subduction mantle wedge setting, the latter supported by compositional data from nearby mafic rocks. Our results provide independent microstructural data consistent with the operation of Eoarchaean subduction and indicate that microstructural analyses of ancient ultramafic rocks provide a valuable record of Archaean geodynamics.

  15. Mantle updrafts and mechanisms of oceanic volcanism.

    PubMed

    Anderson, Don L; Natland, James H

    2014-10-14

    Convection in an isolated planet is characterized by narrow downwellings and broad updrafts--consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism.

  16. Density profile of pyrolitic lower mantle

    NASA Astrophysics Data System (ADS)

    Sinmyo, R.; Hirose, K.; Ohishi, Y.

    2010-12-01

    Density profile of pyrolite at lower mantle high-pressure (P) and -temperature (T) conditions was investigated by using laser-heated diamond-anvil cell up to 117 GPa and 2800 K. The density was determined from chemical composition and unit-cell volume of each constituent mineral (MgSiO3-rich perovskite, ferropericlase and CaSiO3-rich perovskite). The chemical compositions of coexisting phases were analyzed by transmission electron microscope, and their volumes were obtained by in-situ X-ray diffraction measurements. To avoid extensive chemical segregation during laser-heating, sample was coated by gold that worked as a laser absorber (Sinmyo and Hirose 2010 PEPI). Results of chemical analyses show that Mg-Fe (total Fe) partitioning coefficient between MgSiO3-rich perovskite and ferropericlase [K* = (Fe*/Mg)Pv/(Fe*/Mg)Fp] is about 0.6, slightly higher than the value previously reported in the pyrolitic bulk composition (Murakami et al. 2005 GRL). The lower K* value in the previous study may be attributed to the chemical heterogeneity in the sample induced by strong temperature gradient during laser heating. The calculated density profile of pyrolite is indeed in good agreement with the PREM model within experimental errors, in contrast with the mismatch reported by the previous study (Ricolleau et al. 2009 GRL). Our results support the lower mantle has pyrolitic bulk composition, and thus it is not necessary to suppose the chemically stratification in the lower mantle.

  17. Echocardiographic Assessment of Mantle Radiation Mitral Stenosis.

    PubMed

    Bastiaenen, Rachel; Sneddon, James; Sharma, Rajan

    2016-02-01

    The long-term sequelae of mantle radiotherapy include lung disease and cardiac disorders. Dyspnea on exertion is a common complaint and can be due to one or more pathologies. We describe a case of mantle radiotherapy-induced mitral stenosis, characterized by aorto-mitral continuity calcification and absent commissural fusion which precludes balloon valvotomy. The latency period is long, and this patient presented 42 years after radiotherapy. Importantly, as previously described with radiation-induced valve disease, significant mitral stenosis developed 10 years after surgery for significant aortic stenosis. Two-dimensional and three-dimensional transthoracic and transesophageal echocardiography should be considered during assessment of symptomatic survivors of Hodgkin's disease where the index of suspicion for valvular stenosis increases over time. Given the natural history of mantle radiation valvular disease, a lower threshold for surgical intervention in radiation-induced mitral stenosis may need to be considered if cardiac surgery is planned for other reasons in order to avoid repeated sternotomy in patients with prior irradiation. PMID:26493026

  18. Earth's oldest mantle fabrics indicate Eoarchaean subduction

    PubMed Central

    Kaczmarek, Mary-Alix; Reddy, Steven M.; Nutman, Allen P.; Friend, Clark R. L.; Bennett, Vickie C.

    2016-01-01

    The extension of subduction processes into the Eoarchaean era (4.0–3.6 Ga) is controversial. The oldest reported terrestrial olivine, from two dunite lenses within the ∼3,720 Ma Isua supracrustal belt in Greenland, record a shape-preferred orientation of olivine crystals defining a weak foliation and a well-defined lattice-preferred orientation (LPO). [001] parallel to the maximum finite elongation direction and (010) perpendicular to the foliation plane define a B-type LPO. In the modern Earth such fabrics are associated with deformation of mantle rocks in the hanging wall of subduction systems; an interpretation supported by experiments. Here we show that the presence of B-type fabrics in the studied Isua dunites is consistent with a mantle origin and a supra-subduction mantle wedge setting, the latter supported by compositional data from nearby mafic rocks. Our results provide independent microstructural data consistent with the operation of Eoarchaean subduction and indicate that microstructural analyses of ancient ultramafic rocks provide a valuable record of Archaean geodynamics. PMID:26879892

  19. Oceanic slab melting and mantle metasomatism.

    PubMed

    Scaillet, B; Prouteau, G

    2001-01-01

    Modern plate tectonic brings down oceanic crust along subduction zones where it either dehydrates or melts. Those hydrous fluids or melts migrate into the overlying mantle wedge trigerring its melting which produces arc magmas and thus additional continental crust. Nowadays, melting seems to be restricted to cases of young (< 50 Ma) subducted plates. Slab melts are silicic and strongly sodic (trondhjemitic). They are produced at low temperatures (< 1000 degrees C) and under water excess conditions. Their interaction with mantle peridotite produces hydrous metasomatic phases such as amphibole and phlogopite that can be more or less sodium rich. Upon interaction the slab melt becomes less silicic (dacitic to andesitic), and Mg, Ni and Cr richer. Virtually all exposed slab melts display geochemical evidence of ingestion of mantle material. Modern slab melts are thus unlike Archean Trondhjemite-Tonalite-Granodiorite rocks (TTG), which suggests that both types of magmas were generated via different petrogenetic pathways which may imply an Archean tectonic model of crust production different from that of the present-day, subduction-related, one.

  20. Mantle updrafts and mechanisms of oceanic volcanism

    PubMed Central

    Anderson, Don L.; Natland, James H.

    2014-01-01

    Convection in an isolated planet is characterized by narrow downwellings and broad updrafts—consequences of Archimedes’ principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism. PMID:25201992

  1. Mantle updrafts and mechanisms of oceanic volcanism

    NASA Astrophysics Data System (ADS)

    Anderson, Don L.; Natland, James H.

    2014-10-01

    Convection in an isolated planet is characterized by narrow downwellings and broad updrafts-consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism.

  2. Water in Earth's mantle: Hydrogen analysis of mantle olivine, pyroxenes and garnet using the SIMS

    NASA Technical Reports Server (NTRS)

    Kurosawa, Masanori; Yurimoto, Hisayoshi; Sueno, Shigeho

    1993-01-01

    Hydrogen (or water) in the Earth's interior plays a key role in the evolution and dynamics of the planet. However, the abundance and the existence form of the hydrogen have scarcely been clear in practice. Hydrogen in the mantle was incorporated in the interior during the formation of the Earth. The incorporated hydrogen was hardly possible to concentrate locally inside the Earth considering its high mobility and high reactivity. The hydrogen, preferably, could be distributed homogeneously over the mantle and the core by the subsequent physical and chemical processes. Therefore, hydrogen in the mantle could be present in the form of trace hydrogen in nominally anhydrous mantle minerals. The hydrogen and the other trace elements in mantle olivines, orthopyroxenes, clinopyroxenes, and garnets were determined using secondary ion mass spectrometry (SIMS) for elucidating (1) the exact hydrogen contents, (2) the correlation between the hydrogen and the other trace elements, (3) the dependence of the hydrogen contents on the depth, and (4) the dependence of the whole rock water contents on the depth.

  3. Sevoflurane enhances neuromuscular blockade by increasing the sensitivity of skeletal muscle to neuromuscular blockers

    PubMed Central

    Ye, Ling; Zuo, Yunxia; Zhang, Peng; Yang, Pingliang

    2015-01-01

    The aim of this study was to investigate the effects of sevoflurane on skeletal muscle contractility. In the first part, twenty-two American Society of Anesthesiology (ASA I-II) female adult patients undergoing elective hysterectomy surgery inhaled sevoflurane 1.0, 1.5 and 2.0 minimum alveolar concentrations (MAC) in succession. Neuromuscular function was assessed at each dose. In the second part, forty-four ASA I-II female adult patients were randomized into four groups: group 1 (propofol + atracurium, sevoflurane 0 MAC), and groups 2 to 4 (atracurium + sevoflurane 1.0, 1.5 and 2.0 MAC, respectively). In group 1, patients were anesthetized by propofol. Then 0.01 mg/kg atracurium was injected into the tested arm intravenously after the arterial blood flow was blocked using a tourniquet. For the other 3 groups, patients inhaled 1.0 MAC, 1.5 MAC, or 2.0 MAC of sevoflurane. Then 0.01 mg/kg atracurium was injected. Neuromuscular function was recorded for the 4 groups. Neuromuscular function was assessed by acceleromyography measurement of evoked responses to train-of four (TOF) stimuli (2 Hz for 2 s applied every 12 s) at the adductor pollicis using a TOF-GuardTM neuromuscular transmission monitor. Amplitudes of first response (T1) in each TOF sequence and the ratios of fourth TOF response (T4) to the first were similar at 1.0 MAC, 1.5 MAC, and 2.0 MAC sevoflurane. Compared to baseline, there was no significant change in the TOF value after inhaling 1.0 MAC, 1.5 MAC, or 2.0 MAC sevoflurane. Compared to group 1, there was no significant difference in atracurium onset time (time to reach TOF ratio = 0.25) in group 2 ( 5.6 ± 1.8 min vs. 6.5 ± 1.7 min, P>0.05), or degree of adductor pollicis block (subject number with TOF ratio = 0, 5 vs. 2 subjects, p = 0.3). However, inhaling 1.5 or 2.0 MAC sevoflurane decreased atracurium onset time (4.6 ± 1.5 min and 4.0 ± 1.3 min vs. 6.5 ± 1.7 min, P<0.01 and P<0.001, respectively), and enhanced the block degree (9 and 10 vs. 2

  4. The effect of water to mantle rheology and convection

    NASA Astrophysics Data System (ADS)

    Brändli, Stefan

    2016-04-01

    Water has a significant influence to mantle rheology and therefore also to the convection of the mantle and the plate tectonics. The viscosity of the mantle can be decreased by up to two orders of magnitude when water is present. Another effect of the water is the change in the solidus of the mantle and therefore the melting regime. These two effects of water in the mantle have a significant influence on mantle convection and plate tectonics. The influx of water to the mantle is driven by plate tectonics as wet oceanic lithosphere is subducted into the mantle, then water is brought back to the lithosphere and the surface by MOR-, arc- and hotspot volcanism. Studies show that the amount of water in the mantle is about three times bigger than the water in the oceans. To model this water cycle multiple additions to our simulation code StagYY are necessary. A water diffusion to complement the water transport due to advection, and water dependent viscosity law are implemented. This additions to StagYY will be followed by implementations of a pressure-temperature law for maximum water content, additional transport mechanisms for water, water dependent solidus functions and the implementation of recent values for plate velocities and water capacities in subducting slabs. This will allow us to research the influence of water to the mantle convection and rheology over the past 200Ma.

  5. Pattern recognition constrains mantle properties, past and present

    NASA Astrophysics Data System (ADS)

    Atkins, S.; Rozel, A. B.; Valentine, A. P.; Tackley, P.; Trampert, J.

    2015-12-01

    Understanding and modelling mantle convection requires knowledge of many mantle properties, such as viscosity, chemical structure and thermal proerties such as radiogenic heating rate. However, many of these parameters are only poorly constrained. We demonstrate a new method for inverting present day Earth observations for mantle properties. We use neural networks to represent the posterior probability density functions of many different mantle properties given the present structure of the mantle. We construct these probability density functions by sampling a wide range of possible mantle properties and running forward simulations, using the convection code StagYY. Our approach is particularly powerful because of its flexibility. Our samples are selected in the prior space, rather than being targeted towards a particular observation, as would normally be the case for probabilistic inversion. This means that the same suite of simulations can be used for inversions using a wide range of geophysical observations without the need to resample. Our method is probabilistic and non-linear and is therefore compatible with non-linear convection, avoiding some of the limitations associated with other methods for inverting mantle flow. This allows us to consider the entire history of the mantle. We also need relatively few samples for our inversion, making our approach computationally tractable when considering long periods of mantle history. Using the present thermal and density structure of the mantle, we can constrain rheological and compositional parameters such as viscosity and yield stress. We can also use the present day mantle structure to make inferences about the initial conditions for convection 4.5 Gyr ago. We can constrain initial mantle conditions including the initial concentration of heat producing elements in the mantle and the initial thickness of primordial material at the CMB. Currently we use density and temperature structure for our inversions, but we can

  6. Integrative Analysis of Mantle Lithosphere Rheology

    NASA Astrophysics Data System (ADS)

    Hirth, G.; Collins, J. A.; Molnar, P. H.; Kelemen, P. B.

    2014-12-01

    We will present an analysis of the rheology of mantle lithosphere based on extrapolation of lab-based flow laws, microstructural characterization of mantle shear zones and xenoliths, and the spatial distribution of mantle earthquakes and seismic anisotropy. As a starting point, we illustrate the similarity in the evolution of olivine lattice preferred orientation (LPO) for cm-scale lab samples (e.g., Zhang et al., 2000) and 100 meter-scale shear zones (e.g., Warren et al., 2008; Skemer et al., 2010). This correlation provides strong support for the extrapolation of lab data in both time and scale. The extrapolation of these results to plate-scale processes is supported by the analysis of shear wave splitting across the Alpine Fault on the South Island of New Zealand and its surrounding ocean basins (Zietlow et al., 2014). For the same region, the similarity in the fast Pn azimuth with the fast shear wave polarization directions indicates high strain deformation of relatively cold (~500-700oC) mantle lithosphere across a region 100-200 km wide (Collins and Molnar, 2014). This latter observation suggests that the lithosphere is significantly weaker than predicted by the extrapolation of dislocation creep or Peierls creep flow laws. Weakening via promotion of grain size sensitive creep mechanisms (diffusion creep and DisGBS) is likely at these conditions; however, studies of exhumed mantle shear zones generally indicate that the activation of these processes leads to strain localization at scales <<200 km. These observations motivate us to consider rheological constraints derived from geodetic studies and earthquake depths in regions where deformation of the lithosphere occurs at similar conditions. At face value, these data provide additional support for the extrapolation of lab data; the depth extent of earthquakes is consistent with estimates for the conditions where a transition from stable to unstable frictional sliding occurs (e.g., Boettcher et al., 2007) - and

  7. Asthenospheric Mantle Flow by Viscous Fingering Instabilities

    NASA Astrophysics Data System (ADS)

    Weeraratne, D. S.; Parmentier, E.

    2010-12-01

    We investigate mantle flow in the oceanic asthenospheric by lateral flow of viscous fingering instabilities. In this model, the asthenosphere acts as a channel for mantle flow from an off axis source to the spreading center, perhaps on a global scale. This phenomenon may be observed by linear chains of intraplate volcanism on young seafloor near ridge axes where we suggest asthenospheric fingering material may induce melting beneath thin lithosphere. We perform laboratory fluid experiments of viscous fingering in miscible high viscosity fluids which flow radially through a Hele-Shaw cell. Fluids with low Reynolds number provide scaling to the Earth's mantle where viscous forces dominate and chemical diffusion is slow. We find that viscous fingers are well developed in this geodynamic regime with the fingering wavelength (λ f) controlled by viscous dissipation in the displaced fluid. Fingering patterns approach a constant wavelength after an initial growth phase and depend on plate spacing (B) as {λ f} = 12B. We also observe the formation of a film layer surrounding low viscosity fingers as they propagate. When density differences exist between the two fluids, the film layer above the finger is higher density, inherently unstable, and begins to downwell as a Rayleigh-Taylor instabilities observed in shadowgraphs as white striations within each finger that are linear and regularly spaced. We find the wavelength of striations ({λ st}) scales with finger growth as {λ st}= 4 {λ f}. The application of a moving surface plate is observed to align all fingers in a linear direction parallel to plate motion both downstream and upstream. These experiments suggest that mantle flow in the Earth's asthenosphere may be exhibit instabilities governed by viscous fingering if sufficient viscosity variations are present between the depleted asthenosphere and the introduction of low viscosity, volatile rich, off-axis plume material. This viscous fingering model predicts a

  8. Water in the Cratonic Mantle Lithosphere

    NASA Technical Reports Server (NTRS)

    Peslier, A. H.

    2016-01-01

    The fact that Archean and Proterozoic cratons are underlain by the thickest (>200 km) lithosphere on Earth has always puzzled scientists because the dynamic convection of the surrounding asthenosphere would be expected to delaminate and erode these mantle lithospheric "keels" over time. Although density and temperature of the cratonic lithosphere certainly play a role in its strength and longevity, the role of water has only been recently addressed with data on actual mantle samples. Water in mantle lithologies (primarily peridotites and pyroxenites) is mainly stored in nominally anhydrous minerals (olivine, pyroxene, garnet) where it is incorporated as hydrogen bonded to structural oxygen in lattice defects. The property of hydrolytic weakening of olivine [4] has generated the hypothesis that olivine, the main mineral of the upper mantle, may be dehydrated in cratonic mantle lithospheres, contributing to its strength. This presentation will review the distribution of water concentrations in four cratonic lithospheres. The distribution of water contents in olivine from peridotite xenoliths found in kimberlites is different in each craton (Figure 1). The range of water contents of olivine, pyroxene and garnet at each xenolith location appears linked to local metasomatic events, some of which occurred later then the Archean and Proterozoic when these peridotites initially formed via melting. Although the low olivine water contents (<10 ppm wt H2O) at > 6 GPa at the base of the Kaapvaal cratonic lithosphere may contribute to its strength, and prevent its delamination, the wide range of those from Siberian xenoliths is not compatible with providing a high enough viscosity contrast with the asthenophere. The water content in olivine inclusions from Siberian diamonds, on the other hand, have systematically low water contents (<20 ppm wt H2O). The xenoliths may represent a biased sample of the cratonic lithosphere with an over-­abundance of metasomatized peridotites with

  9. Mineralogy and composition of the oceanic mantle

    USGS Publications Warehouse

    Putirka, Keith; Ryerson, F.J.; Perfit, Michael; Ridley, W. Ian

    2011-01-01

    The mineralogy of the oceanic basalt source region is examined by testing whether a peridotite mineralogy can yield observed whole-rock and olivine compositions from (1) the Hawaiian Islands, our type example of a mantle plume, and (2) the Siqueiros Transform, which provides primitive samples of normal mid-ocean ridge basalt. New olivine compositional data from phase 2 of the Hawaii Scientific Drilling Project (HSDP2) show that higher Ni-in-olivine at the Hawaiian Islands is due to higher temperatures (T) of melt generation and processing (by c. 300°C) related to the Hawaiian mantle plume. DNi is low at high T, so parental Hawaiian basalts are enriched in NiO. When Hawaiian (picritic) parental magmas are transported to shallow depths, olivine precipitation occurs at lower temperatures, where DNi is high, leading to high Ni-in-olivine. Similarly, variations in Mn and Fe/Mn ratios in olivines are explained by contrasts in the temperatures of magma processing. Using the most mafic rocks to delimit Siqueiros and Hawaiian Co and Ni contents in parental magmas and mantle source compositions also shows that both suites can be derived from natural peridotites, but are inconsistent with partial melting of natural pyroxenites. Whole-rock compositions at Hawaii and Siqueiros are also matched by partial melting experiments conducted on peridotite bulk compositions. Hawaiian whole-rocks have elevated FeO contents compared with Siqueiros, which can be explained if Hawaiian parental magmas are generated from peridotite at 4-5 GPa, in contrast to pressures of slightly greater than 1 GPa for melt generation at Siqueiros; these pressures are consistent with olivine thermometry, as described in an earlier paper. SiO2-enriched Koolau compositions are reproduced if high-Fe Hawaiian parental magmas re-equilibrate at 1-1·5 GPa. Peridotite partial melts from experimental studies also reproduce the CaO and Al2O3 contents of Hawaiian (and Siqueiros) whole-rocks. Hawaiian magmas have TiO2

  10. The influence of changes in trunk and pelvic posture during single leg standing on hip and thigh muscle activation in a pain free population

    PubMed Central

    2014-01-01

    Background Thigh muscle injuries commonly occur during single leg loading tasks and patterns of muscle activation are thought to contribute to these injuries. The influence trunk and pelvis posture has on hip and thigh muscle activation during single leg stance is unknown and was investigated in a pain free population to determine if changes in body posture result in consistent patterns of changes in muscle activation. Methods Hip and thigh muscle activation patterns were compared in 22 asymptomatic, male subjects (20–45 years old) in paired functionally relevant single leg standing test postures: Anterior vs. Posterior Trunk Sway; Anterior vs. Posterior Pelvic Rotation; Left vs. Right Trunk Shift; and Pelvic Drop vs. Raise. Surface EMG was collected from eight hip and thigh muscles calculating Root Mean Square. EMG was normalized to an “upright standing” reference posture. Repeated measures ANOVA was performed along with associated F tests to determine if there were significant differences in muscle activation between paired test postures. Results In right leg stance, Anterior Trunk Sway (compared to Posterior Sway) increased activity in posterior sagittal plane muscles, with a concurrent deactivation of anterior sagittal plane muscles (p: 0.016 - <0.001). Lateral hip abductor muscles increased activation during Left Trunk Shift (compared to Right) (p :≤ 0.001). Lateral Pelvic Drop (compared to Raise) decreased activity in hip abductors and increased hamstring, adductor longus and vastus lateralis activity (p: 0.037 - <0.001). Conclusion Changes in both trunk and pelvic posture during single leg stance generally resulted in large, predictable changes in hip and thigh muscle activation in asymptomatic young males. Changes in trunk position in the sagittal plane and pelvis position in the frontal plane had the greatest effect on muscle activation. Investigation of these activation patterns in clinical populations such as hip and thigh muscle injuries may

  11. Rectus abdominis muscle injuries in elite handball players: management and rehabilitation

    PubMed Central

    Balius, Ramon; Pedret, Carles; Pacheco, Laura; Gutierrez, Josep Antoni; Vives, Joan; Escoda, Jaume

    2011-01-01

    Muscle injuries generally occur in two-joint muscles with a high percentage of type II fibers during the performance of eccentric activity. Some muscle injuries, such as those located in the adductor longus, a monoarticular muscle, as well as rectus abdominis do not fully comply with these requirements. This study examines five cases of elite handball players with ruptured rectus abdominals. Sonographically, lesions in rectus abdominis are shown as a disruption of the fibrillar pattern with a hematic suffusion that invades the entire lesion. In some of the cases, the ultrasound study was complemented with a MRI. A unified rehabilitation protocol was applied and the return to play time of each handball player ranged between 16 and 22 days, with an average of 18.2 days. Follow-up at 15 months showed no evidence of re-injury or residual discomfort and all of them are playing at their highest level. The aim of this study was to illustrate a feature of handball injury that, as in tennis and volleyball, is uncommon and so far has not been specifically reported. The phenomenon of contralateral abdominal hypertrophy in handball appears in the dominant arm as in tennis and volleyball. PMID:24198573

  12. Mandibular and hyoid muscles of Galeomorph sharks (Chondrichthyes: Elasmobranchii), with remarks on their phylogenetic intrarelationships.

    PubMed

    Soares, Mateus C; de Carvalho, Marcelo R

    2013-10-01

    The superorder Galeomorph comprises the orders Heterodontiformes, Orectolobiformes, Lamniformes, and Carcharhiniformes. Recent morphological and molecular support that it is a monophyletic taxon. The phyletic relationship within the Galeomorphi are also well resolved. However, only few morphological characters of the mandibular and hyoid muscles have been employed, and a detailed description of these muscles and their variations may contribute new interpretations of homology and to the discussion of different hypothesis of intrarelationships. This paper provides a detailed description of mandibular and hyoid arch muscles in galeomorph sharks, within a comparative elasmobranch framework, with the objective to discuss putative homologies that may elucidate our understanding of galeomorph evolution. Twenty-eight galeomorph species were dissected, described, illustrated and compared with other elasmobranchs and with data from the literature. The Galeomorphi are supported as monophyletic by presenting the m. levator labii superioris attached directly to the neurocranium, different from the attachment through a tendon in basal squalomorphs. Heterodontiformes and Orectolobiformes share particular variations in the position and insertion of the m. levator labii superioris and the presence of a well-defined m. levator hyomandibulae. Lamniformes and Carcharhiniformes show similar patterns in the position and attachment of the m. levator labii superioris, subdivision of the m. adductor mandibulae, and the presence of an almost indivisible m. levator hyomandibulae and m. constrictor hyoideus dorsalis, similar to the condition, albeit independently, in basal squalomorphs. No specific mandibular or hyoid arch muscle character was found to support the clade composed of Orectolobiformes, Lamniformes, and Carcharhiniformes, as advocated by recent phylogenetic analyses.

  13. Muscle strain treatment

    MedlinePlus

    Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...

  14. Eye muscle repair - discharge

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000111.htm Eye muscle repair - discharge To use the sharing features on ... enable JavaScript. You or your child had eye muscle repair surgery to correct eye muscle problems that ...

  15. Correlation between polymerizability and conformation in scallop beta-like actin and rabbit skeletal muscle alpha-actin.

    PubMed

    Khaitlina, S; Antropova, O; Kuznetsova, I; Turoverov, K; Collins, J H

    1999-08-01

    In order to investigate the structural basis for functional differences among actin isoforms, we have compared the polymerization properties and conformations of scallop adductor muscle beta-like actin and rabbit skeletal muscle alpha-actin. Polymerization of scallop Ca(2+)-actin was slower than that of skeletal muscle Ca(2+)-actin. Cleavage of the actin polypeptide chain between Gly-42 and Val-43 with Escherichia coli protease ECP 32 impaired the polymerization of scallop Mg(2+)-actin to a greater extent than skeletal muscle Mg(2+)-actin. When monomeric scallop and skeletal muscle Ca(2+)-actins were subjected to limited proteolysis with trypsin, subtilisin, or ECP 32, no differences in the conformation of actin subdomain 2 were detected. At the same time, local differences in the conformations of scallop and skeletal muscle actin subdomains 1 were revealed as intrinsic fluorescence differences. Replacement of tightly bound Ca(2+) with Mg(2+) resulted in more extensive proteolysis of segment 61-69 of scallop actin than in the case of skeletal muscle actin. Furthermore, segment 61-69 was more accessible to proteolysis with subtilisin in polymerized scallop Ca(2+)-actin than in polymerized skeletal muscle Ca(2+)-actin, indicating that, in the polymeric form, the nucleotide-containing cleft is in a more open conformation in beta-like scallop actin than in skeletal muscle alpha-actin. We suggest that this difference between scallop and skeletal muscle actins is due to a less efficient shift of scallop actin subdomain 2 to the position it has in the polymer. The possible consequences of amino acid substitutions in actin subdomain 1 in the allosteric regulation of the actin cleft, and hence in the different stabilities of polymers formed by different actins, are discussed. PMID:10415117

  16. Revealing core-mantle boundary temperature and corresponding lower mantle heterogeneities by numerical simulations

    NASA Astrophysics Data System (ADS)

    Fomin, Ilya; Tackley, Paul

    2016-04-01

    Lower Mantle heterogeneities and Core-Mantle boundary temperature are important issues of modern Deep Earth science. Most of seismic studies show presence of heterogeneous material (LLSVP, ULVZ) at CMB and above it. Temperature is also a problematic question, estimates vary from 4500±500K [Knittle, Jeanlouz, 1989] to 3570±200K [Nomura et al., 2014] with moderate values around 4200±200K [Buffett, 2012]. We use long-term (hundreds of Ma) numerical simulations to find a stationery state (thermal profile and amount of melt) of the pyrolitic mantle at arbitrary CMB temperatures. The most important constraints are solid state of the mantle above (that limits upper boundary) and molten outer core (lower limit), and possibility of presence of partially molten mantle piles to explain presence of Ultra-Low Velocity Zones ([Garnero et al., 1998], 5 to 30% of melt). StagYY code (e.g. [Tackley, 2008]) calculates mantle convection, including behavior of melts. Melting model uses four components (SiO2, MgO, FeO and XO) to calculate melting temperatures and physical properties. Solid phases' properties are calculated with [Stixrude, Lithgow-Bertelloni, 2011] database and liquids are parametrized using EoS constants from [de Koker et al., 2013] with corrections for iron-bearing systems fitting [Thomas et al., 2012] and referenced therein data. KD values for iron are estimated according to database of [Tateno et al., 2014]. Phase diagram from [de Koker et al., 2013] is shifted for specific chemical composition and arbitrary pressure to agree experimental data on complex systems ([Andrault et al., 2011], [Andrault et al., 2014], [Fiquet et al., 2010], [Hirose et al., 1999], [Mosenfelder et al., 2007], [Nomura et al., 2014], [Zerr et al., 1998]). Density difference between coexisting solid and liquid results in melt segregation and migration. Our calculations satisfy hypothesis, that melts at core-mantle boundary might be denser than solid counterpart (e.g. [Labrosse, 2007], [de

  17. Dihedral angle of carbonatite melts in mantle residue near the upper mantle and transition zone

    NASA Astrophysics Data System (ADS)

    Ghosh, S. K.; Rohrbach, A.; Schmidt, M. W.

    2015-12-01

    Carbonate melts are thought to be ideal metasomatic agents in the deep upper mantle (Green & Wallace, 1988) and these melts are low in viscosities (10-1-10-3 Pa·s) compared to primitive basalt (101-102 Pa·s), furthermore the ability to form an interconnected grain-edge melt network at low melt fractions (< 1%) make carbonate melts extremely mobile. They are molten at relatively low temperatures and have solidus temperatures hundreds of degrees lower than silicate melts at >3 GPa (Dasgupta et al. 2006, Ghosh et al., 2009), dissolve a number of geochemically incompatible elements much better than silicate melts (Blundy and Dalton, 2000). Previous studies of carbonate melt dihedral angles in olivine-dominated matrices yielded 25-30oat 1-3 GPa, relatively independent of melt composition (Watson et al., 1990) and temperature (Hunter and McKenzie, 1989). Dihedral angles of carbonate melts in contact with deep mantle silicate phases (e.g. garnet, wadsleyite, and ringwoodite) which constitute more than 70 % of the deep upper mantle and transition zone have not been studied yet. We have performed multi-anvil experiments on carbonate-bearing peridotites with 5.0 wt% CO2 from 13.5 to 20 GPa 1550 oC to investigate the dihedral angle of magnesio-carbonatite melts in equilibrium with garnet, olivine (and its high-pressure polymorphs), and clinoenstatite. The dihedral angle of carbonate melts in the deep upper mantle and transition zone is ~30° for majorite garnet and olivine (and its polymorphs) dominated matrices. It does not change with increasing pressure in the range 13.5-20 GPa. Our results suggest that very low melt fractions of carbonatite melt forming in the deep upper mantle and transition zone are interconnected at melt fractions less than 0.01. Consistent with geophysical observations, this could possibly explain low velocity regions in the deep mantle and transition zone.

  18. Determining resolvability of mantle plumes with synthetic seismic modeling

    NASA Astrophysics Data System (ADS)

    Maguire, R.; Van Keken, P. E.; Ritsema, J.; Fichtner, A.; Goes, S. D. B.

    2014-12-01

    Hotspot volcanism in locations such as Hawaii and Iceland is commonly thought to be associated with plumes rising from the deep mantle. In theory these dynamic upwellings should be visible in seismic data due to their reduced seismic velocity and their effect on mantle transition zone thickness. Numerous studies have attempted to image plumes [1,2,3], but their deep mantle origin remains unclear. In addition, a debate continues as to whether lower mantle plumes are visible in the form of body wave travel time delays, or whether such delays will be erased due to wavefront healing. Here we combine geodynamic modeling of mantle plumes with synthetic seismic waveform modeling in order to quantitatively determine under what conditions mantle plumes should be seismically visible. We model compressible plumes with phase changes at 410 km and 670 km, and a viscosity reduction in the upper mantle. These plumes thin from greater than 600 km in diameter in the lower mantle, to 200 - 400 km in the upper mantle. Plume excess potential temperature is 375 K, which maps to seismic velocity reductions of 4 - 12 % in the upper mantle, and 2 - 4 % in the lower mantle. Previous work that was limited to an axisymmetric spherical geometry suggested that these plumes would not be visible in the lower mantle [4]. Here we extend this approach to full 3D spherical wave propagation modeling. Initial results using a simplified cylindrical plume conduit suggest that mantle plumes with a diameter of 1000 km or greater will retain a deep mantle seismic signature. References[1] Wolfe, Cecily J., et al. "Seismic structure of the Iceland mantle plume." Nature 385.6613 (1997): 245-247. [2] Montelli, Raffaella, et al. "Finite-frequency tomography reveals a variety of plumes in the mantle." Science 303.5656 (2004): 338-343. [3] Schmandt, Brandon, et al. "Hot mantle upwelling across the 660 beneath Yellowstone." Earth and Planetary Science Letters 331 (2012): 224-236. [4] Hwang, Yong Keun, et al

  19. Mantle compositional layering revealed by slab stagnation in the uppermost lower mantle

    NASA Astrophysics Data System (ADS)

    Ballmer, Maxim; Ritsema, Jeroen; Schmerr, Nicholas; Motoki, Matthew

    2015-04-01

    Seismic tomography reveals three different modes of slab sinking behavior. Some slabs segments (1) descend through the upper mantle to stagnate in the transition zone (e.g., Japan slab), others (2) sink into the deep mantle (e.g., Tethys slab), and yet others (3) sink through the upper mantle and transition zone to stagnate at ~1000 km depth (e.g., Peru, Kermadec, Sunda and Nicaragua slabs) [Fukao and Obayashi, 2013]. Whereas stagnation in the transition zone is well explained by the supporting effect of the spinel-to-perovskite phase transition at ~660 km depth ("the 660"), a scenario for equilibrium stagnation in the uppermost lower mantle, where no endothermic phase transitions occur, remains to be proposed. Here, we explore slab sinking behavior using two-dimensional numerical models. We show that slabs stagnate at 900~1000 km depth if the lower mantle be intrinsically dense, for example due to enrichment in Si and/or Fe relative to Mg. A gradual and moderate compositional contrast across the 660 in a heterogeneous mantle is (at least locally) able to provide sufficient support for long-term slab stagnation. While such a contrast is expected to result from early-Earth processes (e.g., differential crystallization of the magma ocean), its maintenance over 4.5 Gyrs of mantle convection and stirring requires ongoing geodynamic mechanism(s) to sustain it. One such mechanism is stagnant slab disintegration, in which a superplastic slab that stagnates above or below the 660 undergoes convective instability to separate into its (enriched) basaltic and (depleted) harzburgitic components. As dense basaltic material and buoyant harzburgite tend to sink and rise, respectively, this mechanism sets up an efficient compositional filter across the transition zone. Thus, the fate of subducted slabs can sustain (disintegration) - as well as provide evidence for (stagnation at ~1000 km depth) - relative enrichment of the lower compared to the upper mantle. Such an enrichment is

  20. Seismic images of the upper mantle velocities and structure of European mantle lithosphere

    NASA Astrophysics Data System (ADS)

    Plomerova, Jaroslava; Munzarova, Helena; Vecsey, Ludek; Babuska, Vladislav

    2014-05-01

    Tomography images of seismic velocities in the Earth mantle represent significant tool for recovering first order structural features. Regional studies, based on dense networks of temporary stations allow us to focus on structure of the continental upper mantle and to study variations of body-wave velocities in greater detail. However, the standard tomography exhibits only isotropic view of the Earth, whose structure is anisotropic in general, as shown by results of various studies exploiting a broad range of methods, types of waves and scales. We present results of our studies of seismic anisotropy in tectonically different provinces that clearly demonstrate the continental mantle lithosphere consists of domains with different fossil fabrics. We detect anisotropic signal both in teleseismic P-wave travel-time deviations and shear-wave splitting and show changes of the anisotropic parameters across seismic arrays, in which stations with similar characteristics form groups. The geographical variations of seismic-wave anisotropy delimit individual, often sharply bounded domains of the mantle lithosphere, each of them having a consistent fabric. The domains can be modelled in 3D by peridotite aggregates with dipping lineation a or foliation (a,c). These findings allow us to interpret the domains as micro-plate fragments retaining fossil fabrics in the mantle lithosphere, reflecting thus an olivine LPO created before the micro-plates assembled. Modelling anisotropic structure of individual domains of the continental mantle lithosphere helps to decipher boundaries of individual blocks building the continental lithosphere and hypothesize on processes of its formation (Plomerova and Babuska, Lithos 2010). Exploiting the long memory of the deep continental lithosphere fabric, we present the lithosphere-asthenosphere boundary (LAB) as a transition between a fossil anisotropy in the mantle lithosphere and an underlying seismic anisotropy related to the present-day flow in

  1. A >100 Ma Mantle Geochemical Record: Retiring Mantle Plumes may be Premature

    NASA Astrophysics Data System (ADS)

    Konter, J. G.; Hanan, B. B.; Blichert-Toft, J.; Koppers, A. A.; Plank, T.; Staudigel, H.

    2006-12-01

    Hotspot volcanism has long been attributed to mantle plumes, but in recent years suggestions have been made that plate tectonic processes, such as extension, can account for all hotspot tracks. This explanation involves a profoundly less dynamic lower mantle, which justifies a critical evaluation before the plume model is dismissed. Such an evaluation has to involve a wide range of geochemical, geological, and geophysical techniques, broadly investigating the products of volcanism as well as the underlying lithosphere and mantle. We argue here that the combined geological record and geochemistry of intraplate volcanoes holds some important clues that help us decide between models of plume-like upwelling versus passive upwelling with lithospheric extension. The best of these integrated datasets can be obtained from the long seamount chains in the Pacific Ocean. A new combined dataset of trace element and isotopic compositions, along with modern 40Ar/39Ar ages from seamounts in the Gilbert Ridge, Tokelau chain, and West Pacific Seamount Province (WPSP) provides a record of current to Cretaceous volcanism in the South Pacific. We have reconstructed the eruptive locations of the seamounts using a range of absolute plate motion models, including some models with hotspot motion and others that use the Indo-Atlantic hotspot reference frame. Our results show that the backtracked locations consistently form clusters (300km radius) around the active ends of the Macdonald, Rurutu and Rarotonga hotspot chains, while closely matching their distinct C-HIMU and C-EM1 signatures. The oldest WPSP seamounts (older than 100 Ma) form the only exception and backtrack, with larger uncertainty, to north of Rarotonga. Therefore, the mantle currently underlying the Cook-Austral islands has produced volcanoes in three geochemically distinct areas for at least 100 m.y. Furthermore, we find the shortest mantle residence time, 0.6 Ga, for a source of mixed recycled DMM and an EM1-like

  2. Mantle Plume Dynamics Constrained by Seismic Tomography and Geodynamics

    NASA Astrophysics Data System (ADS)

    Glisovic, P.; Forte, A. M.

    2012-12-01

    We construct a time-dependent, compressible mantle convection model in three-dimensional spherical geometry that is consistent with tomography-based instantaneous flow dynamics, using an updated and revised pseudo-spectral numerical method [Glisovic et al., Geophys. J. Int. 2012]. We explored the impact of two end-member surface boundary conditions, for a rigid and plate-like surface, along with geodynamically-inferred radial viscosity profiles. In each case we find that deep-mantle hot upwellings are durable and stable features in the mantle-wide convective circulation. These deeply-rooted mantle plumes show remarkable longevity over very long geological time spans (several hundred million years), mainly owing to the high viscosity in the lower mantle. Our very-long time convection simulations suggest that the deep-mantle plumes beneath the following hotspots: Pitcairn, Easter, Galapagos, Crozet, Kerguelen, Caroline and Cape Verde, are most reliably resolved in the present-day tomographic images.

  3. Difference in the recruitment of hip and knee muscles between back squat and plyometric squat jump.

    PubMed

    Sugisaki, Norihide; Kurokawa, Sadao; Okada, Junichi; Kanehisa, Hiroaki

    2014-01-01

    Athletes who aim to improve both muscular endurance and power often perform exercises that involve similar joint actions under different lifting conditions, such as changes in the load or speed, which are implemented at different times during a periodized exercise program or simultaneously. The prescribed exercises are considered to recruit the same muscles even if the lifting conditions differ to each other. The present study aimed to clarify this by examining whether the recruitment of individual hip and knee muscles during the squat exercise differs between lifting conditions adopted for muscular endurance and power training regimens. Moderately trained men performed back squats (BS), with a load of approximately 60% of one repetition maximum, as a muscular endurance training exercise, and they performed plyometric squat jumping (PSJ) for power training. During each exercise, the lower limb joint torques and the recruitment of five hip and knee muscles were determined with inverse-dynamics and T2-weighted magnetic resonance imaging, respectively. While the maximal and mean knee joint torques were greater during PSJ than during BS (p<0.01), the T2 values for the quadriceps femoris muscle did not differ between the exercises. In contrast, the T2 values of the gluteus maximus and hip adductor muscles were higher during PSJ (p<0.05) than during BS, although there was no significant difference in the mean hip extension torque between the two exercises. The current results indicate that the individual use of the agonist muscles differs between BS and PSJ, and it does not always correspond with the joint kinetics during the exercises. Therefore, in addition to the exercise type, the lifting condition should also be taken into consideration as a determinant of the major muscles trained during a resistance exercise.

  4. Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb

    PubMed Central

    Charles, James P.; Cappellari, Ornella; Spence, Andrew J.; Hutchinson, John R.; Wells, Dominic J.

    2016-01-01

    Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion. PMID:27115354

  5. Muscle shape consistency and muscle volume prediction of thigh muscles.

    PubMed

    Mersmann, F; Bohm, S; Schroll, A; Boeth, H; Duda, G; Arampatzis, A

    2015-04-01

    The present study investigated the applicability of a muscle volume prediction method using only the muscle length (L(M)), the maximum anatomical cross-sectional area (ACSA(max)), and a muscle-specific shape factor (p) on the quadriceps vastii. L(M), ACSA(max), muscle volume, and p were obtained from magnetic resonance images of the vastus intermedius (VI), lateralis (VL), and medialis (VM) of female (n = 20) and male (n = 17) volleyball athletes. The average p was used to predict muscle volumes (V(p)) using the equation V(p)  = p × ACSA(max)  × L(M). Although there were significant differences in the muscle dimensions between male and female athletes, p was similar and on average 0.582, 0.658, 0.543 for the VI, VL, and VM, respectively. The position of ACSA(max) showed low variability and was at 57%, 60%, and 81% of the thigh length for VI, VL, and VM. Further, there were no significant differences between measured and predicted muscle volumes with root mean square differences of 5-8%. These results suggest that the muscle shape of the quadriceps vastii is independent of muscle dimensions or sex and that the prediction method could be sensitive enough to detect changes in muscle volume related to degeneration, atrophy, or hypertrophy.

  6. Mantle-circulation models with sequential data assimilation: inferring present-day mantle structure from plate-motion histories.

    PubMed

    Bunge, Hans-Peter; Richards, M A; Baumgardner, J R

    2002-11-15

    Data assimilation is an approach to studying geodynamic models consistent simultaneously with observables and the governing equations of mantle flow. Such an approach is essential in mantle circulation models, where we seek to constrain an unknown initial condition some time in the past, and thus cannot hope to use first-principles convection calculations to infer the flow history of the mantle. One of the most important observables for mantle-flow history comes from models of Mesozoic and Cenozoic plate motion that provide constraints not only on the surface velocity of the mantle but also on the evolution of internal mantle-buoyancy forces due to subducted oceanic slabs. Here we present five mantle circulation models with an assimilated plate-motion history spanning the past 120 Myr, a time period for which reliable plate-motion reconstructions are available. All models agree well with upper- and mid-mantle heterogeneity imaged by seismic tomography. A simple standard model of whole-mantle convection, including a factor 40 viscosity increase from the upper to the lower mantle and predominantly internal heat generation, reveals downwellings related to Farallon and Tethys subduction. Adding 35% bottom heating from the core has the predictable effect of producing prominent high-temperature anomalies and a strong thermal boundary layer at the base of the mantle. Significantly delaying mantle flow through the transition zone either by modelling the dynamic effects of an endothermic phase reaction or by including a steep, factor 100, viscosity rise from the upper to the lower mantle results in substantial transition-zone heterogeneity, enhanced by the effects of trench migration implicit in the assimilated plate-motion history. An expected result is the failure to account for heterogeneity structure in the deepest mantle below 1500 km, which is influenced by Jurassic plate motions and thus cannot be modelled from sequential assimilation of plate motion histories

  7. Mantle-circulation models with sequential data assimilation: inferring present-day mantle structure from plate-motion histories.

    PubMed

    Bunge, Hans-Peter; Richards, M A; Baumgardner, J R

    2002-11-15

    Data assimilation is an approach to studying geodynamic models consistent simultaneously with observables and the governing equations of mantle flow. Such an approach is essential in mantle circulation models, where we seek to constrain an unknown initial condition some time in the past, and thus cannot hope to use first-principles convection calculations to infer the flow history of the mantle. One of the most important observables for mantle-flow history comes from models of Mesozoic and Cenozoic plate motion that provide constraints not only on the surface velocity of the mantle but also on the evolution of internal mantle-buoyancy forces due to subducted oceanic slabs. Here we present five mantle circulation models with an assimilated plate-motion history spanning the past 120 Myr, a time period for which reliable plate-motion reconstructions are available. All models agree well with upper- and mid-mantle heterogeneity imaged by seismic tomography. A simple standard model of whole-mantle convection, including a factor 40 viscosity increase from the upper to the lower mantle and predominantly internal heat generation, reveals downwellings related to Farallon and Tethys subduction. Adding 35% bottom heating from the core has the predictable effect of producing prominent high-temperature anomalies and a strong thermal boundary layer at the base of the mantle. Significantly delaying mantle flow through the transition zone either by modelling the dynamic effects of an endothermic phase reaction or by including a steep, factor 100, viscosity rise from the upper to the lower mantle results in substantial transition-zone heterogeneity, enhanced by the effects of trench migration implicit in the assimilated plate-motion history. An expected result is the failure to account for heterogeneity structure in the deepest mantle below 1500 km, which is influenced by Jurassic plate motions and thus cannot be modelled from sequential assimilation of plate motion histories

  8. Resolving mantle structure beneath the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Darold, A. P.; Humphreys, E.; Schmandt, B.; Gao, H.

    2011-12-01

    Cenozoic tectonics of the Pacific Northwest (PNW) and the associated mantle structures are remarkable, the latter revealed only recently by EarthScope seismic data. Over the last ~66 Ma this region experienced a wide range of tectonic and magmatic conditions: Laramide compression, ~75-53 Ma, involving Farallon flat-slab subduction, regional uplift, and magmatic quiescence. With the ~53 Ma accretion of Siletzia ocean lithosphere within the Columbia Embayment, westward migration of subduction beginning Cascadia, along with initiation of the Cascade volcanic arc. Within the continental interior the Laramide orogeny was quickly followed by a period of extension involving metamorphic core complexes and the associated initial ignimbrite flare-up (both in northern Washington, Idaho, and western Montana); interior magmo-tectonic activity is attributed to flat-slab removal and (to the south) slab rollback. Rotation of Siletzia created new crust on SE Oregon and, at ~16 Ma, the Columbia River Flood Basalt (CRB) eruptions renewed vigorous magmatism. We have united several EarthScope studies in the Pacific Northwest and have focused on better resolving the major mantle structures that have been discovered. We have tomographically modeled the body waves with teleseismic, finite-frequency code under the constraints of ambient noise tomography and teleseismic receiver function models of Gao et al. (2011), and teleseismic anisotropy models of Long et al. (2009) in order to resolve structures continuously from the surface to the base of the upper mantle. We now have clear imaging of two episodes of subduction: Juan De Fuca slab deeper than ~250 km is absent across much of the PNW, and it has an E-W tear located beneath northern Oregon; Farallon slab (the "Siletzia curtain") is still present, hanging vertically just inboard of the core complexes, and with a basal tear causing the structure to extend deeper (~600 km) beneath north-central Idaho than beneath south-central Idaho and

  9. Water concentrations in mantle peridotite minerals

    NASA Astrophysics Data System (ADS)

    Warren, J. M.; Hauri, E. H.

    2010-12-01

    The concentration and distribution of volatiles in the mantle is important for constraining many key properties, including melting systematics at ridges and subduction zones. We present measurements of water concentrations in nominally anhydrous minerals from abyssal, orogenic and xenolith peridotites. Analyses of fresh and altered samples from a variety of locations are used to assess the extent to which mineral water concentrations reflect primary mantle compositions, versus diffusive loss and/or hydration due to secondary processes. Water concentrations were measured in olivine (Ol), orthopyroxene (Opx) and clinopyroxene (Cpx) by ion microprobe, using mineral specific standards and monitoring background concentrations by analysis of synthetic forsterite. Analytical reproducibility, based on 11 repeat analyses of an Ol grain, is 10%, while background H2O levels varied from 7-19 ppm. Samples include xenoliths from Pali Aike, Samoa and Spitsbergen, along with unusually fresh oceanic peridotites from the Gakkel Ridge and the Tonga Trench. In addition, samples were analyzed from the Southwest Indian Ridge (SWIR) and the Josephine Peridotite, both of which have moderate degrees of alteration. In olivine, water concentrations are <11 ppm, with the exception of Pali Aike xenoliths, which have water concentrations of 16-33 ppm. On average, peridotite Opx have 187 ppm and Cpx have 474 ppm. Pyroxenite veins from the Southwest Indian Ridge have systematically lower concentrations, with an average of 12 ppm in Opx and 55 ppm in Cpx. Water partition coefficients for Opx/Ol have an average value of 28 and Cpx/Ol of 57, significantly higher than previous estimates (e.g., Hirth and Kohlstedt, 1996). Excluding the pyroxenites, the average Cpx/Opx partition coefficient is 2, in agreement with published estimates. This suggests that Cpx and Opx preserve mantle water concentrations, whereas Ol has undergone hydrogen loss. Mineral rims have water concentrations that are within error

  10. Thermochemical differentiation and intermittent convection of the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Kotelkin, Vycheslav; Lobkovsky, Leopold

    2010-05-01

    The numerical experiments are based on the thermochemical model of mantle convection. The model includes the description of the endothermic phase transition at the upper/lower mantle boundary. The aim of this work is the influence of thermochemical processes on mantle convection. As regards the thermochemical differentiation takes place near the mantle boundaries. The differentiation in the D" layer is due to melting with the rise in temperature and the descent of molten iron-bearing components of mantle material into the core. This process generates the lighter fraction, particularly produces the lower mantle plums. It takes place only if the current temperature exceeds the melting temperature. The differentiation near the outer mantle boundary is due to extracting the lighter mantle components into the crust. These thermochemical processes take place when the hot substance is lifting and the pressure falls. The growth of the continental crust on the outer surface is modeling. The oceanic crust returns into mantle throw the subducting zones. The modeling includes the "gabbro-eclogite" transition of oceanic crust. As regards the generation of heavy eclogitic material is located at the depths 80-100 km. Seismic tomography of deep mantle layers showed that the mantle really contains large inclusions of heavy, supposedly eclogitic material. The numerical experiments give a strong nonlinear interaction (either accelerating or slowing down) between the thermochemical processes and mantle convection. It leads to an impulsive character of geodynamics and promotes the formation of different cycles in the evolutionary process. Periods of gradual evolution are interrupted by the geodynamic activity outbursts. These peaks of geodynamic activity play a key role in the geological history of the Earth. Analogous oscillations of geodynamic process produce interaction heavy and light density inhomogeneities with the endothermic phase transition. When convection is layered then the

  11. Traces of ancient mafic layers in the Tethys oceanic mantle

    NASA Astrophysics Data System (ADS)

    Sergeev, Dmitry S.; Dijkstra, Arjan H.; Meisel, Thomas; Brügmann, Gerhard; Sergeev, Sergey A.

    2014-03-01

    Oceanic basalts are formed by melting of a chemically and isotopically heterogeneous mantle source. The oceanic mantle probably resembles a marble cake containing layers of mafic rock - perhaps recycled ocean crust - stored in the mantle for >1 billion years. Many questions about the nature and distribution of these mantle heterogeneities remain. Here we show that lithological and isotopic traces of ancient mafic layers can still be seen in mantle rocks that have melted to form oceanic crust at a spreading centre in the Tethys Ocean. We have found centimetre-scale heterogeneity in initial osmium isotope ratios in mantle rocks from the Pindos Ophiolite. Deformed pyroxenite layers have high 187Os/188Os ratios (0.14-0.20) compared to adjacent host peridotites (187Os/188Os: 0.12-0.13). These layers were formed by a reaction between mantle rock and melt derived from ancient rocks with high Re/Os ratios. We interpret the pyroxenite layers as the wall rocks of billion-year old mafic layers that melted and transformed adjacent mantle peridotite into pyroxenite by melt-rock reaction. The pyroxenite layers are the relics of ancient metre-scale basaltic veins in a kilometre-sized marble cake domain in the oceanic mantle that has withstood homogenization on a billion-year time scale.

  12. Water and hydrogen are immiscible in Earth's mantle.

    PubMed

    Bali, Enikő; Audétat, Andreas; Keppler, Hans

    2013-03-14

    In the deep, chemically reducing parts of Earth's mantle, hydrous fluids contain significant amounts of molecular hydrogen (H2). Thermodynamic models of fluids in Earth's mantle so far have always assumed that molecular hydrogen and water are completely miscible. Here we show experimental evidence that water and hydrogen can coexist as two separate, immiscible phases. Immiscibility between water and hydrogen may be the cause of the formation of enigmatic, ultra-reducing domains in the mantle that contain moissanite (SiC) and other phases indicative of extremely reducing conditions. Moreover, the immiscibility between water and hydrogen may provide a mechanism for the rapid oxidation of Earth's upper mantle immediately following core formation.

  13. Convection, composition, and the thermal state of the lower mantle

    NASA Technical Reports Server (NTRS)

    Jeanloz, R.; Richter, F. M.

    1979-01-01

    A thermal model for the lower mantle is presented, which is constructed from the petrologically derived estimates of the temperature in the transition zone and from an adiabat based on the thermal properties of MgO and SiO2 measured at high pressures. Superadiabatic contributions to the geotherm through the lower mantle are negligibly small. A thermal boundary layer is required at the base of the mantle in order to satisfy an estimate of the lowest possible temperature in the core. It is suggested that a thermal boundary layer is associated with a chemical discontinuity either at the top of the lower mantle or near its base.

  14. Mantle convection with plates and mobile, faulted plate margins.

    PubMed

    Zhong, S; Gurnis, M

    1995-02-10

    A finite-element formulation of faults has been incorporated into time-dependent models of mantle convection with realistic rheology, continents, and phase changes. Realistic tectonic plates naturally form with self-consistent coupling between plate and mantle dynamics. After the initiation of subduction, trenches rapidly roll back with subducted slabs temporarily laid out along the base of the transition zone. After the slabs have penetrated into the lower mantle, the velocity of trench migration decreases markedly. The inhibition of slab penetration into the lower mantle by the 670-kilometer phase change is greatly reduced in these models as compared to models without tectonic plates. PMID:17813909

  15. Influences on the positioning of mantle plumes following supercontinent formation

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.; Lowman, Julian P.; Stein, Claudia

    2015-05-01

    Several mantle convection studies analyzing the effects of supercontinent formation and dispersal show that the genesis of subcontinental plumes results from the formation of subduction zones at the edges of the supercontinent rather than from the effect of continental thermal insulation or thermochemical piles. However, the influence of subduction zone location on the position of subcontinental plumes has received little attention. This study analyzes 2-D and 3-D numerical models of supercontinent formation (in an isochemical mantle) to assess the role of subduction and mantle viscosity contrast in the generation of subcontinental mantle plumes. We find that once a critical supercontinent width is reached, plumes do not form under the center of a supercontinent. In studies featuring a low viscosity lower mantle, the surface positions of the initial plumes (arriving within 90 Myr of supercontinent assembly) become locked beneath the continent at a distance 2000-3000 km from the continental margin. However, the broad downwellings in simulations that feature a high-viscosity lower mantle trigger plumes at a greater distance from the continental margin subduction. For all mantle viscosity profiles, subcontinental plumes show dependence on the location of supercontinent margin subduction. As theories differ on the role of core-mantle boundary chemical piles in plume formation, it is significant that our isochemical models show that the formation of subduction zones at the margins of a supercontinent has a profound effect on subcontinental mantle dynamics. Our results may help to explain what determined the eruption sites of past (and future) large igneous provinces.

  16. Superplumes and the Viscosity Structure of the Mantle

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Yuen, D.

    2004-05-01

    Seismological studies indicate the existence of large upwelling regions of complex structures in the lower mantle. A mantle flow model with only a few strong upwellings is an alternative to conventional convection models with respect not only to pattern of the flow but also to heat transport and mixing properties. By two- and three-dimensional numerical models we demonstrate that a significant increase of the viscosity with pressure in the lower mantle leads to a focusing of buoyancy into strong upwellings from the core-mantle boundary.This phenomenon is further enhanced by a thermal expansion coefficient which decreases with pressure. Besides pressure, the viscosity of the mantle material will strongly depend on temperature. Combining the effects of temperature and pressure-dependent viscosity, generates a significant viscosity maximum in the lower mantle. Pressure dependence let the viscosity increase from the upper to the lower mantle, temperature dependence, however, compensates this effect at greater depth. The spatiotemporal evolution of plumes is likewise influenced: While a purely pressure-dependent viscosity creates single plumes, additional temperature dependence leads to plume-clusters, characterized by instabilities at the core-mantle boundary, which are centered around a strong upwelling flow. These plumes generate a complex flow pattern at the base of the mantle.

  17. The composition of mantle plumes and the deep Earth

    NASA Astrophysics Data System (ADS)

    Hastie, Alan R.; Fitton, J. Godfrey; Kerr, Andrew C.; McDonald, Iain; Schwindrofska, Antje; Hoernle, Kaj

    2016-06-01

    Determining the composition and geochemical diversity of Earth's deep mantle and subsequent ascending mantle plumes is vital so that we can better understand how the Earth's primitive mantle reservoirs initially formed and how they have evolved over the last 4.6 billion years. Further data on the composition of mantle plumes, which generate voluminous eruptions on the planet's surface, are also essential to fully understand the evolution of the Earth's hydrosphere and atmosphere with links to surface environmental changes that may have led to mass extinction events. Here we present new major and trace element and Sr-Nd-Pb-Hf isotope data on basalts from Curacao, part of the Caribbean large igneous province. From these and literature data, we calculate combined major and trace element compositions for the mantle plumes that generated the Caribbean and Ontong Java large igneous provinces and use mass balance to determine the composition of the Earth's lower mantle. Incompatible element and isotope results indicate that mantle plumes have broadly distinctive depleted and enriched compositions that, in addition to the numerous mantle reservoirs already proposed in the literature, represent large planetary-scale geochemical heterogeneity in the Earth's deep mantle that are similar to non-chondritic Bulk Silicate Earth compositions.

  18. Lower Extremity Muscle Strength After Anterior Cruciate Ligament Injury and Reconstruction

    PubMed Central

    Thomas, Abbey C.; Villwock, Mark; Wojtys, Edward M.; Palmieri-Smith, Riann M.

    2013-01-01

    Context: Quadriceps and hamstrings weakness occurs frequently after anterior cruciate ligament (ACL) injury and reconstruction. Evidence suggests that knee injury may precipitate hip and ankle muscle weakness, but few data support this contention after ACL injury and reconstruction. Objective: To determine if hip, knee, and ankle muscle weakness present after ACL injury and after rehabilitation for ACL reconstruction. Design: Case-control study. Setting: University research laboratory. Patients or Other Participants: Fifteen individuals with ACL injury (8 males, 7 females; age = 20.27 ± 5.38 years, height = 1.75 ± 0.10 m, mass = 74.39 ± 13.26 kg) and 15 control individuals (7 men, 8 women; age = 24.73 ± 3.37 years, height = 1.75 ± 0.09 m, mass = 73.25 ± 13.48 kg). Intervention(s): Bilateral concentric strength was assessed at 60°/s on an isokinetic dynamometer. The participants with ACL injury were tested preoperatively and 6 months postoperatively. Control participants were tested on 1 occasion. Main Outcome Measures: Hip-flexor, -extensor, -abductor, and -adductor; knee-extensor and -flexor; and ankle–plantar-flexor and -dorsiflexor strength (Nm/kg). Results: The ACL-injured participants demonstrated greater hip-extensor (percentage difference = 19.7, F1,14 = 7.28, P = .02) and -adductor (percentage difference = 16.3, F1,14 = 6.15, P = .03) weakness preoperatively than postoperatively, regardless of limb, and greater postoperative hip-adductor strength (percentage difference = 29.0, F1,28 = 10.66, P = .003) than control participants. Knee-extensor and -flexor strength were lower in the injured than in the uninjured limb preoperatively and postoperatively (extensor percentage difference = 34.6 preoperatively and 32.6 postoperatively, t14 range = −4.59 to −4.23, P ≤ .001; flexor percentage difference = 30.6 preoperatively and 10.6 postoperatively, t14 range = −6.05 to −3.24, P < .05) with greater knee-flexor (percentage difference = 25.3, t14 =

  19. Squeezing Meteorites to Reveal the Martian Mantle

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2006-12-01

    A piece of a Martian lava flow, Antarctic meteorite Yamato-980459, appears to represent the composition of a magma produced by partial melting of the Martian interior. That's the view of researchers Don Musselwhite, Walter Kiefer, and Allan Treiman (Lunar and Planetary Institute, Houston) and Heather Dalton (Arizona State University). Musselwhite and his colleagues determined that this basaltic Martian meteorite represented a primary melt from the mantle. This was an important discovery because magma produced inside a planet contains significant clues to the composition of the region of the interior in which it formed. The lava flows that decorate the surface of planets tell us about the mantle, the rocky region beneath the crust and above the metallic core. The researchers used apparatus at the Johnson Space Center to determine what minerals are present when samples with the composition of Y-980459 are heated to a range of temperatures and squeezed to a range of pressures like those that planetary scientists expect to exist in the interior of Mars. The results indicate that the magma represented by this special meteorite formed at a depth of about 100 kilometers and a temperature of about 1540 degrees C. From the high temperature and high ratio of magnesium to iron in the magma, Musselwhite and his colleagues infer that the amount of melting to produce the Y-980459 parent magma was high, which suggests that the temperature at the boundary between the metallic core and the rocky mantle was higher than previous estimates. This work gives us clues to the composition and dynamics of the Martian interior--all from a rock chipped off a lava flow on Mars and flung to Earth by an impact.

  20. Is there seismic attenuation in the mantle?

    NASA Astrophysics Data System (ADS)

    Ricard, Y.; Durand, S.; Montagner, J.-P.; Chambat, F.

    2014-02-01

    The small scale heterogeneity of the mantle is mostly due to the mixing of petrological heterogeneities by a smooth but chaotic convection and should consist in a laminated structure (marble cake) with a power spectrum S(k) varying as 1/k, where k is the wavenumber of the anomalies. This distribution of heterogeneities during convective stirring with negligible diffusion, called Batchelor regime is documented by fluid dynamic experiments and corresponds to what can be inferred from geochemistry and seismic tomography. This laminated structure imposes density, seismic velocity and potentially, anisotropic heterogeneities with similar 1/k spectra. A seismic wave of wavenumber k0 crossing such a medium is partly reflected by the heterogeneities and we show that the scattered energy is proportional to k0S(2k0). The reduction of energy for the propagating wave appears therefore equivalent to a quality factor 1/Q∝k0S(2k0). With the specific 1/k spectrum of the mantle, the resulting apparent attenuation should therefore be frequency independent. We show that the total contribution of 6-9% RMS density, velocity and anisotropy would explain the observed S and P attenuation of the mantle. Although these values are large, they are not unreasonable and we discuss how they depend on the range of frequencies over which the attenuation is explained. If such a level of heterogeneity were present, most of the attenuation of the Earth would be due to small scale scattering by laminations, not by intrinsic dissipation. Intrinsic dissipation must certainly exist but might correspond to a larger, yet unobserved Q. This provocative result would explain the very weak frequency dependence of the attenuation, and the fact that bulk attenuation seems negligible, two observations that have been difficult to explain for 50 years.

  1. Mantle Structure Beneath Central South America

    NASA Astrophysics Data System (ADS)

    Vandecar, J. C.; Silver, P. G.; James, D. E.; Assumpcao, M.; Schimmel, M.; Zandt, G.

    2003-12-01

    Making use of 60 digital broadband seismic stations that have operated across central South America in recent years, we have undertaken an inversion for the upper- and uppermost lower-mantle P- and S-wave velocity structures beneath the region. We have combined data from four portable PASSCAL-type experiments as well as the 3 GTSN permanent stations (LPAZ, BDFB and CPUP) and 1 Geoscope station (SPB) located in the region. The portable data were deployed at various times between 1992 and 1999 and include: 28 sites from the Brazilian Lithosphere Seismic Project (BLSP: Carnegie Institution of Washington and Universidade de Sao Paulo), 16 sites from the Broadband ANdean JOint experiment (BANJO: Carnegie Institution of Washington and University of Arizona), 8 sites from the Seismic Exploration of the Deep Altiplano project (SEDA: Lawrence Livermore National Laboratory) and 4 sites from the University of Brasilia. The P- and S-wave relative delay times are independently obtained via a multi-channel cross correlation of band-passed waveforms for each teleseismic event. These data are then inverted using an iterative, robust, non-linear scheme which parameterizes the 3-D velocity variations as splines under tension constrained at over 120,000 nodes across South America between latitudes of 15 and 30 degrees South. Amongst other features, we robustly image the high-velocity subducting Nazca plate penetrating into the lower mantle and the high-velocity root of the ~3.2 Gyr old Sao Francisco Craton extending to depths of 200-300 km. We will discuss the consistency between our tomographic models and predictions of dynamic mantle models based on plate tectonic reconstructions of subduction.

  2. How Depleted is the MORB mantle?

    NASA Astrophysics Data System (ADS)

    Hofmann, A. W.; Hart, S. R.

    2015-12-01

    Knowledge of the degree of mantle depletion of highly incompatible elements is critically important for assessing Earth's internal heat production and Urey number. Current views of the degree of MORB source depletion are dominated by Salters and Stracke (2004), and Workman and Hart (2005). The first is based on an assessment of average MORB compositions, whereas the second considers trace element data of oceanic peridotites. Both require an independent determination of one absolute concentration, Lu (Salters & Stracke), or Nd (Workman & Hart). Both use parent-daughter ratios Lu/Hf, Sm/Nd, and Rb/Sr calculated from MORB isotopes combined with continental-crust extraction models, as well as "canonical" trace element ratios, to boot-strap the full range of trace element abundances. We show that the single most important factor in determining the ultimate degree of incompatible element depletion in the MORB source lies in the assumptions about the timing of continent extraction, exemplified by continuous extraction versus simple two-stage models. Continued crust extraction generates additional, recent mantle depletion, without affecting the isotopic composition of the residual mantle significantly. Previous emphasis on chemical compositions of MORB and/or peridotites has tended to obscure this. We will explore the effect of different continent extraction models on the degree of U, Th, and K depletion in the MORB source. Given the uncertainties of the two most popular models, the uncertainties of U and Th in DMM are at least ±50%, and this impacts the constraints on the terrestrial Urey ratio. Salters, F.J.M. and Stracke, A., 2004, Geochem. Geophys. Geosyst. 5, Q05004. Workman, R.K. and Hart, S.R., 2005, EPSL 231, 53-72.

  3. Detecting Mantle Anisotropy with Marine CSEM Sounding

    NASA Astrophysics Data System (ADS)

    Constable, S.; Key, K. W.; Behrens, J. P.; MacGregor, L.; Evans, R. L.

    2010-12-01

    We can detect transverse electrical anisotropy in the oceanic crust and upper mantle using circular transmitter tows around a pair of highly sensitive controlled-source electromagnetic (CSEM) receivers. Our long-wire electromagnetic (LEM) receivers, equipped with 100-200 m antennas, improve signal to noise by about an order of magnitude over standard EM receivers using 8-10 m antennas. LEMs work well in deep water where voltage noise from electrodes and amplifiers dominates, and electric field noise from magnetotelluric signals and water motion is low. When combined with SUESI, our marine EM transmitter, which emits 300 amps across a 250 m antenna, noise floors of 10-17~V/Am2 may be obtained at 2-4 Hz over 40-minute stacks. Towing a transmitter in a 30 km circle around an orthogonal pair of LEMs samples propagation though the crust and upper mantle in all horizontal directions. This purely azimuthal geometry generates linearly polarized data for an isotropic earth, but in the presence of anisotropy the minor axis of the polarization ellipse develops a characteristic clover-leaf pattern when plotted against source-receiver direction, and the major axis becomes elongated. We have conducted such experiments on 40 Ma lithosphere offshore California (the APPLE experiment), and 24 Ma lithosphere as it subducts into the Nicaraguan trench (part of the SERPENT expedition). Both regions produce remarkably similar results, with increased conductivity in the fossil ridge-parallel directions, which we interpret to be caused by serpentinized mantle-penetrating faults. This pattern of anisotropy is modified in the outer rise of the trench, as the lithosphere bends and shallower (crustal) fractures develop.

  4. Lower mantle tomography and phase change mapping

    NASA Astrophysics Data System (ADS)

    Sun, Daoyuan; Helmberger, Don

    2008-10-01

    A lower mantle S wave triplication (Scd) has been recognized for many years and appears to be explained by the recently discovered perovskite (PV) to postperovskite (PPV) phase change. Seismic observations of Scd display (1) rapid changes in strength and timing relative to S and ScS and (2) early arrivals beneath fast lower mantle regions. While the latter feature can be explained by a Clapeyron slope (γ) of 6 MPa/K and a velocity jump of 1.5% when corrected by tomographic predictions, it does not explain the first feature. Here, we expand on this mapping approach by attempting a new parameterization that requires a sample of D" near the ScS bounce point (δVS) where the phase height (hph) and velocity jump (β) are functions of (δVS). These parameters are determined by modeling dense record sections collected from USArray and PASSCAL data where Grand's tomographic model is the most detailed in D" structure beneath Central America. We also address the range of γ to generate new global models of the phase boundary and associated temperature variation. We conclude that a γ near 9 MPa/K is most satisfactory but requires β to be nonuniform with a range from about 1.0 to 4.0% with some slow region samples requiring the largest values. Moreover, the edges of the supposed buckled slabs delimitated by both P and S waves display very rapid changes in phase boundary heights producing Scd multipathing. These features can explain the unstable nature of the Scd phase with easy detection to no detection commonly observed. The fine structure at the base of the mantle beneath these edges contains particularly strong reflections indicative of local ultralow velocity zones, which are predicted in some dynamic models.

  5. Temporally Transitional Mantle Convection: Implications for Mars

    NASA Astrophysics Data System (ADS)

    Loddoch, A.; Hansen, U.

    2007-12-01

    The thermal evolution of terrestrial planets such as Earth, Mars and Venus is strongly dominated by the convective processes in the planet's silicate mantle. The actual planform of convection controls the efficiency of heat transport and thus, the cooling behavior and thermal evolution of the whole planet. In the present study we investigate the heat transport properties of variable viscosity convection. Here, the focus is on the temporally transitional behavior discovered recently (Loddoch et. al, 2006). While the difference of the newly found convective regime to the already known stagnant lid and episodic behavior has been elaborated in our previous study, the present work investigates the implications of the observed intermittent behavior on the thermal evolution of terrestrial planets. A 3D numerical mantle convection code is applied and calculations are carried out in the parameter range for which the temporally transitional behavior has been found. Using the described approach it is possible to investigate the transition from a (temporarily) mobilized towards a stagnant surface in a fluid dynamically consistent manner. While such a scenario has repeatedly been suggested for Mars' early history, it has so far been investigated only by means of parameterized convection models. We show, that the sporadic surface mobilization events occur on time scales relevant for Mars. In order to assess their influence on the subsequent thermal evolution of planetary bodies, an internal heating of the mantle and a secular cooling of the core are additionally taken into account. The obtained results are compared to the findings of thermal evolution studies employing parameterized convection models.

  6. Lateral variations in lower mantle seismic velocity

    NASA Technical Reports Server (NTRS)

    Duffy, Thomas S.; Ahrens, Thomas J.

    1992-01-01

    To obtain a theoretical model which provides a rationale for the observed high values of velocity variations, the effect of a 0.1 to 0.2 percent partially molten volatile-rich material in various geometries which are heterogeneously dispersed in the lower mantle is examined. Data obtained indicate that, depending on aspect ratio and geometry, 0.1-0.2 percent partial melting in conjunction with about 100 K thermal anomalies can explain the seismic variations provided the compressibility of the melt differs by less than about 20 percent from the surrounding solid.

  7. Ophiolite Perspectives on Oceanic Mantle Heterogeneity

    NASA Astrophysics Data System (ADS)

    Walker, R. J.; O'Driscoll, B.; Day, J. M.; Ash, R. D.; Daly, J. S.

    2014-12-01

    The mantle sections of ophiolites offer a useful approach to studying compositional heterogeneities in the oceanic mantle. A potential caveat is that the tectonic provenance of ophiolites is often not easy to decipher, although many have undergone at least supra-subduction zone (SSZ) processing. Significant outstanding questions include the degree to which ophiolite peridotites preserve evidence of pre-SSZ events and the way that SSZ melt extraction modifies the character of these peridotites. A suite of Caledonian ophiolites associated with the closure of the Iapetus Ocean offers an opportunity to shed light on these issues, in particular to assess the degree to which long (regional) wavelength compositional heterogeneities survive SSZ melting. Observations on the combined highly-siderophile element (HSE) and 187Os/188Os systematics of the broadly coetaneous (490-500 Ma) Shetland Ophiolite Complex (Scotland) and Leka Ophiolite Complex (LOC; Norway) are presented here. Generally, the lithological composition of each locality is harzburgitic, and hosts lenses and layers of dunite, chromitite and pyroxenite that are interpreted as representing SSZ-related (channelised) melt migration and melt-rock interaction. Although the bulk of the harzburgitic rocks have approximately chondritic initial 187Os/188Os and HSE abundances, ancient (Proterozoic) melt depletion (TRD =1.4 to 1 Ga) is recorded in ~10% of samples from each locality. This is also commonly observed in abyssal peridotites. One important implication of the data is that SSZ melt generation/migration has had no discernible impact on the bulk Os isotopic composition of the Iapetus oceanic mantle. By contrast, non-harzburgitic lithologies consistently exhibit more radiogenic initial 187Os/188Os and more variable HSE abundances. The dunites, chromitites and pyroxenites of the LOC can be separated into two groups on the basis of isochrons that they define; yielding ages of 481±22 Ma and 589±15 Ma, respectively

  8. Intraplate volcanism and mantle dynamics in East Asia: Big mantle wedge (BMW) model (Invited)

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2009-12-01

    In the East Asia continent there are many Cenozoic volcanoes, but only a few are still active now, such as the Changbai, Wudalianchi, and Tengchong volcanoes which have erupted several times in the past 1000 years. Although many studies have been made by using various approaches, the origin of the intraplate volcanoes in East Asia is still not very clear. Recently we used regional and global seismic tomography to determine high-resolution 3-D mantle structure under Western Pacific to East Asia (Zhao, 2004; Huang and Zhao, 2006; Zhao et al., 2009). Our results show prominent low-velocity anomalies from the surface down to 410 km depth beneath the intraplate volcanoes and a broad high-velocity anomaly in the mantle transition zone under East Asia. Focal-mechanism solutions of deep earthquakes indicate that the subducting Pacific slab under the Japan Sea and the East Asia margin is subject to compressive stress regime. These results suggest that the Pacific slab meets strong resistance at the 660-km discontinuity and so it becomes stagnant in the mantle transition zone under East Asia. The Philippine Sea slab has also subducted down to the mantle transition zone under western Japan and the Ryukyu back-arc region. The western edge of the stagnant slab is generally parallel with the Japan trench and the Ryukyu trench and roughly coincides with a prominent surface topography and gravity boundary in East China, which is located approximately 1800 km west of the trenches. The upper mantle under East Asia has formed a big mantle wedge (BMW) above the stagnant slab. The BMW exhibits low seismic-velocity and high electrical-conductivity, which is hot and wet because of the deep dehydration reactions of the stagnant slab and the convective circulation process in the BMW. These processes lead to the upwelling of hot and wet asthenospheric materials and thinning and fracturing of the continental lithosphere, leading to the formation of the active intraplate volcanoes in East

  9. Avalanches at the Core-Mantle Boundary: Possible Role in Geomagnetic Reversals, Mantle Plumes, and Superchrons

    NASA Astrophysics Data System (ADS)

    Muller, R. A.; Levine, J.; Rohde, R.

    2002-12-01

    Avalanches at the core-mantle boundary have not been directly observed, but if they exist they could affect many geophysical phenomena. Avalanches occur in ?sediment? accumulating on the inner surface of the mantle (according to the theory of Buffett et al.). Because the sediment is not evenly deposited, avalanches could provide the primary mechanism to redistribute sedimentary material evenly over the core-mantle boundary. Core-mantle avalanches, like turbidity flows in the ocean, consist of both solid material and entrained liquid. Such flows can occur at shallow angles (less than a few degrees) and could continue for many kilometers or hundreds of kilometers, depending on the topography. However, these avalanches are upside-down: they flow upward, propelled by buoyancy, into inverted valleys on the mantle surface. The avalanches mix relatively cool sediment with hot liquid iron, creating a redistribution of heat near the boundary. If the avalanche is sufficiently thick (100 m) then the cold pulse will create a downward plume in the core which can disrupt the convective cells that maintain the Earth?s dipole field. When the cells reestablish, the result is a geomagnetic reversal or excursion. We predict a reversal pattern different from that of the chaotic reversals seen in simulations by Glatzmeier. Avalanche-triggered reversals begin with a rapid drop in the dipole moment (but with higher order moments increasing), followed by a period with low dipole moment lasting from hundreds to thousands of years, followed by a rapid build-up of the reversed dipole field. Studies of the detailed time structure of reversals can test the model. As with turbidity flows, we expect a spectrum of avalanche sizes. The largest avalanches are the least probable. The sudden removal of a sediment blanket exposes the lower mantle to a pulse of heat, and for sufficiently large avalanches (>> 100 meters thick) this can contribute to the conditions needed for a mantle plume. A large

  10. CARDIAC MUSCLE

    PubMed Central

    Sommer, Joachim R.; Johnson, Edward A.

    1968-01-01

    With light and electron microscopy a comparison has been made of the morphology of ventricular (V) and Purkinje (P) fibers of the hearts of guinea pig, rabbit, cat, dog, goat, and sheep. The criteria, previously established for the rabbit heart, that V fibers are distinguished from P fibers by the respective presence and absence of transverse tubules is shown to be true for all animals studied. No evidence was found of a permanent connection between the sarcoplasmic reticulum and the extracellular space. The sarcoplasmic reticulum (SR) of V fibers formed couplings with the sarcolemma of a transverse tubule (interior coupling) and with the peripheral sarcolemma (peripheral coupling), whereas in P fibers the SR formed only peripheral couplings. The forms of the couplings were identical. The significance, with respect to excitation-contraction coupling, of the difference in the form of the couplings in cardiac versus skeletal muscle is discussed together with the electrophysiological implications of the differing geometries of bundles of P fibers from different animals. PMID:5645545

  11. He and Sr isotopes in the Lau Basin mantle: depleted and primitive mantle components

    NASA Astrophysics Data System (ADS)

    Poreda, R. J.; Craig, H.

    1992-11-01

    Helium isotope ratios in Lau Basin back-arc basalts range from 7 to 22 times the atmospheric value ( R A), i.e. from ratios typical of MORB (Depleted Mantle) helium (R/R A = 8 ± 1) to ratios similar to 'high- 3He' hotspots as observed in the Hawaiian, Icelandic, and nearby Samoan plume ( R/R A = 24 ). Along the Central Lau Basin spreading axis and its northward extension in the region around Niuafo'ou Volcano, 3He/ 4He ratios have typical MORB values (range = 7.5-8.6), but on Rochambeau Bank, the southern flank of a large seamount, ratios up to 22 R A occur. These high 3He/ 4He ratios are extrema of linear arrays (11-22 R A) of He vs. Sr, Nd and Pb isotope ratios, between a Depleted Mantle (MORB) end-member and a Primitive Helium Mantle component (PHEM). PHEM is the Enriched Mantle end-member for the 'depleted' array formed with the DM component, and at the same time the Depleted end-member for the 'enriched' array formed with 'EM' the EM2-type end-member for Masefau Bay, Samoan basalts, as these two binary arrays intersect at its composition. Sr and Nd isotopic arrays vs. each other and vs. 3He are consistent with these binary 'mirror arrays' for Lau and Masefau basalts. The 3He data show unequivocally that deep-mantle plume material is present at Rochambeau Bank, and to some extent in the leaky transform/spreading axis along Peggy Ridge. We suppose that the Samoan plume component regards itself as an 'off-ridge' hotspot relative to the nearby Lau spreading axis, and that some of its material is channeled toward Peggy Ridge in a manner similar to the channeling we observe at the Galapagos and Pascua (Easter Island) hotspots.

  12. Multiphase Dynamics of the Very Young Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Boukare, C. E.; Ricard, Y. R.; Labrosse, S.

    2015-12-01

    Early in the history of terrestrial planets, heat of accretion, radioactive decay or core-mantle segregation may have significantly melted the silicate mantle. Magma ocean evolution depends both on the physical properties of solid and liquid materials at relevant P-T conditions and on the complex dynamics of a convecting crystallizing mantle. Present deep Earth mantle structures such as ultralow-velocity zones (ULVZs) or low-shear velocity provinces (LLSVPs) might be directly linked to the crystallization of a potential magma ocean. We propose a complete thermodynamic model of the solid-liquid equilibrium in the MgO-FeO-SiO2 system at HP/HT (Boukaré et al, 2015, in press). It synthesizes various data (observed and computed equations of state, melting curves, Mg/Fe partitioning). The present study confirms previous findings that, at similar compositions, melts are lighter than solids throughout the mantle. However, at thermodynamic equilibrium, the first solids that crystallize in the deep mantle are lighter than the liquid as they are more Mg-rich. This further enriches the melt in iron and this residual melt becomes much denser than the solid phase. Both the anti-freeze effect of iron and its high density suggest a mantle crystallization scenario similar to that described in Labrosse et al. [2007] where the ULVZ are iron rich and very fusible remnants of a primordial basal ocean. We also present the development of a multiphase convection code accounting for solid-liquid phase change, compaction and fractional crystallization. We discuss the effects of various temperature profiles and solid liquid density crossovers on the dynamics of a crystallizing mantle. Using this mechanical model, we also investigate the dynamics of upper mantle overturn following magma ocean crystallization. Indeed, current models of magma ocean evolution predict that fractional crystallization of the mantle leads to unstable chemical stratification of the upper mantle.

  13. Application of Core Dynamics Modeling to Core-Mantle Interactions

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia

    2003-01-01

    Observations have demonstrated that length of day (LOD) variation on decadal time scales results from exchange of axial angular momentum between the solid mantle and the core. There are in general four core-mantle interaction mechanisms that couple the core and the mantle. Of which, three have been suggested likely the dominant coupling mechanism for the decadal core-mantle angular momentum exchange, namely, gravitational core-mantle coupling arising from density anomalies in the mantle and in the core (including the inner core), the electromagnetic coupling arising from Lorentz force in the electrically conducting lower mantle (e.g. D-layer), and the topographic coupling arising from non-hydrostatic pressure acting on the core-mantle boundary (CMB) topography. In the past decades, most effort has been on estimating the coupling torques from surface geomagnetic observations (kinematic approach), which has provided insights on the core dynamical processes. In the meantime, it also creates questions and concerns on approximations in the studies that may invalidate the corresponding conclusions. The most serious problem is perhaps the approximations that are inconsistent with dynamical processes in the core, such as inconsistencies between the core surface flow beneath the CMB and the CMB topography, and that between the D-layer electric conductivity and the approximations on toroidal field at the CMB. These inconsistencies can only be addressed with numerical core dynamics modeling. In the past few years, we applied our MoSST (Modular, Scalable, Self-consistent and Three-dimensional) core dynamics model to study core-mantle interactions together with geodynamo simulation, aiming at assessing the effect of the dynamical inconsistencies in the kinematic studies on core-mantle coupling torques. We focus on topographic and electromagnetic core-mantle couplings and find that, for the topographic coupling, the consistency between the core flow and the CMB topography is

  14. Electromagnetic exploration of the oceanic mantle.

    PubMed

    Utada, Hisashi

    2015-01-01

    Electromagnetic exploration is a geophysical method for examining the Earth's interior through observations of natural or artificial electromagnetic field fluctuations. The method has been in practice for more than 70 years, and 40 years ago it was first applied to ocean areas. During the past few decades, there has been noticeable progress in the methods of instrumentation, data acquisition (observation), data processing and inversion. Due to this progress, applications of this method to oceanic regions have revealed electrical features of the oceanic upper mantle down to depths of several hundred kilometers for different geologic and tectonic environments such as areas around mid-oceanic ridges, areas around hot-spot volcanoes, subduction zones, and normal ocean areas between mid-oceanic ridges and subduction zones. All these results estimate the distribution of the electrical conductivity in the oceanic mantle, which is key for understanding the dynamics and evolution of the Earth together with different physical properties obtained through other geophysical methods such as seismological techniques.

  15. Global tectonics from mantle convection models

    NASA Astrophysics Data System (ADS)

    Coltice, N.

    2015-12-01

    The motions of the surface of the Earth are described using the theory of Plate Tectonics. Despite the fact that this theory has shaped modern geosciences it has some limitations, and among them the impossibility to evaluate the forces at the origin of the surface displacements and deformations. Hence important questions remain difficult to solve like the origin of the sizes of plates, forces driving mountain building or supercontinent dispersal... Tremendous progresses have been made in the past 15 years in mantle convection modelling. Especially, modern convection codes can solve for motion equations with complex material properties. Since the early 2000's, the development of pseudo-plastic rheologies contributed to produce convection models with plate-like behaviour: plates naturally emerge and interact with the flow in a self-organized manner. Using such models in 3D spherical geometry (computed with StagYY - Tackley, 2008), I will show that important questions on the global tectonics of the planet can be addressed now: the distribution of seafloor ages, the distribution of plate area, the lifetime of small and large plates or modes of plate reorganizations. Tackley, P.J., Modellng compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Phys. Earth Planet. Inter, 171, 7-18 (2008).

  16. Towards a Global Upper Mantle Attenuation Model

    NASA Astrophysics Data System (ADS)

    Karaoglu, Haydar; Romanowicz, Barbara

    2015-04-01

    Global anelastic tomography is crucial for addressing the nature of heterogeneity in the Earth's interior. The intrinsic attenuation manifests itself through dispersion and amplitude decay. These are contaminated by elastic effects such as (de)focusing and scattering. Therefore, mapping anelasticity accurately requires separation of elastic effects from the anelastic ones. To achieve this, a possible approach is to try and first predict elastic effects through the computation of seismic waveforms in a high resolution 3D elastic model, which can now be achieved accurately using numerical wavefield computations. Building upon the recent construction of such a whole mantle elastic and radially anisotropic shear velocity model (SEMUCB_WM1, French and Romanowicz, 2014), which will be used as starting model, our goal is to develop a higher resolution 3D attenuation model of the upper mantle based on full waveform inversion. As in the development of SEMUCB_WM1, forward modeling will be performed using the spectral element method, while the inverse problem will be treated approximately, using normal mode asymptotics. Both fundamental and overtone time domain long period waveforms (T>60s) will be used from a dataset of over 200 events observed at several hundred stations globally. Here we present preliminary results of synthetic tests, exploring different iterative inversion strategies.

  17. Free surface calculations in mantle convection

    NASA Astrophysics Data System (ADS)

    Rose, I.; Buffett, B. A.; Heister, T.

    2015-12-01

    Geodynamic simulations increasingly rely on simulations with a true free surface to investigate questions of dynamic topography, tectonic deformation, gravity perturbations, and global mantle convection. However, implementations of free surface boundary conditions have proven challenging from a standpoint of accuracy, robustness, and stability. In particular, free surfaces tend to suffer from sloshing instabilities, also known as the "drunken sailor" instability, which severely limit time step sizes. Several schemes have been proposed in the literature to deal with these instabilities. Here we analyze the problem of creeping viscous flow with a free surface and discuss the origin of these instabilities. We demonstrate their cause and how existing stabilization schemes work to damp them out. Our analysis is based on formulating a generalized eigenvalue problem for the relaxation spectra of the linearized free surface problem. We also propose a new scheme for removing instabilites from free surface calculations. It does not require modifications to the system matrix, nor additional variables, but is instead an explicit scheme based on nonstandard finite differences. It relies on a single stabilization parameter which may be identified with the smallest relaxation timescale of the free surface. We analyze the stability and accuracy of the nonstandard finite difference scheme, and describe its implementation in the open source mantle convection software Aspect. We also provide comparisons between the nonstandard finite difference scheme and the quasi-implicit scheme proposed by Kaus, Muhlhaus, and May (2010).

  18. Electromagnetic exploration of the oceanic mantle.

    PubMed

    Utada, Hisashi

    2015-01-01

    Electromagnetic exploration is a geophysical method for examining the Earth's interior through observations of natural or artificial electromagnetic field fluctuations. The method has been in practice for more than 70 years, and 40 years ago it was first applied to ocean areas. During the past few decades, there has been noticeable progress in the methods of instrumentation, data acquisition (observation), data processing and inversion. Due to this progress, applications of this method to oceanic regions have revealed electrical features of the oceanic upper mantle down to depths of several hundred kilometers for different geologic and tectonic environments such as areas around mid-oceanic ridges, areas around hot-spot volcanoes, subduction zones, and normal ocean areas between mid-oceanic ridges and subduction zones. All these results estimate the distribution of the electrical conductivity in the oceanic mantle, which is key for understanding the dynamics and evolution of the Earth together with different physical properties obtained through other geophysical methods such as seismological techniques. PMID:26062736

  19. Attenuation Tomography of the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Adenis, A.; Debayle, E.; Ricard, Y. R.

    2014-12-01

    We present a 3-D model of surface wave attenuation in the upper mantle. The model is constrained by a large data set of fundamental and higher Rayleigh mode observations. This data set consists of about 1,800,000 attenuation curves measured in the period range 50-300s by Debayle and Ricard (2012). A careful selection allows us to reject data for which measurements are likely biased by the poor knowledge of the scalar seismic moment or by a ray propagation too close to a node of the source radiation pattern. For each epicenter-station path, elastic focusing effects due to seismic heterogeneities are corrected using DR2012 and the data are turned into log(1/Q). The selected data are then combined in a tomographic inversion using the non-linear least square formalism of Tarantola and Valette (1982). The obtained attenuation maps are in agreement with the surface tectonic for periods and modes sensitive to the top 200km of the upper mantle. Low attenuation regions correlate with continental shields while high attenuation regions are located beneath young oceanic regions. The attenuation pattern becomes more homogeneous at depths greater than 200 km and the maps are dominated by a high quality factor signature beneath slabs. We will discuss the similarities and differences between the tomographies of seismic velocities and of attenuations.

  20. Deuterium enrichment of the interstellar grain mantle

    NASA Astrophysics Data System (ADS)

    Das, Ankan; Sahu, Dipen; Majumdar, Liton; Chakrabarti, Sandip K.

    2016-01-01

    We carry out Monte Carlo simulation to study deuterium enrichments of interstellar grain mantles under various physical conditions. Based on the physical properties, various types of clouds are considered. We find that in diffuse cloud regions, very strong radiation fields persists and hardly a few layers of surface species are formed. In translucent cloud regions with a moderate radiation field, significant number of layers would be produced and surface coverage is mainly dominated by photo-dissociation products such as, C, CH3, CH2D, OH and OD. In the intermediate dense cloud regions (having number density of total hydrogen nuclei in all forms ˜2 × 104 cm-3), water and methanol along with their deuterated derivatives are efficiently formed. For much higher density regions (˜106 cm-3), water and methanol productions are suppressed but surface coverages of CO, CO2, O2 and O3 are dramatically increased. We find a very high degree of fractionation of water and methanol. Observational results support a high fractionation of methanol but surprisingly water fractionation is found to be low. This is in contradiction with our model results indicating alternative routes for de-fractionation of water. Effects of various types of energy barriers are also studied. Moreover, we allow grain mantles to interact with various charged particles (such as H+, Fe+, S+ and C+) to study the stopping power and projected range of these charged particles on various target ices.

  1. Electromagnetic exploration of the oceanic mantle

    PubMed Central

    UTADA, Hisashi

    2015-01-01

    Electromagnetic exploration is a geophysical method for examining the Earth’s interior through observations of natural or artificial electromagnetic field fluctuations. The method has been in practice for more than 70 years, and 40 years ago it was first applied to ocean areas. During the past few decades, there has been noticeable progress in the methods of instrumentation, data acquisition (observation), data processing and inversion. Due to this progress, applications of this method to oceanic regions have revealed electrical features of the oceanic upper mantle down to depths of several hundred kilometers for different geologic and tectonic environments such as areas around mid-oceanic ridges, areas around hot-spot volcanoes, subduction zones, and normal ocean areas between mid-oceanic ridges and subduction zones. All these results estimate the distribution of the electrical conductivity in the oceanic mantle, which is key for understanding the dynamics and evolution of the Earth together with different physical properties obtained through other geophysical methods such as seismological techniques. PMID:26062736

  2. Processing of Icy Mantles in Protostellar Envelopes

    NASA Technical Reports Server (NTRS)

    Chiar, J. E.; Whittet, D. C. B.; Gerakines, P. A.; Boogert, A. C. A.; Adamson, A. J.

    1996-01-01

    The 4.5-4.8 micron spectral region provides two potential diagnostics of radiative or thermal processing of interstellar ices in the environs of embedded stars in molecular clouds. A broad absorption feature centered at 4.62 micron is seen in the spectra of several young stellar objects (YSO's) and attributed to C-N triple bonds in a nitrile or isonitrile. As CN-bearing solids in the laboratory are produced by energetic radiative processing of ices containing nitrogen, detection of this feature in YSO's is taken as evidence for (1) the presence of nitrogen in the unprocessed cloud ices, and (2) evolution of the ice in the vicinity of the embedded source. The adjacent feature at 4.67 micron, identified with solid CO, provides not only quantitative information on CO itself but also indirect evidence for the presence of other species; its position and profile are sensitive to the molecular environment of the CO molecules in the ice mantle, and may be used to constrain both the composition and thermal/radiative history of the ice. One important example is the possibility to detect CO2, which is produced easily in the laboratory by UV irradiation of CO-rich or CH3OH-rich ices. CO embedded in a CO2 matrix gives a characteristic spectral signature distinct from other CO-bearing mixtures investigated to date. We have obtained CO absorption profiles of three young stellar objects in order to investigate their ice mantle composition.

  3. Low Viscosity Zone and Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Stein, C.; Hansen, U.

    2005-12-01

    We use a three-dimensional mantle convection model to explore the influence of rheological properties on variations in viscosity and mantle dynamics. In particular the interaction of a temperature-, pressure- and stress-dependent viscosity has been studied. In temperature- and stress-dependent viscosity convection, a stagnant lid mode of convection arises if the viscosity is strongly dominated by temperature. This is linked to a strong viscosity drop over the top boundary layer with little further viscosity variations with depth. An almost constant viscosity-depth profile with only a maximum at mid-depth is obtained, if the system is strongly influenced by the stress dependence. This is coupled to a mobilised surface which takes part in the convective process. A low viscosity zone (LVZ) at shallow depths and a viscosity peak at mid-depth have been obtained for the balanced combination of the temperature and stress dependence of the viscosity. The appearance of both zones correlates with the appearance of plate-like motion. Small rigid surface pieces sink into the interior. But subduction is faster than the new creation of plates leading only to an occassional occurrence of the features. Additional pressure dependence of the viscosity helps to slow down subduction speed, so that plates and the LVZ exist over long times. Further the long-wavelength flow resulting in convection with depth-dependent properties leads to extended plates and a more global LVZ.

  4. Menopause alters temperature sensitivity of muscle force in humans.

    PubMed

    Bieles, J S; Bruce, S A; Woledge, R C

    2012-03-01

    Isometric maximum voluntary force (MVF) of the adductor pollicis and first dorsal interosseous muscles was measured in 11 pre- and 11 post-menopausal (Pre-M and Post-M) human subjects. The temperature of the hand varied in the range 18°-38°C by water immersion and skin temperature was recorded. MVF at each temperature was expressed relative to the value at skin temperature above 35°C to give MVF(REL). The form of the relation between MVF(REL) and temperature was different in the Pre-M and Post-M groups (p < 0.01). In the Pre-M group the maximum value of MVF(REL) occurred near 30°C and force fell at both higher and lower temperatures. In the Post-M group MVF(REL) showed an approximately linear decline with cooling across the whole temperature range. The maximum value of MVF(REL) for the Post-M group was near 35°C. The values of MVF(REL) for the Post-M group were significantly lower than for the Pre-M group at temperatures between 18° and 30°C. PMID:21748370

  5. The maximum water storage capacities in nominally anhydrous minerals in the mantle transition zone and lower mantle

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Yurimoto, H.

    2012-12-01

    Water is the most important volatile component in the Earth, and affects the physicochemical properties of mantle minerals, e.g. density, elastic property, electrical conductivity, thermal conductivity, rheological property, melting temperature, melt composition, element partitioning, etc. So many high pressure experiments have been conducted so far to determine the effect of water on mantle minerals. To clarify the maximum water storage capacity in nominally anhydrous mantle minerals in the mantle transition zone and lower mantle is an important issue to discuss the possibility of the existence of water reservoir in the Earth mantle. So we have been clarifying the maximum water storage capacity in mantle minerals using MA-8 type (KAWAI-type) high pressure apparatus and SIMS (secondary ion mass spectroscopy). Upper mantle mineral, olivine can contain ~0.9 wt% H2O in the condition just above 410 km discontinuity in maximum (e.g. Chen et al., 2002; Smyth et al., 2006). On the other hand, mantle transition zone mineral, wadsleyite and ringwoodite can contain significant amount (about 2-3 wt.%) of H2O (e.g. Inoue et al., 1995, 1998, 2010; Kawamoto et al., 1996; Ohtani et al., 2000). But the lower mantle mineral, perovskite can not contain significant amount of H2O, less than ~0.1 wt% (e.g. Murakami et al., 2002; Inoue et al., 2010). In addition, garnet and stishovite also can not contain significant amount of H2O (e.g. Katayama et al., 2003; Mookherjee and Karato, 2010; Litasov et al., 2007). On the other hand, the water storage capacities of mantle minerals are supposed to be significantly coupled with Al by a substitution with Mg2+, Si4+ or Mg2+ + Si4+, because Al3+ is the trivalent cation, and H+ is the monovalent cation. To clarify the degree of the substitution, the water contents and the chemical compositions of Al-bearing minerals in the mantle transition zone and the lower mantle were also determined in the Al-bearing systems with H2O. We will introduce the

  6. Early evolution of the crust-mantle system

    NASA Technical Reports Server (NTRS)

    Condie, K. C.

    1985-01-01

    Nd isotopic data indicate that most Archean igneous rocks including compositions ranging from komatiite to tonalite are derived from undepleted or depleted upper mantle sources. If sampling is representative, only a few require enriched sources. A major unresolved question is the fate of the material removed from the upper mantle leaving early depleted sources as residue. One possibility is that widespread depletion of the early mantle resulted from a period of early degassing and magmatism. Rare gas isotopic data, in particular 129Xe/130Xe ratios, seem to demand that the upper mantle was extensively degassed at or before 4.4 b.y. and this led to rapid growth of the atmosphere and oceans. The lower mantle, however, was not significantly degassed during this event. It is likely that such widespread degassing and magmatism of the upper mantle transferred significant quantities of incompatible elements into the uppermost mantle or crust. Once formed, such an enriched fraction should resist recycling into the mantle and collect at or near the Earth's surface. One possibility is that it collects chiefly in a zone of partial melting, analogous to the present low-velocity zone at the base of the lithosphere.

  7. Not so hot "hot spots" in the oceanic mantle.

    PubMed

    Bonath, E

    1990-10-01

    Excess volcanism and crustal swelling associated with hot spots are generally attributed to thermal plumes upwelling from the mantle. This concept has been tested in the portion of the Mid-Atlantic Ridge between 34 degrees and 45 degrees (Azores hot spot). Peridotite and basalt data indicate that the upper mantle in the hot spot has undergone a high degree of melting relative to the mantle elsewhere in the North Atlantic. However, application of various geothermometers suggests that the temperature of equilibration of peridotites in the mantle was lower, or at least not higher, in the hot spot than elsewhere. The presence of H(2)O-rich metasomatized mantle domains, inferred from peridotite and basalt data, would lower the melting temperature of the hot spot mantle and thereby reconcile its high degree ofmelting with the lack of a mantle temperature anomaly. Thus, some so-called hot spots might be melting anomalies unrelated to abnormally high mantle temperature or thermal plumes. PMID:17808242

  8. Mantle convection and the state of the Earth's interior

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.

    1987-01-01

    During 1983 to 1986 emphasis in the study of mantle convection shifted away from fluid mechanical analysis of simple systems with uniform material properties and simple geometries, toward analysis of the effects of more complicated, presumably more realistic models. The important processes related to mantle convection are considered. The developments in seismology are discussed.

  9. Mantle convection and the state of the earth's interior

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.; Gurnis, Michael

    1987-01-01

    During 1983 to 1986 emphasis in the study of mantle convection shifted away from fluid mechanical analysis of simple systems with uniform material properties and simple geometries, toward analysis of the effects of more complicated, presumably more realistic models. The important processes related to mantle convection are considered. The developments in seismology are discussed.

  10. Seismic evidence for water deep in Earth's upper mantle.

    PubMed

    van der Meijde, Mark; Marone, Federica; Giardini, Domenico; van der Lee, Suzan

    2003-06-01

    Water in the deep upper mantle can influence the properties of seismic discontinuities in the mantle transition zone. Observations of converted seismic waves provide evidence of a 20- to 35-kilometer-thick discontinuity near a depth of 410 kilometers, most likely explained by as much as 700 parts per million of water by weight.

  11. Evolution of helium isotopes in the Earth's mantle.

    PubMed

    Class, Cornelia; Goldstein, Steven L

    2005-08-25

    Degassing of the Earth's mantle through magmatism results in the irreversible loss of helium to space, and high (3)He/(4)He ratios observed in oceanic basalts have been considered the main evidence for a 'primordial' undegassed deep mantle reservoir. Here we present a new global data compilation of ocean island basalts, representing upwelling 'plumes' from the deep mantle, and show that island groups with the highest primordial signal (high (3)He/(4)He ratios) have striking chemical and isotopic similarities to mid-ocean-ridge basalts. We interpret this as indicating a common history of mantle trace element depletion through magmatism. The high (3)He/(4)He in plumes may thus reflect incomplete degassing of the deep Earth during continent and ocean crust formation. We infer that differences between plumes and the upper-mantle source of ocean-ridge basalts reflect isolation of plume sources from the convecting mantle for approximately 1-2 Gyr. An undegassed, primordial reservoir in the mantle would therefore not be required, thus reconciling a long-standing contradiction in mantle dynamics.

  12. Strong, Multi-Scale Heterogeneity in Earth's Lowermost Mantle.

    PubMed

    Tkalčić, Hrvoje; Young, Mallory; Muir, Jack B; Davies, D Rhodri; Mattesini, Maurizio

    2015-01-01

    The core mantle boundary (CMB) separates Earth's liquid iron outer core from the solid but slowly convecting mantle. The detailed structure and dynamics of the mantle within ~300 km of this interface remain enigmatic: it is a complex region, which exhibits thermal, compositional and phase-related heterogeneity, isolated pockets of partial melt and strong variations in seismic velocity and anisotropy. Nonetheless, characterising the structure of this region is crucial to a better understanding of the mantle's thermo-chemical evolution and the nature of core-mantle interactions. In this study, we examine the heterogeneity spectrum from a recent P-wave tomographic model, which is based upon trans-dimensional and hierarchical Bayesian imaging. Our tomographic technique avoids explicit model parameterization, smoothing and damping. Spectral analyses reveal a multi-scale wavelength content and a power of heterogeneity that is three times larger than previous estimates. Inter alia, the resulting heterogeneity spectrum gives a more complete picture of the lowermost mantle and provides a bridge between the long-wavelength features obtained in global S-wave models and the short-scale dimensions of seismic scatterers. The evidence that we present for strong, multi-scale lowermost mantle heterogeneity has important implications for the nature of lower mantle dynamics and prescribes complex boundary conditions for Earth's geodynamo. PMID:26674394

  13. Continental smokers couple mantle degassing and distinctive microbiology within continents

    NASA Astrophysics Data System (ADS)

    Crossey, Laura J.; Karlstrom, Karl E.; Schmandt, Brandon; Crow, Ryan R.; Colman, Daniel R.; Cron, Brandi; Takacs-Vesbach, Cristina D.; Dahm, Clifford N.; Northup, Diana E.; Hilton, David R.; Ricketts, Jason W.; Lowry, Anthony R.

    2016-02-01

    The discovery of oceanic black (and white) smokers revolutionized our understanding of mid-ocean ridges and led to the recognition of new organisms and ecosystems. Continental smokers, defined here to include a broad range of carbonic springs, hot springs, and fumaroles that vent mantle-derived fluids in continental settings, exhibit many of the same processes of heat and mass transfer and ecosystem niche differentiation. Helium isotope (3He/4He) analyses indicate that widespread mantle degassing is taking place in the western U.S.A., and that variations in mantle helium values correlate best with low seismic-velocity domains in the mantle and lateral contrasts in mantle velocity rather than crustal parameters such as GPS, proximity to volcanoes, crustal velocity, or composition. Microbial community analyses indicate that these springs can host novel microorganisms. A targeted analysis of four springs in New Mexico yield the first published occurrence of chemolithoautotrophic Zetaproteobacteria in a continental setting. These observations lead to two linked hypotheses: that mantle-derived volatiles transit through conduits in extending continental lithosphere preferentially above and at the edges of mantle low velocity domains. High CO2 and other constituents ultimately derived from mantle volatiles drive water-rock interactions and heterogeneous fluid mixing that help structure diverse and distinctive microbial communities.

  14. Constraints on the rheological structure of the mantle

    NASA Technical Reports Server (NTRS)

    Oconnell, R. J.; Hager, B. H.

    1985-01-01

    Rheological models of the mantle are at present limited to radial symmetry, usually with homogeneous linearly viscous or viscoelastic incompressible layers. While such models are probably overly simple, they readily allow calculation of geophysical effects, such as post glacial rebound and related changes in the Earth's shape. They are also directly applicable to problems of global mantle flow and plate motions.

  15. North Atlantic magmatism controlled by temperature, mantle composition and buoyancy

    NASA Astrophysics Data System (ADS)

    Brown, Eric L.; Lesher, Charles E.

    2014-11-01

    Large igneous provinces are characterized by anomalously high rates of magma production. Such voluminous magmatism is commonly attributed to partial melting of hot, buoyantly upwelling mantle plume material. However, compositional heterogeneity in the mantle, caused by the subduction of oceanic crust, can also enhance magma production, diminishing the need for elevated temperatures associated with upwelling plumes. A plume origin for the North Atlantic large igneous province has been questioned because lava compositions correlate with crustal thickness, implying a link between magma productivity and mantle source composition. Here we use a numerical model that simulates upwelling and melting of compositionally heterogeneous mantle material to constrain the conditions that gave rise to magmatism in the North Atlantic. Using observations of lava compositions and volumes from the North Atlantic, we show that subducted crustal material represented less than 10% of the mantle source. We further show that mantle temperatures have remained elevated by 85-210 °C and increased mantle upwelling up to 14 times the rate of plate separation has occurred over the past 56 Myr. The enhanced temperatures and upwelling rates extended along more than 1,000 km of the Palaeogene rift, but are substantially more restricted along the modern Mid-Atlantic Ridge. These findings reflect the long-term manifestation of a mantle plume.

  16. Superplumes and Plume-Clustering: Dynamical Influences from Mantle Rheology

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Yuen, D. A.

    2003-04-01

    Seismological studies indicate the existence of large upwelling regions of complex structures in the lower mantle. A mantle flow model with only a few strong upwellings is an alternative to conventional convection models with respect not only to pattern of the flow but also to heat transport and mixing properties. By two- and three-dimensional numerical models we demonstrate that a significant increase of the viscosity with pressure in the lower mantle leads to a focusing of buoyancy into strong upwellings from the core-mantle boundary. Taking into account a realistically decreasing coefficient of thermal expansion further facilitates the generation of superplumes. Besides pressure, the viscosity of the mantle material will strongly depend on temperature. Combining the effects of temperature and pressure-dependent viscosity, generates a significant viscosity maximum in the lower mantle. Pressure dependence let the viscosity increase from the upper to the lower mantle, temperature dependence, however, compensates this effect at greater depth. The spatiotemporal evolution of plumes is likewise influenced: While a purely pressure-dependent viscosity creates single plumes, additional temperature dependence leads to plume-clusters, characterized by instabilities at the core-mantle boundary, which are centered around a strong upwelling flow.

  17. Geochemical Diversity of the Mantle: 50 Years of Acronyms

    NASA Astrophysics Data System (ADS)

    Hart, S. R.

    2014-12-01

    50 years ago, Gast, Tilton and Hedge demonstrated that the oceanic mantle is isotopically heterogeneous. 28 years ago, Zindler and Hart formalized the concept of geochemical mantle components, with an attendant, to some, odious, acronym soup. Work on a marriage of mantle geochemistry and dynamics continues unabated. We know unequivocally that the mantle is chemically heterogeneous; we do not know the scale lengths of these heterogeneities. We know unequivocally that these heterogeneities have persisted for eons (Gy); we do not know where they were formed or where they are stored. Through the kind auspices of the Plume Model, we plausibly have access to the whole mantle. The most accessible and well understood mantle reservoir is the upper depleted MORB mantle (DMM). Classically, this mantle was depleted by extraction of oceanic and continental crust from a "chondritic" bulk silicate Earth. In this post-Boyet and Carlson world, the complementary enriched reservoir may instead be hidden in the deepest mantle. In this case, DMM will become an endangered acronym. Hofmann and White (1982) argued that radiogenic Pb mantle (HIMU) is re-cycled ocean crust, and this is a comfortably viable model. It does require some ad hoc chemical manipulations during subduction. Given 2 Gy of aggregate mantle strains, the mafic component in HIMU may be of small length scale (< 50 m), possibly subsumed into the dominant peridotitic lithology. This mantle species is globally widespread. Enriched mantles (EM1 and EM2) almost certainly reflect recycling of enriched continental material. This was splendidly verified by Jackson et al (2007), with 87Sr/86Sr in Samoan EM2 lavas up to 0.721. The lithology and length scale of EM1 and EM2 is unconstrained. EM1 is globally present; EM2 is confined to the SW Pacific hotspots. FOZO is a work in progress; many would like to see it become extinct! The trace element signatures of HIMU and FOZO mantles have been constrained using melting models; in both

  18. Upper Mantle Anisotropy Structures Beneath Eastern Tibet and Northeast Asia

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wen, L.

    2015-12-01

    Tibetan plateau and eastern Asia subduction zone are tectonic active regions. Understanding the evolution and dynamics process of the two regions is important for us to understand mantle dynamics. A lot of work has been done on the velocity structures beneath the two regions, and several tectonic models are proposed to explain their dynamic process. But due to the absence of the detailed upper mantle anisotropy structures, those models are still under debate. Fine upper mantle velocity and anisotropy structures can help us understand the dynamic process of the two regions. Waveform modeling of upper mantle triplication phases can provide a good vertical resolution of upper mantle velocity structures, but present methods for calculating synthetic seismograms cannot process anisotropic media. We develop a method based on the generalized reflection and transmission method (GRTM) to calculate synthetic seismograms for wave propagating in stratified VTI media, so we can waveform model upper mantle triplications propagating in anisotropic media. In this study, we waveform model the tangential and radial seismic triplication data recorded in Chinese digital seismic stations at a epicentral distance of 10-30 degree for one event occurring in middle Tibet and one event occurring in Japan, to constrain fine upper mantle velocity and anisotropy structures beneath eastern Tibet and northeast Asia. The result shows that beneath eastern Tibet, horizontal S wave velocity is larger than vertical S wave velocity in the upper mantle; beneath northeast Asia, horizontal S wave velocity is larger than vertical S wave velocity above the depth of 190 km, and is smaller than vertical S wave velocity below the depth of 190 km. We also build a mineral physics modeling method, which can calculate upper mantle anisotropy structures based on mantle temperatures, compositions and directions of mantle flow, and use this method to explore compositional and dynamic models that would explain the

  19. Mantle-driven geodynamo features - accounting for non-thermal lower mantle features

    NASA Astrophysics Data System (ADS)

    Choblet, G.; Amit, H.

    2011-12-01

    Lower mantle heterogeneity responsible for spatial variations of the CMB heat flux could control long term geodynamo properties such as deviations from axial symmetry in the magnetic field and the core flow, frequency of geomagnetic reversals and anisotropic growth of the inner core. In this context, a classical interpretation of tomographic mapping of the lowermost mantle is to correlate linearly seismic velocities to heat flux anomalies. This implicitly assumes that temperature alone controls the tomographic anomalies. In addition, the limited spatial resolution of tomographic images precludes modeling sharp CMB heat flux structures.. There has been growing evidence however that non-thermal origins are also be expected for seismic velocity anomalies: the three main additional control parameters are (i) compositional anomalies possibly associated to the existence of a deep denser layer, (ii) the phase transition in magnesium perovskite believed to occur in the lowermost mantle and (iii) the possible presence of partial melts. Numerical models of mantle dynamics have illustrated how the first two parameters could distort the linear relationship between shear wave velocity anomalies and CMB heat flux (Nakagawa and Tackley, 2008). In this presentation we will consider the effect of such alternative interpretations of seismic velocity anomalies in order to prescribe CMB heat flux as an outer boundary for dynamo simulations. We first focus on the influence of post-perovskite. Taking into account this complexity could result in an improved agreement between the long term average properties of simulated dynamos and geophysical observations, including the Atlantic/Pacific hemispherical dichotomy in core flow activity, the single intense paleomagnetic field structure in the southern hemisphere, and possibly degree 1 dominant mode of inner-core seismic heterogeneity. We then account for sharp anomalies that are not resolved by the global tomographic probe. For instance

  20. Upper extremity muscle volumes and functional strength after resistance train